

June 1, 2022

LG&E and KU One Quality Street Lexington, KY 40507

RE: Report of Geotechnical Exploration Hardin Co. – Glendale South Structure 10A Glendale, KY AEI Project No. 222-032

### 1. INTRODUCTION

A summary of the geotechnical parameters necessary to facilitate foundation design has been prepared for the immediate use of the design team. The project is a part of the Hardin Co. – Glendale South line in Glendale, KY. This summary is provided for Structure 10A, a 3CS Tower.

| Structure<br>Number | Structure<br>Description | Height<br>(ft) | Centerline<br>Elevation<br>(ft) | Latitude<br>(DMS) | Longitude<br>(DMS) | Trans.<br>Moment<br>(ft-k) | Long.<br>Moment<br>(ft-k) |
|---------------------|--------------------------|----------------|---------------------------------|-------------------|--------------------|----------------------------|---------------------------|
| 10A                 | 3CS Tower                | 90             | 751.9                           | 37°36′4.59″N      | 85°52′41.32″W      | 4,196                      | 4,453                     |
| -                   | Leg 1                    | -              | 751.6                           | 37°36′4.42″N      | 85°52′41.27″W      | -                          | -                         |
| -                   | Leg 2                    | -              | 753.2                           | 37°36′4.63″N      | 85°52′41.12″W      | -                          | -                         |
| -                   | Leg 3                    | -              | 752.2                           | 37°36′4.76″N      | 85°52′41.36″W      | -                          | -                         |
| _                   | Leg 4                    | -              | 751.5                           | 37°36′4.54″N      | 85°52′41.53″W      | _                          | _                         |

### Table 1: Tower Details

### 2. DRILLING AND SAMPLING

The geotechnical exploration consisted of four borings, including one soil test boring, one soil test boring with rock core and two rockline soundings. The soil test borings were advanced to a depth of 49 feet and about 61 feet beneath the surface. The rockline soundings were advanced to a depth of about 32 feet to 60 feet beneath the surface. The boring locations were staked by KU personnel. A boring layout is included in Appendix A of this report.

### 3. SUBSURFACE SOIL CONDITIONS

The generalized subsurface conditions encountered at the boring locations, including descriptions of the various strata and their depths and thicknesses are presented on the typed boring logs in Appendix B.

Topsoil was encountered at the surface with thicknesses of approximately five to six inches. Beneath the surface materials, sandy lean clay, clayey sand and poorly graded sand with clay were encountered to refusal depths in each of the borings. The sandy lean clay was typically described as brown in color, saturated to wet and very stiff in relative soil strength. The clayey sand was typically described as fine to medium grained, brown to gray in color, wet and loose to medium dense in relative density. The poorly graded sand with clay was typically described as fine to medium grained, yellowish brown to white in color, wet to saturated and medium dense in relative density.

Detailed laboratory results are included in Appendix C of this report.

### 4. BEDROCK CONDITIONS

Refusal, as would be indicated by the Driller on the field boring logs, indicates a depth where essentially no downward progress can be made by the auger. It is normally indicative of a very hard or very dense material such as large boulders or the upper bedrock surface or where the N-value indicates essentially no penetration of the split-spoon sampler. Auger refusal was encountered in the soil test borings at the depths shown in the table below.

|            |              |               | Surface         | Auge  | er Refusal |  |  |  |  |  |  |  |  |
|------------|--------------|---------------|-----------------|-------|------------|--|--|--|--|--|--|--|--|
|            |              |               | Elevation (ft.) | Depth | Elevation  |  |  |  |  |  |  |  |  |
| Hole No.   | Latitude     | Longitude     | MSL             | (ft.) | (ft.) MSL  |  |  |  |  |  |  |  |  |
| STR 10A L1 | 37°36′4.59″N | 85°52′41.32″W | 749.8           | 26.8  | 723.0      |  |  |  |  |  |  |  |  |
| STR 10A L2 | 37°36′4.42″N | 85°52′41.27″W | 749.4           | N/A*  | N/A*       |  |  |  |  |  |  |  |  |
| STR 10A L3 | 37°36′4.63″N | 85°52′41.12″W | 750.5           | N/A*  | N/A*       |  |  |  |  |  |  |  |  |
| STR 10A L4 | 37°36′4.76″N | 85°52′41.36″W | 751.0           | 31.6  | 719.4      |  |  |  |  |  |  |  |  |

### Table 2: Structure 10A – Summary of Borings

\*Auger refusal was not encountered

### 5. FOUNDATION DESIGN PARAMETERS

5.1 <u>Lateral Design Parameters</u> – MFAD soil parameters are provided in the table below. These values are derived from the laboratory and standard penetration testing in combination with recommended soil properties from the Naval Engineering Command (NAVFAC) Design Manual 7.02. The soil deformation moduli provided below were derived from Figure 3-2 and Figure 3-4 of the User Guide for MFAD 5.0 (Moment Foundation Analysis and Design).

| Structure           |           |              | Approximate       | Modulus of  |
|---------------------|-----------|--------------|-------------------|-------------|
| Structure<br>Number | Soil Type | Depth (feet) | Angle of Internal | Deformation |
| Number              |           |              | Friction          | (ksi)       |
| STR 10A             | SC        | 5.0-11.0     | 32°               | 1.0         |
| STR 10A             | SC        | 11.0-19.0    | 32°               | 1.0         |
| STR 10A             | SP-SC     | 19.0-61.0*   | 35°               | 2.0         |

**Table 3: MFAD Geotechnical Design Parameters** 

\*Overburden depths vary from 26.8' to greater than 60'

Lateral soil parameters recommended for drilled shaft design are shown below in Table 4 using estimations by Reese, et. al. (1974) for sand above and below the water table. These values are derived from laboratory and standard penetration testing in combination with recommended soil properties from the Naval Engineering Command (NAVFAC) Design Manual 7.02.

| Structure<br>Number | Soil Type | Depth (feet) | Friction Factor,<br>tan (delta) | Initial Soil<br>Stiffness<br>(k <sub>py</sub> ) (pci) |
|---------------------|-----------|--------------|---------------------------------|-------------------------------------------------------|
| STR 10A             | SC        | 5.0-11.0     | 0.4                             | 90                                                    |
| STR 10A             | SC        | 11.0-19.0    | 0.4                             | 60                                                    |
| STR 10A             | SP-SC*    | 19.0-61.0    | 0.4                             | 60                                                    |

Table 4: L-Pile Soil Parameters for Design of Drilled Shafts

\*Overburden depths vary from 26.8' to greater than 60'

**5.2** <u>Axial Design Parameters</u> – Due to the karst conditions at the site, it is recommended to design the drilled shaft as soil bearing. Axial soil parameters recommended for drilled shaft design are shown below in Table 5. These values are derived from laboratory and standard penetration testing in combination with recommended soil properties from the Naval Engineering Command (NAVFAC) Design Manual 7.02. An ultimate friction angle for clayey fine to medium sand in contact with concrete of 19° should be used for design. For cohesionless soils, utilize a skin friction resistance factor ( $\phi$ ) of 0.55 in accordance with the Brown et al. (2010) method. Utilize an uplift resistance factor of 0.45 for cohesionless soils in accordance with the Brown et al. (2018) method. Due to karst features present at the proposed tower location, it is recommended that base resistance be neglected for design purposes.

| Structure<br>Number | Soil Type | Depth<br>(feet) | Effective<br>Unit<br>Weight*<br>(pcf) | Nominal Side<br>Resistance<br>(q₅) (ksf) |  |  |  |  |  |  |  |  |  |
|---------------------|-----------|-----------------|---------------------------------------|------------------------------------------|--|--|--|--|--|--|--|--|--|
| STR 10A             | SC        | 5.0-11.0        | 125                                   | 0.9                                      |  |  |  |  |  |  |  |  |  |
| STR 10A             | SC        | 11.0-19.0       | 62.6                                  | 0.9                                      |  |  |  |  |  |  |  |  |  |
| STR 10A             | SP-SC**   | 19.0-61.0       | 67.6                                  | 1.5                                      |  |  |  |  |  |  |  |  |  |

### Table 5: Axial Soil Parameters for Design of Drilled Shafts

\*Effective Unit Weight accounts for Buoyancy \*\*Overburden depths vary from 26.8' to greater than 60'

The designer should feel free to contact AEI at 270-651-7220 for further recommendations or if any questions arise pertaining to this project.

Sincerely,

AMERICAN ENGINEERS, INC.

Aaron Anderson, EIT Geotechnical Engineer

Bonett

Dusty Barrett, PE, PMP Director of Geotechnical Services

Attachments:

- Boring Layout
- Typed Boring Logs
- Laboratory Data

# **APPENDIX A**

### **Boring Layout**





# **APPENDIX B**

Boring Logs



### FIELD TESTING PROCEDURES

The general field procedures employed by the Field Services Center are summarized in the following outline. The procedures utilized by the AEI Field Service Center are recognized methods for determining soil and rock distribution and ground water conditions. These methods include geophysical and in situ methods as well as borings.

*Soil Borings* are drilled to obtain subsurface samples using one of several alternate techniques depending upon the surface conditions. Borings are advanced into the ground using continuous flight augers. At prescribed intervals throughout the boring depths, soil samples are obtained with a split-spoon or thin-walled sampler and sealed in airtight glass jars and labeled. The sampler is first seated 6 inches to penetrate loose cuttings and then driven an additional foot, where possible, with blows from a 140 pound hammer falling 30 inches. The number of blows required to drive the sampler each six-inch increment is recorded. The penetration resistance, or "N-value" is designated as the number of hammer blows required to drive the sampler the final foot and, when properly evaluated, is an index to cohesion for clays and relative density for sands. The split spoon sampling procedures used during the exploration are in general accordance with ASTM D 1586. Split spoon samples are considered to provide *disturbed* samples, yet are appropriate for most engineering applications. Thin-walled (Shelby tube) samples are considered to provide *undisturbed* samples and obtained when warranted in general accordance with ASTM D 1587.

These drilling methods are not capable of penetrating through material designated as "refusal materials." Refusal, thus indicated, may result from hard cemented soil, soft weathered rock, coarse gravel or boulders, thin rock seams, or the upper surface of sound continuous rock. Core drilling procedures are required to determine the character and continuity of refusal materials.

*Core Drilling Procedures* for use on refusal materials. Prior to coring, casing is set in the boring through the overburden soils. Refusal materials are then cored according to ASTM D-2113 using a diamond bit attached to the end of a hollow double tube core barrel. This device is rotated at high speeds and the cuttings are brought to the surface by circulating water. Samples of the material penetrated are protected and retained in the inner tube, which is retrieved at the end of each drill run. Upon retrieval of the inner tube the core is recovered, measured and placed in boxes for storage.

The subsurface conditions encountered during drilling are reported on a field test boring record by the driller. The record contains information concerning the boring method, samples attempted and recovered, indications of the presence of various materials such as coarse gravel, cobbles, etc., and observations between samples. Therefore, these boring records contain both factual and interpretive information. The field boring records are on file in our office.

The soil and rock samples plus the field boring records are reviewed by a geotechnical engineer. The engineer classifies the soil in general accordance with the procedures outlined in ASTM D 2487 and D 2488 and prepares the final boring records which are the basis for all evaluations and recommendations.

Representative portions of soil samples are placed in sealed containers and transported to the laboratory. In the laboratory, the samples are examined to verify the driller's field classifications. Test Boring Records are attached which show the soil descriptions and penetration resistances.

The final boring records represent our interpretation of the contents of the field records based on the results of the engineering examinations and tests of the field samples. These records depict subsurface conditions at the specific locations and at the particular time when drilled. Soil conditions at other locations may differ from conditions occurring at these boring locations. Also, the passage of time may result in a change in the subsurface soil and ground water conditions at these boring locations. The lines designate the interface between soil or refusal materials on the records and on profiles represent approximate boundaries. The transition between materials may be gradual. The final boring records are included with this report.

*Water table readings* are normally taken in conjunction with borings and are recorded on the "Boring Logs". These readings indicate the approximate location of the hydrostatic water table at the time of our field investigation. Where impervious soils are encountered (clayey soils) the amount of water seepage into the boring is small, and it is generally not possible to establish the location of hydrostatic water table through water level readings. The ground water table may also be dependent upon the amount of precipitation at the site during a particular period of time. Fluctuations in the water table should be expected with variations in precipitation, surface run-off, evaporation and other factors.

The time of boring water level reported on the boring records is determined by field crews as the drilling tools are advanced. The boring water level is detected by changes in the drilling rate, soil samples obtained, etc. Additional water table readings are generally obtained at least 24 hours after the borings are completed. The time lag of at least 24 hours is used to permit stabilization of the ground water table which has been disrupted by the drilling operations. The readings are taken by dropping a weighted line down the boring or using as electrical probe to detect the water level surface.

Occasionally the borings will cave-in, preventing water level readings from being obtained or trapping drilling water above the caved-in zone. The cave-in depth is also measured and recorded on the boring records.

### **Sampling Terminology**

<u>Undisturbed Sampling</u>: Thin-walled or Shelby tube samples used for visual examination, classification tests and quantitative laboratory testing. This procedure is described by ASTM D 1587. Each tube, together with the encased soil, is carefully removed from the ground, made airtight and transported to the laboratory. Locations and depths of undisturbed samples are shown on the "Boring Logs."

**Bag Sampling:** Bulk samples of soil are obtained at selected locations. These samples consist of soil brought to the surface by the drilling augers, or obtained from test pits or the ground surface using hand tools. Samples are placed in bags, with sealed jar samples of the material, and taken to our laboratory for testing where more mass material is required (i.e. Proctors and CBR's). The locations of these samples are indicated on the appropriate logs, or on the Boring Location Plan.

### **CLASSIFICATION SYSTEM FOR SOIL EXPLORATION**

### **COHESIVE SOILS**

(Clay, Silt, and Mixtures)

| <b>CONSISTENCY</b>                                               | SPT N-VALUE                                                                                                              | Qu/Qp (tsf)                                                                                                   | <b>PLASTICITY</b>                                                                          |              |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|
| Very Soft<br>Soft<br>Medium Stiff<br>Stiff<br>Very Stiff<br>Hard | 2 blows/ft or less<br>2 to 4 blows/ft<br>4 to 8 blows/ft<br>8 to 15 blows/ft<br>15 to 30 blows/ft<br>30 blows/ft or more | $\begin{array}{c} 0 - 0.25 \\ 0.25 - 0.49 \\ 0.50 - 0.99 \\ 1.00 - 2.00 \\ 2.00 - 4.00 \\ > 4.00 \end{array}$ | Degree of<br>PlasticityPlastic<br>Index<br>$0 - 7$ Low $0 - 7$ Medium $8 - 22$ Highover 22 | ( <u>PI)</u> |

### **NON-COHESIVE SOILS**

(Silt, Sand, Gravel, and Mixtures)

| <b>DENSITY</b>   | SPT N-VALUE         | PARTICLE | SIZE IDENTIFICATION                                |
|------------------|---------------------|----------|----------------------------------------------------|
| Very Loose       | 4 blows/ft or less  | Boulders | 12 inch diameter or more                           |
| Loose            | 4 to 10 blows/ft    | Cobbles  | 3 to 12 inch diameter                              |
| Medium Dense     | 10 to 30 blows/ft   | Gravel   | Coarse $-1$ to 3 inch                              |
| Dense            | 30 to 50 blows/ft   |          | Medium $-\frac{1}{2}$ to 1 inch                    |
| Very Dense       | 50 blows/ft or more |          | Fine $-\frac{1}{4}$ to $\frac{1}{2}$ inch          |
|                  |                     | Sand     | Coarse – 0.6mm to <sup>1</sup> / <sub>4</sub> inch |
| RELATIVE PROPO   | DRTIONS             |          | Medium – 0.2mm to 0.6mm                            |
| Descriptive Term | Percent             |          |                                                    |
| Trace            | 1 - 10              |          | Fine $-0.05$ mm to $0.2$ mm                        |
| Trace to Some    | 11 - 20             |          |                                                    |
| Some             | 21 – 35             | Silt     | 0.05mm to 0.005mm                                  |
| And              | 36 - 50             |          |                                                    |
|                  |                     | Clay     | 0.005mm                                            |
|                  |                     |          |                                                    |

### NOTES

**Classification** – The Unified Soil Classification System is used to identify soil unless otherwise noted.

N:

Standard "N" Penetration Test (SPT) (ASTM D1586) – Driving a 2-inch O.D., 1 3/8-inch I.D. sampler a distance of 1 foot into undisturbed soil with a 140-pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6inches to seat the sampler into undisturbed soil, and then perform the test. The number of hammer blows for seating the spoon and making the tests are recorded for each 6 inches of penetration on the field drill long (e.g., 10/8/7). On the report log, the Standard Penetration Test result (i.e., the N value) is normally presented and consists of the sum of the 2<sup>nd</sup> and 3<sup>rd</sup> penetration counts (i.e., N = 8 + 7 = 15 blows/ft.)

#### Soil Property Symbols

- Ou: Unconfined Compressive Strength
- Unconfined Comp. Strength (pocket pent.) omc: Qp: PL:
- LL: Liquid Limit, % (Atterberg Limit)
- PI: Plasticity Index

Standard Penetration Value (see above) Optimum Moisture content Plastic Limit, % (Atterberg Limit) Maximum Dry Density mdd:

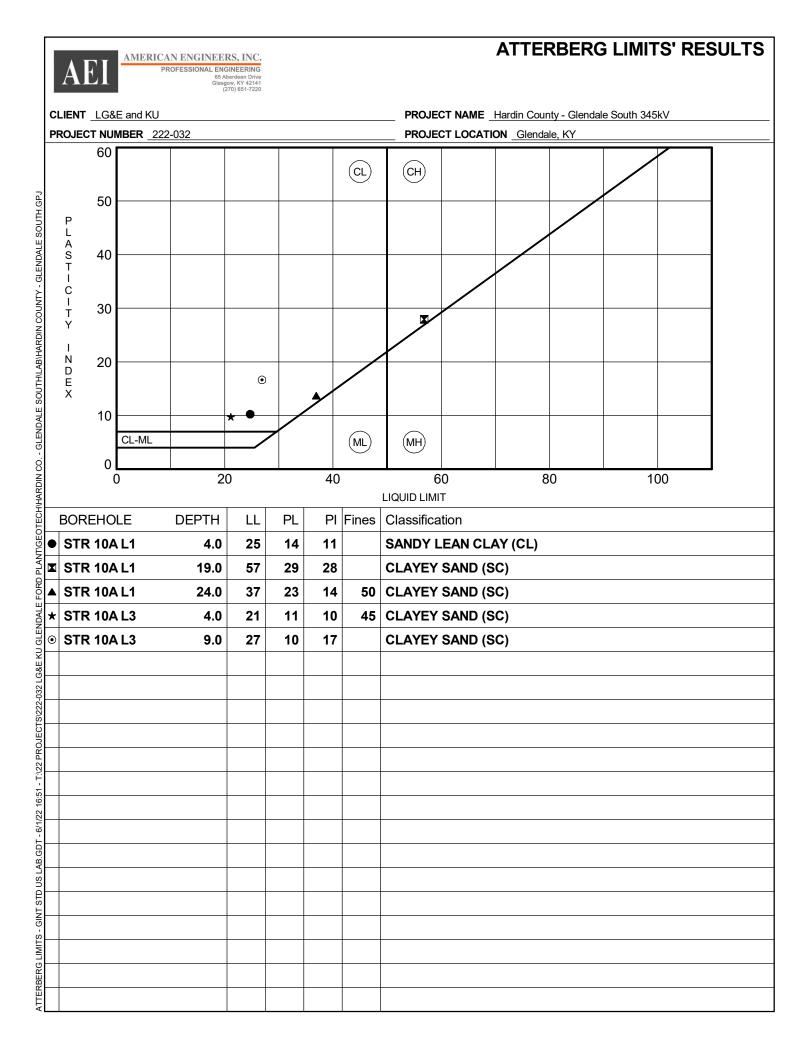
| AMERICAN ENGINEERS, INC.<br>PROFESSIONAL ENGINEERING<br>65 Aberdeen Drive<br>Gilagow, KY 42141<br>(270) 651-7220 STR 10A<br>PAGE 1 C |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------|-----------|-----------------------|-------------------|-----------------------------|----------------------|-------------------------|--------|------------------|---------------------|--------------------|
| CLIE                                                                                                                                 | ENT LO         |                                                                                          | PROJECT   |                       | Hardiı            | n County - (                | Glenda               | le Sout                 | th 345 | kV               |                     |                    |
|                                                                                                                                      |                |                                                                                          |           |                       |                   | Glendale, K                 |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      | LING C         | ONTRACTOR Adam Thompson                                                                  | GROUND    | WATER                 | LEVE              | LS:                         |                      |                         |        |                  |                     |                    |
|                                                                                                                                      | LING N         | ETHOD HSA/ Diamond impregnated coring bit                                                |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      | GED B          | Adam Cash         CHECKED BY         Aaron Anderson                                      | AT        | end of                | DRILL             | ING                         |                      |                         |        |                  |                     |                    |
| TON A                                                                                                                                | ES             |                                                                                          | AF        | FER DRI               | LLING             |                             |                      |                         |        |                  |                     |                    |
| eren<br>G                                                                                                                            |                |                                                                                          |           | ш                     | %                 |                             |                      |                         | AT     | TERBE            |                     |                    |
| Έπ                                                                                                                                   | 알              |                                                                                          |           | SAMPLE TYPE<br>NUMBER | Υ<br>Υ            | UE)<br>UE                   | POCKET PEN.<br>(tsf) | MOISTURE<br>CONTENT (%) |        |                  |                     | SKS                |
| DEPTH                                                                                                                                | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                     |           | л.<br>МВ              | RECOVERY<br>(RQD) | BLOW<br>COUNTS<br>(N VALUE) | (tsf)                | ISTU                    | LIQUID | PLASTIC<br>LIMIT | PLASTICITY<br>INDEX | REMARKS            |
|                                                                                                                                      | Ъ              |                                                                                          |           | AMF                   |                   | що́г                        | OCI                  | NO<br>NO                | las    |                  | AST                 | RE                 |
| 0 NHAK                                                                                                                               |                |                                                                                          |           | S                     | Ľ.                |                             | <u>а</u>             | 0                       |        | Ľ                | 4                   |                    |
|                                                                                                                                      |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                |                                                                                          |           | ST                    | 70                |                             | 4.5+                 | 21                      | 25     | 14               | 11                  | Qu = 5,325         |
|                                                                                                                                      |                |                                                                                          |           | 1                     | 10                |                             | 4.5+                 | 21                      | 25     | 14               |                     | ogu – 5,525<br>psf |
| z -                                                                                                                                  |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
| AKU                                                                                                                                  |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
| H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                          |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                | (SC) clayey SAND, fine to medium grained, light brown and g                              |           | ST                    | 60                |                             | 4.5+                 | 35                      | -      |                  |                     |                    |
| <u>5</u> 10                                                                                                                          |                | medium dense                                                                             | ray, wei, | 2                     | 00                |                             | 4.51                 | 55                      |        |                  |                     |                    |
| L L                                                                                                                                  |                |                                                                                          |           |                       |                   |                             |                      |                         | -      |                  |                     |                    |
|                                                                                                                                      |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
| 0 GLENUALE FORD FLAN IGEOLECHIHARUN CO<br>0 1                                                                                        |                |                                                                                          |           | SPT                   | 100               | 6-8-10                      | -                    | 16                      | -      |                  |                     |                    |
| 5 <u>  15</u><br>⊋                                                                                                                   |                |                                                                                          |           | 1                     |                   | (18)                        |                      |                         |        |                  |                     |                    |
| 2 U U                                                                                                                                |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
| 132 L(                                                                                                                               |                | Σ.                                                                                       |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                |                                                                                          |           | SPT                   | 100               | 3-6-9                       | 4.5+                 | 27                      | 57     | 29               | 28                  |                    |
|                                                                                                                                      |                |                                                                                          |           | 2                     |                   | (15)                        |                      |                         |        |                  |                     |                    |
| 122                                                                                                                                  |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
| 25                                                                                                                                   |                |                                                                                          |           | ST                    | 100               |                             | 4.5+                 | 16                      | 37     | 23               | 14                  |                    |
|                                                                                                                                      |                |                                                                                          |           | 3                     |                   |                             | <u> </u>             |                         |        |                  |                     |                    |
| LAB.                                                                                                                                 |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                | LIMESTONE with clay seams, gray, fine to medium grained, t<br>thick bedded, soft to hard | thin to   | RC<br>1               | 14<br>(0)         |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
| 30                                                                                                                                   |                |                                                                                          |           | RC<br>2               | 88<br>(38)        |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
| Har                                                                                                                                  |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
|                                                                                                                                      |                |                                                                                          |           |                       |                   |                             |                      |                         |        |                  |                     |                    |
| 35                                                                                                                                   |                |                                                                                          |           | RC                    | 58                |                             |                      | _                       |        |                  |                     |                    |

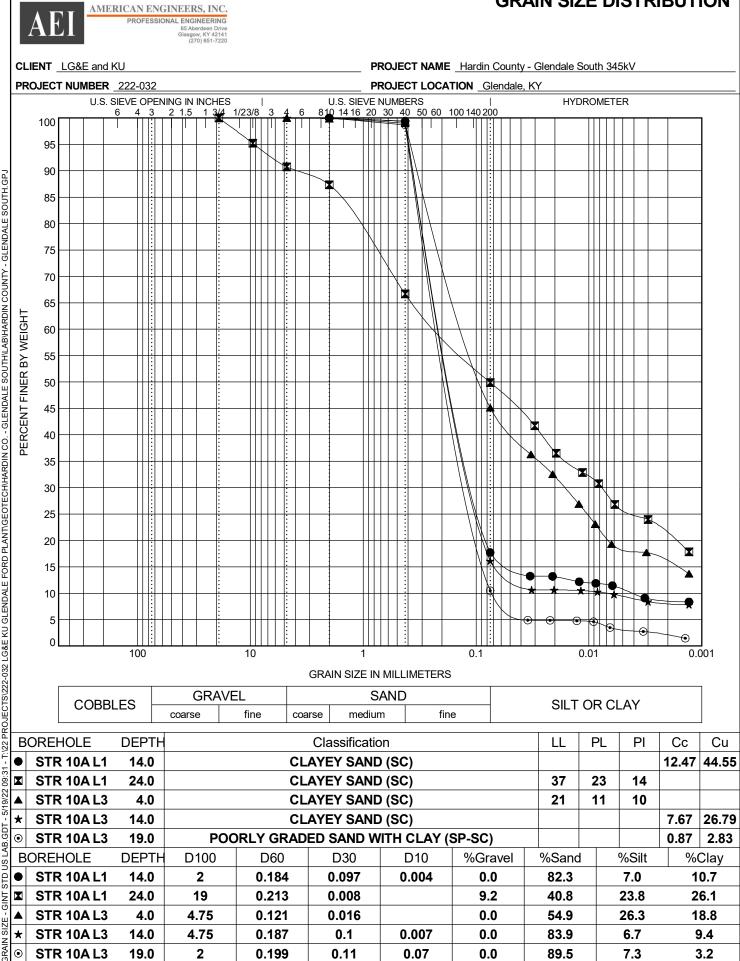
|                                                                                                                                                              | A              | EI             | AMERICAN ENGINEERS, INC.<br>PROFESSIONAL ENGINEERING<br>65 Aberdeen Drive<br>Glasgow, KY 42141<br>((270) 651-7220 |         |                       |                     |                             |                      |                         |                | ST                                | R 10<br>PAGE      | <b>)A L1</b><br>2 OF 2 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------|---------|-----------------------|---------------------|-----------------------------|----------------------|-------------------------|----------------|-----------------------------------|-------------------|------------------------|
|                                                                                                                                                              | CLIEN          | IT LG          |                                                                                                                   | PROJECT | NAME                  | Hardir              | n County - (                | Glenda               | le Sout                 | h 345l         | ٨V                                |                   |                        |
|                                                                                                                                                              |                |                |                                                                                                                   |         |                       |                     | Glendale, K                 |                      |                         |                |                                   |                   |                        |
| - GLENDALE SOU IH.GPJ                                                                                                                                        | DEPTH<br>(ft)  | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                              |         | SAMPLE TYPE<br>NUMBER | RECOVERY %<br>(RQD) | BLOW<br>COUNTS<br>(N VALUE) | POCKET PEN.<br>(tsf) | MOISTURE<br>CONTENT (%) | LIMIT<br>LIMIT | LERBE<br>LIMITS<br>LIMIT<br>LIMIT | PLASTICITY DINDEX | REMARKS                |
| LENU                                                                                                                                                         | 35             |                | LIMESTONE with clay seams, gray, fine to medium grained, th                                                       | hin to  | 3                     | (22)                |                             |                      |                         |                |                                   |                   |                        |
|                                                                                                                                                              | <br><br><br>   |                | thick bedded, soft to hard <i>(continued)</i>                                                                     |         | RC<br>4               | 80<br>(12)          |                             |                      |                         |                |                                   |                   |                        |
| GLENDALE SUULINL                                                                                                                                             | <br><br><br>45 |                |                                                                                                                   |         | RC<br>5               | 56<br>(28)          |                             |                      |                         |                |                                   |                   |                        |
|                                                                                                                                                              |                |                | Refusal at 26.8 feet.                                                                                             |         | 5                     | (20)                |                             |                      |                         |                |                                   |                   |                        |
| GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 6/1/22 T6:31 - T/22 PROJECT S/225-032 LG&E KU GLENDALE FORD PLANT/GEOTECHHARDIN CO GLENDALE SOUTHLABHARDIN COUNTY |                |                | Bottom of borehole at 49.0 feet.                                                                                  |         |                       |                     |                             |                      |                         |                |                                   |                   |                        |

|                      | A             | E              | AMERICAN ENGINEERS, INC.<br>PROFESSIONAL ENGINEERING<br>Glasgow, KY 42141<br>(270) 651-7220 |                                 |                       |                     |                             |                      |                         |         |                  |                     | <b>0A L2</b><br>E 1 OF 2 |
|----------------------|---------------|----------------|---------------------------------------------------------------------------------------------|---------------------------------|-----------------------|---------------------|-----------------------------|----------------------|-------------------------|---------|------------------|---------------------|--------------------------|
|                      | CLIEN         | IT LG          | &E and KU                                                                                   | PROJEC <sup>-</sup>             |                       | Hardi               | n County - (                | Glenda               | le Sout                 | :h 345ł | ٨V               |                     |                          |
|                      |               |                | UMBER _ 222-032                                                                             | PROJECT LOCATION _ Glendale, KY |                       |                     |                             |                      |                         |         |                  |                     |                          |
|                      |               |                | TED _4/1/22 COMPLETED _4/1/22                                                               |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| ſ                    |               |                | ONTRACTOR Adam Thompson                                                                     |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| H.GP                 |               |                | ETHOD Hollow Stem Auger                                                                     | AT TIME OF DRILLING             |                       |                     |                             |                      |                         |         |                  |                     |                          |
| SOUT                 |               |                | Adam Cash CHECKED BY Aaron Anderson                                                         |                                 |                       |                     | ING                         |                      |                         |         |                  |                     |                          |
| ALES                 |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| -END                 |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         | ATT     | FERBE            | RG                  |                          |
| ۲ - GI               | _             | с              |                                                                                             |                                 | SAMPLE TYPE<br>NUMBER | ⊀ %                 | sш                          | POCKET PEN.<br>(tsf) | MOISTURE<br>CONTENT (%) | I       |                  | 1                   | S                        |
| UNT                  | DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                        |                                 | і<br>ПВП<br>П         | RECOVERY (<br>(RQD) | BLOW<br>COUNTS<br>(N VALUE) | S) P∣                | 12<br>E<br>E<br>E<br>E  |         | ₽∟               | È×                  | REMARKS                  |
| N CO                 | DE (          | 3RA<br>LC      |                                                                                             |                                 | NUN                   | QR.                 | N KOR                       | CKE                  | OIS                     | LIQUID  | PLASTIC<br>LIMIT | DEG                 | EM                       |
| ARDI                 |               | 0              |                                                                                             |                                 | SAI                   | 문                   |                             | PG                   | ≥ö                      |         |                  | PLASTICITY<br>INDEX | Ľ                        |
| SOUTH\LAB\HARDIN     | 0             | <u>, 1 / 1</u> | - 、TOPSOIL (5 INCHES)                                                                       | ~                               |                       |                     |                             |                      |                         |         |                  | <u> </u>            |                          |
| I HVL                |               |                | OVERBURDEN (60.0 FEET)                                                                      | ′                               |                       |                     |                             |                      |                         |         |                  |                     |                          |
| SOU                  |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| JALE                 |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| GLENDAL              |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| 1                    | 5             |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| ECH/HARDIN CO        |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| IARD                 |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| CH                   |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
|                      |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| NT/GEO               | 10            |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| PLAN                 |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| FORD                 |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
|                      |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| GLENDALE             |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
|                      | 15            |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| se ku                |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| 2 LG&F               |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| 22-03                |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| :TS/22               |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| ROJECT               | 20            |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| 2 PR(                |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| - 1:/2               |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| 16:51                |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| 22                   |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| T - 6/1              | 25            |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| 19.5                 |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| SLA                  |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
|                      |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| - GINT STD US LAB.GD |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
|                      | 30            |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| NMN                  |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| GEOTECH BH COLUMNS   |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| H BH                 | L _           |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
| DIEC.                |               |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |
|                      | 35            |                |                                                                                             |                                 |                       |                     |                             |                      |                         |         |                  |                     |                          |

|                                                                                                                                                                                        | A            | E              | AMERICAN ENGINEERS, INC.<br>PROFESSIONAL ENGINEERING<br>65 Abardeen Drive<br>Glasgow, KY 42141<br>(270) 651-7220 |        |                       |                     |                             |                      |                         |                | ST                      | R 1<br>PAGE | 0A L2<br>E 2 OF 2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|------------------------------------------------------------------------------------------------------------------|--------|-----------------------|---------------------|-----------------------------|----------------------|-------------------------|----------------|-------------------------|-------------|-------------------|
|                                                                                                                                                                                        | CLIEN        | IT _LC         | G&E and KU                                                                                                       | PROJEC | T NAME                | Hardi               | n County - (                | Glenda               | le Sout                 | th 345         | ٨V                      |             |                   |
|                                                                                                                                                                                        |              |                | UMBER _222-032                                                                                                   |        |                       |                     | Glendale, K                 |                      |                         |                |                         |             |                   |
| IDALE SOUTH.GPJ                                                                                                                                                                        | (ft)<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                             |        | SAMPLE TYPE<br>NUMBER | RECOVERY %<br>(RQD) | BLOW<br>COUNTS<br>(N VALUE) | POCKET PEN.<br>(tsf) | MOISTURE<br>CONTENT (%) | LIMIT<br>LIMIT | LERBE<br>LIMIT<br>LIMIT |             | REMARKS           |
| GLEN                                                                                                                                                                                   |              |                | OVERBURDEN (60.0 FEET) (continued)                                                                               |        |                       |                     |                             |                      |                         |                |                         |             |                   |
| GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 6/1/22 16:51 - T.1/22 PROJECTS/222-032 LG&E KU GLENDALE FORD PLANT/GEOTECH/HARDIN CO GLENDALE SOUTH/LAB/HARDIN COUNTY - GLENDALE SOUTH.GPJ |              |                |                                                                                                                  |        |                       |                     |                             |                      |                         |                |                         |             |                   |
| 2 PRO                                                                                                                                                                                  |              |                | Bottom of borehole at 60.0 feet.                                                                                 |        |                       |                     |                             |                      |                         |                |                         |             |                   |
| GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 6/1/22 16:51 - T:\2                                                                                                                         |              |                |                                                                                                                  |        |                       |                     |                             |                      |                         |                |                         |             |                   |

|                       | A             | EI             | AMERICAN ENGINEERS, INC.<br>PROFESSIONAL ENGINEERING<br>65 Aberdeen Drive<br>Glasgow, KY 42141<br>(270) 951-7220 |                                                                           |                       |                     |                             |                      |                         |        | ST    |                     | <b>DA L3</b><br>E 1 OF 2 |
|-----------------------|---------------|----------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------|---------------------|-----------------------------|----------------------|-------------------------|--------|-------|---------------------|--------------------------|
|                       | CLIEN         | IT LG          | &E and KU PRC                                                                                                    | DJECT N                                                                   | AME                   | Hardir              | n County - C                | Glendal              | le Sout                 | h 345  | ٨V    |                     |                          |
|                       |               |                |                                                                                                                  |                                                                           | -                     |                     | Glendale, K                 |                      |                         |        |       |                     |                          |
|                       |               |                |                                                                                                                  |                                                                           |                       |                     | 750.5 ft                    |                      |                         |        |       |                     |                          |
|                       |               |                |                                                                                                                  |                                                                           |                       |                     |                             |                      |                         |        |       |                     |                          |
| ÷.                    |               |                |                                                                                                                  | _ GROUND WATER LEVELS:<br>AT TIME OF DRILLING _ 11.00 ft / Elev 739.50 ft |                       |                     |                             |                      |                         |        |       |                     |                          |
| 51                    |               |                | Adam Cash CHECKED BY Aaron Anderson                                                                              |                                                                           |                       |                     | ING                         |                      |                         |        |       |                     |                          |
| ALE                   | NOTE          | s              |                                                                                                                  | AFTE                                                                      | r Drii                | .LING               |                             |                      |                         |        |       |                     |                          |
| GLENU                 |               |                |                                                                                                                  |                                                                           |                       |                     |                             |                      |                         | AT     | FERBE |                     |                          |
| ż                     | DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                             |                                                                           | SAMPLE IYPE<br>NUMBER | RECOVERY %<br>(RQD) | BLOW<br>COUNTS<br>(N VALUE) | POCKET PEN.<br>(tsf) | MOISTURE<br>CONTENT (%) | LIQUID |       | PLASTICITY<br>INDEX | REMARKS                  |
| ARD                   | 0             |                |                                                                                                                  |                                                                           | A S                   | R                   | <u> </u>                    | E E                  | 20                      |        | L _   | PLA<br>■            | -                        |
|                       | <br>          |                | TOPSOIL (6 INCHES)<br>(SC) clayey SAND, fine to medium grained, brown, wet, loose to<br>medium dense             |                                                                           |                       |                     |                             |                      |                         |        |       |                     |                          |
| - GLEN                | 5             |                |                                                                                                                  |                                                                           | ST<br>1               | 100                 |                             | 4.25                 | 16                      | 21     | 11    | 10                  | Qu = 1,945<br>psf        |
|                       |               |                |                                                                                                                  |                                                                           |                       |                     |                             |                      |                         |        |       |                     |                          |
|                       |               |                |                                                                                                                  |                                                                           |                       |                     |                             |                      |                         |        |       |                     |                          |
|                       | 10            |                |                                                                                                                  |                                                                           | ST<br>2               | 100                 |                             | 3.75                 | 18                      | 27     | 10    | 17                  | Qu = 3,225<br>psf        |
| RD PLAN               |               |                | $\overline{\Delta}$                                                                                              |                                                                           |                       |                     |                             |                      |                         |        |       |                     |                          |
|                       |               |                |                                                                                                                  |                                                                           |                       |                     |                             |                      |                         |        |       |                     |                          |
| KU GLEI               | 15            |                |                                                                                                                  | X                                                                         | SPT<br>1              | 73                  | 5-5-5<br>(10)               | -                    | 20                      |        |       |                     |                          |
| 9/222-032 LG&E        | <br>          |                |                                                                                                                  |                                                                           |                       |                     |                             |                      |                         |        |       |                     |                          |
|                       | 20            |                | (SP-SC) poorly graded SAND with clay, fine to medium grained, yellowish brown, wet, medium dense                 |                                                                           | SPT<br>2              | 100                 | 6-6-7<br>(13)               | -                    | 19                      |        |       |                     |                          |
| - 6/1/22 16:52 - 1:/2 |               |                | (SP-SC) poorly graded SAND with clay, fine to medium grained, with                                               | hite -                                                                    | SPT                   | 67                  | 8-8-16                      | -                    | 22                      |        |       |                     |                          |
| _ г                   |               |                | (SP-SC) pooling graded SAND with day, line to medium grained, wi<br>wet to saturated, medium dense               |                                                                           | 3                     | 07                  | (24)                        | -                    |                         |        |       |                     |                          |
|                       |               |                |                                                                                                                  |                                                                           |                       |                     |                             |                      |                         |        |       |                     |                          |
| 219-22                | 30            |                |                                                                                                                  | X                                                                         | SPT<br>4              | 67                  | 3-9-15<br>(24)              | -                    | 23                      |        |       |                     |                          |
|                       |               |                |                                                                                                                  |                                                                           |                       |                     |                             |                      |                         |        |       |                     |                          |
| GEOLE                 | 35            |                |                                                                                                                  | X                                                                         | SPT                   | 87                  | 8-8-17                      | -                    | 18                      |        |       |                     |                          |


| n County - Glenda                                                             | lale South 345kV                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PROJECT LOCATION _Glendale, KY                                                |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| BLOW<br>COUNTS<br>(N VALUE)<br>POCKET PEN.<br>(tsf)                           | MOISTURE<br>CONTENT (%)<br>LIQUID<br>LIMIT<br>PLASTIC<br>TIMIT                                                                                     | rs v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| (25)                                                                          |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 5-5-6       -         (11)       -         6-8-8       -         (16)       - | 23                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 5-7-9 -<br>(16)                                                               | 24                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                                               | Sendale, KY         MOTION         (25)         5-5-6         (11)         5-6-8-8         (16)         6-8-8         (16)         -         5-7-9 | Sendale, KY       ATTERB<br>IMM<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTION<br>(%)<br>INUTI |  |  |  |


|                                              | A             | E                 | AMERICAN ENGINEERS, INC.<br>PROFESSIONAL ENGINEERING<br>65 Abordeen Drive<br>Giasgow, KY 42141<br>(270) 651-7220 |    |                       |                   |                             |                      |                         |         | ST               |                     | <b>0A L4</b><br>1 OF 1 |
|----------------------------------------------|---------------|-------------------|------------------------------------------------------------------------------------------------------------------|----|-----------------------|-------------------|-----------------------------|----------------------|-------------------------|---------|------------------|---------------------|------------------------|
|                                              |               | <b>T</b> IG       | &E and KU                                                                                                        |    |                       | Hardi             | n County - (                | Clonda               | la Sout                 | h 3/5   | N                |                     |                        |
|                                              |               |                   | UMBER 222-032                                                                                                    |    |                       |                   |                             |                      |                         | 11 3431 | ιv               |                     |                        |
|                                              |               |                   | TED         4/8/22         COMPLETED         4/8/22                                                              |    |                       |                   |                             | 1                    |                         |         |                  |                     |                        |
|                                              |               |                   | ONTRACTOR Adam Thompson                                                                                          |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| 5.                                           |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| R                                            |               |                   | ETHOD Hollow Stem Auger                                                                                          |    |                       |                   | _ING                        |                      |                         |         |                  |                     |                        |
| й<br>Ц                                       |               |                   | Adam Cash CHECKED BY Aaron Anderson                                                                              |    |                       |                   | ING                         |                      |                         |         |                  |                     |                        |
| GLENUAL                                      | NOTE          | s                 |                                                                                                                  | AF | ter Dri               |                   |                             |                      |                         |         | FERBE            |                     |                        |
| 5                                            |               |                   |                                                                                                                  |    | Щ                     | %                 |                             | z                    |                         |         | LIMITS           |                     | ~                      |
| ž                                            | Ξ.            | GRAPHIC<br>LOG    |                                                                                                                  |    | ШЧ                    | К<br>С            | BLOW<br>COUNTS<br>(N VALUE) | L D                  | URI<br>1 URI            |         | 0                | ≿                   | REMARKS                |
|                                              | DEPTH<br>(ft) | LOC               | MATERIAL DESCRIPTION                                                                                             |    | JME                   | RQE               | VAL                         | Ef St                | TEL                     | S₽      | STIC             | ЪЩ                  | MA                     |
|                                              |               | Ü                 |                                                                                                                  |    | SAMPLE TYPE<br>NUMBER | RECOVERY<br>(RQD) | ΞŏΞ                         | POCKET PEN.<br>(tsf) | MOISTURE<br>CONTENT (%) | LIQUID  | PLASTIC<br>LIMIT | PLASTICITY<br>INDEX | RE                     |
| - GLENDALE SOUTH/LAB/HARDIN COUN             | 0             |                   |                                                                                                                  |    | 0)                    | Ľ.                |                             | Ľ                    | 0                       |         | Ľ                | Ч                   |                        |
| -ILAE                                        |               | <u>, 1/2: . 1</u> | - <u>TOPSOIL (5 INCHES)</u><br>OVERBURDEN (31.6 FEET)                                                            |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
|                                              |               |                   | OVERBORDEN (31.0 FEET)                                                                                           |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| й<br>Ц                                       |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
|                                              |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| 5                                            | 5             |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
|                                              |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| N<br>N<br>N                                  |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| AH/H                                         |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| E<br>E                                       |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| C H C                                        | 10            |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| AN-                                          |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| ⊒<br>⊋                                       |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| 2                                            |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| IDAL                                         |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| GLENDALE FORD PLAN I/GEO I ECH/HARDIN CO     | 15            |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| ₽                                            |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| LG&F                                         |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| -032                                         |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| 2/22                                         |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| - 6/1/22 16:52 - 1:\22 PROJECIS\222-032 LG&E | 20            |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| о́я́г                                        |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| 22.                                          |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| - 79                                         |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| 22 16                                        |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| - 6/1/                                       | 25            |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
|                                              |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| LAB.                                         |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
|                                              |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| - GIN I S ID US LAB.GD I                     |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| Z<br>J                                       | 30            |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| NNS                                          |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
|                                              |               |                   |                                                                                                                  |    | -                     |                   |                             |                      |                         |         |                  |                     |                        |
| С<br>Н<br>Я<br>Н                             |               |                   | Refusal at 31.6 feet.<br>Bottom of borehole at 31.6 feet.                                                        |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| E<br>C<br>L<br>C<br>L                        |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |
| GEULECH BH CULUMNS                           |               |                   |                                                                                                                  |    |                       |                   |                             |                      |                         |         |                  |                     |                        |

# **APPENDIX C**

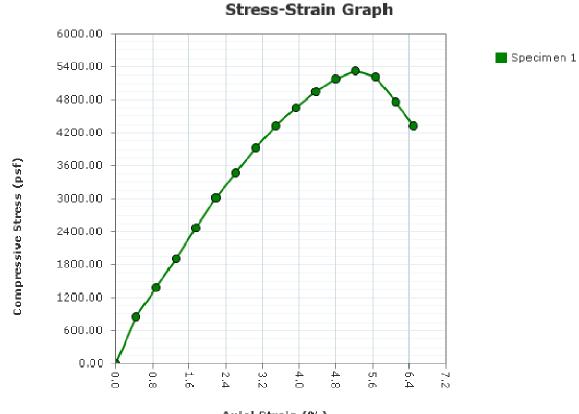
Laboratory Testing Results







- T:/22 PROJECTS/222-032 LG&E KU GLENDALE FORD PLANTIGEOTECH/HARDIN CO. - GLENDALE SOUTH/LABI/HARDIN COUNTY - GLENDALE SOUTH GPJ 09:31 - 5/19/22 GDT LAB. S STD GINT


### **GRAIN SIZE DISTRIBUTION**

65 Aberdeen Drive Glasgow, KY 42141 (270) 651-7220 PROJECT NAME Hardin County - Glendale South 345kV CLIENT LG&E and KU PROJECT NUMBER 222-032 PROJECT LOCATION Glendale, KY U.S. SIEVE NUMBERS HYDROMETER U.S. SIEVE OPENING IN INCHES 1 3/4 1/23/8 810 14 16 20 30 40 50 60 100 140 200 3 4 6 4 3 2 1.5 6 100 95 90 US LAB.GDT - 5/19/22 09:32 - 17:22 PROJECTS/222-032 LG&E KU GLENDALE FORD PLANT/GEOTECH/HARDIN CO. - GLENDALE SOUTH/LAB/HARDIN COUNTY - GLENDALE SOUTH.GPJ 85 : 80 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 35 30 25 20 15 10 5 . • 0 0.001 100 10 0.1 0.01 1 **GRAIN SIZE IN MILLIMETERS** GRAVEL SAND COBBLES SILT OR CLAY fine medium fine coarse coarse BOREHOLE DEPTH LL PL ΡI Сс Classification Cu **STR 10A L3** 49.0 POORLY GRADED SAND WITH CLAY (SP-SC) 0.83 2.59 BOREHOLE DEPTH D100 D60 D30 D10 %Gravel %Sand %Silt %Clay 2 0.202 92.2 6.2 STD • STR 10A L3 49.0 0.114 0.078 0.0 1.6 GINT **GRAIN SIZE** 

### AMERICAN ENGINEERS, INC. PROFESSIONAL ENGINEERING 65 Aberdeen Drive

### **GRAIN SIZE DISTRIBUTION**

ASTM D2166

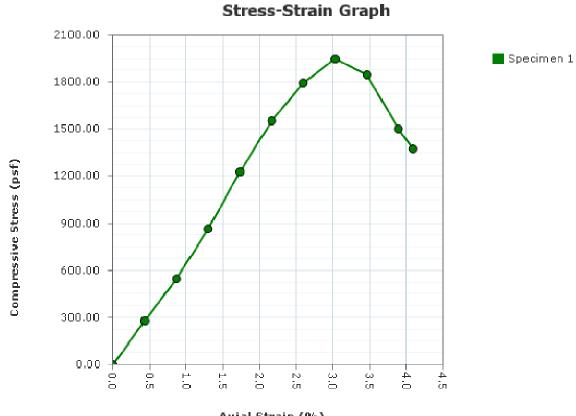


Axial Strain (%)

Project:Hardin Co. - Glendale SouthProject Number:222-032Received Date:4/13/2022Sampling Date:4/13/2022Sample Number:ST 1Sample Depth:4.0-6.0 ftBoring Number:STR 10A L1Location:Glendale, KYClient Name:LG&E and KURemarks:K

Project Name: Hardin Co. - Glendale South Project Number: 222-032

Date: \_


ASTM D2166

|                                                                                       | 4                   | •            |                            | pecimer | n Numbo            |                       | =      | 0                      |
|---------------------------------------------------------------------------------------|---------------------|--------------|----------------------------|---------|--------------------|-----------------------|--------|------------------------|
| Before Test                                                                           | 1                   | 2            | 3                          | 4       | 5                  | 6                     | 7      | 8                      |
| Moisture Content (%):                                                                 |                     |              |                            |         |                    |                       |        |                        |
| Wet Density (pcf)                                                                     |                     |              |                            |         |                    |                       |        |                        |
| Dry Density (pcf)                                                                     |                     |              |                            |         |                    |                       |        |                        |
| Saturation (%):                                                                       |                     |              |                            |         |                    |                       |        |                        |
| Void Ratio:                                                                           |                     |              |                            |         |                    |                       |        |                        |
| Height (in)                                                                           |                     |              |                            |         |                    |                       |        |                        |
| Diameter (in)                                                                         |                     |              |                            |         |                    |                       |        |                        |
| Strain Limit @ 15% (in)                                                               |                     |              |                            |         |                    |                       |        |                        |
| Height To Diameter Ratio:                                                             | 2.08                |              |                            |         |                    |                       |        |                        |
| Test Data                                                                             | 1                   | . 2          | . 3                        | 4       | 5                  | 6                     | . 7    | . 8                    |
| Failure Angle (°):                                                                    |                     |              |                            |         |                    |                       |        |                        |
| Strain Rate (in/min)                                                                  | 0.1                 |              |                            |         |                    |                       |        |                        |
| Strain Rate (%/min):                                                                  |                     |              |                            |         |                    |                       |        |                        |
| Unconfined Compressive Strength (psf)                                                 |                     |              |                            |         |                    |                       |        |                        |
| Undrained Shear Strength (psf)                                                        |                     |              |                            |         |                    |                       |        |                        |
| Strain at Failure (%):                                                                | 5.23                |              |                            |         |                    |                       |        |                        |
| Specific Gravity: 2.72                                                                | Pla                 | astic Limit: | 14                         |         | I                  | Liquid Limi           | it: 25 |                        |
| Type: UD                                                                              | Soil Cla            | ssification: | CL                         |         |                    |                       | ·      |                        |
| Project: Hardin Co Glendale So<br>Project Number: 222-032<br>Sampling Date: 4/13/2022 | uth                 |              |                            |         |                    |                       |        |                        |
| Sample Number: ST 1                                                                   |                     |              |                            |         |                    |                       |        |                        |
| Sample Depth: 4.0-6.0 ft                                                              |                     |              |                            |         |                    |                       |        |                        |
| Boring Number: STR 10A L1                                                             |                     |              |                            |         |                    |                       |        |                        |
| Location: Glendale, KY                                                                |                     |              |                            |         |                    |                       |        |                        |
| Client Name: LG&E and KU                                                              |                     |              |                            |         |                    |                       |        |                        |
| Remarks:                                                                              |                     |              |                            |         |                    |                       |        |                        |
| Specimen 1 Specimen 2 Specimen 3<br>Failure Sketch Failure Sketch Failure Sketch      | Specim<br>Failure S |              | Specimen 5<br>ailure Sketo |         | imen 6<br>e Sketch | Specime<br>Failure Sk |        | ecimen 8<br>ure Sketch |
|                                                                                       |                     |              |                            |         |                    |                       |        |                        |

Project Name: Hardin Co. - Glendale South Project Number: 222-032

Checked By: \_\_\_\_\_ Date: \_\_\_\_

ASTM D2166



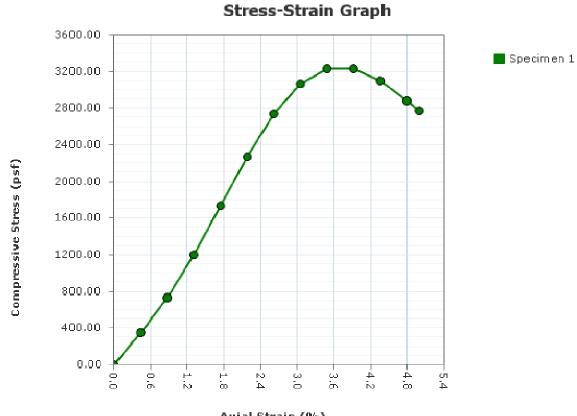
Axial Strain (%)

Project:Hardin Co. - Glendale SouthProject Number:222-032Received Date:4/13/2022Sampling Date:4/13/2022Sample Number:ST 4Sample Depth:4.0-6.0 ftBoring Number:STR 10A L3Location:Glendale, KYClient Name:LG&E and KURemarks:K

Project Name: Hardin Co. - Glendale South Project Number: 222-032

Checked By: \_\_\_\_

Date: \_


ASTM D2166

| Before Test                                                                      | 1                     | 2           | <b>S</b>                   | pecimer<br>4 | ı Numbo<br>5       | er<br>6               | 7      | 8                       |
|----------------------------------------------------------------------------------|-----------------------|-------------|----------------------------|--------------|--------------------|-----------------------|--------|-------------------------|
| Moisture Content (%):                                                            | 15.6                  | _           |                            | -            |                    |                       |        |                         |
| Wet Density (pcf)                                                                | 134.1                 |             |                            |              |                    |                       |        |                         |
| Dry Density (pcf)                                                                | 116.0                 |             |                            |              |                    |                       |        |                         |
| Saturation (%):                                                                  | 91.3                  |             |                            |              |                    |                       |        |                         |
| Void Ratio:                                                                      | 0.464                 |             |                            |              |                    |                       |        |                         |
| Height (in)                                                                      | 5.7800                |             |                            |              |                    |                       |        |                         |
| Diameter (in)                                                                    | 2.8400                |             |                            |              |                    |                       |        |                         |
| Strain Limit @ 15% (in)                                                          | 0.9                   |             |                            |              |                    |                       |        |                         |
| Height To Diameter Ratio:                                                        | 2.04                  |             |                            |              |                    |                       |        |                         |
| Test Data                                                                        | 1                     | 2           | 3                          | 4            | 5                  | 6                     | 7      | 8                       |
| Failure Angle (°):                                                               | 0                     |             |                            |              |                    |                       |        |                         |
| Strain Rate (in/min)                                                             | 0.1                   |             |                            |              |                    |                       |        |                         |
| Strain Rate (%/min):                                                             | 1.73                  |             |                            |              |                    |                       |        |                         |
| Unconfined Compressive Strength (psf)                                            | 1945.44               |             |                            |              |                    |                       |        |                         |
| Undrained Shear Strength (psf)                                                   | 972.72                |             |                            |              |                    |                       |        |                         |
| Strain at Failure (%):                                                           | 3.03                  |             |                            |              |                    |                       |        |                         |
| Specific Gravity: 2.72                                                           | Pla                   | stic Limit: | 11                         |              | I                  | Liquid Limi           | it: 21 |                         |
| Type: UD                                                                         | Soil Clas             | sification: | SC                         |              |                    |                       | •      |                         |
| Project: Hardin Co Glendale Sou<br>Project Number: 222-032                       | ıth                   |             |                            |              |                    |                       |        |                         |
| Sampling Date: 4/13/2022                                                         |                       |             |                            |              |                    |                       |        |                         |
| Sample Number: ST 4                                                              |                       |             |                            |              |                    |                       |        |                         |
| Sample Depth: 4.0-6.0 ft                                                         |                       |             |                            |              |                    |                       |        |                         |
| Boring Number: STR 10A L3                                                        |                       |             |                            |              |                    |                       |        |                         |
| Location: Glendale, KY                                                           |                       |             |                            |              |                    |                       |        |                         |
| Client Name: LG&E and KU                                                         |                       |             |                            |              |                    |                       |        |                         |
| Remarks:                                                                         |                       |             |                            |              |                    |                       |        |                         |
| Specimen 1 Specimen 2 Specimen 3<br>Failure Sketch Failure Sketch Failure Sketch | Specime<br>Failure Sl |             | Specimen 5<br>ailure Skete |              | imen 6<br>e Sketch | Specime<br>Failure Sk |        | pecimen 8<br>ure Sketch |

Project Name: Hardin Co. - Glendale South Project Number: 222-032

Checked By: \_\_\_\_\_ Date: \_\_\_\_

ASTM D2166



Axial Strain (%)

Project: Hardin Co. - Glendale South Project Number: 222-032 Received Date: 4/13/2022 Sampling Date: 4/13/2022 Sample Number: ST 5 Sample Depth: 9.0-11.0 ft Boring Number: STR 10A L3 Location: Glendale, KY Client Name: LG&E and KU Remarks:

Project Name: Hardin Co. - Glendale South Project Number: 222-032

Test Date: 4/13/2022 Report Created: 5/19/2022 Checked By: \_\_\_\_

Date:

ASTM D2166

| Before Test                                                                                                                                                                                                                              | 1                    | 2            | S<br>3                     | pecimei<br>4 | n Numbo<br>5       | er<br>6               | 7     | 8                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|----------------------------|--------------|--------------------|-----------------------|-------|-------------------------|
| Moisture Content (%):                                                                                                                                                                                                                    |                      |              |                            | -            |                    |                       | 1     |                         |
| Wet Density (pcf)                                                                                                                                                                                                                        |                      |              |                            |              |                    |                       |       |                         |
| Dry Density (pcf)                                                                                                                                                                                                                        |                      |              |                            |              |                    |                       |       |                         |
| Saturation (%):                                                                                                                                                                                                                          |                      |              |                            |              |                    |                       |       |                         |
| Void Ratio:                                                                                                                                                                                                                              |                      |              |                            |              |                    |                       |       |                         |
| Height (in)                                                                                                                                                                                                                              |                      |              |                            |              |                    |                       |       |                         |
| Diameter (in)                                                                                                                                                                                                                            |                      |              |                            |              |                    |                       |       |                         |
| Strain Limit @ 15% (in)                                                                                                                                                                                                                  |                      |              |                            |              |                    |                       |       |                         |
| Height To Diameter Ratio:                                                                                                                                                                                                                |                      |              |                            |              |                    |                       |       |                         |
| Test Data                                                                                                                                                                                                                                | 1                    | 2            | 3                          | 4            | 5                  | . 6                   | 7     | . 8                     |
| Failure Angle (°):                                                                                                                                                                                                                       | 0                    |              |                            |              |                    |                       |       |                         |
| Strain Rate (in/min)                                                                                                                                                                                                                     |                      |              |                            |              |                    |                       |       |                         |
| Strain Rate (%/min):                                                                                                                                                                                                                     | 1.74                 |              |                            |              |                    |                       |       |                         |
| Unconfined Compressive Strength (psf)                                                                                                                                                                                                    | 3226.87              |              |                            |              |                    |                       |       |                         |
| Undrained Shear Strength (psf)                                                                                                                                                                                                           | 1613.44              |              |                            |              |                    |                       |       |                         |
| Strain at Failure (%):                                                                                                                                                                                                                   | 3.92                 |              |                            |              |                    |                       |       |                         |
| Specific Gravity: 2.72                                                                                                                                                                                                                   | Pla                  | astic Limit: | 10                         |              | I                  | Liquid Limi           | t: 27 |                         |
| Type: UD                                                                                                                                                                                                                                 | Soil Clas            | ssification: | CL                         |              |                    |                       |       |                         |
| Project: Hardin Co Glendale So<br>Project Number: 222-032<br>Sampling Date: 4/13/2022<br>Sample Number: ST 5<br>Sample Depth: 9.0-11.0 ft<br>Boring Number: STR 10A L3<br>Location: Glendale, KY<br>Client Name: LG&E and KU<br>Remarks: | uth                  |              |                            |              |                    |                       |       |                         |
| Specimen 1 Specimen 2 Specimen 3<br>Failure Sketch Failure Sketch Failure Sketch                                                                                                                                                         | Specime<br>Failure S |              | Specimen 5<br>ailure Sketo |              | imen 6<br>e Sketch | Specime<br>Failure Sk |       | vecimen 8<br>ure Sketch |

Project Name: Hardin Co. - Glendale South Project Number: 222-032

Checked By: \_\_\_\_\_ Date: \_\_\_\_

### Your Geotechnical Engineering Report

To help manage your risks, this information is being provided because subsurface issues are a major cause of construction delays, cost overruns, disputes, and claims.

#### Geotechnical Services are Performed for Specific Projects, Purposes, and People

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering exploration conducted for an engineer may not fulfill the needs of a contractor or even another engineer. Each geotechnical engineering exploration and report is unique and is prepared solely for the client. No one except the client should rely on the geotechnical engineering report without first consulting with the geotechnical engineer who prepared it. The report should not be applied for any project or purpose except the one originally intended.

#### **Read the Entire Report**

To avoid serious problems, the full geotechnical engineering report should be read in its entirety. Do not only read selected sections or the executive summary.

#### A Unique Set of Project-Specific Factors is the Basis for a Geotechnical Engineering Report

Geotechnical engineers consider a numerous unique, project-specific factors when determining the scope of a study. Typical factors include: the client's goals, objectives, project costs, risk management preferences, proposed structures, structures on site, topography, and other proposed or existing site improvements, such as access roads, parking lots, and utilities. Unless indicated otherwise by the geotechnical engineer who conducted the original exploration, a geotechnical engineering report should not be relied upon if it was:

- not prepared for you or your project,
- not prepared for the specific site explored, or
- completed before important changes to the project were implemented.

Typical changes that can lessen the reliability of an existing geotechnical engineering report include those that affect:

- the function of the proposed structure, as when it's changed from a multi-story hotel to a parking lot
- finished floor elevation, location, orientation, or weight of the proposed structure, anticipated loads or
- project ownership

Geotechnical engineers cannot be held liable or

responsible for issues that occur because their report did not take into account development items of which they were not informed. The geotechnical engineer should always be notified of any project changes. Upon notification, it should be requested of the geotechnical engineer to give an assessment of the impact of the project changes.

#### **Subsurface Conditions Can Change**

A geotechnical engineering report is based on conditions that exist at the time of the exploration. A geotechnical engineering report should not be relied upon if its reliability could be in question due to factors such as man-made events as construction on or adjacent to the site, natural events such as floods, earthquakes, or groundwater fluctuation, or time. To determine if a geotechnical report is still reliable, contact the geotechnical engineer. Major problems could be avoided by performing a minimal amount of additional analysis and/or testing.

### Most Geotechnical Findings are Professional Opinions

Geotechnical site explorations identify subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field logs and laboratory data and apply their professional judgment to make conclusions about the subsurface conditions throughout the site. Actual subsurface conditions may differ from those indicated in the report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risk associated with unanticipated conditions.

### The Recommendations within a Report Are Not Final

Do not put too much faith on the construction recommendations included in the report. The recommendations are not final due to geotechnical engineers developing them principally from judgment and opinion. Only by observing actual subsurface conditions revealed during construction can geotechnical engineers finalize their recommendations. Responsibility and liability cannot be assumed for the recommendations within the report by the geotechnical engineer who developed the report if that engineer does not perform construction observation.

#### A Geotechnical Engineering Report Is Subject To Misinterpretation

Misinterpretation of geotechnical engineering reports has resulted in costly problems. The risk of misinterpretation can be lowered after the submittal of the final report by having the geotechnical engineer consult with appropriate members of the design team. The geotechnical engineer could also be retained to review crucial parts of the plans and specifications put together by the design team. The geotechnical engineering report can also be misinterpreted by contractors which can result in many problems. By participating in pre-bid and preconstruction meetings and providing construction observations by the geotechnical engineer, many risks can be reduced.

#### Final Boring Logs Should not be Re-drawn

Geotechnical engineers prepare final boring logs and testing results based on field logs and laboratory data. The logs included in a final geotechnical engineering report should never be redrawn to be included in architectural or design drawings due to errors that could be made. Electronic reproduction is acceptable, along with photographic reproduction, but it should be understood that separating logs from the report can elevate risk.

### **Contractors Need a Complete Report and Guidance**

By limiting what is provided for bid preparation, contractors are not liable for unforeseen subsurface conditions although some owners and design professionals believe the opposite to be true. The complete geotechnical engineering report, accompanied with a cover letter or transmittal, should be provided to contractors to help prevent costly problems. The letter states that the report was not prepared for purposes of bid

development and the report's accuracy is limited. Although a fee may be required, encourage the contractors to consult with the geotechnical engineer who prepared the report and/or to conduct additional studies to obtain the specific types of information they need or prefer. A prebid conference involving the owner, geotechnical engineer, and contractors can prove to be very valuable. If needed, allow contractors sufficient time to perform additional studies. Upon doing this you might be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

#### **Closely Read Responsibility Provisions**

Geotechnical engineering is not as exact as other engineering disciplines. This lack of understanding by clients, design professionals, and contractors has created unrealistic expectations that have led to disappointments, claims, and disputes. To minimize such risks, a variety of explanatory provisions may be included in the report by the geotechnical engineer. To help others recognize their own responsibilities and risks, many of these provisions indicate where the geotechnical engineer's responsibilities begin and end. These provisions should be read carefully, questions asked if needed, and the geotechnical engineer should provide satisfactory responses.

#### **Environmental Issues/Concerns are not Covered**

Unforeseen environmental issues can lead to project delays or even failures. Geotechnical engineering reports do not usually include environmental findings, conclusions, or recommendations. As with a geotechnical engineering report, do not rely on an environmental report that was prepared for someone else.



65 Aberdeen Drive Glasgow, KY 42141 270-651-7220



May 13, 2022



LG&E and KU One Quality Street Lexington, KY 40507

RE: Report of Geotechnical Exploration Ford 138kV Glendale Industrial West Structure 26W Glendale, KY AEI Project No. 222-032

### 1. INTRODUCTION

A summary of the geotechnical parameters necessary to facilitate foundation design has been prepared for the immediate use of the design team. The project is a part of the Ford 138kV Glendale Industrial West in Glendale, KY. This summary is provided for Structure 26W, a double circuit, tangent pole which will be supported by direct embedment.

|                     | Table 1: Tower Details   |                |                   |                |                    |                  |                  |  |  |  |  |  |
|---------------------|--------------------------|----------------|-------------------|----------------|--------------------|------------------|------------------|--|--|--|--|--|
| Structure           | Chrysophumo              | Unight         | Centerline        | Structure C    | Coordinates        | Trans.           | Long.            |  |  |  |  |  |
| Structure<br>Number | Structure<br>Description | Height<br>(ft) | Elevation<br>(ft) | Latitude (DMS) | Longitude<br>(DMS) | Moment<br>(ft-k) | Moment<br>(ft-k) |  |  |  |  |  |
| 26W                 | Double Circuit           | 115            | 696.8             | 37°34'40.46"N  | 85°53′6.43″W       | 906              | 284              |  |  |  |  |  |

### 2. DRILLING AND SAMPLING

The geotechnical exploration consisted of one soil test boring. The soil test boring was advanced to a depth of about 25 feet beneath the surface. The boring location was staked by KU personnel. A boring layout is included in Appendix A of this report.

### 3. SUBSURFACE SOIL CONDITIONS

The generalized subsurface conditions encountered at the boring location, including descriptions of the various strata and their depths and thicknesses are presented on the typed boring log in Appendix B.

Topsoil was encountered at the surface with a thickness of eight inches. Beneath the surface material, lean clay was encountered to a depth of nine feet. Fat clay was encountered from nine feet to the auger refusal depth. The lean clay was typically

described as brown to reddish brown in color, moist and stiff to very stiff in soil strength consistency. The fat clay was typically described as containing trace amounts of gravel, reddish brown in color, moist and stiff in soil strength consistency.

### 4. BEDROCK CONDITIONS

Refusal, as would be indicated by the Driller on the field boring log, indicates a depth where essentially no downward progress can be made by the auger. It is normally indicative of a very hard or very dense material such as large boulders or the upper bedrock surface or where the N-value indicates essentially no penetration of the split-spoon sampler. The auger refusal depth is provided in the table below.

|          |               |              | Surface   | Auge  | r Refusal |
|----------|---------------|--------------|-----------|-------|-----------|
|          |               |              | Elevation | Depth | Elevation |
| Hole No. | Latitude      | Longitude    | (ft.) MSL | (ft.) | (ft.) MSL |
| STR 26W  | 37°34'40.46"N | 85°53′6.43″W | 696.7     | 25.3  | 671.4     |

Table 2: Structure 26W – Summary of Boring

### 5. FOUNDATION DESIGN PARAMETERS

5.1 <u>Lateral Design Parameters</u> – MFAD soil parameters are provided in the table below. These values are derived from the laboratory and standard penetration testing in combination with recommended soil properties from the Naval Engineering Command (NAVFAC) Design Manual 7.02. The soil deformation moduli provided below were derived from Figure 3-2 and Figure 3-4 of the User Guide for MFAD 5.0 (Moment Foundation Analysis and Design).

| Structure<br>Number | Soil Type | Depth<br>(feet) | Soil<br>Undrained<br>Shear<br>Strength<br>(ksf) | Modulus of<br>Deformation<br>(ksi) |
|---------------------|-----------|-----------------|-------------------------------------------------|------------------------------------|
| STR 26W             | CL        | 5.0-9.0         | 2.1                                             | 1.3                                |
| STR 26W             | СН        | 9.0-25.0        | 0.5                                             | 0.3                                |

**Table 3: MFAD Geotechnical Design Parameters** 

Lateral soil parameters recommended for drilled shaft design are shown below in Table 4 using estimations by Matlock (1970) for soft clays with free water and by Reese, et. al (1975) for stiff clay with free water. These values are derived from laboratory and standard penetration testing in combination with recommended soil properties from the Naval Engineering Command (NAVFAC) Design Manual 7.02.

| Structure<br>Number | Soil Type | Depth<br>(feet) | Estimated Strain<br>at 50% Stress<br>(ε <sub>50</sub> ) | Initial Soil<br>Stiffness<br>(k <sub>py</sub> ) (pci) |
|---------------------|-----------|-----------------|---------------------------------------------------------|-------------------------------------------------------|
| STR 26W             | CL        | 5.0-9.0         | 0.03                                                    | 400                                                   |
| STR 26W             | СН        | 9.0-25.0        | 0.02                                                    | -                                                     |

### Table 4: L-Pile Soil Parameters for Design of Drilled Shafts

**5.2** <u>Axial Design Parameters</u> – Axial soil parameters recommended for drilled shaft design are shown below in Table 5. These values are derived from laboratory and standard penetration testing in combination with recommended soil properties from the Naval Engineering Command (NAVFAC) Design Manual 7.02. An ultimate friction angle for clay in contact with concrete of 17° should be used for design. For cohesive soils, utilize a skin friction resistance factor ( $\phi$ ) of 0.45 in accordance with the Brown et al. (2010) method. Utilize an uplift resistance factor of 0.35 for cohesive soils in accordance with the Brown et al. (2018) method. Due to karst features present at the proposed tower location, it is recommended that base resistance be neglected for design purposes.

| Structure<br>Number | Soil Type | Depth<br>(feet) | Effective<br>Unit<br>Weight*<br>(pcf) | Undrained<br>Shear Strength<br>(S <sub>u</sub> ) (ksf) | Nominal Side<br>Resistance<br>(q₅) (ksf) |
|---------------------|-----------|-----------------|---------------------------------------|--------------------------------------------------------|------------------------------------------|
| STR 26W             | CL        | 5.0-9.0         | 125.0                                 | 2.1                                                    | 0.9                                      |
| STR 26W             | СН        | 9.0-25.0        | 120.0                                 | 0.5                                                    | 0.6                                      |

\*Effective Unit Weight accounts for Buoyancy

The designer should feel free to contact AEI at 270-651-7220 for further recommendations or if any questions arise pertaining to this project.

Sincerely,

AMERICAN ENGINEERS, INC.

Aaron Anderson, EIT Geotechnical Engineer

Attachments:

- Boring Layout
- Typed Boring Log
- Laboratory Data

Dusty Barrett, PE, PMP Director of Geotechnical Services

# **APPENDIX A**

### **Boring Layout**







# ALL BORING LOCATIONS ARE APPROXIMATE

# **APPENDIX B**

Boring Log



### FIELD TESTING PROCEDURES

The general field procedures employed by the Field Services Center are summarized in the following outline. The procedures utilized by the AEI Field Service Center are recognized methods for determining soil and rock distribution and ground water conditions. These methods include geophysical and in situ methods as well as borings.

*Soil Borings* are drilled to obtain subsurface samples using one of several alternate techniques depending upon the surface conditions. Borings are advanced into the ground using continuous flight augers. At prescribed intervals throughout the boring depths, soil samples are obtained with a split-spoon or thin-walled sampler and sealed in airtight glass jars and labeled. The sampler is first seated 6 inches to penetrate loose cuttings and then driven an additional foot, where possible, with blows from a 140 pound hammer falling 30 inches. The number of blows required to drive the sampler each six-inch increment is recorded. The penetration resistance, or "N-value" is designated as the number of hammer blows required to drive the sampler the final foot and, when properly evaluated, is an index to cohesion for clays and relative density for sands. The split spoon sampling procedures used during the exploration are in general accordance with ASTM D 1586. Split spoon samples are considered to provide *disturbed* samples, yet are appropriate for most engineering applications. Thin-walled (Shelby tube) samples are considered to provide *undisturbed* samples and obtained when warranted in general accordance with ASTM D 1587.

These drilling methods are not capable of penetrating through material designated as "refusal materials." Refusal, thus indicated, may result from hard cemented soil, soft weathered rock, coarse gravel or boulders, thin rock seams, or the upper surface of sound continuous rock. Core drilling procedures are required to determine the character and continuity of refusal materials.

*Core Drilling Procedures* for use on refusal materials. Prior to coring, casing is set in the boring through the overburden soils. Refusal materials are then cored according to ASTM D-2113 using a diamond bit attached to the end of a hollow double tube core barrel. This device is rotated at high speeds and the cuttings are brought to the surface by circulating water. Samples of the material penetrated are protected and retained in the inner tube, which is retrieved at the end of each drill run. Upon retrieval of the inner tube the core is recovered, measured and placed in boxes for storage.

The subsurface conditions encountered during drilling are reported on a field test boring record by the driller. The record contains information concerning the boring method, samples attempted and recovered, indications of the presence of various materials such as coarse gravel, cobbles, etc., and observations between samples. Therefore, these boring records contain both factual and interpretive information. The field boring records are on file in our office.

The soil and rock samples plus the field boring records are reviewed by a geotechnical engineer. The engineer classifies the soil in general accordance with the procedures outlined in ASTM D 2487 and D 2488 and prepares the final boring records which are the basis for all evaluations and recommendations.

Representative portions of soil samples are placed in sealed containers and transported to the laboratory. In the laboratory, the samples are examined to verify the driller's field classifications. Test Boring Records are attached which show the soil descriptions and penetration resistances.

The final boring records represent our interpretation of the contents of the field records based on the results of the engineering examinations and tests of the field samples. These records depict subsurface conditions at the specific locations and at the particular time when drilled. Soil conditions at other locations may differ from conditions occurring at these boring locations. Also, the passage of time may result in a change in the subsurface soil and ground water conditions at these boring locations. The lines designate the interface between soil or refusal materials on the records and on profiles represent approximate boundaries. The transition between materials may be gradual. The final boring records are included with this report.

*Water table readings* are normally taken in conjunction with borings and are recorded on the "Boring Logs". These readings indicate the approximate location of the hydrostatic water table at the time of our field investigation. Where impervious soils are encountered (clayey soils) the amount of water seepage into the boring is small, and it is generally not possible to establish the location of hydrostatic water table through water level readings. The ground water table may also be dependent upon the amount of precipitation at the site during a particular period of time. Fluctuations in the water table should be expected with variations in precipitation, surface run-off, evaporation and other factors.

The time of boring water level reported on the boring records is determined by field crews as the drilling tools are advanced. The boring water level is detected by changes in the drilling rate, soil samples obtained, etc. Additional water table readings are generally obtained at least 24 hours after the borings are completed. The time lag of at least 24 hours is used to permit stabilization of the ground water table which has been disrupted by the drilling operations. The readings are taken by dropping a weighted line down the boring or using as electrical probe to detect the water level surface.

Occasionally the borings will cave-in, preventing water level readings from being obtained or trapping drilling water above the caved-in zone. The cave-in depth is also measured and recorded on the boring records.

### **Sampling Terminology**

<u>Undisturbed Sampling</u>: Thin-walled or Shelby tube samples used for visual examination, classification tests and quantitative laboratory testing. This procedure is described by ASTM D 1587. Each tube, together with the encased soil, is carefully removed from the ground, made airtight and transported to the laboratory. Locations and depths of undisturbed samples are shown on the "Boring Logs."

**Bag Sampling:** Bulk samples of soil are obtained at selected locations. These samples consist of soil brought to the surface by the drilling augers, or obtained from test pits or the ground surface using hand tools. Samples are placed in bags, with sealed jar samples of the material, and taken to our laboratory for testing where more mass material is required (i.e. Proctors and CBR's). The locations of these samples are indicated on the appropriate logs, or on the Boring Location Plan.

### **CLASSIFICATION SYSTEM FOR SOIL EXPLORATION**

### **COHESIVE SOILS**

(Clay, Silt, and Mixtures)

| <b>CONSISTENCY</b>                                               | SPT N-VALUE                                                                                                              | Qu/Qp (tsf)                                                                                                   | <b>PLASTICITY</b>                                                                          |              |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|
| Very Soft<br>Soft<br>Medium Stiff<br>Stiff<br>Very Stiff<br>Hard | 2 blows/ft or less<br>2 to 4 blows/ft<br>4 to 8 blows/ft<br>8 to 15 blows/ft<br>15 to 30 blows/ft<br>30 blows/ft or more | $\begin{array}{c} 0 - 0.25 \\ 0.25 - 0.49 \\ 0.50 - 0.99 \\ 1.00 - 2.00 \\ 2.00 - 4.00 \\ > 4.00 \end{array}$ | Degree of<br>PlasticityPlastic<br>Index<br>$0 - 7$ Low $0 - 7$ Medium $8 - 22$ Highover 22 | ( <u>PI)</u> |

### **NON-COHESIVE SOILS**

(Silt, Sand, Gravel, and Mixtures)

| <b>DENSITY</b>   | SPT N-VALUE         | PARTICLE | SIZE IDENTIFICATION                                |
|------------------|---------------------|----------|----------------------------------------------------|
| Very Loose       | 4 blows/ft or less  | Boulders | 12 inch diameter or more                           |
| Loose            | 4 to 10 blows/ft    | Cobbles  | 3 to 12 inch diameter                              |
| Medium Dense     | 10 to 30 blows/ft   | Gravel   | Coarse – 1 to 3 inch                               |
| Dense            | 30 to 50 blows/ft   |          | Medium $-\frac{1}{2}$ to 1 inch                    |
| Very Dense       | 50 blows/ft or more |          | Fine $-\frac{1}{4}$ to $\frac{1}{2}$ inch          |
|                  |                     | Sand     | Coarse – 0.6mm to <sup>1</sup> / <sub>4</sub> inch |
| RELATIVE PROPO   | DRTIONS             |          | Medium – 0.2mm to 0.6mm                            |
| Descriptive Term | Percent             |          |                                                    |
| Trace            | 1 - 10              |          | Fine $-0.05$ mm to $0.2$ mm                        |
| Trace to Some    | 11 - 20             |          |                                                    |
| Some             | 21 – 35             | Silt     | 0.05mm to 0.005mm                                  |
| And              | 36 - 50             |          |                                                    |
|                  |                     | Clay     | 0.005mm                                            |
|                  |                     |          |                                                    |

### NOTES

**Classification** – The Unified Soil Classification System is used to identify soil unless otherwise noted.

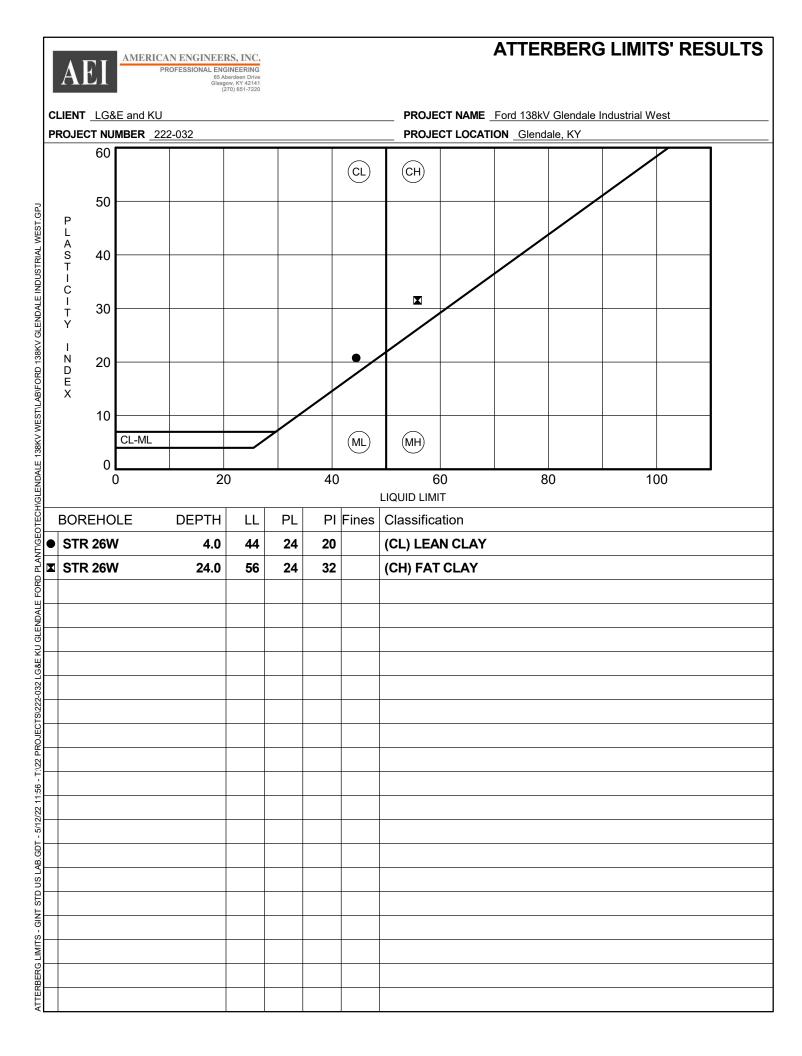
N:

Standard "N" Penetration Test (SPT) (ASTM D1586) – Driving a 2-inch O.D., 1 3/8-inch I.D. sampler a distance of 1 foot into undisturbed soil with a 140-pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6inches to seat the sampler into undisturbed soil, and then perform the test. The number of hammer blows for seating the spoon and making the tests are recorded for each 6 inches of penetration on the field drill long (e.g., 10/8/7). On the report log, the Standard Penetration Test result (i.e., the N value) is normally presented and consists of the sum of the 2<sup>nd</sup> and 3<sup>rd</sup> penetration counts (i.e., N = 8 + 7 = 15 blows/ft.)

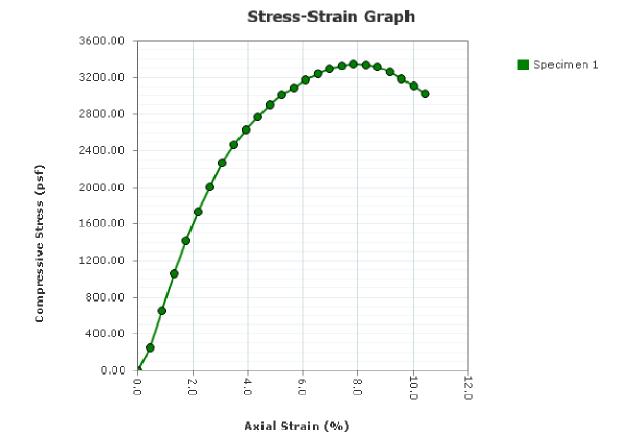
### Soil Property Symbols

- Ou: Unconfined Compressive Strength
- Unconfined Comp. Strength (pocket pent.) omc: Qp: PL:
- LL: Liquid Limit, % (Atterberg Limit)
- PI: Plasticity Index

Standard Penetration Value (see above) Optimum Moisture content Plastic Limit, % (Atterberg Limit) Maximum Dry Density mdd:


|                                           | A             | EI             | AMERICAN ENGINEERS, INC.<br>PROFESSIONAL ENGINEERING<br>65 Abordeen Drive<br>Giasgow, KY 42141<br>(270) 651-7220 |        |                       |                   |                             |                      |                         |         |                  |                     | <b>R 26W</b><br>1 OF 1 |
|-------------------------------------------|---------------|----------------|------------------------------------------------------------------------------------------------------------------|--------|-----------------------|-------------------|-----------------------------|----------------------|-------------------------|---------|------------------|---------------------|------------------------|
|                                           | CLIEN         | NT LG          | &E and KU P                                                                                                      | ROJEC  | T NAME                | Ford              | 138kV Gle                   | ndale                | ndusti                  | rial We | est              |                     |                        |
|                                           |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
|                                           |               |                | TED _3/18/22         COMPLETED _3/18/22         G                                                                | GROUND | ELEVA                 |                   | 696.7 ft                    |                      |                         |         |                  |                     |                        |
|                                           |               |                |                                                                                                                  |        | WATER                 |                   |                             |                      |                         |         |                  |                     |                        |
| 19.<br>-                                  |               |                | ETHOD Hollow Stem Auger                                                                                          |        |                       |                   | LING                        |                      |                         |         |                  |                     |                        |
| V EO                                      |               |                | Peyton Linder     CHECKED BY Aaron Anderson                                                                      |        |                       |                   | .ING                        |                      |                         |         |                  |                     |                        |
| T T                                       | NOTE          | .s             |                                                                                                                  | AF     |                       | LLING             |                             |                      |                         |         | ERBE             |                     |                        |
|                                           |               | 0              |                                                                                                                  |        | Ë<br>L                | % /               | (a (ii)                     | z                    | ц<br>(%)                |         |                  | 3                   | S                      |
| ALF                                       | DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                             |        | SAMPLE TYPE<br>NUMBER | RECOVERY<br>(RQD) | BLOW<br>COUNTS<br>(N VALUE) | POCKET PEN.<br>(tsf) | MOISTURE<br>CONTENT (%) |         | <u>0</u>         | È.×                 | REMARKS                |
| LENU                                      | DEI<br>(i     | SRA<br>LC      |                                                                                                                  |        | MPL                   | Q.R.              | N V/                        | А<br>Э<br>Э          | 10IS                    | LIQUID  | PLASTIC<br>LIMIT | STIC<br>PEC         | KEM,                   |
| פ<br>אר<br>גר                             | 0             |                |                                                                                                                  |        | SAI                   | RE                |                             | P                    | ≥ö                      |         |                  | PLASTICITY<br>INDEX | LE L                   |
|                                           |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
|                                           |               |                | (CL) lean CLAY, brown to reddish brown, moist, stiff to very                                                     | stiff  | ST<br>1               | 85                |                             | 4.0                  | 24                      |         |                  |                     | Qu = 3,340<br>psf      |
| NEO                                       | 5             |                |                                                                                                                  |        | ST<br>2               | 90                |                             | 4.5+                 | 27                      | 44      | 24               | 20                  | Qu = 5,400             |
| 201/1                                     |               |                |                                                                                                                  |        | Z                     |                   |                             |                      |                         |         |                  |                     | psf                    |
| Ч<br>Ч<br>Ч                               |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| LENU,                                     | - 10 -        |                | (CH) fat CLAY, trace gravel, reddish brown, moist, stiff                                                         |        | SPT                   | 100               | 4-6-6                       | 3.25                 | 30                      |         |                  |                     |                        |
|                                           |               |                |                                                                                                                  |        |                       |                   | (12)                        |                      |                         |         |                  |                     |                        |
| Ц<br>С                                    |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| 5                                         |               |                |                                                                                                                  |        | OT                    | 100               |                             | 0.5                  |                         |         |                  |                     | 0                      |
| A<br>L<br>L<br>A                          | _ 15 _        |                |                                                                                                                  |        | ST<br>3               | 100               |                             | 3.5                  | 32                      |         |                  |                     | Qu = 990<br>psf        |
|                                           |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| DALE                                      |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| S<br>LEN                                  | 20            |                |                                                                                                                  |        | SPT 2                 | 73                | 5-5-4<br>(9)                | 3.25                 | 35                      |         |                  |                     |                        |
| 2<br>2<br>1                               |               |                |                                                                                                                  |        |                       |                   | (3)                         |                      |                         |         |                  |                     |                        |
| בפא                                       |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| 22-03                                     | 25            |                |                                                                                                                  |        | ST                    | 100               |                             | 3.25                 | 28                      | 56      | 24               | 32                  |                        |
| 2/2/2                                     |               |                | Refusal at 25.3 feet.                                                                                            |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| Ч<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С |               |                | Bottom of borehole at 25.3 feet.                                                                                 |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| 1 ZZ                                      |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| - 10                                      |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
|                                           |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| 2/13/2                                    |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| <u>-</u>                                  |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| SID US LAB.GU                             |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| n<br>N                                    |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
|                                           |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| - GIN                                     |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
|                                           |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| CH BH CULUMINS                            |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| ñ<br>L                                    |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |
| Ú,                                        |               |                |                                                                                                                  |        |                       |                   |                             |                      |                         |         |                  |                     |                        |

С Ш С


# **APPENDIX C**

Laboratory Testing Results





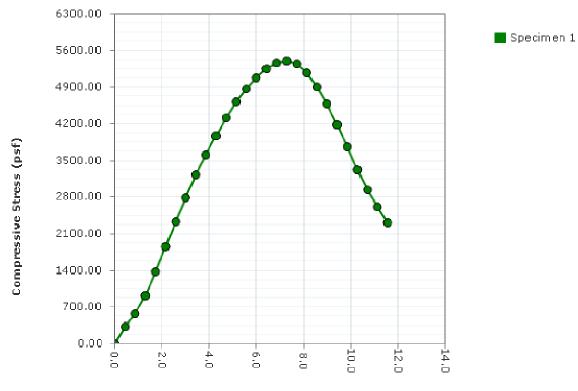
ASTM D2166



Project:Ford 138kV Glendale Industrial WestProject Number:222-032Received Date:3/21/2022Sampling Date:3/21/2022Sample Number:ST 1Sample Depth:1.0-3.0 ftBoring Number:STR 26WLocation:Glendale, KYClient Name:LG&E and KURemarks:K

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

Checked By: \_\_\_\_\_


Date: \_

ASTM D2166

| Before Test                                  | 1          | 2            | S<br>3       |           | n Numbe<br>5 | er<br>6    | 7          | 8          |
|----------------------------------------------|------------|--------------|--------------|-----------|--------------|------------|------------|------------|
| Moisture Content (%):                        |            | 4            |              |           | 5            | 0          |            | 0          |
| Wet Density (pcf)                            |            |              |              |           |              |            |            |            |
| Dry Density (pcf)                            |            |              |              |           |              |            |            |            |
| Saturation (%):                              |            |              |              |           |              |            |            |            |
| Void Ratio:                                  |            |              |              |           |              |            |            |            |
| Height (in)                                  |            |              |              |           |              |            |            |            |
| Diameter (in)                                |            |              |              |           |              |            |            |            |
| Strain Limit @ 15% (in)                      |            |              |              |           |              |            |            |            |
| Height To Diameter Ratio:                    |            |              |              |           |              |            |            |            |
| Test Data                                    | 1          | 2            | 3            | 4         | 5            | 6          | 7          | 8          |
| Failure Angle (°):                           | 0          |              |              |           |              |            |            |            |
| Strain Rate (in/min)                         |            |              |              |           |              |            |            |            |
| Strain Rate (%/min):                         | 1.74       |              |              |           |              |            |            |            |
| Unconfined Compressive Strength (psf)        | 3343.57    |              |              |           |              |            |            |            |
| Undrained Shear Strength (psf)               | 1671.79    |              |              |           |              |            |            |            |
| Strain at Failure (%):                       | 8.28       |              |              |           |              |            |            |            |
| Specific Gravity: 2.72                       |            | astic Limit: | 0            |           | T            | Liquid Lim | it: 0      |            |
| Type: UD                                     |            | ssification: |              |           | L            | Iquiu Liii | 11. 0      |            |
|                                              |            |              |              |           |              |            |            |            |
| Project: Ford 138kV Glendale Ind             | ustrial We | st           |              |           |              |            |            |            |
| Project Number: 222-032                      |            |              |              |           |              |            |            |            |
| Sampling Date: 3/21/2022                     |            |              |              |           |              |            |            |            |
| Sample Number: ST 1                          |            |              |              |           |              |            |            |            |
| Sample Depth: 1.0-3.0 ft                     |            |              |              |           |              |            |            |            |
| Boring Number: STR 26W                       |            |              |              |           |              |            |            |            |
| Location: Glendale, KY                       |            |              |              |           |              |            |            |            |
| Client Name: LG&E and KU<br>Remarks:         |            |              |              |           |              |            |            |            |
|                                              |            |              |              |           |              |            |            |            |
| Specimen 1 Specimen 2 Specimen 3             | Specim     |              | Specimen     |           | imen 6       | Specime    |            | ecimen 8   |
| Failure Sketch Failure Sketch Failure Sketch | Failure S  | ketch I      | Failure Sket | ch Failur | e Sketch     | Failure Sl | ketch Fail | ure Sketch |
|                                              |            |              |              |           |              |            |            |            |
|                                              |            |              |              |           |              |            |            |            |
|                                              |            |              |              |           |              |            |            |            |
|                                              |            |              |              |           |              |            |            |            |
|                                              |            |              |              |           |              |            |            |            |
| ··                                           | ÷          | !            |              | ! !       | ! !          |            | !          |            |

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

ASTM D2166



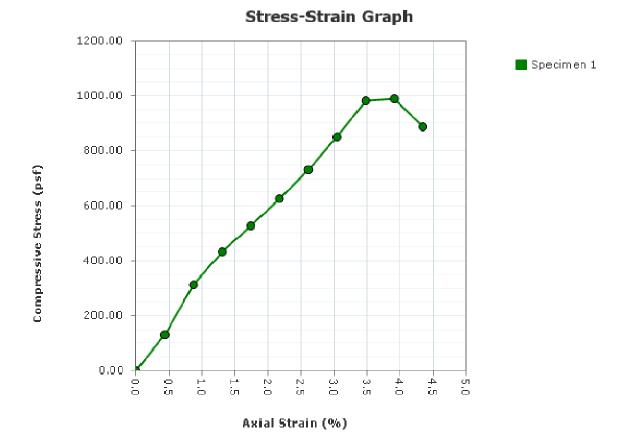
Stress-Strain Graph

Axial Strain (%)

Project:Ford 138kV Glendale Industrial WestProject Number:222-032Received Date:3/21/2022Sampling Date:3/21/2022Sample Number:ST 2Sample Depth:4.0-6.0 ftBoring Number:STR 26WLocation:Glendale, KYClient Name:LG&E and KURemarks:K

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

Checked By: \_\_\_\_\_


Date: \_

ASTM D2166

| Before Test                                  | 1          | 2            | S<br>3      | pecimer<br>4 | 1 Numbe<br>5 | er<br>6    | 7          | 8          |
|----------------------------------------------|------------|--------------|-------------|--------------|--------------|------------|------------|------------|
| Moisture Content (%):                        | 26.6       |              |             |              |              | V          |            |            |
| Wet Density (pcf)                            | 122.9      |              |             |              |              |            |            |            |
| Dry Density (pcf)                            | 97.1       |              |             |              |              |            |            |            |
| Saturation (%):                              | 96.7       |              |             |              |              |            |            |            |
| Void Ratio:                                  |            |              |             |              |              |            |            |            |
| Height (in)                                  | 5.8400     |              |             |              |              |            |            |            |
| Diameter (in)                                |            |              |             |              |              |            |            |            |
| Strain Limit @ 15% (in)                      | 0.9        |              |             |              |              |            |            |            |
| Height To Diameter Ratio:                    |            |              |             |              |              |            |            |            |
| Test Data                                    | 1          | 2            | 3           | 4            | 5            | 6          | 7          | 8          |
| Failure Angle (°):                           | 0          |              |             |              |              |            |            |            |
| Strain Rate (in/min)                         | 0.1        |              |             |              |              |            |            |            |
| Strain Rate (%/min):                         | 1.71       |              |             |              |              |            |            |            |
| Unconfined Compressive Strength (psf)        | 5401.10    |              |             |              |              |            |            |            |
| Undrained Shear Strength (psf)               | 2700.55    |              |             |              |              |            |            |            |
| Strain at Failure (%):                       | 7.28       |              |             |              |              |            |            |            |
| Specific Gravity: 2.72                       |            | astic Limit: | 24          |              | T            | iquid Lim  | it: 11     |            |
| Type: UD                                     |            | ssification: | i           |              | L            | iquia Lim  | 11. 144    |            |
|                                              |            |              |             |              |              |            |            |            |
| Project: Ford 138kV Glendale Ind             | ustrial We | st           |             |              |              |            |            |            |
| Project Number: 222-032                      |            |              |             |              |              |            |            |            |
| Sampling Date: 3/21/2022                     |            |              |             |              |              |            |            |            |
| Sample Number: ST 2                          |            |              |             |              |              |            |            |            |
| Sample Depth: 4.0-6.0 ft                     |            |              |             |              |              |            |            |            |
| Boring Number: STR 26W                       |            |              |             |              |              |            |            |            |
| Location: Glendale, KY                       |            |              |             |              |              |            |            |            |
| Client Name: LG&E and KU<br>Remarks:         |            |              |             |              |              |            |            |            |
|                                              |            |              |             |              |              |            |            |            |
| Specimen 1 Specimen 2 Specimen 3             | Specim     |              | Specimen    |              | imen 6       | Specime    |            | ecimen 8   |
| Failure Sketch Failure Sketch Failure Sketch | Failure S  | ketch I      | ailure Sket | ch Failur    | e Sketch     | Failure Sk | ketch Fail | ure Sketch |
|                                              |            |              |             |              |              |            |            |            |
|                                              |            |              |             |              |              |            |            |            |
|                                              |            |              |             |              |              |            |            |            |
|                                              |            |              |             |              |              |            |            |            |
|                                              |            |              |             |              |              |            |            |            |

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

ASTM D2166



Project:Ford 138kV Glendale Industrial WestProject Number:222-032Received Date:3/21/2022Sampling Date:3/21/2022Sample Number:ST 3Sample Depth:14.0-16.0 ftBoring Number:STR 26WLocation:Glendale, KYClient Name:LG&E and KURemarks:K

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

Checked By: \_\_\_\_\_

Date:

ASTM D2166

| Before Test                                                                      | 1                   | 2            | S<br>3                      | pecimer<br>4 | n Numbo<br>5       | er<br>6               | 7        | 8                      |
|----------------------------------------------------------------------------------|---------------------|--------------|-----------------------------|--------------|--------------------|-----------------------|----------|------------------------|
| Moisture Content (%):                                                            | 31.8                |              |                             |              |                    |                       |          |                        |
| Wet Density (pcf)                                                                | 114.1               |              |                             |              |                    |                       |          |                        |
| Dry Density (pcf)                                                                | 86.6                |              |                             |              |                    |                       |          |                        |
| Saturation (%):                                                                  | 90.0                |              |                             |              |                    |                       |          |                        |
| Void Ratio:                                                                      | 0.961               |              |                             |              |                    |                       |          |                        |
| Height (in)                                                                      | 5.7500              |              |                             |              |                    |                       |          |                        |
| Diameter (in)                                                                    | 2.8700              |              |                             |              |                    |                       |          |                        |
| Strain Limit @ 15% (in)                                                          | 0.9                 |              |                             |              |                    |                       |          |                        |
| Height To Diameter Ratio:                                                        | 2.00                |              |                             |              |                    |                       |          |                        |
| Test Data                                                                        | 1                   | 2            | 3                           | 4            | 5                  | 6                     | 7        | . 8                    |
| Failure Angle (°):                                                               | 0                   |              |                             |              |                    |                       |          |                        |
| Strain Rate (in/min)                                                             | 0.1                 |              |                             |              |                    |                       |          |                        |
| Strain Rate (%/min):                                                             | 1.74                |              |                             |              |                    |                       |          |                        |
| Unconfined Compressive Strength (psf)                                            | 990.28              |              |                             |              |                    |                       |          |                        |
| Undrained Shear Strength (psf)                                                   | 495.14              |              |                             |              |                    |                       |          |                        |
| Strain at Failure (%):                                                           | 3.91                |              |                             |              |                    |                       |          |                        |
| Specific Gravity: 2.72                                                           |                     | astic Limit: | 0                           |              | T                  | Liquid Lim            | i+: 0    |                        |
| Type: UD                                                                         |                     | ssification: | 1                           |              | 1                  |                       | III. [ U |                        |
| Туре. ОБ                                                                         | 5011 C14            | ssification. |                             |              |                    |                       |          |                        |
| Project: Ford 138kV Glendale Inde                                                | ustrial We          | st           |                             |              |                    |                       |          |                        |
| Project Number: 222-032                                                          |                     |              |                             |              |                    |                       |          |                        |
| Sampling Date: 3/21/2022                                                         |                     |              |                             |              |                    |                       |          |                        |
| Sample Number: ST 3                                                              |                     |              |                             |              |                    |                       |          |                        |
| Sample Depth: 14.0-16.0 ft                                                       |                     |              |                             |              |                    |                       |          |                        |
| Boring Number: STR 26W                                                           |                     |              |                             |              |                    |                       |          |                        |
| Location: Glendale, KY                                                           |                     |              |                             |              |                    |                       |          |                        |
| Client Name: LG&E and KU                                                         |                     |              |                             |              |                    |                       |          |                        |
| Remarks:                                                                         |                     |              |                             |              |                    |                       |          |                        |
| Specimen 1 Specimen 2 Specimen 3<br>Failure Sketch Failure Sketch Failure Sketch | Specim<br>Failure S |              | Specimen 5<br>Failure Skete |              | imen 6<br>e Sketch | Specime<br>Failure Sk |          | ecimen 8<br>ure Sketch |
| R .                                                                              |                     |              |                             |              |                    |                       |          |                        |

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

# Your Geotechnical Engineering Report

To help manage your risks, this information is being provided because subsurface issues are a major cause of construction delays, cost overruns, disputes, and claims.

### Geotechnical Services are Performed for Specific Projects, Purposes, and People

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering exploration conducted for an engineer may not fulfill the needs of a contractor or even another engineer. Each geotechnical engineering exploration and report is unique and is prepared solely for the client. No one except the client should rely on the geotechnical engineering report without first consulting with the geotechnical engineer who prepared it. The report should not be applied for any project or purpose except the one originally intended.

### **Read the Entire Report**

To avoid serious problems, the full geotechnical engineering report should be read in its entirety. Do not only read selected sections or the executive summary.

### A Unique Set of Project-Specific Factors is the Basis for a Geotechnical Engineering Report

Geotechnical engineers consider a numerous unique, project-specific factors when determining the scope of a study. Typical factors include: the client's goals, objectives, project costs, risk management preferences, proposed structures, structures on site, topography, and other proposed or existing site improvements, such as access roads, parking lots, and utilities. Unless indicated otherwise by the geotechnical engineer who conducted the original exploration, a geotechnical engineering report should not be relied upon if it was:

- not prepared for you or your project,
- not prepared for the specific site explored, or
- completed before important changes to the project were implemented.

Typical changes that can lessen the reliability of an existing geotechnical engineering report include those that affect:

- the function of the proposed structure, as when it's changed from a multi-story hotel to a parking lot
- finished floor elevation, location, orientation, or weight of the proposed structure, anticipated loads or
- project ownership

Geotechnical engineers cannot be held liable or

responsible for issues that occur because their report did not take into account development items of which they were not informed. The geotechnical engineer should always be notified of any project changes. Upon notification, it should be requested of the geotechnical engineer to give an assessment of the impact of the project changes.

### **Subsurface Conditions Can Change**

A geotechnical engineering report is based on conditions that exist at the time of the exploration. A geotechnical engineering report should not be relied upon if its reliability could be in question due to factors such as man-made events as construction on or adjacent to the site, natural events such as floods, earthquakes, or groundwater fluctuation, or time. To determine if a geotechnical report is still reliable, contact the geotechnical engineer. Major problems could be avoided by performing a minimal amount of additional analysis and/or testing.

## Most Geotechnical Findings are Professional Opinions

Geotechnical site explorations identify subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field logs and laboratory data and apply their professional judgment to make conclusions about the subsurface conditions throughout the site. Actual subsurface conditions may differ from those indicated in the report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risk associated with unanticipated conditions.

### The Recommendations within a Report Are Not Final

Do not put too much faith on the construction recommendations included in the report. The recommendations are not final due to geotechnical engineers developing them principally from judgment and opinion. Only by observing actual subsurface conditions revealed during construction can geotechnical engineers finalize their recommendations. Responsibility and liability cannot be assumed for the recommendations within the report by the geotechnical engineer who developed the report if that engineer does not perform construction observation.

### A Geotechnical Engineering Report Is Subject To Misinterpretation

Misinterpretation of geotechnical engineering reports has resulted in costly problems. The risk of misinterpretation can be lowered after the submittal of the final report by having the geotechnical engineer consult with appropriate members of the design team. The geotechnical engineer could also be retained to review crucial parts of the plans and specifications put together by the design team. The geotechnical engineering report can also be misinterpreted by contractors which can result in many problems. By participating in pre-bid and preconstruction meetings and providing construction observations by the geotechnical engineer, many risks can be reduced.

#### Final Boring Logs Should not be Re-drawn

Geotechnical engineers prepare final boring logs and testing results based on field logs and laboratory data. The logs included in a final geotechnical engineering report should never be redrawn to be included in architectural or design drawings due to errors that could be made. Electronic reproduction is acceptable, along with photographic reproduction, but it should be understood that separating logs from the report can elevate risk.

### **Contractors Need a Complete Report and Guidance**

By limiting what is provided for bid preparation, contractors are not liable for unforeseen subsurface conditions although some owners and design professionals believe the opposite to be true. The complete geotechnical engineering report, accompanied with a cover letter or transmittal, should be provided to contractors to help prevent costly problems. The letter states that the report was not prepared for purposes of bid

development and the report's accuracy is limited. Although a fee may be required, encourage the contractors to consult with the geotechnical engineer who prepared the report and/or to conduct additional studies to obtain the specific types of information they need or prefer. A prebid conference involving the owner, geotechnical engineer, and contractors can prove to be very valuable. If needed, allow contractors sufficient time to perform additional studies. Upon doing this you might be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

### **Closely Read Responsibility Provisions**

Geotechnical engineering is not as exact as other engineering disciplines. This lack of understanding by clients, design professionals, and contractors has created unrealistic expectations that have led to disappointments, claims, and disputes. To minimize such risks, a variety of explanatory provisions may be included in the report by the geotechnical engineer. To help others recognize their own responsibilities and risks, many of these provisions indicate where the geotechnical engineer's responsibilities begin and end. These provisions should be read carefully, questions asked if needed, and the geotechnical engineer should provide satisfactory responses.

### **Environmental Issues/Concerns are not Covered**

Unforeseen environmental issues can lead to project delays or even failures. Geotechnical engineering reports do not usually include environmental findings, conclusions, or recommendations. As with a geotechnical engineering report, do not rely on an environmental report that was prepared for someone else.



65 Aberdeen Drive Glasgow, KY 42141 270-651-7220



May 13, 2022

LG&E and KU One Quality Street Lexington, KY 40507

RE: Report of Geotechnical Exploration Ford 138kV Glendale Industrial West Structure 27W Glendale, KY AEI Project No. 222-032

### 1. INTRODUCTION

A summary of the geotechnical parameters necessary to facilitate foundation design has been prepared for the immediate use of the design team. The project is a part of the Ford 138kV Glendale Industrial West in Glendale, KY. This summary is provided for Structure 27W, a double circuit, angle dead end which will be supported by a drilled shaft foundation.

| Structure           | Structure<br>Description | Hoight         | Centerline        | Structure C    | Coordinates        | Trans.           | Long.            |
|---------------------|--------------------------|----------------|-------------------|----------------|--------------------|------------------|------------------|
| Structure<br>Number |                          | Height<br>(ft) | Elevation<br>(ft) | Latitude (DMS) | Longitude<br>(DMS) | Moment<br>(ft-k) | Moment<br>(ft-k) |
| 27W                 | Double Circuit           | 105            | 697.4             | 37°34'39.41"N  | 85°52′58.82"W      | 1,820            | 6,664            |

### Table 1: Tower Details

### 2. DRILLING AND SAMPLING

The geotechnical exploration consisted of one soil test boring. The soil test boring was advanced to a depth of about 54 feet beneath the surface. The boring location was staked by KU personnel. A boring layout is included in Appendix A of this report.

### 3. SUBSURFACE SOIL CONDITIONS

The generalized subsurface conditions encountered at the boring location, including descriptions of the various strata and their depths and thicknesses are presented on the typed boring log in Appendix B.

Topsoil was encountered at the surface with a thickness of four inches. Beneath the surface material, lean clay was encountered to a depth of 19 feet. Fat clay was encountered from 19 feet to the auger refusal depth. The lean clay was typically

described as brown to red in color, wet and stiff to very stiff in soil strength consistency. The fat clay was typically described as reddish brown to red in color, containing varying amounts of gravel, wet to saturated and medium stiff to stiff in soil strength consistency.

### 4. BEDROCK CONDITIONS

Refusal, as would be indicated by the Driller on the field boring log, indicates a depth where essentially no downward progress can be made by the auger. It is normally indicative of a very hard or very dense material such as large boulders or the upper bedrock surface or where the N-value indicates essentially no penetration of the split-spoon sampler. The auger refusal depth is provided in the table below.

|          |               |               |           | 5             |           |  |
|----------|---------------|---------------|-----------|---------------|-----------|--|
|          |               |               | Surface   | Auger Refusal |           |  |
|          |               |               | Elevation | Depth         | Elevation |  |
| Hole No. | Latitude      | Longitude     | (ft.) MSL | (ft.)         | (ft.) MSL |  |
| STR 27W  | 37°34'39.41"N | 85°52′58.82″W | 697.3     | 40.6          | 656.7     |  |

Table 2: Structure 27W – Summary of Boring

### 5. FOUNDATION DESIGN PARAMETERS

5.1 <u>Lateral Design Parameters</u> – MFAD soil parameters are provided in the table below. These values are derived from the laboratory and standard penetration testing in combination with recommended soil properties from the Naval Engineering Command (NAVFAC) Design Manual 7.02. The soil deformation moduli provided below were derived from Figure 3-2 and Figure 3-4 of the User Guide for MFAD 5.0 (Moment Foundation Analysis and Design).

| Structure<br>Number | Soil Type | Depth<br>(feet) | Soil<br>Undrained<br>Shear<br>Strength<br>(ksf) | Modulus of<br>Deformation<br>(ksi) |  |  |  |  |  |
|---------------------|-----------|-----------------|-------------------------------------------------|------------------------------------|--|--|--|--|--|
| STR 27W             | CL        | 5.0-19.0        | 1.8                                             | 1.0                                |  |  |  |  |  |
| STR 27W             | СН        | 19.0-40.0       | 1.0                                             | 0.6                                |  |  |  |  |  |

**Table 3: MFAD Geotechnical Design Parameters** 

Lateral soil parameters recommended for drilled shaft design are shown below in Table 4 using estimations by Matlock (1970) for soft clays with free water and by Reese, et. al (1975) for stiff clay with free water. These values are derived from laboratory and standard penetration testing in combination with recommended soil properties from the Naval Engineering Command (NAVFAC) Design Manual 7.02.

| Structure<br>Number | Soil Type | Depth<br>(feet) | Estimated Strain<br>at 50% Stress<br>(ε <sub>50</sub> ) | Initial Soil<br>Stiffness<br>(k <sub>py</sub> ) (pci) |
|---------------------|-----------|-----------------|---------------------------------------------------------|-------------------------------------------------------|
| STR 27W             | CL        | 5.0-19.0        | 0.02                                                    | 200                                                   |
| STR 27W             | СН        | 19.0-40.0       | 0.02                                                    | -                                                     |

Table 4: L-Pile Soil Parameters for Design of Drilled Shafts

**5.2** <u>Axial Design Parameters</u> – Axial soil parameters recommended for drilled shaft design are shown below in Table 5. These values are derived from laboratory and standard penetration testing in combination with recommended soil properties from the Naval Engineering Command (NAVFAC) Design Manual 7.02. An ultimate friction angle for clay in contact with concrete of 17° should be used for design. For cohesive soils, utilize a skin friction resistance factor ( $\phi$ ) of 0.45 in accordance with the Brown et al. (2010) method. Utilize an uplift resistance factor of 0.35 for cohesive soils in accordance with the Brown et al. (2018) method. Due to karst features present at the proposed tower location, it is recommended that base resistance be neglected for design purposes.

| Structure<br>Number | Soil Type | Depth<br>(feet) | Effective<br>Unit<br>Weight*<br>(pcf) | Undrained<br>Shear Strength<br>(S <sub>u</sub> ) (ksf) | Nominal Side<br>Resistance<br>(q <sub>s</sub> ) (ksf) |  |  |  |  |  |
|---------------------|-----------|-----------------|---------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| STR 27W             | CL        | 5.0-19.0        | 125.0                                 | 1.8                                                    | 1.0                                                   |  |  |  |  |  |
| STR 27W             | СН        | 19.0-40.0       | 57.6                                  | 1.0                                                    | 0.8                                                   |  |  |  |  |  |

Table 5: Axial Soil Parameters for Design of Drilled Shafts

\*Effective Unit Weight accounts for Buoyancy

Ford 138kV Glendale Industrial West Structure 27W

May 13, 2022 Page **4** of **4** 

The designer should feel free to contact AEI at 270-651-7220 for further recommendations or if any questions arise pertaining to this project.

Sincerely,

AMERICAN ENGINEERS, INC.

Aaron Anderson, EIT Geotechnical Engineer

Bont

Dusty Barrett, PE, PMP Director of Geotechnical Services

Attachments:

- Boring Layout
- Typed Boring Log
- Laboratory Data

# **APPENDIX A**

# **Boring Layout**





• SOIL TEST BORING WITH ROCK CORE

# **APPENDIX B**

Boring Logs



### FIELD TESTING PROCEDURES

The general field procedures employed by the Field Services Center are summarized in the following outline. The procedures utilized by the AEI Field Service Center are recognized methods for determining soil and rock distribution and ground water conditions. These methods include geophysical and in situ methods as well as borings.

*Soil Borings* are drilled to obtain subsurface samples using one of several alternate techniques depending upon the surface conditions. Borings are advanced into the ground using continuous flight augers. At prescribed intervals throughout the boring depths, soil samples are obtained with a split-spoon or thin-walled sampler and sealed in airtight glass jars and labeled. The sampler is first seated 6 inches to penetrate loose cuttings and then driven an additional foot, where possible, with blows from a 140 pound hammer falling 30 inches. The number of blows required to drive the sampler each six-inch increment is recorded. The penetration resistance, or "N-value" is designated as the number of hammer blows required to drive the sampler the final foot and, when properly evaluated, is an index to cohesion for clays and relative density for sands. The split spoon sampling procedures used during the exploration are in general accordance with ASTM D 1586. Split spoon samples are considered to provide *disturbed* samples, yet are appropriate for most engineering applications. Thin-walled (Shelby tube) samples are considered to provide *undisturbed* samples and obtained when warranted in general accordance with ASTM D 1587.

These drilling methods are not capable of penetrating through material designated as "refusal materials." Refusal, thus indicated, may result from hard cemented soil, soft weathered rock, coarse gravel or boulders, thin rock seams, or the upper surface of sound continuous rock. Core drilling procedures are required to determine the character and continuity of refusal materials.

*Core Drilling Procedures* for use on refusal materials. Prior to coring, casing is set in the boring through the overburden soils. Refusal materials are then cored according to ASTM D-2113 using a diamond bit attached to the end of a hollow double tube core barrel. This device is rotated at high speeds and the cuttings are brought to the surface by circulating water. Samples of the material penetrated are protected and retained in the inner tube, which is retrieved at the end of each drill run. Upon retrieval of the inner tube the core is recovered, measured and placed in boxes for storage.

The subsurface conditions encountered during drilling are reported on a field test boring record by the driller. The record contains information concerning the boring method, samples attempted and recovered, indications of the presence of various materials such as coarse gravel, cobbles, etc., and observations between samples. Therefore, these boring records contain both factual and interpretive information. The field boring records are on file in our office.

The soil and rock samples plus the field boring records are reviewed by a geotechnical engineer. The engineer classifies the soil in general accordance with the procedures outlined in ASTM D 2487 and D 2488 and prepares the final boring records which are the basis for all evaluations and recommendations.

Representative portions of soil samples are placed in sealed containers and transported to the laboratory. In the laboratory, the samples are examined to verify the driller's field classifications. Test Boring Records are attached which show the soil descriptions and penetration resistances.

The final boring records represent our interpretation of the contents of the field records based on the results of the engineering examinations and tests of the field samples. These records depict subsurface conditions at the specific locations and at the particular time when drilled. Soil conditions at other locations may differ from conditions occurring at these boring locations. Also, the passage of time may result in a change in the subsurface soil and ground water conditions at these boring locations. The lines designate the interface between soil or refusal materials on the records and on profiles represent approximate boundaries. The transition between materials may be gradual. The final boring records are included with this report.

*Water table readings* are normally taken in conjunction with borings and are recorded on the "Boring Logs". These readings indicate the approximate location of the hydrostatic water table at the time of our field investigation. Where impervious soils are encountered (clayey soils) the amount of water seepage into the boring is small, and it is generally not possible to establish the location of hydrostatic water table through water level readings. The ground water table may also be dependent upon the amount of precipitation at the site during a particular period of time. Fluctuations in the water table should be expected with variations in precipitation, surface run-off, evaporation and other factors.

The time of boring water level reported on the boring records is determined by field crews as the drilling tools are advanced. The boring water level is detected by changes in the drilling rate, soil samples obtained, etc. Additional water table readings are generally obtained at least 24 hours after the borings are completed. The time lag of at least 24 hours is used to permit stabilization of the ground water table which has been disrupted by the drilling operations. The readings are taken by dropping a weighted line down the boring or using as electrical probe to detect the water level surface.

Occasionally the borings will cave-in, preventing water level readings from being obtained or trapping drilling water above the caved-in zone. The cave-in depth is also measured and recorded on the boring records.

### **Sampling Terminology**

<u>Undisturbed Sampling</u>: Thin-walled or Shelby tube samples used for visual examination, classification tests and quantitative laboratory testing. This procedure is described by ASTM D 1587. Each tube, together with the encased soil, is carefully removed from the ground, made airtight and transported to the laboratory. Locations and depths of undisturbed samples are shown on the "Boring Logs."

**Bag Sampling:** Bulk samples of soil are obtained at selected locations. These samples consist of soil brought to the surface by the drilling augers, or obtained from test pits or the ground surface using hand tools. Samples are placed in bags, with sealed jar samples of the material, and taken to our laboratory for testing where more mass material is required (i.e. Proctors and CBR's). The locations of these samples are indicated on the appropriate logs, or on the Boring Location Plan.

### **CLASSIFICATION SYSTEM FOR SOIL EXPLORATION**

### **COHESIVE SOILS**

(Clay, Silt, and Mixtures)

| <b>CONSISTENCY</b>                                               | SPT N-VALUE                                                                                                              | Qu/Qp (tsf)                                                                                                   | <b>PLASTICITY</b>                                                                          |              |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|
| Very Soft<br>Soft<br>Medium Stiff<br>Stiff<br>Very Stiff<br>Hard | 2 blows/ft or less<br>2 to 4 blows/ft<br>4 to 8 blows/ft<br>8 to 15 blows/ft<br>15 to 30 blows/ft<br>30 blows/ft or more | $\begin{array}{c} 0 - 0.25 \\ 0.25 - 0.49 \\ 0.50 - 0.99 \\ 1.00 - 2.00 \\ 2.00 - 4.00 \\ > 4.00 \end{array}$ | Degree of<br>PlasticityPlastic<br>Index<br>$0 - 7$ Low $0 - 7$ Medium $8 - 22$ Highover 22 | ( <u>PI)</u> |

### **NON-COHESIVE SOILS**

(Silt, Sand, Gravel, and Mixtures)

| <b>DENSITY</b>   | SPT N-VALUE         | PARTICLE | SIZE IDENTIFICATION                                |
|------------------|---------------------|----------|----------------------------------------------------|
| Very Loose       | 4 blows/ft or less  | Boulders | 12 inch diameter or more                           |
| Loose            | 4 to 10 blows/ft    | Cobbles  | 3 to 12 inch diameter                              |
| Medium Dense     | 10 to 30 blows/ft   | Gravel   | Coarse $-1$ to 3 inch                              |
| Dense            | 30 to 50 blows/ft   |          | Medium $-\frac{1}{2}$ to 1 inch                    |
| Very Dense       | 50 blows/ft or more |          | Fine $-\frac{1}{4}$ to $\frac{1}{2}$ inch          |
|                  |                     | Sand     | Coarse – 0.6mm to <sup>1</sup> / <sub>4</sub> inch |
| RELATIVE PROPO   | DRTIONS             |          | Medium – 0.2mm to 0.6mm                            |
| Descriptive Term | Percent             |          |                                                    |
| Trace            | 1 - 10              |          | Fine $-0.05$ mm to $0.2$ mm                        |
| Trace to Some    | 11 - 20             |          |                                                    |
| Some             | 21 – 35             | Silt     | 0.05mm to 0.005mm                                  |
| And              | 36 - 50             |          |                                                    |
|                  |                     | Clay     | 0.005mm                                            |
|                  |                     |          |                                                    |

### NOTES

**Classification** – The Unified Soil Classification System is used to identify soil unless otherwise noted.

N:

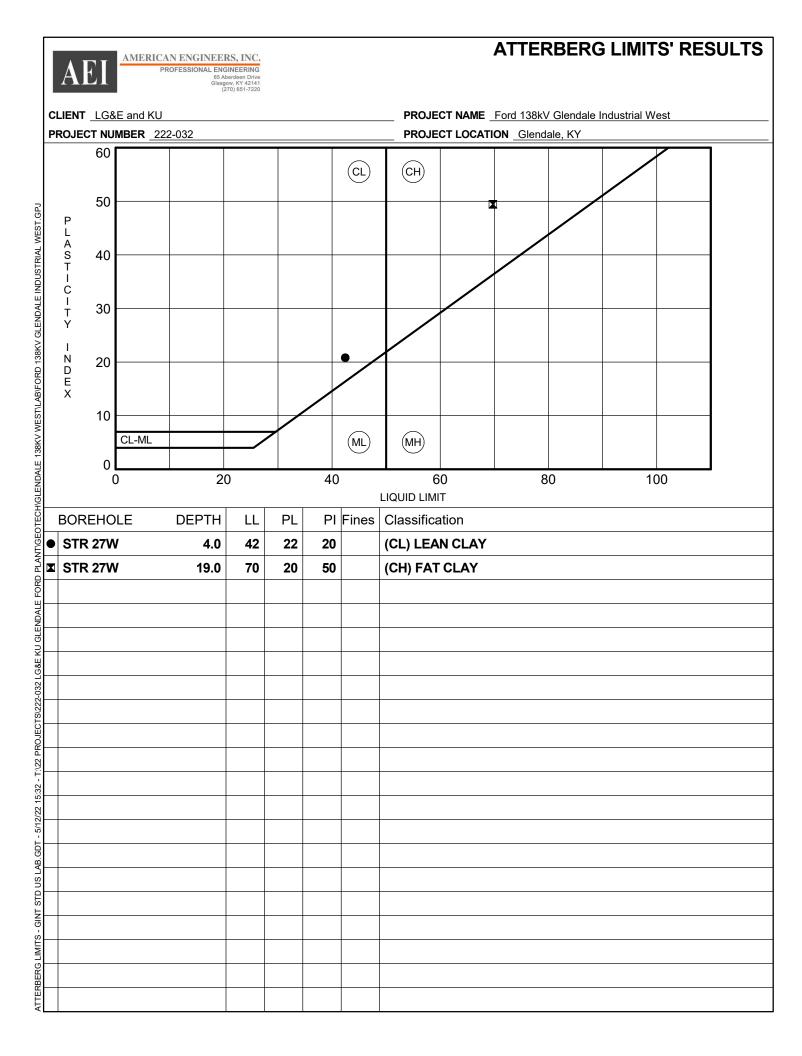
Standard "N" Penetration Test (SPT) (ASTM D1586) – Driving a 2-inch O.D., 1 3/8-inch I.D. sampler a distance of 1 foot into undisturbed soil with a 140-pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6inches to seat the sampler into undisturbed soil, and then perform the test. The number of hammer blows for seating the spoon and making the tests are recorded for each 6 inches of penetration on the field drill long (e.g., 10/8/7). On the report log, the Standard Penetration Test result (i.e., the N value) is normally presented and consists of the sum of the 2<sup>nd</sup> and 3<sup>rd</sup> penetration counts (i.e., N = 8 + 7 = 15 blows/ft.)

### Soil Property Symbols

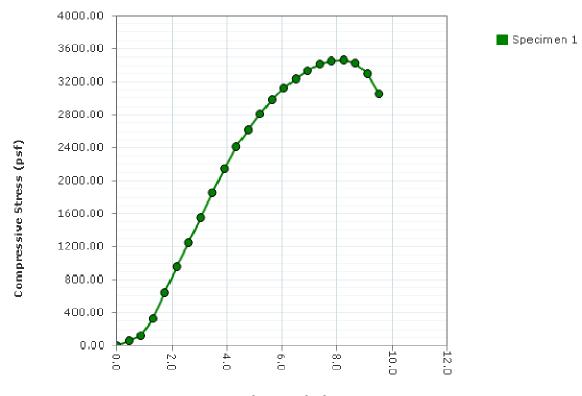
- Ou: Unconfined Compressive Strength
- Unconfined Comp. Strength (pocket pent.) omc: Qp: PL:
- LL: Liquid Limit, % (Atterberg Limit)
- PI: Plasticity Index

Standard Penetration Value (see above) Optimum Moisture content Plastic Limit, % (Atterberg Limit) Maximum Dry Density mdd:

|               | A               | EI             | AMERICAN ENGINEERS, INC.<br>PROFESSIONAL ENGINEERING<br>65 Abordeen Drive<br>Glasgow, KY 42141<br>(270) 651-7220                              |                |                       |                     |                             |                      |                         |         |      | -                   | <b>R 27W</b><br>E 1 OF 2 |
|---------------|-----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|---------------------|-----------------------------|----------------------|-------------------------|---------|------|---------------------|--------------------------|
|               | CLIEN           | NT LG          | &E and KU F                                                                                                                                   | PROJEC         | T NAME                | Ford                | 138kV Gle                   | ndale                | Industi                 | ial We  | est  |                     |                          |
|               | PROJ            | IECT N         | UMBER _222-032 F                                                                                                                              | PROJEC         | T LOCAT               |                     | Glendale, ł                 | ٢Y                   |                         |         |      |                     |                          |
|               | DATE            | STAR           | TED _3/23/22         COMPLETED _3/23/22         0                                                                                             | GROUNE         | ELEVA                 |                     | 697.3 ft                    |                      |                         |         |      |                     |                          |
|               | DRILL           | LING C         | ONTRACTOR Adam Thompson                                                                                                                       | GROUNE         | WATER                 | LEVE                | LS:                         |                      |                         |         |      |                     |                          |
| GPJ.          | DRILL           | LING M         | ETHOD HSA/ Diamond impregnated coring bit                                                                                                     | $ar{2}$ at     | TIME OF               | DRIL                | LING _ 19.0                 | )0 ft / E            | Elev 67                 | ′8.30 f | t    |                     |                          |
| VEST          | LOGO            | GED BY         | Adam Cash CHECKED BY Aaron Anderson                                                                                                           | AT             | END OF                | DRILL               | .ING                        |                      |                         |         |      |                     |                          |
| AL <          | NOTE            | S              |                                                                                                                                               | AF             | ter Dri               | LLING               |                             |                      |                         |         |      |                     |                          |
|               |                 |                |                                                                                                                                               |                | ш                     | %                   |                             |                      |                         |         | ERBE |                     |                          |
|               | o DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                                                          |                | SAMPLE TYPE<br>NUMBER | RECOVERY 9<br>(RQD) | BLOW<br>COUNTS<br>(N VALUE) | POCKET PEN.<br>(tsf) | MOISTURE<br>CONTENT (%) | LIQUID  |      | PLASTICITY<br>INDEX | REMARKS                  |
|               | <br>            |                | CL) lean CLAY, brown to red, wet to saturated, stiff to very                                                                                  | J<br>stiff     | ST<br>1               | 90                  |                             | -                    | 24                      |         |      |                     | Qu = 3,460<br>psf        |
| 138KV WES     | 5               |                |                                                                                                                                               |                | ST<br>2               | 100                 |                             | -                    | 25                      | 42      | 22   | 20                  | Qu = 4,570<br>psf        |
|               | <br><br>- 10    |                |                                                                                                                                               |                | SPT<br>1              | 100                 | 4-5-7<br>(12)               | -                    | 29                      |         |      |                     |                          |
|               | <br><br><br>15  |                |                                                                                                                                               |                |                       |                     |                             |                      |                         |         |      |                     |                          |
|               |                 |                | $\nabla$ (CH) fat CLAY with gravel, reddish brown to red, wet to satu                                                                         |                | ST                    | 100                 |                             |                      | 45                      | 70      | 20   | 50                  | Qu = 1,715               |
| Z-03Z LG&E    | 20              |                | (CH) fat CLAY with gravel, reddish brown to red, wet to satu<br>medium stiff to stiff                                                         | irated,        | 3                     | 100                 |                             | -                    | 45                      | 70      | 20   | 50                  | psf                      |
|               | 25              |                |                                                                                                                                               |                |                       |                     |                             |                      |                         |         |      |                     |                          |
| ZZX: I - / G: |                 |                |                                                                                                                                               |                |                       |                     |                             |                      |                         |         |      |                     |                          |
| 1.22          |                 |                |                                                                                                                                               |                | CDT                   | 100                 | 3-4-9                       | -                    | 44                      |         |      |                     |                          |
| - 5/13/22 10  | 30              |                |                                                                                                                                               |                | SPT 2                 | 100                 | (13)                        | <u> </u>             |                         |         |      |                     |                          |
| ק             | <br>            |                |                                                                                                                                               |                |                       |                     |                             |                      |                         |         |      |                     |                          |
|               | 35              |                |                                                                                                                                               |                |                       |                     |                             |                      |                         |         |      |                     |                          |
|               | <br><br>40      |                |                                                                                                                                               |                | ST                    | 100                 |                             | -                    | 38                      |         |      |                     | Qu = 1,400               |
| GEOTECH BI    |                 |                | LIMESTONE, interbedded with clay, gray with brown stainin<br>to medium grained, soft to moderately hard, highly fractured<br>highly weathered | ng, fine<br>1, | 4<br>RC<br>1          | 47<br>(0)           |                             |                      |                         |         |      |                     | psf                      |


(Continued Next Page)

| AEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROFESSIONAL ENGINEERING<br>B65 Abardeen Drive<br>Glangow, KY 42141<br>(270) 851-7220 |                     |                       |                          |                                            |                      |                         |                |     | STF<br>PAGE | <b>27W</b> 2 OF 2                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------|-----------------------|--------------------------|--------------------------------------------|----------------------|-------------------------|----------------|-----|-------------|-------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                       |                     |                       |                          | 138kV Gle                                  |                      | Indust                  | rial We        | est |             |                                     |
| PROJECT NUMBER<br>DEPTH<br>(ft)<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>DIHdty<br>D | MATERIAL DESCRIPTION                                                                  |                     | SAMPLE TYPE<br>NUMBER | RECOVERY %<br>(RQD)      | Glendale, I<br>BLOW<br>COUNTS<br>(N VALUE) | POCKET PEN.<br>(tsf) | MOISTURE<br>CONTENT (%) | LIMIT<br>LIMIT |     |             | REMARKS                             |
| 45 LIME<br>mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STONE, gray, fine to medium grained, th<br>rately hard to hard                        | in to thick bedded, | RC<br>2<br>RC<br>3    | 68<br>(34)<br>52<br>(16) |                                            |                      |                         |                |     |             | Vertical<br>fracture<br>(46.0'-46.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bottom of borehole at 53.8 fe                                                         |                     |                       |                          |                                            |                      |                         |                |     |             |                                     |


# **APPENDIX C**

Laboratory Testing Results





ASTM D2166



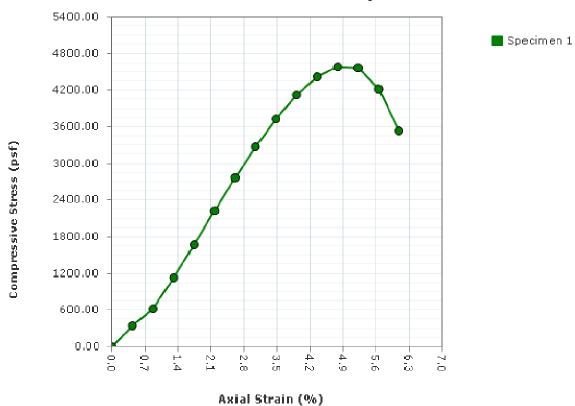
Stress-Strain Graph

Axial Strain (%)

Project:Ford 138kV Glendale Industrial WestProject Number:222-032Received Date:3/24/2022Sampling Date:3/24/2022Sample Number:ST 1Sample Depth:1.0-3.0 ftBoring Number:STR #27WLocation:Glendale, KYClient Name:LG&E and KURemarks:K

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

Checked By: \_\_\_\_\_


Date: \_

ASTM D2166

| Before Test                                                                                                                                                                                       | 1                    | 2            | S<br>3                      | pecimer<br>4 | n Numbo<br>5       | er<br>6               | 7    | 8                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-----------------------------|--------------|--------------------|-----------------------|------|------------------------|
| Moisture Content (%):                                                                                                                                                                             | 24.4                 |              |                             |              |                    |                       |      |                        |
| Wet Density (pcf)                                                                                                                                                                                 | 125.0                |              |                             |              |                    |                       |      |                        |
| Dry Density (pcf)                                                                                                                                                                                 | 100.4                |              |                             |              |                    |                       |      |                        |
| Saturation (%):                                                                                                                                                                                   |                      |              |                             |              |                    |                       |      |                        |
| Void Ratio:                                                                                                                                                                                       | 0.691                |              |                             |              |                    |                       |      |                        |
| Height (in)                                                                                                                                                                                       | 5.7700               |              |                             |              |                    |                       |      |                        |
| Diameter (in)                                                                                                                                                                                     | 2.8400               |              |                             |              |                    |                       |      |                        |
| Strain Limit @ 15% (in)                                                                                                                                                                           | 0.9                  |              |                             |              |                    |                       |      |                        |
| Height To Diameter Ratio:                                                                                                                                                                         | 2.03                 |              |                             |              |                    |                       |      |                        |
| Test Data                                                                                                                                                                                         | 1                    | 2            | 3                           | 4            | 5                  | 6                     | 7    | 8                      |
| Failure Angle (°):                                                                                                                                                                                | 0                    |              |                             |              |                    |                       |      |                        |
| Strain Rate (in/min)                                                                                                                                                                              | 0.1                  |              |                             |              |                    |                       |      |                        |
| Strain Rate (%/min):                                                                                                                                                                              | 1.73                 |              |                             |              |                    |                       |      |                        |
| Unconfined Compressive Strength (psf)                                                                                                                                                             | 3464.88              |              |                             |              |                    |                       |      |                        |
| Undrained Shear Strength (psf)                                                                                                                                                                    | 1732.44              |              |                             |              |                    |                       |      |                        |
| Strain at Failure (%):                                                                                                                                                                            | 8.23                 |              |                             |              |                    |                       |      |                        |
| Specific Gravity: 2.72                                                                                                                                                                            | Pla                  | stic Limit:  | 0                           |              | I                  | Liquid Limi           | t: 0 |                        |
| Type: UD                                                                                                                                                                                          | Soil Clas            | ssification: | CL                          |              |                    | •                     | :    |                        |
| Project:Ford 138kV Glendale IndProject Number:222-032Sampling Date:3/24/2022Sample Number:ST 1Sample Depth:1.0-3.0 ftBoring Number:STR #27WLocation:Glendale, KYClient Name:LG&E and KURemarks:KU |                      |              |                             |              |                    |                       |      |                        |
| Specimen 1 Specimen 2 Specimen 3<br>Failure Sketch Failure Sketch Failure Sketch                                                                                                                  | Specimo<br>Failure S |              | Specimen 5<br>Failure Sketo |              | imen 6<br>e Sketch | Specime<br>Failure Sk |      | ecimen 8<br>ure Sketch |

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

ASTM D2166

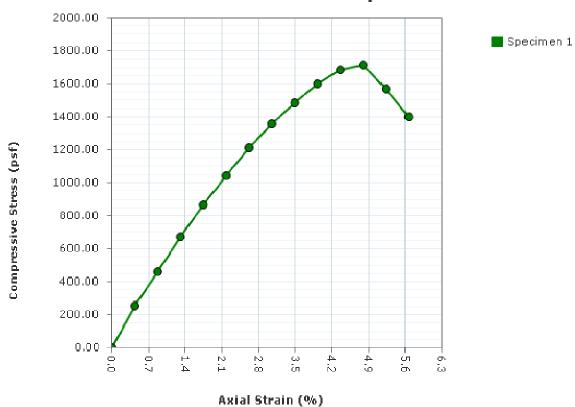


Stress-Strain Graph

Project:Ford 138kV Glendale Industrial WestProject Number:222-032Received Date:3/24/2022Sampling Date:3/24/2022Sample Number:ST 2Sample Depth:4.0-6.0 ftBoring Number:STR 27WLocation:Glendale, KYClient Name:LG&E and KURemarks:K

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

Checked By: \_\_\_\_\_


Date: \_

ASTM D2166

| Before Test                                  | 1          | 2            | S<br>3       | pecimer<br>4 | n Numbo<br>5 | er<br>6     | 7         | 8          |
|----------------------------------------------|------------|--------------|--------------|--------------|--------------|-------------|-----------|------------|
| Moisture Content (%):                        | 25.3       | _            |              | -            |              |             |           |            |
| Wet Density (pcf)                            |            |              |              |              |              |             |           |            |
| Dry Density (pcf)                            |            |              |              |              |              |             |           |            |
| Saturation (%):                              | 97.7       |              |              |              |              |             |           |            |
| Void Ratio:                                  | 0.704      |              |              |              |              |             |           |            |
| Height (in)                                  | 5.7500     |              |              |              |              |             |           |            |
| Diameter (in)                                | 2.8500     |              |              |              |              |             |           |            |
| Strain Limit @ 15% (in)                      | 0.9        |              |              |              |              |             |           |            |
| Height To Diameter Ratio:                    |            |              |              |              |              |             |           |            |
| Test Data                                    | 1          | 2            | 3            | 4            | 5            | 6           | 7         | 8          |
| Failure Angle (°):                           | 0          |              |              |              |              |             |           |            |
| Strain Rate (in/min)                         | 0.1        |              |              |              |              |             |           |            |
| Strain Rate (%/min):                         | 1.74       |              |              |              |              |             |           |            |
| Unconfined Compressive Strength (psf)        | 4572.26    |              |              |              |              |             |           |            |
| Undrained Shear Strength (psf)               | 2286.13    |              |              |              |              |             |           |            |
| Strain at Failure (%):                       | 5.22       |              |              |              |              |             |           |            |
| Specific Gravity: 2.72                       | Pla        | stic Limit:  | 22           |              | T            | Liquid Limi | i+· 12    |            |
| Type: UD                                     |            | ssification: | i            |              | 1            | Jiquiu Liin | 11. 142   |            |
|                                              |            |              |              |              |              |             |           |            |
| Project: Ford 138kV Glendale Ind             | ustrial We | st           |              |              |              |             |           |            |
| Project Number: 222-032                      |            |              |              |              |              |             |           |            |
| Sampling Date: 3/24/2022                     |            |              |              |              |              |             |           |            |
| Sample Number: ST 2                          |            |              |              |              |              |             |           |            |
| Sample Depth: 4.0-6.0 ft                     |            |              |              |              |              |             |           |            |
| Boring Number: STR 27W                       |            |              |              |              |              |             |           |            |
| Location: Glendale, KY                       |            |              |              |              |              |             |           |            |
| Client Name: LG&E and KU<br>Remarks:         |            |              |              |              |              |             |           |            |
| Kemarks:                                     |            |              |              |              |              |             |           |            |
| Specimen 1 Specimen 2 Specimen 3             | Specim     |              | Specimen 5   |              | imen 6       | Specime     |           | ecimen 8   |
| Failure Sketch Failure Sketch Failure Sketch | Failure S  | ketch F      | ailure Skete | ch Failur    | e Sketch     | Failure Sk  | etch Fail | ure Sketch |
|                                              |            |              |              |              |              |             |           |            |
|                                              | i<br> <br> |              |              | !            |              | i<br>       |           |            |

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

ASTM D2166



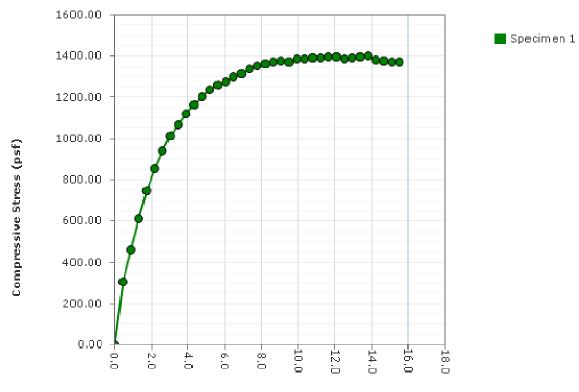
Stress-Strain Graph

Project:Ford 138kV Glendale Industrial WestProject Number222-032Received Date:3/24/2022Sampling Date:3/24/2022Sample Number:ST 3Sample Depth:19.0-21.0 ftBoring Number:Glendale, KYClient Name:LG&E and KURemarks:Kemarks

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

Checked By: \_\_\_\_\_

Date: \_


1

ASTM D2166

| Before Test                                       | 1          | 2            | S<br>3       | bpecimer<br>4 | 1 Numbe<br>5 | er<br>6    | 7         | 8          |
|---------------------------------------------------|------------|--------------|--------------|---------------|--------------|------------|-----------|------------|
| Moisture Content (%):                             | 45.2       |              |              |               |              | 0          |           |            |
| Wet Density (pcf)                                 |            |              |              |               |              |            |           |            |
| Dry Density (pcf)                                 |            |              |              |               |              |            |           |            |
| Saturation (%):                                   | 102.0      |              |              |               |              |            |           |            |
| Void Ratio:                                       |            |              |              |               |              |            |           |            |
| Height (in)                                       | 5.7400     |              |              |               |              |            |           |            |
| Diameter (in)                                     |            |              |              |               |              |            |           |            |
| Strain Limit @ 15% (in)                           | 0.9        |              |              |               |              |            |           |            |
| Height To Diameter Ratio:                         |            |              |              |               |              |            |           |            |
| Test Data                                         | 1          | 2            | . 3          | . 4           | 5            | 6          | . 7       | . 8        |
| Failure Angle (°):                                | 0          |              |              |               |              |            |           |            |
| Strain Rate (in/min)                              | 0.1        |              |              |               |              |            |           |            |
| Strain Rate (%/min):                              | 1.74       |              |              |               |              |            |           |            |
| Unconfined Compressive Strength (psf)             | 1716.51    |              |              |               |              |            |           |            |
| Undrained Shear Strength (psf)                    | 858.25     |              |              |               |              |            |           |            |
| Strain at Failure (%):                            | 4.79       |              |              |               |              |            |           |            |
| Specific Gravity: 2.72                            | Pla        | astic Limit: | 20           |               | T            | iquid Lim  | it: 70    |            |
| Type: UD                                          |            | ssification: | i            |               | L            | iquia Liin | 11. 70    |            |
|                                                   |            |              |              |               |              |            |           |            |
| Project: Ford 138kV Glendale Ind                  | ustrial We | st           |              |               |              |            |           |            |
| Project Number: 222-032                           |            |              |              |               |              |            |           |            |
| Sampling Date: 3/24/2022                          |            |              |              |               |              |            |           |            |
| Sample Number: ST 3                               |            |              |              |               |              |            |           |            |
| Sample Depth: 19.0-21.0 ft                        |            |              |              |               |              |            |           |            |
| Boring Number: STR #27W<br>Location: Glendale, KY |            |              |              |               |              |            |           |            |
| Client Name: LG&E and KU                          |            |              |              |               |              |            |           |            |
| Remarks:                                          |            |              |              |               |              |            |           |            |
|                                                   |            |              |              |               |              |            |           |            |
| Specimen 1 Specimen 2 Specimen 3                  | Specim     |              | Specimen     |               | imen 6       | Specime    |           | ecimen 8   |
| Failure Sketch Failure Sketch Failure Sketch      | Failure S  | ketch l      | Failure Sket | ch Failur     | e Sketch     | Failure Sk | etch Fail | ure Sketch |
|                                                   |            |              |              |               |              |            |           |            |
|                                                   |            |              |              |               |              |            |           |            |
|                                                   |            |              |              |               |              |            |           |            |
|                                                   |            |              |              |               |              |            |           |            |
|                                                   |            |              |              |               |              |            |           |            |

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

ASTM D2166



Stress-Strain Graph

Axial Strain (%)

Project:Ford 138kV Glendale Industrial WestProject Number:222-032Received Date:3/24/2022Sampling Date:3/24/2022Sample Number:ST 4Sample Depth:39.0-40.2 ftBoring Number:STR #27WLocation:Glendale, KYClient Name:LG&E and KURemarks:K

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

Checked By: \_\_\_\_\_

Date: \_

ASTM D2166

| 1           | 2                                                                                                                                                         |                                                                                                                                                                                    | Δ                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38.1        | _                                                                                                                                                         | 3                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 113.2       |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1           | 2                                                                                                                                                         | . 3                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0           |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.1         |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.72        |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1399.46     |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 699.73      |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13.79       |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Pla         | stic Limit:                                                                                                                                               | 0                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                  | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iquid Limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | it. 10                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iquiu Liin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 0                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| istrial Wes | st                                                                                                                                                        |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         | ecimen 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Failure Sl  | ketch l                                                                                                                                                   | Failure Sket                                                                                                                                                                       | ch Failur                                                                                                                                                                                                                                                                                        | e Sketch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Failure Sk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | etch Fail                                                                                                                                                                                                                                                                                                                                                                                               | ure Sketch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 82.0<br>96.7<br>1.071<br>5.8000<br>2.8600<br>0.9<br>2.03<br><b>1</b><br>0<br>0.1<br>1.72<br>1399.46<br>699.73<br>13.79<br>Pla<br>Soil Clas<br>Istrial Wes | 82.0<br>96.7<br>1.071<br>5.8000<br>2.8600<br>0.9<br>2.03<br><b>1 2</b><br>0<br>0.1<br>1.72<br>1399.46<br>699.73<br>13.79<br>Plastic Limit:<br>Soil Classification:<br>Istrial West | 82.0       96.7         96.7       1.071         1.071       5.8000         2.8600       0         0.9       2.03         1       2       3         0       0         0.1       1.72         1399.46       6         699.73       13.79         Plastic Limit: 0         Soil Classification: CH | 82.0       96.7         1.071       5.8000         2.8600       0         0.9       2.03         1       2       3       4         0       0       1       1         1.72       1       1       1       1         1.72       1       1       1       1       1       1         1.72       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 | 82.0       96.7         1.071       5.8000         2.8600       90.9         2.03       4         1       2       3       4         0       0       1       1         1.72       1       1       1         1.72       1       1       1         1.72       1       1       1         1.72       1       1       1         1.72       1       1       1         1.72       1       1       1         1.73       1       1       1       1         1.72       1       1       1       1         1.73       1       1       1       1         1.73       1       1       1       1         1.73       1       1       1       1         1.79       1       1       1       1       1         1.8       1       1       1       1       1       1         1.79       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 | 82.0       96.7         1.071       5.8000         2.8600       0         0.9       2.03         1       2       3       4       5       6         0       0.1       1.72       1.399.46       6       6       6         699.73       13.79       1.3.79       Liquid Limits       1.1.72         Plastic Limit: 0       Liquid Limits         Soil Classification:       CH       CH       Strial West | 82.0       96.7         1.071       5.8000         2.8600       0.9         2.03       2.03         1       2       3       4       5       6       7         0       0.1       1.72       1.399.46       6       6       6       6       99.73       1.379       1.379       1.100       Liquid Limit: 0       0       5       5       6       7       0       0       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172       1.172 |

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

# Your Geotechnical Engineering Report

To help manage your risks, this information is being provided because subsurface issues are a major cause of construction delays, cost overruns, disputes, and claims.

### Geotechnical Services are Performed for Specific Projects, Purposes, and People

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering exploration conducted for an engineer may not fulfill the needs of a contractor or even another engineer. Each geotechnical engineering exploration and report is unique and is prepared solely for the client. No one except the client should rely on the geotechnical engineering report without first consulting with the geotechnical engineer who prepared it. The report should not be applied for any project or purpose except the one originally intended.

### **Read the Entire Report**

To avoid serious problems, the full geotechnical engineering report should be read in its entirety. Do not only read selected sections or the executive summary.

### A Unique Set of Project-Specific Factors is the Basis for a Geotechnical Engineering Report

Geotechnical engineers consider a numerous unique, project-specific factors when determining the scope of a study. Typical factors include: the client's goals, objectives, project costs, risk management preferences, proposed structures, structures on site, topography, and other proposed or existing site improvements, such as access roads, parking lots, and utilities. Unless indicated otherwise by the geotechnical engineer who conducted the original exploration, a geotechnical engineering report should not be relied upon if it was:

- not prepared for you or your project,
- not prepared for the specific site explored, or
- completed before important changes to the project were implemented.

Typical changes that can lessen the reliability of an existing geotechnical engineering report include those that affect:

- the function of the proposed structure, as when it's changed from a multi-story hotel to a parking lot
- finished floor elevation, location, orientation, or weight of the proposed structure, anticipated loads or
- project ownership

Geotechnical engineers cannot be held liable or

responsible for issues that occur because their report did not take into account development items of which they were not informed. The geotechnical engineer should always be notified of any project changes. Upon notification, it should be requested of the geotechnical engineer to give an assessment of the impact of the project changes.

### **Subsurface Conditions Can Change**

A geotechnical engineering report is based on conditions that exist at the time of the exploration. A geotechnical engineering report should not be relied upon if its reliability could be in question due to factors such as man-made events as construction on or adjacent to the site, natural events such as floods, earthquakes, or groundwater fluctuation, or time. To determine if a geotechnical report is still reliable, contact the geotechnical engineer. Major problems could be avoided by performing a minimal amount of additional analysis and/or testing.

## Most Geotechnical Findings are Professional Opinions

Geotechnical site explorations identify subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field logs and laboratory data and apply their professional judgment to make conclusions about the subsurface conditions throughout the site. Actual subsurface conditions may differ from those indicated in the report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risk associated with unanticipated conditions.

### The Recommendations within a Report Are Not Final

Do not put too much faith on the construction recommendations included in the report. The recommendations are not final due to geotechnical engineers developing them principally from judgment and opinion. Only by observing actual subsurface conditions revealed during construction can geotechnical engineers finalize their recommendations. Responsibility and liability cannot be assumed for the recommendations within the report by the geotechnical engineer who developed the report if that engineer does not perform construction observation.

#### A Geotechnical Engineering Report Is Subject To Misinterpretation

Misinterpretation of geotechnical engineering reports has resulted in costly problems. The risk of misinterpretation can be lowered after the submittal of the final report by having the geotechnical engineer consult with appropriate members of the design team. The geotechnical engineer could also be retained to review crucial parts of the plans and specifications put together by the design team. The geotechnical engineering report can also be misinterpreted by contractors which can result in many problems. By participating in pre-bid and preconstruction meetings and providing construction observations by the geotechnical engineer, many risks can be reduced.

#### Final Boring Logs Should not be Re-drawn

Geotechnical engineers prepare final boring logs and testing results based on field logs and laboratory data. The logs included in a final geotechnical engineering report should never be redrawn to be included in architectural or design drawings due to errors that could be made. Electronic reproduction is acceptable, along with photographic reproduction, but it should be understood that separating logs from the report can elevate risk.

### **Contractors Need a Complete Report and Guidance**

By limiting what is provided for bid preparation, contractors are not liable for unforeseen subsurface conditions although some owners and design professionals believe the opposite to be true. The complete geotechnical engineering report, accompanied with a cover letter or transmittal, should be provided to contractors to help prevent costly problems. The letter states that the report was not prepared for purposes of bid

development and the report's accuracy is limited. Although a fee may be required, encourage the contractors to consult with the geotechnical engineer who prepared the report and/or to conduct additional studies to obtain the specific types of information they need or prefer. A prebid conference involving the owner, geotechnical engineer, and contractors can prove to be very valuable. If needed, allow contractors sufficient time to perform additional studies. Upon doing this you might be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

#### **Closely Read Responsibility Provisions**

Geotechnical engineering is not as exact as other engineering disciplines. This lack of understanding by clients, design professionals, and contractors has created unrealistic expectations that have led to disappointments, claims, and disputes. To minimize such risks, a variety of explanatory provisions may be included in the report by the geotechnical engineer. To help others recognize their own responsibilities and risks, many of these provisions indicate where the geotechnical engineer's responsibilities begin and end. These provisions should be read carefully, questions asked if needed, and the geotechnical engineer should provide satisfactory responses.

#### **Environmental Issues/Concerns are not Covered**

Unforeseen environmental issues can lead to project delays or even failures. Geotechnical engineering reports do not usually include environmental findings, conclusions, or recommendations. As with a geotechnical engineering report, do not rely on an environmental report that was prepared for someone else.



65 Aberdeen Drive Glasgow, KY 42141 270-651-7220



May 16, 2022

LG&E and KU

One Quality Street Lexington, KY 40507

RE: Report of Geotechnical Exploration Ford 138kV Glendale Industrial West Structure 28BW Glendale, KY AEI Project No. 222-032

#### 1. INTRODUCTION

A summary of the geotechnical parameters necessary to facilitate foundation design has been prepared for the immediate use of the design team. The project is a part of the Ford 138kV Glendale Industrial West in Glendale, KY. This summary is provided for Structure 28BW, a single circuit, angle dead end which will be supported by a drilled shaft foundation.

| Chrysterro          | Chrysothuro              | Height | Centerline Structure Coordinates Trans |                |                    |                  | Long.            |
|---------------------|--------------------------|--------|----------------------------------------|----------------|--------------------|------------------|------------------|
| Structure<br>Number | Structure<br>Description | (ft)   | Elevation<br>(ft)                      | Latitude (DMS) | Longitude<br>(DMS) | Moment<br>(ft-k) | Moment<br>(ft-k) |
| 28BW                | Single Circuit           | 110    | 685.5                                  | 37°34′37.90″N  | 85°52′48.70″W      | 2,660            | 3,856            |

#### Table 1: Tower Details

#### 2. DRILLING AND SAMPLING

The geotechnical exploration consisted of one soil test boring. The soil test boring was advanced to a depth of about 41 feet beneath the surface. The boring location was staked by KU personnel. A boring layout is included in Appendix A of this report.

#### 3. SUBSURFACE SOIL CONDITIONS

The generalized subsurface conditions encountered at the boring location, including descriptions of the various strata and their depths and thicknesses are presented on the typed boring log in Appendix B.

Topsoil was encountered at the surface with a thickness of six inches. Beneath the surface material, lean clay was encountered to a depth of nine feet. Fat clay was encountered from nine feet to the auger refusal depth. The lean clay was typically

described as reddish brown in color, wet and very stiff in soil strength consistency. The fat clay was typically described as reddish brown to red in color, wet to saturated and stiff in soil strength consistency.

#### 4. BEDROCK CONDITIONS

Refusal, as would be indicated by the Driller on the field boring log, indicates a depth where essentially no downward progress can be made by the auger. It is normally indicative of a very hard or very dense material such as large boulders or the upper bedrock surface or where the N-value indicates essentially no penetration of the split-spoon sampler. The auger refusal depth is provided in the table below.

|          |               |               | ,         | >     |           |
|----------|---------------|---------------|-----------|-------|-----------|
|          |               |               | Surface   | Auge  | r Refusal |
|          |               |               | Elevation | Depth | Elevation |
| Hole No. | Latitude      | Longitude     | (ft.) MSL | (ft.) | (ft.) MSL |
| STR 28BW | 37°34'37.90"N | 85°52′48.70″W | 685.9     | 40.7  | 645.2     |

Table 2: Structure 28BW – Summary of Boring

#### 5. FOUNDATION DESIGN PARAMETERS

5.1 <u>Lateral Design Parameters</u> – MFAD soil parameters are provided in the table below. These values are derived from the laboratory and standard penetration testing in combination with recommended soil properties from the Naval Engineering Command (NAVFAC) Design Manual 7.02. The soil deformation moduli provided below were derived from Figure 3-2 and Figure 3-4 of the User Guide for MFAD 5.0 (Moment Foundation Analysis and Design).

| Structure Number | Soil Type | Depth<br>(feet) | Soil<br>Undrained<br>Shear | Modulus of<br>Deformation |
|------------------|-----------|-----------------|----------------------------|---------------------------|
|                  |           |                 | Strength<br>(ksf)          | (ksi)                     |
| STR 28BW         | CL        | 5.0-9.0         | 3.0                        | 2.0                       |
| STR 28BW         | СН        | 9.0-36.0        | 1.4                        | 0.8                       |
| STR 28BW         | СН        | 36.0-40.0       | 1.2                        | 0.7                       |

**Table 3: MFAD Geotechnical Design Parameters** 

Lateral soil parameters recommended for drilled shaft design are shown below in Table 4 using estimations by Matlock (1970) for soft clays with free water and by Reese, et. al (1975) for stiff clay with free water. These values are derived from laboratory and standard penetration testing in combination with recommended soil properties from the Naval Engineering Command (NAVFAC) Design Manual 7.02.

| Structure Number | Soil Type | Depth<br>(feet) | Estimated Strain<br>at 50% Stress<br>(ε <sub>50</sub> ) | Initial Soil<br>Stiffness<br>(k <sub>py</sub> ) (pci) |
|------------------|-----------|-----------------|---------------------------------------------------------|-------------------------------------------------------|
| STR 28BW         | CL        | 5.0-9.0         | 0.01                                                    | 400                                                   |
| STR 28BW         | СН        | 9.0-36.0        | 0.01                                                    | 200                                                   |
| STR 28BW         | СН        | 36.0-40.0       | 0.01                                                    | 200                                                   |

Table 4: L-Pile Soil Parameters for Design of Drilled Shafts

**5.2** <u>Axial Design Parameters</u> – Axial soil parameters recommended for drilled shaft design are shown below in Table 5. These values are derived from laboratory and standard penetration testing in combination with recommended soil properties from the Naval Engineering Command (NAVFAC) Design Manual 7.02. An ultimate friction angle for clay in contact with concrete of 17° should be used for design. For cohesive soils, utilize a skin friction resistance factor ( $\varphi$ ) of 0.45 in accordance with the Brown et al. (2010) method. Utilize an uplift resistance factor of 0.35 for cohesive soils in accordance with the Brown et al. (2018) method. Due to karst features present at the proposed tower location, it is recommended that base resistance be neglected for design purposes.

| rubic 5. Axial son raranteters for besign of brined sharts |           |                 |                                       |                                                        |                                                       |  |  |  |  |  |
|------------------------------------------------------------|-----------|-----------------|---------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| Structure<br>Number                                        | Soil Type | Depth<br>(feet) | Effective<br>Unit<br>Weight*<br>(pcf) | Undrained<br>Shear Strength<br>(S <sub>u</sub> ) (ksf) | Nominal Side<br>Resistance<br>(q <sub>s</sub> ) (ksf) |  |  |  |  |  |
| STR 28BW                                                   | CL        | 5.0-9.0         | 125.0                                 | 3.0                                                    | 1.2                                                   |  |  |  |  |  |
| STR 28BW                                                   | СН        | 9.0-36.0        | 120.0                                 | 1.4                                                    | 1.0                                                   |  |  |  |  |  |
| STR 28BW                                                   | СН        | 36.0-40.0       | 57.6                                  | 1.2                                                    | 1.0                                                   |  |  |  |  |  |

#### Table 5: Axial Soil Parameters for Design of Drilled Shafts

\*Effective Unit Weight accounts for Buoyancy

Ford 138kV Glendale Industrial West Structure 28BW

May 16, 2022 Page **4** of **4** 

The designer should feel free to contact AEI at 270-651-7220 for further recommendations or if any questions arise pertaining to this project.

Sincerely,

AMERICAN ENGINEERS, INC.

Aaron Anderson, EIT Geotechnical Engineer

Bont

Dusty Barrett, PE, PMP Director of Geotechnical Services

Attachments:

- Boring Layout
- Typed Boring Log
- Laboratory Data

## **APPENDIX A**

### **Boring Layout**







# **APPENDIX B**

## Boring Log



#### FIELD TESTING PROCEDURES

The general field procedures employed by the Field Services Center are summarized in the following outline. The procedures utilized by the AEI Field Service Center are recognized methods for determining soil and rock distribution and ground water conditions. These methods include geophysical and in situ methods as well as borings.

*Soil Borings* are drilled to obtain subsurface samples using one of several alternate techniques depending upon the surface conditions. Borings are advanced into the ground using continuous flight augers. At prescribed intervals throughout the boring depths, soil samples are obtained with a split-spoon or thin-walled sampler and sealed in airtight glass jars and labeled. The sampler is first seated 6 inches to penetrate loose cuttings and then driven an additional foot, where possible, with blows from a 140 pound hammer falling 30 inches. The number of blows required to drive the sampler each six-inch increment is recorded. The penetration resistance, or "N-value" is designated as the number of hammer blows required to drive the sampler the final foot and, when properly evaluated, is an index to cohesion for clays and relative density for sands. The split spoon sampling procedures used during the exploration are in general accordance with ASTM D 1586. Split spoon samples are considered to provide *disturbed* samples, yet are appropriate for most engineering applications. Thin-walled (Shelby tube) samples are considered to provide *undisturbed* samples and obtained when warranted in general accordance with ASTM D 1587.

These drilling methods are not capable of penetrating through material designated as "refusal materials." Refusal, thus indicated, may result from hard cemented soil, soft weathered rock, coarse gravel or boulders, thin rock seams, or the upper surface of sound continuous rock. Core drilling procedures are required to determine the character and continuity of refusal materials.

*Core Drilling Procedures* for use on refusal materials. Prior to coring, casing is set in the boring through the overburden soils. Refusal materials are then cored according to ASTM D-2113 using a diamond bit attached to the end of a hollow double tube core barrel. This device is rotated at high speeds and the cuttings are brought to the surface by circulating water. Samples of the material penetrated are protected and retained in the inner tube, which is retrieved at the end of each drill run. Upon retrieval of the inner tube the core is recovered, measured and placed in boxes for storage.

The subsurface conditions encountered during drilling are reported on a field test boring record by the driller. The record contains information concerning the boring method, samples attempted and recovered, indications of the presence of various materials such as coarse gravel, cobbles, etc., and observations between samples. Therefore, these boring records contain both factual and interpretive information. The field boring records are on file in our office.

The soil and rock samples plus the field boring records are reviewed by a geotechnical engineer. The engineer classifies the soil in general accordance with the procedures outlined in ASTM D 2487 and D 2488 and prepares the final boring records which are the basis for all evaluations and recommendations.

Representative portions of soil samples are placed in sealed containers and transported to the laboratory. In the laboratory, the samples are examined to verify the driller's field classifications. Test Boring Records are attached which show the soil descriptions and penetration resistances.

The final boring records represent our interpretation of the contents of the field records based on the results of the engineering examinations and tests of the field samples. These records depict subsurface conditions at the specific locations and at the particular time when drilled. Soil conditions at other locations may differ from conditions occurring at these boring locations. Also, the passage of time may result in a change in the subsurface soil and ground water conditions at these boring locations. The lines designate the interface between soil or refusal materials on the records and on profiles represent approximate boundaries. The transition between materials may be gradual. The final boring records are included with this report.

*Water table readings* are normally taken in conjunction with borings and are recorded on the "Boring Logs". These readings indicate the approximate location of the hydrostatic water table at the time of our field investigation. Where impervious soils are encountered (clayey soils) the amount of water seepage into the boring is small, and it is generally not possible to establish the location of hydrostatic water table through water level readings. The ground water table may also be dependent upon the amount of precipitation at the site during a particular period of time. Fluctuations in the water table should be expected with variations in precipitation, surface run-off, evaporation and other factors.

The time of boring water level reported on the boring records is determined by field crews as the drilling tools are advanced. The boring water level is detected by changes in the drilling rate, soil samples obtained, etc. Additional water table readings are generally obtained at least 24 hours after the borings are completed. The time lag of at least 24 hours is used to permit stabilization of the ground water table which has been disrupted by the drilling operations. The readings are taken by dropping a weighted line down the boring or using as electrical probe to detect the water level surface.

Occasionally the borings will cave-in, preventing water level readings from being obtained or trapping drilling water above the caved-in zone. The cave-in depth is also measured and recorded on the boring records.

#### **Sampling Terminology**

<u>Undisturbed Sampling</u>: Thin-walled or Shelby tube samples used for visual examination, classification tests and quantitative laboratory testing. This procedure is described by ASTM D 1587. Each tube, together with the encased soil, is carefully removed from the ground, made airtight and transported to the laboratory. Locations and depths of undisturbed samples are shown on the "Boring Logs."

**Bag Sampling:** Bulk samples of soil are obtained at selected locations. These samples consist of soil brought to the surface by the drilling augers, or obtained from test pits or the ground surface using hand tools. Samples are placed in bags, with sealed jar samples of the material, and taken to our laboratory for testing where more mass material is required (i.e. Proctors and CBR's). The locations of these samples are indicated on the appropriate logs, or on the Boring Location Plan.

### **CLASSIFICATION SYSTEM FOR SOIL EXPLORATION**

#### **COHESIVE SOILS**

(Clay, Silt, and Mixtures)

| <b>CONSISTENCY</b>                                               | SPT N-VALUE                                                                                                              | Qu/Qp (tsf)                                                                                                   | <b>PLASTICITY</b>                                                                          |              |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|
| Very Soft<br>Soft<br>Medium Stiff<br>Stiff<br>Very Stiff<br>Hard | 2 blows/ft or less<br>2 to 4 blows/ft<br>4 to 8 blows/ft<br>8 to 15 blows/ft<br>15 to 30 blows/ft<br>30 blows/ft or more | $\begin{array}{c} 0 - 0.25 \\ 0.25 - 0.49 \\ 0.50 - 0.99 \\ 1.00 - 2.00 \\ 2.00 - 4.00 \\ > 4.00 \end{array}$ | Degree of<br>PlasticityPlastic<br>Index<br>$0 - 7$ Low $0 - 7$ Medium $8 - 22$ Highover 22 | ( <u>PI)</u> |

#### **NON-COHESIVE SOILS**

(Silt, Sand, Gravel, and Mixtures)

| <b>DENSITY</b>   | SPT N-VALUE         | PARTICLE | SIZE IDENTIFICATION                                |
|------------------|---------------------|----------|----------------------------------------------------|
| Very Loose       | 4 blows/ft or less  | Boulders | 12 inch diameter or more                           |
| Loose            | 4 to 10 blows/ft    | Cobbles  | 3 to 12 inch diameter                              |
| Medium Dense     | 10 to 30 blows/ft   | Gravel   | Coarse $-1$ to 3 inch                              |
| Dense            | 30 to 50 blows/ft   |          | Medium $-\frac{1}{2}$ to 1 inch                    |
| Very Dense       | 50 blows/ft or more |          | Fine $-\frac{1}{4}$ to $\frac{1}{2}$ inch          |
|                  |                     | Sand     | Coarse – 0.6mm to <sup>1</sup> / <sub>4</sub> inch |
| RELATIVE PROPO   | DRTIONS             |          | Medium – 0.2mm to 0.6mm                            |
| Descriptive Term | Percent             |          |                                                    |
| Trace            | 1 - 10              |          | Fine $-0.05$ mm to $0.2$ mm                        |
| Trace to Some    | 11 - 20             |          |                                                    |
| Some             | 21 – 35             | Silt     | 0.05mm to 0.005mm                                  |
| And              | 36 - 50             |          |                                                    |
|                  |                     | Clay     | 0.005mm                                            |
|                  |                     |          |                                                    |

#### NOTES

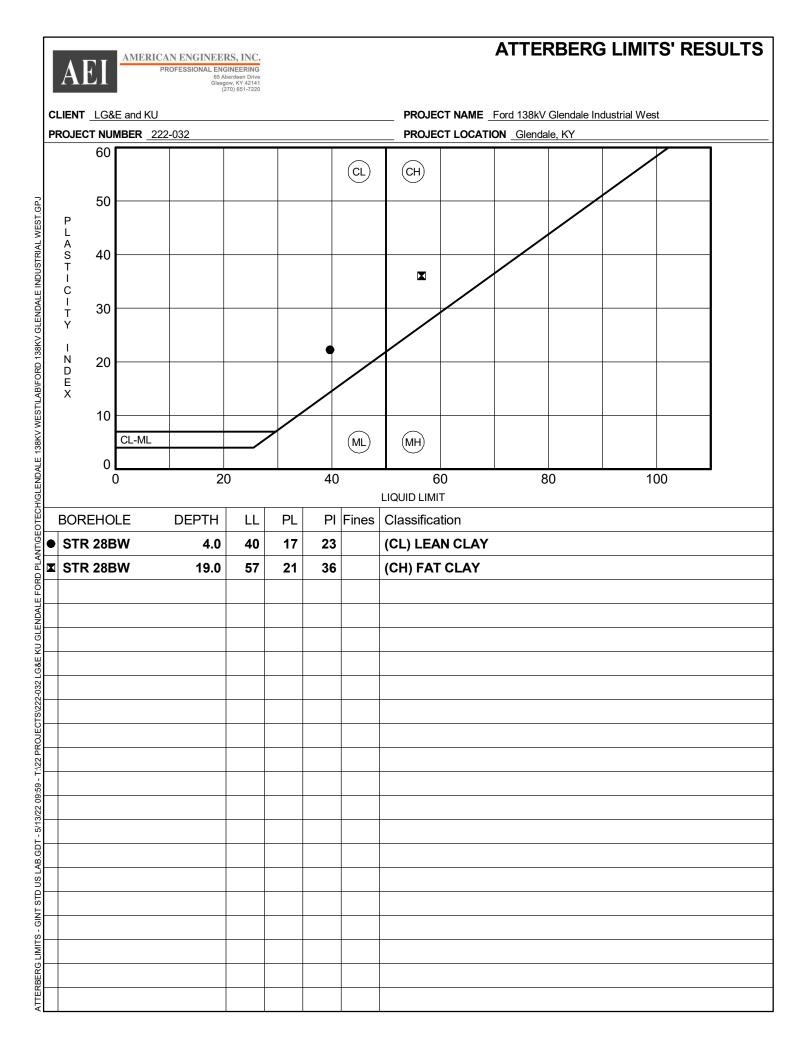
**Classification** – The Unified Soil Classification System is used to identify soil unless otherwise noted.

N:

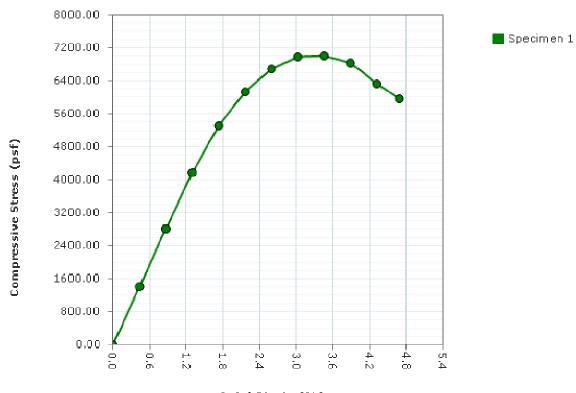
Standard "N" Penetration Test (SPT) (ASTM D1586) – Driving a 2-inch O.D., 1 3/8-inch I.D. sampler a distance of 1 foot into undisturbed soil with a 140-pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6inches to seat the sampler into undisturbed soil, and then perform the test. The number of hammer blows for seating the spoon and making the tests are recorded for each 6 inches of penetration on the field drill long (e.g., 10/8/7). On the report log, the Standard Penetration Test result (i.e., the N value) is normally presented and consists of the sum of the 2<sup>nd</sup> and 3<sup>rd</sup> penetration counts (i.e., N = 8 + 7 = 15 blows/ft.)

#### Soil Property Symbols

- Ou: Unconfined Compressive Strength
- Unconfined Comp. Strength (pocket pent.) omc: Qp: PL:
- LL: Liquid Limit, % (Atterberg Limit)
- PI: Plasticity Index


Standard Penetration Value (see above) Optimum Moisture content Plastic Limit, % (Atterberg Limit) Maximum Dry Density mdd:

|            | A             | EI             | AMERICAN ENGINEERS, INC.<br>PROFESSIONAL ENGINEERING<br>65 Abbridgeow, KY 42141<br>(270) 651-7220 |         |                       |                      |                             |                      |                         |            | S                |                     | 28BW              |
|------------|---------------|----------------|---------------------------------------------------------------------------------------------------|---------|-----------------------|----------------------|-----------------------------|----------------------|-------------------------|------------|------------------|---------------------|-------------------|
|            | CLIEN         | IT LG          | &E and KU                                                                                         | PROJECT | NAME                  | Ford <sup>2</sup>    | 138kV Glen                  | dale In              | dustria                 | l West     | t                |                     |                   |
|            | PROJ          | ECT N          | UMBER _222-032                                                                                    | PROJECT | LOCAT                 |                      | Glendale, K                 | Y                    |                         |            |                  |                     |                   |
|            |               |                | TED _3/30/22         COMPLETED _3/30/22                                                           |         | ELEVA                 |                      | 685.9 ft                    |                      |                         |            |                  |                     |                   |
| 21         |               |                | ONTRACTOR Adam Thompson                                                                           |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
| 0          |               |                | ETHOD Hollow Stem Augers                                                                          |         |                       |                      | LING _36.0                  |                      |                         |            |                  |                     |                   |
| 1          |               |                | Adam Cash         CHECKED BY         Aaron Anderson                                               |         |                       |                      | .ING                        |                      |                         |            |                  |                     |                   |
| 1210       | NOTE          | s              |                                                                                                   | AF      | fer Dri               |                      |                             | 1                    |                         | AT         | TERBE            |                     |                   |
| NUN        |               | 0              |                                                                                                   |         | Ц<br>Ц                | % /                  | <i>(</i> ) ( )              | z.                   | щ®                      |            | LIMITS           | 3                   | o<br>v            |
| DALE       | DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                              |         | SAMPLE TYPE<br>NUMBER | RECOVERY<br>(RQD)    | BLOW<br>COUNTS<br>(N VALUE) | POCKET PEN.<br>(tsf) | MOISTURE<br>CONTENT (%) | <u>م</u> . | <u>⊔</u> ,       | Ĕ                   | REMARKS           |
| SLEN       | DEF<br>(f     | BRA            | MATERIAL DESCRIPTION                                                                              |         | MPL                   | NO<br>NO<br>NO<br>NO | BL(                         | К<br>ЦЩ<br>Щ         | NTE N                   | LIQUID     | PLASTIC<br>LIMIT | STIC<br>IDE)        | E W               |
| 138KV (    | 0             |                |                                                                                                   |         | SAI                   | RE                   |                             | Ъ                    | ≥ö                      |            |                  | PLASTICITY<br>INDEX | Ľ.                |
|            | 0             |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
|            |               |                | (CL) lean CLAY, reddish brown, wet, very stiff                                                    | _       | ST<br>1               | 90                   |                             | 2.0                  | 26                      |            |                  |                     |                   |
|            | -             |                |                                                                                                   |         | •                     |                      |                             |                      |                         |            |                  |                     |                   |
|            | 5             |                |                                                                                                   |         | ST<br>2               | 90                   |                             | 4.5+                 | 25                      | 40         | 17               | 23                  | Qu = 7,010        |
|            | -             |                |                                                                                                   |         | 2                     |                      |                             |                      |                         |            |                  |                     | psf               |
|            | -             |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
|            | -             |                |                                                                                                   |         | CDT                   | 400                  | 450                         |                      |                         | -          |                  |                     |                   |
|            | 10            |                | (CH) fat CLAY, reddish brown to red, wet to saturated, stiff                                      |         | SPT<br>1              | 100                  | 4-5-6<br>(11)               | -                    | 33                      | -          |                  |                     |                   |
|            | -             |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
|            | -             |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
|            | 15            |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
|            |               |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
|            | -             |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
| - ER       | -             |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
|            | 20            |                |                                                                                                   |         | ST<br>3               | 65                   |                             | 2.5                  | 35                      | 57         | 21               | 36                  | Qu = 3,730<br>psf |
| - 28       | -             |                |                                                                                                   |         | 5                     |                      |                             |                      |                         |            |                  |                     | psi               |
| 22-032     | -             |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
|            |               |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
|            | 25            |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
| 22-22-22   | -             |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
|            | -             |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
| 2:01       | 30            |                |                                                                                                   |         | SPT 2                 | 20                   | 1-4-5                       | -                    | 33                      |            |                  |                     |                   |
| 13/21      | -             |                |                                                                                                   |         |                       |                      | (9)                         |                      |                         |            |                  |                     |                   |
| Ĭ          | -             |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
| P.9P.      | -             |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
| 20-02-     | 35            |                | 7                                                                                                 |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
|            | _             |                | ¥                                                                                                 |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
| בוב<br>פוב | -             |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
|            | 40            |                |                                                                                                   |         | SPT                   | 53                   | 3-5-5                       | -                    | 34                      |            |                  |                     |                   |
|            | -10           |                | Refusal at 40.7 feet.                                                                             |         | SPT<br>3              |                      | (10)                        |                      |                         |            |                  |                     |                   |
| CH BU      |               |                | Refusal at 40.7 feet.<br>Bottom of borehole at 40.7 feet.                                         |         |                       |                      |                             |                      |                         |            |                  |                     |                   |
| ËOF        |               |                |                                                                                                   |         |                       |                      |                             |                      |                         |            |                  |                     |                   |


# **APPENDIX C**

Laboratory Testing Results





ASTM D2166



Stress-Strain Graph

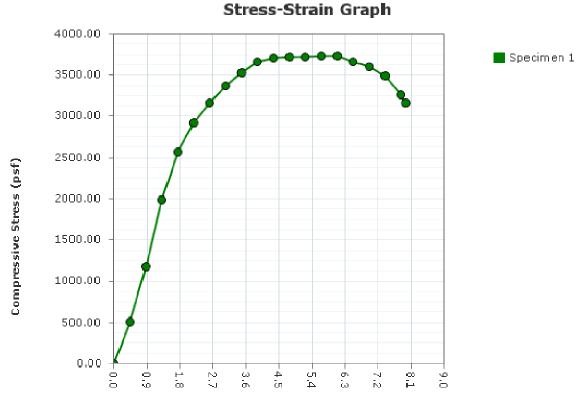
Axial Strain (%)

Project:Ford 138kV Glendale Industrial WestProject Number:222-032Received Date:4/12/2022Sampling Date:4/12/2022Sample Number:ST 2Sample Depth:4.0-6.0 ftBoring Number:STR 28BWLocation:Glendale, KYClient Name:LG&E and KURemarks:K

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

Checked By: \_\_\_\_\_

Date: \_


ASTM D2166

| Before Test                                                                      | 1                    | 2            | S<br>3                     | pecimer<br>4 | ı Numbo<br>5       | er<br>6               | 7     | 8                      |
|----------------------------------------------------------------------------------|----------------------|--------------|----------------------------|--------------|--------------------|-----------------------|-------|------------------------|
| Moisture Content (%):                                                            | 24.5                 |              |                            |              |                    |                       |       |                        |
| Wet Density (pcf)                                                                | 126.7                |              |                            |              |                    |                       |       |                        |
| Dry Density (pcf)                                                                | 101.8                |              |                            |              |                    |                       |       |                        |
| Saturation (%):                                                                  | 99.7                 |              |                            |              |                    |                       |       |                        |
| Void Ratio:                                                                      | 0.668                |              |                            |              |                    |                       |       |                        |
| Height (in)                                                                      | 5.7900               |              |                            |              |                    |                       |       |                        |
| Diameter (in)                                                                    | 2.7200               |              |                            |              |                    |                       |       |                        |
| Strain Limit @ 15% (in)                                                          | 0.9                  |              |                            |              |                    |                       |       |                        |
| Height To Diameter Ratio:                                                        | 2.13                 |              |                            |              |                    |                       |       |                        |
| Test Data                                                                        | 1                    | 2            | 3                          | 4            | 5                  | 6                     | 7     | 8                      |
| Failure Angle (°):                                                               | 0                    |              |                            |              |                    |                       |       |                        |
| Strain Rate (in/min)                                                             | 0.1                  |              |                            |              |                    |                       |       |                        |
| Strain Rate (%/min):                                                             | 1.73                 |              |                            |              |                    |                       |       |                        |
| Unconfined Compressive Strength (psf)                                            | 7010.25              |              |                            |              |                    |                       |       |                        |
| Undrained Shear Strength (psf)                                                   | 3505.13              |              |                            |              |                    |                       |       |                        |
| Strain at Failure (%):                                                           | 3.45                 |              |                            |              |                    |                       |       |                        |
| Specific Gravity: 2.72                                                           | Pla                  | stic Limit:  | 17                         |              | I                  | Liquid Limi           | t: 40 |                        |
| Type: UD                                                                         | Soil Clas            | ssification: | CL                         |              |                    |                       |       |                        |
| Project: Ford 138kV Glendale Ind<br>Project Number: 222-032                      | ustrial Wes          | st           |                            |              |                    |                       |       |                        |
| Sampling Date: 4/12/2022                                                         |                      |              |                            |              |                    |                       |       |                        |
| Sample Number: ST 2                                                              |                      |              |                            |              |                    |                       |       |                        |
| Sample Depth: 4.0-6.0 ft                                                         |                      |              |                            |              |                    |                       |       |                        |
| Boring Number: STR 28BW                                                          |                      |              |                            |              |                    |                       |       |                        |
| Location: Glendale, KY                                                           |                      |              |                            |              |                    |                       |       |                        |
| Client Name: LG&E and KU                                                         |                      |              |                            |              |                    |                       |       |                        |
| Remarks:                                                                         |                      |              |                            |              |                    |                       |       |                        |
| Specimen 1 Specimen 2 Specimen 3<br>Failure Sketch Failure Sketch Failure Sketch | Specime<br>Failure S |              | Specimen 5<br>ailure Sketo |              | imen 6<br>e Sketch | Specime<br>Failure Sk |       | ecimen 8<br>ure Sketch |

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

Checked By: \_\_\_\_\_ Date: \_\_\_\_

ASTM D2166



Axial Strain (%)

Project:Ford 138kV Glendale Industrial WestProject Number:222-032Received Date:4/12/2022Sampling Date:4/12/2022Sample Number:ST 3Sample Depth:19.0-21.0 ftBoring Number:STR 28BWLocation:Glendale, KYClient Name:LG&E and KURemarks:K

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

Checked By: \_\_\_\_\_

Date: \_

ASTM D2166

| Before Test                                                                                                                                                                                                                               | 1                    | 2            | S<br>3                     | pecimer<br>4 | n Numbe<br>5       | er<br>6               | 7     | 8                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|----------------------------|--------------|--------------------|-----------------------|-------|------------------------|
| Moisture Content (%):                                                                                                                                                                                                                     |                      |              |                            |              |                    |                       |       |                        |
| Wet Density (pcf)                                                                                                                                                                                                                         |                      |              |                            |              |                    |                       |       |                        |
| Dry Density (pcf)                                                                                                                                                                                                                         |                      |              |                            |              |                    |                       |       |                        |
| Saturation (%):                                                                                                                                                                                                                           |                      |              |                            |              |                    |                       |       |                        |
| Void Ratio:                                                                                                                                                                                                                               | 0.922                |              |                            |              |                    |                       |       |                        |
| Height (in)                                                                                                                                                                                                                               | 5.7500               |              |                            |              |                    |                       |       |                        |
| Diameter (in)                                                                                                                                                                                                                             | 2.8500               |              |                            |              |                    |                       |       |                        |
| Strain Limit @ 15% (in)                                                                                                                                                                                                                   | 0.9                  |              |                            |              |                    |                       |       |                        |
| Height To Diameter Ratio:                                                                                                                                                                                                                 | 2.02                 |              |                            |              |                    |                       |       |                        |
| Test Data                                                                                                                                                                                                                                 | 1                    | 2            | 3                          | 4            | 5                  | 6                     | 7     | 8                      |
| Failure Angle (°):                                                                                                                                                                                                                        | 0                    |              |                            |              |                    |                       |       |                        |
| Strain Rate (in/min)                                                                                                                                                                                                                      | 0.1                  |              |                            |              |                    |                       |       |                        |
| Strain Rate (%/min):                                                                                                                                                                                                                      | 1.74                 |              |                            |              |                    |                       |       |                        |
| Unconfined Compressive Strength (psf)                                                                                                                                                                                                     | 3734.65              |              |                            |              |                    |                       |       |                        |
| Undrained Shear Strength (psf)                                                                                                                                                                                                            |                      |              |                            |              |                    |                       |       |                        |
| Strain at Failure (%):                                                                                                                                                                                                                    | 6.09                 |              |                            |              |                    |                       |       |                        |
| Specific Gravity: 2.72                                                                                                                                                                                                                    | Pla                  | astic Limit: | 21                         |              | Ι                  | Liquid Limi           | t: 57 |                        |
| Type: UD                                                                                                                                                                                                                                  | Soil Clas            | ssification: |                            |              |                    |                       |       |                        |
| Project: Ford 138kV Glendale Ind<br>Project Number: 222-032<br>Sampling Date: 4/12/2022<br>Sample Number: ST 3<br>Sample Depth: 19.0-21.0 ft<br>Boring Number: STR 28BW<br>Location: Glendale, KY<br>Client Name: LG&E and KU<br>Remarks: | ustrial Wes          | st           |                            |              |                    |                       |       |                        |
| Specimen 1 Specimen 2 Specimen 3<br>Failure Sketch Failure Sketch Failure Sketch                                                                                                                                                          | Specimo<br>Failure S |              | Specimen 5<br>ailure Sketo |              | imen 6<br>e Sketch | Specime<br>Failure Sk |       | ecimen 8<br>ure Sketch |

Project Name: Ford 138kV Glendale Industrial West Project Number: 222-032

Checked By: \_\_\_\_\_ Date: \_\_\_\_

### Your Geotechnical Engineering Report

To help manage your risks, this information is being provided because subsurface issues are a major cause of construction delays, cost overruns, disputes, and claims.

#### Geotechnical Services are Performed for Specific Projects, Purposes, and People

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering exploration conducted for an engineer may not fulfill the needs of a contractor or even another engineer. Each geotechnical engineering exploration and report is unique and is prepared solely for the client. No one except the client should rely on the geotechnical engineering report without first consulting with the geotechnical engineer who prepared it. The report should not be applied for any project or purpose except the one originally intended.

#### **Read the Entire Report**

To avoid serious problems, the full geotechnical engineering report should be read in its entirety. Do not only read selected sections or the executive summary.

#### A Unique Set of Project-Specific Factors is the Basis for a Geotechnical Engineering Report

Geotechnical engineers consider a numerous unique, project-specific factors when determining the scope of a study. Typical factors include: the client's goals, objectives, project costs, risk management preferences, proposed structures, structures on site, topography, and other proposed or existing site improvements, such as access roads, parking lots, and utilities. Unless indicated otherwise by the geotechnical engineer who conducted the original exploration, a geotechnical engineering report should not be relied upon if it was:

- not prepared for you or your project,
- not prepared for the specific site explored, or
- completed before important changes to the project were implemented.

Typical changes that can lessen the reliability of an existing geotechnical engineering report include those that affect:

- the function of the proposed structure, as when it's changed from a multi-story hotel to a parking lot
- finished floor elevation, location, orientation, or weight of the proposed structure, anticipated loads or
- project ownership

Geotechnical engineers cannot be held liable or

responsible for issues that occur because their report did not take into account development items of which they were not informed. The geotechnical engineer should always be notified of any project changes. Upon notification, it should be requested of the geotechnical engineer to give an assessment of the impact of the project changes.

#### **Subsurface Conditions Can Change**

A geotechnical engineering report is based on conditions that exist at the time of the exploration. A geotechnical engineering report should not be relied upon if its reliability could be in question due to factors such as man-made events as construction on or adjacent to the site, natural events such as floods, earthquakes, or groundwater fluctuation, or time. To determine if a geotechnical report is still reliable, contact the geotechnical engineer. Major problems could be avoided by performing a minimal amount of additional analysis and/or testing.

### Most Geotechnical Findings are Professional Opinions

Geotechnical site explorations identify subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field logs and laboratory data and apply their professional judgment to make conclusions about the subsurface conditions throughout the site. Actual subsurface conditions may differ from those indicated in the report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risk associated with unanticipated conditions.

### The Recommendations within a Report Are Not Final

Do not put too much faith on the construction recommendations included in the report. The recommendations are not final due to geotechnical engineers developing them principally from judgment and opinion. Only by observing actual subsurface conditions revealed during construction can geotechnical engineers finalize their recommendations. Responsibility and liability cannot be assumed for the recommendations within the report by the geotechnical engineer who developed the report if that engineer does not perform construction observation.

#### A Geotechnical Engineering Report Is Subject To Misinterpretation

Misinterpretation of geotechnical engineering reports has resulted in costly problems. The risk of misinterpretation can be lowered after the submittal of the final report by having the geotechnical engineer consult with appropriate members of the design team. The geotechnical engineer could also be retained to review crucial parts of the plans and specifications put together by the design team. The geotechnical engineering report can also be misinterpreted by contractors which can result in many problems. By participating in pre-bid and preconstruction meetings and providing construction observations by the geotechnical engineer, many risks can be reduced.

#### Final Boring Logs Should not be Re-drawn

Geotechnical engineers prepare final boring logs and testing results based on field logs and laboratory data. The logs included in a final geotechnical engineering report should never be redrawn to be included in architectural or design drawings due to errors that could be made. Electronic reproduction is acceptable, along with photographic reproduction, but it should be understood that separating logs from the report can elevate risk.

### **Contractors Need a Complete Report and Guidance**

By limiting what is provided for bid preparation, contractors are not liable for unforeseen subsurface conditions although some owners and design professionals believe the opposite to be true. The complete geotechnical engineering report, accompanied with a cover letter or transmittal, should be provided to contractors to help prevent costly problems. The letter states that the report was not prepared for purposes of bid

development and the report's accuracy is limited. Although a fee may be required, encourage the contractors to consult with the geotechnical engineer who prepared the report and/or to conduct additional studies to obtain the specific types of information they need or prefer. A prebid conference involving the owner, geotechnical engineer, and contractors can prove to be very valuable. If needed, allow contractors sufficient time to perform additional studies. Upon doing this you might be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

#### **Closely Read Responsibility Provisions**

Geotechnical engineering is not as exact as other engineering disciplines. This lack of understanding by clients, design professionals, and contractors has created unrealistic expectations that have led to disappointments, claims, and disputes. To minimize such risks, a variety of explanatory provisions may be included in the report by the geotechnical engineer. To help others recognize their own responsibilities and risks, many of these provisions indicate where the geotechnical engineer's responsibilities begin and end. These provisions should be read carefully, questions asked if needed, and the geotechnical engineer should provide satisfactory responses.

#### **Environmental Issues/Concerns are not Covered**

Unforeseen environmental issues can lead to project delays or even failures. Geotechnical engineering reports do not usually include environmental findings, conclusions, or recommendations. As with a geotechnical engineering report, do not rely on an environmental report that was prepared for someone else.



65 Aberdeen Drive Glasgow, KY 42141 270-651-7220

### **GEOTECHNICAL ENGINEERING INVESTIGATION**

#### LG&E-KU FORD GLENDALE 345 KV TRANSMISSION

HODGENVILLE WEST ROAD, GLENDALE, KENTUCKY ATLAS PROJECT NO. LOUGE22043

#### **PREPARED FOR:**

Southeast Power Corporation 136 Precision Court Lancaster, KY 40444

#### **PREPARED BY:**

Atlas Technical Consultants LLC 2724 River Green Circle Louisville, KY 40206



2724 River Green Circle Louisville, KY 40206 (502) 722-1401 | oneatlas.com

June 15, 2022

MR. GREG CRUTCHFIELD SOUTHEAST POWER CORPORATION 136 PRECISION COURT LANCASTER, KENTUCKY 40444

Subject: Geotechnical Engineering Investigation LG&E-KU Ford Glendale 345 kV Transmission Hodgenville Road West, Glendale, Kentucky Atlas Project No. LOUGE22043

Dear Mr. Crutchfield:

Atlas Technical Consultants LLC has completed a geotechnical exploration in support of improvements for proposed overhead electrical transmission towers at the referenced site. The attached report presents a review of project information provided to us, descriptions of observed site and subsurface conditions, and a summary of foundation recommendations for use in project design and construction. The report Appendix contains site and test boring location plans, and results of field and laboratory testing. Our services have been provided in accordance with Atlas proposal number LOUGE22043 dated March 11, 2022.

We appreciate the opportunity to have provided these services and we look forward to serving as your geotechnical consultant throughout project design and execution. Please contact us with any questions regarding the information presented.

Respectfully submitted, Atlas Technical Consultants LLC

Ryan Ortiz, PE Senior Geotechnical Engineer Licensed Kentucky 33219



Travis Andres, PE Senior Geotechnical Engineer Licensed Kentucky 29429



#### CONTENTS

| 1. | PUR | POSE AND SCOPE OF EXPLORATION 1 |                                              |    |  |  |  |
|----|-----|---------------------------------|----------------------------------------------|----|--|--|--|
| 2. | PRO |                                 | IFORMATION                                   | 1  |  |  |  |
| 3. | EXP | LORATO                          | DRY FINDINGS                                 | 1  |  |  |  |
|    | 3.1 | Surface                         | e Conditions                                 | 1  |  |  |  |
|    | 3.2 | Site Ge                         | ology                                        | 1  |  |  |  |
|    | 3.3 | Subsur                          | face Conditions                              | 3  |  |  |  |
|    | 3.4 | Ground                          | water Conditions                             | 4  |  |  |  |
|    | 3.5 | Seismic                         | c Site Class                                 | 5  |  |  |  |
| 4. | REC | OMMEN                           | IDATIONS                                     | 5  |  |  |  |
|    | 4.1 | Drilled                         | Pier Foundations                             | 7  |  |  |  |
|    |     | 4.1.1                           | Uplift Resistance                            | 9  |  |  |  |
|    |     | 4.1.2                           | Drilled Pier Construction Considerations     | 9  |  |  |  |
|    | 4.2 | Deep F                          | oundation or Ground Improvement Alternatives | 11 |  |  |  |
|    |     | 4.2.1                           | Ground Improvement                           | 12 |  |  |  |
|    |     | 4.2.2                           | Augered Cast-in-Place Piles                  | 13 |  |  |  |
|    |     | 4.2.3                           | Micropiles                                   | 13 |  |  |  |
|    |     | 4.2.4                           | Driven Piles                                 | 13 |  |  |  |
|    | 4.3 | Site Pre                        | eparation                                    | 14 |  |  |  |
|    | 4.4 | Fill Con                        | npaction                                     | 15 |  |  |  |
|    | 4.5 |                                 | ainage                                       |    |  |  |  |
|    | 4.6 |                                 | tion Safety                                  |    |  |  |  |
| 5. | BAS | IS FOR                          | RECOMMENDATIONS                              | 16 |  |  |  |

#### **APPENDICES**

"Important Information about This Geotechnical-Engineering Report" "Legend to Soil Classification and Symbols" Figures 1-6 – Boring Location Plan Figures 7-13 – Fences Test Boring Logs Laboratory Testing Results



#### 1. PURPOSE AND SCOPE OF EXPLORATION

Atlas Technical Consultants LLC (Atlas) has completed a geotechnical engineering exploration for proposed transmission line alignments in Glendale, Kentucky. The purpose of this exploration has been to obtain site-specific subsurface data, to review available site development and geologic information, and to develop recommendations for use in design and construction of the foundations. Geotechnical services reported herein include drilling at nine structures including engineering soil test borings at 28 self-support tower legs and two monopole structures, analysis of resulting data, and geotechnical recommendations.

#### 2. PROJECT INFORMATION

Two transmission line alignments are planned in Glendale, Kentucky. A west route extends from south of the intersection of Jaggers Road and Hodgenville Road West to the intersection of Gaither Station Road and Ring Road. An east route extends from southwest of the intersection of Hodgenville Road West and Robey Drive to Meadowview Drive West. The lines are planned to service Ford's Blue Oval SK Battery Park in Glendale, Ky. A Vicinity map, Figure 1, appears in Appendix.

Proposed improvements are expected to include new self-support towers and monopole structures supported on driller pier foundations. Boring locations were provided by LG&E-KU based on the location of planned additions. Based on maximum loading conditions provided by LG&E-KU, the maximum axial, shear, and moment loads are about 200 kips, 60 kips, and 2 kipfeet. We understand the drilled piers may have a minimum diameter of about 6 feet. The planned depth of the drilled piers is not known at the issuance of this report.

In the case of drilled pier foundations, overturning and lateral resistance will be provided through a combination of the dead weight of the buried foundation structure, along with side capacity through the interaction of the concrete pile and surrounding soil. In case of use of a buried structural mat foundation, overturning and lateral resistance will be provided through the dead weight of the buried foundation structures and placed soil fill above the foundation and surrounding soil.

#### 3. EXPLORATORY FINDINGS

#### 3.1 Surface Conditions

The site extends through rolling agricultural fields and karst topography. Based on review of publicly available survey data provided by LG&E-KU, elevations at the east route structure locations range from 720.8 to 753.2 feet. Elevations at the west route range from 663.5 to 698.3 feet. The boring locations were selected by LG&E-KU. The borings were marked in the field using a using the approximate coordinates provided.

#### 3.2 Site Geology

Based on review of the Kentucky Geological Survey (KGS) Geologic Survey Map, the following bedrock formations underlie the site.



| Geologic Formations          | Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location on Site                                                                                             |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| St. Louis Limestone          | Limestone, yellowish-gray to olive-gray, medium- to fine-<br>grained, argillaceous, dolomitic, silty, thin to thick-bedded,<br>massive; contains several zones of gray chert, some<br>irregular and scattered and some nodular, along bedding<br>planes. Silty clay shale weathers yellowish to greenish<br>gray.<br>Limestone, dolomite, and shale: Limestone is yellowish<br>gray, light olive gray to medium bluish gray; very fine to fine<br>grained; thin to thick bedded; locally laminated to very thin<br>bedded where clayey or dolomitic. Dolomite is light olive<br>gray; weathers yellowish gray, very fine to fine grained, thin<br>to thick bedded; commonly spalls: contains fist-sized<br>pockets of crystalline calcite. Shale is yellowish green to<br>dark brown, calcareous, carbonaceous near base of unit,<br>in thin beds. | Mapped Underlying<br>Structures 4, 5, 21,<br>26, and 23A<br>Mapped Near Structures 16,<br>17, 21 25, and 25A |
| Alluvium                     | Sand, silt, clay, and gravel: Sand is very fine to fine, poorly<br>sorted; interbedded with silt and clay. Gravel composed of<br>pebbles, cobbles, and scattered boulders of chert,<br>limestone, silicified limestone, and some limonite-<br>cemented sandstone concretions. Loess soil as thick as 2<br>feet covers some of area, not mapped. Slumped<br>sandstone and shale Sand, sandstone, silt, shale, and<br>limestone: Loose, poorly indurated, jumbled sandstone,<br>silt, and shale, mixed with soil, sand, and scattered<br>boulders of limestone. Derived from rocks that overlay the<br>Ste. Genevieve Limestone and which slumped into<br>sinkholes in the Ste. Genevieve and St. Louis Limestones,<br>probably during an early cycle of karst erosion.                                                                              | Mapped Underlying<br>Structures 25<br>Mapped Near Structures 5,<br>16, 17, 21 23A, and 26                    |
| Ste. Genevieve<br>Limestone  | Limestone, dolomite, and shale: Limestone is light<br>yellowish gray; weathers to light gray; characteristically<br>oolitic in beds 0.5 to 4 feet thick, massive; interbedded with<br>about equal amounts of bioclastic limestone, locally shaly,<br>cherty, or pyritic; weathers to smooth rounded surfaces.<br>Dolomite is yellowish gray, very fine grained, massive;<br>locally calcareous: bed near base contains fist-sized vugs<br>filled with crystalline calcite. Silty clay shale is yellowish to<br>greenish gray, locally calcareous. Soil cover is commonly<br>as thick as 30 feet.                                                                                                                                                                                                                                                   | Mapped Underlying<br>Structure 16, 17, 21,<br>and 25A<br>Mapped Near Structures 5,<br>16, 17, 23A, and 26    |
| Lost River Chert of<br>Elrod | Limestone, very pale orange to yellowish-gray, medium- to<br>coarse grained; contains very coarse fossil fragments;<br>slightly oolitic; medium bedded, massive; rarely exposed<br>except in road cuts or sinks; generally silicified in one or<br>more beds 0.1 to 1.5 feet thick; resulting chert marked by<br>well-preserved casts of bryozoans and brachiopods,<br>including Orthotetes, and is probably the Lost River Chert<br>of Elrod (1899); top of chert is only mappable horizon in<br>this part of stratigraphic section.                                                                                                                                                                                                                                                                                                              | Not mapped, but expected at<br>the contact between the Ste.<br>Genevieve and St. Louis<br>Limestone          |

#### **Table 1: Geologic Formations Descriptions**

Based on review of publicly available KGS Karst Potential Maps, the underlying limestone formations are severely karst susceptible. KGS mapped sinkholes are located east of Structures 4 and 5. A karst feature is also mapped near Structure 39 along the alignment; however, borings at this particular structure were excluded from the exploration scope.

Karst in the region is typically characterized as solution weathering caused by slightly acidic groundwater moving down and through the bedrock along vertical joints and horizontal bedding planes. The limestone dissolves in this weak acid, resulting in an irregular upper rock surface and development of open channels and cavities in the underlying rock. As the openings widen, overburden soils may collapse into the rock voids and be carried away by water movement. The



void of collapsing soil progresses upward and outward until the overlying soil arch cannot support the load above it. When the surface soils collapse into the underlying void, the resultant surface feature is termed a sinkhole. Evidence of severe sinkhole development was not evident from the surface during the subsurface exploration in the immediate area of the planned structures; however, our experience in the vicinity indicates incipient sinkholes and other karstic activity may be encountered outside of the boring locations on site and potentially subsurface during construction.

#### 3.3 Subsurface Conditions

Subsurface conditions were explored at nine proposed structures via engineering test borings for 28 self-support structure legs and 2 monopole structures. Borings were drilled for a location for Structure 5, that was abandoned due to an underlying sewer. The results for this abandoned location is presented in the appendix as "OLD STR 5", but are not considered in this report. The results are described on boring logs in the Appendix. Subsurface strata descriptions represent our interpretation based on visual examination of recovered samples. Contacts between various strata on the test boring logs represent approximate depths, as transitions between strata may be gradual.

**Surface Cover:** The ground surface consisted of topsoil and/or organic agriculturally aerated soil. Interpreted topsoil or organic soils thicknesses were observed ranging from 2 to 12 inches.

**Existing Fill:** Apparent existing fill comprised of lean to fat clay soils was encountered beneath surface materials in borings at STR 16 to about 22 feet below existing grade (BEG) and at STR 17 L1 to about 2.5 feet BEG. The clay was visually classified as brown with Standard Penetration Tests (SPT) resulting in N-Values ranging from 9 to 16 blows per foot (bpf). The existing fill at both locations contained various types of organic soils, including topsoil, root fragments, and wood fragments.

**Native Cohesive Soil:** Lean and/or Fat Clay (CL) with variable quantities of silt, sand, and limestone fragments was encountered beneath the surface materials at all borings. The clay was visually classified as brown, reddish brown and gray and very soft to hard with SPT N-Values resulting in ranging from Weight of Hammer (WOH is defined as no blows of the sampling equipment required for sampler penetration) to 9 bpf. The clay materials extended to depths ranging from 4.1 to 12 feet BEG.

**Native Granular Soil:** Sand soil types with variable amounts of silt, sand, and gravel were encountered at several locations. We expect these sandy soils are deposits from nearby alluvial formations or are residual weathered limestone layers. Granular soils were encountered at Structure 5 L3 and Structure 25A L1 as 2 foot thick layers, and were visually classified as light brown and loose to medium dense with SPT N-values ranging 8 to 12 bpf.

Weathered and/or Karst Limestone: Weathered/karstic limestone was commonly encountered with in overburden soil layers. Typically, indications of these conditions were observed based on drilling performance and/or in recovered soil samples. These observations included limestone fragments in recovered split spoon samples, difficult augering performance (slow augering or auger chatter), by encountering auger refusal shallower than competent limestone bedrock, and through coring through weathered or karst limestone prior to encountering competent limestone bedrock. These drilling conditions are interpreted (pending boring-specific drilling performance or



notes) as possible limestone boulders, limestone pinnacles, interbedded limestone and soil, weathered limestone, or as voids encountered in bedrock.

**Limestone Bedrock:** Auger refusal was encountered at the boring locations ranging from 17 to 64.5 feet BEG. Rock sampling methods were used to advance monopole structure borings and one tower leg boring at each structure beyond where auger refusal, if encountered. Recovered core samples were generally comprised of limestone. Based on coring performance, voids and/or clay layers were commonly interpreted based on low down pressure and/or coring tooling drops during drilling operations. The recovered bedrock samples were described as slightly to highly weathered. Approximate recoveries ranging from 0 to 100 percent were measured and exhibited Rock Quality Designation (RQD) values ranging from 0 to 100 percent. Please refer to the boring logs in the Appendix for specific conditions.

The majority of the borings for this project were drilled to auger refusal. Auger refusal is defined herein as the depth at which a boring can no longer be advanced using conventional soil drilling methods. In an area of limestone bedrock overlain by residual soil, auger refusal can result on weathered bedrock that includes fractured bedrock with clay filled joints or seams, on slabs of unweathered limestone suspended in the residual soil matrix ("floaters"), on rock "pinnacles" rising above the surrounding bedrock surface, in crevices, or on the upper surface of continuous bedrock surface since the augers can penetrate the upper weathered or fractured bedrock in some cases. Auger refusal can also occur on obstructions (such as debris, old foundations, slabs, etc.) above the bedrock surface at this site is variable with differences in bedrock surface elevations occurring over relatively short lateral distances. It should be noted that bedrock may be encountered much shallower or deeper than the depths noted during this exploration, which is relatively common in the area.

#### 3.4 Groundwater Conditions

Groundwater level observations were made both during and at the completion of drilling operations. Groundwater was observed at the following locations and depths:

| Boring ID    | Free Water Depth (ft) | Boring ID  | Free Water Depth (ft) |
|--------------|-----------------------|------------|-----------------------|
| STR 4        | 25                    | STR 23A L3 | 22                    |
| OLD STR 5 L3 | 9                     | STR 25A L1 | 22                    |
| STR 16       | 32.7                  | STR 25A L3 | 26                    |
| STR 17 L1    | 31                    | STR 25A L4 | 44                    |
| STR 17 L3    | 32                    | STR 26 L3  | 18                    |
| STR 23A L1   | 22                    |            |                       |

Table 2: Observed Groundwater Conditions

Water was introduced into the borings for rock coring operations so water levels could not be obtained beyond auger refusal depth. Groundwater levels may fluctuate in response to short-term and seasonal variations in precipitation and surface runoff, and local pockets of groundwater may be present at shallower depths in the profile during wetter periods. Due to the cohesive materials of relatively low permeability encountered at this site, the boring may not have been allowed to remain open for a duration for the groundwater table to stabilize. Due to the presence of water



encountered, groundwater should generally be expected across the site. Subsurface water is likely to be encountered perched near the natural soil-bedrock interface or above more competent layers of weathered limestone. Groundwater may also be encountered within voids and fractures in the bedrock.

#### 3.5 Seismic Site Class

Based on geologic mapping, our experience in the project area, and the results of the test borings, it is our opinion that the majority of subsurface conditions at this site meet the criteria for **Site Class C** based on Section 1613.3.2 of the 2018 International Building Code. However, there were several exceptions where the subsurface strata encountered met the criteria of other site classes. At Structure 4 and 17, the encountered subsurface conditions meet the criteria for a **Site Class E**. At Structure 16, 23A, and 26, the encountered subsurface conditions meet the criteria for a **Site Class D**. We should be allowed to review the final grading plan to confirm the provided site class for each structure. Site specific seismic studies may be considered.

#### 4. **RECOMMENDATIONS**

The following recommendations were developed on the basis of previously described Project Information (Section 2), Subsurface Conditions (Section 3), and our experience. If there is any change in the project criteria, including the location of structures on the site, foundation loading, etc., a review should be made by this office and any modifications to our recommendations should be implemented accordingly. Foundation and other design recommendations presented herein are based, in part, on the assumption that the site will be prepared as recommended in this report. We understand that driller pier foundations are primarily considered for support of the structures. We understand that shallow foundations will not be considered for this project.

#### **Karst Considerations**

The proposed project site is underlain by a limestone formation that has an irregular surface and is subject to dissolution along joints and bedding planes within the rock mass. It is understood that karst features (such as clay-filled zones, solution channels, voids and sinkholes) have developed in the project vicinity and on site. Construction within an area of severe karst terrain and geology, such as on this site, is accompanied by a major degree of risk due to the potential for future ground subsidence. Karst conditions and indicators were encountered in the borings, including variable auger refusal depths/elevations, voids/clay layers in bedrock, weathered bedrock, free water encountered in overlying bedrock, and soil softening shallower than auger refusal. Groundwater was encountered in the borings shallower than auger refusal and is a critical factor in karst development. Due to the presence of significant amounts of groundwater in the borings, the risk of future development of karst features should be considered high and will present some difficulty to foundation excavation and construction.

The deep foundation parameters provided herein represent the current subsurface soil and bedrock conditions, and do not consider future subsidence, or changing geologic conditions. If a design for future subsidence is desired, the parameters shallower than the bottom of voids should be reduced or neglected.

Due to the presence of karst features at the site and in our borings, and the highly variable nature of karst bedrock over a short distance, it is likely that additional karst features may be found during foundation inspections, and the drilled pier contractor should be prepared to deepen drilled pier



excavations, as required. Any karst features identified during construction should be evaluated by a qualified geotechnical engineer on a base-by-case basis. Due to the severely karst prone bedrock and encountered karst features, a geotechnical engineer's representative should observe drilled pier excavations and bearing conditions on a full-time basis. Full-time observation by a geotechnical engineer's representative will yield more efficient karst solutions, when encountered (compared to delayed site visit, standby time by drill crew). Full-time observation may also indicate potential karst conditions otherwise not identified by the contractor.

The primary concern regarding karst features is support of structures, managing subsidence, and the possibility of collapse. However, the karst conditions encountered in these borings also present some constructability issues and risks for deep foundations. Difficult drilling performance was observed in the subsurface exploration due to limestone floaters, weathered limestone layers, and other conditions encountered shallower than bedrock. Based on auger refusal depths encountered, the bedrock surface appeared variable over short distances. Further, groundwater and soft soils were encountered above bedrock. Casing should be available, if not required, to manage groundwater and potential soft soil caving. Further, poured concrete may be "washed" or "sloughed" into underlying or adjacent voids, soft clay layers, or areas with flowing water. The contractor, owner, and design team should be prepared with alternative installation techniques where these circumstances are encountered during construction. Alternatives may include phased concrete placement, to "seal" karst features, or to install permanent casing. A qualified deep foundations contractor should be selected with experience in similar karst conditions, and with methods readily available onsite to manage karst, groundwater, seepage, soil collapse, and other constructability issues identified in the borings.

The planned drilled pier bearing elevations should be investigated by test holes via additional drilling (i.e. air track test holes, downhole pier test holes, borings, etc) to inspect for voids or otherwise soft layers below foundations. The method of advancement for the test holes may be at the contractor's discretion, but the testing program should be approved and observed by a qualified geotechnical engineer. The contractor should be able to perform test holes (number and extents depending on the deep foundation dimensions and depths), to confirm depth of bedrock, and the presence of quality bedrock below the deep foundation bearing surface. The test holes should extend at least 2 to 3 diameters below the bottom of the foundation. The contractor performed test holes, observed by a qualified geotechnical engineer or representative, will be adequate to estimate and manage the risk of karst effects on deep foundations.

Additional exploration options are available to further explore karst conditions. Air track test holes performed in the project planning stage will be beneficial to further quantify the bedrock surface (i.e. pinnacle/cutter bedrock topography). Further, geophysical services will provide information to determine the size, width, and location of karst features, thus further quantifying the risk to foundations.

Post construction testing will be beneficial to confirm the integrity of the pile after concrete placement. Post construction testing is particularly important on this project, due to the presence of groundwater and, in particular, flowing water and karst conditions. These issues may cause washout of placed concrete or cement, or outflow into underground voids. The most common type of testing is thermal integrity profiling. Commonly, thermal integrity instrumentation is placed in the foundation element attached to the rebar cage, and may also be used with PVC placed in the drilled pier. Other options for evaluating pile integrity may include downhole seismic testing or destructive methods (i.e. performing test holes in finished concrete). The contractor should



provide methods to evaluate pile integrity, for approval by the design team, prior to mobilization for construction.

Existing Fill

Existing fill comprised of lean to fat clay soils was encountered beneath the surface materials in borings at STR 16 to about 22 feet below existing grade (BEG) and at STR 17 L1 to about 2.5 feet BEG. The existing fill at both locations contained various types of organic soils, including topsoil, root fragments, and wood fragments. Existing fill material, without documentation of compaction, has potential to be highly variable and unsuitable for foundation support. The existing fill materials encountered present a potential risk of long-term differential settlements for any structures bearing on such materials. We recommend bearing all foundation below the existing fill material.

#### 4.1 Drilled Pier Foundations

We understand that drilled piers are the primary foundation type considered for this project. We have also provided alternative foundation types and/or ground improvement that may be more economical and feasible for the conditions encountered.

If selected, drilled piers should be designed to resist both uplift and axial loads. For purposes of this study, axial load is defined as the downward vertical load imparted to the foundation. The drilled pier subgrade should be judged suitable for the proposed loading by the geotechnical engineer.

The proposed improvements are in a severe karst geologic setting. To bear drilled piers below any known karst features or soft soil layers, we recommend the following structures bear at the minimum depths and/or elevations.

| Structure ID    | Bearing                   | Bearing                     | Bedrock                   | Bedrock                      |
|-----------------|---------------------------|-----------------------------|---------------------------|------------------------------|
| Structure ID    | Depth (ft) <sup>1,2</sup> | Elevation (ft) <sup>2</sup> | Depth (ft) <sup>1,3</sup> | Elevations (ft) <sup>3</sup> |
| Structure 4     | 45.0 <sup>4</sup>         | ~625.0                      | 45.0 <sup>4</sup>         | ~625.0                       |
| OLD Structure 5 | 17.0 <sup>5</sup>         | ~651.0                      | 17.0 <sup>5</sup>         | ~651.0                       |
| Structure 16    | 45.0                      | ~703.0                      | 51.0                      | ~697.0                       |
| Structure 17    | 33.5                      | ~711.5                      | 43.5                      | ~701.5                       |
| Structure 21    | N/A                       | N/A                         | 31.0                      | ~656.0                       |
| Structure 23A   | 60.0                      | ~660.0                      | 60.0                      | ~660.0                       |
| Structure 25    | 20.0                      | ~645.0                      | 48.0                      | ~697.0                       |
| Structure 25A   | N/A                       | N/A                         | 53.5                      | ~678.0                       |
| Structure 26    | 38.0                      | ~648.0                      | 65.0                      | ~621.0                       |

| Table 3: Drilled Pier Minimum Bearing Strata Depth and/or Elevatior | Table 3: | <b>Drilled Pier</b> | Minimum | Bearing | Strata | Depth | and/or El | evation |
|---------------------------------------------------------------------|----------|---------------------|---------|---------|--------|-------|-----------|---------|
|---------------------------------------------------------------------|----------|---------------------|---------|---------|--------|-------|-----------|---------|

1. Depths are below existing grade. The final depths should consider any grading performed after the geotechnical field services.

2. Drilled piers are recommended to bear deeper than the bearing depth or elevation provided, due to interpreted karst features or soft soils.

3. Drilled piers are recommended to bear deeper than the bedrock depth or elevation provided, where the competent limestone bedrock parameters are used.

- 4. Structure may require bearing as deep as 55 feet, pending inspection and contractor test holes.
- 5. Drilled piers should bear in competent limestone bedrock, to limit differential settlements across the structure.



Due to the severe karst potential at this site, the piers should be inspected by a geotechnical engineer's representative. We recommend the contractor perform additional coring or inspection of the underlying rock in foundation areas (i.e. test holes or down hole coring/testing), to confirm soft layers are not present within 2 to 3 pier diameters below the drilled pier footprint. Following approval by a specialty contractor and the design team, the foundations may bear shallower than the required bearing depth, if the ground improvement measures in Section 4.2.3 are implemented prior to construction.

The drilled piers for **Structure 4** should be designed based on the following parameters:

Drilled Pier Foundations:

| Allowable Overburden Soil and Rock skin friction:                   | 100 psf   |
|---------------------------------------------------------------------|-----------|
| Allowable Competent Limestone Bedrock skin friction:                | 400 psf   |
| Recommended Competent Limestone Bedrock allowable bearing pressure: | 5,000 psf |

The drilled piers for **Structures 16, 23A, 25, 26** should be designed based on the following parameters:

Drilled Pier Foundations:

| Allowable Overburden Soil and Rock skin friction:                          | 300 psf    |
|----------------------------------------------------------------------------|------------|
| Recommended Overburden Soil and Rock allowable bearing pressure:           | 2,000 psf  |
| Allowable Competent Limestone Bedrock skin friction:                       | 800 psf    |
| Recommended <b>Competent Limestone Bedrock</b> allowable bearing pressure: | 10,000 psf |

The drilled piers for **Structures 5**, **17**, **21**, **25A** should be designed based on the following parameters:

Drilled Pier Foundations:

| Allowable Overburden Soil and Rock skin friction:                          | 400 psf    |
|----------------------------------------------------------------------------|------------|
| Recommended Overburden Soil and Rock allowable bearing pressure:           | 3,000 psf  |
| Allowable Competent Limestone Bedrock skin friction:                       | 4,000 psf  |
| Recommended <b>Competent Limestone Bedrock</b> allowable bearing pressure: | 40,000 psf |

Based on parameters outlined in LPILE 5.0Plus, we have estimated values for use in lateral loading analysis. Several of the provided values are based on engineering properties, laboratory testing, and public correlations, such as the unit weight values and unconfined compressive strength.



For lateral loading, the following design parameters are recommended for use in design using the program L-Pile input parameters:

| Strata<br>Description | Model     | Soil or<br>Rock<br>Unit<br>Weight<br>(pcf) | Unconfined<br>Compressive<br>Strength (psi) | Design<br>RQD<br>(%) | Soil<br>Modulus<br>(pci) | Strain<br>ε <sub>50</sub><br>(in/in) |
|-----------------------|-----------|--------------------------------------------|---------------------------------------------|----------------------|--------------------------|--------------------------------------|
| Overburden            | Soft Soil | 90                                         | 2                                           | -                    | 50                       | 0.03                                 |
| Limestone             | Hard Soil | 120                                        | 50                                          | -                    | 800                      | 0.004                                |

Table 4: Parameters for Lateral Pile Capacity Analysis for Structure 4

| Strata<br>Description | Model                  | Soil or<br>Rock<br>Unit<br>Weight<br>(pcf) <sup>2</sup> | Unconfined<br>Compressive<br>Strength (psi) | Design<br>RQD<br>(%) | Soil<br>Modulus<br>(pci) <sup>1</sup> | Strain<br>ε <sub>50</sub><br>(in/in) <sup>1</sup> |
|-----------------------|------------------------|---------------------------------------------------------|---------------------------------------------|----------------------|---------------------------------------|---------------------------------------------------|
| Overburden            | Stiff Soil             | 110                                                     | 13.5                                        | -                    | 200                                   | 0.01                                              |
| Limestone             | Weak Rock <sup>1</sup> | 130                                                     | 2,000                                       | 30                   | -                                     |                                                   |

1- Limestone should be modelled as weak rock, with K<sub>m</sub> of 0.0005 and E<sub>ri</sub> of 1500 psi

| Table 6: Parameters for LPILE Capacity Analysis for Structures 5, 17, 21, 25A | Table 6: | Parameters for | or LPILE Capacity | / Analysis for Structure | s 5, 17, 21, 25A |
|-------------------------------------------------------------------------------|----------|----------------|-------------------|--------------------------|------------------|
|-------------------------------------------------------------------------------|----------|----------------|-------------------|--------------------------|------------------|

| Strata<br>Description | Model       | Soil or<br>Rock<br>Unit<br>Weight<br>(pcf) <sup>2</sup> | Unconfined<br>Compressiv<br>e Strength<br>(psi) | Design<br>RQD<br>(%) | Soil<br>Modulus<br>(pci) <sup>1</sup> | Strain<br>ε <sub>50</sub><br>(in/in) <sup>1</sup> |
|-----------------------|-------------|---------------------------------------------------------|-------------------------------------------------|----------------------|---------------------------------------|---------------------------------------------------|
| Overburden            | Stiff Soil  | 120                                                     | 20                                              | -                    | 400                                   | 0.005                                             |
| Limestone             | Strong Rock | 150                                                     | 4,000                                           | 60                   | -                                     |                                                   |

#### 4.1.1 Uplift Resistance

In order to resist uplift, the weight of the reinforced portion of the pier along with the ultimate unit side friction values provided in this report should be considered. Skin friction in the upper 5 feet of the drilled pier should be neglected. A minimum safety factor of 1.5 is recommended to determine allowable design values.

#### 4.1.2 Drilled Pier Construction Considerations

We recommend subsurface conditions in pier excavations be monitored until concrete is placed to verify that an otherwise competent bearing condition is not compromised by ground water seepage, surface water infiltration, or sidewall cave-in. It is recommended that pier excavations



be observed by qualified personnel in order to confirm an acceptable bearing surface is constructed and to identify significant deviations from the specified or anticipated conditions. Observed soil conditions suggest steel casing may be required to provide stable shaft excavations. The potential for groundwater entering shaft excavations should be considered minimal; casing will serve to prevent water from filling the shaft. Construction phase observations and documentation should include:

- Pier top locations within tolerances,
- Correct plan dimensions,
- Plumbness within tolerances,
- Materials excavated match boring data,
- Construction procedures with respect to excavation, groundwater management and concreting,
- Correct placement of steel reinforcing and anchorage bolts,
- Sampling and testing of plastic concrete,
- Concrete placement procedures,
- Proper temporary casing removal.

Significant deviations from specified or anticipated conditions should be reported immediately to the owner's representative and the project design team.

If pier excavations are to be entered, temporary casing will be required and all local, state and federal safety regulations regarding confined space entry should be followed. No open flame should be permitted on the site near a drilled pier excavation and no personnel should be allowed to enter the excavation until proper safety precautions for confined space entry have been taken. Such precautions should include proper personal protective equipment and monitoring of the excavations for explosive vapors and oxygen deficiency. Additional safety measures may be needed depending upon specific conditions at the foundation location, construction procedures employed and applicable local, state and federal Occupational Health and Safety Regulations and LG&E/KU safety requirements. The following recommendations are provided to aid in the successful construction of drilled shafts at this site:

- Retain the project geotechnical consultant to observe drilled shaft construction.
- Once a pier design is available, it is suggested that the contractor perform a subsurface exploration (i.e. using air track rig or other methods) to two to three pier diameters below the bearing surface. The purpose of this exploration is to confirm that that voids or other discontinuities are present below the foundations, and to confirm the subsurface conditions (i.e. groundwater) just prior to construction.
- Make provisions for ground water removal from the drilled shaft excavations. Use appropriate measures to remove water accumulation from the drilled shaft excavations. If the shaft can be fully dewatered (i.e., less than 2 inches of water on the bottom of the shaft) and concrete can be placed in the shaft quickly (i.e., more than 1 truck discharging into the shaft at one time) then the concrete can be placed by conventional methods. If the shaft cannot be fully dewatered and/or if there is continual flow of water into the shaft, then the concrete should be placed by tremie methods. If this condition should occur, it should be evaluated and excavation methods should be revised accordingly.
- Place concrete in the drilled shafts immediately upon completion of excavation. To minimize
  the potential for lateral movement of the drilled shafts during loading, the contractor must
  place the drilled shaft concrete in direct contact with undisturbed natural soil and rock, filling



any voids or enlargements in the drilled shaft excavations with concrete at the time of concrete placement.

- Utilize drilled shaft concrete with a mix designed for a slump of 5 to 7 inches to reduce the
  potential for arching and to provide a workable material. Should tremie placement of the
  concrete be required, the concrete mix should be designed with a slump ranging from 7 to 9
  inches, without reduction in design strength, to facilitate placement with the tremie tube. A
  means of preventing concrete from intermixing with the water or slurry, such as a bottom
  discharge gate or rubber ball for a tremie pipe, or a pig for use in a concrete pump must be
  provided. In no case should concrete be placed through standing water in the drilled shaft
  excavation or tremie pipe.
- Maintain a positive head of concrete within the temporary casing, relative to water trapped outside the casing, to reduce the risk of water and/or soil from infiltrating into the drilled shaft excavation and contaminating the concrete. An improper head balance could potentially cause water and/or soil to flow into the shaft and compromise the concrete integrity. Should tremie placement be required, water which typically becomes intermixed with the uppermost portion of the concrete, contaminating the concrete, must be completely removed, down to fresh concrete, prior to final concrete placement to complete the drilled shaft. The drilled shaft contractor must be experienced and prepared to deal with potentially difficult soil, rock and groundwater conditions.
- Install a temporary protective steel casing to prevent side wall collapse, prevent excessive mud and water intrusion, and to allow workers to safely enter, clean and inspect the drilled shaft, if required.
- Direct the concrete placement into the drilled hole through a centering chute to reduce side flow or segregation.
- Extract the protective steel casing as the concrete is placed, to provide a sufficient head of concrete to prevent soil or water intrusion into the newly placed concrete.
- Maintain the shaft reinforcing steel cage in the proper position and at the correct elevation during removal of the temporary casing in order to permit the proper location of the structure anchor bolts.

#### 4.2 Deep Foundation or Ground Improvement Alternatives

Based on the boring data, the following stability concerns or construction feasibility issues are noted in regard to construction of drilled piers:

- Groundwater table Drilled pier construction is less feasible and more costly in subsurface conditions with a groundwater table or seepage conditions. Casing may be needed for the full length of the drilled pier, due to soft, wet soils and groundwater/seepage. The contractor should be prepared to dewater the excavation with groundwater and active seepage.
- Confirmation of bearing surface Drilled piers are commonly socketed in competent bedrock. As depths to bedrock are highly variable over short distances, it will be difficult to confirm the bearing surface of the pier. Piers that bear partially on soil and rock may experience poor performance. These will be difficult to inspect due to the depths underground.
- Concrete wash out Karst features were encountered in this exploration, including voids, soft clay layers, and water flow conditions, which are susceptible to result in concrete wash out or sloughing during construction.

These conditions are often cost-prohibitive for drilled piers, and alternative deep foundation options increasingly become more cost efficient. With these conditions and constructability issues



for this project, driven piles, auger-cast piles, or micropiles may be a more feasible from a constructability perspective.

For these specialty foundation or ground improvement alternatives, a design/build contractor must be aware of the groundwater or seepage conditions, the underlying voids, where encountered, soil and rock conditions, and confirm that the design and installation methods are compatible with the site conditions. Since these foundation alternatives are proprietary specialty foundation elements, the specific design criteria and pile characteristics shall be developed and prepared by an engineer registered in the State of Kentucky on behalf of the specialty geotechnical contractor who shall be entirely responsible for the design, installation, performance and warranty of the deep foundation or ground improvement system.

We understand that drilled pier foundations are the primary foundation type considered for this project. However, the following deep foundation alternatives may provide a more cost effective or lower risk solution due to the free water, obstructions prior to auger refusal, and karst conditions encountered in the subsurface exploration. We are available to provide additional details, and qualified contractors, on request.

#### 4.2.1 Ground Improvement

Ground improvement options are available and applicable for karst conditions to reduce risk of karst development in the footprint of foundations. In particular, the primary methods for improving karst bedrock conditions include infilling voids and/or infilling at the top of bedrock. The material used for infilling is commonly a low mobility grout. These materials are injected under pressure to infill voids, solution cavities, and soft soils. Confirmation of grouting success is typically achieved by monitoring the pressure required for grouting and the grout quantity the subsurface accepts. These methods should be considered where drilled piers bear shallower than karst features. Any ground improvement should be performed by a speciality contractor experienced with karst conditions.

Infilling of voids should be considered where drilled piers bear shallower than karst features. Infilling of voids commonly includes a planned grid of locations in and some distance outside the footprint of the proposed foundation. A grouting program in karst bedrock may influence the local hydrology, resulting in accelerated karst feature development outside of the infilled voids. However, where nearby structures are not at risk, this ground improvement option may be considered. Grouting activities should extend 3 pier diameters below the drilled pier bearing elevation, and a 1 horizontal to 1 vertical below the bottom of the deep foundation. If this option is implemented, we should be allowed to review the final deep foundation plans to provide additional recommendations, if warranted.

Infilling at the top of bedrock (e.g. cap grouting) may be performed where deep foundations bear in the soil and rock overburden. This foundation option is not warranted or beneficial where deep foundation bear below the top of competent bedrock. This remediation option is generally performed in a grid spacing pattern of 5 to 10 ft, and individual grout column locations are terminated when grout quantities exceeds design volume or grout pressure exceeds the design limit. The purpose of this remediation option is to seal the top of bedrock surface, so that subsidence risk is reduced. Further, this remediation option has reduced risk of hydrologic impact.



#### 4.2.2 Augered Cast-in-Place Piles

Cast-in-place piles can be placed with minimal vibration, without driving equipment noise, and with minimal disturbance to adjacent footings and structures. These piles are constructed by advancing hollow stem augers to the design bearing depth and injecting grout through the bottom of augers as they are withdrawn. The advantage of cast-in-place piles over drilled piers is the contact between the pile grout and the supporting soils. On the other hand, if the pile is withdrawn ahead of the grout placed, a gap in the pile will form, rendering the pile useless. For this reason, only qualified contractors should be employed to install the piles, and pile installation should be subject to continuous inspection.

Cast-in-place piles may be advantageous in conditions with groundwater conditions, such as this project. The piles may be required to be pre-drilled, due to the obstructions encountered in this project. Locally, cast-in-place piles are typically not installed in bedrock. Where bedrock bearing foundations are required, a qualified contactor should be consulted for feasibility considerations. In general, due to the extensive dewatering required for drilled piers, cast-in-place piles may be a more feasible and cost efficient alternative. However, where seepage conditions are present, cast-in-place piles have risk of wash out or sloughing due to flowing water and voids.

#### 4.2.3 Micropiles

Micropiles may be used to support structures, and are particularly beneficial below any karst features. The micropiles should be installed at least a pile diameter below any encountered voids. Micropiles are relatively small diameter drilled and grouted in-place piles with diameters ranging from about 5 inches to 10 inches. Since micropiles are proprietary foundation elements, the actual pile capacities, pile diameters, pile lengths, etc. must be determined by the specialty geotechnical contractor working in conjunction with the design structural engineers.

Micropiles should be designed and installed as a design/build component of the project and as such the specific characteristics of the micropiles should be designed by a specialty geotechnical contractor based upon the loading conditions required in conjunction with their specific materials and installation methods. The micropile design and construction should be in general accordance with the FHWA Document NHI-05-039 "Micropile Design and Construction".

Similar to cast-in place piles, micropiles are advantageous where groundwater or free water conditions are expected. Further, micropiles are commonly rock bearing foundations, and may be an economical alternative for foundation support. In addition, micropiles often are considered a minimal risk option for karst considerations.

#### 4.2.4 Driven Piles

Driven piles into a rock bearing surface are typically driven into place using a hammer source. Typical pile types considered for driven piles are steel H-piles or pipe piles, however, other pile types may be considered. These foundation types do not required dewatering, rendering these more economical and feasible where a groundwater table is expected. These foundations are not easily installed where obstructions are present, such as wood fragments, limestone fragments, weathered rock, etc. Pre-drilling of driven pile locations will likely be required, to limit risk of obstructions damaging or skewing the driven pile installation.



## 4.3 Site Preparation

We understand that the project sites will not contain slabs or pavements that will require typical site preparation, such as topsoil stripping, proofrolling, and other considerations. However, we do expect some site grading may be performed prior to construction of foundations. Further, we site preparation activities described herein will be beneficial to provide support for construction equipment. The recommendations in the following section should be adhered to, particularly in the footprint of structures or where new fill is placed.

All areas that will support pavements, new fill, or any manmade or earthen structures should be properly prepared. After rough grade has been established and prior to placement of new fill, the exposed subgrade should be carefully observed by the geotechnical engineer, or a qualified soils technician working under the direction of the geotechnical engineer, by probing, testing, and proofrolling as needed. Any organic material still in place, frozen, wet, soft or loose soil, uncontrolled fill, existing demolition debris and pavements, foundation remnants, utilities, and other undesirable materials should be removed. The exposed subgrade should be evaluated by proofrolling with suitable equipment to check for pockets of soft material hidden beneath a thin crust of better soil. Any unsuitable materials thus exposed should be removed and replaced with well-compacted, engineered fill as outlined in Section 4.4.

It is important that positive surface drainage be established at the beginning of the earthwork operations and be maintained throughout the project. Surface water must not be allowed to pond. Furthermore, compaction and sealing of the subgrade surface is important when precipitation is expected. The site storm drainage elements (i.e., catch basins, pipes, manholes, etc.) should be installed as early as possible, which will aid in control of surface and ground water.

Care should be exercised during the grading operations at the site. Due to the nature of the near surface soils, the traffic of construction equipment may create pumping and general deterioration of the shallower soils, especially if excess surface water is present. The grading, therefore, should be done during a dry season, if at all possible. Based on our experience on other nearby sites, it is likely that the subgrade soils in some areas will be wet and soft when exposed. The extent to which yielding subgrade may be a problem is difficult to predict beforehand since it is dependent upon several factors including seasonal conditions, precipitation, cut depths, sequencing and scheduling of the earthwork, surface and subsurface drainage measures, the weight and traffic patterns of construction equipment, etc. Therefore, it is suggested that provisions be made in the contract documents for subgrade improvements to be used where determined to be necessary in the field at the time of construction.

It may be possible to improve or stabilize the subgrade soils in the areas that are found to be excessively wet, soft or yielding at the time of construction, by discing, aerating and recompacting. However, this will require a combination of time to allow for working the soils, favorable weather conditions for drying and firmer soils at shallow depth below the yielding soils in order to be successful. If site grading operations are planned through the winter months, subgrade stabilization is expected to be required as part of fill construction to aid in moisture conditioning during fill construction through the seasonably wetter winter months.

If it is not possible to improve the subgrade soils in this manner because of weather conditions, scheduling or other constraints or site conditions (which is most often the case); mechanical stabilization (i.e., a geogrid with additional crushed limestone placed over the subgrade), or removal of the unsuitable soils and replacement with crushed limestone or engineered soil fill.



The best method for stabilizing the subgrade should be determined in the field at the time of construction based upon the actual field conditions in conjunction with the specific soil type encountered at the locations requiring stabilization, the size of the areas requiring stabilization and the construction schedule.

# 4.4 Fill Compaction

All new engineered fill beneath footings, floor slabs and pavements should be compacted to a dry density of at least 98 percent of the standard Proctor maximum dry density (ASTM D-698). For soil, the compaction should be accomplished by placing the new fill in about 8 inches (or less) loose lifts and mechanically compacting each lift to at least the specified minimum dry density.

We recommend that only well-graded granular material, such as pit-run sand, gravel, or KYTC DGA or lean concrete be used to fill excavations of limited lateral dimensions where proper compaction of cohesive materials is difficult and compaction can only be accomplished with small vibratory equipment.

Clay fill materials should be compacted using a non-vibratory sheeps-foot roller and aggregate fill materials should be compacted using a vibratory smooth-drum roller or as judged acceptable by the geotechnical engineer. Field density tests should be performed on each lift as necessary to insure that adequate moisture conditioning and compaction is being achieved.

Prior to beginning fill construction, we recommend samples of proposed borrow materials be collected for standard Proctor testing. The following criteria are recommended where soil material is utilized for structural fill:

- Limit maximum particle sizes to 4-inches (in the largest dimension) and less than 3 percent organic material by weight.
- Maintain the moisture content of the fill soils to within ±2 percentage points of the soils' optimum moisture content.
- Perform one in-place density test in every 5,000 square feet for each one-footthick fill layer, with a minimum of two tests per lift.
- Retain the geotechnical engineer to observe, document and test fill placement and compaction operations.
- Provide and maintain efficient drainage of building and pavement subgrades both during and after construction to prevent ponding of water and to promote rapid and efficient surface drainage.
- Maintain positive surface drainage to prevent water from ponding on surfaces during all earthwork operations.
- Roll fill surfaces with a rubber-tired or steel-drummed roller prior to precipitation events to improve surface runoff if precipitation is expected.
- Contact the geotechnical engineer should the subgrade soils become excessively wet, dry, or frozen.

## 4.5 Site Drainage

We recommend the site be adequately drained throughout construction to prevent ponding of water. Final site grading should prevent stormwater from accumulating near foundation components and to provide rapid runoff of stormwater. Water accumulating in excavations should



be removed in a timely manner to keep it from causing deterioration of the foundation bearing surface.

## 4.6 Excavation Safety

Excavation for construction of the proposed foundation may exceed 4 feet depth. Excavations of this depth require protective systems. A *competent person* should evaluate the excavation and determine that protective measures are appropriate and adequate. For purposes of trenching and excavations, a competent person is a person who is capable of identifying existing and predictable hazards or working conditions that are hazardous to workers. For design purposes, the natural site soils meet the requirements of OSHA soil type "B" to OSHA soil type "C", and temporary excavations less than 20 feet in height may be sloped at a rate of 1 H to 1 V to 1.5H to 1 V. This condition should be confirmed by a competent person during the excavation process. Additional excavation safety requirements typically include:

- Keep heavy equipment away from trench edges with distance a function of trench height and vehicle type.
- Identify sources, such as ground water, external factors associated with construction operations, or natural subsurface conditions that may affect sidewall stability.
- Keep excavated spoils and equipment a minimum of two feet beyond trench edges.
- Identify and stabilize underground utilities.
- Perform LEL and O<sub>2</sub> testing.
- Check trench edges and condition for stability prior to the start of work shifts, following precipitation events, and if excavations become inundated.

These recommendations are presented as guidelines for trenching and excavation operations and do not constitute an excavation safety plan. A complete excavation safety plan is recommended for any excavations over five feet in depth.

### 5. BASIS FOR RECOMMENDATIONS

Recommendations presented herein are based, in part, on project information provided to Atlas and only apply to the specific project and site described in this report. If the project information section in this report contains incorrect information or if additional information is available, please convey the correct or additional information to Atlas and retain us to review the recommendations within this report. Atlas can then modify recommendations if they are inappropriate for the proposed project.

Neither assessment of site environmental conditions nor efforts to detect the presence of contaminants in the soil, rock, surface water or ground water of the site included in the scope of this exploration.

Regardless of the thoroughness of a geotechnical exploration, there is always a possibility that conditions between borings will be different from those at specific boring locations and that conditions will not be as anticipated by the designers or contractors. In addition, the construction process may itself alter soil conditions. Therefore, experienced geotechnical personnel should observe and document the construction procedures used and the conditions encountered. Unanticipated conditions and inadequate procedures should be reported to the design team along with timely recommendations to solve the problems created. We recommend that the owner



retain Atlas to provide this service based upon our familiarity with the project, the subsurface conditions and the intent of the recommendations.

Atlas recommends that this complete report be provided to the various design team members, the contractors and the project owner. Potential contractors should be informed of this report in the "instructions to bidders" section of the bid documents. The report should not be included or referenced in the actual contract documents.

We wish to remind you that our exploration services include storing the samples collected and making them available for inspection for 30 days. The samples are then discarded unless you request otherwise.

# Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

#### While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

# Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

#### Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will <u>not</u> be adequate to develop geotechnical design recommendations for the project.

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

#### **Read this Report in Full**

Costly problems have occurred because those relying on a geotechnicalengineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.* 

#### You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- · the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept*  responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

#### Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

# This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.* 

#### **This Report Could Be Misinterpreted**

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction-phase observations.

#### **Give Constructors a Complete Report and Guidance**

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note*  conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

#### **Read Responsibility Provisions Closely**

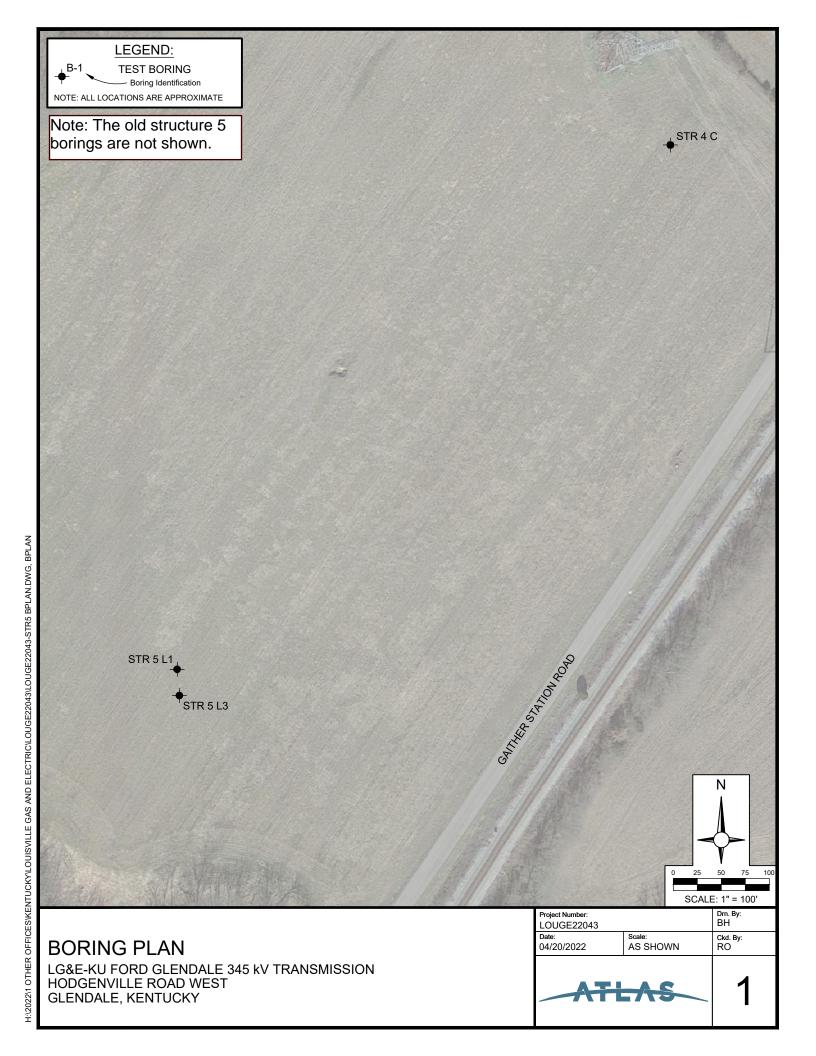
Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

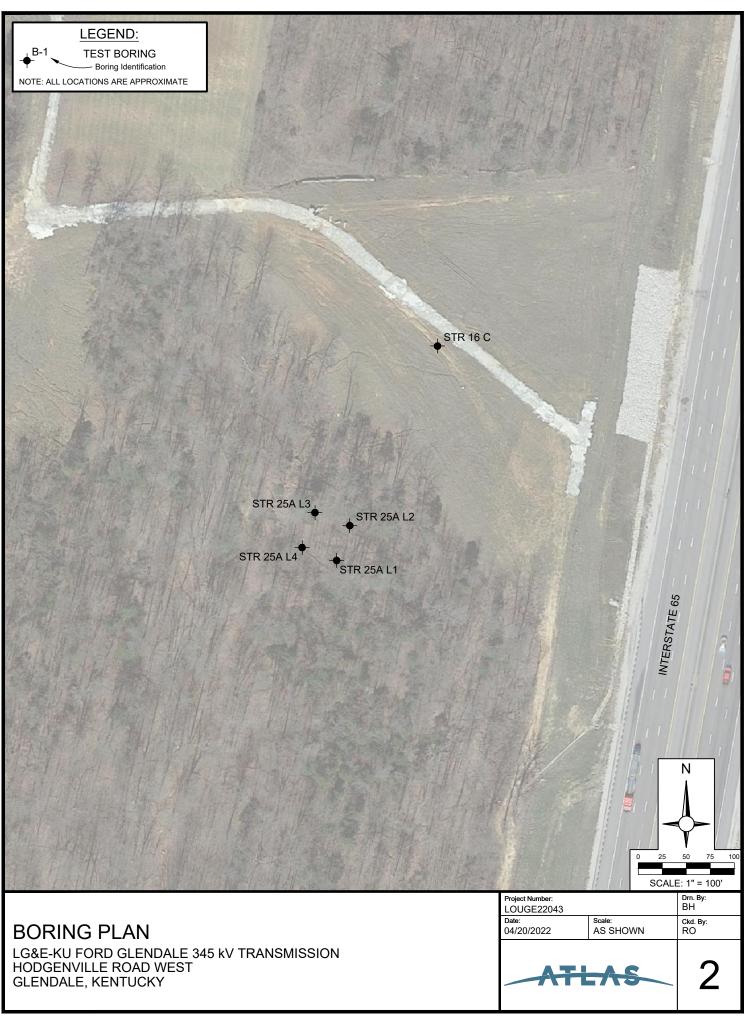
#### Geoenvironmental Concerns Are Not Covered

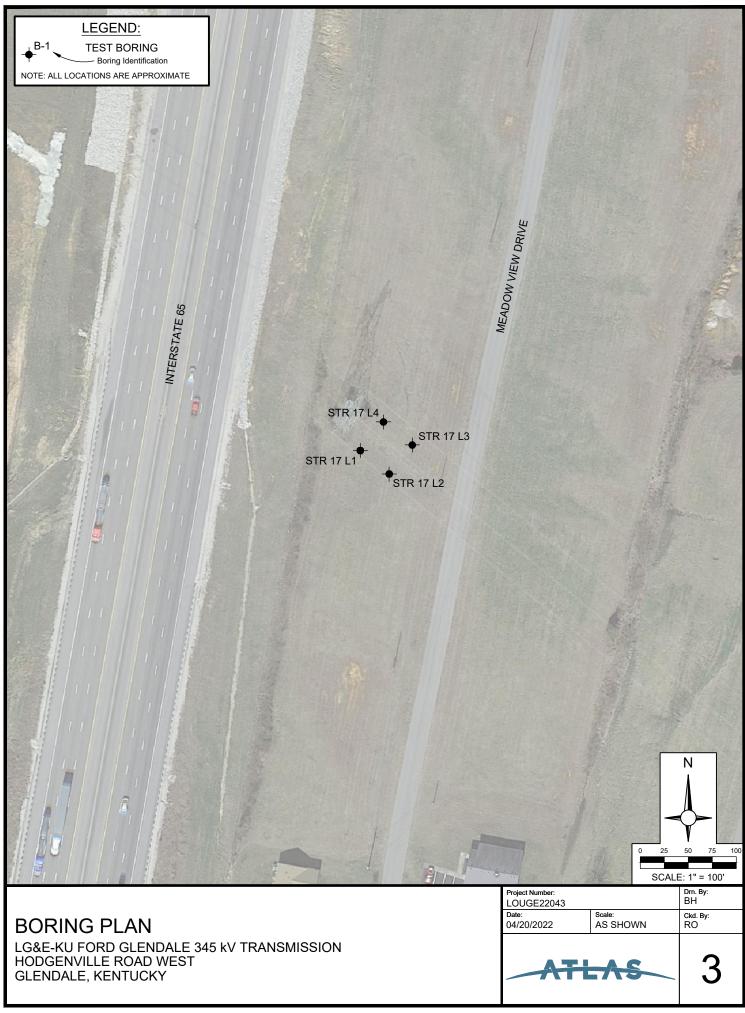
The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures.* If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

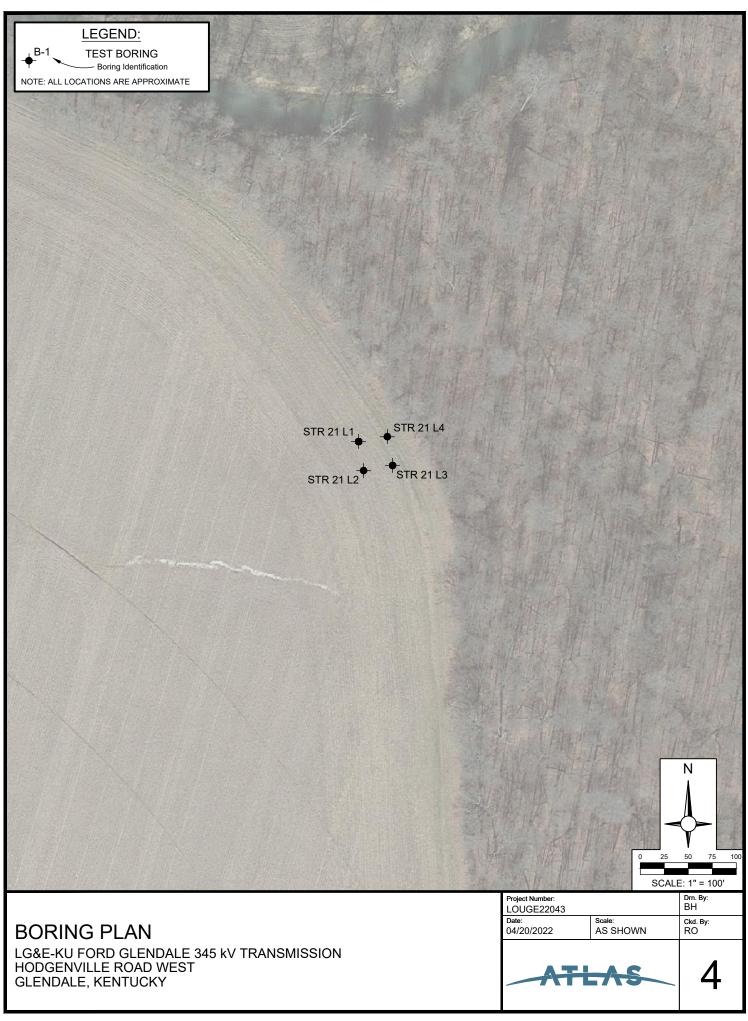
#### Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

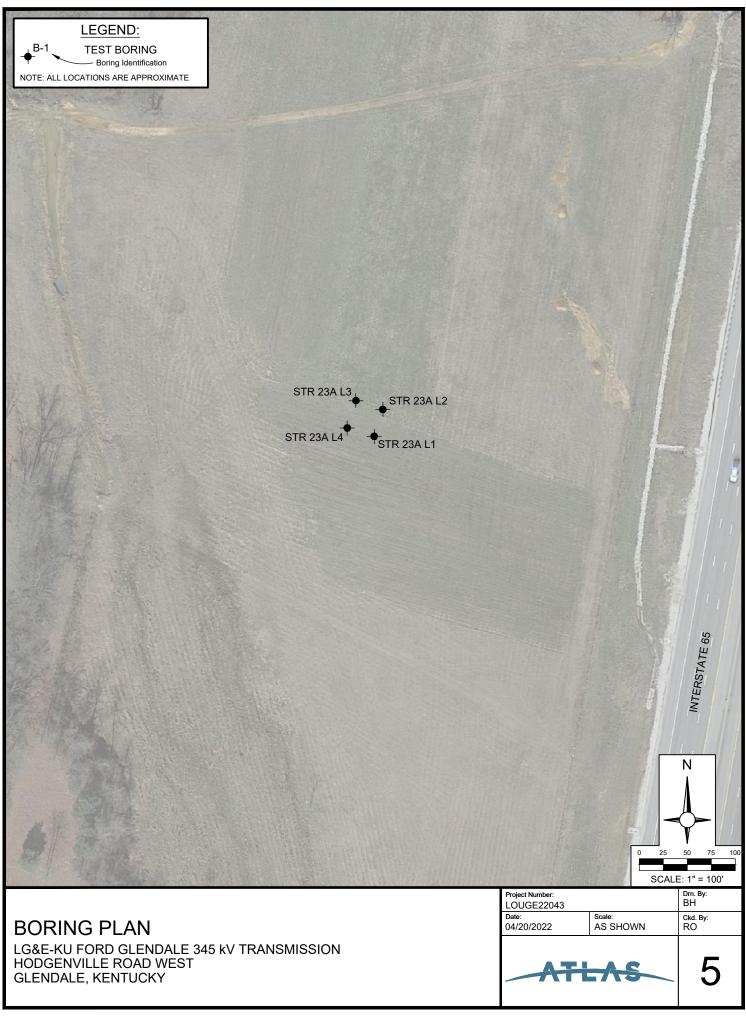
While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, *proper implementation of the geotechnical engineer's recommendations will <u>not</u> of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration* by including building-envelope or mold specialists on the design team. *Geotechnical engineers are <u>not</u> building-envelope or mold specialists.* 

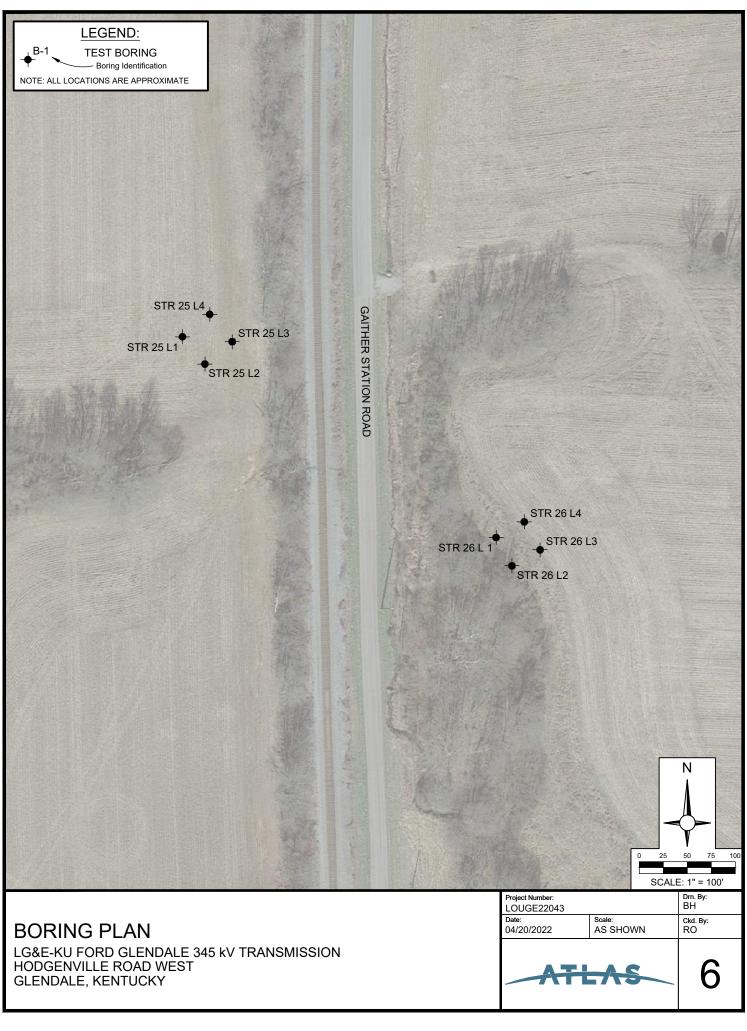


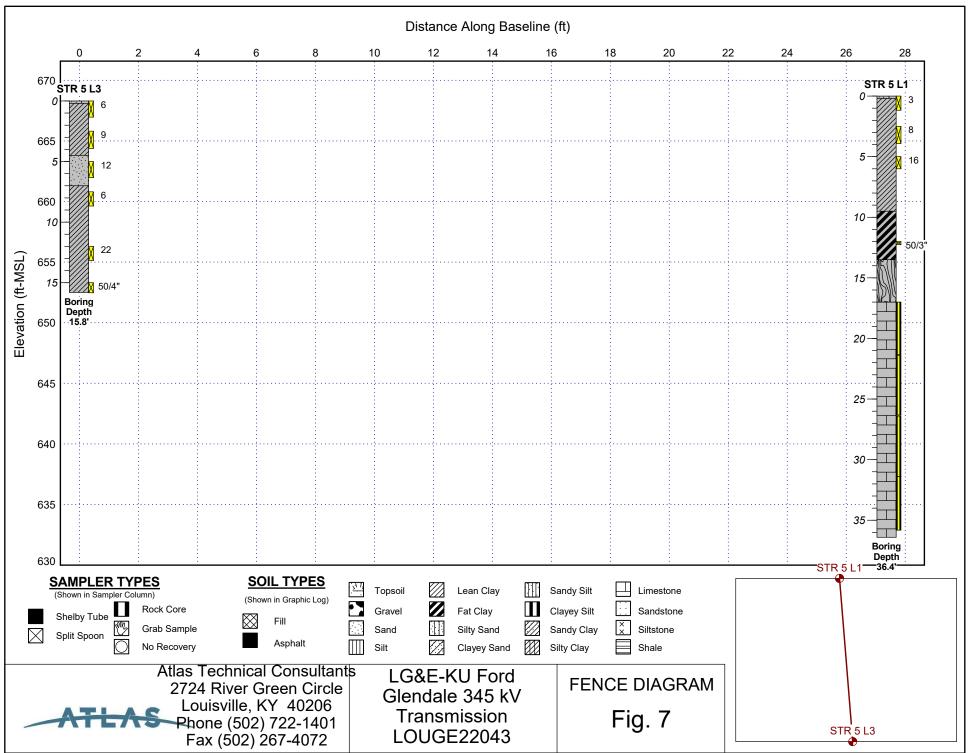


Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

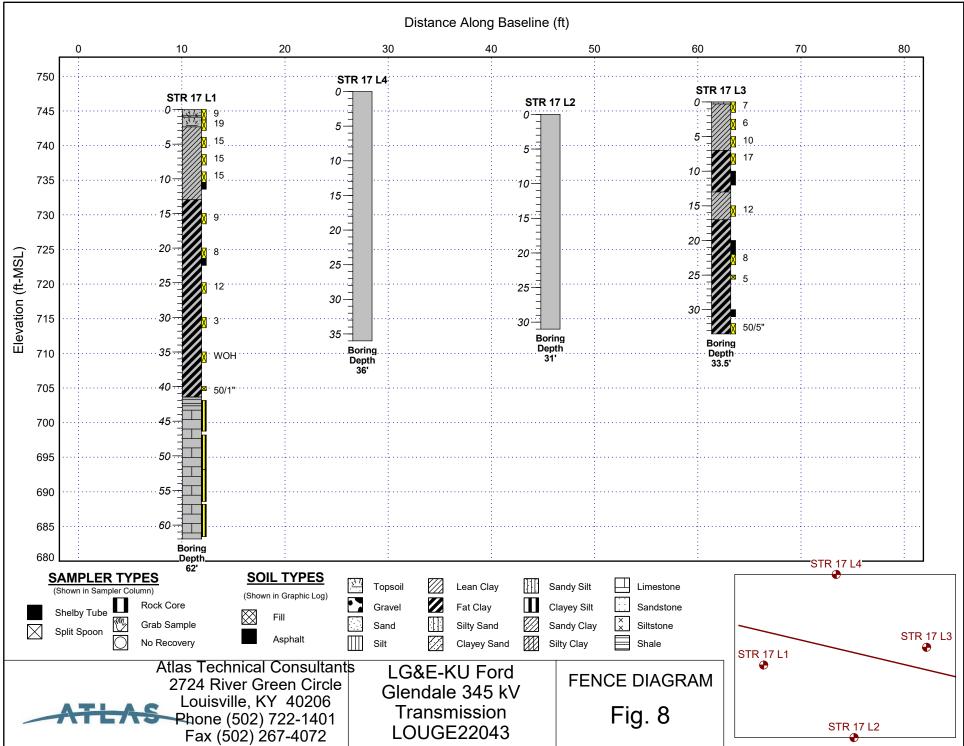

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent or intentional (fraudulent) misrepresentation.


# LEGEND TO CLASSIFICATION AND SYMBOLS

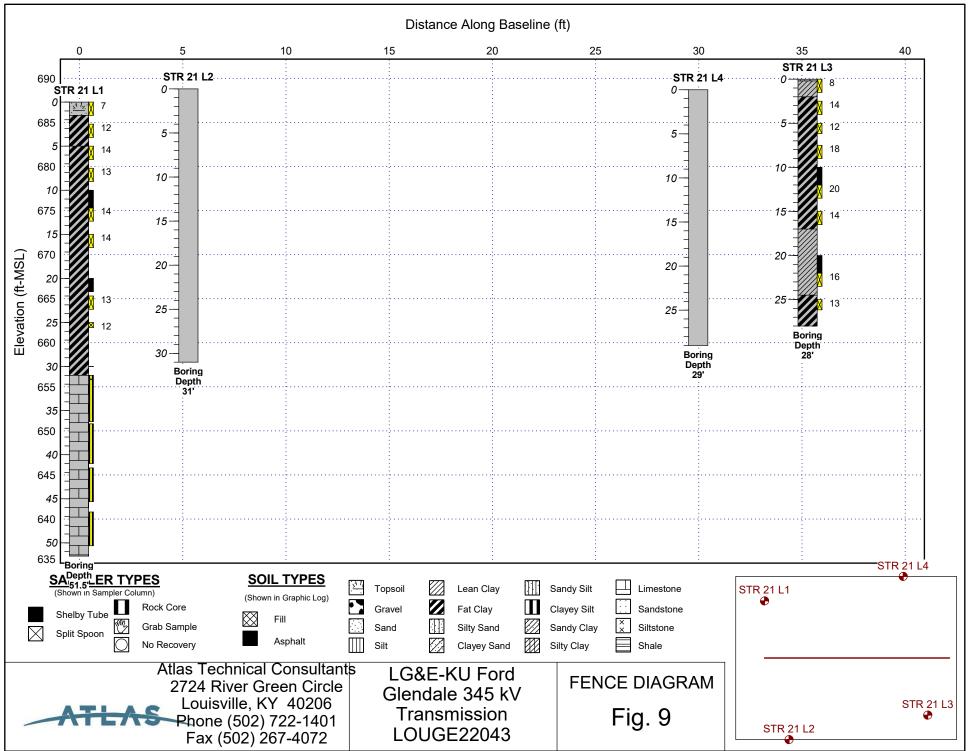

|              | <b>IL TYPES</b><br>n in Graphic Log) |                                 | CONSISTENCY O                                                     |                                                                                                                                                                         |                                                                      | <u>DENSITY OF</u><br>NLESS SOILS             |
|--------------|--------------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|
|              | Fill                                 |                                 | (Automatic Hammer)                                                | UNCONFINED                                                                                                                                                              |                                                                      |                                              |
|              | Asphalt                              | <u>SPT "N"</u><br><u>VALUE</u>  | <u>CONSISTENCY</u>                                                | <u>COMPRESSIVE</u><br>STRENGTH (PSF)                                                                                                                                    | <u>SPT "N"</u><br>VALUE                                              | <u>RELATIVE</u><br><u>DENSITY</u>            |
| 1 24<br>1 24 | Topsoil                              | <2                              | Very Soft                                                         | <500                                                                                                                                                                    | <5                                                                   | Very Loose                                   |
|              | Gravel                               | 2-3<br>4-6                      | Soft<br>Medium Stiff                                              | 500-1,000<br>1,000-2,000                                                                                                                                                | 5 to 10<br>11 to 30                                                  | Loose<br>Medium Dense                        |
|              | 5and                                 | 7-12                            | Stiff                                                             | 2,000-4,000                                                                                                                                                             | 31 to 50                                                             | Dense                                        |
|              | Sit                                  | 13-26<br>>26                    | Very Stiff<br>Hard                                                | 4,000-8,000<br>>8,000                                                                                                                                                   | >50                                                                  | Very Dense                                   |
|              | Lean Clay                            | E                               | STIMATES RELA                                                     | TIVE                                                                                                                                                                    | PART                                                                 | TICLE SIZE                                   |
|              | Fat Clay                             |                                 | OISTURE COND                                                      |                                                                                                                                                                         | IDENT                                                                | IFICATION                                    |
|              | Silty Sand                           | (Visual cla                     | ssification relative to assu<br>e content (OMC) of stand          | umed optimum                                                                                                                                                            |                                                                      | TM D2488)                                    |
|              | Clayey Sand                          | _                               |                                                                   |                                                                                                                                                                         | Boulders                                                             | > 12 inches                                  |
|              | Sandy Silt                           | Dry<br>Slightly Moist<br>Moist  | -Air dry to dusty<br>-Dusty to approximate<br>-Approximate ±2% ON |                                                                                                                                                                         | Cobbles<br>Gravel<br>Coarse                                          | 12 to 3 inches<br>3 to ¾ inches              |
|              | Clayey Silt                          | Very Moist<br>Wet               | -Approximate +2% ON<br>-Contains free water a                     | IC to saturated                                                                                                                                                         | Fine<br>Sand <sup>1</sup>                                            | <sup>3</sup> to 4.75 mm                      |
|              | Sandy Clay                           | <u>RELA</u>                     | TIVE HARDNESS                                                     | S OF ROCK                                                                                                                                                               | Coarse<br>Medium                                                     | 4.75 to 2 mm<br>2 to 0.425                   |
|              | Silty Clay                           |                                 | (Automatic Hamme                                                  | •                                                                                                                                                                       | Fine                                                                 | 0.425 to 0.075 mm                            |
| 335355       |                                      | Very Soft                       | -Pieces 1 inch or more in                                         | thickness can be broken                                                                                                                                                 |                                                                      | <0.075 mm                                    |
| HT I         | Limestone                            | Soft                            | by finger pressure.<br>-May be broken with fing                   | Jers                                                                                                                                                                    |                                                                      | e to No. 200 Sieve<br>No. 200 Sieve          |
|              | Sandstone                            | Medium                          | -Corners and edges may<br>-Moderate blow of ham                   | be broken with fingers                                                                                                                                                  |                                                                      | DRTION OF                                    |
| × × ×        | Siltstone                            | Hard                            | sample                                                            |                                                                                                                                                                         |                                                                      | ND GRAVEL                                    |
|              |                                      | Hard<br>Very Hard               | -Hard blow of hammer re-Several hard blows of ha                  |                                                                                                                                                                         |                                                                      | Dry Weight)                                  |
|              | Shale                                |                                 | sample                                                            |                                                                                                                                                                         | Trace                                                                | <15%                                         |
| SAM          | PLER TYPES                           | RELAT                           | IVE WEATHERI                                                      | NG OF ROCK                                                                                                                                                              | With<br>Modif                                                        | 15 to 29%<br>ier >29%                        |
| (Shown ir    | Sampler Column)                      | Fresh                           |                                                                   | thering, slight discolorat                                                                                                                                              |                                                                      | 101 229%                                     |
|              | Shelby Tube                          | Slightly<br>Moderately          | -Discoloration and dis                                            |                                                                                                                                                                         | PRO                                                                  | PORTION OF<br>FINES                          |
| $\boxtimes$  | Split Spoon                          | Highly                          | -More than half disint                                            | •                                                                                                                                                                       | (P                                                                   | y Dry Weight)                                |
| П            | Rock Core                            | Completely                      | _                                                                 | into soil. Rock matrix int                                                                                                                                              | act.                                                                 |                                              |
| 8_8          | Rock Cole                            | Residual Soil                   | -All rock converted to                                            | soil. Rock matrix destroy                                                                                                                                               | ed. Trace<br>With                                                    | <5%<br>5 to 12%                              |
| 50 Z         | Grab Sample                          |                                 |                                                                   | TERMS                                                                                                                                                                   | Modi                                                                 |                                              |
| O            | No Recovery                          | Character J.D.                  | turking Test (N)// ) /                                            |                                                                                                                                                                         |                                                                      | instals alternation) . Its                   |
| <u> </u>     | FLAS                                 | (SPT "N" Value<br>Recovery (REC | -                                                                 | Number of blows require<br>spoon sampler 1 foot by a<br>Total length of rock recov<br>length of the core run<br>Total length of sound roc<br>inches divided by the tota | a 140 pound hammer<br>vered in the core barr<br>k segments recovered | falling 30 inches<br>el divided by the total |

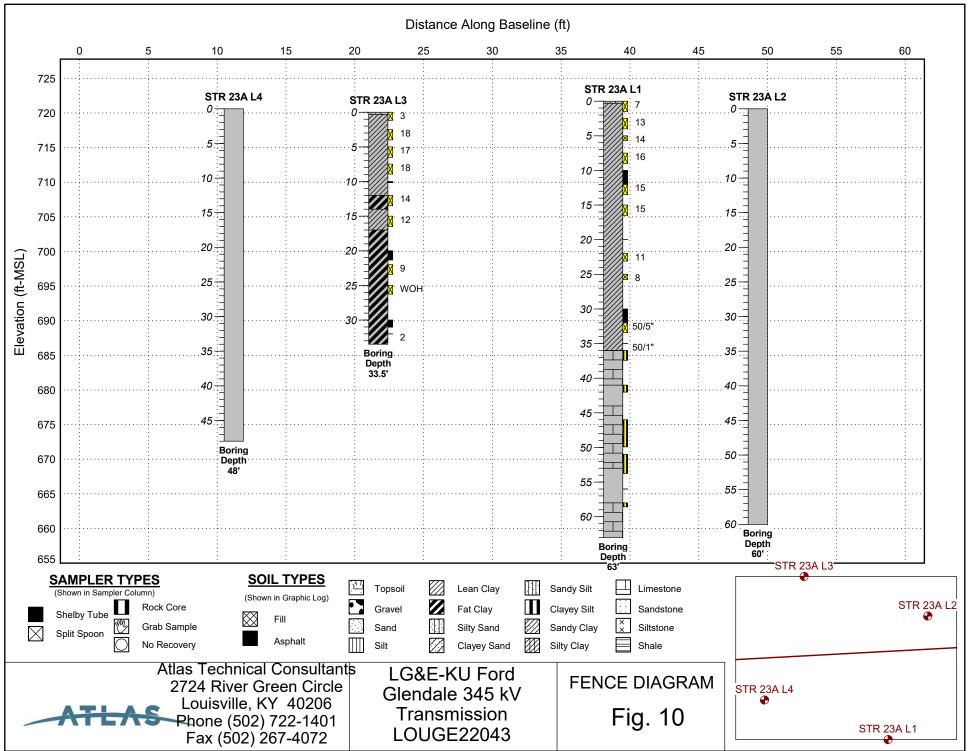


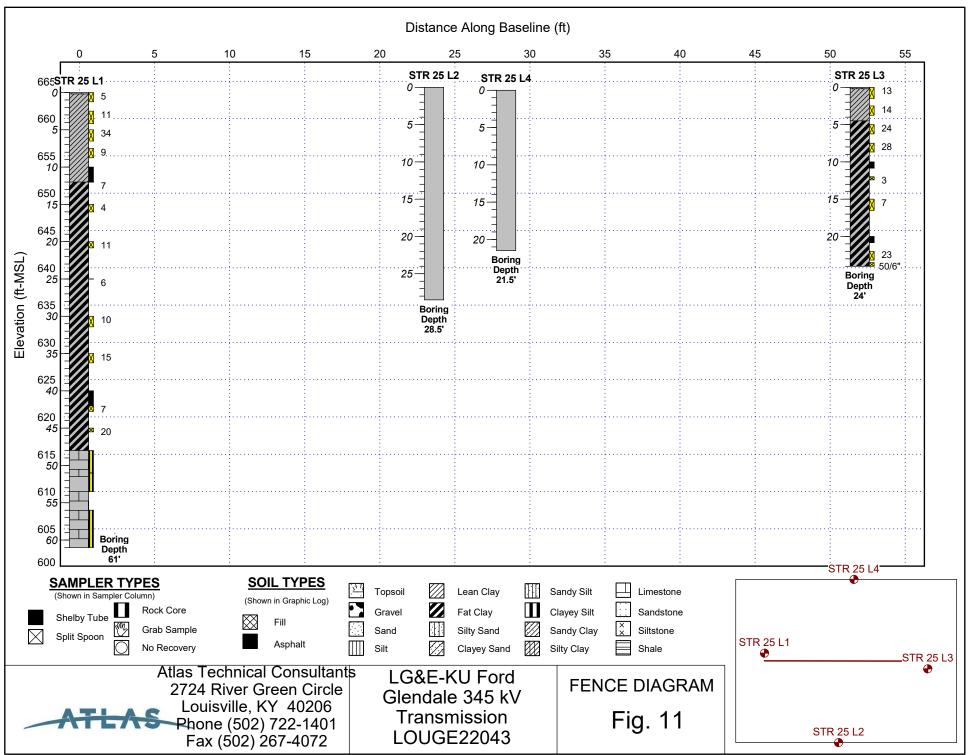



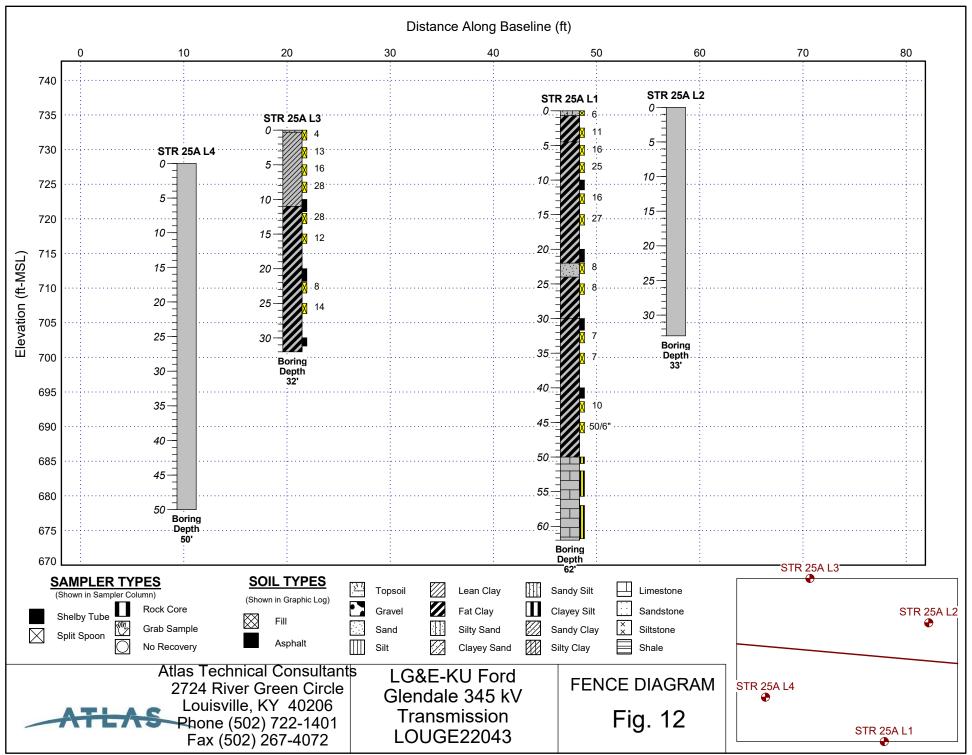


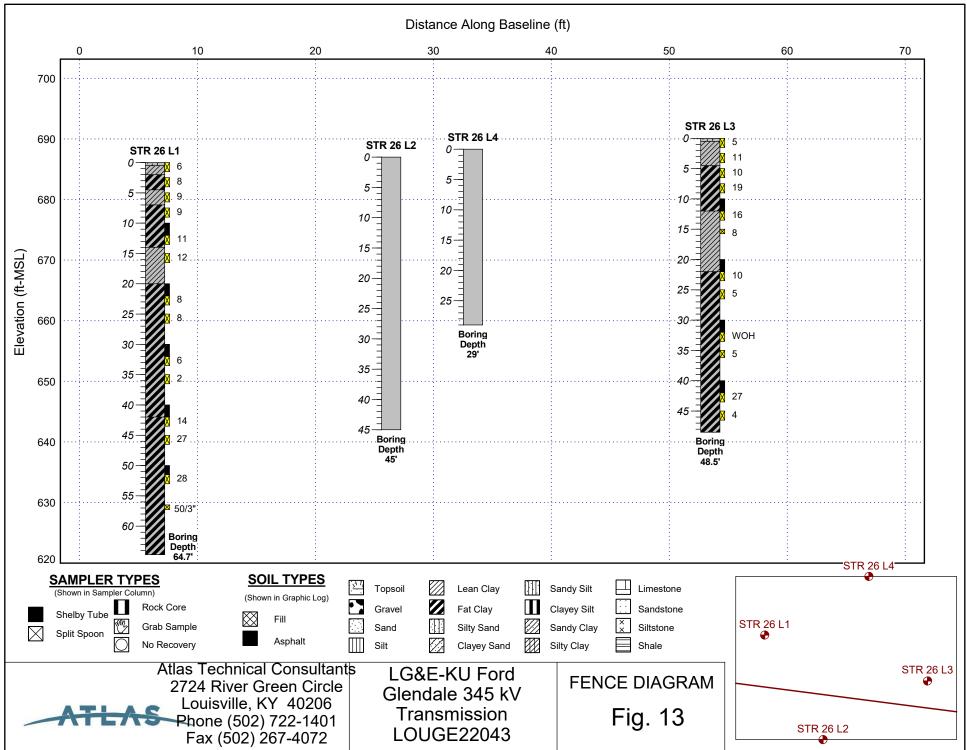







ATC STRATIGRAPHY (GINT 7) GLENDALE TRANSMISSION LINE.GPJ ATC GINT7 OFFICIAL TEMPLATE.GDT 6/15/22








ATC STRATIGRAPHY (GINT 7) GLENDALE TRANSMISSION LINE.GPJ ATC GINT7 OFFICIAL TEMPLATE.GDT 6/15/22







| CLIENT South<br>PROJECT NAME LG&E                            | east Power Corpora<br>-KU Ford Glendale 3        |                  | Transmis                        | sion                            |                                    | BORING ;<br>JOB #                                                                 |                                           | ST<br>LO         |                   |                    | 2043                 | 3                                    |
|--------------------------------------------------------------|--------------------------------------------------|------------------|---------------------------------|---------------------------------|------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------|--------------------------------------|
|                                                              | enville Road West                                |                  | Tranonia                        |                                 |                                    | DRAWN E                                                                           |                                           |                  |                   |                    |                      |                                      |
|                                                              | ale, KY                                          |                  |                                 |                                 |                                    | APPROVI                                                                           |                                           |                  |                   |                    | <u> </u>             |                                      |
|                                                              | and SAMPLING INFORMA                             |                  |                                 |                                 |                                    | /                                                                                 |                                           |                  | T DA              |                    |                      |                                      |
| -                                                            |                                                  |                  | 440                             |                                 |                                    |                                                                                   |                                           | 123              |                   |                    | <u> </u>             |                                      |
| Date Started <b>3/29/22</b><br>Date Completed <b>3/29/22</b> | Hammer Wt                                        |                  | 140 lbs.<br>30 in.              |                                 |                                    |                                                                                   |                                           |                  |                   |                    |                      |                                      |
| Date Completed <u>5/29/22</u><br>Drill Foreman J. Burdett    | Hammer Drop _<br>                                |                  |                                 |                                 |                                    | ÷                                                                                 |                                           |                  |                   |                    | Sieve                |                                      |
| Inspector P. Presne                                          | · ·                                              |                  |                                 |                                 |                                    | n Tes<br>t                                                                        | _                                         |                  |                   |                    | 0 Sie                |                                      |
| Boring Method <b>HSA, AH</b>                                 | Shelby Tube OD                                   |                  |                                 | S                               | ICS                                | atior<br>s/foo                                                                    | d<br>ength                                | nt %             |                   |                    | #20                  |                                      |
|                                                              |                                                  |                  |                                 | Sample Type<br>Sampler Graphics | <u>iraph</u><br>er                 | Standard Penetration Test<br>Blows per 6"<br>[ <i>N-Value</i> ] <i>blows/foot</i> | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 |                                      |
| SOIL CLASS                                                   | IFICATION                                        | E                | ω                               | Sample Type<br>Sampler Grap     | <u>Recovery Gra</u><br>Groundwater | ard P<br>per (<br><i>lue</i> ]                                                    | Jnco                                      | ы<br>С           | Limit             | , Limi             | nt Pa                | -<br>Š                               |
| SURFACE ELEVA                                                |                                                  | Stratum<br>Depth | Depth<br>Scale<br>Sample<br>No. | ampl                            | roun                               | tanda<br>ows<br>V-Va                                                              | I-tsf l                                   | oistu            | quid              | astic              | ercer                | Remarks                              |
| Latitude (deg): 37.659837, Lo                                | ongitude (deg): -85.900735                       | 5<br>D<br>D<br>D |                                 | or or<br>ss ∏                   | Ϋ́υ                                | の面こ<br>4-4-3-                                                                     | <u> </u>                                  | ≥<br>21.1        |                   | ₫                  | ď                    | <u>ل</u>                             |
| LEAN CLAY (CL), Yellowish                                    | brown and reddish                                | 1.0              |                                 | А                               |                                    | [7]                                                                               |                                           |                  |                   |                    |                      |                                      |
| brown, MEDIÙM STIFF to S                                     |                                                  |                  | 2                               | ss 🛛                            |                                    | 4-4-4-<br>[8]                                                                     |                                           | 19.5             |                   |                    |                      |                                      |
| - with sand                                                  |                                                  |                  | 3                               | ss V                            |                                    | 2-2-4-                                                                            |                                           | 16.2             |                   |                    |                      |                                      |
|                                                              |                                                  |                  | 5 - 3                           | Δ                               |                                    | [6]                                                                               |                                           |                  |                   |                    |                      |                                      |
|                                                              |                                                  |                  | 4                               | ss 🛛                            |                                    | 3-50/0"                                                                           |                                           | 29.1             |                   |                    |                      | PP=1.5 tsf                           |
|                                                              |                                                  |                  | _                               |                                 |                                    | [ 50/0"]                                                                          |                                           |                  |                   |                    |                      |                                      |
|                                                              |                                                  |                  | 10 - 5                          | ss 🛛                            | 0                                  | WOH-<br>WOH-                                                                      |                                           |                  |                   |                    |                      | PP=0 tsf                             |
|                                                              |                                                  |                  | - 6                             | SH                              |                                    | WOH-<br>[ WOH]                                                                    | 0.85                                      | 20.2             | 34                | 19                 |                      |                                      |
|                                                              |                                                  | 13.0             | -                               |                                 |                                    | []                                                                                |                                           |                  |                   |                    |                      |                                      |
| FAT CLAY (CH), with sand, SOFT, with limestone fragm         |                                                  |                  |                                 |                                 |                                    |                                                                                   |                                           |                  |                   |                    |                      |                                      |
| -                                                            |                                                  |                  | 15 7                            | ss 🛛                            |                                    | WOH-                                                                              |                                           | 33.2             |                   |                    |                      |                                      |
|                                                              |                                                  |                  | -                               | А                               |                                    | WOH-<br>WOH-                                                                      |                                           |                  |                   |                    |                      |                                      |
| - gray                                                       |                                                  |                  |                                 |                                 |                                    | [ WOH ]                                                                           |                                           |                  |                   |                    |                      | Undisturbed<br>sample attempt at     |
|                                                              |                                                  |                  | 20                              |                                 |                                    |                                                                                   |                                           |                  |                   |                    |                      | about 20 ft, no<br>recovery          |
|                                                              |                                                  |                  |                                 | ss 🛛                            |                                    | WOH-<br>WOH-                                                                      |                                           | 36.9             |                   |                    |                      |                                      |
|                                                              |                                                  |                  |                                 |                                 |                                    | WOH-<br>[ <i>WOH</i> ]                                                            |                                           |                  |                   |                    |                      |                                      |
|                                                              |                                                  |                  |                                 |                                 |                                    |                                                                                   |                                           |                  |                   |                    |                      |                                      |
| - with sand, groundwater at                                  | about 25 feet                                    |                  | 25 - 9                          | ss 🛛                            | •                                  | 3-1-WOH-                                                                          |                                           | 61.9             |                   |                    |                      |                                      |
| - with gray                                                  |                                                  |                  |                                 | Α                               |                                    | [1]                                                                               |                                           |                  |                   |                    |                      |                                      |
|                                                              |                                                  |                  |                                 |                                 |                                    |                                                                                   |                                           |                  |                   |                    |                      | Undisturbed sample attempt at        |
|                                                              |                                                  |                  | 30 -                            |                                 |                                    |                                                                                   |                                           |                  |                   |                    |                      | about 30 ft, push<br>refusal on rock |
|                                                              |                                                  |                  | 30<br>                          | ss 🛛                            |                                    | WOH-<br>WOH-                                                                      |                                           | 57.3             |                   |                    |                      | fragments                            |
|                                                              |                                                  |                  |                                 | Π                               |                                    | WOH-<br>[ WOH]                                                                    |                                           |                  |                   |                    |                      | Auger refusal at                     |
|                                                              |                                                  | 33.5             |                                 | RC                              |                                    |                                                                                   |                                           |                  |                   |                    |                      | 33.5 feet. Begin<br>Coring.          |
|                                                              |                                                  |                  | -RC-1                           |                                 |                                    |                                                                                   |                                           |                  |                   |                    |                      | RQD=37%                              |
| Sample Type<br>SPT - Standard Penetration Test               | Depth to Ground<br>Noted on Drilling Too         |                  | <b>25.0</b> ft.                 |                                 |                                    | ing Method                                                                        |                                           |                  |                   |                    |                      |                                      |
| SS - Driven Split Spoon<br>SH - Pressed Shelby Tube          | ▲ At Completion (in aug                          |                  | ft.                             | CFA -                           | Cont                               | w Stem Aug<br>inuous Fligh                                                        |                                           | ers              |                   |                    |                      |                                      |
| CA - Continuous Flight Auger<br>RC - Rock Core               | <ul> <li>At Completion (open</li> <li></li></ul> | ,                | ft.<br>ft.                      | MD -                            | Mud                                | ng Casing<br>Drilling                                                             |                                           |                  |                   |                    |                      |                                      |
| CU - Cuttings<br>CT - Continuous Tube                        | ▼ After hours                                    |                  | <b></b> ft.                     | MH -                            | Man                                | ual Hammer<br>matic Hamm                                                          |                                           |                  |                   |                    | Dr                   | ao 1 of 7                            |
| Ci - Conunuous Tube                                          | 盧 Cave Depth                                     | _                | ft.                             |                                 |                                    |                                                                                   |                                           |                  |                   |                    | Pa                   | ge <b>1</b> of <b>2</b>              |



# **TEST BORING LOG**

(Continued)

| CLIENT                                    |                     | t Power Corpora                              |                  |                |                 |             |                                       |             | BORING #                                                            |                                           |                  | <u>R 4</u>        |                    |                      |                                     |
|-------------------------------------------|---------------------|----------------------------------------------|------------------|----------------|-----------------|-------------|---------------------------------------|-------------|---------------------------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------|-------------------------------------|
|                                           |                     | Ford Glendale 3                              |                  |                |                 |             |                                       |             | JOB # _                                                             |                                           |                  |                   | E22                |                      | 5                                   |
| PROJECT LOCATIO                           |                     |                                              |                  |                |                 |             |                                       |             | DRAWN E                                                             | -                                         |                  |                   |                    | 6                    |                                     |
|                                           | Glendale,           | KY                                           |                  |                |                 |             |                                       |             | APPROVE                                                             | ED BY                                     | R.               | Orti              | Z                  |                      |                                     |
|                                           | DRILLING and S      | SAMPLING INFORMA                             | TION             |                | ٦               |             |                                       | 1           |                                                                     |                                           | TES              | T DA              | TA                 |                      |                                     |
| Date Started                              | 3/29/22             | Hammer Wt.                                   |                  |                | . 11            |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
| Date Completed                            |                     | Hammer Drop                                  |                  |                | ·               |             |                                       |             |                                                                     |                                           |                  |                   |                    | Ð                    |                                     |
| Drill Foreman                             | J. Burdette         |                                              |                  |                |                 |             |                                       |             | Test                                                                |                                           |                  |                   |                    | Sieve                |                                     |
| Inspector                                 |                     | Rock Core Dia.                               |                  |                |                 |             |                                       |             | foot                                                                | ngth                                      | %                |                   |                    | #200                 |                                     |
| Boring Method                             | HSA, AH             | _ Shelby Tube OD                             |                  | 3              | in.             | Ð           | Sampler Graphics<br>Recovery Graphics | -<br>-      | Standard Penetration Test<br>Blows per 6"<br>[ N-Value ] blows/foot | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | (TT)              | (PL)               | Percent Passing #200 |                                     |
|                                           | SOIL CLASSIFICA     | ATION                                        | _                |                |                 | Sample Type | er Gra                                | Groundwater | rd Pe<br>per 6"<br>ue ] b                                           | Jncon<br>ssive                            | e Co             | Liquid Limit (LL) | Plastic Limit (PL) | t Pas                | Ş                                   |
|                                           | (continued)         |                                              | Stratum<br>Depth | Depth<br>Scale | Sample<br>No.   | ample       | ample                                 | round       | tanda<br>lows  <br>N- <i>Val</i>                                    | u-tsf L<br>ompre                          | loistu           | quid              | lastic             | ercen                | Remarks                             |
|                                           | LIMESTONE, gra      | ude (deg): -85.900735                        |                  |                |                 |             | йй<br>Н                               | U           |                                                                     | ರೆಂ                                       | Σ                |                   | ₫                  | ď                    | <u>r</u>                            |
| (possible bould                           | der or weathered li | mestone layer)                               | 36.0             |                | RC-2            | RC          |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           | D SOIL LAYER        |                                              |                  |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  | 40 -           |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  | -              |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  | -              |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              | 45.0             | 45 -           |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           | D LIMESTONE AN      | ND SOIL LAYERS,                              |                  |                |                 | RC          |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  | -              | RC-3            |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  | -              | кс-3            |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      | RQD=36%                             |
|                                           |                     |                                              |                  | 50 -           |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           | Gray, with shale st | reamers                                      | 51.0             |                |                 | RC          |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              | 53.5             | -              | RC-4            |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      | RQD=63%                             |
| Во                                        | ring Terminated at  | 53.5 feet                                    | 55.5             |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      | Skewed boring                       |
|                                           |                     |                                              |                  |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      | and auger bit run off at 53.5 feet. |
|                                           |                     |                                              |                  |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
|                                           |                     |                                              |                  |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      |                                     |
| Sample Typ                                | <u>e</u>            | Depth to Ground                              | lwater           | 1              | I               |             |                                       | Bori        | ing Mothod                                                          | 1                                         |                  | 1                 | 1                  |                      |                                     |
| SPT - Standard Per<br>SS - Driven Split S |                     | Noted on Drilling Too                        |                  | 25.0           | ft.<br>ft.      |             |                                       | Hollo       | ing <u>Method</u><br>w Stem Aug                                     |                                           |                  |                   |                    |                      |                                     |
| SH - Pressed She                          | İby Tube 🚡          | At Completion (in aug<br>At Completion (open |                  |                | •_ n.<br>•_ ft. | CF          | A - (                                 | Conti       | inuous Fligh<br>ng Casing                                           |                                           | rs               |                   |                    |                      |                                     |
| CA - Continuous F<br>RC - Rock Core       | Ilgilt Augei<br>⊻   | After hours                                  | ; _              |                | ft.             | MD          | ) - (                                 | Mud         | Drilling<br>Lal Hammer                                              |                                           |                  |                   |                    |                      |                                     |
| CU - Cuttings<br>CT - Continuous T        |                     | After hours<br>Cave Depth                    | ; _              |                | •_ ft.<br>• ft. |             |                                       |             | ual Hammer<br>matic Hamm                                            |                                           |                  |                   |                    | Pa                   | ge <b>2</b> of <b>2</b>             |
|                                           | ng.                 | Caro Dopui                                   | -                |                |                 |             |                                       |             |                                                                     |                                           |                  |                   |                    |                      | J <u>-</u>                          |



| -                                     |                     | t Power Corpora                        |       |                |                |             |                                       |             | BORING #                                          |                                           |                    | <u>R 4</u>        |                    |                            |                                         |
|---------------------------------------|---------------------|----------------------------------------|-------|----------------|----------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------------|-----------------------------------------|
| PROJECT NAME                          |                     | Ford Glendale 3                        |       |                |                |             |                                       |             | JOB #                                             |                                           |                    |                   | E22                |                            | 3                                       |
| PROJECT LOCATIC                       |                     |                                        |       |                |                |             |                                       |             | DRAWN B                                           |                                           |                    |                   |                    | 6                          |                                         |
|                                       | Glendale            | , KY                                   |       |                |                |             |                                       |             | APPROVE                                           | DBY                                       | R.                 | Ort               | Z                  |                            |                                         |
|                                       | DRILLING and \$     | SAMPLING INFORMA                       | TION  |                | r              |             |                                       |             |                                                   |                                           | TES                | T DA              | TA                 |                            |                                         |
| Date Started                          | 3/29/22             | Hammer Wt.                             |       | 140            | lbs.           |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
| Date Completed                        |                     | Hammer Drop                            |       |                | -              |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
| Drill Foreman                         | J. Burdette         |                                        |       |                |                |             |                                       |             | st                                                |                                           |                    |                   |                    | ieve                       |                                         |
| Inspector                             | P. Presnell         | _ Rock Core Dia.                       |       | 2              | _in.           |             |                                       |             | u Te                                              | th                                        |                    |                   |                    | S 00                       |                                         |
| Boring Method                         | HSA, AH             | _ Shelby Tube OD                       |       | 3              | _in.           |             | ics<br>hics                           |             | /foot                                             | ed<br>reng                                | nt %               |                   | L I                | g #2                       |                                         |
|                                       |                     |                                        |       | 1              |                | be          | Sampler Graphics<br>Recovery Graphics | fer         | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 Sieve |                                         |
|                                       | SOIL CLASSIFIC      |                                        | ε     |                | Ð              | Sample Type | er G<br>ery (                         | Groundwater | ard F<br>Je (b                                    | Unco<br>essiv                             | Le C               | Limi              | , Lim              | nt Pa                      | rks                                     |
| SUF                                   | RFACE ELEVATIO      | N (ft): 670.1<br>ude (deg): -85.898728 | epth  | Depth<br>Scale | Sample<br>No.  | ampl        | ampl                                  | roun        | anda<br>-Valu                                     | I-tsf<br>mpr                              | oistu              | quid              | astic              | ercei                      | Remarks                                 |
|                                       |                     |                                        | ۵ŭ    | ٥ŏ             | ΰŽ             | ů           | Ϋ́Α̈́                                 | U           | υż                                                | ರೆಂ                                       | Σ                  |                   | ⊡                  | ď                          |                                         |
|                                       | ERING- NO SAMPI     | LES OBTAINED                           |       |                | 4              |             |                                       |             |                                                   |                                           |                    |                   |                    |                            | Offset 5 feet north from Boring STR     |
|                                       |                     |                                        |       | -              |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       | 5 -            | -              |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       | -              | 1              |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       | -              | -              |             |                                       |             |                                                   |                                           |                    |                   |                    |                            | Auger refusal at 10 feet. Unable to     |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            | core due to                             |
|                                       | Auger Refusal at    | 10 feet                                | 10.0  | 10 -           |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            | skewed boring an<br>auger bit run off a |
|                                       | , agoi i toracai at |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            | refusal.                                |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|                                       |                     |                                        |       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                         |
| Sample Ty                             | ре                  | Depth to Ground                        | water | 1              | 1              | I           |                                       |             | <u> </u>                                          |                                           |                    | I                 | I                  | I                          |                                         |
| SPT - Standard Pe                     | enetration Test     | Noted on Drilling Too                  | ls    | -              | <b>-</b> _ ft. | цо          |                                       |             | <u>ing Method</u><br>w Stem Aug                   | ere                                       |                    |                   |                    |                            |                                         |
| SS - Driven Split<br>SH - Pressed She |                     | At Completion (in aug                  |       |                | - ft.          | CF          | A - C                                 | Cont        | inuous Flight                                     |                                           | rs                 |                   |                    |                            |                                         |
| CA - Continuous<br>RC - Rock Core     | Flight Auger 🙂      | At Completion (open<br>After hours     |       |                | – ft.<br>– ft. | DC<br>ME    |                                       |             | ng Casing<br>Drilling                             |                                           |                    |                   |                    |                            |                                         |
| CU - Cuttings                         | -                   | After hours                            | -     |                | - ft.          |             | 1 - N                                 | Λanι        | ual Hammer                                        |                                           |                    |                   |                    |                            |                                         |

AH - Automatic Hammer

--\_ ft.

Page 1 of 1

- RC Rock Core CU Cuttings CT Continuous Tube



| CLI | ENT                                  | Southeas          | t Power Corpora                          | tion        |                |               |             |                                      |             | BORING                                            | #                                         | ST                 | R 4               | -B                 |                            |                                         |
|-----|--------------------------------------|-------------------|------------------------------------------|-------------|----------------|---------------|-------------|--------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------------|-----------------------------------------|
| PRO | DJECT NAME                           | LG&E-KU           | Ford Glendale 3                          | 45 kV       | / Tran         | smis          | ssio        | n                                    |             | JOB #                                             |                                           | LO                 | UG                | E22                | 2043                       | 3                                       |
|     | DJECT LOCATIC                        |                   |                                          |             |                |               |             |                                      |             | DRAWN                                             |                                           | <b>Z</b> .         | Nicł              | hols               | 5                          |                                         |
|     |                                      | Glendale,         |                                          |             |                |               |             |                                      |             | APPROV                                            |                                           |                    |                   |                    |                            |                                         |
|     |                                      | DRILLING and S    | SAMPLING INFORMA                         | TION        |                | -             |             |                                      |             |                                                   |                                           | TES                | T DA              | ТА                 |                            |                                         |
| 0   | Date Started                         | 3/29/22           | _ Hammer Wt                              |             | 140            | _lbs.         |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
| 0   | Date Completed                       | 3/29/22           | _ Hammer Drop _                          |             | 30             | _in.          |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
| 0   | Drill Foreman                        | J. Burdette       | _ Spoon Sampler C                        | DD          | 2              | _in.          |             |                                      |             | est                                               |                                           |                    |                   |                    | Sieve                      |                                         |
|     |                                      | P. Presnell       | Rock Core Dia.                           |             |                |               |             | (0                                   |             | on T                                              | gth                                       | <b>\$</b>          |                   |                    | 200 9                      |                                         |
| E   | Boring Method                        | HSA, AH           | _ Shelby Tube OD                         |             | 3              | _in.          |             | ohics                                |             | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | )<br>F            | PL)                | Percent Passing #200 Sieve |                                         |
|     |                                      | SOIL CLASSIFIC    |                                          |             |                |               | Sample Type | Sampler Graphics<br>Recovery Graphic | Groundwater | d Pen<br>(blow                                    | sive 3                                    | Con                | Liquid Limit (LL) | Plastic Limit (PL) | Pass                       | 0                                       |
| F   | SUF                                  | RFACE ELEVATIO    | N (ft): 670.1<br>ude (deg): -85.898713   | tt un       | le th          | Sample<br>No. | nple        | npler                                | Npun        | ndarc                                             | sf Ur                                     | sture              | lid Li            | stic L             | cent                       | Remarks                                 |
|     | Latitude (deg):                      | 37.661471, Longit | ude (deg): -85.898713                    | Stra<br>Dep | Depth<br>Scale | San<br>No.    | San         | San<br>Rec                           | Gr C        | Star<br>N-V                                       | Com Com                                   | Moi                | Liqu              | Plas               | Per                        | Ren                                     |
|     | BLANK AUGE                           | ERING- NO SAMPL   | ES OBTAINED                              |             | -              | -             |             |                                      |             |                                                   |                                           |                    |                   |                    |                            | Offset 5 feet east<br>from Boring STR 4 |
|     |                                      |                   |                                          |             | -              |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             | -              |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
| _   |                                      |                   |                                          |             | 5 -            |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             | -              |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            | Augor refueed at                        |
|     |                                      |                   |                                          |             | -              |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            | Auger refusal at 10 feet. Unable to     |
| -   |                                      |                   |                                          | 10.0        | 10             | 1             |             |                                      |             |                                                   |                                           |                    |                   |                    |                            | core due to<br>skewed boring and        |
|     |                                      | Auger Refusal at  | 10 feet                                  | 10.0        | 10 -           | 1             |             |                                      |             |                                                   |                                           |                    |                   |                    |                            | auger bit run off at refusal.           |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   | 1                                         |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
|     |                                      |                   |                                          |             |                |               |             |                                      |             |                                                   |                                           |                    |                   |                    |                            |                                         |
| 0   | <u>Sample Ty</u><br>PT - Standard Pe |                   | Depth to Ground<br>Noted on Drilling Too |             |                | <b>-</b> ft.  |             |                                      | Bor         | ing Method                                        |                                           |                    |                   |                    |                            |                                         |
| S   | S - Driven Split                     | Spoon 🛓           | At Completion (in aug                    |             | -              | – n.<br>– ft. |             |                                      |             | w Stem Au                                         |                                           | ro                 |                   |                    |                            |                                         |
|     | H - Pressed She<br>A - Continuous    | elby Tube 📈       | At Completion (open                      |             |                | <b>-</b> ft.  | DC          | ; - [                                | Drivi       | inuous Fligł<br>ng Casing                         | n Auge                                    | :15                |                   |                    |                            |                                         |
| R   | C - Rock Core                        | Ϋ́                | After hours                              | -           |                | - ft.         | ME<br>MF    | ) - (                                | Mud         | Drilling<br>ual Hamme                             | r                                         |                    |                   |                    |                            |                                         |
| C   | U - Cuttings                         |                   | After hours                              | ; -         | -              | - ft.         |             |                                      |             | matic Hamr                                        |                                           |                    |                   |                    | <b>D</b> -                 |                                         |

AH - Automatic Hammer

--\_ ft.

Page 1 of 1

- RC Rock Core CU Cuttings CT Continuous Tube



|                                     |                  | t Power Corpora                          |                   |                |                  |             |                                       |              | BORING #                                          |                                           |                    | <u>R 4</u>        |                    |                            |                                       |
|-------------------------------------|------------------|------------------------------------------|-------------------|----------------|------------------|-------------|---------------------------------------|--------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------------|---------------------------------------|
| PROJECT NAME                        |                  | Ford Glendale 3                          | 45 kV             | ' Tran         | smis             | ssio        | n                                     |              | JOB #                                             |                                           |                    | UG                |                    |                            | 8                                     |
| PROJECT LOCATIC                     | N Hodgenvi       | ille Road West                           |                   |                |                  |             |                                       |              | DRAWN B                                           |                                           |                    |                   |                    | 5                          |                                       |
|                                     | Glendale,        | KY                                       |                   |                |                  |             |                                       |              | APPROVE                                           | D BY                                      | R.                 | Orti              | İZ                 |                            |                                       |
|                                     | DRILLING and S   | SAMPLING INFORMA                         | TION              |                | -                |             |                                       |              |                                                   |                                           | TES                | T DA              | TA                 |                            |                                       |
| Date Started                        | 3/29/22          | Hammer Wt.                               |                   | 140            | lbs.             |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
| Date Completed                      |                  | <br>Hammer Drop                          |                   |                | - 1              |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     | J. Burdette      |                                          |                   |                |                  |             |                                       |              | st                                                |                                           |                    |                   |                    | eve                        |                                       |
|                                     | P. Presnell      |                                          |                   |                |                  |             |                                       |              | L Te                                              | Ę                                         |                    |                   |                    | 00 Si                      |                                       |
| Boring Method                       |                  | _ Shelby Tube OD                         |                   |                | in.              |             | ics<br>nics                           |              | foot)                                             | engt                                      | nt %               |                   |                    | g #2(                      |                                       |
| [                                   |                  |                                          |                   |                |                  | be          | Sampler Graphics<br>Recovery Graphics | er           | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 Sieve |                                       |
|                                     | SOIL CLASSIFIC   | ATION                                    | Ē                 |                | Ð                | Sample Type | er G                                  | Groundwater  | ard P<br>le (bl                                   | Jnco<br>essiv                             | e<br>O             | Limi              | Lim                | nt Pa                      | ×<br>s                                |
|                                     | RFACE ELEVATIO   |                                          | Stratum<br>Depth  | Depth<br>Scale | Sample<br>No.    | ample       | ample                                 | ouno.        | Valu                                              | -tsf (<br>mpre                            | oistu              | quid              | astic              | ercer                      | Remarks                               |
|                                     |                  | ude (deg): -85.89873                     | <u>n</u> <u>n</u> | പ്പ            | S<br>S<br>S      | ŝ           | ഗ്ഷ്                                  | Ū            | ນີ້ <del>z</del> ່                                | gõ                                        | ž                  | Ĕ                 | ä                  | Pe                         |                                       |
|                                     | ERING- NO SAMPL  | LES OBTAINED                             |                   | -              |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            | Offset 5 feet sout<br>from Boring STR |
|                                     |                  |                                          |                   | -              |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
| -                                   |                  |                                          |                   | -              |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   | 5 -            |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   | -              | -                |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   | -              |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            | Auger refusal at 10 feet. Unable to   |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            | core due to<br>skewed boring an       |
|                                     | Auger Refusal at | 10 feet                                  | 10.0              | 10 -           |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            | auger bit run off a refusal.          |
|                                     | 0                |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            | reiusai.                              |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
|                                     |                  |                                          |                   |                |                  |             |                                       |              |                                                   |                                           |                    |                   |                    |                            |                                       |
| Sample Ty<br>SPT - Standard Pe      |                  | Depth to Ground<br>Noted on Drilling Too |                   |                | - fł             |             |                                       | <u>Bor</u> i | ing Method                                        |                                           |                    |                   |                    |                            |                                       |
| SS - Driven Split                   | Spoon 🛓          | At Completion (in aug                    |                   | -              | •_ ft.<br>•_ ft. |             |                                       |              | w Stem Aug                                        |                                           | are                |                   |                    |                            |                                       |
| SH - Pressed She<br>CA - Continuous | elby Tube        | At Completion (open                      | hole)             | -              | • ft.            | DC          | ; - [                                 | Drivii       | inuous Flight<br>ng Casing                        | Auge                                      | 15                 |                   |                    |                            |                                       |
| RC - Rock Core<br>CU - Cuttings     | Ϋ́               | After <u></u> hours                      | -                 |                | • ft.<br>• ft.   | MC<br>MH    |                                       |              | Drilling<br>ual Hammer                            |                                           |                    |                   |                    |                            |                                       |

AH - Automatic Hammer

--\_ ft.

Page 1 of 1

- RC Rock Core CU Cuttings CT Continuous Tube



| CLIENT                                  | Southeas           | t Power Corpora                        | tion        |                |                |             |                                       |             | BORING                                            | #                                         | ST                 | R 4               | -D                 |                      |                                         |
|-----------------------------------------|--------------------|----------------------------------------|-------------|----------------|----------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|-----------------------------------------|
|                                         |                    | Ford Glendale 3                        |             | / Trar         | Ismis          | ssio        | n                                     |             | JOB #                                             |                                           | LO                 | UG                | E22                | 2043                 | 3                                       |
| PROJECT LOCATIO                         |                    |                                        |             |                |                |             |                                       |             | DRAWN                                             |                                           |                    | Nic               | hols               | 5                    |                                         |
|                                         | Glendale,          |                                        |             |                |                |             |                                       |             | APPROV                                            |                                           |                    |                   |                    |                      |                                         |
|                                         | DRILLING and S     | SAMPLING INFORMA                       | TION        |                | -              |             |                                       |             |                                                   |                                           | TES                | T DA              | TA                 |                      |                                         |
| Date Started                            | 3/29/22            | _ Hammer Wt                            |             | 140            | lbs.           |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
| Date Completed                          | 3/29/22            | Hammer Drop                            |             | 30             | _in.           |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
| Drill Foreman                           | J. Burdette        | Spoon Sampler C                        | DD          | 2              | _in.           |             |                                       |             | est                                               |                                           |                    |                   |                    | Sieve                |                                         |
| Inspector                               | P. Presnell        | Rock Core Dia.                         |             | 2              | _in.           |             |                                       |             | t u                                               | gth                                       | .0                 |                   |                    | 200                  |                                         |
| Boring Method                           | HSA, AH            | Shelby Tube OD                         |             | 3              | _in.           |             | Sampler Graphics<br>Recovery Graphics |             | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | ()                | PL)                | Percent Passing #200 |                                         |
|                                         | SOIL CLASSIFICA    |                                        |             |                |                | Sample Type | Grap<br>y Gra                         | Groundwater | d Pen<br>(blow                                    | iconfi<br>sive S                          | Cont               | Liquid Limit (LL) | Plastic Limit (PL) | Passi                | (0                                      |
| SUF                                     |                    | N (ft): 670.1<br>ude (deg): -85.898746 | tt tt       | e 🗄            | Sample<br>No.  | əldı        | over                                  | nndv        | ndarc<br>alue                                     | sf Ur<br>pres                             | sture              | lid Li            | stic L             | cent                 | Remarks                                 |
| Latitude (deg):                         | 37.661472, Longitu | ude (deg): -85.898746                  | Stra<br>Dep | Depth<br>Scale | San<br>No.     | San         | San<br>Rec                            | Gro         | Star<br>N-V                                       | Qu-t:<br>Com                              | Moi                | Liqu              | Plas               | Pero                 | Ren                                     |
| BLANK AUGE                              | ERING- NO SAMPL    | ES OBTAINED                            |             |                | -              |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | Offset 5 feet west<br>from Boring STR 4 |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | Tom Doning of the t                     |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
| _                                       |                    |                                        |             | 5 -            |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
| _                                       |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | Auger refusal at                        |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | 10 feet. Unable to core due to          |
| -                                       |                    |                                        | 10.0        | 10 -           |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | skewed boring and auger bit run off at  |
|                                         | Auger Refusal at 1 | 10 feet                                |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | refusal.                                |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    |                                        |             |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
| Sample Ty                               |                    | Depth to Ground                        | wator       |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                         |
|                                         |                    | Noted on Drilling Too                  |             |                | <b>-</b> _ ft. |             |                                       |             | ing Method                                        |                                           |                    |                   |                    |                      |                                         |
| SS - Driven Split S<br>SH - Pressed She | Spoon 🛓            | At Completion (in aug                  | jers)       | -              | <b>-</b> ft.   |             | A - C                                 | Conti       | w Stem Au<br>inuous Fligl                         |                                           | rs                 |                   |                    |                      |                                         |
| CA - Continuous I                       | Flight Auger       | At Completion (open<br>After hours     |             |                | – ft.<br>– ft. | DC<br>ME    | ; - C                                 | Drivir      | ng Casing<br>Drilling                             | 0-                                        |                    |                   |                    |                      |                                         |
| RC - Rock Core<br>CU - Cuttings         | -                  | After hours                            |             |                | - n.<br>- ft.  |             | I - N                                 | Λanι        | ual Hamme                                         |                                           |                    |                   |                    |                      |                                         |

AH - Automatic Hammer

--\_ ft.

Page 1 of 1

- RC Rock Core CU Cuttings CT Continuous Tube



| CLIEN     | NT                              | Southeast                              | Power Corpora                   | tion           |                |                 |             |                                       |             | BORING #                                     | ŧ                                         | ST               | R 4-              | ·Е                 |              |                                  |
|-----------|---------------------------------|----------------------------------------|---------------------------------|----------------|----------------|-----------------|-------------|---------------------------------------|-------------|----------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|--------------|----------------------------------|
| PROJ      | ECT NAME                        | LG&E-KU F                              | Ford Glendale 3                 | 45 kV          | Tran           | smis            | ssio        | n                                     |             | JOB #                                        |                                           | LO               | UG                | E22                | 2043         | 8                                |
| PROJ      | ECT LOCATIO                     | N Hodgenvill                           | e Road West                     |                |                |                 |             |                                       |             | DRAWN B                                      | Y                                         | <b>R</b> . (     | Orti              | Z                  |              |                                  |
|           |                                 | Glendale, k                            | (Y                              |                |                |                 |             |                                       | _           | APPROVE                                      | D BY                                      | Τ. /             | And               | Ires               | 6            |                                  |
|           |                                 | DRILLING and SA                        | MPLING INFORMA                  | TION           |                | г               | [           |                                       |             |                                              |                                           | TES              | T DA              | TA                 |              |                                  |
| Da        | te Started                      | 4/11/22                                | Hammer Wt.                      |                | 140            | lbs.            |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
| Da        | te Completed                    | 4/11/22                                | Hammer Drop                     |                | 30             | in.             |             |                                       |             |                                              |                                           |                  |                   |                    | a.           |                                  |
|           | ll Foreman                      |                                        | • •                             |                |                |                 |             |                                       |             | Test                                         |                                           |                  |                   |                    | Sieve        |                                  |
|           |                                 | C. Clouser                             |                                 |                |                | -               |             | Ś                                     |             |                                              | gth                                       | %                |                   |                    | 200          |                                  |
| Bo        | ring Method                     | DC, AH                                 | Shelby Tube OD                  |                | 3              | _in.            |             | phics                                 |             | netrat<br>ws/foc                             | fined<br>Stren                            | itent 9          | (LL)              | (PL)               | Passing #200 |                                  |
|           |                                 | SOIL CLASSIFICAT                       |                                 |                |                |                 | Sample Type | Sampler Graphics<br>Recovery Graphics | Groundwater | Standard Penetration<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | t Pas        | s                                |
|           | SUR                             | RFACE ELEVATION<br>37.659837, Longitud | (ft): 670.1                     | tratum<br>epth | Depth<br>Scale | Sample<br>No.   | ample       | ample                                 | rounc       | tanda<br>-Valu                               | u-tsf L                                   | oistur           | quid I            | astic              | Percent I    | Remarks                          |
| _         |                                 | 37.659837, Longitud                    |                                 | ۵<br>۵         | ٥ŏ             | ΰž              | ű           | °õr<br>∏∏                             | U           | ΰż                                           | ರೆರೆ                                      | Σ                | Ē                 | ₫                  | ď            | <u>ل</u> د                       |
|           | OBTAINED                        | NG ADVANCEWENT                         | - NO SAMPLES                    |                | -              |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              | Boring performed at staked tower |
|           |                                 |                                        |                                 |                |                |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              | center. Boring completed to      |
|           | - difficult drillin             | g performance from                     | 1 to 5 feet                     |                | -              |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              | desired depth.                   |
|           |                                 | ig periornance nom                     | 4 10 3 1661                     |                | 5 -            |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                | -              |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           | - difficult drillin             | g performance from                     | 7 to 10 feet                    |                |                |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                | -              |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                | 10 -           |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                | -              |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
| -         |                                 |                                        |                                 |                |                |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                | -              |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                | 15 -           |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
| 3         |                                 |                                        |                                 |                | -              | -               |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                |                |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           | - difficult drillin             | g performance from                     | 18 to 21 feet                   |                | -              |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
| $\exists$ |                                 |                                        |                                 |                | 20 -           |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                | -              |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                |                | ]               |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                | -              |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                | 25 -           |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                | -              |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                |                | -               |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           | - difficult drillin             | g performance from                     | 28 to 30 feet                   |                | -              |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
| _         |                                 |                                        |                                 |                | 30 -           | 1               |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
| $\exists$ |                                 |                                        |                                 |                | -              | ]               |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
| _         | - difficult drillin             | g performance from                     | 31.5 to 32.5 feet               |                | -              | -               |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                | -              |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
|           |                                 |                                        |                                 |                | -              |                 |             |                                       |             |                                              |                                           |                  |                   |                    |              |                                  |
| rחפ       | Sample Typ                      | <u>oe</u><br>netration Test  💂 N       | Depth to Ground                 |                |                | - ft            |             |                                       | <u>Bori</u> | ing Method                                   |                                           |                  |                   |                    |              |                                  |
| SS        | - Driven Split S                | Spoon 🖌 🛃 🖌                            | t Completion (in aug            |                |                | •_ ft.<br>• ft. |             |                                       |             | w Stem Aug                                   |                                           | -                |                   |                    |              |                                  |
|           | - Pressed She<br>- Continuous F | lby Tube 📈 🗛                           | t Completion (open              |                |                | • ft.           | DC          | - C                                   | Drivir      | inuous Flight<br>ng Casing                   | Auge                                      | IS               |                   |                    |              |                                  |
| RC        | <ul> <li>Rock Core</li> </ul>   | Y A                                    | fter hours                      |                |                | •_ ft.          | MD          | ) - N                                 | ∕lud        | Drilling<br>Jal Hammer                       |                                           |                  |                   |                    |              |                                  |
|           | - Cuttings<br>- Continuous 1    |                                        | fter <u></u> hours<br>ave Depth |                |                | •_ ft.<br>• ft. |             |                                       |             | matic Hamm                                   | er                                        |                  |                   |                    | Pad          | ge <b>1</b> of <b>2</b>          |



# **TEST BORING LOG**

(Continued)

| CLIENT                                  | Southeast                              | Power Corpora                           | tion             |                |                 |             |                                       |             | BORING                                            | #                                         | ST                 | R 4               | -E                 |                      |                         |
|-----------------------------------------|----------------------------------------|-----------------------------------------|------------------|----------------|-----------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|-------------------------|
| PROJECT NAME                            | LG&E-KU F                              | Ford Glendale 3                         | 45 kV            | ' Tran         | smis            | ssio        | n                                     | _           | JOB#                                              |                                           | LO                 | UG                | E22                | 2043                 | 8                       |
| PROJECT LOCATIO                         | N Hodgenvill                           | e Road West                             |                  |                |                 |             |                                       |             | DRAWN I                                           | BY                                        | <b>R</b> .         | Orti              | Ż                  |                      |                         |
|                                         | Glendale, k                            | (Y                                      |                  |                |                 |             |                                       |             | APPROV                                            | ED BY                                     | Τ. /               | And               | Ires               | ;                    |                         |
|                                         | DRILLING and SA                        | MPLING INFORMA                          | TION             |                | Г               |             |                                       |             | r                                                 |                                           | TES                | T DA              | TA                 |                      |                         |
| Date Started                            | 4/11/22                                | Hammer Wt.                              |                  | 140            | lbs.            |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| Date Completed                          | 4/11/22                                | Hammer Drop                             |                  | 30             | in.             |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| Drill Foreman                           | J. Burdette                            | Spoon Sampler C                         | DD               | 2              | in.             |             |                                       |             | est                                               |                                           |                    |                   |                    | Sieve                |                         |
| Inspector                               | C. Clouser                             | Rock Core Dia.                          |                  | 2              | in.             |             |                                       |             | t) To                                             | gth                                       | . 0                |                   |                    | 500 S                |                         |
| Boring Method _                         | DC, AH                                 | Shelby Tube OD                          |                  | 3              | in.             | Ð           | Sampler Graphics<br>Recovery Graphics |             | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | (TT)              | (PL)               | Percent Passing #200 |                         |
|                                         | SOIL CLASSIFICAT                       | TION                                    |                  |                |                 | Typ         | r Gra                                 | wate        | d Pe<br>(blo                                      | ncon<br>ssive                             | e Co               | imit              | Limit              | : Pas                | S                       |
|                                         | (continued)                            |                                         | Stratum<br>Depth | Depth<br>Scale | Sample<br>No.   | Sample Type | mple                                  | Groundwater | andar<br>/alue                                    | tsf U<br>npre                             | istun              | Liquid Limit (LL) | Plastic Limit (PL) | rcent                | Remarks                 |
| Latitude (deg):                         | 37.659837, Longituc                    | le (deg): -85.900735                    | Del Stra         | N De           | Sal<br>No       | Saı         | Re                                    | Q           | Sta<br>N-V                                        | Con-O                                     | Мо                 | Liq               | Pla                | Pel                  | Re                      |
| BLANK CASIN<br>OBTAINED                 | IG ADVANCEMENT                         | - NO SAMPLES                            |                  | -              | -               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         | D LIMESTONE AND                        |                                         | 37.0             |                |                 | RC          |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| moderately we                           | eathered and fracture                  | ed                                      |                  | -              | 1               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | RQD=38%                 |
|                                         |                                        |                                         |                  | 40 -           |                 | RC          |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                        |                                         |                  |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                        |                                         |                  |                | 2               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | RQD=22%                 |
|                                         |                                        |                                         |                  | 45             | -               |             | Ш                                     |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                        |                                         |                  | 45             | -               | RC          |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                        |                                         |                  | -              | 3               |             | Ш                                     |             |                                                   |                                           |                    |                   |                    |                      | RQD=0%                  |
|                                         |                                        |                                         |                  | -              | Ŭ               |             | Ш                                     |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                        |                                         |                  | 50 -           |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                        |                                         |                  |                |                 | RC          |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| 44                                      |                                        |                                         |                  | -              | 4               |             | Ш                                     |             |                                                   |                                           |                    |                   |                    |                      | RQD=8%                  |
|                                         |                                        |                                         |                  |                |                 |             | Ш                                     |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         | nered, slightly to mo                  | derately fractured                      |                  | 55 -           |                 | RC          |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         | lored, slightly to mot                 |                                         |                  | -              |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| - highly fractur                        | ed to about 59 feet                    |                                         |                  | -              | 5               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | RQD=35%                 |
|                                         |                                        |                                         |                  |                |                 |             | Ш                                     |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                        |                                         |                  | 60 —           | -               | RC          |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                        |                                         |                  |                | ~               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| -⊥-  - light gray, ch                   | аку                                    |                                         |                  | -              | 6               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | RQD=42%                 |
|                                         |                                        |                                         | 65.0             | 65 -           |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| B                                       | oring Terminated at                    | 65 feet                                 |                  |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                        |                                         |                  |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                        |                                         |                  |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                        | Denth to C                              | hurt             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| <u>Sample Typ</u><br>SPT - Standard Per | <u>ee</u><br>∩etration Test <b>●</b> N | Depth to Ground<br>oted on Drilling Too |                  |                | ft.             |             |                                       |             | ing Method                                        |                                           |                    |                   |                    |                      |                         |
| SS - Driven Split S<br>SH - Pressed She | Spoon 🛓 A                              | t Completion (in aug                    | lers)            |                | ft.             | CF          | A - (                                 | Conti       | w Stem Aug<br>inuous Fligh                        |                                           | ers                |                   |                    |                      |                         |
| CA - Continuous F                       | Flight Auger 🙂 A                       | t Completion (open<br>fter hours        | -                |                | •_ ft.<br>• ft. | DC          | ; - C                                 | Drivir      | ng Casing<br>Drilling                             | 5-                                        |                    |                   |                    |                      |                         |
| RC - Rock Core<br>CU - Cuttings         | <b>T</b> A                             | fter <u></u> hours                      |                  |                | •_ n.<br>•_ ft. | MF          | I - N                                 | Manu        | ual Hammer                                        |                                           |                    |                   |                    |                      |                         |
| CT - Continuous T                       |                                        | ave Depth                               | -                |                | ft.             | AH          | - /                                   | -UIOI       | matic Hamn                                        | ier                                       |                    |                   |                    | Pa                   | ge <b>2</b> of <b>2</b> |



|                                       |                                         | Power Corpora<br>Ford Glendale 3               |       | Tranam                     |             |                                                      | BORING<br>JOB#_                                                     |                                           |                  | <u>DS</u><br>UG   |                    |                      |                                       |
|---------------------------------------|-----------------------------------------|------------------------------------------------|-------|----------------------------|-------------|------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------|---------------------------------------|
| PROJECT NAME                          |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      | )                                     |
| PROJECT LOCATIO                       | Glendale,                               |                                                |       |                            |             |                                                      | DRAWN  <br>APPROV                                                   |                                           |                  |                   |                    |                      |                                       |
|                                       |                                         |                                                |       |                            |             |                                                      | APPROV                                                              | ED B Ā                                    |                  |                   |                    |                      |                                       |
|                                       | DRILLING and SA                         | AMPLING INFORMA                                | TION  |                            | [           |                                                      | 1                                                                   | 1                                         | TES              | T DA              | TA                 |                      |                                       |
| Date Started                          | 3/22/22                                 | Hammer Wt.                                     |       | <b>140</b> lbs             |             |                                                      |                                                                     |                                           |                  |                   |                    |                      |                                       |
| Date Completed                        | 3/23/22                                 | Hammer Drop                                    |       | <b>30</b> in.              |             |                                                      |                                                                     |                                           |                  |                   |                    | n,                   |                                       |
| Drill Foreman                         |                                         |                                                | DD    | <b>2</b> in.               |             |                                                      | est                                                                 |                                           |                  |                   |                    | Sieve                |                                       |
|                                       | J. Semmer                               |                                                |       |                            |             | (0                                                   | ion T<br>oot                                                        | gth                                       | %                |                   |                    | 200                  |                                       |
| Boring Method                         | HSA, AH                                 | Shelby Tube OD                                 |       | <b>3</b> in.               |             | sampler Graphics<br>Recovery Graphics<br>Groundwater | Standard Penetration Test<br>Blows per 6"<br>[ N-Value ] blows/foot | Qu-tsf Unconfined<br>Compressive Strength | tent %           | (T                | PL)                | Percent Passing #200 |                                       |
|                                       | SOIL CLASSIFICA                         |                                                |       |                            | Sample Type | Sampler Gra<br>Recovery Gra<br>Groundwater           | d Per<br>er 6"<br>e ] <i>bl</i>                                     | nconf                                     | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Pass                 | Ø                                     |
| SUF                                   | FACE ELEVATION                          | (ft): 667.8<br>de (deg): -85.900735            | oth   | Depth<br>Scale<br>Sample   | nple        |                                                      | ndar<br>ws p<br>Valu                                                | sf Ui                                     | sture            | lid L             | stic L             | cent                 | Remarks                               |
| Latitude (deg):                       | 37.659837, Longitu                      | de (deg): -85.900735                           |       | Depth<br>Scale<br>Sample   | Sar         | Gro<br>Gro                                           | Sta<br>[ ∧                                                          | Qu-f<br>Corr                              | Moi              | Liqu              | Pla                | Per                  | Rer                                   |
| TOPSOIL                               |                                         | ]                                              | 0.2   | 1                          | ss          | $\langle$                                            | 3-3-8-<br>[ <i>11</i> ]                                             |                                           |                  |                   |                    |                      | PP=2.5 tsf                            |
| LEAN CLAY (                           | CL), Brown, STIFF the fragments         | to VERY STIFF                                  |       |                            | ] [         |                                                      |                                                                     |                                           |                  |                   |                    |                      |                                       |
|                                       | 5                                       |                                                |       | 2                          | ss          |                                                      | 7-9-16-<br>[ 25 ]                                                   |                                           |                  |                   |                    |                      | PP=4.5+ tsf                           |
|                                       |                                         |                                                | 5.0   | 5 —                        |             |                                                      |                                                                     |                                           |                  |                   |                    |                      | Auger refusal at 5 feet.              |
|                                       | LIMESTONE, gray<br>der or weathered lir |                                                |       |                            | RC<br>1     |                                                      |                                                                     |                                           |                  |                   |                    |                      | RQD=0%                                |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      |                                       |
|                                       |                                         |                                                |       | -RC-                       | 2 RC        |                                                      |                                                                     |                                           |                  |                   |                    |                      | RQD=0%                                |
|                                       | RY - INTERPRETE                         |                                                | 10.0  | 10 3                       | ss          | Xo                                                   | 4-3-3-                                                              |                                           |                  |                   |                    |                      | Boring advanced                       |
|                                       | FRAGMENT LAYEF                          | २                                              |       |                            | -           |                                                      | [6]                                                                 |                                           |                  |                   |                    |                      | using coring. Split spoon performed   |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      | once refusal<br>material              |
|                                       |                                         |                                                | 15.0  | 15 —                       |             |                                                      |                                                                     |                                           |                  |                   |                    |                      | penetrated. Core<br>barrel advanced   |
|                                       | Auger Refusal at 1                      | 5 feet                                         | 15.0  | 15                         |             |                                                      |                                                                     |                                           |                  |                   |                    |                      | (by pushing) to 15<br>feet.           |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      |                                       |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      |                                       |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      |                                       |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      | Refusal at 15 feet.<br>Unable to core |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      | due to skewed<br>boring and auger     |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      | bit run off at<br>refusal.            |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      |                                       |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      |                                       |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      |                                       |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      |                                       |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      |                                       |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      |                                       |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      |                                       |
|                                       |                                         |                                                |       |                            |             |                                                      |                                                                     |                                           |                  |                   |                    |                      |                                       |
| Sample Typ                            |                                         | Depth to Ground                                |       |                            |             | Bor                                                  | ing Method                                                          |                                           |                  |                   |                    |                      |                                       |
| SS - Driven Split S                   | Spoon 🚊 /                               | Noted on Drilling Too<br>At Completion (in aug |       | ft.<br>ft.                 | HSA         | - Hollo                                              | w Stem Au                                                           | gers                                      | ro               |                   |                    |                      |                                       |
| SH - Pressed She<br>CA - Continuous I | lby Tube                                | At Completion (open                            | hole) | ft.                        | DC          | - Drivi                                              | inuous Fligh<br>ng Casing                                           | n Auge                                    | 15               |                   |                    |                      |                                       |
| RC - Rock Core<br>CU - Cuttings       | u u v                                   | After <u></u> hours<br>After hours             |       | <u></u> ft.<br><u></u> ft. |             |                                                      | Drilling<br>ual Hammeı                                              | r                                         |                  |                   |                    |                      |                                       |
| CT - Continuous                       |                                         | Cave Depth                                     | -     | n.<br>ft.                  |             |                                                      | matic Hamn                                                          |                                           |                  |                   |                    | Pa                   | ge <b>1</b> of <b>1</b>               |



| CLIENT              | Southeast F          | Power Corpora         | tion             |                |               |             |                                       |             | BORING #                                          | ¥                                         | OL               | DS                | TR                 | 5 L                  | 1-A                                            |
|---------------------|----------------------|-----------------------|------------------|----------------|---------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------|------------------------------------------------|
| PROJECT NAME        | LG&E-KU F            | ord Glendale 3        | 45 kV            | ' Tran         | smis          | ssio        | n                                     |             | JOB#                                              |                                           | LO               | UG                | E22                | 2043                 | 8                                              |
| PROJECT LOCATION    | Hodgenville          | e Road West           |                  |                |               |             |                                       |             | DRAWN E                                           | 3Y                                        | Z. I             | Nicl              | nols               | 5                    |                                                |
|                     | Glendale, K          |                       |                  |                |               |             |                                       |             | APPROVE                                           | ED BY                                     | <b>R</b> . (     | Orti              | z                  |                      |                                                |
|                     | DRILLING and SAM     | MPLING INFORMA        | TION             |                | -             |             |                                       |             |                                                   |                                           | TES              | T DA              | TA                 |                      |                                                |
| Date Started        | 3/23/22              | Hammer Wt.            |                  | 140            | lbs.          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
| Date Completed      | 3/23/22              | Hammer Drop           |                  | 30             | in.           |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
| Drill Foreman       | M. Smith             | Spoon Sampler C       | DD               | 2              | in.           |             |                                       |             | est                                               |                                           |                  |                   |                    | Sieve                |                                                |
| Inspector           | J. Semmer            | Rock Core Dia.        |                  | 2              | in.           |             |                                       |             | н<br>Ч<br>Ц                                       | Ę                                         | -                |                   |                    | 00 S                 |                                                |
| Boring Method       | HSA                  | Shelby Tube OD        |                  | 3              | in.           |             | Sampler Graphics<br>Recovery Graphics | _           | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | itent %          | (TL)              | (PL)               | Percent Passing #200 |                                                |
|                     | SOIL CLASSIFICATI    | ION                   | _                |                |               | Sample Type | er Graj                               | Groundwater | rd Per<br>e (blov                                 | Inconf<br>ssive                           | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | t Pass               | S                                              |
|                     | ACE ELEVATION (      |                       | Stratum<br>Depth | Depth<br>Scale | Sample<br>No. | ample       | ample                                 | round       | anda<br>Value                                     | I-tsf U<br>mpre                           | oistur           | quid L            | astic              | erceni               | Remarks                                        |
|                     | 7.659823, Longitude  |                       | 5<br>T<br>T      | ۵ŏ             | ΰž            | ů           | °ŏĕ<br>⊤⊤                             | Ū           | 5<br>5<br>2                                       | <u> </u>                                  | Ś                |                   | ₫                  | Pe                   |                                                |
|                     | RING- NO SAMPLES     | 5 OBTAINED            |                  | -              |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      | Offset 5 feet south<br>from Boring STR 5<br>L1 |
| A                   | Auger Refusal at 2.5 | feet                  | 2.5              |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      | Auger refusal at 2.5 feet. Unable to           |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      | core due to auger<br>bit run off at            |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      | refusal.                                       |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
|                     |                      |                       |                  |                |               |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                                |
| Sample Type         |                      | Depth to Ground       | lwater           |                | 1             |             |                                       | _           | <u> </u>                                          |                                           |                  | <u> </u>          |                    |                      |                                                |
| SPT - Standard Pen  | etration Test  👤 No  | oted on Drilling Tool | ls               |                | ft.           | ЦС          |                                       |             | ing Method<br>w Stem Aug                          | are                                       |                  |                   |                    |                      |                                                |
| SS - Driven Split S |                      | Completion (in aug    | lers)            |                | ft.           |             |                                       |             | inuous Fligh                                      |                                           | rs               |                   |                    |                      |                                                |

- ed She
- CA Continuous Flight Auger RC Rock Core CU Cuttings CT Continuous Tube

- AH Automatic Hammer



Page 1 of 1

| CLIENT_ |                               | Southeast           | Power Corpora                       | tion        |                |                 |             |                                       |             | BORING #                                          |                                           | OL                 | D S               | TR                 | 5 L                        | 1-B                                   |
|---------|-------------------------------|---------------------|-------------------------------------|-------------|----------------|-----------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------------|---------------------------------------|
| PROJEC  | T NAME                        | LG&E-KU             | Ford Glendale 3                     | 45 kV       | ' Tran         | smis            | ssio        | n                                     |             | JOB #                                             |                                           |                    |                   |                    |                            | 3                                     |
| PROJEC  | T LOCATIO                     | N Hodgenvil         | le Road West                        |             |                |                 |             |                                       |             | DRAWN B                                           |                                           |                    |                   |                    | 6                          |                                       |
|         |                               | Glendale,           | KY                                  |             |                |                 |             |                                       | _           | APPROVE                                           | DBY                                       | <b>R</b> . (       | Orti              | z                  |                            |                                       |
|         |                               | DRILLING and SA     | AMPLING INFORMA                     | TION        |                | Г               | [           |                                       |             |                                                   |                                           | TES                | T DA              | ТА                 |                            |                                       |
|         | Started                       | 3/23/22             |                                     |             |                | -               |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               | 3/23/22             |                                     |             |                | -               |             |                                       |             |                                                   |                                           |                    |                   |                    | е                          |                                       |
|         | oreman                        |                     |                                     |             |                |                 |             |                                       |             | Test                                              |                                           |                    |                   |                    | Siev                       |                                       |
|         |                               | J. Semmer           |                                     |             |                | -               |             |                                       |             | ot) .                                             | ngth                                      | %                  |                   |                    | <i>‡</i> 200               |                                       |
| Boring  | g Method                      | HSA                 | Shelby Tube OD                      |             | 3              | .in.            |             | phics                                 |             | netra<br>ws/fo                                    | fined                                     | Itent              | LL)               | (PL)               | sing #                     |                                       |
|         |                               | SOIL CLASSIFICA     |                                     |             |                |                 | Sample Type | Sampler Graphics<br>Recovery Graphics | Groundwater | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 Sieve | S                                     |
|         | SUR                           | FACE ELEVATION      | (ft): 667.8<br>de (deg): -85.900734 | atum<br>pth | Depth<br>Scale | Sample<br>No.   | mple        | mple                                  | punc        | value                                             | tsf U<br>npre                             | istur              | uid L             | istic I            | rcent                      | Remarks                               |
|         |                               |                     |                                     | De          | δо<br>С        | Sa<br>No        | Sa          | Real                                  | Ğ           | P_sts                                             | So                                        | Мо                 | Liq               | Ъ                  | Ре                         |                                       |
|         | LANK AUGE                     | RING- NO SAMPLE     | ES OBTAINED                         |             | -              |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            | Offset 5 feet south from Boring STR 5 |
| 1       |                               |                     |                                     |             | -              |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            | L1-A                                  |
|         |                               |                     |                                     |             | -              | -               |             |                                       |             |                                                   |                                           |                    |                   |                    |                            | Auger refusal at 7.5 feet. Unable to  |
| -       |                               |                     |                                     |             | 5 -            |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            | core due to auger<br>bit run off at   |
|         |                               |                     |                                     |             | -              |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            | refusal.                              |
|         |                               | Auger Refusal at 7. | 5 feet                              | 7.5         |                | 1               |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               | -                   |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         |                               |                     |                                     |             |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         | Sample Typ                    | )e                  | Depth to Ground                     | water       |                |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                            |                                       |
|         | Standard Pe                   | netration Test  👤   | Noted on Drilling Too               |             |                | ft.             |             |                                       |             | ing Method                                        | <b>.</b>                                  |                    |                   |                    |                            |                                       |
| SS -[   | Driven Split S<br>Pressed She | Spoon 🛓 A           | At Completion (in aug               | lers)       |                |                 | CF          | A - (                                 | Conti       | w Stem Aug<br>inuous Flight                       |                                           | rs                 |                   |                    |                            |                                       |
| CA - (  | Continuous F                  | Flight Auger 🙁 🤔 🖌  | At Completion (open<br>After hours  |             |                | •_ ft.<br>• ft. | DC<br>MD    | - C                                   | Drivir      | ng Casing<br>Drilling                             | -                                         |                    |                   |                    |                            |                                       |
| CU - (  | Rock Core                     | ¥ A                 | After hours                         |             |                | ft.             | MH          | I - N                                 | Manu        | ual Hammer<br>matic Hamm                          | or                                        |                    |                   |                    |                            | , · ·                                 |
| CT - (  | Continuous 1                  | lube 🖂 🦉            | Cave Denth                          |             |                | ft              | АП          | - F                                   | านเป        | mauc Hallim                                       |                                           |                    |                   |                    | Pa                         | be <b>1</b> of <b>1</b>               |

--\_\_ ft.

- RC Rock Core CU Cuttings CT Continuous Tube

🙇 Cave Depth



|    |                                         |                     | Power Corporation                         |             | Tues           |                  |             |                                       |             | BORING #                                          |                                           |                  |                   |                    |                      | <u>1-C</u>                              |
|----|-----------------------------------------|---------------------|-------------------------------------------|-------------|----------------|------------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------|-----------------------------------------|
|    |                                         |                     | Ford Glendale 3                           |             |                |                  |             |                                       |             | JOB #                                             |                                           |                  |                   |                    |                      | )                                       |
| PF | ROJECT LOCATIO                          |                     | e Road West                               |             |                |                  |             |                                       |             | DRAWN B<br>APPROVE                                | -                                         |                  |                   |                    | 5                    |                                         |
|    |                                         | Glendale, I         | NT MPLING INFORMA                         |             |                |                  |             |                                       |             | APPROVE                                           | D B I                                     |                  |                   |                    |                      |                                         |
|    | Data Chartad                            | 3/23/22             | Hammer Wt.                                |             | 140            |                  |             |                                       |             |                                                   |                                           | 120              |                   |                    |                      |                                         |
|    | Date Started<br>Date Completed          |                     | Hammer Vvt<br>Hammer Drop                 |             |                | - 1              |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
|    | Drill Foreman                           | M. Smith            | Spoon Sampler C                           |             |                |                  |             |                                       |             | st                                                |                                           |                  |                   |                    | Sieve                |                                         |
|    | Inspector                               |                     |                                           |             |                |                  |             |                                       |             | n Te                                              | £                                         |                  |                   |                    | 00 Si                |                                         |
|    | Boring Method                           | HSA                 | Shelby Tube OD                            |             | 3              | in.              |             | hics<br>phics                         |             | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | ent %            | ()                | ٦L)                | Percent Passing #200 |                                         |
| [  |                                         | SOIL CLASSIFICA     |                                           |             |                |                  | Sample Type | Sampler Graphics<br>Recovery Graphics | Groundwater | d Pen<br>(blow                                    | nconfii<br>ssive S                        | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Passi                | S                                       |
|    | SUR                                     | FACE ELEVATION      | (ft): 667.7<br>de (deg): -85.900663       | atum<br>pth | Depth<br>Scale | Sample<br>No.    | mple        | mple                                  | punc        | value                                             | tsf U<br>npres                            | isture           | uid L             | istic I            | rcent                | Remarks                                 |
| _  |                                         |                     |                                           | Str<br>De   | N De           | Sal<br>No        | Saı         | Real                                  | Gre         | Sta<br>N-V                                        | Sol                                       | Mo               | Liq               | Pla                | Pel                  |                                         |
| -  | BLANK AUGE                              | RING- NO SAMPLE     | S OBTAINED                                |             | -              |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      | Offset 5 feet west<br>from Boring STR 5 |
| _  |                                         |                     |                                           |             | -              |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      | L4                                      |
| -  |                                         |                     |                                           |             | -              |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
| _  |                                         |                     |                                           |             | 5 -            |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
| -  |                                         |                     |                                           |             | -              |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
| _  |                                         |                     |                                           |             |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
|    |                                         |                     |                                           |             | 40             |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
| -  |                                         |                     |                                           |             | 10 -           |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
| _  |                                         | Gray, medium-grain  | ed                                        | 12.0        | -              | RC-1             | RC          |                                       |             |                                                   |                                           |                  |                   |                    |                      | RQD=0%                                  |
| _  |                                         | Gray, medium-grain  |                                           |             | -              |                  | RC          | H                                     |             |                                                   |                                           |                  |                   |                    |                      |                                         |
| _  |                                         |                     |                                           |             | 15 -           |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
| -  |                                         |                     |                                           |             | -              | RC-2             |             |                                       |             |                                                   |                                           |                  |                   |                    |                      | RQD=91%                                 |
| _  |                                         |                     |                                           | 18.0        |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      | Boring terminated                       |
|    |                                         | Auger Refusal at 18 | 3 feet                                    | 10.0        |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      | at about 18 feet<br>due to equipment    |
|    |                                         |                     |                                           |             |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      | failure during coring.                  |
|    |                                         |                     |                                           |             |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
|    |                                         |                     |                                           |             |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
|    |                                         |                     |                                           |             |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
|    |                                         |                     |                                           |             |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
|    |                                         |                     |                                           |             |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
|    |                                         |                     |                                           |             |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
|    |                                         |                     |                                           |             |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
|    |                                         |                     |                                           |             |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
|    |                                         |                     |                                           |             |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
|    |                                         |                     |                                           |             |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
|    |                                         |                     |                                           |             |                |                  |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                                         |
| 9  | <u>Sample Typ</u><br>SPT - Standard Per |                     | Depth to Ground<br>loted on Drilling Tool |             |                | - ft.            |             |                                       |             | ing Method                                        |                                           |                  |                   |                    |                      |                                         |
| :  | SS - Driven Split S                     | Spoon 👲 A           | t Completion (in aug                      | ers)        |                | • ft.            |             |                                       |             | w Stem Aug<br>inuous Flight                       |                                           | rs               |                   |                    |                      |                                         |
| (  | SH - Pressed She<br>CA - Continuous F   | -light Auger 😇 🖊    | t Completion (open l                      |             |                | •_ ft.           | DC          | - [                                   | Drivir      | ng Casing                                         |                                           |                  |                   |                    |                      |                                         |
|    | RC - Rock Core<br>CU - Cuttings         |                     | .fter <u></u> hours<br>.fter hours        |             |                | •_ ft.<br>•_ ft. |             | - 1                                   | Manu        | Drilling<br>Jal Hammer                            |                                           |                  |                   |                    |                      |                                         |
|    | CT - Continuous T                       |                     | Cave Depth                                | -           |                | • ft.            | AH          | - /                                   | Autoi       | matic Hamm                                        | er                                        |                  |                   |                    | Pa                   | ge <b>1</b> of <b>1</b>                 |



| CL                                     | IENT                                      | Southe        | ast Power Corpora                                                        | tion             |                |                  |             |                                       |             | BORING #                                          |                                           | OL                 | DS                | TR                 | 5 L                  | 1-D                                 |
|----------------------------------------|-------------------------------------------|---------------|--------------------------------------------------------------------------|------------------|----------------|------------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|-------------------------------------|
| PR                                     | OJECT NAME                                | LG&E-I        | KU Ford Glendale                                                         | 845 kV           | Tran           | smis             | ssio        | n                                     |             | JOB #                                             |                                           | LO                 | UG                | E22                | 043                  | 8                                   |
| PROJECT LOCATION Hodgenville Road West |                                           |               |                                                                          |                  |                |                  |             |                                       | DRAWN B     | Υ                                                 | Z. I                                      | Nich               | nols              | 5                  |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             | APPROVE                               | D BY        | <b>R</b> . (                                      | Orti                                      | Z                  |                   |                    |                      |                                     |
|                                        |                                           | DRILLING an   | Nd SAMPLING INFORM                                                       | TION             |                |                  |             |                                       |             |                                                   |                                           | TES                | T DA              | TA                 |                      | 1                                   |
|                                        | Date Started                              | 3/24/22       | Hammer Wt.                                                               |                  | 140            | lbs.             |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        | Date Completed                            |               |                                                                          |                  | 30             | in.              |             |                                       |             |                                                   |                                           |                    |                   |                    | e                    |                                     |
|                                        | Drill Foreman                             | M. Smith      |                                                                          |                  |                |                  |             |                                       |             | Test                                              |                                           |                    |                   |                    | Sieve                |                                     |
|                                        | Inspector                                 |               |                                                                          |                  |                |                  |             | " S                                   |             | tion .                                            | ngth                                      | %                  |                   |                    | ¥200                 |                                     |
| _                                      | Boring Method                             | пра           | Shelby Tube OD                                                           |                  | 3              | in.              | e           | Sampler Graphics<br>Recovery Graphics |             | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | (TT)              | (PL)               | Percent Passing #200 |                                     |
|                                        |                                           | SOIL CLASSIF  | ICATION                                                                  |                  |                | 0                | Sample Type | er Gra                                | Groundwater | ird Pe<br>e (blc                                  | Jncor                                     | re Co              | Liquid Limit (LL) | Plastic Limit (PL) | it Pas               | s                                   |
|                                        |                                           | FACE ELEVAT   |                                                                          | Stratum<br>Depth | Depth<br>Scale | Sample<br>No.    | ample       | ample                                 | round       | anda<br>-Valu                                     | i-tsf L                                   | oistuı             | quid I            | astic              | ercen                | Remarks                             |
|                                        | ,                                         |               | ngitude (deg): -85.90080                                                 | 2 2 2            | Ğй             | ΰž               | ů           | ഗ്ഷ്                                  | Ũ           | ty z                                              | <u> </u>                                  | Š                  | Lic               | Ē                  | ď                    |                                     |
| -                                      | BLANK AUGE                                | RING- NO SAN  | IPLES OBTAINED                                                           |                  | -              |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | Offset 5 feet east<br>from STR 5 L2 |
| _                                      |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
| -                                      |                                           |               |                                                                          |                  | -              |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
| -                                      |                                           |               |                                                                          |                  | 5              |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | Auger refusal at 8 feet. Unable to  |
|                                        |                                           |               |                                                                          |                  | -              |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | core due to auger<br>bit run off at |
| +                                      |                                           | Auger Refusal | at 8 feet                                                                | 8.0              | -              | -                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | refusal.                            |
|                                        |                                           | -             |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
|                                        |                                           |               |                                                                          |                  |                |                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                                     |
| Ľ                                      | Sample Typ                                |               | Depth to Groun                                                           |                  | •              |                  |             | <u> </u>                              | Bori        | ng Method                                         |                                           |                    |                   |                    |                      | J                                   |
|                                        | SPT - Standard Per<br>SS - Driven Split S | •             | <ul> <li>Noted on Drilling Too</li> <li>At Completion (in au)</li> </ul> |                  |                | •_ ft.<br>• ft.  |             | A - H                                 | Hollo       | w Stem Aug                                        |                                           |                    |                   |                    |                      |                                     |
| S                                      | SH - Pressed She<br>CA - Continuous F     | İby Tube      | At Completion (in aug                                                    |                  |                | •ft.             |             |                                       |             | inuous Flight<br>ng Casing                        | Auge                                      | rs                 |                   |                    |                      |                                     |
| F                                      | RC - Rock Core                            | ngni Auger    | ¥ After hour                                                             | s_               |                | • ft.            | MD          | ) - N                                 | Mud         | Drilling<br>Jal Hammer                            |                                           |                    |                   |                    |                      |                                     |
|                                        | CU - Cuttings<br>CT - Continuous T        |               | ▼ After hour                                                             | s _              |                | •_ ft.<br>•_ ft. |             |                                       |             | matic Hamm                                        | er                                        |                    |                   |                    | Pa                   | ge <b>1</b> of <b>1</b>             |



| CLIE                                   | NT                                  | Southeast           | Power Corpora                                   | tion        |                          |                       |                                                     | BORING                                            | #                                         | OL                 | D S               | TR                 | 5 L                        | 1-E                       |
|----------------------------------------|-------------------------------------|---------------------|-------------------------------------------------|-------------|--------------------------|-----------------------|-----------------------------------------------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------------|---------------------------|
| PRO                                    | JECT NAME                           | LG&E-KU             | Ford Glendale 3                                 | 45 kV       | / Transm                 | issior                | <u>1</u>                                            | JOB #                                             |                                           | LO                 | UG                | E22                | 2043                       | 3                         |
| PROJECT LOCATION Hodgenville Road West |                                     |                     |                                                 |             |                          |                       |                                                     | DRAWN                                             | BY                                        | <b>Z</b> .         | Nicl              | hols               | 5                          |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           | R.                 | Orti              | iz                 |                            |                           |
|                                        |                                     | DRILLING and S      | AMPLING INFORMA                                 | TION        |                          | [                     |                                                     |                                                   |                                           | TES                | T DA              | TA                 |                            |                           |
| D                                      | ate Started                         | 3/28/22             | Hammer Wt.                                      |             | <b>140</b> lbs           |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
| D                                      | ate Completed                       | 3/28/22             | Hammer Drop                                     |             | <b>30</b> in.            |                       |                                                     |                                                   |                                           |                    |                   |                    | ۵                          |                           |
|                                        |                                     | J. Burdette         |                                                 |             |                          |                       |                                                     | [est                                              |                                           |                    |                   |                    | Siev                       |                           |
|                                        |                                     | P. Presnell         |                                                 |             |                          |                       |                                                     | ot)                                               | lgth                                      | %                  |                   |                    | #200                       |                           |
| B                                      | oring Method                        | пза, ап             | Shelby Tube OD                                  |             | <b>3</b> in.             | 0                     | iphics<br>aphic                                     | netra<br>ws/fo                                    | fined                                     | ntent              | (LL)              | (PL)               | sing ∌                     |                           |
|                                        |                                     | SOIL CLASSIFICA     |                                                 | _           |                          | No. IL<br>Sample Type | Sampler Graphics<br>Recovery Graphic<br>Groundwater | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 Sieve | s                         |
|                                        | SUF                                 | RFACE ELEVATION     | l (ft): 667.8<br>de (deg): -85.900735           | pth         | Depth<br>Scale<br>Sample | mple                  | imple<br>scove                                      | Value                                             | -tsf U<br>mpre                            | oistur             | quid L            | astic              | rcen                       | Remarks                   |
| _                                      |                                     |                     |                                                 | <u>n</u> gr | မီတိတီ:                  | Sa No                 | <u>ଜୁଙ୍କୁ</u> ନୁ                                    | j ở ż                                             | <u>Š</u> Š                                | Ň                  | Ľ                 | Ĕ                  | Pe                         | Re                        |
|                                        | BLANK AUGE                          | ERING- NO SAMPLI    | ES OBTAINED                                     |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            | Boring performed          |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            | at the staked tower leg 1 |
|                                        |                                     |                     |                                                 | -           |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            | location                  |
|                                        | E                                   | Boring Terminated a | t 5 feet                                        | 5.0         | 5 —                      |                       |                                                     |                                                   |                                           |                    |                   |                    |                            | Boring terminated due to  |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            | encountered<br>sewer.     |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        |                                     |                     |                                                 |             |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
|                                        | Comer la T                          |                     | Dorth to Ores                                   | huct        |                          |                       |                                                     |                                                   |                                           |                    |                   |                    |                            |                           |
| SP                                     | <u>Sample Ty</u><br>T - Standard Pe |                     | <u>Depth to Ground</u><br>Noted on Drilling Too |             | ft                       |                       |                                                     | oring Method                                      |                                           |                    |                   |                    |                            |                           |
| SS                                     | - Driven Split                      | Spoon 🛓             | At Completion (in aug                           | jers)       | ft                       | HSA<br>CFA            | A - Cor                                             | low Stem Au<br>ntinuous Flig                      |                                           | ers                |                   |                    |                            |                           |
| CA                                     | - Continuous I<br>- Rock Core       | Flight Auger 🛛 👻 🖊  | At Completion (open<br>After hours              |             | ft.<br>ft.               | DC                    | - Driv<br>- Mu                                      | /ing Casing<br>d Drilling                         | -                                         |                    |                   |                    |                            |                           |
| CU                                     | <ul> <li>Cuttings</li> </ul>        | ¥ /                 | After hours                                     | -           | ft                       | MH                    | - Ma                                                | nual Hamme<br>omatic Hami                         |                                           |                    |                   |                    | _                          | 4 . 4                     |
| CI                                     | - Continuous                        | iuDe ⊠a(            | Cave Depth                                      | -           | ft                       | 711                   | · Aut                                               |                                                   |                                           |                    |                   |                    | Pa                         | ge <b>1</b> of <b>1</b>   |

- RC Rock Core CU Cuttings CT Continuous Tube



|                                           | Southeast Power Corporation         ROJECT NAME       LG&E-KU Ford Glendale 345 kV Transmission         ROJECT LOCATION       Hodgenville Road West |                                          |                  |                |                 |             |                                       |             |                                              | BORING #         OLD STR 5 L2           JOB #         LOUGE22043 |                    |                   |                    |                      |                         |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|----------------|-----------------|-------------|---------------------------------------|-------------|----------------------------------------------|------------------------------------------------------------------|--------------------|-------------------|--------------------|----------------------|-------------------------|--|
| PROJECT LOCATIO                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       | _           | DRAWN E                                      |                                                                  |                    |                   |                    | 5                    |                         |  |
|                                           | Glendale, K                                                                                                                                         | Y                                        |                  |                |                 |             |                                       | _           | APPROVE                                      | ED BY                                                            | R.                 | Orti              | Z                  |                      |                         |  |
|                                           | DRILLING and SA                                                                                                                                     | MPLING INFORMA                           | TION             |                | г               |             |                                       |             |                                              |                                                                  | TES                | T DA              | TA                 |                      |                         |  |
| Date Started                              | 3/22/22                                                                                                                                             | Hammer Wt.                               |                  | 140            | lbs.            |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
| Date Completed                            | 3/22/22                                                                                                                                             | Hammer Drop                              |                  | 30             | in.             |             |                                       |             |                                              |                                                                  |                    |                   |                    | 0                    |                         |  |
| Drill Foreman                             | M. Smith                                                                                                                                            | Spoon Sampler C                          | D                | 2              | in.             |             |                                       |             | Test                                         |                                                                  |                    |                   |                    | Sieve                |                         |  |
|                                           | J. Semmer                                                                                                                                           | Rock Core Dia.                           |                  |                | .               |             | ŝ                                     |             | ion T                                        | gth                                                              | %                  |                   |                    | 200                  |                         |  |
| Boring Method                             | HSA                                                                                                                                                 | Shelby Tube OD                           |                  | 3              | in.             |             | hics                                  |             | letrat<br>/s/foo                             | ned<br>Stren                                                     | tent 9             | (T)               | PL)                | # Buj                |                         |  |
|                                           | SOIL CLASSIFICAT                                                                                                                                    | ION                                      |                  |                |                 | ype         | Sampler Graphics<br>Recovery Graphics | ater        | Standard Penetration<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength                        | Moisture Content % | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 |                         |  |
|                                           | FACE ELEVATION (                                                                                                                                    |                                          | un d             | e th           | ple             | Sample Type | pler                                  | Groundwater | idard<br>alue (                              | oress                                                            | sture              | id Lir            | tic Li             | ent F                | Remarks                 |  |
|                                           | 37.659763, Longitud                                                                                                                                 |                                          | Stratum<br>Depth | Depth<br>Scale | Sample<br>No.   | Sam         | Sam<br>Reco                           | Grou        | Stan<br>N-Va                                 | Qu-ts<br>Comp                                                    | Mois               | Liqui             | Plas               | Perc                 | Rem                     |  |
| BLANK AUGE                                | RING- NO SAMPLE                                                                                                                                     | S OBTAINED                               |                  | -              | -               |             |                                       |             |                                              | 00                                                               |                    |                   |                    |                      |                         |  |
| _                                         |                                                                                                                                                     |                                          |                  | -              |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  | -              |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  | 5 —            |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  | -              |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
| -                                         |                                                                                                                                                     |                                          |                  | _              | -               |             |                                       | <u>.</u>    |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  | -              |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           | Auger Refusal at 10                                                                                                                                 | feet                                     | 10.0             | 10 —           |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           | Auger Neiusai at 10                                                                                                                                 | leet                                     |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             | $\left  \right  $                     |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
|                                           |                                                                                                                                                     |                                          |                  |                |                 |             |                                       |             |                                              |                                                                  |                    |                   |                    |                      |                         |  |
| Sample Typ                                | <u>e</u>                                                                                                                                            | Depth to Ground                          | water            | L              | 1               | L           |                                       | Der!        | na Mathad                                    |                                                                  |                    | 1                 |                    | II                   |                         |  |
| SPT - Standard Per<br>SS - Driven Split S | netration Test 💂 No                                                                                                                                 | -                                        |                  | 7.6            |                 | HS          | A - ⊢                                 | lollo       | ng Method<br>w Stem Aug                      | ers                                                              |                    |                   |                    |                      |                         |  |
| SH - Pressed She                          | İby Tube 🖉 🗛                                                                                                                                        | Completion (in aug<br>Completion (open I |                  |                | • ft.<br>•ft.   | CFA         | 4 - C                                 | Conti       | inuous Fligh<br>ng Casing                    | t Auge                                                           | rs                 |                   |                    |                      |                         |  |
| CA - Continuous F<br>RC - Rock Core       | Ilgrit Auger<br>⊈ Af                                                                                                                                | ter hours                                | _                |                | ft.             | MD          | - N                                   | /lud        | Drilling                                     |                                                                  |                    |                   |                    |                      |                         |  |
| CU - Cuttings<br>CT - Continuous T        |                                                                                                                                                     | ter <u></u> hours<br>ave Depth           | -                |                | •_ ft.<br>• ft. |             |                                       |             | ual Hammer<br>matic Hamm                     | er                                                               |                    |                   |                    | Pag                  | ge <b>1</b> of <b>1</b> |  |



Page 1 of 1

|                                      |                   | st Power Corporat                         |       |                          |             |                                       |             | BORING #                                                                          |                                           | OL                 |                   |                    |                            |                |
|--------------------------------------|-------------------|-------------------------------------------|-------|--------------------------|-------------|---------------------------------------|-------------|-----------------------------------------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------------|----------------|
| ROJECT NAME                          | LG&E-K            | U Ford Glendale 34                        |       |                          |             |                                       |             | JOB # LOUGE22043                                                                  |                                           |                    |                   |                    |                            |                |
| ROJECT LOCATIO                       | N Hodgen          | ville Road West                           |       |                          |             |                                       |             | DRAWN E                                                                           |                                           |                    |                   |                    | 6                          |                |
|                                      | Glendal           | e, KY                                     |       |                          |             |                                       |             | APPROVI                                                                           | ED BY_                                    | <b>R</b> . (       | Orti              | Z                  |                            |                |
|                                      | DRILLING and      | SAMPLING INFORMAT                         | ΓΙΟΝ  |                          | [ <b></b>   |                                       |             |                                                                                   |                                           | TES                | T DA              | TA                 |                            |                |
| Date Started                         | 3/22/22           | Hammer Wt                                 |       | <b>140</b> lbs.          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
| Date Completed                       | 3/22/22           | Hammer Drop                               |       | <b>30</b> in.            |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
| Drill Foreman                        | M. Smith          | Spoon Sampler O                           | D     | <b>2</b> in.             |             |                                       |             | est                                                                               |                                           |                    |                   |                    | Sieve                      |                |
| Inspector                            | J. Semmer         | Rock Core Dia                             |       | <b>2</b> in.             |             |                                       |             | on To<br>Dot                                                                      | gt                                        | <b>、</b> 0         |                   |                    | 200 5                      |                |
| Boring Method                        | HSA               | Shelby Tube OD                            |       | <b>3</b> in.             |             | hics<br>phics                         |             | etrati<br>ws/fo                                                                   | itreng                                    | ent %              | L)                | ۲)                 | ;# ɓu                      |                |
|                                      | SOIL CLASSIFI     |                                           |       |                          | ype         | Sampler Graphics<br>Recovery Graphics | ater        | Standard Penetration Test<br>Blows per 6"<br>[ <i>N-Value</i> ] <i>blows/foot</i> | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 Sieve |                |
| SU                                   |                   | ON (ft): 667.7                            | E _   | he e e                   | ple T       | pler (<br>very                        | Groundwater | dard<br>s pei<br><i>'alu</i> e                                                    | f Und                                     | ture               | d Lin             | ic Lir             | ent P                      | arks           |
| Latitude (deg)                       | : 37.659693, Long | DN (ft): 667.7<br>itude (deg): -85.900728 | Strat | Depth<br>Scale<br>Sample | Sample Type | Sam                                   | Grou        | Stan<br>Blow<br>[ N-V                                                             | Somp                                      | Mois               | Liqui             | Plast              | Perc                       | Remarks        |
| 771                                  | (CL), with silt   |                                           |       |                          | SS          | X                                     |             | 2-4-6-                                                                            |                                           |                    |                   |                    |                            | PP=1.0 tsf     |
|                                      |                   |                                           |       |                          |             |                                       |             | [ 10]                                                                             |                                           |                    |                   |                    |                            |                |
| - with limesto                       | ne fragments      |                                           |       | 2                        | ss          | X                                     |             | 4-5-4-<br>[9]                                                                     |                                           |                    |                   |                    |                            | PP=1.5 tsf     |
| //                                   |                   |                                           | 5.1   | 5                        |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      | Auger Refusal at  | 5.1 feet                                  | 0.1   | 3 3                      | ) ss        |                                       |             | 50/1"<br>[ <i>50/1"</i> ]                                                         |                                           |                    |                   |                    |                            | PP=1.0 tsf     |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   |                                           |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
|                                      |                   | <b></b>                                   |       |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                            |                |
| Sample Ty                            |                   | Depth to Ground                           |       | -                        |             |                                       | Bori        | ng Method                                                                         |                                           |                    |                   |                    |                            |                |
| PT - Standard Pe<br>S - Driven Split | <u>~</u>          | Noted on Drilling Tools                   |       | ft.                      | HS          |                                       |             | w Stem Aug                                                                        | gers                                      |                    |                   |                    |                            |                |
| H - Pressed Sh                       |                   | At Completion (in auge                    |       | ft.                      | CF          | A - C                                 | Conti       | nuous Fligh                                                                       |                                           | rs                 |                   |                    |                            |                |
| A - Continuous                       | Flight Auger      | At Completion (open h                     | ioie) | ft.<br>ft.               | DC<br>ME    |                                       |             | ng Casing<br>Drilling                                                             |                                           |                    |                   |                    |                            |                |
| RC - Rock Core                       | -                 | After hours                               | -     | ft.                      |             |                                       |             | ial Hammer                                                                        |                                           |                    |                   |                    |                            |                |
| CT - Continuous                      |                   | Cave Depth                                | -     | n.<br>ft.                | AH          | I - A                                 | Autor       | natic Hamm                                                                        | ner                                       |                    |                   |                    | Pa                         | ge <b>1</b> of |

--\_ ft.

- CA Continuous Flight Auger RC Rock Core CU Cuttings CT Continuous Tube



| CLIENT                                 | Southeast                         | Power Corpora                                   | tion        |                |                  |             |                                       |             | BORING #                                                                          | ŧ                                         | OL                 | DS                | TR                 | 5 L                  | 4                       |
|----------------------------------------|-----------------------------------|-------------------------------------------------|-------------|----------------|------------------|-------------|---------------------------------------|-------------|-----------------------------------------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|-------------------------|
| PROJECT NAME                           | LG&E-KU                           | Ford Glendale 3                                 | 45 kV       | Tran           | smis             | ssio        | n                                     |             | JOB #                                                                             |                                           | LO                 | UG                | E22                | <u>.043</u>          | 8                       |
| PROJECT LOCATIC                        | N Hodgenvil                       | le Road West                                    |             |                |                  |             |                                       |             | DRAWN E                                                                           | 3Y                                        | Z. I               | Nicl              | nols               | \$                   |                         |
|                                        | Glendale,                         |                                                 |             |                |                  |             |                                       |             | APPROVE                                                                           | ED BY                                     | <b>R</b> . (       | Orti              | Z                  |                      |                         |
|                                        | DRILLING and S                    | AMPLING INFORMA                                 | TION        |                | г                | r           |                                       |             |                                                                                   |                                           | TES                | T DA              | TA                 |                      |                         |
| Date Started                           | 3/22/22                           | Hammer Wt.                                      |             | 140            | lbs.             |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
| Date Completed                         | 3/22/22                           | Hammer Drop                                     |             | 30             | in.              |             |                                       |             |                                                                                   |                                           |                    |                   |                    | σ                    |                         |
| Drill Foreman _                        |                                   |                                                 |             |                |                  |             |                                       |             | [est                                                                              |                                           |                    |                   |                    | Sieve                |                         |
| Inspector                              |                                   | -                                               |             |                | .                |             | . s                                   |             | tion <sup>-</sup><br>foot                                                         | ngth                                      | %                  |                   |                    | #200                 |                         |
| Boring Method                          | HSA, AH                           | Shelby Tube OD                                  |             | 3              | in.              | 0           | Sampler Graphics<br>Recovery Graphics |             | Standard Penetration Test<br>Blows per 6"<br>[ <i>N-Value</i> ] <i>blows/foot</i> | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | LL)               | (PL)               | Percent Passing #200 |                         |
|                                        | SOIL CLASSIFICA                   | TION                                            |             |                |                  | Sample Type | r Gra                                 | Groundwater | -d Pe<br>ber 6"<br><i>Je</i> ] <i>b</i>                                           | nconi<br>ssive                            | e Cor              | Liquid Limit (LL) | Plastic Limit (PL) | Pase                 | S                       |
| SUF                                    | RFACE ELEVATION                   | l (ft): 667.7<br>de (deg): -85.900641           | atum<br>pth | Depth<br>Scale | Sample<br>No.    | mple        | mple                                  | puno        | andar<br>ows p<br>- <i>Valu</i>                                                   | -tsf U<br>npre                            | oistun             | luid L            | astic I            | rcent                | Remarks                 |
|                                        |                                   |                                                 | De Str      | പ്പ            | S a              |             | S a                                   | Ģ           |                                                                                   | ğõ                                        | M                  | Lic               | Ъ                  | Ъе                   |                         |
| LEAN CLAY (                            | CL), Brown, MEDIU<br>ne fragments | M STIFF to STIFF,                               |             | -              | 1                | SS          | Д                                     |             | 3-7-5-<br>[ 12 ]                                                                  |                                           |                    |                   |                    |                      | PP=2.5 tsf              |
|                                        |                                   |                                                 |             |                | 2                | SS          |                                       |             | 4-3-4-                                                                            |                                           |                    |                   |                    |                      | PP=1.0 tsf              |
| - trace organi                         | cs, with organic odo              | r                                               |             | -              |                  | r.          | Α                                     |             | [7]                                                                               |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             | 5              | 3                | SS          | X                                     |             | 2-2-3-<br>[5]                                                                     |                                           |                    |                   |                    |                      | PP=1.5 tsf              |
| - with limestor                        | ne fragments, wet                 |                                                 |             | -              |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        | ,                                 |                                                 |             | -              | 4                | SS          | Д                                     |             | 4-4-4-<br>[8]                                                                     |                                           |                    |                   |                    |                      | PP=1.0 tsf              |
|                                        |                                   |                                                 |             | 10 -           |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             | -              |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
| - [///                                 | Auger Refusal at 12               | .5 feet                                         | 12.5        |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
|                                        |                                   |                                                 |             |                |                  |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                         |
| Sample Ty                              | pe                                | Depth to Ground                                 | water       | I              |                  | l           |                                       | Bori        | ng Mothod                                                                         |                                           |                    | I                 | I                  |                      |                         |
| SPT - Standard Pe<br>SS - Driven Split | -<br>-                            | Noted on Drilling Tool<br>At Completion (in aug |             |                | •_ ft.<br>• ft.  |             | A - H                                 | lollo       | ng Method<br>w Stem Aug                                                           |                                           |                    |                   |                    |                      |                         |
| SH - Pressed She<br>CA - Continuous    | elby Tube 🚡                       | At Completion (in aug                           |             |                | •_ n.<br>•_ ft.  |             |                                       |             | inuous Fligh<br>ng Casing                                                         | t Auge                                    | rs                 |                   |                    |                      |                         |
| RC - Rock Core                         | Ŭ Ŭ Į /                           | After hours                                     |             |                | ft.              | ME<br>MH    | ) - N                                 | ∕lud        | Drilling<br>Jal Hammer                                                            |                                           |                    |                   |                    |                      |                         |
| CU - Cuttings<br>CT - Continuous       | <b>T</b> 1                        | After <u></u> hours<br>Cave Depth               | ' –<br>–    |                | •_ ft.<br>•_ ft. | AH          |                                       |             | matic Hamm                                                                        | er                                        |                    |                   |                    | Paç                  | ge <b>1</b> of <b>1</b> |



| CLIEN       | т                                                     | Southea                                 | st Power Corpora                                                          | tion             |                                 |             |                                       |             | BORING #                                                                          | ¥                                         | ST               | R 5               | L1                 |                      |                                      |
|-------------|-------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|------------------|---------------------------------|-------------|---------------------------------------|-------------|-----------------------------------------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------|--------------------------------------|
| PROJE       | ECT NAME                                              | LG&E-K                                  | U Ford Glendale 3                                                         | 45 kV            | Transmi                         | ssio        | n                                     |             | JOB #                                                                             |                                           | LO               | UG                | E22                | .043                 | 3                                    |
| PROJE       | ECT LOCATIO                                           | N Hodgen                                | ville Road West                                                           |                  |                                 |             |                                       | _           | DRAWN E                                                                           | 3Y                                        | R. (             | Orti              | Ζ                  |                      |                                      |
|             |                                                       | Glendale                                |                                                                           |                  |                                 |             |                                       |             | APPROVE                                                                           | ED BY                                     | Т. /             | 4nd               | res                |                      |                                      |
|             |                                                       | DRILLING and                            | SAMPLING INFORMA                                                          | TION             |                                 |             |                                       |             |                                                                                   |                                           | TES              | T DA              | ТА                 |                      |                                      |
| Dat         | e Started                                             | 4/12/22                                 | Hammer Wt.                                                                |                  | 140 lbs.                        |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                                      |
| Dat         | e Completed                                           |                                         | Hammer Drop                                                               |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                                      |
| Dril        | I Foreman                                             | J. Burdette                             | Spoon Sampler C                                                           | D                | <b>2</b> in.                    |             |                                       |             | est                                                                               |                                           |                  |                   |                    | Sieve                |                                      |
| Insp        | pector                                                | Clouser/Nic                             | hols Rock Core Dia.                                                       |                  | <b>2</b> in.                    |             |                                       |             | on To<br>oot                                                                      | gth                                       | .0               |                   |                    |                      |                                      |
| Bor         | ing Method                                            | DC, AH                                  | Shelby Tube OD                                                            |                  | <b>3</b> in.                    |             | hics<br>phics                         |             | etrati<br>ws/fc                                                                   | ned<br>Strenç                             | ent %            | L)                | ۲)                 | ;# Bu                |                                      |
|             |                                                       | SOIL CLASSIFIC                          | CATION                                                                    |                  |                                 | ype         | Sampler Graphics<br>Recovery Graphics | ater        | Standard Penetration Test<br>Blows per 6"<br>[ <i>N-Value</i> ] <i>blows/foot</i> | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 |                                      |
|             | SUE                                                   |                                         |                                                                           | un d             | e je                            | Sample Type | pler (                                | Groundwater | dard<br>s pei<br>/alue                                                            | f Und                                     | ture             | d Lin             | tic Lii            | ent F                | Remarks                              |
|             |                                                       |                                         | gitude (deg): -85.9005                                                    | Stratum<br>Depth | Depth<br>Scale<br>Sample<br>No. | Sam         | Sam<br>Reco                           | Grou        | Stan<br>Blow<br>[ <i>N</i> -V                                                     | Qu-ts<br>Comp                             | Mois             | Liqui             | Plas               | Perc                 | Rem                                  |
|             | TOPSOIL                                               |                                         |                                                                           | 0.2              | = 1                             | SS          | X                                     |             | 1-1-2-                                                                            |                                           | 22.6             |                   |                    |                      | PP=0.3 tsf                           |
|             | LEAN CLAY (                                           | CL), with silt, Brov                    | wn, SOFT to STIFF                                                         |                  |                                 |             |                                       |             | [3]                                                                               |                                           |                  |                   |                    |                      |                                      |
|             | - trace sand                                          |                                         |                                                                           |                  | 2                               | SS          | X                                     |             | 4-4-4-<br>[8]                                                                     |                                           | 21.9             |                   |                    |                      | PP=1.5 tsf                           |
|             |                                                       |                                         |                                                                           |                  | 5                               | SS          |                                       |             | 4 6 40                                                                            |                                           | 01.0             | 20                | 10                 |                      | PP=1.5 tsf                           |
|             | - trace limesto                                       | one fragments                           |                                                                           |                  | 3                               | 33          | ĂП                                    |             | 4-6-10-<br>[ <i>16</i> ]                                                          |                                           | 21.8             | 28                | 16                 |                      | PP=1.5 ISI                           |
|             | - with limestor                                       | ne fragments                            |                                                                           |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      | Difficult augering through limestone |
|             |                                                       |                                         |                                                                           |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      | fragments, split<br>spoon not        |
|             | FAT CLAY (C                                           | H), with silt and s                     | and, Brown, MEDIUM                                                        | 10.0             |                                 | SH          |                                       |             |                                                                                   | 0.98                                      | 35.2             | 66                | 17                 |                      | attempted                            |
|             | STIFF                                                 |                                         |                                                                           |                  | 5                               | SS          | ×                                     |             | 50/3"                                                                             |                                           | 44.1             |                   |                    |                      | PP=0.5 tsf                           |
|             |                                                       |                                         |                                                                           | 13.5             |                                 | 00          |                                       |             | [ 50/3"]                                                                          |                                           | 44.1             |                   |                    |                      | FF-0.5 tSi                           |
| WAE         | WEATHEREL                                             | ) LIMESTONE                             |                                                                           |                  | 15 —                            |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                                      |
| <b>I</b> RA |                                                       |                                         |                                                                           |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                                      |
|             | LIMESTONE,                                            | Light gray, fine to                     | o medium grained,                                                         | 17.0             |                                 | RC          |                                       |             |                                                                                   |                                           |                  |                   |                    |                      | Auger Refusal at about 17 ft         |
|             | - high angle fr                                       | to slightly weathe<br>actures or beddin | red,<br>ig at about 17.7 and                                              |                  | RC                              |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      | RQD=100%                             |
| ╢           | 18.2 ft                                               |                                         |                                                                           |                  | 20 - 1                          |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      | KQD-100%                             |
| 1           | - with shale st                                       | reamers                                 |                                                                           |                  |                                 | RC          |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                                      |
|             |                                                       |                                         |                                                                           |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      | RQD=93%                              |
|             |                                                       |                                         |                                                                           |                  | - RC<br>25 - 2                  |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                                      |
|             |                                                       |                                         |                                                                           |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                                      |
| 山           |                                                       |                                         |                                                                           |                  |                                 | RC          |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                                      |
| 田           | - with a 2-inch                                       | highly fractured l                      | aver                                                                      |                  | RC                              |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      | RQD=98%                              |
| 田           |                                                       |                                         |                                                                           |                  | 30 - 3                          |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                                      |
|             |                                                       |                                         |                                                                           |                  |                                 | RC          |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                                      |
|             |                                                       |                                         |                                                                           |                  |                                 | -           |                                       |             |                                                                                   |                                           |                  |                   |                    |                      | RQD=55%                              |
|             |                                                       |                                         |                                                                           |                  | - RC<br>- 4                     |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      | NQD-00 /0                            |
| 000         | Sample Typ                                            |                                         | Depth to Ground                                                           |                  |                                 |             | E                                     | Bori        | ng Method                                                                         |                                           |                  |                   |                    |                      |                                      |
| SS          | - Driven Split S                                      | Spoon 🚽                                 | <ul> <li>Noted on Drilling Tool</li> <li>At Completion (in aug</li> </ul> |                  | ft.<br>ft.                      |             | -<br>A - Ho                           | ollo        | w Stem Aug                                                                        |                                           | are              |                   |                    |                      |                                      |
| CA          | <ul> <li>Pressed She</li> <li>Continuous I</li> </ul> | elby Tube                               | At Completion (open                                                       | nole)            | ft.                             | DC          | - Di                                  | rivir       | nuous Fligh<br>ng Casing                                                          | i Auge                                    | :15              |                   |                    |                      |                                      |
| RC          | - Rock Core<br>- Cuttings                             | Σ                                       | After <u></u> hours<br>After hours                                        | _                | <u></u> ft.<br>ft.              | MD<br>MH    | - M                                   | anu         | Drilling<br>Ial Hammer                                                            |                                           |                  |                   |                    |                      |                                      |
|             | - Continuous                                          |                                         | Cave Depth                                                                | _                | ft.                             | AH          | - Aı                                  | utor        | natic Hamm                                                                        | ner                                       |                  |                   |                    | Pa                   | ge <b>1</b> of <b>2</b>              |



# **TEST BORING LOG**

| CLIENT                                 | Southeast             | Power Corpora                                  | tion             |                          |             |                                       |             | BORING #                                                                          | ŧ                                         | ST                 | R 5               | L1                 |                      |                |   |
|----------------------------------------|-----------------------|------------------------------------------------|------------------|--------------------------|-------------|---------------------------------------|-------------|-----------------------------------------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|----------------|---|
| PROJECT NAME                           |                       | Ford Glendale 3                                | 45 kV            | ' Transmi                | ssio        | n                                     |             | JOB #                                                                             |                                           | LO                 | UG                | E22                | 2043                 | 6              |   |
| PROJECT LOCATIC                        |                       | le Road West                                   |                  |                          |             |                                       |             | DRAWN E                                                                           |                                           | _                  |                   |                    |                      |                |   |
|                                        | Glendale,             |                                                |                  |                          |             |                                       |             | APPROVE                                                                           |                                           |                    |                   |                    | ;                    |                |   |
|                                        | DRILLING and SA       | AMPLING INFORMA                                | TION             |                          |             |                                       |             |                                                                                   |                                           | TES                | T DA              | ТА                 |                      |                |   |
| Date Started                           | 4/12/22               | Hammer Wt.                                     |                  | <b>140</b> lbs.          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
| Date Completed                         | 4/13/22               | Hammer Drop                                    |                  | <b>30</b> in.            |             |                                       |             |                                                                                   |                                           |                    |                   |                    | 0                    |                |   |
| Drill Foreman                          |                       |                                                |                  |                          |             |                                       |             | est                                                                               |                                           |                    |                   |                    | Sieve                |                |   |
|                                        |                       | S Rock Core Dia.                               |                  |                          |             | (0)                                   |             | ion T<br><i>oot</i>                                                               | gth                                       | <i>\</i>           |                   |                    | 200 \$               |                |   |
| Boring Method                          | DC, AH                | Shelby Tube OD                                 |                  | <b>3</b> in.             |             | hics<br>phics                         |             | ietrati<br>ows/f                                                                  | ned<br>Stren                              | tent %             | ()                | PL)                | ing #                |                |   |
|                                        | SOIL CLASSIFICA       | TION                                           |                  |                          | Sample Type | Sampler Graphics<br>Recovery Graphics | Groundwater | Standard Penetration Test<br>Blows per 6"<br>[ <i>N-Value</i> ] <i>blows/foot</i> | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 | (0             |   |
|                                        | (continued)           |                                                | Stratum<br>Depth | Depth<br>Scale<br>Sample | Jple        | npler                                 | nudv        | vs pe<br>Valu                                                                     | sf Ur                                     | sture              | lid Li            | stic L             | cent                 | Remarks        |   |
| Latitude (deg                          |                       | ude (deg): -85.9005                            | Stra<br>Dep      | Depth<br>Scale<br>Sampl  | San         | San<br>Rec                            | Gro         | Star<br>Blov<br>[ N-                                                              | Qu-t:<br>Com                              | Moi                | Liqu              | Plas               | Per                  | Ren            |   |
|                                        |                       |                                                | 36.4             | =                        |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
| Bo                                     | oring Terminated at 3 | 36.4 feet                                      | 30.4             |                          |             | $\square$                             |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
|                                        |                       |                                                |                  |                          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |                      |                |   |
| Sample Ty                              |                       | Depth to Ground                                |                  |                          |             | F                                     | <br>Bori    | ng Method                                                                         |                                           |                    |                   |                    |                      |                |   |
| SPT - Standard Pe<br>SS - Driven Split | •                     | Noted on Drilling Too<br>At Completion (in aug |                  | ft.<br>ft.               |             | -<br>А - Н                            | ollo        | w Stem Aug                                                                        |                                           |                    |                   |                    |                      |                |   |
| SH - Pressed She                       | elby Tube 🚡 ,         | At Completion (in aug                          |                  | n.<br>ft.                |             |                                       |             | inuous Fligh<br>ng Casing                                                         | t Auge                                    | ers                |                   |                    |                      |                |   |
| CA - Continuous<br>RC - Rock Core      | -light Auger ⊻ A      | After hours                                    | s _              | ft.                      | MD          | ) - M                                 | lud l       | Drilling                                                                          |                                           |                    |                   |                    |                      |                |   |
| CU - Cuttings<br>CT - Continuous       |                       | After <u></u> hours                            | - 3              | <u></u> ft.              |             |                                       |             | ual Hammer<br>matic Hamm                                                          | er                                        |                    |                   |                    | Par                  | ge <b>2</b> of | 2 |
| CI - Continuous                        | inne ⊠a(              | Cave Depth                                     | _                | ft.                      | ,           | ,,,                                   | ator        | natio Hami                                                                        |                                           |                    |                   |                    | Рас                  | ge Z of        | 2 |



|                                       | Southeast                             | Power Corpora                            | tion             |                |               |             |                                       |             | BORING                                                                            | #                                         | STI              | R 5               | L3                 |                      |                         |
|---------------------------------------|---------------------------------------|------------------------------------------|------------------|----------------|---------------|-------------|---------------------------------------|-------------|-----------------------------------------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------|-------------------------|
| ROJECT NAME                           | LG&E-KU                               | Ford Glendale 3                          | 45 kV            | / Tran         | smis          | ssio        | n                                     |             | JOB#                                                                              |                                           | LO               | UG                | E22                | 2043                 | 3                       |
| ROJECT LOCATIO                        | N Hodgenvil                           | le Road West                             |                  |                |               |             |                                       |             | DRAWN E                                                                           | 3Y                                        | R. (             | Orti              | Z                  |                      |                         |
|                                       | Glendale, I                           | KY                                       |                  |                |               |             |                                       | _           | APPROVI                                                                           | ED BY                                     | Т. /             | And               | lres               | ;                    |                         |
|                                       | DRILLING and SA                       | AMPLING INFORMA                          | TION             |                | Γ             |             |                                       |             |                                                                                   |                                           | TES              | T DA              | TA                 |                      |                         |
| Date Started                          | 4/13/22                               | Hammer Wt.                               |                  | 140            | lbs.          |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                         |
| Date Completed                        |                                       | Hammer Drop                              |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    | Ð                    |                         |
| Drill Foreman                         |                                       | Spoon Sampler C                          |                  |                |               |             |                                       |             | Test                                                                              |                                           |                  |                   |                    | Sieve                |                         |
| Inspector                             |                                       | Rock Core Dia.                           |                  |                |               |             | <u>"</u> «                            |             | foot                                                                              | ngth                                      | %                |                   |                    | #200                 |                         |
| Boring Method                         |                                       | Shelby Tube OD                           |                  | 3              | in.           | Ð           | Sampler Graphics<br>Recovery Graphics | -<br>-      | Standard Penetration Test<br>Blows per 6"<br>[ <i>N-Value</i> ] <i>blows/foot</i> | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | (LL)              | (PL)               | Percent Passing #200 |                         |
|                                       | SOIL CLASSIFICA                       | TION                                     | _                |                | 0             | Sample Type | er Gra                                | Groundwater | rd Pe<br>per 6'<br>ue ] b                                                         | Jncon<br>ssive                            | ē Co             | Liquid Limit (LL) | Plastic Limit (PL) | t Pas                | s                       |
|                                       | RFACE ELEVATION                       |                                          | Stratum<br>Depth | Depth<br>Scale | Sample<br>No. | ample       | ample                                 | ouno.       | anda<br>ows p<br>/- <i>Val</i> i                                                  | -tsf L<br>mpre                            | oistur           | l biup            | astic              | srcen                | Remarks                 |
|                                       | 37.659894, Longitud                   | de (deg): -85.900492                     | ชีอี<br>0.2      | ۵ N            |               |             | й<br>М                                | ğ           |                                                                                   | gõ                                        |                  | Ľ                 | ä                  | ď                    |                         |
| TOPSOIL                               | CL), Dark brown, ME                   | /<br>EDIUM STIFF to                      |                  |                | 1             | SS          | Д                                     |             | 2-3-3-<br>[6]                                                                     |                                           | 19.8             |                   |                    |                      | PP=0.5 tsf              |
| STIFF                                 |                                       |                                          |                  | -              | 2             | SS          |                                       |             | 3-4-5-                                                                            |                                           | 16.3             |                   |                    |                      | PP=1.5 tsf              |
|                                       |                                       |                                          | 4.5              |                | 2             | 20          | А                                     |             | [9]                                                                               |                                           |                  |                   |                    |                      |                         |
| POORLY GR                             | ADED SAND (SP), w<br>NSE              | vith gravel, Brown,                      | 4.0              | 5              | 3             | SS          | $\mathbf{X}$                          |             | 4-4-8-                                                                            |                                           | 10.5             |                   |                    |                      | PP=2.0 tsf              |
|                                       |                                       |                                          | 7.0              | =              |               |             | $\square$                             |             | [ 12 ]                                                                            |                                           |                  |                   |                    |                      |                         |
| with limestone                        | CL), with silt and sar<br>e fragments | nd, Light brown,                         |                  |                | 4             | SS          | X                                     |             | 2-3-3-<br>[6]                                                                     |                                           | 16.3             |                   |                    |                      |                         |
|                                       |                                       |                                          |                  | 10 -           |               |             |                                       | -           | [0]                                                                               |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                | 5             | SH          |                                       |             |                                                                                   | 0.39                                      | 34.9             |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                | 6             | SS          | X                                     |             | 32-15-8-                                                                          |                                           | 54.1             |                   |                    |                      |                         |
|                                       |                                       |                                          |                  | -              |               |             | $\square$                             |             | [ 22 ]                                                                            |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          | 15.8             | 15 -           | 7             | SS          |                                       |             | 15-50/4"                                                                          |                                           | 72.1             |                   |                    |                      |                         |
|                                       | Auger Refusal at 15                   | .8 feet                                  | 15.0             |                |               |             |                                       |             | [ 50/4"]                                                                          |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                         |
|                                       |                                       |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                         |
| SPT - Standard Pe                     |                                       | Depth to Ground<br>loted on Drilling Too |                  | 9.0            | ft            |             |                                       | <u>Bori</u> | ing Method                                                                        |                                           |                  |                   |                    |                      |                         |
| SS - Driven Split                     | Spoon 🛓 🛓                             | At Completion (in aug                    | jers)            |                | ft.           |             |                                       |             | w Stem Aug<br>inuous Fligh                                                        |                                           | ers              |                   |                    |                      |                         |
| SH - Pressed She<br>CA - Continuous I | Flight Auger 🙂 🦉                      | At Completion (open                      |                  |                | ft.<br>ft.    | DC          | ; - [                                 | Drivir      | ng Casing<br>Drilling                                                             |                                           |                  |                   |                    |                      |                         |
| RC - Rock Core<br>CU - Cuttings       | T A                                   | After <u></u> hours                      | -                |                | _ n.<br>_ ft. | MH          | H - M                                 | Manu        | ual Hammer                                                                        |                                           |                  |                   |                    |                      |                         |
| CT - Continuous                       | <b>T</b> 1                            | Cave Depth                               | -                |                | ft.           | AH          | - <i>F</i>                            | Autor       | matic Hamm                                                                        | her                                       |                  |                   |                    | Pa                   | ge <b>1</b> of <b>1</b> |



| IENT                                |                                          | Power Corpora                                   |                  |                                 |             |                                       |             | BORING #                                     |                                           | STI              |                   |                    |                      |                         |
|-------------------------------------|------------------------------------------|-------------------------------------------------|------------------|---------------------------------|-------------|---------------------------------------|-------------|----------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------|-------------------------|
| ROJECT NAME                         | LG&E-KU                                  | Ford Glendale 3                                 | 45 kV            | Transmi                         | ssio        | n                                     |             | JOB #                                        |                                           | LO               |                   |                    | .043                 | 3                       |
| ROJECT LOCATIO                      | N Hodgenvill                             | e Road West                                     |                  |                                 |             |                                       | _           | DRAWN E                                      |                                           | <b>R</b> . (     |                   |                    |                      |                         |
|                                     | Glendale, I                              | KY                                              |                  |                                 |             |                                       |             | APPROVE                                      | D BY                                      | Т. /             | And               | res                | ;                    |                         |
|                                     | DRILLING and SA                          | AMPLING INFORMA                                 | TION             |                                 |             |                                       |             |                                              |                                           | TES              | T DA              | TA                 |                      |                         |
| Date Started                        | 4/1/22                                   | Hammer Wt.                                      |                  |                                 |             |                                       |             |                                              |                                           |                  |                   |                    |                      |                         |
| Date Completed                      | 4/1/22                                   | Hammer Drop _                                   |                  | <b>30</b> in.                   |             |                                       |             |                                              |                                           |                  |                   |                    | a)                   |                         |
| Drill Foreman                       | J. Burdette                              | Spoon Sampler C                                 | D                | <b>2</b> in.                    |             |                                       |             | Test                                         |                                           |                  |                   |                    | Sieve                |                         |
| Inspector                           | P. Presnell                              | Rock Core Dia.                                  |                  | <b>2</b> in.                    |             |                                       |             | on T                                         | gth                                       | %                |                   |                    |                      |                         |
| Boring Method _                     | HSA, AH                                  | Shelby Tube OD                                  |                  | <u>3</u> in.                    |             | Sampler Graphics<br>Recovery Graphics |             | Standard Penetration<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | itent 9          | (LL)              | (PL)               | Percent Passing #200 |                         |
|                                     | SOIL CLASSIFICA                          | TION                                            |                  |                                 | Sample Type | r Gra                                 | Groundwater | rd Pei<br>e (blov                            | nconf<br>ssive                            | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | t Pass               | S                       |
| SUR                                 | FACE ELEVATION                           | (ft): 748.0                                     | Stratum<br>Depth | Depth<br>Scale<br>Sample<br>No. | mple        | mple                                  | ounc        | value                                        | tsf L<br>npre                             | istur            | uid l             | Istic              | rcen                 | Remarks                 |
| Latitude (deg):                     | 37.63039, Longitud                       | e (deg): -85.862444                             |                  | N S S De                        | Sa          | Re<br>Re                              | õ           | Sta<br>N-1                                   | Cor<br>Cor                                | Mo               | Liq               | Pla                | Ре                   | Re                      |
|                                     |                                          | ʃ                                               | 0.3              | _ 1                             | SS          | X                                     |             | 4-4-6-<br>[ 10]                              |                                           | 15.4             |                   |                    |                      | PP=4.0+ tsf             |
| ₩ FILL - FAT CL<br>₩ nodules        | AY, Brown with blac                      | k oxidation                                     |                  |                                 | ]           |                                       |             |                                              |                                           |                  |                   |                    |                      |                         |
| FILL - LEAN T                       |                                          | brown, with cinders                             | 3.0              | 2                               | SS          | Д                                     |             | 6-7-6-<br>[ <i>13</i> ]                      |                                           | 18.5             |                   |                    |                      | PP=4.0+ tsf             |
| - with organic :<br>fragments       | soil, with an organic                    | odor, and wood                                  |                  | 5 - 3                           | ss          |                                       |             | 3-4-5-                                       |                                           | 18.4             |                   |                    |                      |                         |
| ×                                   |                                          |                                                 |                  |                                 | -           | Щ                                     |             | [9]                                          |                                           | 10.1             |                   |                    |                      |                         |
| ×                                   |                                          |                                                 |                  | - 4                             | ss          |                                       |             | 4-5-50/5"-                                   |                                           | 19.6             |                   |                    |                      |                         |
| ×                                   |                                          |                                                 |                  |                                 |             | Ĥ                                     |             | [ 50/5"]                                     |                                           |                  |                   |                    |                      |                         |
| 🗙 - with wood fra                   | gments, trace veiny                      | roots, light reddish                            |                  |                                 | SH          |                                       |             |                                              |                                           |                  |                   |                    |                      |                         |
| brown                               |                                          | -                                               |                  | _ 5                             |             |                                       |             |                                              |                                           |                  |                   |                    |                      |                         |
| $\bigotimes$                        |                                          |                                                 |                  | 6                               | SS          | X                                     |             | 7-7-9-<br>[ 16]                              |                                           | 17.6             |                   |                    |                      | PP=4.0+ tsf             |
| $\bigotimes$                        |                                          |                                                 | 45.0             |                                 |             |                                       |             |                                              |                                           |                  |                   |                    |                      |                         |
| FILL - LEAN C                       | LAY, Brown, with w                       | ood fragments                                   | 15.0             | 157                             | ss          | X                                     |             | 5-6-8-<br>[ <i>14</i> ]                      |                                           | 20.6             |                   |                    |                      |                         |
| FAT CLAY (CI                        | H), Reddish brown, S                     | STIFF to VERY                                   | 17.0             | _                               |             |                                       |             |                                              |                                           |                  |                   |                    |                      |                         |
| STIFF                               | ,, , , , , , , , , , , , , , , , , , , , |                                                 |                  |                                 |             |                                       |             |                                              |                                           |                  |                   |                    |                      |                         |
|                                     |                                          |                                                 |                  | 20                              |             |                                       |             |                                              | 0.00                                      | 04 7             | ~~                | 00                 |                      |                         |
|                                     |                                          |                                                 |                  | 8                               | SH          |                                       |             |                                              | 3.33                                      | 31.7             | 68                | 22                 |                      |                         |
|                                     |                                          |                                                 |                  | 9                               | ss          | Χ                                     |             | 6-6-7-                                       |                                           | 42.0             |                   |                    |                      | PP=4.0 tsf              |
|                                     |                                          |                                                 |                  | -                               |             |                                       |             | [ 13]                                        |                                           |                  |                   |                    |                      |                         |
| - trace sand                        |                                          |                                                 |                  | 25                              | SS          |                                       |             | 5-6-6-                                       |                                           | 31.4             |                   |                    |                      | PP=3.0 tsf              |
|                                     |                                          |                                                 |                  |                                 |             | Α                                     |             | [ 12]                                        |                                           |                  |                   |                    |                      |                         |
|                                     |                                          |                                                 |                  |                                 |             |                                       |             |                                              |                                           |                  |                   |                    |                      |                         |
|                                     |                                          |                                                 |                  |                                 |             |                                       |             |                                              |                                           |                  |                   |                    |                      |                         |
|                                     |                                          |                                                 |                  | 30 - 11                         | SH          |                                       |             |                                              | 0.31                                      | 35.9             |                   |                    |                      |                         |
|                                     |                                          |                                                 |                  |                                 |             | 7                                     |             | E 7 7                                        |                                           | 20.0             |                   |                    |                      |                         |
| - yellowish bro                     | wn, with sand                            |                                                 |                  | 12                              | SS          | Д                                     | Ŧ           | 5-7-7-<br>[ 14 ]                             |                                           | 29.9             |                   |                    |                      | PP=1.0 tsf              |
| /                                   |                                          |                                                 |                  |                                 |             |                                       |             |                                              |                                           |                  |                   |                    |                      |                         |
| Sample Typ                          |                                          | Depth to Ground                                 |                  |                                 |             |                                       | Bori        | ng Method                                    |                                           |                  |                   |                    |                      |                         |
| SPT - Standard Per                  |                                          | loted on Drilling Tool<br>At Completion (in aug |                  | <u>32.7</u> ft.<br>ft.          |             | A - ⊢                                 | lollo       | w Stem Aug                                   |                                           |                  |                   |                    |                      |                         |
| H - Pressed She<br>A - Continuous F | İby Tube 🖉 🖌                             | At Completion (open l                           |                  | n.<br>ft.                       |             |                                       |             | nuous Fligh<br>ìg Casing                     | t Auge                                    | rs               |                   |                    |                      |                         |
| C - Rock Core                       | A I                                      | After <u></u> hours                             |                  | ft.                             |             | - N                                   | lud l       | Drilling<br>Ial Hammer                       |                                           |                  |                   |                    |                      |                         |
| U - Cuttings<br>T - Continuous T    |                                          | tter <u></u> hours<br>Cave Depth                | -                | ft.<br>ft.                      |             |                                       |             | natic Hamm                                   | er                                        |                  |                   |                    | Pa                   | ge <b>1</b> of <b>2</b> |



# **TEST BORING LOG**

| _IENT                               | Southeas                                       | t Power Corpora                                | tion             |                          |             |                                       |             | BORING #                                          | ŧ                                         | ST                 |                   |                    |                      |         |
|-------------------------------------|------------------------------------------------|------------------------------------------------|------------------|--------------------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|---------|
| ROJECT NAME                         | LG&E-KU                                        | Ford Glendale 3                                | 45 kV            | Transm                   | ssic        | n                                     |             | JOB #                                             |                                           | LO                 |                   |                    | 204:                 | 3       |
| ROJECT LOCAT                        | ON Hodgenvi                                    | Ile Road West                                  |                  |                          |             |                                       |             | DRAWN B                                           | SY                                        | <b>R</b> . (       | Orti              | İZ                 |                      |         |
|                                     | Glendale,                                      | KY                                             |                  |                          |             |                                       |             | APPROVE                                           | D BY                                      | Τ. /               | And               | Ires               | ;                    |         |
|                                     | DRILLING and S                                 | AMPLING INFORMA                                | TION             |                          |             |                                       |             |                                                   |                                           | TES                | T DA              | ТА                 |                      |         |
| Date Started                        | 4/1/22                                         | Hammer Wt.                                     |                  | <b>140</b> lbs.          |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
| -<br>Date Completed                 |                                                |                                                |                  |                          |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     | J. Burdette                                    |                                                |                  |                          |             |                                       |             | st                                                |                                           |                    |                   |                    | Sieve                |         |
| Inspector                           | P. Presnell                                    | Rock Core Dia.                                 |                  |                          |             |                                       |             | L Te                                              | £                                         |                    |                   |                    |                      |         |
| Boring Method                       | HSA, AH                                        | Shelby Tube OD                                 |                  |                          |             | ics<br>hics                           |             | /foot                                             | ed<br>rengt                               | nt %               |                   |                    | g #2(                |         |
| <u>г</u>                            |                                                |                                                |                  |                          | be l        | Sampler Graphics<br>Recovery Graphics | er          | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 |         |
|                                     | SOIL CLASSIFICA                                | ATION                                          | ۶                | Ð                        | Sample Type | er G<br>ery (                         | Groundwater | ard F<br>le (b                                    | Unco<br>essiv                             | E C                | Limi              | Lim                | nt Pa                | sk      |
| Latituda (da.                       | (continued)                                    |                                                | Stratum<br>Depth | Depth<br>Scale<br>Sample | ampl        | ampl<br>ecov                          | roun        | -Valu                                             | u-tsf<br>mpr                              | loistu             | quid              | lastic             | ercel                | Remarks |
|                                     | CH), Reddish brown                             | de (deg): -85.862444                           | ΩŌ               |                          | : ທັ<br>SS  | ν<br>M                                | G           | び之<br>6-9-10-                                     | đŭ                                        | ≥<br>33.9          |                   |                    | م                    | Ľ.      |
| STIFF                               |                                                |                                                |                  | 13                       | - 33        | Д                                     |             | [ 19 ]                                            |                                           | 33.9               |                   |                    |                      |         |
| - dark browr                        | n to reddish brown                             |                                                |                  |                          |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     |                                                |                                                |                  |                          |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     |                                                |                                                |                  | 40 - 14                  | ss          |                                       |             | 2-3-WOH-                                          | 0.31                                      | 22.3               |                   |                    |                      |         |
|                                     |                                                |                                                |                  |                          | _<br>SH     |                                       |             | [3]                                               |                                           |                    |                   |                    |                      |         |
|                                     |                                                |                                                |                  | 15                       |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     |                                                |                                                |                  | =                        |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
| - with limest                       | one fragments                                  |                                                |                  | 45 _ 16                  | ss          | X                                     |             | WOH-18-6-                                         |                                           | 41.0               |                   |                    |                      |         |
|                                     |                                                |                                                |                  | -                        | -           |                                       |             | [ 24 ]                                            |                                           |                    |                   |                    |                      |         |
|                                     |                                                |                                                |                  | -                        |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     |                                                |                                                | 50.0             | 50 - 19                  |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     | ED LIMESTONE                                   |                                                | 50.0<br>51.0     | 50 <u>18</u><br>17       | SH<br>SS    |                                       |             | 50/0"<br>[ <i>50/0"</i> ]                         |                                           |                    |                   |                    |                      |         |
| LIMESTONI                           | E, Light gray, fine gra                        | iined, slightly                                |                  |                          | RC          |                                       |             | [00/0]                                            |                                           |                    |                   |                    |                      |         |
| - with a 4-ind                      | ch highly fractured la                         | yer                                            |                  | RC                       | 1           |                                       |             |                                                   |                                           |                    |                   |                    |                      | RQD=68% |
|                                     |                                                |                                                |                  | 55 —                     |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     | ch moderately fractur<br>ot moderately fractur | •                                              |                  |                          | RC          | H                                     |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     | or moderatery fracture                         |                                                |                  |                          |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     |                                                |                                                |                  |                          | 2           |                                       |             |                                                   |                                           |                    |                   |                    |                      | RQD=43% |
| H                                   |                                                |                                                |                  | 60 _                     |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     | Boring Terminated a                            | t 61 feet                                      | 61.0             |                          | 1           |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     | U                                              |                                                |                  |                          |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     |                                                |                                                |                  |                          |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     |                                                |                                                |                  |                          |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     |                                                |                                                |                  |                          |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     |                                                |                                                |                  |                          |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
|                                     |                                                |                                                |                  |                          |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |         |
| Sample T                            | уре                                            | Depth to Ground                                | water            |                          | 1           |                                       |             |                                                   |                                           |                    | 1                 | 1                  | 1                    | 1       |
| SPT - Standard F                    | Penetration Test                               | Noted on Drilling Tool                         | s                | <b>32.7</b> ft.          | ц           |                                       |             | <u>ing Method</u><br>w Stem Aug                   | ere                                       |                    |                   |                    |                      |         |
| SS - Driven Spli<br>SH - Pressed Sl | nelby Tube                                     | At Completion (in aug<br>At Completion (open l |                  | <u></u> ft.<br>ft.       | CF          | A - C                                 | Cont        | inuous Flight                                     |                                           | rs                 |                   |                    |                      |         |
| CA - Continuous<br>RC - Rock Core   |                                                | After hours                                    | -                | II.<br>ft.               | DC<br>MI    | ) - N                                 | ∕lud        | ng Casing<br>Drilling                             |                                           |                    |                   |                    |                      |         |
| CU - Cuttings                       | -                                              | After hours                                    | _                | ft.                      | MI          | H - N                                 | /lanı       | ual Hammer<br>matic Hamm                          |                                           |                    |                   |                    |                      |         |



| IENT                                    | Southeast              | Power Corporat                                  | tion             |                                 |             |                                       |             | BORING #                                                                          | ¥                                         | ST               | R 1               | 7 L1               | <u> </u>             |                  |
|-----------------------------------------|------------------------|-------------------------------------------------|------------------|---------------------------------|-------------|---------------------------------------|-------------|-----------------------------------------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------|------------------|
| ROJECT NAME                             | LG&E-KU                | Ford Glendale 3                                 | 45 kV            | Transmis                        | ssio        | า                                     |             | JOB #                                                                             |                                           | LO               | UG                | E22                | :043                 | 3                |
| ROJECT LOCATIO                          | N Hodgenvil            | le Road West                                    |                  |                                 |             |                                       |             | DRAWN E                                                                           | BY                                        | Z. 1             | Nicł              | nols               | ;                    |                  |
|                                         | Glendale,              | KY                                              |                  |                                 |             |                                       | _           | APPROVE                                                                           | ED BY                                     | <b>R</b> . (     | Orti              | Z                  |                      |                  |
|                                         | DRILLING and SA        | AMPLING INFORMA                                 | TION             | Г                               |             |                                       |             |                                                                                   |                                           | TES              | T DA              | TA                 |                      |                  |
| Date Started                            | 3/24/22                | Hammer Wt.                                      |                  | <b>140</b> lbs.                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                  |
| Date Completed                          | 3/24/22                | Hammer Drop _                                   |                  | <b>30</b> in.                   |             |                                       |             |                                                                                   |                                           |                  |                   |                    | 0                    |                  |
| Drill Foreman                           | J. Burdette            | Spoon Sampler C                                 | D                | <b>2</b> in.                    |             |                                       |             | est                                                                               |                                           |                  |                   |                    | Sieve                |                  |
| Inspector                               | P. Presnell            | Rock Core Dia.                                  |                  | <b>2</b> in.                    |             |                                       |             | on T                                                                              | gth (                                     | . 0              |                   |                    |                      |                  |
| Boring Method _                         | HSA, AH                | Shelby Tube OD                                  |                  | <b>3</b> in.                    |             | Sampler Graphics<br>Recovery Graphics |             | Standard Penetration Test<br>Blows per 6"<br>[ <i>N-Value</i> ] <i>blows/foot</i> | Qu-tsf Unconfined<br>Compressive Strength | tent %           | (T-               | PL)                | Percent Passing #200 |                  |
|                                         | SOIL CLASSIFICA        | TION                                            |                  |                                 | Sample Type | - Grap                                | Groundwater | d Pen<br>er 6"<br>e ] <i>bl</i> (                                                 | sive \$                                   | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Pass                 | ø                |
| SUR                                     | FACE ELEVATION         | (ft): 745.2                                     | th<br>th         | th<br>le                        | alqr        | over                                  | hud         | ular<br>vs p<br>valu                                                              | sf Ur<br>pres                             | sture            | id L              | stic L             | cent                 | Remarks          |
|                                         |                        | de (deg): -85.860813                            | Stratum<br>Depth | Depth<br>Scale<br>Sample<br>No. | San         | San<br>Rec                            | Gro         | Blov<br>[ N-                                                                      | Qu-t;<br>Com                              | Moi              | Liqu              | Plas               | Perc                 | Ren              |
|                                         |                        | ~                                               | 0.9              | <u> </u>                        | SS          | M                                     |             | 3-4-5-                                                                            |                                           | 21.1             |                   |                    |                      | PP=4.5+ tsf      |
|                                         | LAY, Brown and Re      | ddish brown, with                               | 1.1              | 2                               | SS          | $\forall$                             |             | [9]<br>7-8-11-                                                                    |                                           | 24.7             |                   |                    |                      | PP=3.0 tsf       |
| TOPSOIL, with                           |                        | ſ                                               | 2.5              |                                 |             | μ                                     |             | [ 19 ]                                                                            |                                           | -                |                   |                    |                      |                  |
|                                         | CL), Reddish brown     | , VERY STIFF                                    |                  | <u>ہ</u> _ 3                    | SS          | $\mathbf{\nabla}$                     |             | 7-7-8-                                                                            |                                           | 21.2             |                   |                    |                      | PP=4.5+ tsf      |
|                                         |                        |                                                 |                  | 5 - 3                           |             | $\square$                             |             | [ 15]                                                                             |                                           |                  |                   |                    |                      |                  |
| - transition to r                       | ed, with limestone f   | ragments to 9 feet                              |                  | 4                               | SS          | $\overline{\mathbf{X}}$               |             | 5-7-8-                                                                            |                                           | 23.0             |                   |                    |                      | PP=4.5 tsf       |
|                                         |                        |                                                 |                  |                                 |             | $\square$                             |             | [ 15]                                                                             |                                           |                  |                   |                    |                      |                  |
| - with black ox                         | idation nodules        |                                                 |                  | 10 - 5                          | SS          | $\mathbf{X}$                          |             | 4-5-10-                                                                           |                                           | 26.0             |                   |                    |                      | PP=4.5 tsf       |
|                                         |                        |                                                 |                  |                                 | SH          |                                       |             | [ 15]                                                                             | 0.80                                      | 21.6             | 32                | 18                 |                      |                  |
|                                         |                        |                                                 |                  | _ 6                             |             |                                       |             |                                                                                   | 0.00                                      | 20               |                   |                    |                      |                  |
| FAT CLAY (CI                            | H) with sand Redd      | ish brown, SOFT to                              | 13.0             | -                               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                  |
| STIFF                                   | i), mir cana, ricua    |                                                 |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                  |
|                                         |                        |                                                 |                  | 157                             | SS          | X                                     |             | 5-4-5-                                                                            |                                           |                  |                   |                    |                      | PP=3.0 tsf       |
|                                         |                        |                                                 |                  | -                               |             |                                       |             | [9]                                                                               |                                           |                  |                   |                    |                      |                  |
|                                         |                        |                                                 |                  | -                               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                  |
|                                         |                        |                                                 |                  | 20                              |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                  |
|                                         |                        |                                                 |                  | 20 8                            | SS          | X                                     |             | 4-4-4-                                                                            |                                           | 31.8             |                   |                    |                      | PP=2.5 tsf       |
|                                         |                        |                                                 |                  | 9                               | SH          |                                       |             | [8]                                                                               | 1.44                                      | 31.9             |                   |                    |                      |                  |
|                                         |                        |                                                 |                  | - 9                             |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                  |
|                                         |                        |                                                 |                  | 25                              |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                  |
| - with limeston                         | e fragments            |                                                 |                  | <sup>23</sup> = 10              | SS          | X                                     |             | 5-5-7-<br>[ 12]                                                                   |                                           | 34.3             |                   |                    |                      | PP=1.5 tsf       |
|                                         |                        |                                                 |                  | _                               |             |                                       |             | [ 12]                                                                             |                                           |                  |                   |                    |                      |                  |
|                                         |                        |                                                 |                  | -                               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                  |
|                                         |                        |                                                 |                  | 30                              |             | Ш                                     |             |                                                                                   |                                           |                  |                   |                    |                      |                  |
|                                         |                        |                                                 |                  |                                 | SS          |                                       | •           | 3-1-2-<br>[3]                                                                     |                                           | 57.1             |                   |                    |                      | PP=0.5 tsf       |
| - groundwater                           | on spoon at about 3    | 31 feet                                         |                  |                                 |             |                                       |             | [ ]                                                                               |                                           |                  |                   |                    |                      |                  |
|                                         |                        |                                                 |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                  |
|                                         |                        |                                                 |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |                      |                  |
| Sample Typ                              |                        | Depth to Ground                                 |                  |                                 |             |                                       | Bori        | ng Method                                                                         |                                           |                  |                   |                    |                      |                  |
| PT - Standard Per<br>S - Driven Split S |                        | Noted on Drilling Tool<br>At Completion (in aug |                  | <u>31.0</u> ft.<br>ft.          |             | A - ⊢                                 | lollo       | w Stem Aug                                                                        |                                           |                  |                   |                    |                      |                  |
| H - Pressed Shel                        | İby Tube 🚡 ,           | At Completion (in aug                           |                  | n.<br>ft.                       |             |                                       |             | nuous Fligh<br>ng Casing                                                          | t Auge                                    | ers              |                   |                    |                      |                  |
| A - Continuous F<br>C - Rock Core       | night Auger <u>▼</u> A | After hours                                     | · _              | ft.                             | MD          | - N                                   | /lud        | Drilling                                                                          |                                           |                  |                   |                    |                      |                  |
| U - Cuttings<br>T - Continuous T        |                        | After <u></u> hours<br>Cave Depth               | _                | ft.                             |             |                                       |             | ial Hammer<br>natic Hamm                                                          |                                           |                  |                   |                    | Do                   | ge <b>1</b> of 2 |
|                                         | uvo 128 (              | ave Depiñ                                       |                  | ft                              |             |                                       |             |                                                                                   |                                           |                  |                   |                    | i di                 |                  |

--\_ ft.



## **TEST BORING LOG**

| CLIENT                               | Southeast              | Power Corpora                            | tion             |                                 |             |                                                             | BORING                                                              | #                                         | ST               | <mark>R 1</mark>  | 7 L'               | 1                    |                         |
|--------------------------------------|------------------------|------------------------------------------|------------------|---------------------------------|-------------|-------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------|-------------------------|
| PROJECT NAME                         | LG&E-KU                | Ford Glendale 3                          | 45 kV            | <sup>′</sup> Transmi            | ssion       | 1                                                           | JOB#_                                                               |                                           | LO               | UG                | E22                | 2043                 | 3                       |
| PROJECT LOCATIO                      | N Hodgenvil            | lle Road West                            |                  |                                 |             |                                                             | DRAWN                                                               | BY                                        | Z. I             | Nicl              | hols               | 5                    |                         |
|                                      | Glendale,              | KY                                       |                  |                                 |             |                                                             | APPROV                                                              | ED BY                                     | <b>R</b> . (     | Orti              | İZ                 |                      |                         |
|                                      | DRILLING and S         | AMPLING INFORMA                          | TION             |                                 |             |                                                             | _                                                                   |                                           | TES              | T DA              | TA                 |                      |                         |
| Date Started                         | 3/24/22                | Hammer Wt.                               |                  | <b>140</b> lbs.                 |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
| Date Completed                       | 3/24/22                | Hammer Drop                              |                  | <b>30</b> in.                   |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
| Drill Foreman                        | J. Burdette            | Spoon Sampler C                          | DD               | <b>2</b> in.                    |             |                                                             | est                                                                 |                                           |                  |                   |                    | Sieve                |                         |
| Inspector                            |                        | Rock Core Dia.                           |                  |                                 |             | s                                                           | ion T<br>oot                                                        | gth                                       | %                |                   |                    | 200                  |                         |
| Boring Method                        | HSA, AH                | Shelby Tube OD                           |                  | <u>3</u> in.                    |             | Sampler Graphics<br><u>Recovery Graphics</u><br>Groundwater | Standard Penetration Test<br>Blows per 6"<br>[ N-Value ] blows/foot | Qu-tsf Unconfined<br>Compressive Strength | itent 6          | (LL)              | (PL)               | Percent Passing #200 |                         |
|                                      | SOIL CLASSIFICA        | TION                                     | _                |                                 | Sample Type | Sampler Gra<br>Recovery Gra<br>Groundwater                  | rd Per<br>ber 6"<br><i>b</i>                                        | ncont                                     | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | t Pass               | S                       |
|                                      | (continued)            |                                          | Stratum<br>Depth | Depth<br>Scale<br>Sample<br>No. | mple .      | mple<br>cove                                                | andai<br>ows p                                                      | tsf U<br>npre                             | istur            | uid L             | astic              | rcent                | Remarks                 |
|                                      |                        | Ide (deg): -85.860813                    | Bgr              | N Sa Sa Da                      |             | S a c                                                       |                                                                     | <u>şş</u>                                 |                  | Lig               | Ē                  | Ре                   |                         |
| STIFF                                | ,                      | lish brown, SOFT to                      |                  | 12                              | SS          | Х                                                           | WOH-<br>WOH-                                                        |                                           | 86.7             |                   |                    |                      | PP=0 tsf                |
| - transition to                      | yellowish brown and    | d reddish brown                          |                  |                                 |             |                                                             | WOH-<br>[ <i>WOH</i> ]                                              |                                           |                  |                   |                    |                      |                         |
|                                      |                        |                                          |                  |                                 |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
|                                      |                        |                                          |                  | 40 _ 13                         | ss          |                                                             | 1-50/1"                                                             |                                           | 81.1             |                   |                    |                      | PP=0 tsf                |
| SHALE, Dark                          | gray, clay stained     |                                          | 41.5             | ] ]                             |             |                                                             | [ 50/1"]                                                            |                                           |                  |                   |                    |                      |                         |
|                                      |                        |                                          | 43.4             |                                 | RC          |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
|                                      | , Light gray, clay sta | ined to 47 feet                          |                  | 45 - RC-                        |             |                                                             |                                                                     |                                           |                  |                   |                    |                      | RQD=72%                 |
|                                      |                        |                                          |                  |                                 |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
|                                      |                        |                                          |                  |                                 | RC          |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
|                                      | urn at 48 feet, mode   | erately fractured                        |                  |                                 |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
| from about 48                        | 3 10 49 1661           |                                          |                  | 50 <del>- RC-2</del>            | 2           |                                                             |                                                                     |                                           |                  |                   |                    |                      | RQD=73%                 |
|                                      |                        |                                          |                  | -                               |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
|                                      |                        |                                          |                  |                                 | RC          |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
|                                      |                        |                                          |                  | <br>                            | 3           |                                                             |                                                                     |                                           |                  |                   |                    |                      | RQD=92%                 |
|                                      |                        |                                          |                  | 55                              |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
|                                      |                        |                                          |                  |                                 | RC          |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
| - with a 6-incl                      | n moderately fracture  | ed layer                                 |                  |                                 |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
|                                      |                        |                                          |                  | 60 <del>- RC-</del> 4           | 1           |                                                             |                                                                     |                                           |                  |                   |                    |                      | RQD=85%                 |
|                                      |                        |                                          | 62.0             | -                               |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
| E                                    | Boring Terminated at   | t 62 feet                                | 02.0             |                                 |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
|                                      |                        |                                          |                  |                                 |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
|                                      |                        |                                          |                  |                                 |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
|                                      |                        |                                          |                  |                                 |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
|                                      |                        |                                          |                  |                                 |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
|                                      |                        |                                          |                  |                                 |             |                                                             |                                                                     |                                           |                  |                   |                    |                      |                         |
| Sert - Standard Pe                   | -                      | Depth to Ground<br>Noted on Drilling Too |                  | <u>31.0</u> ft.                 |             |                                                             | oring Method                                                        |                                           |                  |                   |                    |                      |                         |
| SS - Driven Split<br>SH - Pressed Sh | Spoon 🛓                | At Completion (in aug                    | lers)            | ft.                             |             |                                                             | low Stem Aug<br>ntinuous Fligh                                      |                                           | ers              |                   |                    |                      |                         |
| CA - Continuous                      | Flight Auger 👻 '       | At Completion (open<br>After hours       |                  | ft.<br>ft.                      | DC          | - Driv                                                      | /ing Casing<br>d Drilling                                           |                                           |                  |                   |                    |                      |                         |
| RC - Rock Core<br>CU - Cuttings      | Ţ,                     | After <u></u> hours                      | _                | <u> </u>                        | MH          | - Ma                                                        | nual Hammei                                                         |                                           |                  |                   |                    |                      | _                       |
| CT - Continuous                      | Tube 📓                 | Cave Depth                               |                  | ft.                             | AH          | - Aut                                                       | omatic Hamn                                                         | ner                                       |                  |                   |                    | Pa                   | ge <b>2</b> of <b>2</b> |



| PROJECT NAME     LG&E-KU Ford Giendale 345 kV Transmission     JOB #     LOUGE22043       PROJECT LOCATION     Hodgenville Read West     DRAWN BY     Z. Nichols       Giendale, KY     DRULLING and SAMPLING INFORMATION     TEST DATA       Date Started     3/28/22     Hammer Vic.     140     to.       Diff. Foreman     M. Smith     Spongarder OD     2. in.     in.       Boring Method     HSA     Shelby Tube OD     3. in.     in.       SURCLASSFICATION (It): 74.5     Wigt Gig Big Big Big Big Big Big Big Big Big B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CLIE | NT              | South         | east P    | ower Corpora       | ation    |            |            |       |                 |       | BORING #          | ŧ            | ST         | R 1 <sup>.</sup> | 7 L2   | 2     |                             |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|---------------|-----------|--------------------|----------|------------|------------|-------|-----------------|-------|-------------------|--------------|------------|------------------|--------|-------|-----------------------------|---|
| Glendale, KY     DEPICUED BY R. Ortiz       DETILLING and SAMPLING INFORMATION       TEST DATA       Date Completed     328/22     Hammer MV.     140     Iss       Date Completed     328/22     Hammer MV.     140     Iss       Date Completed     328/22     Hammer MV.     140     Iss       Difl Foreman     M. Smith     Spoon Sampler OD     1.     Iss       Difl Foreman     M.Smith     Spoon Sampler OD     3.     Iss       Solit CLASSIFICATION     Iss     Iss     Iss     Iss       Solit CLASSIFICATION     Iss     Iss     Iss     Iss       Solit CLASSIFICATION     Iss     Iss     Iss     Iss       Solit CLASSIFICATION     Iss     Iss     Iss     Iss       Solit CLASSIFICATION     Iss     Iss     Iss     Iss       Solit CLASSIFICATION     Iss     Iss     Iss     Iss       BLANK AUGERING-NO SAMPLES OBTAINED     Iss     Iss     Iss     Iss       Introductor     Iss     Iss     Iss     Iss     Iss       Introductor     Iss     Iss     Iss     Iss     Iss       Introductor     Iss     Iss     Iss     Iss     Iss <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>/ Tran</td> <td>smis</td> <td>ssior</td> <td>ו</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                 |               |           | -                  |          | / Tran     | smis       | ssior | ו               |       |                   |              |            |                  |        |       | 8                           |   |
| TEST DATA         TEST DATA         TEST DATA         Date Starled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |               |           |                    |          |            |            |       |                 |       |                   |              |            | Nicl             | nols   | 5     |                             |   |
| Date Started     3/28/22     Hammer Wt.     140     bs.       Date Completed     3/28/22     Hammer Drop     30     in.       Drill Foreman     M. Smith     Spoon Sampler OD     2     in.       Boring Method     HSA     Shelty Tube OD     3     in.       SOIL CLASSIFICATION     Image to the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of                                                                                       |      |                 | Glenda        | ale, K    | Y                  |          |            |            |       |                 | _     | APPROVE           | ED BY_       | <b>R</b> . | Orti             | z      |       |                             |   |
| Date Completed     3/28/22     Hammer Drop     30     in.       Drill Foreman     M. Smith     Spoon Sampler OD     2     in.       Boring Method     HSA     Shetby Tube OD     3     in.       SURFACE ELEVATION (ft): 744.5     up to the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second                            |      |                 | DRILLING a    | Ind SAN   | IPLING INFORM      | ATION    |            |            |       |                 |       |                   |              | TES        | T DA             | TA     |       |                             |   |
| Drill Foreman     M. Smith     Spoon Sampler OD     2       Inspector     J. Semmer     Rock Core Dia.     2       Boring Method     HSA     Shelby Tube OD     3       SOL CLASSIFICATION     Image diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagona diagonal diagonal diagona diagonal diagonal diagonal diag | D    | ate Started     | 3/28/22       |           | Hammer Wt.         |          | 140        | lbs.       |       |                 |       |                   |              |            |                  |        |       |                             |   |
| BLANK AUGERING- NO SAMPLES OBTAINED       10       10       10         5       10       10       11         10       12       20       14       14         10       15       15       14       14       14         10       15       15       15       14       14       14         10       15       15       14       14       14       14         10       15       15       14       15       15       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D    | ate Completed   | 3/28/22       |           | Hammer Drop        |          | 30         | in.        |       |                 |       |                   |              |            |                  |        |       |                             |   |
| BLANK AUGERING- NO SAMPLES OBTAINED     10     10     10       5     10     10     115       10     15     12       20     14     14       10     15       115     15       120     14       130     15       140     15       15     16       16     17       17     18       18     19       19     10       10     15       115     15       120     14       130     15       14     14       15     14       15     15       16     16       17     16       18     16       19     16       10     16       10     16       115     16       120     16       130     16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D    | rill Foreman    | M. Smith      |           | Spoon Sampler      | OD       | 2          | in.        |       |                 |       | est               |              |            |                  |        | Sieve |                             |   |
| BLANK AUGERING- NO SAMPLES OBTAINED       10       10       10         5       10       10       11         10       12       20       14       14         10       15       15       14       14       14         10       15       15       15       14       14       14         10       15       15       14       14       14       14         10       15       15       14       15       15       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                 |               |           |                    |          |            |            |       |                 |       | an T              | gth          | <b>%</b>   |                  |        | 200   |                             |   |
| BLANK AUGERING- NO SAMPLES OBTAINED       10       10       10         5       10       10       11         10       12       20       14       14         10       15       15       14       14       14         10       15       15       15       14       14       14         10       15       15       14       14       14       14         10       15       15       14       15       15       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B    | oring Method    | HSA           |           | Shelby Tube OD     | )        | 3          | in.        |       | ohics<br>aphics |       | netrati<br>vs/foc | Stren        |            | (T               | PL)    | ing # |                             |   |
| BLANK AUGERING- NO SAMPLES OBTAINED     10     10     10       5     10     10     115       10     15     12       20     14     14       10     15       115     15       120     14       130     15       140     15       15     16       16     17       17     18       18     19       19     10       10     15       115     15       120     14       130     15       14     14       15     14       15     15       16     16       17     16       18     16       19     16       10     16       10     16       115     16       120     16       130     16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                 |               |           |                    |          |            |            | Type  | y Grap          | vater | d Pen<br>(blow    | sive \$      | Con        | mit (L           | imit ( | Pass  | (0                          |   |
| BLANK AUGERING- NO SAMPLES OBTAINED     10     10     10       5     10     10     115       10     15     12       20     14     14       10     15       115     15       120     14       130     15       140     15       15     16       16     17       17     18       18     19       19     10       10     15       115     15       120     14       130     15       14     14       15     14       15     15       16     16       17     16       18     16       19     16       10     16       10     16       115     16       120     16       130     16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | SUR             | FACE ELEVA    | TION (f   | it): 744.5         | th m     | le th      | nple       | nple  | npler           | \pun  | ndar<br>(alue     | sf Ur        | sture      | lid Li           | stic L | cent  | nark                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | Latitude (deg): | 37.629256, Lo | ongitude  | e (deg): -85.86070 | Der Stra | Dep<br>Sca | Sar<br>No. | Sar   | Rec             | Gro   | Sta<br>N-V        | Cort<br>Cort | Moi        | Liqu             | Pla    | Per   | Rer                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | BLANK AUGE      | RING- NO SA   | MPLES     | OBTAINED           |          | -          |            |       |                 |       |                   |              |            |                  |        |       |                             | ſ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | _          |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | -          |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | 5 -        |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | -          |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | _          |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | -          |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | 10 -       |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          |            |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3    |                 |               |           |                    |          | _          |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | -          |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | 15 -       |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | -          |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3    |                 |               |           |                    |          | _          |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | -          |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | 20 -       |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          |            |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _    |                 |               |           |                    |          | _          |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | -          |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | 25 -       |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          |            |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          | _          |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ]    |                 |               |           |                    |          | -          |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _    |                 |               |           |                    |          | 30 -       |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1    |                 | Augor Defus   | l at 04 4 | iaat               | 31.0     |            |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 | Auger Refusa  | n at 31 f | eel                |          |            |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          |            |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |               |           |                    |          |            |            |       |                 |       |                   |              |            |                  |        |       |                             |   |
| Sample Type Depth to Groundwater Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~-   |                 |               | <b>.</b>  |                    |          |            | ~          |       |                 | Bori  | ing Method        |              |            |                  |        |       |                             |   |
| SPT - Standard Penetration Test  Noted on Drilling Tools  SS - Driven Split Spoon  At Completion (in suggers)  HSA - Hollow Stem Augers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                 |               |           | -                  |          | -          |            | HSA   | ۰<br>۲ - H      | lollo | w Stem Aug        | lers         |            |                  |        |       |                             |   |
| SH - Pressed Shelby Tube<br>CA - Continuous Flight Augers<br>At Completion (open hole)ft. DC - Driving Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SH   | I - Pressed She | İby Tube      |           |                    |          |            |            |       |                 |       |                   | t Auge       | rs         |                  |        |       |                             |   |
| RC - Rock Core <u>V</u> After <u></u> hours <u></u> ft. MD - Mud Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RC   | C - Rock Core   | iigint Augel  | ⊈ Aft     | er hour            | s _      |            | _          | MD    | - N             | 1ud   | Drilling          |              |            |                  |        |       |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 | ube           |           |                    | s _      |            | _          |       |                 |       |                   | er           |            |                  |        | Pad   | ge <b>1</b> of <sup>1</sup> | 1 |



| CLIENT                         | Southeast                                          | Power Corporat                                  | tion             |                                 |             |                                                                                             | BORING                                                              | #                                         | STI              | R 17              | 7 L3               | 3         |                         |
|--------------------------------|----------------------------------------------------|-------------------------------------------------|------------------|---------------------------------|-------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|-----------|-------------------------|
| PROJECT NAM                    | E LG&E-KU                                          | -                                               |                  | Transmis                        | ssion       |                                                                                             | JOB #                                                               |                                           | LO               | UG                | E22                | 043       | 3                       |
| PROJECT LOCA                   | ATION Hodgenvil                                    | le Road West                                    |                  |                                 |             |                                                                                             | DRAWN E                                                             | 3Y                                        | Z. 1             | Nicł              | nols               | 5         |                         |
|                                | Glendale,                                          |                                                 |                  |                                 |             |                                                                                             | APPROVI                                                             | ED BY                                     | R. (             | <u>Orti</u>       | Z                  |           |                         |
|                                | DRILLING and SA                                    | AMPLING INFORMA                                 | TION             |                                 |             |                                                                                             |                                                                     |                                           | TES              | T DA              | TA                 |           |                         |
| Date Started                   | 3/24/22                                            | Hammer Wt.                                      |                  | <b>140</b> lbs.                 |             |                                                                                             |                                                                     |                                           |                  |                   |                    |           |                         |
| Date Comple                    | ted 3/25/22                                        | Hammer Drop                                     |                  | <b>30</b> in.                   |             |                                                                                             |                                                                     |                                           |                  |                   |                    |           |                         |
| Drill Foreman                  | J. Burdette                                        | Spoon Sampler C                                 | D                | <b>2</b> in.                    |             |                                                                                             | est                                                                 |                                           |                  |                   |                    | Sieve     |                         |
| Inspector                      | P. Presnell                                        | Rock Core Dia.                                  |                  | <b>2</b> in.                    |             |                                                                                             | on T                                                                | jt                                        | <b>、</b> 0       |                   |                    | #200 9    |                         |
| Boring Metho                   | d HSA, AH                                          | Shelby Tube OD                                  |                  | <u>3</u> in.                    |             | sampler Graphics<br>Recovery Graphics<br>Groundwater                                        | Standard Penetration Test<br>Blows per 6"<br>[ N-Value ] blows/foot | Qu-tsf Unconfined<br>Compressive Strength | itent %          | (TT)              | (PL)               | sing #2   |                         |
|                                | SOIL CLASSIFICA                                    | TION                                            | _                |                                 | Sample Type | Sampler Gra<br>Recovery Gra<br>Groundwater                                                  | rd Per<br>ber 6"<br><i>Jbl</i>                                      | nconf<br>ssive                            | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | t Passing | S                       |
|                                | SURFACE ELEVATION                                  | (ft): 746.3                                     | Stratum<br>Depth | Depth<br>Scale<br>Sample<br>No. | mple        | ove<br>cove                                                                                 | ws p<br>-Valu                                                       | tsf U<br>npre:                            | istun            | uid L             | stic               | Percent   | Remarks                 |
| Latitude (d                    | leg): 37.629339, Longitud                          | de (deg): -85.860626                            |                  | No Sci Del                      | Sai         | n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n | BSta                                                                | a<br>d<br>d                               | Mo               | Liq               | Pla                | Pel       |                         |
|                                | -<br>AY (CL), Brown, MEDIUI                        |                                                 | 0.3              |                                 | ss          | X                                                                                           | 2-3-4-<br>[7]                                                       |                                           | 25.2             |                   |                    |           | PP=1.5 tsf              |
|                                |                                                    | พ จากร เขอปรร                                   |                  |                                 |             |                                                                                             |                                                                     |                                           | 10.4             | 20                | 10                 |           | DD-1.5 tof              |
| -                              |                                                    |                                                 |                  | 2                               | ss          | X                                                                                           | 2-3-3-<br>[6]                                                       |                                           | 19.4             | 36                | 18                 |           | PP=1.5 tsf              |
| - with red                     | dish brown and gray                                |                                                 |                  | $5 \frac{7}{3}$                 | ss          |                                                                                             | 3-3-7-                                                              |                                           | 18.7             |                   |                    |           | PP=2.0 tsf              |
|                                |                                                    |                                                 | 7.0              |                                 | Ľ           |                                                                                             | [ 10 ]                                                              |                                           |                  |                   |                    |           |                         |
| FAT CLA                        | Y (CH), Reddish brown, '                           | VERY STIFF                                      | -                | 4                               | ss          | $\overline{\mathbf{X}}$                                                                     | 4-7-10-                                                             |                                           | 22.5             |                   |                    |           | PP=2.5 tsf              |
|                                |                                                    |                                                 |                  | 10                              |             |                                                                                             | [ 17 ]                                                              |                                           |                  |                   |                    |           |                         |
|                                |                                                    |                                                 |                  | - 5                             | SH          |                                                                                             |                                                                     | 1.12                                      | 20.2             |                   |                    |           |                         |
|                                |                                                    |                                                 |                  |                                 |             |                                                                                             |                                                                     |                                           |                  |                   |                    |           |                         |
| LEAN CL                        | AY (CL), Reddish brown                             | , STIFF                                         | 13.0             | -                               |             |                                                                                             |                                                                     |                                           |                  |                   |                    |           |                         |
|                                |                                                    |                                                 |                  | 15                              | ss          |                                                                                             | 4-4-8-                                                              |                                           | 30.6             |                   |                    |           | PP=3.0 tsf              |
| - transitio                    | n to light brown with shal                         | e fragments                                     | 47.0             | 6                               |             | X                                                                                           | [ 12 ]                                                              |                                           | 30.0             |                   |                    |           | FF = 3.0 tai            |
| FAT CLA                        | Y (CH), Reddish brown a                            |                                                 | 17.0             |                                 |             |                                                                                             |                                                                     |                                           |                  |                   |                    |           |                         |
| STIFF to                       | SHFF                                               |                                                 |                  | -                               |             |                                                                                             |                                                                     |                                           |                  |                   |                    |           |                         |
|                                |                                                    |                                                 |                  | 207                             | SH          |                                                                                             |                                                                     | 1.59                                      | 22.9             |                   |                    |           |                         |
|                                |                                                    |                                                 |                  | - '                             |             | ./                                                                                          | 0.05                                                                |                                           | 04.7             |                   |                    |           |                         |
|                                |                                                    |                                                 |                  | - 8                             | ss          | X                                                                                           | 3-3-5-<br>[8]                                                       |                                           | 31.7             |                   |                    |           | PP=2.0 tsf              |
|                                |                                                    |                                                 |                  | 25                              |             |                                                                                             |                                                                     |                                           |                  |                   |                    |           |                         |
|                                |                                                    |                                                 |                  | 9                               | ss          |                                                                                             | 2-2-3-<br>[5]                                                       |                                           | 27.8             |                   |                    |           | PP=1.5 tsf              |
|                                |                                                    |                                                 |                  |                                 |             |                                                                                             |                                                                     |                                           |                  |                   |                    |           |                         |
|                                |                                                    |                                                 |                  | -                               |             |                                                                                             |                                                                     |                                           |                  |                   |                    |           |                         |
|                                |                                                    |                                                 |                  | 30                              | SH          |                                                                                             |                                                                     | 0.43                                      | 33.9             |                   |                    |           |                         |
|                                |                                                    |                                                 |                  | _ 10                            |             |                                                                                             |                                                                     |                                           |                  |                   |                    |           |                         |
|                                | n to brown with limestone<br>ater at about 32 feet | e fragments,                                    | 33.5             | 11                              | ss          | X                                                                                           | 2-12-50/5"-<br>[ 50/5"]                                             |                                           | 58.8             |                   |                    |           | PP=1.0 tsf              |
|                                | Auger Refusal at 33.                               | .5 feet                                         | 55.5             |                                 |             |                                                                                             |                                                                     |                                           |                  |                   |                    |           |                         |
| Sample                         |                                                    | Depth to Ground                                 |                  |                                 |             | Bo                                                                                          | ring Method                                                         |                                           |                  |                   |                    |           |                         |
| SPT - Standar<br>SS - Driven S |                                                    | Noted on Drilling Tool<br>At Completion (in aug |                  | <u>32.0</u> ft.<br>ft.          |             | - Holl                                                                                      | ow Stem Aug                                                         |                                           |                  |                   |                    |           |                         |
| SH - Pressed                   | Shelby Tube                                        | At Completion (open I                           | nole)            | ft.                             | DC          | - Driv                                                                                      | tinuous Fligh<br>ing Casing                                         | it Auge                                   | ers              |                   |                    |           |                         |
| RC - Rock Co<br>CU - Cuttings  | ore 📱 A                                            | After <u></u> hours                             |                  | <u></u> ft.<br>ft.              | MD<br>MH    | - Muc<br>- Mar                                                                              | l Drilling<br>Jual Hammer                                           |                                           |                  |                   |                    |           |                         |
| CT - Continue                  | - ·                                                | Cave Depth                                      | _                | n.<br>ft.                       | AH          |                                                                                             | omatic Hamn                                                         |                                           |                  |                   |                    | Pa        | ge <b>1</b> of <b>1</b> |



|                                       |                  | t Power Corpora                       |                  | · •••          | •               |             |                                       |             | BORING                                       |                                           |                    | R 1               |                    |                      | •       |
|---------------------------------------|------------------|---------------------------------------|------------------|----------------|-----------------|-------------|---------------------------------------|-------------|----------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|---------|
| OJECT NAME                            |                  | Ford Glendale 3                       |                  |                |                 |             |                                       |             | JOB#_                                        |                                           |                    |                   |                    | 2043                 |         |
| OJECT LOCATIO                         | N Hodgenvi       |                                       |                  |                |                 |             |                                       |             | DRAWN                                        |                                           | <u>Z. I</u>        |                   |                    | 5                    |         |
|                                       | Glendale,        | ΚΥ                                    |                  |                |                 |             |                                       |             | APPROV                                       | ED BY                                     | <b>K</b> . (       | Urti              | Z                  |                      |         |
|                                       | DRILLING and S   | AMPLING INFORMA                       | TION             |                | ٦               |             |                                       |             |                                              |                                           | TES                | T DA              | TA                 | ,                    |         |
| Date Started                          | 3/25/22          | Hammer Wt.                            |                  | 140            | lbs.            |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
| Date Completed                        | 3/25/22          | Hammer Drop                           |                  | 30             | in.             |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
| Drill Foreman                         | J. Burdette      | Spoon Sampler C                       | DD               | 2              | in.             |             |                                       |             | Test                                         |                                           |                    |                   |                    | Sieve                |         |
| nspector                              | P. Presnell      | Rock Core Dia.                        |                  | 2              | in.             |             |                                       |             | t)<br>Du Te                                  | ft                                        | . 0                |                   |                    | 00                   |         |
| Boring Method                         | HSA              | Shelby Tube OD                        |                  | 3              | in.             |             | nics<br>phics                         |             | s/foo                                        | ed<br>trenç                               | ent %              | <b></b>           | Ĺ)                 | 2# ɓu                |         |
|                                       |                  | TION                                  |                  |                |                 | /pe         | Sraph<br>Grap                         | ter         | Pene                                         | onfin<br>ve Si                            | Conte              | it (LL            | nit (P             | assir                |         |
|                                       | SOIL CLASSIFICA  |                                       | Ε_               | _              | e               | le T)       | ler G<br>/ery                         | dwa         | lard I<br>ue (t                              | Unc                                       | nre O              | Lim               | c Lin              | nt Pa                | Irks    |
|                                       | RFACE ELEVATION  | V (ft): 747.8<br>ude (deg): -85.86073 | Stratum<br>Depth | Depth<br>Scale | Sample<br>No.   | Sample Type | Sampler Graphics<br>Recovery Graphics | Groundwater | Standard Penetration<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 | Remarks |
|                                       | ERING- NO SAMPL  |                                       | S D              | <u>ہ ت</u>     | ωŻ              | S           | ഗഷ<br>                                | U           | σz                                           | đŭ                                        | 2                  |                   | ₽                  |                      | Ľ       |
|                                       | -NING- INO SAMPL |                                       |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | 5 -            |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  |                |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  |                |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | 10 -           |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  |                |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  |                |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | 15 -           |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  |                |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | 20 -           |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  |                |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  |                |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | 25 -           |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  |                |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | 30 -           |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
|                                       |                  |                                       |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |         |
| Sample Typ                            | ne               | Depth to Ground                       | Water            |                |                 |             | 1                                     |             |                                              | 1                                         |                    |                   |                    |                      |         |
| PT - Standard Pe                      | netration Test 🚊 | Noted on Drilling Too                 |                  |                | ft.             |             |                                       |             | ng Method                                    |                                           |                    |                   |                    |                      |         |
| S - Driven Split S<br>H - Pressed She | Spoon 🛓          | At Completion (in aug                 | lers)            |                |                 | HS.<br>CF.  | A - C                                 | Conti       | w Stem Au<br>nuous Fligh                     | gers<br>nt Auge                           | rs                 |                   |                    |                      |         |
| A - Continuous I                      | Flight Auger 🙂   | At Completion (open<br>After hours    |                  |                | •_ ft.<br>• ft. | DC<br>MD    | - C                                   | Drivir      | ng Casing<br>Drilling                        | Ŭ                                         |                    |                   |                    |                      |         |
| C - Rock Core<br>J - Cuttings         |                  | After <u></u> hours<br>After hours    | _                |                | •<br>•ft.       |             |                                       |             | ial Hamme                                    | r                                         |                    |                   |                    |                      |         |

- CT Continuous Tube

AH - Automatic Hammer



# **TEST BORING LOG**

|     | IT                                |                              | st Power Corpora<br>U Ford Glendale 3      |                  | / Tran         |                |             |                                       |             | BORING #<br>JOB #                                 |                                           |                    | <u>R 1</u><br>UG  |                    | 4<br>2043            | }                       |
|-----|-----------------------------------|------------------------------|--------------------------------------------|------------------|----------------|----------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|-------------------------|
|     | ECT LOCATIO                       |                              | ville Road West                            |                  |                |                |             |                                       |             | DRAWN B                                           |                                           |                    |                   |                    |                      |                         |
|     |                                   | Glendale                     |                                            |                  |                |                |             |                                       |             | APPROVE                                           |                                           |                    |                   |                    |                      |                         |
|     |                                   | DRILLING and                 | SAMPLING INFORMA                           | TION             |                |                |             |                                       |             |                                                   |                                           |                    | T DA              |                    |                      |                         |
| Da  | te Started                        | 3/25/22                      |                                            |                  | 140            | lbs            |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     | te Completed                      |                              | Hammer Drop                                |                  |                | - 1            |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     | ll Foreman                        |                              | Spoon Sampler (                            |                  |                | -              |             |                                       |             | st                                                |                                           |                    |                   |                    | Sieve                |                         |
| Ins | pector                            |                              |                                            |                  |                |                |             |                                       |             | n Te                                              | Ļ                                         |                    |                   |                    | 00 Si                |                         |
| Во  | ring Method                       | HSA                          | Shelby Tube OD                             |                  | 3              | in.            |             | lics<br>hics                          |             | /foot                                             | ed<br>reng                                | int %              | -<br>-            | Ê                  | g #2(                |                         |
|     |                                   |                              |                                            |                  |                |                | /be         | iraph<br>Grap                         | ter         | Dene                                              | onfin<br>ve St                            | conte              | it (LL            | iit (P             | assin                |                         |
|     |                                   | SOIL CLASSIFIC               |                                            | _ <u>و</u> _     | _              | ele            | le Ty       | verv (                                | adwa        | lard F<br>ue (t                                   | Unci<br>ressiv                            | ure C              | I Lim             | c Lin              | int P;               | irks                    |
|     | Latitude (dea):                   | continuec)<br>37 629405 Lonc | 1)<br>gitude (deg): -85.86073              | Stratum<br>Depth | Depth<br>Scale | Sample<br>No.  | Sample Type | Sampler Graphics<br>Recovery Graphics | Groundwater | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 | Remarks                 |
| _   |                                   | . 07.020400, Long            |                                            |                  |                | o ∠<br>-       | 0           |                                       |             | 02                                                | σŭ                                        | 2                  |                   | ш.                 | ш                    | Ľ                       |
|     |                                   | Auger Refusal at             | t 36 feet                                  | 36.0             | -              |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|     |                                   |                              |                                            |                  |                |                |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| Ľ   | Sample Typ                        | De                           | Depth to Groun                             | dwater           | 1              |                | L           |                                       |             |                                                   |                                           |                    | I                 |                    |                      |                         |
|     | - Standard Pe                     | netration Test 🌘             | Noted on Drilling Too                      |                  | -              | ft.            | LC          |                                       |             | ing Method<br>w Stem Auge                         | ore                                       |                    |                   |                    |                      |                         |
|     | - Driven Split S<br>- Pressed She | Jihu Tuba 🍧                  | At Completion (in au                       |                  |                | •_ ft.         | CF          | A - (                                 | Conti       | inuous Flight                                     | Auge                                      | rs                 |                   |                    |                      |                         |
| CA  | - Continuous I                    | -light Auger 🛛 😇             | At Completion (open                        |                  |                | • ft.<br>• ft. | DC          | ; - [                                 | Drivir      | ng Casing<br>Drilling                             | Ŭ                                         |                    |                   |                    |                      |                         |
|     | - Rock Core<br>- Cuttings         |                              | After <u></u> nours<br>After <u></u> hours |                  |                | _ π.<br>_ ft.  | MF          | 1 - N                                 | Manu        | ual Hammer                                        |                                           |                    |                   |                    |                      |                         |
|     | - Continuous                      |                              | Cave Depth                                 | -                |                | • ft.          | AH          | - /                                   | Auto        | matic Hamme                                       | er                                        |                    |                   |                    | Pa                   | ge <b>2</b> of <b>2</b> |



|                                      | Southeast                              | Power Corpora                                    | tion             |                          |                       |                                       |             | BORING                                                                            | #                                         | STI              | R 2'              | 1 L'               | 1            |                         |
|--------------------------------------|----------------------------------------|--------------------------------------------------|------------------|--------------------------|-----------------------|---------------------------------------|-------------|-----------------------------------------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|--------------|-------------------------|
| PROJECT NAME                         | LG&E-KU I                              | Ford Glendale 3                                  | 45 kV            | Transm                   | issio                 | n                                     |             | JOB#                                                                              |                                           | LO               | UG                | E22                | 2043         | 3                       |
| PROJECT LOCATIO                      | DN Hodgenvill                          | e Road West                                      |                  |                          |                       |                                       |             | DRAWN E                                                                           | 3Y                                        | R. (             | Orti              | Z                  |              |                         |
|                                      | Glendale, I                            |                                                  |                  |                          |                       |                                       |             | APPROVI                                                                           | ED BY                                     | Т. /             | And               | lres               | ;            |                         |
|                                      | DRILLING and SA                        | AMPLING INFORMA                                  | TION             |                          | [                     |                                       |             |                                                                                   | 1                                         | TES              | T DA              | TA                 |              |                         |
| Date Started                         | 4/19/22                                | Hammer Wt.                                       |                  | <b>140</b> lbs           | -                     |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                         |
| Date Completed                       |                                        | Hammer Drop _                                    |                  | <b>30</b> in.            |                       |                                       |             |                                                                                   |                                           |                  |                   |                    | a            |                         |
| Drill Foreman _                      |                                        |                                                  |                  |                          |                       |                                       |             | ſest                                                                              |                                           |                  |                   |                    | Sieve        |                         |
| Inspector                            |                                        | Rock Core Dia.                                   |                  |                          |                       | s                                     |             | ion ]<br>oot                                                                      | gth                                       | %                |                   |                    | 200          |                         |
| Boring Method                        | HSA, AH                                | Shelby Tube OD                                   |                  | <u>3</u> in.             | e                     | Sampler Graphics<br>Recovery Graphics | 5           | Standard Penetration Test<br>Blows per 6"<br>[ <i>N-Value</i> ] <i>blowsftoot</i> | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Passing #200 |                         |
|                                      | SOIL CLASSIFICAT                       | TION                                             | c                | 0                        | No. IL<br>Sample Type | er Gr                                 | Groundwater | per 6<br>ber 6                                                                    | Jncol                                     | Б<br>С           | Limit             | Limi               | it Pa        | ks                      |
|                                      | RFACE ELEVATION                        |                                                  | Stratum<br>Depth | Depth<br>Scale<br>Sample | o.<br>ample           | ample                                 | ouno.       | anda<br>ows<br>V-Vai                                                              | -tsf L<br>mpre                            | oistu            | pind              | astic              | Percent      | Remarks                 |
|                                      | : 37.631827, Longitud                  | de (deg): -85.910614                             | ъъ               | ວັິິ<br>ຜູ້ທີ່           | _                     | Ϋ́<br>М                               | Ū           |                                                                                   | 88                                        |                  | Ľ                 | ä                  | ď            | Re                      |
|                                      |                                        |                                                  | 1.5              |                          | SS                    | Д                                     |             | 3-3-4-<br>[7]                                                                     |                                           | 17.7             |                   |                    |              |                         |
| - FAT CLAY (C                        | CH), with sand, Dark b<br>lules, STIFF | prown with black                                 |                  |                          | ss                    |                                       |             | 4-5-7-                                                                            |                                           | 18.1             |                   |                    |              | PP=4.0+ tsf             |
|                                      |                                        |                                                  |                  |                          | _                     | Α                                     |             | [ 12 ]                                                                            |                                           |                  |                   |                    |              |                         |
|                                      | CH), Reddish brown,                    |                                                  | 5.0              | 53                       | ss                    | X                                     |             | 7-6-8-                                                                            |                                           | 23.4             |                   |                    |              | PP=3.5 tsf              |
| fragments                            | mestone fragments, t                   | trace chert                                      |                  | -                        |                       |                                       |             | [ 14 ]                                                                            |                                           |                  |                   |                    |              |                         |
|                                      |                                        |                                                  |                  | 4                        | SS                    | X                                     |             | 4-6-7-<br>[ 13]                                                                   |                                           | 24.9             |                   |                    |              | PP=3.0 tsf              |
|                                      |                                        |                                                  |                  | 10                       |                       |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                         |
|                                      |                                        |                                                  |                  | 5                        | SH                    |                                       |             |                                                                                   | 2.62                                      | 22.4             | 57                | 19                 |              |                         |
| - light reddisł                      | n brown                                |                                                  |                  | 6                        | ss                    | X                                     |             | 7-7-7-                                                                            |                                           | 25.6             |                   |                    |              | PP=4+ tsf               |
|                                      |                                        |                                                  |                  |                          | _                     |                                       |             | [ 14 ]                                                                            |                                           |                  |                   |                    |              |                         |
| - with black o                       | xidation nodules                       |                                                  |                  | 15 - 7                   | ss                    |                                       |             | 6-7-7-                                                                            |                                           | 29.3             |                   |                    |              | PP=3.5 tsf              |
|                                      |                                        |                                                  |                  |                          | _                     | Α                                     |             | [ 14 ]                                                                            |                                           |                  |                   |                    |              |                         |
|                                      |                                        |                                                  |                  |                          |                       |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                         |
|                                      |                                        |                                                  |                  | 20 —                     |                       |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                         |
|                                      |                                        |                                                  |                  | 8                        | SH                    |                                       |             |                                                                                   | 0.77                                      | 39.2             |                   |                    |              |                         |
| - with limesto                       | ne fragments, trace c                  | chert                                            |                  | 9                        | ss                    | X                                     |             | 7-7-6-                                                                            |                                           | 23.5             |                   |                    |              | PP=3.5 tsf              |
|                                      |                                        |                                                  |                  | -                        | _                     | $\square$                             |             | [ 13]                                                                             |                                           |                  |                   |                    |              |                         |
|                                      |                                        |                                                  |                  | 25                       | ss                    |                                       |             | 9-6-6-                                                                            |                                           | 33.3             |                   |                    |              |                         |
|                                      |                                        |                                                  |                  |                          | ,<br>                 | Α                                     |             | [ 12]                                                                             |                                           |                  |                   |                    |              |                         |
|                                      |                                        |                                                  |                  |                          |                       |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                         |
|                                      |                                        |                                                  |                  | 30 - 4                   |                       |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                         |
| -                                    |                                        |                                                  | 31.0             | 30 <u>-</u> 1′<br>- RC   |                       |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                         |
| □ ├ ┌ │ grained, with                |                                        | veathered, fine                                  |                  |                          | RC RC                 |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                         |
| - with a 6-inc                       | h thick clay seam                      |                                                  |                  |                          | 2                     |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                         |
|                                      | /0.0                                   | Dorth to Original                                |                  |                          | _                     |                                       |             |                                                                                   |                                           |                  |                   |                    |              | RQD=55 %                |
|                                      | enetration Test  👤 N                   | <u>Depth to Ground</u><br>loted on Drilling Tool |                  | ft                       | ·                     |                                       |             | ng Method                                                                         |                                           |                  |                   |                    |              |                         |
| SS - Driven Split<br>SH - Pressed Sh | Spoon 🛓 A                              | t Completion (in aug                             | ers)             | ft                       | CF                    | A - C                                 | Conti       | w Stem Aug<br>inuous Fligh                                                        |                                           | ers              |                   |                    |              |                         |
| CA - Continuous<br>RC - Rock Core    | Flight Auger                           | At Completion (open l                            | ,                | ft<br>ft                 | . ME                  | ) - N                                 | ∕lud        | ng Casing<br>Drilling                                                             |                                           |                  |                   |                    |              |                         |
| CU - Cuttings<br>CT - Continuous     | <b>▼</b> A                             | After hours                                      |                  | <b></b> ft               | MH<br>AH              | 1 - N                                 | Λanι        | ual Hammer<br>matic Hamm                                                          |                                           |                  |                   |                    | <b>D</b> -   | a 1 -                   |
| GI - Continuous                      |                                        | Cave Depth                                       | _                | ft                       |                       | •                                     |             |                                                                                   |                                           |                  |                   |                    | Pa           | ge <b>1</b> of <b>2</b> |



### **TEST BORING LOG**

| CLIENT                                                                                                                                                            |                                                                            | -                                                                                                                                       |                    |                |                                                    |             |                                       |                                         | BORING                                                                                       |                                           |                    | R 2               |                    |                      |                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|----------------------------------------------------|-------------|---------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|---------------------------------|
| PROJECT NAME                                                                                                                                                      |                                                                            |                                                                                                                                         |                    |                |                                                    |             |                                       |                                         | JOB#                                                                                         |                                           |                    |                   |                    | 2043                 | 5                               |
| PROJECT LOCATIO                                                                                                                                                   | -                                                                          |                                                                                                                                         |                    |                |                                                    |             |                                       | _                                       | DRAWN I                                                                                      |                                           |                    | Orti              |                    |                      |                                 |
|                                                                                                                                                                   | Glendale,                                                                  | КҮ                                                                                                                                      |                    |                |                                                    |             |                                       |                                         | APPROV                                                                                       | ED BY                                     | 1.4                | Anc               | Ires               | ;                    |                                 |
|                                                                                                                                                                   | DRILLING and SA                                                            | AMPLING INFORMA                                                                                                                         | TION               |                | Γ                                                  |             |                                       |                                         |                                                                                              |                                           | TES                | T DA              | TA                 |                      |                                 |
| Date Started                                                                                                                                                      | 4/19/22                                                                    | Hammer Wt.                                                                                                                              |                    | 140            | lbs.                                               |             |                                       |                                         |                                                                                              |                                           |                    |                   |                    |                      |                                 |
| Date Completed                                                                                                                                                    | 4/20/22                                                                    | Hammer Drop                                                                                                                             |                    | 30             | in.                                                |             |                                       |                                         |                                                                                              |                                           |                    |                   |                    |                      |                                 |
| Drill Foreman                                                                                                                                                     |                                                                            |                                                                                                                                         | D                  | 2              | in.                                                |             |                                       |                                         | est                                                                                          |                                           |                    |                   |                    | Sieve                |                                 |
| Inspector                                                                                                                                                         |                                                                            | -                                                                                                                                       |                    |                |                                                    |             | 6                                     |                                         | ion T<br><i>oot</i>                                                                          | gth                                       | %                  |                   |                    | 200 \$               |                                 |
| Boring Method                                                                                                                                                     | HSA, AH                                                                    | Shelby Tube OD                                                                                                                          |                    | 3              | in.                                                | e           | Sampler Graphics<br>Recovery Graphics | er                                      | Standard Penetration Test<br>Blows per 6"<br>[ <i>N-Value</i> ] <i>blows/foot</i>            | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | (LLL)             | t (PL)             | Percent Passing #200 |                                 |
|                                                                                                                                                                   | SOIL CLASSIFICA                                                            | TION                                                                                                                                    | c                  |                | 0                                                  | e Typ       | er Gr<br>ery G                        | dwate                                   | rrd Per<br>per 6<br>lue].                                                                    | Jncol<br>ssive                            | re Co              | Limit             | Limi               | it Pas               | s                               |
| Latitude (deg):                                                                                                                                                   | (continued)<br>37 631827 Longitu                                           | de (deg): -85.910614                                                                                                                    | Stratum<br>Depth   | Depth<br>Scale | Sample<br>No.                                      | Sample Type | Sample                                | Groundwater                             | Standa<br>Blows  <br>N-Val                                                                   | u-tsf L<br>ompre                          | doistu             | Liquid Limit (LL) | Plastic Limit (PL) | ercen                | Remarks                         |
| grained, with f<br>- moderately to<br>to 38.5 ft (diffie<br>                                                                                                      | o slightly weathered<br>cult coring)                                       | l, with ooid crystials<br>46.5 ft, with a 1-inch                                                                                        | 51.5               | 40             | RC3                                                | RC<br>RC    |                                       |                                         |                                                                                              |                                           |                    |                   |                    |                      | RQD=33 %<br>RQD=24%<br>RQD=35 % |
| Server Standard Per<br>SPT - Standard Per<br>SS - Driven Split S<br>SH - Pressed She<br>CA - Continuous F<br>RC - Rock Core<br>CU - Cuttings<br>CT - Continuous T | netration Test ♀ N<br>Spoon ≰ /<br>Iby Tube ऄ /<br>Flight Auger ♀ /<br>♀ / | Depth to Ground<br>Noted on Drilling Tool<br>At Completion (in aug<br>At Completion (open I<br>After hours<br>After hours<br>Cave Depth | s<br>ers)<br>nole) |                | • ft.<br>• ft.<br>• ft.<br>• ft.<br>• ft.<br>• ft. | CF.<br>DC   | A - H<br>A - C<br>- C<br>- N<br>I - N | Hollo<br>Conti<br>Drivir<br>Aud<br>Aanu | ng Method<br>w Stem Aug<br>inuous Fligh<br>ng Casing<br>Drilling<br>ual Hammer<br>matic Hamn | it Auge                                   | rs                 |                   |                    | Pa                   | ge <b>2</b> of <b>2</b>         |



| CLIE      | NT                                   | Southeast          | Power Corpora                                   | tion   |                |                 |             |                                                      | BORING                                            | #                                         | ST               | R 2               | <u>1 L:</u>        | 2                    |                         |
|-----------|--------------------------------------|--------------------|-------------------------------------------------|--------|----------------|-----------------|-------------|------------------------------------------------------|---------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------|-------------------------|
| PRO       | JECT NAME                            |                    | Ford Glendale 3                                 | 45 kV  | ' Tran         | smis            | ssion       |                                                      | JOB#                                              |                                           |                  |                   |                    | 2043                 | •                       |
| PRO       | JECT LOCATIO                         | N Hodgenvi         | le Road West                                    |        |                |                 |             |                                                      |                                                   |                                           |                  |                   |                    | 5                    |                         |
|           |                                      | Glendale,          | KY                                              |        |                |                 |             |                                                      | APPRO\                                            | /ED BY                                    | R.               | Ort               | İZ                 |                      |                         |
|           |                                      | DRILLING and S     | AMPLING INFORMA                                 | TION   |                | Г               |             |                                                      | 1                                                 |                                           | TES              | T DA              | TA                 |                      |                         |
| Da        | ate Started                          | 4/4/22             | Hammer Wt.                                      |        | 140            | lbs.            |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
| Da        | ate Completed                        |                    | Hammer Drop                                     |        | 30             | in.             |             |                                                      |                                                   |                                           |                  |                   |                    | a                    |                         |
| Di        | rill Foreman                         |                    | Spoon Sampler C                                 |        |                | . 11            |             |                                                      | est                                               |                                           |                  |                   |                    | Sieve                |                         |
|           | spector                              | -                  |                                                 |        |                |                 |             | s                                                    | ot)                                               | igth                                      | %                |                   |                    | 200                  |                         |
| Bo        | oring Method                         | HSA                | Shelby Tube OD                                  |        | 3              | in.             |             | phics<br>aphic                                       | netrat<br>ws/fo                                   | ined                                      | Itent            | (T                | (PL)               | sing #               |                         |
|           |                                      | SOIL CLASSIFICA    |                                                 | _      |                |                 | Sample Type | Sampler Graphics<br>Recovery Graphics<br>Groundwater | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 | S                       |
|           | SUF                                  | FACE ELEVATION     | l (ft): 688.8<br>ide (deg): -85.910596          | pth    | Depth<br>Scale | Sample<br>No.   | mple        | mple<br>cove                                         | value                                             | tsf U<br>npre                             | istun            | uid L             | istic I            | rcent                | Remarks                 |
|           |                                      |                    |                                                 | De Str | йĞ             | Sa<br>No        | Sa          | N N N                                                | Sta<br>Z-                                         | Cor                                       | Mo               | Lia               | Ъ                  | Ре                   | Re                      |
|           | BLANK AUGE                           | RING- NO SAMPL     | ES OBTAINED                                     |        |                |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
| _         |                                      |                    |                                                 |        |                |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
| $\exists$ |                                      |                    |                                                 |        | -              |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
| _         |                                      |                    |                                                 |        | 5 -            |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        | -              |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        |                | -               |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        |                |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
| _         |                                      |                    |                                                 |        | 10 —           |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        |                |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        |                |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        | 15 —           |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        | -              |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        | _              |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        |                |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
| _         |                                      |                    |                                                 |        | 20 —           | -               |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        | -              |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
| -         |                                      |                    |                                                 |        |                |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        | -              |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        | 25 —           |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        |                |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        | -              |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        |                |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 | 31.0   | 30 —           |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      | Auger Refusal at 3 | 1 feet                                          |        |                |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        |                |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
|           |                                      |                    |                                                 |        |                |                 |             |                                                      |                                                   |                                           |                  |                   |                    |                      |                         |
| SP        | <u>Sample Typ</u><br>T - Standard Pe |                    | <u>Depth to Ground</u><br>Noted on Drilling Too |        |                | ft.             |             |                                                      | ring Method                                       |                                           |                  |                   |                    |                      |                         |
| SS        | - Driven Split                       | Spoon 🛓            | At Completion (in aug                           | lers)  |                | •ft.            |             |                                                      | ow Stem Au<br>Itinuous Flig                       |                                           | ers              |                   |                    |                      |                         |
| CA        | - Pressed She                        | Flight Auger 🛛 👻   | At Completion (open                             |        |                | •_ ft.          | DC          | - Driv                                               | ring Casing                                       |                                           |                  |                   |                    |                      |                         |
| RC<br>CU  | - Rock Core<br>- Cuttings            | -                  | After <u></u> hours<br>After <u></u> hours      |        |                | •_ ft.<br>• ft. |             | - Mar                                                | d Drilling<br>nual Hamme                          |                                           |                  |                   |                    |                      |                         |
|           | - Continuous                         |                    | Cave Depth                                      | -      |                | ft.             | AH          | - Aut                                                | omatic Ham                                        | mer                                       |                  |                   |                    | Pa                   | ge <b>1</b> of <b>1</b> |



|                                    | N Hodgenv                                 |                                              |       | Tran           |                 |             |                                       | _              | JOB # _<br>DRAWN                                  | BY                                        |                    | Orti              | Z                  |                      | 5            |
|------------------------------------|-------------------------------------------|----------------------------------------------|-------|----------------|-----------------|-------------|---------------------------------------|----------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|--------------|
|                                    | Glendale                                  | , KY                                         |       |                |                 |             |                                       | _              | APPROV                                            | ED BY                                     | Т. /               | And               | res                | ;                    |              |
|                                    | DRILLING and S                            | SAMPLING INFORMATIC                          | ΟN    |                | 6               |             |                                       |                |                                                   |                                           | TES                | T DA              | TA                 |                      | 1            |
| Date Started                       | 4/5/21                                    | Hammer Wt.                                   |       | 140            | lbs.            |             |                                       |                |                                                   |                                           |                    |                   |                    |                      |              |
| Date Completed                     | 4/5/21                                    | Hammer Drop                                  |       | 30             | in.             |             |                                       |                |                                                   |                                           |                    |                   |                    |                      |              |
| Drill Foreman                      | M. Smith                                  | _ Spoon Sampler OD                           |       | 2              | in.             |             |                                       |                | est                                               |                                           |                    |                   |                    | Sieve                |              |
| Inspector                          | J. Phillips                               |                                              |       |                |                 |             |                                       |                | on T                                              | gt                                        | <b>、</b> 0         |                   |                    | 200                  |              |
| Boring Method                      | HSA, AH                                   | _ Shelby Tube OD                             |       | 3              | in.             | Ð           | aphics<br>raphics                     | <u>ب</u>       | enetrati                                          | nfined<br>Strenç                          | ntent %            | (TT)              | (PL)               | sing #2              |              |
|                                    | SOIL CLASSIFIC                            |                                              | _     |                |                 | Typ         | 9<br>2<br>2<br>2<br>2<br>2<br>2       | wate           | rd Pe<br>(blc                                     | ncor<br>ssive                             | e Co               | -imit             | Limit              | t Pas                | S            |
|                                    | RFACE ELEVATIO<br>: 37.631759, Longit     | N (ft): 689.9<br>ude (deg): -85.910492       | Depth | Depth<br>Scale | Sample<br>No.   | Sample Type | Sampler Graphics<br>Recovery Graphics | Groundwater    | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 | Remarks      |
| TOPSOIL                            |                                           | 0                                            | 0.2   | -              | 1               | SS          | Χ                                     |                | 2-3-5-                                            | 00                                        | 16.8               | 31                | 15                 |                      | PP=1.5 tsf   |
| LEAN CLAY                          |                                           | rown to light reddish / 2                    | 2.0   | -              |                 |             |                                       |                | [8]                                               |                                           |                    |                   |                    |                      |              |
| FAT CLAY (C                        | CH), Reddish brown                        | to light reddish                             |       | -              | 2               | SS          | X                                     |                | 5-6-8-<br>[ <i>14</i> ]                           |                                           | 19.4               | 50                | 16                 |                      | PP=3.0 tsf   |
| brown, STIFF                       | to VERY STIFF                             |                                              |       | 5 —            |                 |             |                                       |                |                                                   |                                           |                    |                   |                    |                      |              |
|                                    |                                           |                                              |       | -              | 3               | SS          | X-                                    |                | 4-5-7-<br>[ 12]                                   |                                           | 19.6               |                   |                    |                      | PP=2.5 tsf   |
|                                    |                                           |                                              |       | -              |                 | SS          |                                       |                | 6-7-11-                                           |                                           | 23.2               |                   |                    |                      | PP=3.0 tsf   |
| - trace sand                       |                                           |                                              |       | -              | 4               | 00          | ÅЧ                                    |                | [ 18 ]                                            |                                           | 23.2               |                   |                    |                      | 1 1 -0.0 เอเ |
|                                    |                                           |                                              |       | 10 -           | _               | SH          |                                       |                |                                                   | 0.62                                      | 19.3               |                   |                    |                      |              |
| - trace limest                     | one fragments                             |                                              |       | -              | 5               |             |                                       |                |                                                   |                                           |                    |                   |                    |                      |              |
|                                    |                                           |                                              |       | -              | 6               | SS          | Х                                     |                | 6-8-12-<br>[ 20]                                  |                                           | 28.9               |                   |                    |                      | PP=2.5 tsf   |
|                                    |                                           |                                              |       |                |                 |             |                                       |                |                                                   |                                           |                    |                   |                    |                      |              |
| - dark brown                       |                                           |                                              |       | 15             | 7               | SS          | X                                     |                | 3-5-9-<br>[ <i>14</i> ]                           |                                           | 29.3               | 66                | 27                 |                      |              |
| LEAN CLAY                          | (CL), trace sand, D                       | ark brown to light                           | 7.0   | _              |                 |             |                                       |                | [ 14]                                             |                                           |                    |                   |                    |                      |              |
|                                    | n, VERY STIFF                             |                                              |       | -              |                 |             |                                       |                |                                                   |                                           |                    |                   |                    |                      |              |
|                                    |                                           |                                              |       | 20 -           |                 | e11         |                                       |                |                                                   | 1 00                                      | 20 5               |                   |                    |                      |              |
|                                    |                                           |                                              |       | -              | 8               | SH          |                                       |                |                                                   | 1.23                                      | 29.5               |                   |                    |                      |              |
|                                    |                                           |                                              |       | -              | 9               | SS          | X                                     |                | 6-7-9-                                            |                                           | 25.8               |                   |                    |                      |              |
|                                    |                                           | 2                                            | 4.5   | -              |                 |             |                                       |                | [ 16]                                             |                                           |                    |                   |                    |                      |              |
|                                    | CH), trace sand, Da<br>e limestone fragme | rk brown, VERY                               |       | 25 —           | 10              | SS          |                                       |                | 3-4-9-                                            |                                           |                    |                   |                    |                      |              |
|                                    | indgino                                   |                                              |       | -              |                 |             | H                                     |                | [ 13]                                             |                                           |                    |                   |                    |                      |              |
|                                    | Auger Refusal at                          | 28 feet 28                                   | 8.0   | -              |                 |             |                                       |                |                                                   |                                           |                    |                   |                    |                      |              |
|                                    | J                                         |                                              |       |                |                 |             |                                       |                |                                                   |                                           |                    |                   |                    |                      |              |
|                                    |                                           |                                              |       |                |                 |             |                                       |                |                                                   |                                           |                    |                   |                    |                      |              |
|                                    |                                           |                                              |       |                |                 |             |                                       |                |                                                   |                                           |                    |                   |                    |                      |              |
|                                    |                                           |                                              |       |                |                 |             |                                       |                |                                                   |                                           |                    |                   |                    |                      |              |
| Sample Tu                          | 200                                       | Dopth to Croundwa                            | tor   |                |                 |             |                                       |                |                                                   |                                           |                    |                   |                    |                      |              |
|                                    | enetration Test                           | Depth to Groundwa<br>Noted on Drilling Tools |       | -              | ft.             |             |                                       |                | ng Method                                         |                                           |                    |                   |                    |                      |              |
| S - Driven Split<br>H - Pressed Sh | Spoon 🛓                                   | At Completion (in augers                     |       | -              |                 | CF          | A - C                                 | Conti          | w Stem Aug<br>nuous Fligh                         |                                           | ers                |                   |                    |                      |              |
| CA - Continuous                    | Flight Auger                              | At Completion (open hole<br>After hours      | e) _  |                | •_ ft.<br>• ft. | DC<br>ME    | - D<br>- N                            | )rivir<br>/lud | ng Casing<br>Drilling                             |                                           |                    |                   |                    |                      |              |
| C - Rock Core                      | -                                         | After hours                                  | _     |                | <br>• ft.       |             |                                       |                | ial Hammei                                        | -                                         |                    |                   |                    |                      |              |

- CT Continuous Tube
- A Cave Depth
- AH Automatic Hammer

-- ft.



|    |     |                                                 |                                        | Power Corpora                    |                  | <b>. .</b>               |             |                                       |             | BORING #_                                         |                                           | ST               |                   |                    |                      | 5              |   |
|----|-----|-------------------------------------------------|----------------------------------------|----------------------------------|------------------|--------------------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------|----------------|---|
|    |     |                                                 | LG&E-KU F                              |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    | 2043                 | )              |   |
| PF | κοι | ECT LOCATIO                                     | N Hodgenvill                           |                                  |                  |                          |             |                                       |             | DRAWN BY                                          |                                           |                  |                   |                    |                      |                |   |
|    |     |                                                 | Glendale, H                            |                                  |                  |                          |             |                                       |             | APPROVE                                           | D BY                                      |                  |                   |                    | •                    |                |   |
|    | _   |                                                 |                                        | MPLING INFORMA                   |                  |                          |             |                                       |             |                                                   |                                           | TES              | T DA              |                    |                      |                |   |
|    |     | te Started                                      | 4/7/22                                 |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
|    |     | te Completed<br>Il Foreman                      |                                        | Hammer Drop _<br>Spoon Sampler C |                  |                          |             |                                       |             | -                                                 |                                           |                  |                   |                    | e<br>Ve              |                |   |
|    |     | pector                                          |                                        | Rock Core Dia.                   |                  |                          |             |                                       |             | Tes                                               | _                                         |                  |                   |                    | 0 Sieve              |                |   |
|    |     | ring Method                                     |                                        |                                  |                  |                          |             | cs<br>lics                            |             | foot)                                             | d<br>ength                                | nt %             |                   |                    | #20                  |                |   |
| ſ  |     |                                                 |                                        | -                                |                  |                          | _ e         | Sampler Graphics<br>Recoverv Graphics | er          | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 |                |   |
|    |     |                                                 | SOIL CLASSIFICAT                       |                                  | F                | υ                        | Sample Type | er Gr                                 | Groundwater | ard P<br>le (bl                                   | Unco<br>essiv                             | ы<br>С           | Limit             | Limi               | nt Pa                | sk             |   |
|    |     |                                                 | RFACE ELEVATION                        |                                  | Stratum<br>Depth | Depth<br>Scale<br>Sample | ampl        | ampl                                  | roun        | tanda<br>I-Valu                                   | u-tsf                                     | loistu           | iquid             | lastic             | ercel                | Remarks        |   |
| _  |     |                                                 | 37.631841, Longituc<br>RING- NO SAMPLE | · • • •                          | <u>م</u>         |                          | z v         | ഗമ<br>                                | 0           | ωz (                                              | đŏ                                        | 2                |                   |                    | ₽                    | R              |   |
| -  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| -  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| -  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| -  |     |                                                 |                                        |                                  |                  | 5                        |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| _  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| -  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| -  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| -  |     |                                                 |                                        |                                  |                  | 10                       |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| -  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| -  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| -  |     |                                                 |                                        |                                  |                  | 15                       |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| -  |     |                                                 |                                        |                                  |                  | 15                       |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| _  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| _  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| _  |     |                                                 |                                        |                                  |                  | 20 -                     |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| -  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| _  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| -  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| _  |     |                                                 |                                        |                                  |                  | 25 -                     |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| _  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| _  |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
|    |     |                                                 |                                        |                                  | 29.0             |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
|    |     |                                                 | Auger Refusal at 29                    | feet                             |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
|    |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
|    |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
|    |     |                                                 |                                        |                                  |                  |                          |             |                                       |             |                                                   |                                           |                  |                   |                    |                      |                |   |
| l  |     | Sample Typ                                      |                                        | Depth to Ground                  | water            |                          |             |                                       | <u> </u>    |                                                   |                                           |                  |                   |                    |                      |                |   |
|    |     | - Standard Per                                  | netration Test  💂 N                    |                                  |                  | ft.                      |             |                                       |             | ing Method                                        |                                           |                  |                   |                    |                      |                |   |
| :  | SS  | - Driven Split S<br>- Pressed She               | Spoon 🛓 A                              | t Completion (in aug             | lers)            | ft.                      | CF          | A - (                                 | Cont        | w Stem Auge<br>inuous Flight                      |                                           | rs               |                   |                    |                      |                |   |
| (  | CA  | - Continuous F                                  | Flight Auger 👻 🥂                       | t Completion (open<br>fter hours |                  | ft.<br>ft.               | DC          | ) - I                                 | Driviı      | ng Casing<br>Drilling                             | -                                         |                  |                   |                    |                      |                |   |
| (  | CU  | <ul> <li>Rock Core</li> <li>Cuttings</li> </ul> | Ţ A                                    | fter <u></u> hours               | -                | ft.                      | M           | H - I                                 | Manı        | ual Hammer                                        |                                           |                  |                   |                    |                      |                |   |
| 0  | СТ  | - Continuous 1                                  | Tube ⊠a C                              | ave Depth                        | -                | ft.                      | AF          | /                                     | -1010       | matic Hamme                                       | 71                                        |                  |                   |                    | Pa                   | ge <b>1</b> of | 1 |



| PROJECT NAME       LG&E-KU Ford Glendale 345 kV         PROJECT LOCATION       Hodgenville Road West         Glendale, KY       DRILLING and SAMPLING INFORMATION         Date Started       3/30/22       Hammer Wt.         Date Completed       3/31/22       Hammer Drop         Drill Foreman       J. Burdette       Spoon Sampler OD         Inspector       P. Presnell       Rock Core Dia.         Boring Method       HSA, AH       Shelby Tube OD         SURFACE ELEVATION (ft): 721.7       Latitude (deg): 37.626093, Longitude (deg): -85.863678       0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 140 lbs.<br>30 in.<br>2 in.<br>2 in.<br>3 in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 Sample Type<br>Sampler Graphics |             | Candard Penetration Test Candard Penetration Test Candard Penetration Test Candor (blows/foot) | 3Y                                  |                    | Orti<br>And              | z<br>res  |                | 3          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------|------------------------------------------------------------------------------------------------|-------------------------------------|--------------------|--------------------------|-----------|----------------|------------|
| Glendale, KY         DRILLING and SAMPLING INFORMATION         Date Started       3/30/22       Hammer Wt.         Date Completed       3/31/22       Hammer Drop         Drill Foreman       J. Burdette       Spoon Sampler OD         Inspector       P. Presnell       Rock Core Dia.         Boring Method       HSA, AH       Shelby Tube OD         SURFACE ELEVATION (ft): 721.7       Image of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 140         lbs.           30         in.           2         in.           3         in.           3         in.           3         in.           1         1           1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample Type                       |             | APPROVI                                                                                        | ED BY                               | <b>T.</b> <i>I</i> | And<br>r da <sup>-</sup> | res<br>TA |                |            |
| DRILLING and SAMPLING INFORMATION         Date Started       3/30/22       Hammer Wt.         Date Completed       3/31/22       Hammer Drop         Drill Foreman       J. Burdette       Spoon Sampler OD         Inspector       P. Presnell       Rock Core Dia.         Boring Method       HSA, AH       Shelby Tube OD         SOIL CLASSIFICATION       SURFACE ELEVATION (ft): 721.7       Inspector of the statitude (deg): 37.626093, Longitude (deg): -85.863678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30 in.<br>2 in.<br>2 in.<br>3 in.<br>Scale<br>No.<br>1<br>-<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ss                                | Groundwater |                                                                                                |                                     | TES <sup>-</sup>   | <u>r da</u>              | ΓΑ        |                |            |
| Date Started       3/30/22       Hammer Wt.         Date Completed       3/31/22       Hammer Drop         Drill Foreman       J. Burdette       Spoon Sampler OD         Inspector       P. Presnell       Rock Core Dia.         Boring Method       HSA, AH       Shelby Tube OD         SOIL CLASSIFICATION       SURFACE ELEVATION (ft): 721.7       Inspector 200, 200, 200, 200, 200, 200, 200, 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30 in.<br>2 in.<br>2 in.<br>3 in.<br>Scale<br>No.<br>1<br>-<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ss                                | Groundwater | Standard Penetration Test<br>N-Value (blows/foot)                                              | sf Unconfined<br>pressive Strength  | %                  |                          |           | ing #200 Sieve |            |
| Date Completed       3/31/22       Hammer Drop         Drill Foreman       J. Burdette       Spoon Sampler OD         Inspector       P. Presnell       Rock Core Dia.         Boring Method       HSA, AH       Shelby Tube OD         SOIL CLASSIFICATION       SURFACE ELEVATION (ft): 721.7         Latitude (deg): 37.626093, Longitude (deg): -85.863678       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 in.<br>2 in.<br>2 in.<br>3 in.<br>Scale<br>No.<br>1<br>-<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ss                                | Groundwater | Standard Penetration Test<br>N-Value (blows/foot)                                              | sf Unconfined<br>pressive Strength  | e Content %        | it (LL)                  | (PL)      | ing #200 Sieve |            |
| Drill Foreman       J. Burdette       Spoon Sampler OD         Inspector       P. Presnell       Rock Core Dia.         Boring Method       HSA, AH       Shelby Tube OD         SOIL CLASSIFICATION       SURFACE ELEVATION (ft): 721.7         Latitude (deg): 37.626093, Longitude (deg): -85.863678       Solution (ft): 721.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 in.<br>2 in.<br>3 in.<br>Scale<br>No.<br>No.<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ss                                | Groundwater | Standard Penetration Test<br>N-Value (blows/foot)                                              | sf Unconfined<br>pressive Strength  | e Content %        | it (LL)                  | (PL)      | ing #200 Sieve |            |
| Inspector P. Presnell Rock Core Dia.<br>Boring Method HSA, AH Shelby Tube OD SOIL CLASSIFICATION<br>SURFACE ELEVATION (ft): 721.7<br>Latitude (deg): 37.626093, Longitude (deg): -85.863678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in.<br>3 in.<br>3 in.<br>2 Cebth<br>Scale<br>Vo.<br>1<br>-<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ss                                | Groundwater | Standard Penetration Test<br>N-Value (blows/foot)                                              | sf Unconfined<br>Ipressive Strength | e Content %        | it (LL)                  | (PL)      | ing #200 Sieve |            |
| Boring Method HSA, AH Shelby Tube OD SOIL CLASSIFICATION SURFACE ELEVATION (ft): 721.7<br>Latitude (deg): 37.626093, Longitude (deg): -85.863678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | ss                                | Groundwater | Standard Penetration T<br>N-Value (blows/foot)                                                 | sf Unconfined<br>pressive Strength  | e Content %        | it (LL)                  | (PL)      | ing #200 S     |            |
| SOIL CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth<br>Depth<br>Scale<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ss                                | Groundwater | Standard Penetrati<br>N-Value (blows/foo                                                       | sf Unconfined<br>pressive Strenç    | e Content %        | it (LL)                  | (PL)      | ing #2         |            |
| SURFACE ELEVATION (ft): 721.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ss                                | Groundwater | Standard Per<br>N-Value (blov                                                                  | sf Unconfi                          | e Con              | it (L                    | $\sim$    |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ss                                | Ground      | Standar<br>N-Value                                                                             | sf Ur                               | ש ש                | 3                        | imit      | Pass           | ß          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ss                                | Gro         | N-V                                                                                            |                                     | istur              | uid Li                   | stic L    | cent           | Remarks    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |             |                                                                                                | Qu-1<br>Corr                        |                    | Liqu                     | Pla       | Per            | Rer        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |             | 2-3-4-<br>[7]                                                                                  |                                     | 22.6               |                          |           |                | PP=3.0 tsf |
| LEAN CLAY (CL), with silt, Brown, STIFF to VERY<br>STIFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |             |                                                                                                |                                     | 40.0               |                          |           |                | DD=2.0 t-f |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ss                                |             | 5-6-7-<br>[ 13]                                                                                |                                     | 13.8               |                          |           |                | PP=3.0 tsf |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $5 - \frac{-}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ss M                              |             | 6-7-7-                                                                                         |                                     | 19.5               |                          |           |                | PP=3.0 tsf |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + A                               |             | [ 14 ]                                                                                         |                                     |                    |                          |           |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ss 🛛                              |             | 6-7-9-                                                                                         |                                     | 23.2               |                          |           |                | PP=3.0 tsf |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |             | [ 16]                                                                                          |                                     |                    |                          |           |                |            |
| - reddish brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SH                                |             |                                                                                                | 1.63                                | 22.6               | 45                       | 20        |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ss V                              |             | 6-6-9-                                                                                         |                                     | 24.0               |                          |           |                | PP=3.0 tsf |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μĨ                                |             | [ 15]                                                                                          |                                     | 27.0               |                          |           |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |             | 0.7.0                                                                                          |                                     |                    |                          |           |                |            |
| - with sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ss 🛛                              |             | 6-7-8-<br>[ <i>15</i> ]                                                                        |                                     | 18.0               |                          |           |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |             |                                                                                                |                                     |                    |                          |           |                | PP=1.5 tsf |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |             |                                                                                                |                                     |                    |                          |           |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SH                                |             |                                                                                                |                                     |                    |                          |           |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | •           | :                                                                                              |                                     |                    |                          |           |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ss 🛛                              |             | 5-5-6-<br>[ <i>11</i> ]                                                                        |                                     | 20.9               |                          |           |                | PP=1.0 tsf |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |             |                                                                                                |                                     |                    |                          |           |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ss 🛛                              |             | 7-5-3-<br>[8]                                                                                  |                                     | 28.6               |                          |           |                | PP=1.0 tsf |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |             |                                                                                                |                                     |                    |                          |           |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |             |                                                                                                |                                     |                    |                          |           |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SH                                |             |                                                                                                | 0.68                                | 31.4               |                          |           |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |             |                                                                                                |                                     |                    |                          |           |                |            |
| - with chert fragments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ss 🛛                              |             | 7-7-50/5"-<br>[ <i>50/5"</i> ]                                                                 |                                     | 29.4               |                          |           |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |             |                                                                                                |                                     |                    |                          |           |                |            |
| Sample Type Depth to Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                          |             | na Matheri                                                                                     |                                     |                    |                          |           |                |            |
| SPT - Standard Penetration Test       ● Noted on Drilling Tools         SS       - Driven Split Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>22.0</u> ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | Hollo       | <u>ng Method</u><br>w Stem Aug                                                                 |                                     |                    |                          |           |                |            |
| CA - Continuous Flight Auger ▲ At Completion (in augers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft.<br>ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CFA -                             | Cont        | nuous Fligh<br>ng Casing                                                                       |                                     | ers                |                          |           |                |            |
| CA       - Continuous Flight Auger         RC       - Rock Core         Y       After         CU       - Cuttings         Y       After          hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft.<br>ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | Mud         | Drilling                                                                                       |                                     |                    |                          |           |                |            |

- CT Continuous Tube
- ▼ After \_\_\_\_ hours
  ☑ Cave Depth

AH - Automatic Hammer



### **TEST BORING LOG**

| CLIENT                                  | Southeast                            | Power Corpora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion             |                       |                 |             |                                       |             | BORING                                            | #                                         | ST                 | R 2               | 3A                 | L1                   |                         |
|-----------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-----------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|-------------------------|
| PROJECT NAME                            | LG&E-KU                              | Ford Glendale 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 kV            | / Tran                | smis            | ssio        | n                                     |             | JOB#                                              |                                           | LO                 | UG                | E22                | 2043                 | 8                       |
| PROJECT LOCATIO                         | N Hodgenvil                          | le Road West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                       |                 |             |                                       |             | DRAWN E                                           | 3Y                                        | <b>R</b> .         | Orti              | z                  |                      |                         |
|                                         | Glendale,                            | KY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                       |                 |             |                                       |             | APPROVI                                           | ED BY                                     | Τ. /               | And               | Ires               | ;                    |                         |
|                                         | DRILLING and SA                      | AMPLING INFORMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TION             |                       | 6               |             |                                       |             |                                                   |                                           | TES                | T DA              | TA                 |                      |                         |
| Date Started                            | 3/30/22                              | Hammer Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 140                   | lbs.            |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| Date Completed                          | 3/31/22                              | Hammer Drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 30                    | in.             |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| Drill Foreman                           | J. Burdette                          | Spoon Sampler C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DD               | 2                     | in.             |             |                                       |             | est                                               |                                           |                    |                   |                    | Sieve                |                         |
| Inspector                               | P. Presnell                          | Rock Core Dia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 2                     | in.             |             |                                       |             | t)                                                | jt                                        | .0                 |                   |                    | 5005                 |                         |
| Boring Method                           | HSA, AH                              | Shelby Tube OD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 3                     | in.             | Ð           | Sampler Graphics<br>Recovery Graphics | <u>ب</u>    | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | (TT)              | (PL)               | Percent Passing #200 |                         |
|                                         | SOIL CLASSIFICA                      | TION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                       |                 | Typ         | n<br>Gr<br>Gr                         | wate        | d Pe<br>(blo                                      | ncon<br>ssive                             | e Co               | imit              | Limit              | Pas                  | S                       |
|                                         | (continued)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stratum<br>Depth | Depth<br>Scale        | Sample<br>No.   | Sample Type | mple                                  | Groundwater | valu∈                                             | tsf U<br>npre:                            | istun              | Liquid Limit (LL) | Plastic Limit (PL) | rcent                | Remarks                 |
| Latitude (deg):                         | 37.626093, Longitu                   | de (deg): -85.863678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | De               | s<br>S<br>D<br>B<br>C |                 |             | Sa                                    | Ģ           |                                                   | 9<br>2<br>2<br>2<br>2                     | Mo                 | Liq               | Ыа                 | Pe                   | Re                      |
|                                         | Construction of Dischet on           | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | 36.0             | -                     | 13              | SS<br>RC    |                                       |             | 50/1"<br>[ <i>50/1"</i> ]                         |                                           |                    |                   |                    |                      |                         |
| weathered and                           | fine grained, light g<br>d fractured | ray, nigniy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | -                     |                 | RC          |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | RQD=13%                 |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 40 -                  | -               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         | URE - INTERPRET                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41.0             | -                     |                 | RC          |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         | INFILLED VOID, O                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -                     |                 | 110         |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.0             | -                     |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | RQD=11%                 |
| LIMESTONE,                              | slightly weathered,                  | fine grained, light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                | 45 -                  | -               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -                     |                 | RC          |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -                     |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | RQD=52%                 |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 50 -                  |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         | ered and fractured                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -                     |                 | RC          |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53.0             | -                     |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         | URE - INTERPRET<br>INFILLED VOID, O  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55.0             | -                     | -               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | RQD=22%                 |
|                                         | INFILLED VOID, O                     | R CLAT LATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 55 -                  |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -                     | -               | RC          |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58.0             | -                     |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | RQD=0%                  |
|                                         | highly weathered a                   | nd fractured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00.0             | -                     |                 | RC          |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 60 -                  |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | RQD=10%                 |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -                     |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63.0             | -                     |                 |             | Ц                                     |             |                                                   |                                           |                    |                   |                    |                      |                         |
| B                                       | oring Terminated at                  | 63 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                       |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                 |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| Sample Typ                              | )e                                   | Depth to Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | water            | 1                     | L               |             |                                       |             |                                                   |                                           |                    | <u> </u>          | I                  | I                    |                         |
| SPT - Standard Per                      | netration Test  👲                    | Noted on Drilling Tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 22.0                  | <b>)</b> ft.    | ЦО          |                                       |             | ng Method                                         | nore                                      |                    |                   |                    |                      |                         |
| SS - Driven Split S<br>SH - Pressed She | lihu Tuba 🗮 (                        | At Completion (in aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                       | •_ ft.          | CF          | A - C                                 | Conti       | w Stem Aug<br>inuous Fligh                        |                                           | rs                 |                   |                    |                      |                         |
| CA - Continuous F                       | -light Auger 🛛 👻 '                   | At Completion (open l<br>After hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                       | •_ ft.<br>• ft. |             | - C                                   | Drivir      | ng Casing<br>Drilling                             | -                                         |                    |                   |                    |                      |                         |
| RC - Rock Core<br>CU - Cuttings         | ¥ A                                  | After hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                |                       | ft.             | MH          | I - N                                 | /lanu       | ual Hammer                                        |                                           |                    |                   |                    |                      |                         |
| CT - Continuous T                       | Tube 趨(                              | Cave Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                | -                     | •_ ft.          | AH          | - A                                   | NULO        | matic Hamn                                        | ier                                       |                    |                   |                    | Pa                   | ge <b>2</b> of <b>2</b> |



| IENT                                  |                  | Power Corporat                                   |                  | Transmis                        | ssion       |                                                      | BORING<br>JOB #                              |                                           |                  | <u>R 2</u> 3<br>UG |                    | <u>L2</u><br>2043    | }                |
|---------------------------------------|------------------|--------------------------------------------------|------------------|---------------------------------|-------------|------------------------------------------------------|----------------------------------------------|-------------------------------------------|------------------|--------------------|--------------------|----------------------|------------------|
|                                       | N Hodgenvil      |                                                  |                  |                                 |             |                                                      | DRAWN                                        |                                           | Z.               |                    |                    |                      |                  |
|                                       | Glendale,        |                                                  |                  |                                 |             |                                                      | APPRO\                                       | -                                         |                  |                    |                    |                      |                  |
|                                       |                  | AMPLING INFORMA                                  |                  |                                 |             |                                                      | 7411101                                      |                                           |                  | T DA               |                    |                      |                  |
| Date Started                          | 3/30/22          |                                                  |                  | 140 lbs.                        |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
| Date Started<br>Date Completed        |                  | Hammer Wt<br>Hammer Drop                         |                  |                                 |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
| Drill Foreman                         |                  | Spoon Sampler O                                  |                  |                                 |             |                                                      | st                                           |                                           |                  |                    |                    | Sieve                |                  |
| Inspector                             |                  |                                                  |                  |                                 |             |                                                      | n Test                                       | ج                                         |                  |                    |                    | 00 Si                |                  |
|                                       | HSA              | Shelby Tube OD                                   |                  |                                 | 1           | cs<br>Jics                                           | ratio<br>(foot)                              | engt                                      | nt %             |                    | $\overline{}$      | g #20                |                  |
|                                       |                  |                                                  |                  |                                 | be          | Sraph<br>Grapt                                       | enet                                         | onfine<br>e Str                           | ontei            | t (LL)             | it (PL             | Issing               |                  |
|                                       | SOIL CLASSIFICA  |                                                  | E                | ٩                               | Sample Type | Sampler Graphics<br>Recovery Graphics<br>Groundwater | Standard Penetration<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | Liquid Limit (LL)  | Plastic Limit (PL) | Percent Passing #200 | rks              |
|                                       | RFACE ELEVATION  |                                                  | Stratum<br>Depth | Depth<br>Scale<br>Sample<br>No. | amp         | ecov<br>secov                                        | Tand:<br>-Valu                               | u-tsf<br>ompr                             | loistı           | iquid              | lastic             | erce                 | Remarks          |
|                                       | ERING- NO SAMPLI | le (deg): -85.863647<br>ES OBTAINED              | SΟ               | LO OZ                           | s c         | <u>ארב כ</u>                                         | ν oz                                         | đŭ                                        | 2                |                    |                    |                      | Ľ                |
|                                       |                  |                                                  |                  |                                 |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  |                                 |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  |                                 |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  | 5 —                             |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  | -                               |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  |                                 |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  | 10 —                            |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  |                                 |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  |                                 |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  | -                               |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  | 15                              |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  | -                               |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  |                                 |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  |                                 |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  | 20 —                            |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  | -                               |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  | _                               |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  | 25 —                            |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  | -                               |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  | -                               |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  |                                 |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  | 30 —                            |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  |                                 |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  |                                 |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
|                                       |                  |                                                  |                  |                                 |             |                                                      |                                              |                                           |                  |                    |                    |                      |                  |
| <u>Sample Ty</u><br>SPT - Standard Pe |                  | <u>Depth to Ground</u><br>Noted on Drilling Tool |                  | ft.                             |             |                                                      | bring Method                                 | -                                         |                  |                    | <u> </u>           | <u> </u>             |                  |
| S - Driven Split                      | Spoon 🛓          | At Completion (in aug                            | ers)             | ft.                             |             |                                                      | low Stem Au<br>ntinuous Flig                 |                                           | rs               |                    |                    |                      |                  |
| H - Pressed She<br>A - Continuous     | Flight Auger 😁 ' | At Completion (open I                            |                  | ft.                             | DC          | - Dri                                                | ving Casing<br>d Drilling                    |                                           |                  |                    |                    |                      |                  |
| RC - Rock Core                        |                  | After <u></u> hours<br>After <u></u> hours       |                  | <u></u> ft.<br>ft.              | MH          | - Ma                                                 | nual Hamme                                   |                                           |                  |                    |                    |                      |                  |
| - Continuous                          |                  | Cave Denth                                       | _                |                                 | AH          | - Aut                                                | omatic Ham                                   | mer                                       |                  |                    |                    | Par                  | ne <b>1</b> of 2 |

-- ft.

a Cave Depth



# **TEST BORING LOG**

| CLI | ENT                                     | Southeas             | t Power Corpora                              | tion             |                |                |             |                                       |             | BORING #                                          | ŧ                                         | ST               | R 2               | 3A                 | L2                         |                |   |
|-----|-----------------------------------------|----------------------|----------------------------------------------|------------------|----------------|----------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------------|----------------|---|
| PR  | OJECT NAME                              | LG&E-KU              | Ford Glendale 3                              | 45 kV            | ' Tran         | smis           | ssio        | n                                     |             | JOB #                                             |                                           | LO               | UG                | E22                | 2043                       | 3              |   |
| PR  | OJECT LOCATIO                           | N Hodgenvi           | lle Road West                                |                  |                |                |             |                                       |             | DRAWN B                                           | Y                                         | <b>Z</b> .       | Nicl              | hols               | 5                          |                |   |
|     |                                         | Glendale,            |                                              |                  |                |                |             |                                       |             | APPROVE                                           | DBY                                       | R.               | Orti              | iz                 |                            |                |   |
|     |                                         | DRILLING and S       | AMPLING INFORMA                              | TION             |                |                |             |                                       |             |                                                   |                                           | TES              | T DA              | TA                 |                            |                |   |
| [   | Date Started                            | 3/30/22              | Hammer Wt.                                   |                  | 140            | lbs.           |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
| [   | Date Completed                          | 3/30/22              | Hammer Drop                                  |                  | 30             | in.            |             |                                       |             |                                                   |                                           |                  |                   |                    | 0                          |                |   |
| [   | Drill Foreman                           | M. Smith             | Spoon Sampler C                              |                  |                |                |             |                                       |             | est                                               |                                           |                  |                   |                    | Sieve                      |                |   |
|     | nspector                                | J. Semmer            | Rock Core Dia.                               |                  |                |                |             | Ś                                     |             | of) 1                                             | gth                                       | %                |                   |                    | 200                        |                |   |
| E   | Boring Method                           | HSA                  | Shelby Tube OD                               |                  | 3              | _in.           | 0           | Sampler Graphics<br>Recovery Graphics |             | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | tent 6           | (LL)              | (PL)               | Percent Passing #200 Sieve |                |   |
|     |                                         | SOIL CLASSIFICA      | ATION                                        | _                |                |                | Sample Type | r Gra                                 | Groundwater | rd Pe<br>e (blo                                   | ssive                                     | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | t Pas                      | S              |   |
|     |                                         | (continued)          |                                              | Stratum<br>Depth | Depth<br>Scale | Sample<br>No.  | mple        | mple                                  | puno        | Value                                             | -tsf U<br>npre:                           | vistur           | uid L             | astic              | rcent                      | Remarks        |   |
|     | ,                                       | <u> </u>             | de (deg): -85.863647                         | De               | ъъ             | S Sa           | Sa          | Real                                  | ō           | r, st                                             | Cor                                       | Mc               | Lig               | Ъ                  | Ре                         | Re             |   |
| Ξ   | BLANK AUGE                              | RING- NO SAMPL       | ES OBTAINED                                  |                  | -              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
| _   |                                         |                      |                                              |                  | -              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  | -              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  | 40 -           |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
| _   |                                         |                      |                                              |                  | -              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  | -              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
| -   |                                         |                      |                                              |                  | 45 -           | -              |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
| -   |                                         |                      |                                              |                  | 45             |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  | :              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  | -              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  | -              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  | 50 -           |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
| Ξ   |                                         |                      |                                              |                  | -              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
| -   |                                         |                      |                                              |                  | -              | 4              |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  | 55 -           |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  | -              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  | -              | -              |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  | :              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         | Assess Defended at 6 | 20.6                                         | 60.0             | 60 -           | 1              |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         | Auger Refusal at 6   | ou leet                                      |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     |                                         |                      |                                              |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|     | Sample Typ                              | <u> </u>             | Depth to Ground                              | lwater           |                |                |             |                                       | Bor         | ing Method                                        |                                           |                  |                   |                    |                            |                |   |
|     | PT - Standard Pe<br>S - Driven Split \$ | •                    | Noted on Drilling Too                        |                  |                | •_ ft.         | HS          |                                       |             | w Stem Aug                                        | ers                                       |                  |                   |                    |                            |                |   |
| S   | H - Pressed She                         | İby Tube 🚡           | At Completion (in aug<br>At Completion (open |                  |                | - ft.<br>- ft. | CF          | A - (                                 | Cont        | inuous Flight                                     |                                           | ers              |                   |                    |                            |                |   |
|     | A - Continuous I<br>C - Rock Core       | -liuni Auuei         | After hours                                  |                  |                | - n.<br>• ft.  | ME          | ) - N                                 | Mud         | ng Casing<br>Drilling                             |                                           |                  |                   |                    |                            |                |   |
| С   | U - Cuttings                            | <b>.</b> . <b>.</b>  | After hours                                  | -                |                | • ft.          | MH          | I - N                                 | Manı        | ual Hammer<br>matic Hamm                          | or                                        |                  |                   |                    |                            |                | - |
| С   | T - Continuous                          | Tube 📓               | Cave Depth                                   | _                | -              | <b>-</b> _ ft. | AH          | - /                                   | -ul0        | mauc namm                                         | ei                                        |                  |                   |                    | Paę                        | ge <b>2</b> of | 2 |



| CLIENT                              | Southeas            | t Power Corpora                            | tion             |                                 |             |                                                      | BORING                                                                            | #                                         | ST               | R 2               | 3A                 | L3        |                         |
|-------------------------------------|---------------------|--------------------------------------------|------------------|---------------------------------|-------------|------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|-----------|-------------------------|
| -                                   |                     | Ford Glendale 3                            |                  |                                 |             |                                                      | JOB #                                                                             |                                           |                  |                   |                    |           | 3                       |
| PROJECT LOCATIC                     |                     |                                            |                  |                                 |             |                                                      | _                                                                                 |                                           |                  | Nicl              | nols               | 5         |                         |
|                                     | Glendale,           |                                            |                  |                                 |             |                                                      | APPROV                                                                            | ED BY                                     | <b>R</b> . (     | Orti              | İZ                 |           |                         |
|                                     | DRILLING and S      | AMPLING INFORMA                            | TION             |                                 |             |                                                      |                                                                                   |                                           | TES              | T DA              | ТА                 |           |                         |
| Date Started                        | 3/29/22             | Hammer Wt.                                 |                  | 140 lbs.                        |             |                                                      |                                                                                   |                                           |                  |                   |                    |           |                         |
| Date Completed                      | 3/29/22             |                                            |                  |                                 |             |                                                      |                                                                                   |                                           |                  |                   |                    |           |                         |
| Drill Foreman                       | M. Smith            | Spoon Sampler C                            | D                | <b>2</b> in.                    |             |                                                      | st                                                                                |                                           |                  |                   |                    | Sieve     |                         |
| Inspector                           | J. Semmer           | Rock Core Dia.                             |                  | <b>2</b> in.                    |             |                                                      | of Te                                                                             | t                                         |                  |                   |                    | #200 S    |                         |
| Boring Method                       | HSA, AH             | Shelby Tube OD                             |                  | <b>3</b> in.                    |             | hics                                                 | tratio<br>vs/fo                                                                   | ed<br>reng                                | nt %             |                   |                    | g #2      |                         |
|                                     |                     |                                            |                  |                                 | /be         | sampler Graphics<br>Recovery Graphics<br>Groundwater | Standard Penetration Test<br>Blows per 6"<br>[ <i>N-Value</i> ] <i>blows/foot</i> | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Passing   |                         |
|                                     | SOIL CLASSIFICA     |                                            | E                | <u> </u>                        | Sample Type | sampler Gra<br>Recovery Gra<br>Groundwater           | ard F<br>per<br>alue                                                              | Unce                                      | are O            | Lim               | c Lin              | nt Pa     | rks                     |
|                                     | RFACE ELEVATION     | N (ft): 720.1<br>Jde (deg): -85.863744     | Stratum<br>Depth | Depth<br>Scale<br>Sample<br>No. | amp         |                                                      | tand<br>lows<br>N-Va                                                              | u-tsf<br>ompr                             | loistu           | iquid             | lasti              | Percent F | Remarks                 |
|                                     | 57.020195, Longitt  | (ueg)05.003744                             | 0.3              |                                 | ss          |                                                      | WOH-                                                                              | đŭ                                        | ≥<br>22.4        |                   | <u> </u>           |           | PP=1.5 tsf              |
| LEAN CLAY (                         | CL), Light brown, S | OFT to VERY                                |                  |                                 |             |                                                      | WOH-3-<br>[3]                                                                     |                                           | 22.7             |                   |                    |           | 11 1.0 101              |
| STIFF, with o                       | rganics to 2 feet   |                                            |                  | 2                               | ss          |                                                      | 3-4-5-                                                                            |                                           | 17.6             |                   |                    |           | PP=1.5 tsf              |
|                                     |                     |                                            |                  |                                 | + F         |                                                      | [ 18]                                                                             |                                           |                  |                   |                    |           |                         |
|                                     |                     |                                            |                  | 53                              | ss          | $\overline{\mathbf{X}}$                              | 4-7-10-                                                                           |                                           | 16.5             |                   |                    |           | PP=3.0 tsf              |
|                                     | reddish brown and   | gray                                       |                  |                                 |             |                                                      | [ 17]                                                                             |                                           |                  |                   |                    |           |                         |
| - trace limesto                     | one fragments       |                                            |                  | _ 4                             | ss          | X                                                    | 3-7-11-                                                                           |                                           | 20.1             |                   |                    |           | PP=3.5 tsf              |
|                                     |                     |                                            |                  | 10                              |             |                                                      | [ 18]                                                                             |                                           |                  |                   |                    |           |                         |
|                                     |                     |                                            |                  | - 5                             | SH          |                                                      |                                                                                   | 1.60                                      | 19.8             | 43                | 17                 |           |                         |
|                                     | H) Light reddish br | own, VERY STIFF,                           | 12.0             |                                 | ss          |                                                      | 4-5-9-                                                                            |                                           | 30.7             |                   |                    |           | PP=3.5 tsf              |
| trace limestor                      | ne fragments        |                                            | 14.0             | 6                               |             |                                                      | [ 14 ]                                                                            |                                           | 00.7             |                   |                    |           |                         |
| LEAN CLAY (                         | CL), with sand, Bro | wn, STIFF                                  | 14.0             | 15                              |             |                                                      |                                                                                   |                                           |                  |                   |                    |           |                         |
|                                     |                     |                                            |                  |                                 | ss          | X                                                    | 4-5-7-<br>[ 12 ]                                                                  |                                           | 25.5             |                   |                    |           | PP=3.0 tsf              |
| FAT CLAY (C                         | H), Light tan and G | ray, VERY SOFT to                          | 17.0             |                                 |             |                                                      |                                                                                   |                                           |                  |                   |                    |           |                         |
| STIFF, with lin<br>about 22 feet    | mestone fragments,  | , groundwater at                           |                  |                                 |             |                                                      |                                                                                   |                                           |                  |                   |                    |           |                         |
|                                     |                     |                                            |                  | 20                              | SH          |                                                      |                                                                                   | 1.82                                      | 20.3             | 50                | 19                 |           |                         |
|                                     |                     |                                            |                  |                                 | 011         |                                                      |                                                                                   | 1.02                                      | 20.0             |                   |                    |           |                         |
|                                     |                     |                                            |                  |                                 | ss          |                                                      | 4-4-5-<br>[9]                                                                     |                                           | 40.1             |                   |                    |           | PP=1.0 tsf              |
|                                     |                     |                                            |                  |                                 | 1 [         |                                                      |                                                                                   |                                           |                  |                   |                    |           |                         |
|                                     |                     |                                            |                  | 25                              | ss          | $\overline{\mathbf{X}}$                              | WOH-                                                                              |                                           | 20.8             |                   |                    |           | PP=2.0 tsf              |
| - with black o                      | xidation nodules    |                                            |                  |                                 |             |                                                      | WOH-<br>WOH-                                                                      |                                           |                  |                   |                    |           |                         |
|                                     |                     |                                            |                  |                                 |             |                                                      | [ WOH]                                                                            |                                           |                  |                   |                    |           |                         |
|                                     |                     |                                            |                  | 30 -                            |             |                                                      |                                                                                   |                                           |                  |                   |                    |           |                         |
|                                     |                     |                                            |                  |                                 | SH          |                                                      |                                                                                   | 0.19                                      | 22.5             |                   |                    |           |                         |
|                                     |                     |                                            |                  |                                 | ss          |                                                      | 1-1-1-                                                                            |                                           |                  |                   |                    |           |                         |
|                                     | Auger Refusal at 33 | 3 5 feet                                   | 33.5             | 1                               |             | Ϋ́                                                   | [2]                                                                               |                                           |                  |                   |                    |           |                         |
|                                     |                     |                                            |                  |                                 |             |                                                      |                                                                                   |                                           |                  |                   |                    |           |                         |
| Sample Ty<br>SPT - Standard Pe      |                     | Depth to Ground<br>Noted on Drilling Too   |                  | <b>22.0</b> ft.                 |             |                                                      | ing Method                                                                        |                                           |                  |                   |                    |           |                         |
| SS - Driven Split                   | Spoon 🛓             | At Completion (in aug                      | ers)             | ft.                             |             |                                                      | w Stem Aug<br>inuous Fligh                                                        |                                           | ers              |                   |                    |           |                         |
| SH - Pressed She<br>CA - Continuous | Flight Auger 👻      | At Completion (open                        | ,                | ft.                             | DC          | - Drivi                                              | ng Casing                                                                         |                                           |                  |                   |                    |           |                         |
| RC - Rock Core<br>CU - Cuttings     | -                   | After <u></u> hours<br>After <u></u> hours |                  | <u></u> ft.<br>ft.              | MH          | - Man                                                | Drilling<br>ual Hammer                                                            |                                           |                  |                   |                    |           |                         |
| CT - Continuous                     |                     | Cave Depth                                 | -                | ft.                             | AH          | - Auto                                               | matic Hamn                                                                        | ner                                       |                  |                   |                    | Pa        | ge <b>1</b> of <b>1</b> |



| LIENT                             |                   | t Power Corpora                         |       |                |               |             |                                       |                 | BORING                                            |                                           |                    | <u>R 2</u>        |                    |                                       | <u> </u> |
|-----------------------------------|-------------------|-----------------------------------------|-------|----------------|---------------|-------------|---------------------------------------|-----------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|---------------------------------------|----------|
|                                   |                   | J Ford Glendale 3                       |       |                |               |             |                                       | _               | JOB # _                                           |                                           |                    |                   |                    | 2043                                  | 6        |
| OJECT LOCATIC                     |                   | ille Road West                          |       |                |               |             |                                       |                 | DRAWN                                             |                                           |                    |                   |                    | 5                                     |          |
|                                   | Glendale          | , ΚΥ                                    |       |                |               |             |                                       | _               | APPROV                                            | ED BY                                     | К.                 | ort               | Z                  |                                       |          |
|                                   | DRILLING and      | SAMPLING INFORMA                        | TION  |                | Г             |             |                                       |                 |                                                   |                                           | TES                | T DA              | TA                 | , , , , , , , , , , , , , , , , , , , |          |
| Date Started                      | 3/30/22           | Hammer Wt                               |       | 140            | lbs.          |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
| Date Completed                    | 3/30/22           | _ Hammer Drop _                         |       | 30             | in.           |             |                                       |                 |                                                   |                                           |                    |                   |                    | n a                                   |          |
| Drill Foreman                     |                   | _ Spoon Sampler C                       |       |                | - 11          |             |                                       |                 | est                                               |                                           |                    |                   |                    | Sieve                                 |          |
| Inspector                         |                   | -                                       |       |                |               |             | S                                     |                 | ot) T                                             | gth                                       | %                  |                   |                    | 200                                   |          |
| Boring Method                     | HSA               | _ Shelby Tube OD                        |       | 3              | in.           |             | phics                                 |                 | ietrat<br>vs/foo                                  | ned<br>Stren                              | tent 6             | ()                | PL)                | ing #                                 |          |
|                                   | SOIL CLASSIFIC    | ATION                                   |       |                |               | Sample Type | Sampler Graphics<br>Recovery Graphics | /ater           | Standard Penetration Test<br>N-Value (blows/foot) | confi<br>sive \$                          | Moisture Content % | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200                  |          |
| SUF                               | RFACE ELEVATIO    | N (ft): 720.6                           | tr tr | e t            | ple           | - əldı      | over                                  | Groundwater     | ndarc<br>alue                                     | sf Un<br>pres                             | sture              | id Li             | tic L              | cent I                                | Remarks  |
| Latitude (deg):                   | 37.626117, Longit | N (ft): 720.6<br>:ude (deg): -85.863775 | Stra  | Depth<br>Scale | Sample<br>No. | Sam         | San<br>Rec                            | Grot            | Star<br>N-V                                       | Qu-tsf Unconfined<br>Compressive Strength | Mois               | Liqu              | Plas               | Perc                                  | Ren      |
|                                   | ERING- NO SAMP    |                                         |       | -              |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       |                |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              | 1             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | 5 -            | ]             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              | ]             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       |                | 1 I           |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              | 1             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | 10 -           |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       |                |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       |                |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       |                |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | 15 -           | 1             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | _              |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              | 1             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              | ]             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | 20 -           | ]             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       |                | 1             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | 25 —           | 1             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       |                |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       |                |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              | 1             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | 30 —           | ]             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              | ]             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       |                |               |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              | 1             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
|                                   |                   |                                         |       | -              | 1             |             |                                       |                 |                                                   |                                           |                    |                   |                    |                                       |          |
| Sample Ty                         |                   | Depth to Ground                         | wator |                |               |             |                                       |                 |                                                   |                                           |                    | L                 |                    |                                       |          |
|                                   |                   | Noted on Drilling Too                   |       |                | ft.           |             |                                       |                 | ing Method                                        |                                           |                    |                   |                    |                                       |          |
| S - Driven Split                  | Spoon 🖌 🛃         | At Completion (in aug                   |       |                | • ft.         | HS          | A - H                                 | lollo           | w Stem Au                                         | gers                                      |                    |                   |                    |                                       |          |
| H - Pressed She                   | elby Tube 📈       | At Completion (open                     |       | -              | • ft.         |             | А-С<br>-Г                             | >onti<br>)rivir | inuous Fligh<br>ng Casing                         | it Auge                                   | ſS                 |                   |                    |                                       |          |
| A - Continuous I<br>C - Rock Core | Fliunt Auger      | After hours                             |       |                | ft.           | MD          | ) - N                                 | /lud            | Drilling                                          |                                           |                    |                   |                    |                                       |          |
| U - Cuttings                      |                   | After hours                             | -     |                | - ft          | MH          | I - N                                 | lanu            | ual Hammei                                        | r                                         |                    |                   |                    |                                       |          |

- CT Continuous Tube
- a Cave Depth

-- ft.

AH - Automatic Hammer



## **TEST BORING LOG**

| CLIE | NT                                | Southea            | ast Power Corpora                | tion             |                |                |             |                                       |             | BORING #                                          | ¥                                         |                  | R 2               |                    |                            |                |   |
|------|-----------------------------------|--------------------|----------------------------------|------------------|----------------|----------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------------|----------------|---|
| PRO  | JECT NAME                         | LG&E-K             | U Ford Glendale                  | 845 kV           | ' Tran         | smis           | ssio        | n                                     |             | JOB #                                             |                                           |                  |                   |                    | 2043                       | 3              |   |
| PRO  | JECT LOCATIO                      | N Hodgen           | ville Road West                  |                  |                |                |             |                                       |             | DRAWN E                                           | 3Y                                        | <b>Z</b> .       | Nicl              | hols               | 5                          |                |   |
|      |                                   | Glendal            | e, KY                            |                  |                |                |             |                                       |             | APPROVE                                           | ED BY                                     | R.               | Orti              | iz                 |                            |                |   |
|      |                                   | DRILLING and       | SAMPLING INFORM                  | TION             |                |                |             |                                       |             |                                                   |                                           | TES              | T DA              | ТА                 |                            |                |   |
| D    | ate Started                       | 3/30/22            | Hammer Wt.                       |                  | 140            | _lbs.          |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
| D    | ate Completed                     | 3/30/22            | Hammer Drop                      |                  | 30             | in.            |             |                                       |             |                                                   |                                           |                  |                   |                    | ۵                          |                |   |
| D    | rill Foreman                      | M. Smith           | Spoon Sampler (                  |                  |                |                |             |                                       |             | fest                                              |                                           |                  |                   |                    | Sieve                      |                |   |
|      | spector                           | J. Semmer          |                                  |                  |                |                |             |                                       |             | ot)                                               | ngth                                      | %                |                   |                    | £200                       |                |   |
| B    | oring Method                      | HSA                | Shelby Tube OD                   |                  | 3              | in.            |             | phics<br>aphic                        |             | netrai<br>ws/fo                                   | fined<br>Strer                            | Itent            | LL)               | (PL)               | sing #                     |                |   |
|      |                                   | SOIL CLASSIFI      | CATION                           |                  |                |                | Type        | r Gra                                 | water       | d Pei                                             | ncont<br>ssive                            | e Cor            | imit (            | imit               | Pase                       | Ŋ              |   |
|      |                                   | (continue          | ,                                | Stratum<br>Depth | Depth<br>Scale | Sample<br>No.  | Sample Type | Sampler Graphics<br>Recovery Graphics | Groundwater | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 Sieve | Remarks        |   |
|      |                                   |                    | gitude (deg): -85.86377          | Del Str          | N D<br>S       | Sa<br>No       | Sal         | - Sai                                 | ų           | Sta<br>N-V                                        | Con-                                      | Mo               | Liq               | Pla                | Pe                         | Rei            |   |
|      | BLANK AUGE                        | ERING- NO SAM      | PLES OBTAINED                    |                  | :              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  | -              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  | 40 -           |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
| _    |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  | -              | -              |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
| _    |                                   |                    |                                  |                  | 45 -           |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  | -              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
| -    |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   | Auger Refusal a    | it 48 feet                       | 48.0             | -              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   | , agoi i toracai e |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      |                                   |                    |                                  |                  |                |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      | Sample Typ                        | )e                 | Depth to Groun                   | dwater           | L              |                |             |                                       |             |                                                   |                                           |                  |                   |                    |                            |                |   |
|      | T - Standard Pe                   | netration Test     | Noted on Drilling Tod            |                  |                | ft.            |             |                                       |             | ing Method                                        |                                           |                  |                   |                    |                            |                |   |
| SS   | - Driven Split S<br>- Pressed She | Spoon              | At Completion (in au             | gers)            |                | <b>f</b> t.    |             |                                       |             | w Stem Aug<br>inuous Fligh                        |                                           | ers              |                   |                    |                            |                |   |
| CA   | - Continuous I                    | =light Auger 🧧     | At Completion (open              | -                |                | •_ ft.         |             | ; - [                                 | Drivir      | ng Casing<br>Drilling                             | 5-                                        |                  |                   |                    |                            |                |   |
|      | - Rock Core<br>- Cuttings         |                    | After <u></u> hour<br>After hour | -                |                | - ft.<br>- ft. | MF          | 1 - I                                 | Manu        | ual Hammer                                        |                                           |                  |                   |                    |                            |                |   |
|      | - Continuous                      |                    | Cave Depth                       | -                |                | ft.            | AH          | - /                                   | Auto        | matic Hamm                                        | er                                        |                  |                   |                    | Pa                         | ge <b>2</b> of | 2 |



| CLIENT                             |                                             | Power Corpora                      |                  |                                 |             |                                       |             | BORING                                                                            |                                           | STI              |                   |                    |              |                                                   |
|------------------------------------|---------------------------------------------|------------------------------------|------------------|---------------------------------|-------------|---------------------------------------|-------------|-----------------------------------------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|--------------|---------------------------------------------------|
|                                    | LG&E-KU                                     |                                    | 45 kV            | <sup>7</sup> Transmis           | ssio        | n                                     |             | JOB # _                                                                           |                                           | LO               |                   |                    | 043          | 3                                                 |
| PROJECT LOCATIO                    | N Hodgenvil                                 | le Road West                       |                  |                                 |             |                                       |             | DRAWN E                                                                           | -                                         | <b>R</b> . (     |                   |                    |              |                                                   |
|                                    | Glendale,                                   | KY                                 |                  |                                 |             |                                       | _           | APPROVI                                                                           | ED BY                                     | Т. /             | And               | res                |              |                                                   |
|                                    | DRILLING and SA                             | AMPLING INFORMA                    | TION             | ٢                               |             |                                       |             |                                                                                   |                                           | TES              | T DA              | TA                 |              |                                                   |
| Date Started                       | 4/14/22                                     | Hammer Wt.                         |                  | <b>140</b> lbs.                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                                                   |
| Date Completed                     | 4/14/22                                     | Hammer Drop                        |                  | <b>30</b> in.                   |             |                                       |             |                                                                                   |                                           |                  |                   |                    | Ø            |                                                   |
| Drill Foreman                      |                                             |                                    | DD               | <b>2</b> in.                    |             |                                       |             | est                                                                               |                                           |                  |                   |                    | Sieve        |                                                   |
| Inspector                          | C. Clouser                                  | Rock Core Dia.                     |                  | <b>2</b> in.                    |             | (0                                    |             | on T<br><i>oot</i>                                                                | gth                                       | %                |                   |                    |              |                                                   |
| Boring Method                      | HSA                                         | Shelby Tube OD                     |                  | <b>3</b> in.                    |             | hics<br>phics                         |             | etrati<br>w <i>s/</i> f                                                           | hed                                       | ent %            | L)                | (Jc                | ₩ Bu         |                                                   |
|                                    | SOIL CLASSIFICA                             | TION                               |                  |                                 | Sample Type | Sampler Graphics<br>Recovery Graphics | Groundwater | Standard Penetration Test<br>Blows per 6"<br>[ <i>N-Value</i> ] <i>blows/foot</i> | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Passing #200 | (0                                                |
| SU                                 | RFACE ELEVATION                             | (ft): 663.5                        | Stratum<br>Depth | Depth<br>Scale<br>Sample<br>No. | ble         | over                                  | nndv        | vs pe<br>valur                                                                    | sf Ur<br>pres                             | sture            | iid Li            | stic L             | Percent F    | Remarks                                           |
| Latitude (deg                      | : 37.62381, Longitud                        | le (deg): -85.906461               | Stra<br>Dep      | Depth<br>Scale<br>Sample<br>No. | San         | San<br>Rec                            | Gro         | Star<br>Blov                                                                      | Com t                                     | Moi              | Liqu              | Plas               | Per          | Ren                                               |
| TOPSOIL                            |                                             |                                    | 0.2              | = 1                             | SS          | X                                     |             | 3-2-3-                                                                            |                                           | 20.9             |                   |                    |              | PP=1.3 tsf                                        |
|                                    | (CL), with silt, Tannis<br>UM STIFF to HARD | sh brown with                      |                  | -                               |             |                                       |             | [5]                                                                               |                                           |                  |                   |                    |              |                                                   |
|                                    | ht brown, with sand                         |                                    |                  | 2                               | SS          | X                                     |             | 4-5-6-<br>[ <i>11</i> ]                                                           |                                           | 68.8             | 22                | 14                 |              | PP=1.8 tsf                                        |
|                                    |                                             |                                    |                  | 5                               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                                                   |
|                                    |                                             |                                    |                  | _ 3                             | SS          | Х                                     |             | 5-18-16-<br>[ 34]                                                                 |                                           | 15.8             |                   |                    |              | PP=4+ tsf                                         |
| FAT CLAY (C                        | CH), with silt and sand                     | d, Gray, brown, and                | 7.0              |                                 | SS          |                                       |             | 4-6-3-                                                                            |                                           | 25.9             |                   |                    |              | PP=0.8 tsf                                        |
| black, MEDIU                       | JM STIFF to STIFF                           |                                    |                  | 4                               | 00          | Å-                                    |             | [9]                                                                               |                                           | 20.0             |                   |                    |              | 11 -0.0 (3)                                       |
|                                    |                                             |                                    |                  | 10                              | SH          |                                       |             |                                                                                   | 0.38                                      | 25.1             | 29                | 17                 |              |                                                   |
|                                    |                                             |                                    |                  | - 5                             |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                                                   |
|                                    |                                             |                                    |                  | 6                               | SS          | Xo                                    |             | 3-3-4-<br>[7]                                                                     |                                           |                  |                   |                    |              |                                                   |
| - light brown                      |                                             |                                    |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                                                   |
|                                    |                                             |                                    |                  | 157                             | SS          |                                       |             | 3-2-2-<br>[ 4]                                                                    |                                           | 27.4             |                   |                    |              | PP=0.3 tsf                                        |
| - with limesto                     | ne fragments                                |                                    |                  | -                               |             |                                       |             | [ 4 ]                                                                             |                                           |                  |                   |                    |              | - tube not                                        |
|                                    | ne nagmento                                 |                                    |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              | attempted due to limestone                        |
|                                    |                                             |                                    |                  | 20                              | r.          |                                       |             |                                                                                   |                                           |                  |                   |                    |              | fragments                                         |
|                                    |                                             |                                    |                  | 8                               | SS          | Д                                     |             | 8-3-8-<br>[ <i>11</i> ]                                                           |                                           | 37.6             |                   |                    |              | PP=0.5 tsf                                        |
|                                    |                                             |                                    |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                                                   |
|                                    |                                             |                                    |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                                                   |
|                                    |                                             |                                    |                  | 25 - 9                          | SS          |                                       |             | 6-2-4-                                                                            |                                           |                  |                   |                    |              |                                                   |
|                                    |                                             |                                    |                  |                                 |             | Щ                                     |             | [6]                                                                               |                                           |                  |                   |                    |              |                                                   |
| - with limesto                     | ne fragments                                |                                    |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              | <ul> <li>tube not<br/>attempted due to</li> </ul> |
|                                    |                                             |                                    |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              | limestone<br>fragments                            |
|                                    |                                             |                                    |                  | 30 10                           | SS          |                                       |             | 3-6-4-                                                                            |                                           | 36.8             |                   |                    |              | PP=0.3 tsf                                        |
|                                    |                                             |                                    |                  |                                 |             | $\square$                             |             | [ 10]                                                                             |                                           |                  |                   |                    |              |                                                   |
|                                    |                                             |                                    |                  | -                               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                                                   |
|                                    |                                             |                                    |                  |                                 |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                                                   |
| Ser Standard P                     |                                             | Depth to Ground                    |                  | т<br>—                          |             |                                       | <u>Bori</u> | ng Method                                                                         |                                           |                  |                   |                    |              |                                                   |
| SS - Driven Split                  |                                             | At Completion (in aug              |                  | ft.<br>ft.                      |             |                                       |             | w Stem Aug<br>nuous Fligh                                                         |                                           | re               |                   |                    |              |                                                   |
| SH - Pressed Sh<br>CA - Continuous | elby Tube 🛛 🖉 A<br>Flight Auger             | At Completion (open                | hole)            | ft.                             | DC          | - D                                   | )rivir      | ng Casing                                                                         | n Auge                                    | 15               |                   |                    |              |                                                   |
| RC - Rock Core<br>CU - Cuttings    | ¥ ¥                                         | After <u></u> hours<br>After hours |                  | <u></u> ft.<br>ft.              | ME<br>MF    |                                       |             | Drilling<br>Jal Hammer                                                            |                                           |                  |                   |                    |              |                                                   |
| CT - Continuous                    | -                                           | Cave Depth                         |                  | <u></u> n.<br>ft.               |             |                                       |             | matic Hamm                                                                        |                                           |                  |                   |                    | Pa           | ge <b>1</b> of <b>2</b>                           |



## **TEST BORING LOG**

| CLIEN        | T                                 | Southeast                               | Power Corpora                           | tion             |                | ,             |             |                                       |             | BORING                                                                            | #                                         | ST                 | R 2               | 5 L′               | 1            |                         |
|--------------|-----------------------------------|-----------------------------------------|-----------------------------------------|------------------|----------------|---------------|-------------|---------------------------------------|-------------|-----------------------------------------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|--------------|-------------------------|
| PROJE        | ECT NAME                          | LG&E-KU                                 | Ford Glendale 3                         | 45 kV            | ' Trans        | smis          | ssio        | n                                     |             | JOB #                                                                             |                                           | LO                 | UG                | E22                | 2043         | 3                       |
| PROJE        | ECT LOCATIO                       | N Hodgenvil                             | lle Road West                           |                  |                |               |             |                                       |             | DRAWN E                                                                           | 3Y                                        | R. (               | Orti              | İZ                 |              |                         |
|              |                                   | Glendale,                               | KY                                      |                  |                |               |             |                                       |             | APPROVI                                                                           | ED BY                                     | Т. /               | And               | Ires               | ;            |                         |
|              |                                   | DRILLING and S                          | AMPLING INFORMA                         | TION             |                |               |             |                                       |             |                                                                                   |                                           | TES                | T DA              | TA                 |              |                         |
| Date         | e Started                         | 4/14/22                                 | Hammer Wt.                              |                  | 140            | lbs.          |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
| Date         | e Completed                       | 4/14/22                                 | Hammer Drop                             |                  | 30             | in.           |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
| Drill        | Foreman                           | J. Burdette                             | Spoon Sampler C                         | D                | 2              | in.           |             |                                       |             | est                                                                               |                                           |                    |                   |                    | Sieve        |                         |
| Insp         | ector                             | C. Clouser                              | Rock Core Dia.                          |                  | 2              | in.           |             |                                       |             | of Tc                                                                             | Ę                                         |                    |                   |                    |              |                         |
| Bori         | ing Method                        | HSA                                     | Shelby Tube OD                          |                  | 3              | in.           | 0           | Sampler Graphics<br>Recovery Graphics |             | Standard Penetration Test<br>Blows per 6"<br>[ <i>N-Value</i> ] <i>blows/foot</i> | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | (TL)              | (PL)               | Passing #200 |                         |
|              |                                   | SOIL CLASSIFICA                         | TION                                    |                  |                |               | Sample Type | , Gra                                 | Groundwater | d Pe<br>er 6"<br>e ] <i>b</i>                                                     | sive                                      | Cor                | Liquid Limit (LL) | Plastic Limit (PL) | Pas          | ø                       |
|              |                                   | (continued)                             |                                         | Stratum<br>Depth | le th          | Sample<br>No. | aldr        | over                                  | \pun        | vs pe<br>vs pe<br>Valu                                                            | sf Ur<br>pres                             | sture              | iid Li            | stic L             | Percent I    | Remarks                 |
| ι            | Latitude (deg):                   | 37.62381, Longitud                      | de (deg): -85.906461                    | Stra<br>Dep      | Depth<br>Scale | San<br>No.    | San         | San<br>Rec                            | Gro         | Star<br>Blov                                                                      | Com Com                                   | Moi                | Liqu              | Plas               | Perc         | Ren                     |
|              | FAT CLAY (CI                      | H), with silt and san                   | id, Gray, brown, and                    |                  | _              | 11            | SS          | X                                     |             | 5-7-8-                                                                            |                                           | 35.3               |                   |                    |              | PP=0.5 tsf              |
|              | black, MEDIU                      | M STIFF to STIFF                        |                                         |                  |                |               |             | Ĥ                                     |             | [ 15]                                                                             |                                           |                    |                   |                    |              |                         |
|              |                                   |                                         |                                         |                  | -              |               |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              |                                   |                                         |                                         |                  | 40 -           |               |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              |                                   |                                         |                                         |                  | 40 -           | 12            | SH          |                                       |             |                                                                                   | 0.05                                      | 31.1               |                   |                    |              |                         |
|              |                                   |                                         |                                         |                  | -              |               | SS          | $\nabla$                              |             | 8-4-3-                                                                            |                                           | 20.0               |                   |                    |              | PP=1.3 tsf              |
|              |                                   |                                         |                                         |                  | -              | 13            | 33          | Å                                     |             | [7]                                                                               |                                           | 30.8               |                   |                    |              | PP=1.3 ISI              |
|              | - with limeston                   | e fragments                             |                                         |                  | 45             |               |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              |                                   |                                         |                                         |                  | -              | 14            | SS          | X                                     |             | 4-10-10-<br>[ 20]                                                                 |                                           | 34.7               |                   |                    |              | PP=0.5 tsf              |
|              |                                   |                                         |                                         |                  | -              |               |             | Π                                     |             | [20]                                                                              |                                           |                    |                   |                    |              |                         |
|              | LIMESTONE,                        | light gray, fine grair                  | ned, moderately to                      | 48.0             | -              |               | RC          |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              | highly fracture                   | d, to 49 feet                           |                                         |                  | 50             | RC            |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              | RQD=32%                 |
|              | with a O in th                    |                                         |                                         | E1 E             | -              | 1             |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
| -H I'        | L                                 | moderately fracture                     | , , , , , , , , , , , , , , , , , , , , | 51.5             |                |               | RC          |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              |                                   | INFILLED VOID, O                        |                                         | 53.5             | -              | RC            |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              | RQD=25%                 |
|              | LIMESTONE                         |                                         |                                         |                  | 55 -           | 2             |             | н                                     |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              |                                   |                                         |                                         |                  |                |               | RC          |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              | - with a 2-inch                   | diameter solution of                    | cavity                                  |                  |                |               | NO          |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              | - with a 6-inch                   | moderately facture                      | d and weathered                         |                  |                | RC            |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              | RQD=50%                 |
|              | layers                            | ,                                       |                                         |                  | 60 —           | 3             |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
| $\mathbb{H}$ |                                   | shaley limestone<br>oring Terminated at | t 61 feet                               | 61.0             |                |               |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              | 10                                | oning reminated a                       | l o'i leel                              |                  |                |               |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              |                                   |                                         |                                         |                  |                |               |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              |                                   |                                         |                                         |                  |                |               |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              |                                   |                                         |                                         |                  |                |               |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              |                                   |                                         |                                         |                  |                |               |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              |                                   |                                         |                                         |                  |                |               |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              | Sample Typ                        |                                         | Depth to Ground                         | Wator            |                |               |             |                                       |             |                                                                                   |                                           |                    |                   |                    |              |                         |
|              | - Standard Per                    | netration Test  👤                       | Noted on Drilling Tool                  |                  |                | _ft.          |             |                                       |             | ng Method                                                                         |                                           |                    |                   |                    |              |                         |
| SS ·         | - Driven Split S<br>- Pressed She | Spoon 🛓                                 | At Completion (in aug                   | ers)             | -              | ft.           |             |                                       |             | w Stem Aug<br>inuous Fligh                                                        |                                           | ers                |                   |                    |              |                         |
| CA ·         | - Continuous F                    | Flight Auger 🛛 🙁 '                      | At Completion (open l<br>After hours    | -                |                | _ ft.<br>ft.  |             | ; - C                                 | Drivir      | ng Casing<br>Drilling                                                             | 5                                         |                    |                   |                    |              |                         |
|              | - Rock Core<br>- Cuttings         | -                                       | After <u></u> hours<br>After hours      | -                |                | _ n.<br>ft.   | MH          | I - N                                 | Λanι        | ual Hammer                                                                        |                                           |                    |                   |                    |              |                         |
|              | - Continuous 1                    |                                         | Cave Depth                              | _                |                | ft.           | AH          | - A                                   | Autor       | matic Hamm                                                                        | her                                       |                    |                   |                    | Pa           | ge <b>2</b> of <b>2</b> |



| CI | IEN | IT                              | Southea          | ast Power Corpora                               | tion             |                |                  |             |                                       |             | BORING #                                                               |                      | ST               | R 2               | 5 L2               | 2                    |                |   |
|----|-----|---------------------------------|------------------|-------------------------------------------------|------------------|----------------|------------------|-------------|---------------------------------------|-------------|------------------------------------------------------------------------|----------------------|------------------|-------------------|--------------------|----------------------|----------------|---|
| PF | roj | ECT NAME                        | LG&E-K           | U Ford Glendale 3                               | 845 kV           | / Tran         | smis             | ssio        | n                                     | _           | JOB #                                                                  |                      | LO               | UG                | E22                | 2043                 | 3              |   |
| PF | SOJ | ECT LOCATIO                     | N Hodgen         | ville Road West                                 |                  |                |                  |             |                                       | _           | DRAWN BY                                                               |                      | <u>R. (</u>      | Orti              | Z                  |                      |                |   |
|    |     |                                 | Glendal          | e, KY                                           |                  |                |                  |             |                                       | _           | APPROVED                                                               | BY_                  | <b>T.</b> /      | And               | lres               | ;                    |                |   |
|    |     |                                 | DRILLING and     | SAMPLING INFORMA                                | TION             |                |                  |             |                                       |             |                                                                        |                      | TES              | T DA              | TA                 |                      |                | 1 |
|    | Da  | te Started                      | 4/12/22          | Hammer Wt.                                      |                  | 140            | lbs.             |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
|    | Da  | te Completed                    | 4/12/22          | Hammer Drop                                     |                  | 30             | in.              |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
|    | Dri | ll Foreman                      | J. Burdette      | Spoon Sampler (                                 | DD               | 2              | in.              |             |                                       |             | est                                                                    |                      |                  |                   |                    | Sieve                |                |   |
|    |     | pector                          |                  |                                                 |                  | 2              | in.              |             |                                       |             | t)                                                                     | gt                   | %                |                   |                    | 200 5                |                |   |
|    | Bo  | ring Method                     | HSA              | Shelby Tube OD                                  |                  | 3              | in.              |             | hics<br>phics                         |             | etrati<br>s/foc                                                        | itren                |                  | Ĺ)                | ۲)                 | ;# Gu                |                |   |
| [  |     |                                 | SOIL CLASSIFI    | CATION                                          |                  |                |                  | ype         | Sampler Graphics<br>Recovery Graphics | ater        | Standard Penetration Test<br>N-Value (blows/foot)<br>كu-tsf Unconfined | Compressive Strength | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 |                |   |
|    |     | SUE                             | RFACE ELEVATI    |                                                 | E E              | e e            | ple              | Sample Type | pler                                  | Groundwater | dard<br>alue (                                                         | Dress                | ture             | d Lin             | tic Li             | ent F                | Remarks        |   |
|    |     |                                 |                  | gitude (deg): -85.90638                         | Stratum<br>Depth | Depth<br>Scale | Sample<br>No.    | Sam         | Sam<br>Reco                           | Grot        | Stan<br>N-Vő<br>Qu-ts                                                  |                      | Mois             | Liqu              | Plas               | Perc                 | Rem            |   |
| -  |     | BLANK AUGE                      | RING- NO SAM     | PLES OBTAINED                                   |                  | -              | -                |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| _  |     |                                 |                  |                                                 |                  | -              |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| -  |     |                                 |                  |                                                 |                  | -              | -                |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| _  |     |                                 |                  |                                                 |                  | 5 -            |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| -  |     |                                 |                  |                                                 |                  | -              | -                |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| _  |     |                                 |                  |                                                 |                  | -              |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| -  |     |                                 |                  |                                                 |                  |                |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| _  |     |                                 |                  |                                                 |                  | 10 -           | -                |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| -  |     |                                 |                  |                                                 |                  | -              | -                |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| -  |     |                                 |                  |                                                 |                  | -              |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| _  |     |                                 |                  |                                                 |                  | 15 -           |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| -  |     |                                 |                  |                                                 |                  | -              |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| _  |     |                                 |                  |                                                 |                  | -              | -                |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| -  |     |                                 |                  |                                                 |                  | -              |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| _  |     |                                 |                  |                                                 |                  | 20 -           |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| -  |     |                                 |                  |                                                 |                  | -              |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| _  |     |                                 |                  |                                                 |                  |                | -                |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| -  |     |                                 |                  |                                                 |                  | -              |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| -  |     |                                 |                  |                                                 |                  | 25 —           |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| _  |     |                                 |                  |                                                 |                  | -              |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| -  |     |                                 | Auger Refusal at | 28.5 foot                                       | 28.5             | -              |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
|    |     |                                 | nuyer nerusarar  |                                                 |                  |                |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
|    |     |                                 |                  |                                                 |                  |                |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
|    |     |                                 |                  |                                                 |                  |                |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
|    |     |                                 |                  |                                                 |                  |                |                  |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |
| l  |     | Sample Typ                      | <u>De</u>        | Depth to Ground                                 | dwater           | 1              | 1                | L           |                                       | Der!        | ng Mathad                                                              |                      |                  |                   | I                  | I                    |                |   |
|    |     |                                 | netration Test   | Noted on Drilling Tool<br>At Completion (in aug |                  |                | •_ ft.           | HS          | A - H                                 | lollo       | ng Method<br>w Stem Augers                                             | s                    |                  |                   |                    |                      |                |   |
|    | SH  | - Pressed She<br>- Continuous I | lby Tube         | At Completion (in aug<br>At Completion (open)   |                  |                | •_ ft.<br>•_ ft. | CF.         | A - C                                 | Conti       | inuous Flight Ai<br>ng Casing                                          | uger                 | S                |                   |                    |                      |                |   |
|    | RC  | - Rock Core                     |                  | After hours                                     | s _              |                | • ft.            | MD          | ) - N                                 | /lud        | Drilling<br>Jal Hammer                                                 |                      |                  |                   |                    |                      |                |   |
|    |     | - Cuttings<br>- Continuous      |                  | ⊈ After <u></u> hours<br>₄ Cave Depth           | 5 _              |                | •_ ft.<br>• ft.  |             |                                       |             | matic Hammer                                                           |                      |                  |                   |                    | Pag                  | ge <b>1</b> of | 1 |
|    |     |                                 | -                |                                                 | -                |                | _                |             |                                       |             |                                                                        |                      |                  |                   |                    |                      |                |   |



| LIENT                                 |                        | t Power Corporation<br>Ford Glendale 3         |                  | Transr                   |          |                                                      |             | BORING<br>JOB #                                                     |                                           | ST<br>LO         |                   |                    |                            |         |
|---------------------------------------|------------------------|------------------------------------------------|------------------|--------------------------|----------|------------------------------------------------------|-------------|---------------------------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------------|---------|
|                                       | N Hodgenvi             |                                                |                  | manor                    |          |                                                      |             | DRAWN                                                               |                                           | -                |                   |                    |                            |         |
|                                       | Glendale,              |                                                |                  |                          |          |                                                      |             | APPROV                                                              |                                           |                  |                   |                    | ;                          |         |
|                                       |                        | AMPLING INFORMA                                | TION             |                          |          |                                                      |             |                                                                     | -                                         | TES              | T DA              | ТА                 |                            |         |
| Date Started                          | 4/12/22                | Hammer Wt.                                     |                  | <b>140</b> lb            | s.       |                                                      |             |                                                                     |                                           |                  |                   |                    |                            |         |
| Date Completed                        | 4/12/22                | Hammer Drop                                    |                  | <b>30</b> in             | .        |                                                      |             |                                                                     |                                           |                  |                   |                    |                            |         |
| Drill Foreman                         | J. Burdette            | Spoon Sampler C                                | D                | <b>2</b> in              |          |                                                      |             | st                                                                  |                                           |                  |                   |                    | ieve                       |         |
| Inspector                             | D. Melvin              | Rock Core Dia.                                 |                  | <b>2</b> in              | .        |                                                      |             | or Te                                                               | 듚                                         | _                |                   |                    | S 00                       |         |
| Boring Method                         | HSA, AH                | Shelby Tube OD                                 |                  | <b>3</b> in              |          | ohics                                                | eo III de   | ietratic<br>ows/fo                                                  | ined<br>Streng                            | tent %           | (T)               | PL)                | ing #2                     |         |
|                                       | SOIL CLASSIFICA        | ATION                                          |                  |                          |          | Type<br>Grap                                         | water       | d Per<br>er 6"<br><i>ie</i> ] <i>bli</i>                            | nconfi<br>ssive 3                         | e Con            | imit (L           | -imit (            | Pass                       | S       |
|                                       | RFACE ELEVATION        | N (ft): 664.2<br>Jde (deg): -85.906282         | Stratum<br>Depth | Depth<br>Scale<br>Sample | No       | Sample Type<br>Sampler Graphics<br>Becovery Graphics | Groundwater | Standard Penetration Test<br>Blows per 6"<br>[ N-Value ] blows/foot | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 Sieve | Remarks |
|                                       |                        |                                                | 0.2              |                          |          | s                                                    |             | 6-6-7-                                                              | 00                                        | 17.5             |                   |                    | -                          | ¥       |
| LEAN CLAY                             | (CL), with silt, Browr | n, VERY STIFF                                  |                  |                          |          |                                                      |             | [ 13 ]                                                              |                                           |                  |                   |                    |                            |         |
|                                       |                        |                                                |                  | -                        | 2 5      | ss 🛛                                                 |             | 7-7-7-<br>[ 14 ]                                                    |                                           | 18.7             |                   |                    |                            |         |
| SANDY FAT                             | CLAY (CH), Brown,      |                                                | 4.5              | 5                        |          |                                                      |             |                                                                     |                                           |                  |                   |                    |                            |         |
|                                       |                        |                                                |                  |                          | 3 5      | ss 🛛                                                 |             | 5-10-14-<br>[ 24 ]                                                  |                                           | 18.4             |                   |                    |                            |         |
| - with limesto                        | ne fragments           |                                                |                  |                          | _        |                                                      |             |                                                                     |                                           |                  |                   |                    |                            |         |
|                                       | Ū                      |                                                |                  |                          | 4        | ss X                                                 |             | 9-14-14-<br>[ 28 ]                                                  |                                           | 18.4             |                   |                    |                            |         |
|                                       |                        |                                                |                  | 10                       |          | ан                                                   |             |                                                                     | 0.09                                      | 35.4             |                   |                    |                            |         |
|                                       |                        |                                                |                  | -                        | 5   `    |                                                      |             |                                                                     | 0.09                                      | 55.4             |                   |                    |                            |         |
|                                       |                        |                                                |                  |                          | 6        | ss 🛛                                                 |             | 6-2-1-                                                              |                                           | 19.8             |                   |                    |                            |         |
|                                       |                        |                                                |                  |                          |          | Ĥ                                                    |             | [3]                                                                 |                                           |                  |                   |                    |                            |         |
|                                       |                        |                                                |                  | 15                       | 7 \$     | ss 🕅                                                 |             | 2-2-5-                                                              |                                           | 24.2             |                   |                    |                            |         |
|                                       |                        |                                                |                  |                          |          | Α                                                    |             | [7]                                                                 |                                           |                  |                   |                    |                            |         |
|                                       |                        |                                                |                  |                          |          |                                                      |             |                                                                     |                                           |                  |                   |                    |                            |         |
|                                       |                        |                                                |                  |                          |          |                                                      |             |                                                                     |                                           |                  |                   |                    |                            |         |
|                                       |                        |                                                |                  | 20                       | 8 5      | вн                                                   |             |                                                                     | 0.05                                      | 33.2             |                   |                    |                            |         |
|                                       |                        |                                                |                  |                          |          | ss V                                                 |             | 7-16-7-                                                             |                                           | 29.2             |                   |                    |                            |         |
|                                       |                        |                                                | 04.0             |                          | <u> </u> | $\square$                                            |             | [ 23 ]                                                              |                                           | 29.2             |                   |                    |                            |         |
|                                       | Auger Refusal at 2     | 24 feet                                        | 24.0             |                          |          | ss 🗡                                                 |             | 50/6"<br>[ <i>50/6"</i> ]                                           |                                           |                  |                   |                    |                            |         |
|                                       |                        |                                                |                  |                          |          |                                                      |             |                                                                     |                                           |                  |                   |                    |                            |         |
|                                       |                        |                                                |                  |                          |          |                                                      |             |                                                                     |                                           |                  |                   |                    |                            |         |
|                                       |                        |                                                |                  |                          |          |                                                      |             |                                                                     |                                           |                  |                   |                    |                            |         |
|                                       |                        |                                                |                  |                          |          |                                                      |             |                                                                     |                                           |                  |                   |                    |                            |         |
|                                       |                        |                                                |                  |                          |          |                                                      |             |                                                                     |                                           |                  |                   |                    |                            |         |
|                                       |                        |                                                |                  |                          |          |                                                      |             |                                                                     |                                           |                  |                   |                    |                            |         |
|                                       |                        |                                                |                  |                          |          |                                                      |             |                                                                     |                                           |                  |                   |                    |                            |         |
| Sample Ty                             | <u>pe</u>              | Depth to Ground                                | water            |                          |          |                                                      |             | L                                                                   | 1                                         |                  |                   |                    |                            |         |
| SPT - Standard Pe                     | enetration Test 👲      | Noted on Drilling Tool                         | s                |                          | ft.      | HSA -                                                |             | ing Method<br>w Stem Au                                             | ders                                      |                  |                   |                    |                            |         |
| SS - Driven Split<br>SH - Pressed She | elby Tube 🚡            | At Completion (in aug<br>At Completion (open l |                  | 1                        | 1.<br>n  | CFA -                                                | Cont        | inuous Fligh                                                        |                                           | ers              |                   |                    |                            |         |
| CA - Continuous<br>RC - Rock Core     | FIIUIII AUUEI          | After hours                                    | -                |                          |          | DC -<br>MD -                                         | Mud         | ng Casing<br>Drilling                                               |                                           |                  |                   |                    |                            |         |

- CU Cuttings CT Continuous Tube
- ▼ After \_\_\_\_\_ -- hours
- A Cave Depth

--\_ ft.



|    | _IENT                                   |                      | Power Corporat                      |             |                                 |             |                                       | _             | BORING #                                          | !                                         |                    | R 2               |                    |                      |                |   |
|----|-----------------------------------------|----------------------|-------------------------------------|-------------|---------------------------------|-------------|---------------------------------------|---------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|----------------|---|
| PF | ROJECT NAME                             | LG&E-KU F            | Ford Glendale 3                     | 45 kV       | <sup>7</sup> Transmi            | ssior       | <u>1</u>                              | _             | JOB #                                             |                                           |                    |                   |                    | 2043                 | 8              |   |
| PF | ROJECT LOCATIO                          | N Hodgenvill         | e Road West                         |             |                                 |             |                                       | _             | DRAWN B                                           | Υ                                         | R.                 | Orti              | İZ                 |                      |                |   |
|    |                                         | Glendale, ł          | ۲Y                                  |             |                                 |             |                                       | _             | APPROVE                                           | D BY                                      | Τ. /               | And               | Ires               | 5                    |                |   |
|    |                                         | DRILLING and SA      | MPLING INFORMA                      | TION        |                                 | <b></b>     |                                       |               |                                                   |                                           | TES                | T DA              | TA                 |                      |                |   |
|    | Date Started                            | 4/12/22              | Hammer Wt.                          |             | <b>140</b> lbs.                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
|    | Date Completed                          |                      | • =                                 |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    | e                    |                |   |
|    | Drill Foreman                           | J. Burdette          | Spoon Sampler C                     |             |                                 |             |                                       |               | Test                                              |                                           |                    |                   |                    | Sieve                |                |   |
|    | Inspector                               |                      | Rock Core Dia.                      |             |                                 |             |                                       |               | ot)                                               | ngth                                      | %                  |                   |                    | £200                 |                |   |
|    | Boring Method                           | HSA                  | Shelby Tube OD                      |             | <u> </u>                        |             | phics<br>aphic                        |               | netra<br>ws/fo                                    | fined                                     | Itent              | LL)               | (PL)               | sing #               |                |   |
|    |                                         | SOIL CLASSIFICAT     |                                     |             |                                 | Sample Type | Sampler Graphics<br>Recovery Graphics | Groundwater   | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 | S              |   |
|    | SUR                                     | FACE ELEVATION       | (ft): 663.8<br>de (deg): -85.906363 | atum<br>pth | Depth<br>Scale<br>Sample<br>No. | mple        | mple<br>cove                          | pund          | /alue                                             | tsf U<br>npre                             | istur              | uid L             | stic               | rcent                | Remarks        |   |
| _  |                                         |                      |                                     | De          | N N N De                        | Sa          | Real                                  | ŏ             | Sta<br>N-V                                        | Sou                                       | Mo                 | Lid               | Pla                | Pe                   | Re             |   |
|    | BLANK AUGE                              | RING- NO SAMPLE      | S OBTAINED                          |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| _  |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| -  |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| _  |                                         |                      |                                     |             | 5 –                             |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| -  |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| -  |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| -  |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| -  |                                         |                      |                                     |             | 10                              |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| -  |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| _  |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| -  |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| -  |                                         |                      |                                     |             | 15 —                            |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| _  |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| -  |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| _  |                                         |                      |                                     |             | 20 -                            |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| _  |                                         |                      |                                     | 04 5        |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
|    |                                         | Auger Refusal at 21. | 5 feet                              | 21.5        |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
|    |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
|    |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
|    |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
|    |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
|    |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
|    |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
|    |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
|    |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
|    |                                         |                      |                                     |             |                                 |             |                                       |               |                                                   |                                           |                    |                   |                    |                      |                |   |
| l  | Sample Typ                              | )e                   | Depth to Ground                     | water       |                                 |             |                                       |               |                                                   |                                           |                    | I                 |                    |                      |                |   |
| :  | SPT - Standard Per                      | netration Test  💂 N  | loted on Drilling Tool              | s           | ft.                             | ЦС          |                                       |               | <u>ng Method</u><br>w Stem Aug                    | ore                                       |                    |                   |                    |                      |                |   |
| :  | SS - Driven Split S<br>SH - Pressed She | liku Tulka 👘 👘       | t Completion (in aug                |             | ft.                             | CFA         | 4 - Co                                | onti          | nuous Flight                                      | Auge                                      | rs                 |                   |                    |                      |                |   |
| (  | CA - Continuous F<br>RC - Rock Core     | Flight Auger 👻 🦰     | t Completion (open l<br>.fter hours | -           | ft.<br>ft.                      | DC<br>MD    | - Dr<br>- Mı                          | rivin<br>ud [ | ng Casing<br>Drilling                             |                                           |                    |                   |                    |                      |                |   |
| (  | CU - Cuttings                           | <b>_ ⊻</b> A         | fter hours                          |             | <b></b> ft.                     | MH          | - Ma                                  | anu           | ial Hammer                                        | ٥r                                        |                    |                   |                    | _                    |                |   |
|    | CT - Continuous 1                       | ube 📓 C              | ave Depth                           | _           | <u></u> ft.                     | АП          | - Al                                  | aton          |                                                   | CI                                        |                    |                   |                    | Paę                  | ge <b>1</b> of | 1 |



|                                                         |                                            | Power Corpora            |                  | <b>T</b>                        |                       |                                       | -                              | BORING #                                         |                                           | ST                 |                   |                    |                      |                         |
|---------------------------------------------------------|--------------------------------------------|--------------------------|------------------|---------------------------------|-----------------------|---------------------------------------|--------------------------------|--------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|-------------------------|
|                                                         |                                            |                          |                  |                                 |                       |                                       | -                              | JOB #                                            |                                           |                    |                   |                    | .043                 | )                       |
| PROJECT LOCATIO                                         |                                            |                          |                  |                                 |                       |                                       |                                | DRAWN E                                          | -                                         | <u>R. (</u>        |                   |                    |                      |                         |
|                                                         | Glendale, k                                | (Y                       |                  |                                 |                       |                                       | -                              | APPROVE                                          | ED BY                                     | 1.4                | ۹nd               | res                |                      |                         |
|                                                         | DRILLING and SA                            | MPLING INFORMA           | TION             | ſ                               |                       |                                       |                                |                                                  |                                           | TES                | ۲ DA              | ΤΑ                 |                      |                         |
| Date Started                                            | 4/4/22                                     | Hammer Wt.               |                  | 140 lbs.                        |                       |                                       |                                |                                                  |                                           |                    |                   |                    |                      |                         |
| Date Completed                                          | 4/4/22                                     | Hammer Drop              |                  | <b>30</b> in.                   |                       |                                       |                                |                                                  |                                           |                    |                   |                    | 6                    |                         |
| Drill Foreman                                           | J. Burdette                                | Spoon Sampler C          | D                | <b>2</b> in.                    |                       |                                       |                                | Test                                             |                                           |                    |                   |                    | Sieve                |                         |
| Inspector                                               | P. Presnell                                | Rock Core Dia.           |                  | <b>2</b> in.                    |                       |                                       |                                | ⊢<br>€                                           | gt                                        | .0                 |                   |                    |                      |                         |
| Boring Method                                           | HSA, AH                                    | Shelby Tube OD           |                  | <b>3</b> in.                    | e                     | Sampler Graphics<br>Recovery Graphics | -                              | Standard Penetration<br>N-Value (blows/foot)     | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | (TT)              | Plastic Limit (PL) | Percent Passing #200 |                         |
|                                                         | SOIL CLASSIFICAT                           | TION                     |                  |                                 | Тур                   | 9<br>2<br>0<br>2<br>0                 | wate                           | d Pe<br>bld)                                     | ncor<br>ssive                             | e Co               | imit              | Limit              | : Pas                | S                       |
| SUR                                                     | FACE ELEVATION                             | (ft): 735.6              | Stratum<br>Depth | Depth<br>Scale<br>Sample<br>No. | Sample Type           | mple<br>sove                          | Groundwater                    | indai<br>∕alu€                                   | tsf U<br>1pre:                            | istur              | Liquid Limit (LL) | stic               | cent                 | Remarks                 |
| Latitude (deg):                                         | 37.62381, Longitude                        | e (deg): -85.906461      | Str              | Depth<br>Scale<br>Sample<br>No. | Sar                   | Rec                                   | รี                             | Sta<br>N-V                                       | Con-                                      | Mo                 | Liq               | Pla                | Per                  | Rei                     |
|                                                         |                                            |                          | 0.7              | - 1                             | SS                    |                                       | T                              | 3-3-3-                                           |                                           |                    |                   |                    |                      |                         |
| FAT CLAY (C<br>with wood frag                           | H), Brown, MEDIUM                          | STIFF to STIFF,          |                  |                                 |                       | ÉШ                                    |                                | [6]                                              |                                           |                    |                   |                    |                      |                         |
|                                                         |                                            |                          | 4.5              | 2                               | SS                    | X                                     |                                | 3-5-6-<br>[ <i>11</i> ]                          |                                           | 25.0               |                   |                    |                      | PP=3.0 tsf              |
| SANDY FAT (<br>and oxidation                            | CLAY (CH), with sand<br>nodules, VERY STIF | d, Brown with black<br>F |                  | 5 3                             | SS                    | X                                     |                                | 7-8-8-<br>[ 16]                                  |                                           | 14.4               |                   |                    |                      | PP=4.0+ tsf             |
|                                                         |                                            |                          |                  | - 4                             | SS                    | X                                     |                                | 7-11-14-<br>[ 25]                                |                                           | 16.4               |                   |                    |                      | PP=4.0+ tsf             |
|                                                         |                                            |                          |                  | 10 - 5                          | SH                    |                                       |                                |                                                  | 1.46                                      | 22.6               | 66                | 21                 |                      |                         |
|                                                         |                                            |                          |                  |                                 | SS                    | X                                     |                                | 7-7-9-                                           |                                           | 12.2               |                   |                    |                      | PP=4.0+ tsf             |
|                                                         |                                            |                          |                  | 15                              |                       |                                       |                                | [ 16 ]                                           |                                           |                    |                   |                    |                      |                         |
| - with sand, lig                                        | jht gray                                   |                          |                  | 7                               | SS                    | Х                                     |                                | 5-12-15-<br>[ 27]                                |                                           | 22.1               |                   |                    |                      | PP=3.0 tsf              |
|                                                         |                                            |                          |                  |                                 |                       |                                       |                                |                                                  |                                           |                    |                   |                    |                      |                         |
|                                                         |                                            |                          |                  | 20 - 8                          | SH                    |                                       |                                |                                                  | 0.25                                      | 20.8               |                   |                    |                      |                         |
| POORLY GRA                                              | ADED SAND (SP), Li                         | ight brown,              | 22.0             | 9                               | SS                    |                                       | •                              | 3-4-4-<br>[8]                                    |                                           | 20.3               |                   |                    |                      |                         |
| FAT CLAY (C                                             | H), with sand, Yellow                      | ish brown, STIFF         | 24.0             | 25                              |                       |                                       |                                |                                                  |                                           |                    |                   |                    |                      |                         |
| -                                                       |                                            |                          |                  | 10                              | SS                    | Х                                     |                                | 4-3-5-<br>[8]                                    |                                           | 36.7               |                   |                    |                      | PP=2.0 tsf              |
|                                                         |                                            |                          |                  |                                 |                       |                                       |                                |                                                  |                                           |                    |                   |                    |                      |                         |
| SANDY FAT (                                             | CLAY (CH), Light red                       | dish brown to            | 30.0             | 30 - 11                         | SH                    |                                       |                                |                                                  | 0.73                                      | 24.9               |                   |                    |                      |                         |
| yellowish brov                                          | vn, STIFF                                  |                          |                  | 12                              | SS                    | X                                     |                                | 3-3-4-                                           |                                           | 20.5               |                   |                    |                      |                         |
|                                                         |                                            |                          |                  |                                 |                       |                                       |                                | [7]                                              |                                           |                    |                   |                    |                      |                         |
| Sample Typ                                              |                                            | Depth to Ground          |                  |                                 |                       | R                                     | orin                           | g Method                                         |                                           |                    |                   |                    |                      |                         |
| SPT - Standard Pe<br>SS - Driven Split S                |                                            | oted on Drilling Too     |                  | <u>22.0</u> ft.                 |                       | A - Ho                                | ollow                          | v Stem Aug                                       |                                           |                    |                   |                    |                      |                         |
| SH - Pressed She                                        | lby Tube 🖉 🗛                               | t Completion (in aug     |                  | n.<br>ft.                       |                       |                                       |                                | uous Fligh<br>a Casina                           | t Auge                                    | rs                 |                   |                    |                      |                         |
| RC - Rock Core                                          | Ilght Auger<br>⊈ A                         | fter hours               | · _              | ft.                             | MD                    | - Mu                                  | ud D                           | Drilling                                         |                                           |                    |                   |                    |                      |                         |
| CU - Cuttings                                           |                                            | fter <u></u> hours       |                  | ft.                             |                       |                                       |                                | al Hammer<br>natic Hamm                          | er                                        |                    |                   |                    | Do                   | ne <b>1</b> of <b>2</b> |
| SH - Pressed She<br>CA - Continuous F<br>RC - Rock Core | lby Tube<br>Flight Auger<br>⊈ A<br>⊈ A     | fter hours               | hole)            | ft.                             | CF/<br>DC<br>MD<br>MH | A - Co<br>- Dr<br>- Mu<br>- Ma        | ontin<br>iving<br>ud D<br>anua | nuous Fligh<br>g Casing<br>)rilling<br>al Hammer | t Auge                                    | rs                 |                   |                    | Pa                   | ge <b>1</b> of          |



### **TEST BORING LOG**

| LIENT                                 | Power Corpora                             | tion                                           |                  |                |                    |             |                                       | BORING a    | ¥                                                 | ST                                        | R 2                | 5A                | L1                 |              |                         |
|---------------------------------------|-------------------------------------------|------------------------------------------------|------------------|----------------|--------------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|--------------|-------------------------|
| ROJECT NAME                           | LG&E-KU                                   | Ford Glendale 3                                | 45 kV            | Tran           | smis               | ssio        | n                                     |             | JOB #                                             |                                           | LO                 | UG                | E22                | 2043         | 3                       |
| ROJECT LOCATIO                        | N Hodgenvil                               | le Road West                                   |                  |                |                    |             |                                       |             | DRAWN E                                           | 3Y                                        | R. (               | Orti              | z                  |              |                         |
|                                       | Glendale,                                 |                                                |                  |                |                    |             |                                       |             | APPROVI                                           |                                           |                    |                   |                    | ;            |                         |
|                                       | DRILLING and SA                           | AMPLING INFORMA                                | TION             |                | r                  |             |                                       |             |                                                   |                                           | TES                | T DA              | TA                 |              |                         |
| Date Started                          | 4/4/22                                    | Hammer Wt.                                     |                  | 140            | lbs.               |             |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
| Date Completed                        | 4/4/22                                    | Hammer Drop                                    |                  | 30             | in.                |             |                                       |             |                                                   |                                           |                    |                   |                    | m            |                         |
|                                       |                                           |                                                |                  |                |                    |             |                                       |             | <b>Fest</b>                                       |                                           |                    |                   |                    | Sieve        |                         |
|                                       |                                           | Rock Core Dia.                                 |                  |                |                    |             | " s                                   |             | ot)                                               | ngth                                      | %                  |                   |                    | #200         |                         |
| Boring Method                         | пза, ап                                   | Shelby Tube OD                                 |                  | 3              | . in.              | e           | aphics                                | <u>ب</u>    | enetra<br>ws/fo                                   | fined<br>Stre                             | ntent              | (LL)              | (PL)               | Passing #200 |                         |
|                                       | SOIL CLASSIFICA                           | TION                                           | E                |                | a)                 | Sample Type | Sampler Graphics<br>Recovery Graphics | Groundwater | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | Liquid Limit (LL) | Plastic Limit (PL) | nt Pas       | Š                       |
|                                       | (continued)                               |                                                | Stratum<br>Depth | Depth<br>Scale | Sample<br>No.      | ample       | ample                                 | rounc       | tanda<br>-Valu                                    | I-tsf L<br>mpre                           | oistu              | quid .            | lastic             | Percent I    | Remarks                 |
|                                       | 37.62381, Longituc<br>CLAY (CH), Light re | de (deg): -85.906461                           | ۵                | ŏĎ             |                    | ഗ്<br>SS    | ΰř<br>M                               | Ō           | がさ<br>3-3-4-                                      | ရပ္ပ                                      | ₹<br>32.2          | Ē                 | ₫                  | ď            | کٹ<br>PP=3.5 tsf        |
| yellowish brow                        | n, STIFF                                  |                                                |                  | -              | 13                 | 55          | Δ                                     |             | [7]                                               |                                           | <u>.</u>           |                   |                    |              |                         |
|                                       |                                           |                                                |                  | -              |                    |             |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
|                                       |                                           |                                                |                  | 40 -           |                    |             |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
|                                       |                                           |                                                |                  | -              | 14                 | SH          |                                       |             |                                                   | 0.46                                      | 19.9               |                   |                    |              |                         |
|                                       |                                           |                                                |                  | -              | 15                 | SS          | X                                     |             | 4-4-6-<br>[ 10 ]                                  |                                           | 22.5               |                   |                    |              |                         |
|                                       |                                           |                                                |                  | -              | -                  |             |                                       |             | [ ,0]                                             |                                           |                    |                   |                    |              |                         |
|                                       |                                           |                                                |                  | 45             | 16                 | SS          | X                                     |             | 5-6-50/6"-<br>[ <i>50/6"</i> ]                    |                                           | 8.9                |                   |                    |              |                         |
|                                       |                                           |                                                |                  | -              | -                  |             |                                       |             | [00,0]                                            |                                           |                    |                   |                    |              |                         |
|                                       |                                           |                                                |                  | -              |                    |             |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
|                                       | Light gray, slightly v                    | weathered                                      | 50.0<br>51.0     | 50 -           | RC1                | RC          |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
|                                       | URE - INTERPRET<br>INFILLED VOID, O       |                                                | 52.0             | -              |                    | RC          |                                       |             |                                                   |                                           |                    |                   |                    |              | RQD=8%                  |
| - with a calcite                      | streamer                                  |                                                |                  | -              |                    | KC.         |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
| weathered                             | Light gray, fine grai                     | ned, slightly                                  |                  | 55 —           | RC2                |             |                                       |             |                                                   |                                           |                    |                   |                    |              | RQD=32%                 |
|                                       |                                           |                                                |                  | -              |                    |             |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
|                                       |                                           |                                                |                  | -              |                    | RC          |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
|                                       |                                           |                                                |                  | 60 —           | RC3                |             |                                       |             |                                                   |                                           |                    |                   |                    |              | RQD=87%                 |
|                                       |                                           |                                                |                  | -              |                    |             |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
| В                                     | oring Terminated at                       | 62 feet                                        | 62.0             | -              |                    |             |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
|                                       |                                           |                                                |                  |                |                    |             |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
|                                       |                                           |                                                |                  |                |                    |             |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
|                                       |                                           |                                                |                  |                |                    |             |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
|                                       |                                           |                                                |                  |                |                    |             |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
| Sample Typ                            | e                                         | Depth to Ground                                | water            |                |                    |             |                                       |             |                                                   |                                           |                    |                   |                    |              |                         |
|                                       | netration Test  🖢 I                       | Noted on Drilling Tool                         | s                | 22.0           |                    | HS          |                                       |             | ing Method<br>w Stem Aug                          | iers                                      |                    |                   |                    |              |                         |
| SH - Pressed She<br>CA - Continuous F | İby Tube 🚡                                | At Completion (in aug<br>At Completion (open l | ,                |                | •_ ft.<br>•_ ft.   |             | A - C                                 | Conti       | inuous Fligh                                      |                                           | rs                 |                   |                    |              |                         |
| RC - Rock Core<br>CU - Cuttings       | Tigrit Auger<br>⊻ A                       | After <u></u> hours<br>After hours             | _                |                | <br>• ft.<br>• ft. | ME          | ) - N                                 | ∕lud        | Drilling<br>Jal Hammer                            |                                           |                    |                   |                    |              |                         |
| CT - Continuous T                     |                                           | Cave Depth                                     | _                |                | •_ n.<br>•_ ft.    | AH          |                                       |             | matic Hamm                                        |                                           |                    |                   |                    | Pa           | ge <b>2</b> of <b>2</b> |



|          | ENT                                         |                     | Power Corpora                                |                  |                |                 |             |                                       |             | BORING #                                     |                                           | ST                 |                   |                    |                      |                         |
|----------|---------------------------------------------|---------------------|----------------------------------------------|------------------|----------------|-----------------|-------------|---------------------------------------|-------------|----------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|-------------------------|
|          |                                             |                     | Ford Glendale 3                              |                  |                |                 |             |                                       |             | JOB #                                        |                                           |                    |                   |                    | 2043                 | 8                       |
| PRC      | JECT LOCATIO                                | N Hodgenvil         | le Road West                                 |                  |                |                 |             |                                       |             | DRAWN B                                      | Y                                         | Z. I               | Nich              | nols               | 5                    |                         |
|          |                                             | Glendale,           | KY                                           |                  |                |                 |             |                                       |             | APPROVE                                      | D BY                                      | <b>R</b> . (       | Orti              | Z                  |                      |                         |
|          |                                             | DRILLING and SA     | AMPLING INFORMA                              | TION             |                | ſī              |             |                                       |             |                                              |                                           | TES                | T DA              | TA                 | ,,                   |                         |
| D        | ate Started                                 | 3/29/22             | Hammer Wt.                                   |                  | 140            | lbs.            |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
| D        | ate Completed                               | 3/29/22             | Hammer Drop                                  |                  | 30             | in.             |             |                                       |             |                                              |                                           |                    |                   |                    | 0                    |                         |
|          | orill Foreman                               | M. Smith            | Spoon Sampler C                              | -                |                | -               |             |                                       |             | Test                                         |                                           |                    |                   |                    | Sieve                |                         |
|          | nspector                                    |                     |                                              |                  |                | ·               |             | ŝ                                     |             |                                              | lgth                                      | %                  |                   |                    | <sup>1</sup> 200     |                         |
| В        | oring Method                                | HSA                 | Shelby Tube OD                               |                  | 3              | in.             | Ø           | Sampler Graphics<br>Recovery Graphics | _           | Standard Penetration<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | (LL)              | (PL)               | Percent Passing #200 |                         |
|          |                                             | SOIL CLASSIFICA     | TION                                         |                  |                |                 | Sample Type | er Gra                                | Groundwater | rd Pe<br>e (blo                              | Jncon<br>ssive                            | ê Col              | Liquid Limit (LL) | Plastic Limit (PL) | t Pas                | s                       |
|          |                                             | RFACE ELEVATION     |                                              | Stratum<br>Depth | Depth<br>Scale | Sample<br>No.   | ample       | ample                                 | round       | tanda<br>-Valu                               | u-tsf L                                   | loistur            | quid I            | lastic             | ercen                | Remarks                 |
| _        | ,                                           | ERING- NO SAMPLE    | de (deg): -85.862759                         | ΩŌ               | <u>م</u> D     | ΰŻ              | ũ           | ώœ<br>Π                               | G           | ΰŻ                                           | <u> </u>                                  | Σ                  |                   | Р                  | đ                    | Ŕ                       |
|          | BEANTAOOL                                   |                     |                                              |                  |                |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  |                |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
| -        |                                             |                     |                                              |                  | 5              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  |                |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  | 10 -           |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  |                |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  | 15 -           |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  | 20 —           |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
| -        |                                             |                     |                                              |                  |                |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  | 25 –           |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
| -        |                                             |                     |                                              |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
| _        |                                             |                     |                                              |                  | 30 —           |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              |                  | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             |                     |                                              | 22.0             | -              |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          |                                             | Auger Refusal at 33 | 3 feet                                       | 33.0             | -              | ]               |             |                                       |             |                                              |                                           |                    |                   |                    |                      |                         |
|          | Sample Typ                                  | <u>)e</u>           | Depth to Ground                              | water            |                |                 |             |                                       |             |                                              |                                           |                    |                   | <u> </u>           |                      |                         |
|          |                                             | netration Test  👲   | Noted on Drilling Too                        | s                |                | •_ ft.          | НS          |                                       |             | <u>ng Method</u><br>w Stem Aug               | ers                                       |                    |                   |                    |                      |                         |
| SF       | I - Pressed She                             | lby Tube 🚡 🖌        | At Completion (in aug<br>At Completion (open |                  |                | • ft.<br>• ft.  | CF          | A - C                                 | Conti       | inuous Flight                                | Auge                                      | rs                 |                   |                    |                      |                         |
| RC       | A - Continuous I<br>C - Rock Core           | Tigint Auger y A    | After hours                                  | _                |                | ft.             | MD          | ) - N                                 | ∕lud        | Drilling<br>Jal Hammer                       |                                           |                    |                   |                    |                      |                         |
| CL<br>CT | J - Cuttings<br>F - Continuous <sup>-</sup> |                     | After <u></u> hours<br>Cave Depth            | -                |                | •_ ft.<br>• ft. | AH          |                                       |             | ual Hammer<br>matic Hamm                     | er                                        |                    |                   |                    | Pad                  | ge <b>1</b> of <b>1</b> |
|          |                                             | - End               |                                              | -                |                |                 |             |                                       |             |                                              |                                           |                    |                   |                    |                      | -                       |



| OJECT NAME                                                       | Southeast Power Corp         ECT NAME       LG&E-KU Ford Glenda         ECT LOCATION       Hodgenville Road West |                                          |                  |                | mis           | sior        |                                       | _           | BORING #<br>JOB #                                                                 |                                           | LO               | UG                | E22                | 2043         | 3                           |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|----------------|---------------|-------------|---------------------------------------|-------------|-----------------------------------------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|--------------|-----------------------------|
| OJECT LOCATION                                                   | -                                                                                                                |                                          |                  |                |               |             |                                       | _           | DRAWN E                                                                           |                                           | Z. N             |                   |                    | <u>}</u>     |                             |
|                                                                  | Glendale, K                                                                                                      | Y                                        |                  |                |               |             |                                       | _           | APPROVE                                                                           | ED BY                                     | R. (             | Orti              | Z                  |              |                             |
|                                                                  | DRILLING and SA                                                                                                  | MPLING INFORMA                           | TION             |                | ſĒ            |             |                                       |             |                                                                                   |                                           | TES              | T DA              | TA                 |              |                             |
| Date Started                                                     | 3/29/22                                                                                                          | Hammer Wt.                               |                  | <b>140</b>     | bs.           |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                             |
| Date Completed                                                   | 3/29/22                                                                                                          | Hammer Drop                              |                  | <b>30</b> in   | n. 📗          |             |                                       |             |                                                                                   |                                           |                  |                   |                    | 0            |                             |
|                                                                  | M. Smith                                                                                                         | Spoon Sampler C                          | D                | <b>2</b> ii    | n.            |             |                                       |             | est                                                                               |                                           |                  |                   |                    | Sieve        |                             |
|                                                                  | J. Semmer                                                                                                        | -                                        |                  |                | 11            |             | s                                     |             | ion T<br>oot                                                                      | gth                                       | %                |                   |                    | 200          |                             |
| Boring Method                                                    | HSA, AH                                                                                                          | Shelby Tube OD                           |                  | <u>3</u> ir    | n.            |             | ohics<br>aphic                        |             | ietrat<br>ows/f                                                                   | ned<br>Stren                              |                  | ()                | PL)                | ing #        |                             |
|                                                                  | SOIL CLASSIFICAT                                                                                                 | ION                                      |                  |                |               | Sample Type | Sampler Graphics<br>Recovery Graphics | /ater       | Standard Penetration Test<br>Blows per 6"<br>[ <i>N-Value</i> ] <i>blows/foot</i> | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Passing #200 |                             |
| SUR                                                              | FACE ELEVATION (                                                                                                 | ft): 732.8                               | th tu            | e t            | bie           | - əldı      | over                                  | Groundwater | ndarc<br>vs pe<br>Value                                                           | sf Un<br>pres                             | sture            | id Lir            | tic L              | Percent I    | Remarks                     |
|                                                                  | 37.629913, Longitud                                                                                              | ,                                        | Stratum<br>Depth | Depth<br>Scale | oampie<br>No. | San         | San<br>Rec                            | <u>G</u>    | Star<br>Blov<br>[ N-                                                              | Qu-ts<br>Com                              | Mois             | Liqu              | Plas               | Perc         | Rem                         |
| TOPSOIL                                                          |                                                                                                                  | ſ                                        | 0.3              | _              | 1             | SS          | Χ                                     |             | 2-1-3-<br>[ <i>4</i> ]                                                            |                                           | 20.7             |                   |                    |              | PP=1.5 tsf                  |
|                                                                  | CL), Light brown, ME<br>rganics to 2 feet                                                                        | DIUM STIFF to                            |                  |                |               |             |                                       |             | [ 7 ]                                                                             |                                           |                  |                   |                    |              |                             |
|                                                                  | 5                                                                                                                |                                          |                  | -              | 2             | SS          | X                                     |             | 4-5-8-<br>[ <i>13</i> ]                                                           |                                           | 13.9             |                   |                    |              | PP=1.5 tsf                  |
| - transition to r                                                | eddish brown and gr                                                                                              | ay, with sand                            |                  | 5 —            |               | 00          |                                       |             | 0.7.0                                                                             |                                           | 47.4             |                   |                    |              |                             |
|                                                                  | _                                                                                                                | -                                        |                  |                | 3             | SS          | Д                                     |             | 3-7-9-<br>[ 16]                                                                   |                                           | 17.4             |                   |                    |              | PP=2.5 tsf                  |
|                                                                  |                                                                                                                  |                                          |                  |                | 4             | SS          |                                       |             | 11-14-14-                                                                         |                                           | 18.2             |                   |                    |              | PP=4.0 tsf                  |
|                                                                  |                                                                                                                  |                                          |                  |                | 4             |             | Д                                     |             | [ 28 ]                                                                            |                                           | 10.2             |                   |                    |              |                             |
|                                                                  |                                                                                                                  |                                          | 11.0             | 10 _           | 5             | SH          |                                       |             |                                                                                   | 1.26                                      | 15.0             | 28                | 15                 |              |                             |
| FAT CLAY (CF<br>with black oxid                                  | H), Light brown, STIF                                                                                            | F to VERY STIFF,                         | 11.0             |                | 5             |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                             |
| with black oxid                                                  | ation nodules                                                                                                    |                                          |                  |                | 6             | SS          | Х                                     |             | 12-15-13-<br>[ 28]                                                                |                                           | 26.0             |                   |                    |              | PP=4.0 tsf                  |
|                                                                  |                                                                                                                  |                                          |                  | 15             |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                             |
|                                                                  |                                                                                                                  |                                          |                  |                | 7             | SS          | X                                     |             | 3-5-7-<br>[ 12]                                                                   |                                           | 29.2             |                   |                    |              | PP=3.0 tsf                  |
|                                                                  |                                                                                                                  |                                          |                  |                |               |             | $\Box$                                |             | [ ]                                                                               |                                           |                  |                   |                    |              |                             |
| - transition to c                                                | lark gray and dark bi                                                                                            | rown                                     |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                             |
|                                                                  |                                                                                                                  |                                          |                  | 20             |               | SH          |                                       |             |                                                                                   | 1 70                                      | 27.4             | 62                | 22                 |              |                             |
|                                                                  |                                                                                                                  |                                          |                  | -              | 8             | эп          |                                       |             |                                                                                   | 1.79                                      | 27.4             | 02                | 22                 |              |                             |
|                                                                  | ight tannish brown to<br>nd and limestone fra                                                                    |                                          |                  |                | 9             | SS          | X                                     |             | 3-4-4-<br>[8]                                                                     |                                           | 17.6             |                   |                    |              | PP=2.0 tsf                  |
| DIOWII, WILLI SA                                                 | nu anu imestorie na                                                                                              | gments                                   |                  |                |               |             |                                       |             | [0]                                                                               |                                           |                  |                   |                    |              |                             |
|                                                                  |                                                                                                                  |                                          |                  | 25             | 10            | SS          | X                                     | •           | 4-4-10-                                                                           |                                           | 36.1             |                   |                    |              | PP=1.5 tsf                  |
| - groundwater                                                    | at about 26 feet                                                                                                 |                                          |                  |                |               |             |                                       |             | [ 14 ]                                                                            |                                           |                  |                   |                    |              |                             |
| - transition to b                                                | prown                                                                                                            |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                             |
|                                                                  |                                                                                                                  |                                          |                  | 30 -           |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                             |
|                                                                  |                                                                                                                  |                                          |                  | -              | 11            | SH          |                                       |             |                                                                                   | 0.45                                      | 39.6             |                   |                    |              |                             |
|                                                                  | Auger Refusal at 32                                                                                              | feet                                     | 32.0             | $+$            |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                             |
|                                                                  |                                                                                                                  |                                          |                  |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                             |
| Sample Typ                                                       | e                                                                                                                | Depth to Ground                          | water            |                |               |             |                                       |             |                                                                                   |                                           |                  |                   |                    |              |                             |
| PT - Standard Per                                                | netration Test  单 No                                                                                             | oted on Drilling Tool                    | s                | 26.0           | ft.           | це          |                                       |             | ng Method                                                                         | ore                                       |                  |                   |                    |              |                             |
| <ul> <li>S - Driven Split S</li> <li>H - Pressed Shel</li> </ul> | by Tube 🖉 🗛                                                                                                      | Completion (in aug<br>Completion (open l |                  |                |               | CFA         | 4 - C                                 | onti        | w Stem Aug<br>nuous Fligh                                                         |                                           | ers              |                   |                    |              |                             |
| A - Continuous F<br>C - Rock Core                                | light Auger 🙁 🖼                                                                                                  | ter hours                                | ,                |                |               | MD          | - M                                   | ud l        | ng Casing<br>Drilling                                                             |                                           |                  |                   |                    |              |                             |
| J - Cuttings<br>T - Continuous T                                 |                                                                                                                  | ter hours<br>ave Depth                   |                  |                |               |             |                                       |             | ial Hammer<br>natic Hamm                                                          |                                           |                  |                   |                    | D.           | ge <b>1</b> of <sup>1</sup> |



| CI    |     | NT                                 | Southeas                             | st Power Corpora        | tion             |                                 |             |                                       |             | BORING #                                                              |                      | ST               | R 2               | 5A                 | L4                   |                |   |
|-------|-----|------------------------------------|--------------------------------------|-------------------------|------------------|---------------------------------|-------------|---------------------------------------|-------------|-----------------------------------------------------------------------|----------------------|------------------|-------------------|--------------------|----------------------|----------------|---|
| PF    | ROJ | ECT NAME                           | LG&E-KI                              | U Ford Glendale 3       | 845 kV           | / Transmi                       | ssior       | า                                     |             | JOB #                                                                 |                      | LO               | UG                | E22                | 2043                 | 3              |   |
| PF    | ROJ | ECT LOCATIO                        | N Hodgenv                            | /ille Road West         |                  |                                 |             |                                       | _           | DRAWN BY                                                              |                      | Z. I             | Nicl              | nols               | 5                    |                |   |
|       |     |                                    | Glendale                             | e, KY                   |                  |                                 |             |                                       | _           | APPROVED                                                              | BY_                  | <b>R</b> . (     | Orti              | Z                  |                      |                |   |
|       |     |                                    | DRILLING and                         | SAMPLING INFORMA        | TION             |                                 |             |                                       |             |                                                                       |                      | TES              | T DA              | TA                 |                      |                |   |
|       | Da  | te Started                         | 3/28/22                              | Hammer Wt               |                  | <b>140</b> lbs.                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       | Da  | te Completed                       | 3/28/22                              | Hammer Drop             |                  | <b>30</b> in.                   |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       | Dri | II Foreman                         | M. Smith                             | Spoon Sampler (         | DD               | <b>2</b> in.                    |             |                                       |             | est                                                                   |                      |                  |                   |                    | Sieve                |                |   |
|       |     | pector                             |                                      |                         |                  |                                 |             | <i>"</i>                              |             | of) T                                                                 | gth                  | %                |                   |                    | 200 \$               |                |   |
|       | Во  | ring Method                        | HSA                                  | Shelby Tube OD          |                  | <b>3</b> in.                    |             | hics                                  |             | etrati<br>/s/foc                                                      | Stren                | tent %           | (                 | PL)                | ;# Gu                |                |   |
|       |     |                                    | SOIL CLASSIFIC                       | CATION                  |                  |                                 | Sample Type | Sampler Graphics<br>Recovery Graphics | /ater       | Standard Penetration Test<br>N-Value (blows/foot)<br>Nutsf Unconfined | Compressive Strength | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 |                |   |
|       |     | SUR                                | FACE ELEVATIO                        |                         | Stratum<br>Depth | Depth<br>Scale<br>Sample<br>No. | - əldı      | over                                  | Groundwater | alue                                                                  | bres                 | sture            | id Li             | stic L             | cent l               | Remarks        |   |
|       |     |                                    |                                      | gitude (deg): -85.86293 | Stra<br>Dep      | Depth<br>Scale<br>Sampl         | San         | San<br>Rec                            | Gro         | Star<br>N-V                                                           |                      | Moi              | Liqu              | Plas               | Per                  | Ren            |   |
| 1 1   |     | BLANK AUGE                         | RING- NO SAMP                        | PLES OBTAINED           |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
| 111   |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
| -     |     |                                    |                                      |                         |                  | 5 —                             |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
| 1 1 1 |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
| -     |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
| 1     |     |                                    |                                      |                         |                  | 10 -                            |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
| 11    |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
| 11    |     |                                    |                                      |                         |                  | 15                              |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
| -     |     |                                    |                                      |                         |                  | _                               |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
| 11    |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       |     |                                    |                                      |                         |                  | 20 -                            |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
| -     |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       |     |                                    |                                      |                         |                  | 25 –                            |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
| -     |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
| -     |     |                                    |                                      |                         |                  | 30                              |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
|       |     |                                    |                                      |                         |                  |                                 |             |                                       |             |                                                                       |                      |                  |                   |                    |                      |                |   |
| F     | SPT | <u>Sample Typ</u><br>- Standard Pe | <u>oe</u><br>netration Test <b>●</b> | Depth to Ground         |                  | <b>44.0</b> ft.                 |             |                                       |             | ing Method                                                            |                      |                  |                   |                    |                      |                |   |
|       | SS  | - Driven Split S<br>- Pressed She  | Spoon 🛓                              | At Completion (in aug   | gers)            | <b></b> ft.                     | CFA         | A - C                                 | onti        | w Stem Augers<br>inuous Flight A                                      |                      | rs               |                   |                    |                      |                |   |
|       | CA  | - Continuous F                     | Flight Auger 🛛 👻                     | At Completion (open     |                  | ft.<br>ft.                      |             | - D                                   | rivir       | ng Casing<br>Drilling                                                 | -                    |                  |                   |                    |                      |                |   |
|       | CU  | - Rock Core<br>- Cuttings          | <b>.</b> . <b>¥</b>                  | After hours             | -                | <b></b> ft.                     | MH          | - M                                   | anı         | ual Hammer<br>matic Hammer                                            |                      |                  |                   |                    |                      |                | - |
|       | СТ  | - Continuous 1                     | lube 📓                               | Cave Depth              | -                | ft.                             | АП          | - AI                                  | uiUl        |                                                                       |                      |                  |                   |                    | Pa                   | ge <b>1</b> of | 2 |



# **TEST BORING LOG**

|     |                                                          |                    | t Power Corpora<br>Ford Glendale 3       |                  | Transn                   | nissio                 | on               |             | BORING #<br>JOB #                                 |                                           | ST<br>LO         |                   |                    | L4<br>2043           | 3                       |
|-----|----------------------------------------------------------|--------------------|------------------------------------------|------------------|--------------------------|------------------------|------------------|-------------|---------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------|-------------------------|
| PRC | JECT LOCATIO                                             | N Hodgenvi         | Ile Road West                            |                  |                          |                        |                  |             | DRAWN E                                           |                                           |                  |                   |                    | 5                    |                         |
|     |                                                          | Glendale,          | KY                                       |                  |                          |                        |                  |             | APPROVE                                           | D BY                                      | R.               | Ort               | İZ                 |                      |                         |
|     |                                                          | DRILLING and S     | SAMPLING INFORMA                         | TION             |                          |                        |                  |             |                                                   |                                           | TES              | T DA              | TA                 |                      |                         |
| D   | ate Started                                              | 3/28/22            | Hammer Wt                                |                  | <b>140</b> lb:           | s.                     |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
| D   | ate Completed                                            | 3/28/22            | _ Hammer Drop _                          |                  | <b>30</b> in             |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
| D   | rill Foreman _                                           | M. Smith           | _ Spoon Sampler C                        | D                | <b>2</b> in              |                        |                  |             | est                                               |                                           |                  |                   |                    | Sieve                |                         |
|     | spector                                                  | J. Semmer          | -                                        |                  |                          |                        | ,                | 0           | ot) T                                             | gth                                       | %                |                   |                    | 200 \$               |                         |
| В   | oring Method                                             | HSA                | _ Shelby Tube OD                         |                  | <b>3</b> in              |                        | phics            |             | netrat<br>ws/foo                                  | ined<br>Stren                             |                  | (T                | (PL)               | ing #                |                         |
|     |                                                          | SOIL CLASSIFICA    | ATION                                    |                  |                          | No.   _<br>Sample Type | Sampler Graphics | Groundwater | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | Percent Passing #200 | Ŋ                       |
|     |                                                          | (continued)        |                                          | Stratum<br>Depth | Depth<br>Scale<br>Sample | mple                   | mple             | ound        | andar<br>Value                                    | tsf U<br>npre                             | isture           | uid L             | astic              | rcent                | Remarks                 |
|     |                                                          | _                  | tude (deg): -85.86293                    | De               | S C De                   | Sal No                 | Sa               | ξŪ          | Sta<br>N-V                                        | Con<br>Con                                | Mo               | Lig               | Pla                | Pel                  | Re                      |
|     | BLANK AUGE                                               | RING- NO SAMPL     | ES OBTAINED                              |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
| _   |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  | 40 -                     |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  | -                        |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  | 45                       |                        |                  | -           |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
| ╢   |                                                          | Auger Refusal at 5 | 50 feet                                  | 50.0             | 50 —                     |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          | 5                  |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          |                    |                                          |                  |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     | Sample Tur                                               |                    | Depth to Crouse                          | Water            |                          |                        |                  |             |                                                   |                                           |                  |                   |                    |                      |                         |
|     |                                                          | netration Test 🌘   | Depth to Ground<br>Noted on Drilling Too |                  | <b>44.0</b> f            | t. ,,                  | <b>C</b> A       |             | ing Method                                        | 0.55                                      |                  |                   |                    |                      |                         |
|     | <ul> <li>Driven Split \$</li> <li>Pressed She</li> </ul> | liby Tubo 🍧        | At Completion (in aug                    | -                | f                        | L C                    | FA -             | Cont        | w Stem Aug                                        |                                           | ers              |                   |                    |                      |                         |
| CA  | <ul> <li>Continuous F</li> <li>Rock Core</li> </ul>      | Flight Auger       | At Completion (open After hours          | -                | f<br>f                   | t. M                   | D -              | Mud         | ng Casing<br>Drilling                             |                                           |                  |                   |                    |                      |                         |
|     | J - Cuttings                                             | Ţ                  | After hours                              |                  | <b></b> f                | - Δ                    |                  |             | ual Hammer<br>matic Hamm                          | er                                        |                  |                   |                    | Do                   | ge <b>2</b> of <b>2</b> |
|     | Continuous                                               | 1.420 <u>N</u>     | Cave Depth                               | -                | f                        | ι.                     |                  |             |                                                   |                                           |                  |                   |                    | гa                   |                         |



| CLIENT<br>PROJECT NAME                  |                                                            | -                                 |                  | Tran             |               |             |                                       |                | BORING #<br>JOB #                                 |                                       | STI<br>LO        |                   |                    |           | 2                       |
|-----------------------------------------|------------------------------------------------------------|-----------------------------------|------------------|------------------|---------------|-------------|---------------------------------------|----------------|---------------------------------------------------|---------------------------------------|------------------|-------------------|--------------------|-----------|-------------------------|
|                                         |                                                            |                                   |                  |                  |               |             |                                       | _              |                                                   |                                       | R. (             |                   |                    | .04.      | •                       |
| PROJECT LOCATIO                         | Glendale, KY                                               |                                   |                  |                  |               |             |                                       |                | DRAWN E<br>APPROVE                                | -                                     |                  |                   |                    |           |                         |
|                                         | DRILLING and SAMPLI                                        |                                   |                  |                  |               |             |                                       | _              | AFFROVE                                           |                                       | TES              |                   |                    |           |                         |
| Data Startad                            |                                                            |                                   |                  | 140              |               |             |                                       |                |                                                   |                                       |                  |                   |                    |           |                         |
| Date Started<br>Date Completed          |                                                            | mmer Wt<br>mmer Drop              |                  | <u>140</u><br>30 |               |             |                                       |                |                                                   |                                       |                  |                   |                    |           |                         |
| Drill Foreman                           |                                                            | oon Sampler C                     |                  |                  | ·             |             |                                       |                | ţ.                                                |                                       |                  |                   |                    | eve       |                         |
| Inspector                               | <u> </u>                                                   |                                   |                  |                  |               |             |                                       |                | Tes                                               |                                       |                  |                   |                    | ) Sieve   |                         |
| Boring Method                           |                                                            | elby Tube OD                      |                  |                  |               |             | s<br>S                                |                | ation<br>oot)                                     | ïned<br>Strength                      | t %              |                   |                    | #200      |                         |
|                                         |                                                            |                                   |                  |                  |               | Ō           | aphic                                 | 5              | enetra<br>ows/f                                   | nfineo<br>Stre                        | nten             | (TT)              | (PL)               | Passing : |                         |
|                                         | SOIL CLASSIFICATION                                        |                                   | _                |                  |               | Sample Type | Sampler Graphics<br>Recovery Graphics | Groundwater    | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Stre | Moisture Content | Liquid Limit (LL) | Plastic Limit (PL) | t Pas     | S                       |
| SUF                                     | RFACE ELEVATION (ft): 68                                   | 36.1                              | Stratum<br>Depth | Depth<br>Scale   | Sample<br>No. | mple        | mple                                  | punc           | value                                             | tsf U<br>npre                         | istur            | uid l             | Istic              | Percent   | Remarks                 |
|                                         | 37.623237, Longitude (deg                                  | g): -85.905332                    |                  | De<br>Sc         | Sa<br>No      |             | Resa                                  | Ğ              |                                                   | Cor-                                  |                  | Liq               | Pla                | Ре        | Re                      |
| TOPSOIL                                 | CL), with silt, Light reddish                              |                                   | 0.5              | -                | 1             | SS          | Х                                     |                | 3-2-4-<br>[6]                                     |                                       | 22.8             |                   |                    |           | PP=1.0 tsf              |
|                                         | F, (possible fill)                                         | brown,                            | 2.0              | _                |               | 00          |                                       |                | 225                                               |                                       | 04.0             |                   |                    |           |                         |
| FAT CLAY (C                             | H), with silt, Reddish brow                                | n, STIFF,                         |                  | -                | 2             | SS          | А                                     |                | 3-3-5-<br>[8]                                     |                                       | 21.9             |                   |                    |           | PP=1.5 tsf              |
| LEAN CLAY (                             | CL), with silt, Light brown v                              |                                   | 4.5              | 5 —              | 3             | SS          |                                       |                | 4-5-4-                                            |                                       | 21.5             |                   |                    |           | PP=0.3 tsf              |
| brown, with or                          | ganic soil and an organic o                                | odor                              | 7.0              |                  | 3             |             | А                                     | •              | [9]                                               |                                       |                  |                   |                    |           |                         |
| FAT CLAY (C                             | H), trace sand, Reddish br                                 | own, STIFF                        | 1.0              |                  | 4             | SS          | $\overline{\mathbf{A}}$               |                | 4-5-4-                                            |                                       | 160.2            |                   |                    |           | PP=0.8 tsf              |
|                                         |                                                            |                                   |                  | -                |               |             | $\square$                             |                | [9]                                               |                                       |                  |                   |                    |           |                         |
|                                         |                                                            |                                   |                  | 10 —             | 5             | SH          |                                       |                |                                                   | 0.92                                  | 19.4             |                   |                    |           |                         |
|                                         |                                                            |                                   |                  | -                | -             | 00          |                                       |                | 4.5.0                                             |                                       | 04.0             |                   |                    |           |                         |
|                                         |                                                            |                                   |                  | -                | 6             | SS          | Х                                     |                | 4-5-6-<br>[ <i>11</i> ]                           |                                       | 21.0             |                   |                    |           | PP=1.3 tsf              |
| LEAN CLAY (                             | CL), Brown, STIFF                                          |                                   | 14.0             | <br>15 —         |               |             |                                       |                |                                                   |                                       |                  |                   |                    |           |                         |
|                                         |                                                            |                                   |                  | -                | 7             | SS          | X                                     |                | 5-5-7-<br>[ 12]                                   |                                       | 26.1             | 49                | 15                 |           | PP=1.5 tsf              |
|                                         |                                                            |                                   |                  | _                |               |             |                                       |                |                                                   |                                       |                  |                   |                    |           |                         |
|                                         |                                                            |                                   |                  |                  |               |             |                                       |                |                                                   |                                       |                  |                   |                    |           |                         |
|                                         |                                                            |                                   | 20.0             | 20 —             |               | SH          |                                       |                |                                                   | 1.00                                  | 22.0             |                   |                    |           |                         |
| SOFT to STIF                            | H), with silt, Reddish brown<br>F, with limestone fragment | is VERY                           |                  | -                | 8             | эп          |                                       |                |                                                   | 1.23                                  | 23.8             |                   |                    |           |                         |
|                                         |                                                            |                                   |                  |                  | 9             | SS          | X                                     |                | 3-3-5-                                            |                                       | 41.0             |                   |                    |           | PP=2.3 tsf              |
|                                         |                                                            |                                   |                  |                  |               |             |                                       |                | [8]                                               |                                       |                  |                   |                    |           |                         |
|                                         |                                                            |                                   |                  | 25 —             | 10            | SS          |                                       |                | 4-4-4-                                            |                                       | 36.4             |                   |                    |           | PP=0.5 tsf              |
|                                         |                                                            |                                   |                  | -                |               |             | $\cap$                                |                | [8]                                               |                                       |                  |                   |                    |           |                         |
|                                         |                                                            |                                   |                  |                  |               |             |                                       |                |                                                   |                                       |                  |                   |                    |           |                         |
|                                         |                                                            |                                   |                  | 30 —             |               |             |                                       |                |                                                   |                                       |                  |                   |                    |           |                         |
|                                         |                                                            |                                   |                  | 30               | 11            | SH          |                                       |                |                                                   | 0.72                                  | 36.6             |                   |                    |           |                         |
|                                         |                                                            |                                   |                  | -                | 10            | SS          | $\vee$                                |                | 3-3-3-                                            |                                       | 38.3             |                   |                    |           | PP=0.5 tsf              |
|                                         |                                                            |                                   |                  |                  | 12            |             | A                                     |                | [6]                                               |                                       |                  |                   |                    |           |                         |
|                                         |                                                            |                                   |                  | _                |               |             |                                       |                |                                                   |                                       |                  |                   |                    |           |                         |
| Semple Type<br>SPT - Standard Pe        |                                                            | epth to Ground<br>on Drilling Too |                  | 7.0              | ft            |             |                                       |                | ng Method                                         |                                       |                  |                   |                    |           |                         |
| SS - Driven Split S<br>SH - Pressed She | Spoon 🛓 At Com                                             | pletion (in aug                   | jers)            |                  | ft.           | HS/<br>CF/  | A - ⊢<br>A - C                        | lollo<br>Conti | w Stem Aug<br>nuous Fligh                         | jers<br>t Auge                        | rs               |                   |                    |           |                         |
| CA - Continuous I                       |                                                            | pletion (open<br>hours            |                  | -                | ft.<br>ft.    |             | - D                                   | Drivir         | ng Casing<br>Drilling                             | 0-                                    |                  |                   |                    |           |                         |
| RC - Rock Core<br>CU - Cuttings         | Ţ After                                                    | hours                             |                  |                  | _ ft.         | MH          | - N                                   | /lanu          | al Hammer                                         |                                       |                  |                   |                    |           |                         |
| CT - Continuous                         | Tube 🛛 🖉 Cave D                                            | epth                              | _                |                  | ft.           | AH          | - A                                   | utor           | matic Hamm                                        | ier                                   |                  |                   |                    | Pa        | ge <b>1</b> of <b>2</b> |



# **TEST BORING LOG**

(Continued)

| CLIENT                                |                                             | Power Corpora                          |        |                |               |             |                                       |             | BORING                                            |                                           |                    |                   |                    |                      |                         |
|---------------------------------------|---------------------------------------------|----------------------------------------|--------|----------------|---------------|-------------|---------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|--------------------|-------------------|--------------------|----------------------|-------------------------|
|                                       | LG&E-KU F                                   |                                        |        |                |               |             |                                       |             | JOB #                                             |                                           |                    |                   |                    | .04.                 | )                       |
| PROJECT LOCATIC                       |                                             |                                        |        |                |               |             |                                       |             | DRAWN E                                           | -                                         |                    |                   |                    |                      |                         |
|                                       | <u> </u>                                    | Y                                      |        |                |               |             |                                       |             | APPROVI                                           | =D BĀ                                     | 1.7                | 4110              | ires               | )                    |                         |
|                                       | DRILLING and SAM                            | IPLING INFORMA                         | TION   |                | ٦             |             |                                       |             |                                                   |                                           | TES                | T DA              | TA                 |                      |                         |
| Date Started                          | 4/15/22                                     | Hammer Wt.                             |        | 140            | lbs.          |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| Date Completed                        | 4/18/22                                     | Hammer Drop                            |        | 30             | in.           |             |                                       |             |                                                   |                                           |                    |                   |                    | a)                   |                         |
| Drill Foreman                         |                                             |                                        |        |                |               |             |                                       |             | est                                               |                                           |                    |                   |                    | Sieve                |                         |
|                                       | Clouser/Januzz                              |                                        |        |                |               |             | (0                                    |             | t ug                                              | gth                                       | <b>\$</b>          |                   |                    | 200 (                |                         |
| Boring Method                         | HSA                                         | Shelby Tube OD                         |        | 3              | in.           |             | Sampler Graphics<br>Recovery Graphics |             | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content % | L                 | ۲)                 | Percent Passing #200 |                         |
|                                       | SOIL CLASSIFICATI                           |                                        |        |                |               | ype         | Grap                                  | ater        | Pene                                              | confir<br>ive S                           | Cont               | Liquid Limit (LL) | Plastic Limit (PL) | assi                 |                         |
|                                       |                                             |                                        | Ę      | 5              | e             | ole T       | very                                  | mdw         | dard<br>lue (                                     | f Und                                     | iure               | d Lin             | ic Lir             | ent P                | arks                    |
| Latitude (deg):                       | (continued)<br>37.623237, Longitude         | e (dea): -85.905332                    | Stratu | Depth<br>Scale | Sample<br>No. | Sample Type | Sam                                   | Groundwater | Stand<br>N-Va                                     | u-tsi<br>omp                              | Moist              | -iqui             | Jast               | Perce                | Remarks                 |
| - FAT CLAY (C                         | H) with silt Reddish b                      | prown VERY                             | 0.0    |                | 13            | SS          | M                                     | 0           | WOH-                                              | 00                                        | 39.2               |                   | -                  | -                    | PP=0.5 tsf              |
| SOFT to STIF                          | F, with limestone fragi<br>kidation nodules | ments                                  |        |                | 13            |             | Α                                     |             | WOH-2-<br>[ 2]                                    |                                           |                    |                   |                    |                      |                         |
|                                       | lidation nodules                            |                                        |        |                |               |             |                                       |             | 1                                                 |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        |                |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| -                                     |                                             |                                        |        | 40 -           | 14            | SH          |                                       |             |                                                   | 0.32                                      | 43.2               |                   |                    |                      |                         |
|                                       |                                             |                                        | 42.0   |                | 14            |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| FAT CLAY (C                           | H), Light brown, SOFT                       | Γ to MEDIUM                            |        |                | 15            | SS          | Х                                     |             | 5-6-8-<br>[ <i>14</i> ]                           |                                           |                    |                   |                    |                      | PP=0.5 tsf              |
| - with limestor                       | ne fragments                                |                                        |        |                |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        | 45 _           | 16            | SS          | X                                     |             | 20-15-12-                                         |                                           |                    |                   |                    |                      | PP=0.0 tsf              |
|                                       |                                             |                                        |        |                |               |             | $\square$                             |             | [27]                                              |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        |                |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        |                |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        | 50             | 17            | SH          |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        |                | 18            | SS          | $\nabla$                              |             | 18-16-12-                                         |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        |                | 10            |             | Α                                     |             | [ 28 ]                                            |                                           |                    |                   |                    |                      | PP=0.5 tsf              |
|                                       |                                             |                                        |        |                |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        | 55 -           |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      | PP=0.0 tsf              |
|                                       |                                             |                                        |        |                | 19            | SS          | X                                     |             | 18-50/3"                                          |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        |                |               |             |                                       |             | [ 50/3"]                                          |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        | -              |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        | 60             |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        | -              |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        |                |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        | 64.7   | -              |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                       | Auger Refusal at 64.7                       | feet                                   |        |                |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        |                |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        |                |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
|                                       |                                             |                                        |        |                |               |             |                                       |             |                                                   |                                           |                    |                   |                    |                      |                         |
| Sample Ty                             | <u>be</u>                                   | Depth to Ground                        | lwater | II             |               |             |                                       |             |                                                   | 1                                         |                    | 1                 | 1                  |                      |                         |
| SPT - Standard Pe                     | netration Test 🏚 No                         | ted on Drilling Too                    | ls     | 7.0            | _             | ня          |                                       |             | ing Method<br>w Stem Auc                          | iers                                      |                    |                   |                    |                      |                         |
| SS - Driven Split<br>SH - Pressed She | elby Tube                                   | Completion (in aug<br>Completion (open |        |                | _ ft.<br>ft.  | CF          | A - C                                 | Conti       | inuous Fligh                                      |                                           | ers                |                   |                    |                      |                         |
| CA - Continuous<br>RC - Rock Core     |                                             |                                        |        | -              | _ n.<br>ft.   | DC<br>ME    |                                       |             | ng Casing<br>Drilling                             |                                           |                    |                   |                    |                      |                         |
| CU - Cuttings                         | Ţ Aft                                       |                                        | _      |                | ft.           | MH          | I - N                                 | Λanι        | ual Hammer                                        |                                           |                    |                   |                    |                      | • -                     |
| CT - Continuous                       | iube 🙇 Ca                                   | ve Depth                               | -      |                | _ ft.         | АП          | - /                                   | านเป        |                                                   |                                           |                    |                   |                    | Pa                   | ge <b>2</b> of <b>2</b> |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 | ver Corporat     |               | Tran         | smi           | sein     |               |             | BORING #                    |                 | ST    |         |         |          | <u> </u>                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------|------------------|---------------|--------------|---------------|----------|---------------|-------------|-----------------------------|-----------------|-------|---------|---------|----------|-------------------------|
| PROJECT NAME       LG&E-KU Ford Glendale 345 kV Transmission       JOB #       LOUGE22043         PROJECT LOCATION       Hodgenville Road West       DRULLING and SAMPLING INFORMATION       DRULLING and SAMPLING INFORMATION       TEST DATA         Date Started       4/11/22       Hammer Wt.       140       Ibs.       Image: Started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started started st |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,              |                                 |                  |               |              |               |          |               |             |                             |                 |       |         |         |          |                         |
| NOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               |              |               |          |               |             |                             |                 |       |         |         | ;        |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 | ING INFORMA      | TION          |              |               |          |               |             |                             |                 |       |         |         | <u> </u> |                         |
| Glendale, KY     APPROVED BY T. Andres       DRILLING and SAMPLING INFORMATION     TEST DATA       Date Started     4/11/22     Hammer Wt.     140     lbs.       Date Completed     4/11/22     Hammer VD     2     in.       Drill Foreman     J. Burdette     Spoon Sampler OD     2     in.       Boring Method     HSA     Shelby Tube OD     3     in.       SOIL CLASSIFICATION     Integrade     90     90     90       SURFACE ELEVATION (ff): 687.0     Integrade     90     90     90       SURFACE ELEVATION (ff): 687.0     Integrade     90     90     90       BLANK AUGERING- NO SAMPLES OBTAINED     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               |              |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               |              |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               |              | .             |          |               |             | st                          |                 |       |         |         | eve      |                         |
| Ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               |              |               |          |               |             |                             | ţ               |       |         |         | 00 Si    |                         |
| Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HSA            | Sł                              | elby Tube OD     |               | 3            | in.           |          | nics<br>ohics |             | etratic<br>s/foot           | treng           | ent % |         | L)      | 1g #2    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               |              |               | ype      | Graph         | ater        | Pene                        | confin<br>ive S | Conte | nit (LI | mit (P  | assir    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  | un d          | د ہ          | ple           | ple T    | pler (        | mdw         | dard<br>alue (              | f Und<br>press  | ture  | d Lin   | tic Lir | ent P    | arks                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Latitude (deg): 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37.623156, Lon | gitude (de                      | eg): -85.905275  | Strat<br>Dept | Dept<br>Scal | Sam<br>No.    | Sam      | Sam<br>Recc   | Grou        | Stan<br>N-Va                | Qu-ts<br>Comp   | Mois  | Liqui   | Plas    | Perc     | Rem                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            |               |          |               |             |                             | 55              |       |         |         |          |                         |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            |               |          |               |             |                             |                 |       |         |         |          |                         |
| Date Started       4/11/22       Hammer Wt.       140       lbs.         Date Completed       4/11/22       Hammer Drop       30       in.         Drill Foreman       J. Burdette       Spoon Sampler OD       2       in.         Inspector       D. Melvin       Rock Core Dia.       2       in.         Boring Method       HSA       Shelby Tube OD       3       in.         SOIL CLASSIFICATION       untit data       edge of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all of all                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               |              |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            | -             |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            | -             |          |               |             |                             |                 |       |         |         |          |                         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | 10 -         |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               |              | -             |          |               |             |                             |                 |       |         |         |          |                         |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            | -             |          |               |             |                             |                 |       |         |         |          |                         |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | 15           |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            | -             |          |               |             |                             |                 |       |         |         |          |                         |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drill Foreman       J. Burdette       Spoon Sampler OD       2       in.         Inspector       D. Melvin       Rock Core Dia.       2       in.         Boring Method       HSA       Shelby Tube OD       3       in.         SOIL CLASSIFICATION       Impediate of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                |                                 |                  |               |              |               |          |               |             |                             |                 |       |         |         |          |                         |
| BLANK AUGERING- NO SAMPLES OBTAINED         5-         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               |              |               |          |               |             |                             |                 |       |         |         |          |                         |
| BLANK AUGERING- NO SAMPLES OBTAINED         5         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               |              |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | 20 -         | -             |          |               |             |                             |                 |       |         |         |          |                         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            | -             |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | 25           |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            | -             |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | 30 -         |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | _            |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               | -            |               |          |               |             |                             |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Image: Sample Type     Depth to Groundwater         Sample Type     Depth to Groundwater   Boint Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                 |                  |               |              |               |          |               |             |                             |                 |       |         |         |          |                         |
| SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                 |                  |               |              | ft.           |          |               | <u>Bori</u> | ing Method                  |                 |       |         |         |          |                         |
| SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Driven Split S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | poon           |                                 | npletion (in aug |               |              |               | HS       | A - H         |             | w Stem Aug<br>inuous Flight | ers             | re    |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Pressed Shel<br>- Continuous F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | by Tube        | At Cor                          | mpletion (open l | nole)         |              | ft.           | DC       | - [           | Drivir      | ng Casing                   | . Auge          | 15    |         |         |          |                         |
| RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Rock Core<br>- Cuttings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | ⊈ After <sub>.</sub><br>⊈ After |                  |               |              | • ft.<br>•ft. | MD<br>MH |               |             | Drilling<br>Jal Hammer      |                 |       |         |         |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Continuous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | I Anter<br>I Cave I             |                  | _             |              | _ n.<br>_ ft. |          |               |             | matic Hamm                  | er              |       |         |         | Pa       | ge <b>1</b> of <b>2</b> |



# **TEST BORING LOG**

(Continued)

| Gendale, KY       DPRICUE BY T. Andres         DRILLING and SAMPLING INFORMATION       TEST DATA         Date Started       411122         Hammer Vit.       140         Diff Foreman       J. Burdetto         Song Method       HSA         Soll CLASSIFICATION       9000 Started         (continued)       9000 Started         (continued)       9000 Started         (continued)       9000 Started         (continued)       9000 Started         (continued)       9000 Started         (continued)       9000 Started         (continued)       9000 Started         (continued)       9000 Started         45.0       45.0         45.0       45.0         45.0       45.0         45.0       45.0         45.0       45.0         45.0       45.0         45.0       45.0         45.0       45.0         45.0       45.0         45.0       45.0         45.0       45.0         45.0       45.0         45.0       45.0         45.0       45.0         45.0       45.0         45.0 <th>CLI</th> <th>ENT</th> <th>Southeas</th> <th>t Power Corpora</th> <th>tion</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>BORING #_</th> <th></th> <th>ST</th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CLI                                                                                   | ENT                                    | Southeas           | t Power Corpora       | tion     |             |            |        |               |        | BORING #_        |                 | ST           |        |         |            |                |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------|--------------------|-----------------------|----------|-------------|------------|--------|---------------|--------|------------------|-----------------|--------------|--------|---------|------------|----------------|---|
| Gendale, KY         DPROVED by T. Andres           DRILLING and SAMPLING INFORMATION         TEST DATA           Date Started         4111/22         Hammer Vit.         140         tis.           Diff Greenen         J. Burdette         Spoon Sampler OD         2. in.         in.           Diff Greenen         J. Burdette         Spoon Sampler OD         3. in.         in.         in.           Solit CLASSIFICATION         Gendale, KY         Rock Core Dia.         2. in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         in.         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROJECT LOCATION Hodgenville Road West Glendale, KY DRILLING and SAMPLING INFORMATION |                                        |                    |                       |          |             | ssio       | n      |               | JOB #  |                  |                 |              |        | 2043    | 8          |                |   |
| DRILLING and SAMPLING INFORMATION         TEST DATA           Date Started         4/11/22         Hammer Wit         140         hs.           Date Started         4/11/22         Hammer Drop         30         in.           Dinit Forema         J. Burdeth         Spons Sampler CD         2         in.           Bring Method         HSA         Shotby Tube CD         3         in.           SOIL CLASSIFICATION         Wig to go go go go go go go go go go go go go                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PR                                                                                    | OJECT LOCATIO                          | N Hodgenvi         | Ile Road West         |          |             |            |        |               |        | DRAWN BY         | (               | <b>R</b> . ( | Orti   | Z       |            |                |   |
| Dete Started       4/11/22       Hammer Wt.       140       bbs.         Date Completed       4/11/22       Hammer Drop       30       in.         Drill Foreman       J. Burdette       Spoon Sampler OD       2       in.         Imapactor       D. Melvin       Rock Coro Dia.       2       in.         Boring Method       HSA       Shelby Tube OD       3       in.         SOL CLASSIFICATION       uig dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog dialog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                        | Glendale,          | KY                    |          |             |            |        |               |        | APPROVE          | D BY_           | Τ. /         | And    | lres    | ;          |                |   |
| Date Completed 4/11/22 Hammer Drop 30 In.<br>Drif Foreman J. Burdette Spoon Sampler DO 2 In.<br>Inspector D. Melvin Rock Core Dia 2 In.<br>Boring Method HSA Shelby Tube OD 3 In.<br>SOLI CLASSIFICATION Use OD 3 In.<br>SOLI CLASSIFICATION I State of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the seco                                                                                                                                                                                                                                             |                                                                                       |                                        | DRILLING and S     | SAMPLING INFORMA      | TION     |             |            |        |               |        |                  |                 | TES          | T DA   | TA      |            |                |   |
| Drill Foreman       J. Burdette       Spoon Sampler OD       2       in.         Boring Method       HSA       Shelby Tube OD       3       in.         SOIL CLASSIFICATION       wittig of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of each grad state of eac                                                                                                                                                                                                                                                                                                                                                                                                                           | I                                                                                     | Date Started                           | 4/11/22            | Hammer Wt.            |          | 140         | lbs.       |        |               |        |                  |                 |              |        |         |            |                |   |
| Inspector Method HSA Shelby Tube OD In.<br>Boring Method HSA Shelby Tube OD In.<br>SOIL CLASSIFICATION<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued) | I                                                                                     | Date Completed                         | 4/11/22            | Hammer Drop           |          | 30          | in.        |        |               |        |                  |                 |              |        |         |            |                |   |
| Inspector Method HSA Shelby Tube OD In.<br>Boring Method HSA Shelby Tube OD In.<br>SOIL CLASSIFICATION<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued)<br>(continued) | I                                                                                     | Drill Foreman                          | J. Burdette        | Spoon Sampler C       | DD       | 2           | in.        |        |               |        | est              |                 |              |        |         | Sieve      |                |   |
| BLANK AUGERING- NO SAMPLES OBTAINED     40       40     40       40     45       Auger Refusal at 45 feet     45.0       45     45       Sample Type     Depth to Groundwater       Sample Type     Depth to Groundwater       Sample Type     Depth to Groundwater       Sample Type     Depth to Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                                                     | Inspector                              |                    | -                     |          |             | -          |        | ~             |        | at) T            | gth             | <b>%</b>     |        |         | 200 9      |                |   |
| BLANK AUGERING- NO SAMPLES OBTAINED     40       40     40       40     45       Auger Refusal at 45 feet     45.0       45     45       Sample Type     Depth to Groundwater       Sample Type     Depth to Groundwater       Sample Type     Depth to Groundwater       Sample Type     Depth to Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                                                     | Boring Method                          | HSA                | Shelby Tube OD        |          | 3           | in.        |        | hics          |        | etrati<br>/s/foc | Stren           | tent %       | (T     | PL)     | # bu       |                |   |
| BLANK AUGERING- NO SAMPLES OBTAINED     40       40     40       40     45       Auger Refusal at 45 feet     45.0       45     45       Sample Type     Depth to Groundwater       Sample Type     Depth to Groundwater       Sample Type     Depth to Groundwater       Sample Type     Depth to Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Γ                                                                                     |                                        | SOIL CLASSIFICA    | ATION                 |          |             |            | Lype   | Grap<br>/ Gra | /ater  | l Pen<br>(blow   | confi<br>sive S | Cont         | nit (L | imit (I | Dassi      |                |   |
| BLANK AUGERING- NO SAMPLES OBTAINED     40       40     40       40     45       Auger Refusal at 45 feet     45.0       45     45       Sample Type     Depth to Groundwater       Sample Type     Depth to Groundwater       Sample Type     Depth to Groundwater       Sample Type     Depth to Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ╞                                                                                     |                                        | (continued)        |                       | t t      | e t         | aldı       | - əldı | over          | Mpun   | alue             | sf Un<br>pres   | sture        | id Li  | stic L  | cent       | Jarks          |   |
| Auger Refusal at 45 feet 45.0 45 - 45.0 45 - 45.0 45 - 45.0 45 - 45.0 45 - 45.0 45 - 45.0 45 - 45.0 45 - 45.0 45 - 45.0 45 - 45.0 45 - 45.0 45 - 45.0 45 - 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                       | Latitude (deg):                        | 37.623156, Longitu | ude (deg): -85.905275 | Stra     | Dep<br>Scal | San<br>No. | San    | San<br>Rec    | Gro    | N-V              | Con-ts          | Mois         | Liqu   | Plas    | Perc       | Ren            |   |
| Auger Refusal at 45 feet<br>Auger Refusal at 45 feet<br>Auger Refusal at 45 feet<br>Sample Type<br>Sample Type<br>Sample Type<br>Depth to Groundwater<br>ST - Standard Penetration Test Noted on Drilling Tool<br>The back below Stem Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                     | BLANK AUGE                             | ERING- NO SAMPL    | ES OBTAINED           |          | -           |            |        |               |        |                  |                 |              |        |         |            |                |   |
| Auger Refusal at 45 feet<br>Auger Refusal at 45 feet<br>Auger Refusal at 45 feet<br>Sample Type<br>Sample Type<br>Sample Type<br>Depth to Groundwater<br>ST - Standard Penetration Test Noted on Drilling Tool<br>The back below Stem Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                       |                                        |                    |                       |          | -           |            |        |               |        |                  |                 |              |        |         |            |                |   |
| Auger Refusal at 45 feet<br>Auger Refusal at 45 feet<br>Auger Refusal at 45 feet<br>Sample Type<br>Sample Type<br>Depth to Groundwater<br>Sample Type<br>Sample Type<br>Depth to Groundwater<br>Start - Standard Penetration Test<br>Noted on Drilling Tools<br>ft<br>Borng Method<br>Hoto - Hoto Start Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| Auger Refusal at 45 feet  Auger Refusal at 45 feet  Sample Type  Sample Type  Depth to Groundwater SPT - Standard Penetration Test Noted on Drilling Tools  ft HSA Hollow Star Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       |                                        |                    |                       |          | 40 -        |            |        |               |        |                  |                 |              |        |         |            |                |   |
| Auger Refusal at 45 feet  Auger Refusal at 45 feet  Sample Type  Sample Type  Depth to Groundwater SPT - Standard Penetration Test Noted on Drilling Tools  ft HSA Hollow Star Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       |                                        |                    |                       |          | -           |            |        |               |        |                  |                 |              |        |         |            |                |   |
| Auger Refusal at 45 feet  Auger Refusal at 45 feet  Sample Type  Sample Type  Depth to Groundwater SPT - Standard Penetration Test Noted on Drilling Tools  ft HSA Hollow Star Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       |                                        |                    |                       |          |             | -          |        |               |        |                  |                 |              |        |         |            |                |   |
| Auger Refusal at 45 feet  Auger Refusal at 45 feet  Sample Type  Sample Type  Depth to Groundwater SPT - Standard Penetration Test Noted on Drilling Tools  ft HSA Hollow Star Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\exists$                                                                             |                                        |                    |                       | 45.0     | 45          |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        | Auger Refusal at 4 | 15 feet               | 45.0     | 45 -        |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test • Noted on Drilling Toolsft. Boring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                        |                    |                       |          |             |            |        |               |        |                  |                 |              |        |         |            |                |   |
| SPT - Standard Penetration Test 📮 Noted on Drining Tools HSA - Hollow Stem Augers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ľ                                                                                     |                                        |                    |                       |          | •           |            |        |               | Bori   | ing Method       | 1               |              |        | •       | . <u> </u> |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       | PT - Standard Pe<br>S - Driven Split S | •                  | -                     |          |             |            |        | A - H         | Hollo  | w Stem Auge      |                 |              |        |         |            |                |   |
| SH - Pressed Shelby Tube At Completion (in degree) ——— R. CFA - Continuous Flight Augers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S                                                                                     | H - Pressed She                        | elby Tube          | At Completion (open   | hole)    | -           | • ft.      |        | ; - [         | Drivir | ng Casing        | Auge            | rs           |        |         |            |                |   |
| RC - Rock Core ⊈ After hours ft. MD - Mud Drilling<br>CU - Cuttings ⊈ After hours ft. MH - Manual Hammer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R                                                                                     | C - Rock Core                          | Σ Į                |                       | -        |             |            |        | ) - (         | Mud    | Drilling         |                 |              |        |         |            |                |   |
| CT - Continuous Tube Acte Cave Depth ft. AH - Automatic Hammer Page 2 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       |                                        | <b>T</b> 1         |                       | ' -<br>- |             |            |        |               |        |                  | er              |              |        |         | Pag        | ge <b>2</b> of | 2 |



| CLIENT South                                              | •                                                      |                  | <b>.</b>        |                |                                                      |             | BORING                                            |                                           | ST               |                   |                    |                      |                         |
|-----------------------------------------------------------|--------------------------------------------------------|------------------|-----------------|----------------|------------------------------------------------------|-------------|---------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------|----------------------|-------------------------|
| PROJECT NAME LG&E                                         |                                                        |                  |                 |                |                                                      |             | JOB # _                                           |                                           |                  |                   |                    | .04                  | <u>&gt;</u>             |
| PROJECT LOCATION Hodg                                     |                                                        |                  |                 |                |                                                      |             | DRAWN E                                           |                                           |                  |                   |                    |                      |                         |
| Glend                                                     | dale, KY                                               |                  |                 |                |                                                      |             | APPROVI                                           | ED BY                                     | 1./              | And               | res                | <b>i</b>             |                         |
| DRILLING                                                  | and SAMPLING INFORMA                                   | TION             |                 |                |                                                      |             |                                                   |                                           | TES              | T DA              | ΤA                 |                      |                         |
| Date Started 4/8/22                                       | Hammer Wt                                              |                  |                 | 11             |                                                      |             |                                                   |                                           |                  |                   |                    |                      |                         |
| Date Completed 4/8/22                                     | Hammer Drop                                            |                  | <b>30</b> ii    | n.             |                                                      |             |                                                   |                                           |                  |                   |                    | e                    |                         |
| Drill Foreman J. Burdet                                   | · ·                                                    |                  |                 |                |                                                      |             | [est                                              |                                           |                  |                   |                    | Sieve                |                         |
| Inspector D. Melvin                                       |                                                        |                  |                 |                | v                                                    |             | ot) ]                                             | igth                                      | %                |                   |                    | 200                  |                         |
| Boring Method <b>HSA, AH</b>                              | Shelby Tube OD                                         |                  | <u>3</u> ii     |                | Sample Type<br>Sampler Graphics<br>Recovery Graphics | er de       | Standard Penetration Test<br>N-Value (blows/foot) | Qu-tsf Unconfined<br>Compressive Strength | Moisture Content | (TT)              | (PL)               | Percent Passing #200 |                         |
| SOIL CLASS                                                | SIFICATION                                             |                  |                 | 1              | er Gra                                               | lwate       | rd Pe<br>e (blc                                   | Incor                                     | e Co             | -imit             | Limit              | t Pas                | Ş                       |
| SURFACE ELEV                                              | ( )                                                    | Stratum<br>Depth | Depth<br>Scale  | odimpie<br>No. | Sample Type<br>Sampler Grap                          | Groundwater | anda<br>Valu                                      | -tsf L<br>mpre                            | oistur           | Liquid Limit (LL) | Plastic Limit (PL) | ircen                | Remarks                 |
| Latitude (deg): 37.623202, L                              | ongitude (deg): -85.90517                              | -                | ŭ õ ŭ           |                |                                                      | ڻ<br>ا      |                                                   | gõ                                        |                  | Lic               | Ĩ                  | Pe                   |                         |
| LEAN CLAY (CL), with silt,                                | Brown MEDILIM STIFF to                                 | 0.5              |                 |                | ss X                                                 |             | 2-2-3-<br>[5]                                     |                                           | 23.2             |                   |                    |                      | PP=1.0 tsf              |
| STIFF                                                     |                                                        |                  |                 |                | ss V                                                 |             | 3-5-6-                                            |                                           | 20.8             |                   |                    |                      | PP=1.5 tsf              |
|                                                           |                                                        | 4.5              |                 |                | Т                                                    |             | [ 11 ]                                            |                                           | 20.0             |                   |                    |                      |                         |
| FAT CLAY (CH), with sand VERY STIFF                       | , Reddish brown, STIFF to                              | 4.5              | 5               |                | ss 🛛                                                 |             | 4-4-6-                                            |                                           | 23.2             |                   |                    |                      |                         |
|                                                           |                                                        |                  |                 |                | Ĥ                                                    |             | [ 10]                                             |                                           |                  |                   |                    |                      |                         |
| - with limestone fragments                                |                                                        |                  |                 |                | ss 🛛                                                 |             | 5-8-11-                                           |                                           | 16.7             |                   |                    |                      | PP=2.0 tsf              |
|                                                           |                                                        |                  | 10 -            |                |                                                      |             | [ 19 ]                                            |                                           |                  |                   |                    |                      |                         |
|                                                           |                                                        |                  |                 | -              | SH                                                   |             |                                                   | 1.16                                      | 38.1             | 76                | 29                 |                      |                         |
| LEAN CLAY (CL), with silt,                                | Reddish brown. STIFF to                                | 12.0             |                 |                | ss 🛛                                                 |             | 5-7-9-                                            |                                           | 32.9             |                   |                    |                      | PP=3.5 tsf              |
| VERY STIFF                                                | ,                                                      |                  |                 |                | Α                                                    |             | [ 16]                                             |                                           |                  |                   |                    |                      |                         |
|                                                           |                                                        |                  | 15 _            |                | ss M                                                 |             | 3-3-5-                                            |                                           | 30.5             |                   |                    |                      | PP=2.0 tsf              |
|                                                           |                                                        |                  |                 |                | Å                                                    |             | [8]                                               |                                           | 30.5             |                   |                    |                      | FF-2.0 (5)              |
|                                                           |                                                        |                  |                 |                |                                                      | ۰           |                                                   |                                           |                  |                   |                    |                      |                         |
|                                                           |                                                        |                  |                 |                |                                                      |             |                                                   |                                           |                  |                   |                    |                      |                         |
|                                                           |                                                        |                  | 20              | ;              | SH                                                   |             |                                                   | 1.17                                      | 27.9             |                   |                    |                      |                         |
|                                                           | Deddiele brown                                         | 22.0             |                 |                | ss 17                                                |             | 0.0.1                                             |                                           | 20.0             |                   |                    |                      |                         |
| FAT CLAY (CH), with sand<br>MEDIUM STIFF to STIFF         | , Reaalsn brown,                                       |                  |                 |                | ss X                                                 |             | 9-6-4-<br>[ 10 ]                                  |                                           | 28.3             |                   |                    |                      | PP=2.0 tsf              |
| - with limestone fragments                                |                                                        |                  | 25 —            |                |                                                      |             |                                                   |                                           |                  |                   |                    |                      |                         |
|                                                           |                                                        |                  |                 |                | ss X                                                 |             | 2-3-2-<br>[5]                                     |                                           | 38.4             |                   |                    |                      |                         |
|                                                           |                                                        |                  |                 |                |                                                      |             | -                                                 |                                           |                  |                   |                    |                      |                         |
|                                                           |                                                        |                  |                 |                |                                                      |             |                                                   |                                           |                  |                   |                    |                      |                         |
|                                                           |                                                        |                  | 30              |                | SH                                                   |             |                                                   | 0.50                                      | 39.1             |                   |                    |                      |                         |
|                                                           |                                                        |                  |                 |                |                                                      |             |                                                   |                                           |                  |                   |                    |                      |                         |
|                                                           |                                                        |                  |                 |                | ss 🛛                                                 |             | W-O-H-<br>[ <i>WOH</i> ]                          |                                           | 29.7             |                   |                    |                      |                         |
| - gray and reddish brown                                  |                                                        |                  |                 |                |                                                      |             |                                                   |                                           |                  |                   |                    |                      |                         |
| Sample Type                                               | Depth to Ground                                        |                  |                 | I              |                                                      | Bori        | ing Method                                        |                                           |                  |                   |                    |                      |                         |
| SPT - Standard Penetration Tes<br>SS - Driven Split Spoon | t      Noted on Drilling Too     At Completion (in aug |                  | <u>18.0</u><br> | ft             |                                                      | Hollo       | w Stem Aug                                        |                                           |                  |                   |                    |                      |                         |
| SH - Pressed Shelby Tube<br>CA - Continuous Flight Auger  | At Completion (open                                    | hole)            |                 | ft.            | DC -                                                 | Drivi       | inuous Fligh<br>ng Casing                         | nt Auge                                   | ers              |                   |                    |                      |                         |
| RC - Rock Core<br>CU - Cuttings                           | ⊻ After <u></u> hour:<br>▼ After hour:                 |                  |                 | ft.            | MD -                                                 | Mud         | Ďrilling<br>Jal Hammer                            |                                           |                  |                   |                    |                      |                         |
| CT - Continuous Tube                                      | ⊈ Alter nous                                           | • _<br>_         |                 | п.             |                                                      |             | matic Hamn                                        |                                           |                  |                   |                    | Pa                   | ge <b>1</b> of <b>2</b> |



# **TEST BORING LOG**

(Continued)

| CLIEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Southeas            | t Power Corpora                          | tion            |        |                 |          |              |                | BORING                     | #               | ST           | <u>R 2</u> | <u>6 L</u> : | 3     |                |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------|-----------------|--------|-----------------|----------|--------------|----------------|----------------------------|-----------------|--------------|------------|--------------|-------|----------------|---|
| PROJE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ECT NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LG&E-KU             | Ford Glendale 3                          | 45 kV           | ' Tran | smi             | ssio     | n            |                | JOB # _                    |                 | LO           | UG         | E22          | 2043  | 3              |   |
| PROJE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ECT LOCATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N Hodgenvi          | lle Road West                            |                 |        |                 |          |              |                | DRAWN I                    | 3Y              | <b>R</b> . ( | Orti       | z            |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 | Т. /         | And        | Ires         | ;     |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DRILLING and S      | SAMPLING INFORMA                         | TION            |        | -               |          |              |                |                            |                 | TES          | T DA       | ТА           |       |                |   |
| Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e Started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4/8/22              | Hammer Wt.                               |                 | 140    | lbs.            |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DROJECT NAME       LG&E-KU Ford Glendale 345 kV Transmission       JOB #       LOUGE22043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J. Burdette         | Spoon Sampler C                          | D               | 2      | in.             |          |              |                | st                         |                 |              |            |              | ieve  |                |   |
| Gendale, KY       APPROVED BY <b>T. Andres:</b> DRILLING and SAMPLING INFORMATION       TEST DATA         Date Started4/8/22 Hammer Wt140 _ lbs:       Image: Colspan="2">Test DATA         Date Started4/8/22 Hammer Drop30 in.       Test DATA         Date Completed4/8/22 Hammer Drop30 in.       Test Data         Drill Foreman J. Burdette Spoon Sampler OD in.       started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
| Bori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | APPROVED BY T. Andres       DRILLING and SAMPLING INFORMATION       TEST DATA       Date Started     4/8/22     Hammer Wt.     140     Its.       Date Completed     4/8/22     Hammer Drop     30     in.       Drill Foreman     J. Burdette     Spoon Sampler OD     2     in.       Boring Method     HSA, AH     Shelby Tube OD     3     in.       Stidler Started (continued)       Latitude (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -85.905174       Stidler Started (deg): -35.905174       Stidler Started (de |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 | ype      | Graph        | ater           | Pene<br>blows              | confin<br>ive S | Conte        | it (LI     | nit (P       | assir |                |   |
| APPROVED BY T. Andres         DRILLING and SAMPLING INFORMATION         TEST DATA         Date Started       4/8/22       Hammer Wt.       140       lbs.         Date Completed       4/8/22       Hammer Drop       30       in.         Drill Foreman       J. Burdette       Spoon Sampler OD       2       in.         Boring Method       HSA, AH       Shelby Tube OD       3       in.       stight of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started of the started |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
| L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | atitude (deg):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37.623202, Longitu  | ude (deg): -85.905174                    | Strati<br>Deptl | Dept   | Sam <br>No.     | Sam      | Saml<br>Reco | Grou           | Stano<br>N-Va              | Qu-tsi<br>Comp  | Mois         | Liqui      | Plast        | Perc  | Rem            |   |
| -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FAT CLAY (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H), with sand, Redo |                                          |                 |        |                 |          | Ň            | -              | 4-3-2-                     | 00              |              |            |              | _     |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MEDIUM STI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FF to STIFF         |                                          |                 |        |                 | -        | Ĥ            |                | [5]                        |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 | 40 -   |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 | SH       |              |                |                            | 0.16            | 39.7         |            |              |       |                |   |
| -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 | -      | -               | ss       | X            |                |                            |                 | 15.7         |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        | -               | -        | $\square$    |                | [ 27 ]                     |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 | 45 -   | -               | ss       |              |                | 3-3-1-                     |                 | 42.5         |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 | -      |                 | -        | А            |                |                            |                 | -            |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          | 18 5            |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Auger Refusal at 48 | 8.5 feet                                 | 40.0            |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
| FAT CLAY (CH), with sand, Reddish brown,       SS       4-3-2-       50.5         MEDIUM STIFF to STIFF       SS       15-20-27-       15.7         40       SS       15-20-27-       15.7         45       SS       3-3-1-       42.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |
| SDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>Sample Typ</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | Depth to Ground<br>Noted on Drilling Too |                 | 18.0   | fi fi           |          |              | <u>Bori</u>    | ing Method                 |                 |              |            |              |       |                |   |
| SS ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - Driven Split S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spoon 🖌 🛓           | At Completion (in aug                    |                 |        | •_ ft.          | HS<br>CE | A - H        | Hollo<br>Conti | w Stem Aug<br>inuous Fligh | gers            | ers          |            |              |       |                |   |
| CA ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Pressed She</li> <li>Continuous F</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flight Auger 👻      | At Completion (open                      | -               |        | ft.             | DC       | ; - [        | Drivir         | ng Casing                  | n Auge          |              |            |              |       |                |   |
| RC ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - Rock Core<br>- Cuttings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ϋ́                  | After <u></u> hours                      | _               |        | •_ ft.<br>• ft. | MF       | 1 - I        | Manu           | Drilling<br>ual Hammer     |                 |              |            |              |       |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Continuous 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Cave Depth                               | -               |        | ft.             | AH       | - /          | Auto           | matic Hamn                 | ner             |              |            |              | Pa    | ge <b>2</b> of | 2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                 |        |                 |          |              |                |                            |                 |              |            |              |       |                |   |



| CLIEN     | νT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Southeast          | t Power Corpora                    | tion               |              |               |          |             |        | BORING #                    | £               | STI    | R 20  | 6 L4    | 1     |                                |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------|--------------------|--------------|---------------|----------|-------------|--------|-----------------------------|-----------------|--------|-------|---------|-------|--------------------------------|
|           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                    |                    | Trans        | smis          | ssio     | n           |        |                             |                 |        |       |         |       | 6                              |
| PROJ      | ECT LOCATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N Hodgenvil        | lle Road West                      |                    |              |               |          |             |        | DRAWN B                     | Y               | R. (   | Orti  | Z       |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glendale,          | KY                                 |                    |              |               |          |             |        | APPROVE                     | D BY            | Т. /   | And   | res     |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DRILLING and S     | AMPLING INFORMA                    | TION               |              |               |          |             |        |                             |                 | TES    | T DA  | ТА      |       |                                |
| Da        | te Started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/7/22             | Hammer Wt.                         |                    | 140          | lbs.          |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    |              |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | • •                                |                    |              |               |          |             |        | st                          |                 |        |       |         | eve   |                                |
| Ins       | pector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D. Melvin          | Rock Core Dia.                     |                    | 2            | in.           |          |             |        | n Te                        | £               |        |       |         | 00 S  |                                |
| Во        | ring Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HSA                | Shelby Tube OD                     |                    | 3            | in.           |          | ics<br>hics |        | /foot                       | ed<br>reng      | nt %   | (     | L)      | g #2( |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    | 1                  |              |               | be       | Grap        | ter    | enei                        | onfine<br>/e St | onte   | t (LL | lit (PI | assin |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    | E                  |              | e             | le Ty    | ler G       | dwat   | ard F<br>Je (b              | Unco<br>essiv   | ure C  | Limi  | c Lim   | nt Pa | ks                             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    | tratu              | epth<br>cale | amp<br>o.     | amp      | amplecov    | roun   | -Valu                       | u-tsf           | loistu | iquid | lastic  | erce  | ema                            |
| _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    | ΩΩ                 | 00           | νz            | S        | ഗഷ<br>∏     | 0      | ΰZ                          | ਰੱਹੱ            | Σ      | E     | Р       | ٩     | <u>۲</u>                       |
|           | Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution <th< td=""><td>Boring Offset 5 ft</td></th<> |                    |                                    | Boring Offset 5 ft |              |               |          |             |        |                             |                 |        |       |         |       |                                |
| -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    |              |               |          |             |        |                             |                 |        |       |         |       | northeast towards tower center |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    | -            |               |          |             |        |                             |                 |        |       |         |       |                                |
| -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    | 5 -          |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    | -            |               |          |             |        |                             |                 |        |       |         |       |                                |
| -1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    |              |               |          |             |        |                             |                 |        |       |         |       |                                |
| $\exists$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    |              |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    | 10 -         |               |          |             |        |                             |                 |        |       |         |       |                                |
| -1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    | -            |               |          |             |        |                             |                 |        |       |         |       |                                |
| Ξ         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    |              |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    | -            |               |          |             |        |                             |                 |        |       |         |       |                                |
| -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    | 15           |               |          |             |        |                             |                 |        |       |         |       |                                |
| _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    | 15           |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    | -            |               |          |             |        |                             |                 |        |       |         |       |                                |
| -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    |              |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    | -            |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    | 20 -         |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    |              |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    | -            |               |          |             |        |                             |                 |        |       |         |       |                                |
| 3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    |              |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    | 25 –         |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    |              |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    |              |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Auger Refusal at 2 | 9 feet                             | 29.0               |              |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Auger Neiusai al 2 |                                    |                    |              |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    |              |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    |              |               |          |             |        |                             |                 |        |       |         |       |                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    |                    |              |               |          |             |        |                             |                 |        |       |         |       |                                |
|           | Sample Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | Depth to Ground                    | water              |              |               |          |             |        |                             |                 |        |       |         |       |                                |
| SPT       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | Noted on Drilling Too              |                    |              | ft.           |          |             |        | ing Method                  |                 |        |       |         |       |                                |
| SS        | - Driven Split S<br>- Pressed She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spoon 🛓            | At Completion (in aug              | jers)              |              |               |          |             |        | w Stem Aug<br>inuous Flight |                 | rs     |       |         |       |                                |
| CA        | - Continuous F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flight Auger 😁 '   | At Completion (open                |                    |              | _ft.          | DC       | - [         | Drivir | ng Casing                   | 30              |        |       |         |       |                                |
|           | - Rock Core<br>- Cuttings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | After <u></u> hours<br>After hours |                    |              | _ ft.<br>ft.  | MD<br>MH | - 1         | Manu   | Drilling<br>Jal Hammer      |                 |        |       |         |       |                                |
|           | - Continuous 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Cave Depth                         | · _                |              | _ n.<br>_ ft. | AH       | - /         | Auto   | matic Hamm                  | er              |        |       |         | Pag   | ge <b>1</b> of <b>1</b>        |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    | _                  |              |               |          |             |        |                             |                 |        |       |         |       |                                |

| Borehole | Depth                      | Sample<br>Type                                  | Liquid<br>Limit               | Plastic<br>Limit | Plasticity<br>Index | Class-<br>ification | Water<br>Content<br>(%) | Unconfined<br>Compressive<br>Strength (psi) | Dry<br>Density<br>(pcf) | Wet<br>Density<br>(pcf) | Max. Dry<br>Density<br>(pcf) | Opt. Water<br>Content<br>(%) | CBR              | Swell<br>(%)         | RQD      | Percent<br>Recovery | Сс    | Cr     | p⊢   |
|----------|----------------------------|-------------------------------------------------|-------------------------------|------------------|---------------------|---------------------|-------------------------|---------------------------------------------|-------------------------|-------------------------|------------------------------|------------------------------|------------------|----------------------|----------|---------------------|-------|--------|------|
| STR 16   | 0.0                        | SS                                              |                               |                  |                     |                     | 15.4                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| STR 16   | 2.5                        | SS                                              |                               |                  |                     |                     | 18.5                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| STR 16   | 5.0                        | SS                                              |                               |                  |                     |                     | 18.4                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| STR 16   | 7.5                        | SS                                              |                               |                  |                     |                     | 19.6                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| STR 16   |                            | SS                                              |                               |                  |                     |                     | 17.6                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| STR 16   | 15.0                       | SS                                              |                               |                  |                     |                     | 20.6                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| STR 16   |                            | SH                                              | 68                            | 22               | 46                  | СН                  | 31.7                    | 3.33                                        | 85.3                    | 112.3                   |                              |                              |                  |                      |          |                     |       |        |      |
| STR 16   |                            | SS                                              |                               |                  |                     |                     | 42.0                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| STR 16   | 25.0                       | SS                                              |                               |                  |                     |                     | 31.4                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| STR 16   |                            | SH                                              |                               |                  |                     |                     | 35.9                    | 0.31                                        | 85.4                    | 116.0                   |                              |                              |                  |                      |          |                     |       |        |      |
| STR 16   |                            | SS                                              |                               |                  |                     |                     | 29.9                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| STR 16   |                            | SS                                              |                               |                  |                     |                     | 33.9                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| STR 16   |                            | SS                                              |                               |                  |                     |                     | 22.3                    | 0.31                                        | 70.5                    | 106.5                   |                              |                              |                  |                      |          |                     |       |        |      |
| STR 16   |                            | SS                                              |                               |                  |                     |                     | 41.0                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| TR 17 L  |                            | SS                                              |                               |                  |                     |                     | 21.1                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| TR 17 L  | 1 1.5                      | SS                                              |                               |                  |                     |                     | 24.7                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| TR 17 L  | 1 4.0                      | SS                                              |                               |                  |                     |                     | 21.2                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| TR 17 L  | 1 6.5                      | SS                                              |                               |                  |                     |                     | 23.0                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| TR 17 L  | 1 9.0                      | SS                                              |                               |                  |                     |                     | 26.0                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| TR 17 L  | 1 10.5                     | SH                                              | 32                            | 18               | 14                  | CL                  | 21.6                    | 0.80                                        | 101.1                   | 122.9                   |                              |                              |                  |                      |          |                     |       |        |      |
| TR 17 L  | 1 20.0                     | SS                                              |                               |                  |                     |                     | 31.8                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| TR 17 L  |                            | SH                                              |                               |                  |                     |                     | 31.9                    | 1.44                                        | 87.6                    | 115.5                   |                              |                              |                  |                      |          |                     |       |        |      |
| TR 17 L  |                            | SS                                              |                               |                  |                     |                     | 34.3                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| TR 17 L  |                            | SS                                              |                               |                  |                     |                     | 57.1                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| TR 17 L  |                            | SS                                              |                               |                  |                     |                     | 86.7                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
| TR 17 L  | 1 40.0                     | SS                                              |                               |                  |                     |                     | 81.1                    |                                             |                         |                         |                              |                              |                  |                      |          |                     |       |        |      |
|          | A 5                        |                                                 | LC                            |                  |                     |                     |                         |                                             |                         |                         |                              | S                            | Sumr             | nary                 | of Lab   | orato               | ry R  | esult  | ts   |
|          | ATC G<br>2724 R<br>Louisvi | roup Ser<br>iver Gree<br>lle, KY 4<br>(502) 722 | vices, L<br>en Circle<br>0206 |                  |                     |                     |                         |                                             |                         |                         |                              | Project:                     | : LG&I<br>n: Hoo | E-KU Fo<br>dgenville | e Road \ | dale 345            | kV Tr | ansmis | ssio |

ATC Group Services, LLC 2724 River Green Circle Louisville, KY 40206 phone (502) 722-1401 Fax (502) 267-4072

പ

Project: LG&E-KU Ford Glendale 345 kV Transmission Location: Hodgenville Road West City, State: Glendale, KY Number: LOUGE22043 Date: 6/15/2022

|          |         |                         |                 |                  |                     |                     |                         |                                             | _                       |                         |                              |                              |        |              |          |                     |       | Sheet 2 | of 7 |
|----------|---------|-------------------------|-----------------|------------------|---------------------|---------------------|-------------------------|---------------------------------------------|-------------------------|-------------------------|------------------------------|------------------------------|--------|--------------|----------|---------------------|-------|---------|------|
| Borehole | Depth   | Sample<br>Type          | Liquid<br>Limit | Plastic<br>Limit | Plasticity<br>Index | Class-<br>ification | Water<br>Content<br>(%) | Unconfined<br>Compressive<br>Strength (psi) | Dry<br>Density<br>(pcf) | Wet<br>Density<br>(pcf) | Max. Dry<br>Density<br>(pcf) | Opt. Water<br>Content<br>(%) | CBR    | Swell<br>(%) | RQD      | Percent<br>Recovery | Сс    | Cr      | pł   |
| TR 17 L  | 3 0.0   | SS                      |                 |                  |                     |                     | 25.2                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 17 L  | 3 2.5   | SS                      | 36              | 18               | 18                  | CL                  | 19.4                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 17 L  | 3 5.0   | SS                      |                 |                  |                     |                     | 18.7                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 17 L  | 3 7.5   | SS                      |                 |                  |                     |                     | 22.5                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 17 L  | 3 10.0  | SH                      |                 |                  |                     |                     | 20.2                    | 1.12                                        | 105.8                   | 127.3                   |                              |                              |        |              |          |                     |       |         |      |
| TR 17 L  | 3 15.0  | SS                      |                 |                  |                     |                     | 30.6                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 17 L  | 3 20.0  | SH                      |                 |                  |                     |                     | 22.9                    | 1.59                                        | 101.6                   | 124.8                   |                              |                              |        |              |          |                     |       |         |      |
| TR 17 L  | 3 22.0  | SS                      |                 |                  |                     |                     | 31.7                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 17 L  | 3 25.0  | SS                      |                 |                  |                     |                     | 27.8                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 17 L  | 3 30.0  | SH                      |                 |                  |                     |                     | 33.9                    | 0.43                                        | 85.8                    | 114.9                   |                              |                              |        |              |          |                     |       |         |      |
| TR 17 L  | 3 32.0  | SS                      |                 |                  |                     |                     | 58.8                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  | 1 0.0   | SS                      |                 |                  |                     |                     | 17.7                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  | 1 2.5   | SS                      |                 |                  |                     |                     | 18.1                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  | 1 5.0   | SS                      |                 |                  |                     |                     | 23.4                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  | 1 7.5   | SS                      |                 |                  |                     |                     | 24.9                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  | 1 10.0  | SH                      | 57              | 19               | 38                  | СН                  | 22.4                    | 2.62                                        | 101.4                   | 124.2                   |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  | 1 12.0  | SS                      |                 |                  |                     |                     | 25.6                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  | 1 15.0  | SS                      |                 |                  |                     |                     | 29.3                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  | 1 20.0  | SH                      |                 |                  |                     |                     | 39.2                    | 0.77                                        | 81.6                    | 113.6                   |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  | 1 22.0  | SS                      |                 |                  |                     |                     | 23.5                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  | 1 25.0  | SS                      |                 |                  |                     |                     | 33.3                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  | 3 0.0   | SS                      | 31              | 15               | 16                  | CL                  | 16.8                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  | 3 2.5   | SS                      | 50              | 16               | 34                  | СН                  | 19.4                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  |         | SS                      |                 |                  |                     |                     | 19.6                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  |         | SS                      |                 |                  |                     |                     | 23.2                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 21 L  | 3 10.0  | SH                      |                 |                  |                     |                     | 19.3                    | 0.62                                        | 96.9                    | 115.6                   |                              |                              |        |              |          |                     |       |         |      |
|          |         |                         |                 |                  |                     |                     |                         |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
|          | 4-      |                         | AS              |                  |                     |                     |                         |                                             |                         |                         |                              |                              |        |              |          | oorato              | ry R  | esuli   | IS   |
|          |         |                         |                 |                  |                     |                     |                         |                                             |                         |                         |                              |                              |        |              | ver Corp |                     |       |         |      |
|          |         | roup Ser<br>liver Gre   |                 |                  |                     |                     |                         |                                             |                         |                         |                              | -                            |        |              |          | dale 345            | kV Tr | ansmis  | ssio |
|          | Louisvi | lle, KY 4               | 10206           | -                |                     |                     |                         |                                             |                         |                         |                              |                              |        | -            | e Road \ | West                |       |         |      |
|          | phone   | (502) 72                | 2-1401          |                  |                     |                     |                         |                                             |                         |                         |                              |                              |        | lendale,     |          |                     | _     |         |      |
|          | rax (50 | )2) 2 <sup>′</sup> 67-4 | 1072            |                  |                     |                     |                         |                                             |                         |                         |                              | Numbe                        | r: LOl | JGE220       | 43       |                     | Date  | : 6/15/ | 202  |



## Summary of Laborato

| Image         Limit         Limit         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index         Index <th< th=""><th>RQD</th><th>Swell<br/>(%)</th><th></th><th></th><th>RQD Pero</th><th>rcent<br/>overy Cc</th><th>Cr</th><th><u>3 of 7</u><br/>pH</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RQD                                                                                                                                                                                                                                                                                                               | Swell<br>(%)                               |                                              |                                                  | RQD Pero                           | rcent<br>overy Cc | Cr    | <u>3 of 7</u><br>pH |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------------|------------------------------------|-------------------|-------|---------------------|
| TR 21 L3 20.0       SH       Image: constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| TR 21L 3 22.0       SS       Image: style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| TR 23A 10.0       SS       Image: Constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| TR 23A 12.5       SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| R 23A       15.0       SS       Image: second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec          |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| IR 23A       17.5       SS       Image: Constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state           |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| ITR 23A       110.0       SH       45       20       25       CL       22.6       1.63       104.1       127.6       Image: Constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state                                                                                   |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| IR 23A       112.0       SS       Image: Constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state          |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| TR 23A       115.0       SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Imag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| R 23A       122.0       SS       Image: second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se          |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| TR 23A       125.0       SS       Image: style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style style sty          |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| R 23A       130.0       SH       Image: second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se          |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| TR 23A       132.0       SS       Image: second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s          |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| IR 23A 30.0       SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| IR 23A 32.5       SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| IR 23A       35.0       SS       Image: SS       Image: Image: SS       Image: Image: Image: SS       Image: Image: Image: SS       Image: Image: Image: SS       Image: Image: Image: SS       Image: Image: Image: SS       Image: Image: Image: SS       Image: Image: Image: SS       Image: Image: Image: Image: SS       Image: Image: Image: SS       Image: Image: Image: SS       Image: Image: Image: Image: SS       Image: Image: Image: Image: Image: SS       Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Im                                                                                                                                        |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| IR 23A       37.5       SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS       Image: SS <thimage: ss<="" th="">       Image: SS       Image:</thimage:>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| IR 23A       310.0       SH       43       17       26       CL       19.8       1.60       106.5       127.6       Image: Constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o                                                                                  |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| IR 23A 312.0       SS       Image: SS state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of  |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| IR 23A L315.0       SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| Image: TR 23A L320.0       SH       50       19       31       CH       20.3       1.82       103.8       124.8       Image: Comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the                                                                          |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| TR 23A L322.0 SS 40.1 40.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| TR 23A L330.0 SH 22.5 0.19 102.2 125.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                   |                                            |                                              |                                                  |                                    |                   |       |                     |
| Summary of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of Lab                                                                                                                                                                                                                                                                                                            | nary c                                     | nary o                                       | ry of La                                         | Labora                             | atory F           | Resul | ts                  |
| ATC Group Services, LLC<br>2724 River Green Circle<br>Louisville, KY 40206<br>phone (502) 722-1401<br>Fax (502) 267-4072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er Corp<br>rd Glen<br>Road V<br><y< td=""><td>ast Pow<br/>E-KU Fo<br/>Igenville<br/>endale,</td><td>ast Powe<br/>-KU For<br/>genville<br/>endale, ł</td><td>Power Co<br/>U Ford Gl<br/>nville Road<br/>lale, KY</td><td>Corporati<br/>Glendale<br/>load West</td><td>ion<br/>345 kV 1</td><td></td><td></td></y<> | ast Pow<br>E-KU Fo<br>Igenville<br>endale, | ast Powe<br>-KU For<br>genville<br>endale, ł | Power Co<br>U Ford Gl<br>nville Road<br>lale, KY | Corporati<br>Glendale<br>load West | ion<br>345 kV 1   |       |                     |

|                                                                                                  |         |                |                 |                  |                     |                     |                         |                                             |                         |                         |                              |                              |        |              |          |                     |       | Sheet 4 | of 7 |
|--------------------------------------------------------------------------------------------------|---------|----------------|-----------------|------------------|---------------------|---------------------|-------------------------|---------------------------------------------|-------------------------|-------------------------|------------------------------|------------------------------|--------|--------------|----------|---------------------|-------|---------|------|
| Borehole                                                                                         | Depth   | Sample<br>Type | Liquid<br>Limit | Plastic<br>Limit | Plasticity<br>Index | Class-<br>ification | Water<br>Content<br>(%) | Unconfined<br>Compressive<br>Strength (psi) | Dry<br>Density<br>(pcf) | Wet<br>Density<br>(pcf) | Max. Dry<br>Density<br>(pcf) | Opt. Water<br>Content<br>(%) | CBR    | Swell<br>(%) | RQD      | Percent<br>Recovery | Сс    | Cr      | рН   |
| STR 25 L                                                                                         | 1 0.0   | SS             |                 |                  |                     |                     | 20.9                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| STR 25 L                                                                                         | 1 2.5   | SS             | 22              | 14               | 8                   | CL                  | 68.8                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| STR 25 L                                                                                         | 1 5.0   | SS             |                 |                  |                     |                     | 15.8                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| STR 25 L                                                                                         | 1 7.5   | SS             |                 |                  |                     |                     | 25.9                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| 6TR 25 L                                                                                         | 1 10.0  | SH             | 29              | 17               | 12                  | CL                  | 25.1                    | 0.38                                        | 100.4                   | 125.6                   |                              |                              |        |              |          |                     |       |         |      |
| STR 25 L                                                                                         | 1 15.0  | SS             |                 |                  |                     |                     | 27.4                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| STR 25 L                                                                                         | 1 20.0  | SS             |                 |                  |                     |                     | 37.6                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| STR 25 L                                                                                         | 1 30.0  | SS             |                 |                  |                     |                     | 36.8                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| 6TR 25 L                                                                                         | 1 35.0  | SS             |                 |                  |                     |                     | 35.3                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| 5TR 25 L                                                                                         | 1 40.0  | SH             |                 |                  |                     |                     | 31.1                    | 0.05                                        | 90.1                    | 118.1                   |                              |                              |        |              |          |                     |       |         |      |
| STR 25 L                                                                                         | 1 42.0  | SS             |                 |                  |                     |                     | 30.8                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| 6TR 25 L                                                                                         |         | SS             |                 |                  |                     |                     | 34.7                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| 5TR 25 L                                                                                         |         | SS             |                 |                  |                     |                     | 17.5                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| STR 25 L                                                                                         | 3 2.5   | SS             |                 |                  |                     |                     | 18.7                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| 5TR 25 L                                                                                         |         | SS             |                 |                  |                     |                     | 18.4                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| 5<br>5<br>5<br>7<br>7<br>7<br>7<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7 | 3 7.5   | SS             |                 |                  |                     |                     | 18.4                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| 5TR 25 L                                                                                         | 3 10.0  | SH             |                 |                  |                     |                     | 35.4                    | 0.09                                        | 87.8                    | 119.0                   |                              |                              |        |              |          |                     |       |         |      |
| STR 25 L                                                                                         | 3 12.0  | SS             |                 |                  |                     |                     | 19.8                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| 5TR 25 L                                                                                         | 3 15.0  | SS             |                 |                  |                     |                     | 24.2                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| STR 25 L                                                                                         | 3 20.0  | SH             |                 |                  |                     |                     | 33.2                    | 0.05                                        | 88.8                    | 118.3                   |                              |                              |        |              |          |                     |       |         |      |
| 5TR 25 L                                                                                         | 3 22.0  | SS             |                 |                  |                     |                     | 29.2                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 25A                                                                                           | L10.0   | SS             |                 |                  |                     |                     | 24.0                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 25A                                                                                           | L12.5   | SS             |                 |                  |                     |                     | 25.0                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 25A                                                                                           | L1 5.0  | SS             |                 |                  |                     |                     | 14.4                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 25A                                                                                           | L17.5   | SS             |                 |                  |                     |                     | 16.4                    |                                             |                         |                         |                              |                              |        |              |          |                     |       |         |      |
| TR 25A                                                                                           | L110.0  | SH             | 66              | 21               | 45                  | СН                  | 22.6                    | 1.46                                        | 99.4                    | 121.8                   |                              |                              |        |              |          |                     |       |         |      |
| р<br>Ц                                                                                           |         |                |                 |                  |                     |                     |                         |                                             |                         |                         |                              | [                            |        |              |          |                     |       |         |      |
| 1904                                                                                             | A 5     | -              | AC              |                  |                     |                     |                         |                                             |                         |                         |                              | S                            | Sumr   | nary o       | of Lab   | oorato              | ry R  | esult   | S    |
|                                                                                                  |         |                |                 |                  |                     |                     |                         |                                             |                         |                         |                              | Client:                      | Southe | east Pov     | ver Corp | oration             |       |         |      |
|                                                                                                  |         | roup Ser       |                 |                  |                     |                     |                         |                                             |                         |                         |                              | Project                      | LG&    | E-KU Fo      | ord Glen | dale 345            | kV Tr | ansmis  | sion |
|                                                                                                  |         | liver Gre      |                 | е                |                     |                     |                         |                                             |                         |                         |                              | Locatio                      | n: Ho  | dgenville    | e Road V | West                |       |         |      |
|                                                                                                  | phone   | (502) 72       | 2-1401          |                  |                     |                     |                         |                                             |                         |                         |                              | -                            |        | lendale,     |          |                     |       |         |      |
| 2                                                                                                | Fax (50 | )2) 267-4      | 4072            |                  |                     |                     |                         |                                             |                         |                         |                              | Numbe                        | r: LOl | JGE220       | 43       |                     | Date  | : 6/15/ | 2022 |

| pl | Cr | Сс | Percent<br>Recovery | RQD | Swell<br>(%) | CBR | Opt. Water<br>Content<br>(%) | Max. Dry<br>Density<br>(pcf) | Wet<br>Density<br>(pcf) | Dry<br>Density<br>(pcf) | Unconfined<br>Compressive<br>Strength (psi) | Water<br>Content<br>(%) | Class-<br>ification | Plasticity<br>Index | Plastic<br>Limit | Liquid<br>Limit | Sample<br>Type | Depth  | Borehole |
|----|----|----|---------------------|-----|--------------|-----|------------------------------|------------------------------|-------------------------|-------------------------|---------------------------------------------|-------------------------|---------------------|---------------------|------------------|-----------------|----------------|--------|----------|
|    |    |    |                     |     |              |     |                              |                              |                         |                         |                                             | 12.2                    |                     |                     |                  |                 | SS             | L112.0 | R 25A    |
|    |    |    |                     |     |              |     |                              |                              |                         |                         |                                             | 22.1                    |                     |                     |                  |                 | SS             | _115.0 | R 25A    |
|    |    | Ĩ  |                     |     |              |     |                              |                              | 125.6                   | 104.0                   | 0.25                                        | 20.8                    |                     |                     |                  |                 | SH             | _120.0 | R 25A    |
|    |    |    |                     |     |              |     |                              |                              |                         |                         |                                             | 20.3                    |                     |                     |                  |                 | SS             | _122.0 | R 25A    |
|    |    |    |                     |     |              |     |                              |                              |                         |                         |                                             | 36.7                    |                     |                     |                  |                 | SS             | _125.0 | R 25A    |
|    |    |    |                     |     |              |     |                              |                              | 115.3                   | 92.3                    | 0.73                                        | 24.9                    |                     |                     |                  |                 | SH             | _130.0 | R 25A    |
|    |    |    |                     |     |              |     |                              |                              |                         |                         |                                             | 20.5                    |                     |                     |                  |                 | SS             | _132.0 | R 25A    |
|    |    |    |                     |     |              |     |                              |                              |                         |                         |                                             | 32.2                    |                     |                     |                  |                 | SS             | _135.0 | R 25A    |
|    |    |    |                     |     |              |     |                              |                              | 120.3                   | 100.4                   | 0.46                                        | 19.9                    |                     |                     |                  |                 | SH             | 140.0  | R 25A    |
|    |    |    |                     |     |              |     |                              |                              |                         |                         |                                             | 22.5                    |                     |                     |                  |                 | SS             |        | R 25A    |
|    |    |    |                     |     |              |     |                              |                              |                         |                         |                                             | 8.9                     |                     |                     |                  |                 | SS             | -      | R 25A    |
|    |    |    |                     |     |              |     |                              |                              |                         |                         |                                             | 20.7                    |                     |                     |                  |                 | SS             |        | R 25A    |
|    |    |    |                     |     |              |     |                              |                              |                         |                         |                                             | 13.9                    |                     |                     |                  |                 | SS             |        | R 25A    |
|    |    |    |                     |     |              |     |                              |                              |                         |                         |                                             | 17.4                    |                     |                     |                  |                 | SS             |        | R 25A    |
|    |    |    |                     |     |              |     |                              |                              |                         |                         |                                             | 18.2                    |                     |                     |                  |                 | SS             | 37.5   | R 25A    |
|    |    |    |                     |     |              |     |                              |                              | 129.2                   | 112.3                   | 1.26                                        | 15.0                    | CL                  | 13                  | 15               | 28              | SH             |        | R 25A    |
|    |    |    |                     |     |              |     |                              |                              | 120.2                   |                         |                                             | 26.0                    |                     |                     |                  |                 | SS             | 312.0  | R 25A    |
|    |    |    |                     |     |              |     |                              |                              |                         |                         |                                             | 29.2                    |                     |                     |                  |                 | SS             | 315.0  | R 25A    |
|    |    |    |                     |     |              |     |                              |                              | 123.1                   | 96.7                    | 1.79                                        | 27.4                    | СН                  | 40                  | 22               | 62              | SH             |        | R 25A    |
|    |    |    | + +                 |     |              |     |                              |                              | 120.1                   | 00.1                    | 1.70                                        | 17.6                    | 011                 | 10                  |                  |                 | SS             |        | R 25A    |
|    |    |    | +                   |     |              |     |                              |                              |                         |                         |                                             | 36.1                    |                     |                     |                  |                 | SS             |        | R 25A    |
|    |    |    | +                   |     |              |     |                              |                              | 113.3                   | 81.1                    | 0.45                                        | 39.6                    |                     |                     |                  |                 | SH             |        | R 25A    |
|    |    |    | +                   |     |              |     |                              |                              | 110.0                   | 01.1                    | 0.70                                        | 22.8                    |                     |                     |                  |                 | SS             |        | TR 26 L  |
|    |    |    | +                   |     |              |     |                              |                              |                         |                         |                                             | 22.0                    |                     |                     |                  |                 | SS             |        | TR 26 L  |
|    |    |    | +                   |     |              |     |                              |                              |                         |                         |                                             | 21.5                    |                     |                     |                  |                 | SS             |        | TR 26 L  |
|    |    |    | +                   |     |              |     |                              |                              |                         |                         |                                             | 160.2                   |                     |                     |                  |                 | SS             |        | TR 26 L  |



LAB-SUMMARY LAND

ŝ

ATC Group Services, LLC 2724 River Green Circle Louisville, KY 40206 phone (502) 722-1401 Fax (502) 267-4072

**Client: Southeast Power Corporation** Project: LG&E-KU Ford Glendale 345 kV Transmission Location: Hodgenville Road West City, State: Glendale, KY Number: LOUGE22043 Date: 6/15/2022

| Borehole | Depth  | Sample<br>Type | Liquid<br>Limit | Plastic<br>Limit | Plasticity<br>Index | Class-<br>ification | Water<br>Content<br>(%) | Unconfined<br>Compressive<br>Strength (psi) | Dry<br>Density<br>(pcf) | Wet<br>Density<br>(pcf) | Max. Dry<br>Density<br>(pcf) | Opt. Water<br>Content<br>(%) | CBR | Swell<br>(%) | RQD | Percent<br>Recovery | Сс | Cr | pН |
|----------|--------|----------------|-----------------|------------------|---------------------|---------------------|-------------------------|---------------------------------------------|-------------------------|-------------------------|------------------------------|------------------------------|-----|--------------|-----|---------------------|----|----|----|
| TR 26 L  | 1 10.0 | SH             |                 |                  |                     |                     | 19.4                    | 0.92                                        | 108.8                   | 129.9                   |                              |                              |     |              |     |                     |    |    |    |
| 5TR 26 L | 1 12.0 | SS             |                 |                  |                     |                     | 21.0                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 1 15.0 | SS             | 49              | 15               | 34                  | CL                  | 26.1                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 1 20.0 | SH             |                 |                  |                     |                     | 23.8                    | 1.23                                        | 102.0                   | 126.3                   |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 1 22.0 | SS             |                 |                  |                     |                     | 41.0                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 1 25.0 | SS             |                 |                  |                     |                     | 36.4                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 1 30.0 | SH             |                 |                  |                     |                     | 36.6                    | 0.72                                        | 84.5                    | 115.4                   |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 1 32.0 | SS             |                 |                  |                     |                     | 38.3                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  |        | SS             |                 |                  |                     |                     | 39.2                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 1 40.0 | SH             |                 |                  |                     |                     | 43.2                    | 0.32                                        | 77.9                    | 111.6                   |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  |        | SS             |                 |                  |                     |                     | 23.2                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  |        | SS             |                 |                  |                     |                     | 20.8                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| 5TR 26 L |        | SS             |                 |                  |                     |                     | 23.2                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 3 7.5  | SS             |                 |                  |                     |                     | 16.7                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 3 10.0 | SH             | 76              | 29               | 47                  |                     | 38.1                    | 1.16                                        | 81.4                    | 112.3                   |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 3 12.0 | SS             |                 |                  |                     |                     | 32.9                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| 5TR 26 L | 3 15.0 | SS             |                 |                  |                     |                     | 30.5                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 3 20.0 | SH             |                 |                  |                     |                     | 27.9                    | 1.17                                        | 92.1                    | 117.8                   |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 3 22.0 | SS             |                 |                  |                     |                     | 28.3                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 3 25.0 | SS             |                 |                  |                     |                     | 38.4                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 3 30.0 | SH             |                 |                  |                     |                     | 39.1                    | 0.50                                        | 81.9                    | 114.0                   |                              |                              |     |              |     |                     |    |    |    |
| 5TR 26 L | 3 32.0 | SS             |                 |                  |                     |                     | 29.7                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  |        | SS             |                 |                  |                     |                     | 50.5                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 3 40.0 | SH             |                 |                  |                     |                     | 39.7                    | 0.16                                        | 81.3                    | 113.6                   |                              |                              |     |              |     |                     |    |    |    |
| 5TR 26 L | 3 42.0 | SS             |                 |                  |                     |                     | 15.7                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |
| TR 26 L  | 3 45.0 | SS             |                 |                  |                     |                     | 42.5                    |                                             |                         |                         |                              |                              |     |              |     |                     |    |    |    |



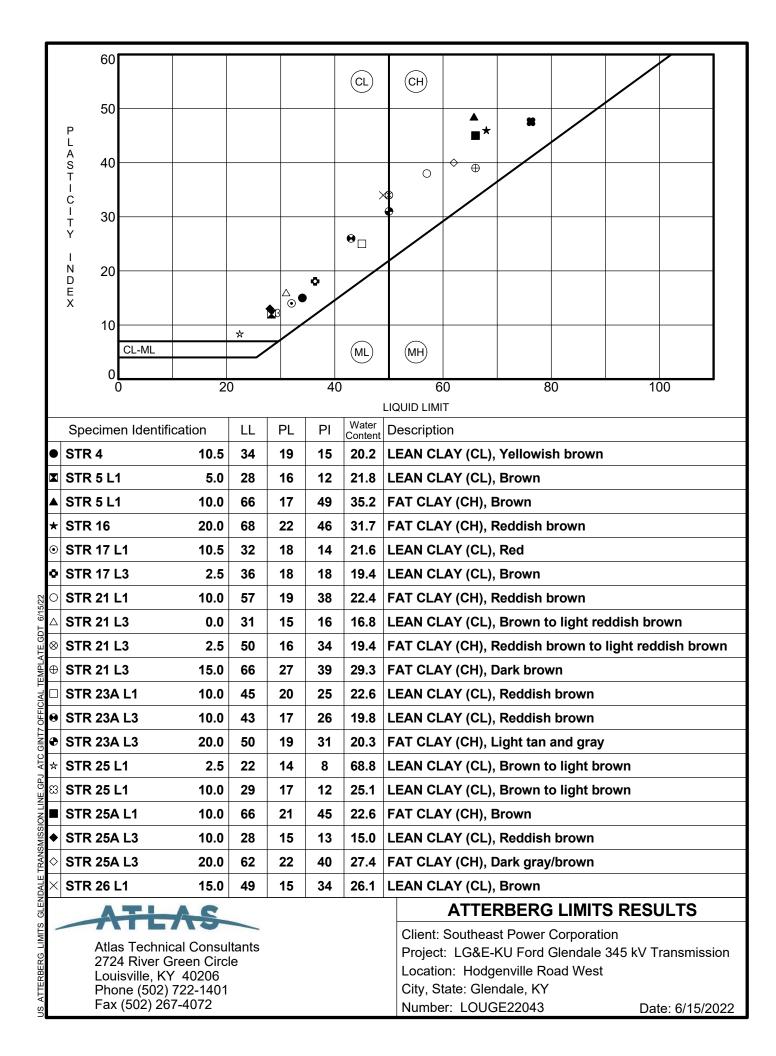
ATC Group Services, LLC 2724 River Green Circle Louisville, KY 40206 phone (502) 722-1401 Fax (502) 267-4072

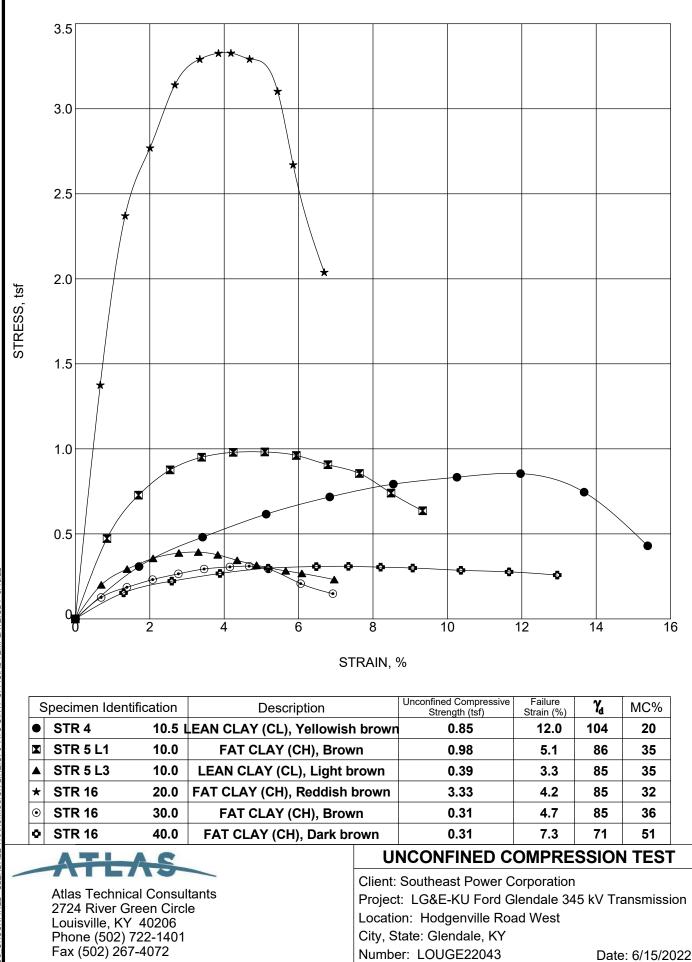
JS\_LAB-SUMMARY LANDS

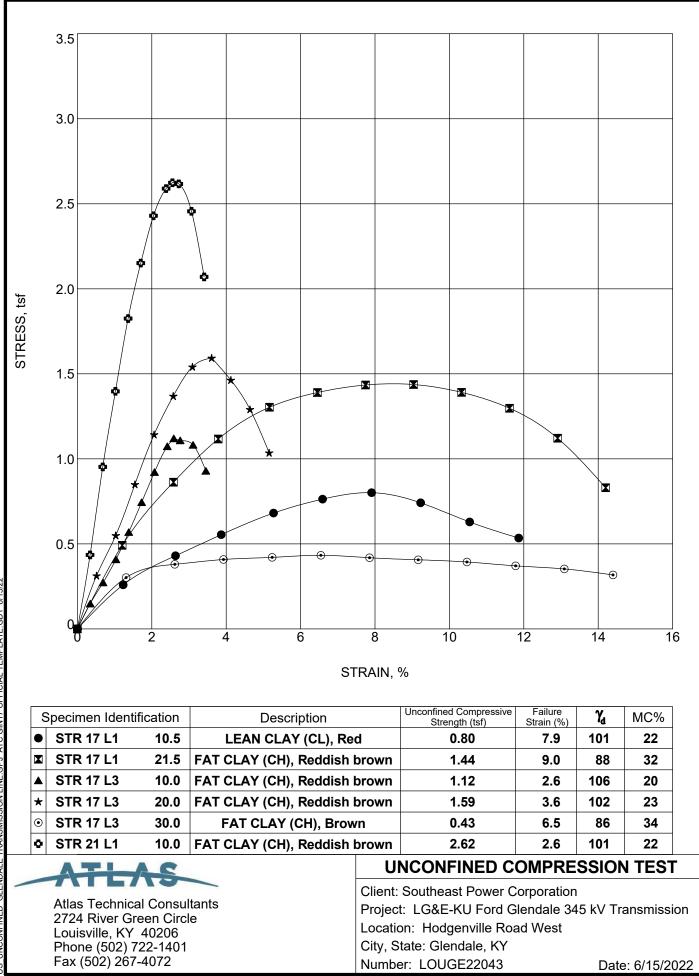
# Summary of Laboratory Results

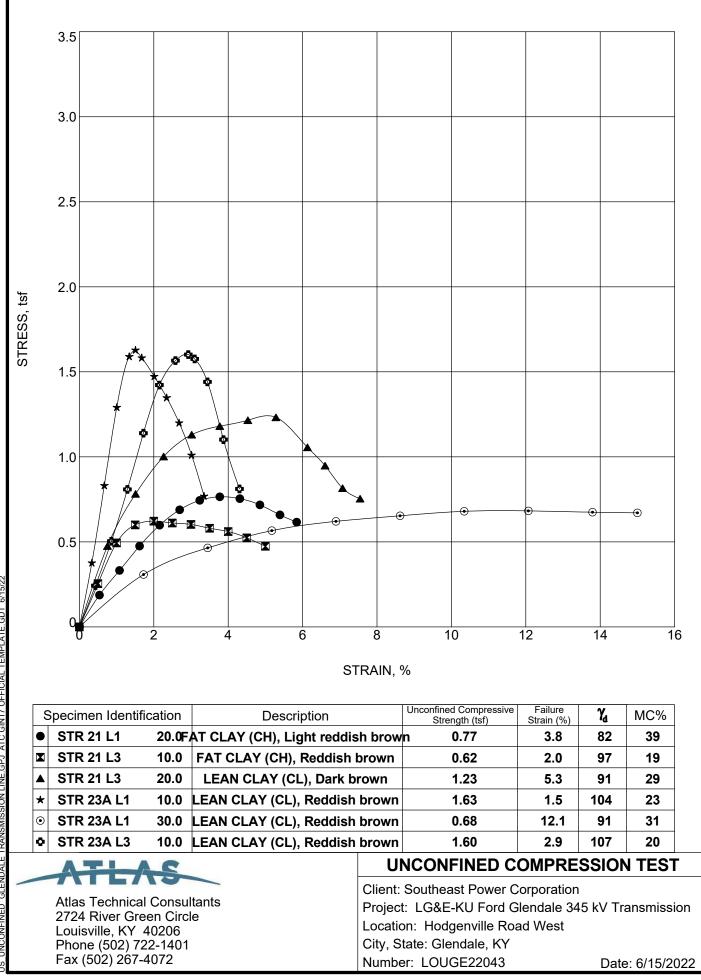
**Client: Southeast Power Corporation** Project: LG&E-KU Ford Glendale 345 kV Transmission Location: Hodgenville Road West City, State: Glendale, KY Number: LOUGE22043 Date: 6/15/2022

| Depth | Sample<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Liquid<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Plastic<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Plasticity<br>Index                                                      | Class-<br>ification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water<br>Content<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unconfined<br>Compressive<br>Strength (psi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dry<br>Density<br>(pcf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wet<br>Density<br>(pcf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max. Dry<br>Density<br>(pcf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Opt. Water<br>Content<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Swell<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RQD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Percent<br>Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Сс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | рH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0   | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.5   | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4.0   | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6.5   | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10.5  | SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                       | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 15.0  | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 20.0  | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 25.0  | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 30.0  | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.0   | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.5   | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.0   | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                       | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10.0  | SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49                                                                       | СН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 116.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12.0  | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.0   | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.5   | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.0   | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7.5   | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10.0  | SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 114.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12.0  | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 15.0  | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 0.0<br>1.5<br>4.0<br>6.5<br>10.5<br>15.0<br>20.0<br>25.0<br>30.0<br>0.0<br>2.5<br>5.0<br>10.0<br>12.0<br>0.0<br>2.5<br>5.0<br>10.0<br>12.0<br>10.0<br>12.0<br>10.0<br>12.0<br>10.0<br>12.0<br>10.0<br>12.0<br>10.0<br>12.0<br>10.0<br>12.0<br>10.0<br>12.0<br>10.0<br>12.0<br>10.0<br>12.0<br>10.0<br>12.0<br>10.0<br>12.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | Depuil         Type           0.0         SS           1.5         SS           4.0         SS           6.5         SS           10.5         SH           15.0         SS           20.0         SS           20.0         SS           30.0         SS           0.0         SS           5.0         SS           10.0         SH           12.0         SS           5.0         SS           5.0         SS           10.0         SH           12.0         SS           5.0         SS           5.0         SS           10.0         SH           12.0         SS           10.0         SH           12.0         SS           10.0         SH           12.0         SS | Deptil         Type         Limit           0.0         SS         1.5           1.5         SS         1.5           4.0         SS         1.5           6.5         SS         1.5           10.5         SH         34           15.0         SS         1.5           20.0         SS         1.5           20.0         SS         1.5           20.0         SS         1.5           20.0         SS         1.5           20.0         SS         1.5           20.0         SS         1.5           20.0         SS         1.5           30.0         SS         1.5           30.0         SS         1.5           5.0         SS         2.8           10.0         SH         66           12.0         SS         1.5           5.0         SS         1.5           5.0         SS         1.5           5.0         SS         1.5           5.0         SS         1.5           10.0         SH         1.5           10.0         SH         1.5 | Deptil         Type         Limit         Limit           0.0         SS | Deptit         Type         Limit         Limit         Index           0.0         SS         -         -         -           1.5         SS         -         -         -           4.0         SS         -         -         -           6.5         SS         -         -         -           10.5         SH         34         19         15           15.0         SS         -         -         -           20.0         SS         -         -         -           20.0         SS         -         -         -           20.0         SS         -         -         -           20.0         SS         -         -         -           20.0         SS         -         -         -           20.0         SS         -         -         -           30.0         SS         -         -         -           2.5         SS         28         16         12           10.0         SH         66         17         49           12.0         SS         -         -         -           < | Deptit         Type         Limit         Limit         Index         ification           0.0         SS                1.5         SS                4.0         SS                 4.0         SS                 6.5         SS                 10.5         SH         34         19         15         CL           15.0         SS                20.0         SS                21.0         SS                20.0         SS                30.0         SS                2.5         SS         28         16         12         CL           10.0 | Depth         Sample<br>Type         Liquid<br>Limit         Plastic<br>Mindex         Plastic<br>ification         Class-<br>ification         Content<br>(%)           0.0         SS            21.1           1.5         SS            19.5           4.0         SS            19.5           4.0         SS            16.2           6.5         SS            29.1           10.5         SH         34         19         15         CL         20.2           15.0         SS            33.2           20.0         SS            36.9           25.0         SS            36.9           25.0         SS            57.3           0.0         SS            21.9           30.0         SS         28         16         12         CL         21.8           10.0         SS         28         16         12 | Depth         Sample<br>Type         Liquid<br>Limit         Plastic<br>Limit         Plastic<br>Index         Class-<br>ification         Content<br>(%)         Compressive<br>Strength (psi)           0.0         SS         1         1         21.1         1           1.5         SS         1         1         19.5         1           4.0         SS         1         1         16.2         1           6.5         SS         1         1         29.1         1           10.5         SH         34         19         15         CL         20.2         0.85           15.0         SS         1         1         33.2         1         1         1           20.0         SS         1         1         1         33.2         1         1           20.0         SS         1         1         1         33.2         1         1         1           30.0         SS         1         1         1         1         1         1           30.0         SS         28         16         12         CL         21.8         1           10.0         SS         28         16         12 | Depth         Sample<br>Type         Liquid<br>Limit         Plasuci<br>Limit         Plasuci<br>Index         Colass-<br>ification         Content<br>(%)         Compressive<br>Strength (psi)         Density<br>(pcf)           0.0         SS            21.1             1.5         SS            19.5              4.0         SS            16.2              4.0         SS            29.1              6.5         SS            29.1               10.5         SH         34         19         15         CL         20.2         0.85         103.6           15.0         SS            36.9              20.0         SS             61.9              30.0         SS             57.3 | Depth         Sample Type         Liquid Limit         Plastic Index         Class-ifcation         Content (%)         Compressive Density (pcf)         Density (pcf)           0.0         SS            21.1              1.5         SS            19.5              4.0         SS            16.2              4.0         SS            29.1              6.5         SS            29.1               10.5         SH         34         19         15         CL         20.2         0.85         103.6         124.6           15.0         SS            33.2               20.0         SS            33.2                20.0         SS | Depth         Sample Type         Liquid Limit         Plasticity index         Class-iffcation         Content (%)         Compressive Strength (ps)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Dens | Depth<br>TypeSample<br>LimitLiquid<br>IndexPlasticity<br>IndexContent<br>(%)Compressive<br>Strength (ps)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf)Density<br>(pcf) <td>Depth         Sample<br/>Type         Liquid<br/>Limit         Plastic<br/>Index         Plastic<br/>iffication         Content<br/>(%)         Compressive<br/>Strength (psi)         Density<br/>(pcf)         Density<br/>(pcf)         Density<br/>(pcf)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Density<br/>(pcf)         Density<br/>(pcf)         Density<br/>(pcf)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Density<br/>(pcf)         Density<br/>(pcf)         Density<br/>(pcf)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)         Content<br/>(%)<td>Depth         Sample Liquid Type         Liquid Liquid Type         Plastic Index         Plastic Tipe         Content field         Compressive Strength (pcf)         Density (pcf)         Density (pcf)         Content (%)         Content (%)         Swell (%)           0.0         SS         I         I         I         21.1         Image: Strength (psi)         Density (pcf)         Density (pcf)         Density (pcf)         Content (%)         Image: Strength (psi)           1.5         SS         Image: Strength (psi)         Image: Strength (psi)         Image: Strength (psi)         Density (pcf)         Density (pcf)         Density (pcf)         Content (%)         Image: Strength (psi)           1.5         SS         Image: Strength (psi)         Image: Strength (psi)         Image: Strength (psi)         Image: Strength (psi)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density</td><td>Depth         Sample<br/>Type         Liquid<br/>Limit         Plasticity<br/>Index         Content<br/>(%)         Compressive<br/>Strength (ps)         Density<br/>(pcf)         Density<br/>(pcf)         Content<br/>(pcf)         CBR         Swell<br/>(%)         RQD           0.0         SS         I         I         I         21.1         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         <tdi< td="">         I         I</tdi<></td><td>Depth         Sampe         Light         Plastic index         Plastic index         Content (%)         Compressive Strengt(psi)         Density (pcf)         Density (pcf)         Content (%)         CBR         SWeil (%)         ROD         Plastic Plastic)           0.0         SS         -         -         21.1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</td><td>Depth         Sample         Lindia         Plastici ndex         Colass-<br/>infection         Compressive<br/>Strength (ps)         Density<br/>(pcf)         Density<br/>(pcf)         Density<br/>(pcf)         Density<br/>(pcf)         Content<br/>(%)         CBR         Swent<br/>W(%)         RQD         Perferen<br/>Recovery         Cc           0.0         SS         I         I         I         21.1         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strenge: Stre</td><td>Depth         Sample         Linuit         Plasticity         Colass-<br/>index         Compressive<br/>Strength         Density<br/>(pcf)         Density<br/>(pcf)         Density<br/>(pcf)         Density<br/>(pcf)         Content<br/>(%)         CBR         Weil<br/>(%)         ROD         Percent<br/>Recover         Cc         Cr           0.0         SS         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I</td></td> | Depth         Sample<br>Type         Liquid<br>Limit         Plastic<br>Index         Plastic<br>iffication         Content<br>(%)         Compressive<br>Strength (psi)         Density<br>(pcf)         Density<br>(pcf)         Density<br>(pcf)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Density<br>(pcf)         Density<br>(pcf)         Density<br>(pcf)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Density<br>(pcf)         Density<br>(pcf)         Density<br>(pcf)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%)         Content<br>(%) <td>Depth         Sample Liquid Type         Liquid Liquid Type         Plastic Index         Plastic Tipe         Content field         Compressive Strength (pcf)         Density (pcf)         Density (pcf)         Content (%)         Content (%)         Swell (%)           0.0         SS         I         I         I         21.1         Image: Strength (psi)         Density (pcf)         Density (pcf)         Density (pcf)         Content (%)         Image: Strength (psi)           1.5         SS         Image: Strength (psi)         Image: Strength (psi)         Image: Strength (psi)         Density (pcf)         Density (pcf)         Density (pcf)         Content (%)         Image: Strength (psi)           1.5         SS         Image: Strength (psi)         Image: Strength (psi)         Image: Strength (psi)         Image: Strength (psi)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density</td> <td>Depth         Sample<br/>Type         Liquid<br/>Limit         Plasticity<br/>Index         Content<br/>(%)         Compressive<br/>Strength (ps)         Density<br/>(pcf)         Density<br/>(pcf)         Content<br/>(pcf)         CBR         Swell<br/>(%)         RQD           0.0         SS         I         I         I         21.1         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         <tdi< td="">         I         I</tdi<></td> <td>Depth         Sampe         Light         Plastic index         Plastic index         Content (%)         Compressive Strengt(psi)         Density (pcf)         Density (pcf)         Content (%)         CBR         SWeil (%)         ROD         Plastic Plastic)           0.0         SS         -         -         21.1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</td> <td>Depth         Sample         Lindia         Plastici ndex         Colass-<br/>infection         Compressive<br/>Strength (ps)         Density<br/>(pcf)         Density<br/>(pcf)         Density<br/>(pcf)         Density<br/>(pcf)         Content<br/>(%)         CBR         Swent<br/>W(%)         RQD         Perferen<br/>Recovery         Cc           0.0         SS         I         I         I         21.1         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strenge: Stre</td> <td>Depth         Sample         Linuit         Plasticity         Colass-<br/>index         Compressive<br/>Strength         Density<br/>(pcf)         Density<br/>(pcf)         Density<br/>(pcf)         Density<br/>(pcf)         Content<br/>(%)         CBR         Weil<br/>(%)         ROD         Percent<br/>Recover         Cc         Cr           0.0         SS         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I</td> | Depth         Sample Liquid Type         Liquid Liquid Type         Plastic Index         Plastic Tipe         Content field         Compressive Strength (pcf)         Density (pcf)         Density (pcf)         Content (%)         Content (%)         Swell (%)           0.0         SS         I         I         I         21.1         Image: Strength (psi)         Density (pcf)         Density (pcf)         Density (pcf)         Content (%)         Image: Strength (psi)           1.5         SS         Image: Strength (psi)         Image: Strength (psi)         Image: Strength (psi)         Density (pcf)         Density (pcf)         Density (pcf)         Content (%)         Image: Strength (psi)           1.5         SS         Image: Strength (psi)         Image: Strength (psi)         Image: Strength (psi)         Image: Strength (psi)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density (pcf)         Density | Depth         Sample<br>Type         Liquid<br>Limit         Plasticity<br>Index         Content<br>(%)         Compressive<br>Strength (ps)         Density<br>(pcf)         Density<br>(pcf)         Content<br>(pcf)         CBR         Swell<br>(%)         RQD           0.0         SS         I         I         I         21.1         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <tdi< td="">         I         I</tdi<> | Depth         Sampe         Light         Plastic index         Plastic index         Content (%)         Compressive Strengt(psi)         Density (pcf)         Density (pcf)         Content (%)         CBR         SWeil (%)         ROD         Plastic Plastic)           0.0         SS         -         -         21.1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | Depth         Sample         Lindia         Plastici ndex         Colass-<br>infection         Compressive<br>Strength (ps)         Density<br>(pcf)         Density<br>(pcf)         Density<br>(pcf)         Density<br>(pcf)         Content<br>(%)         CBR         Swent<br>W(%)         RQD         Perferen<br>Recovery         Cc           0.0         SS         I         I         I         21.1         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strength (ps)         Image: Strenge: Stre | Depth         Sample         Linuit         Plasticity         Colass-<br>index         Compressive<br>Strength         Density<br>(pcf)         Density<br>(pcf)         Density<br>(pcf)         Density<br>(pcf)         Content<br>(%)         CBR         Weil<br>(%)         ROD         Percent<br>Recover         Cc         Cr           0.0         SS         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I |

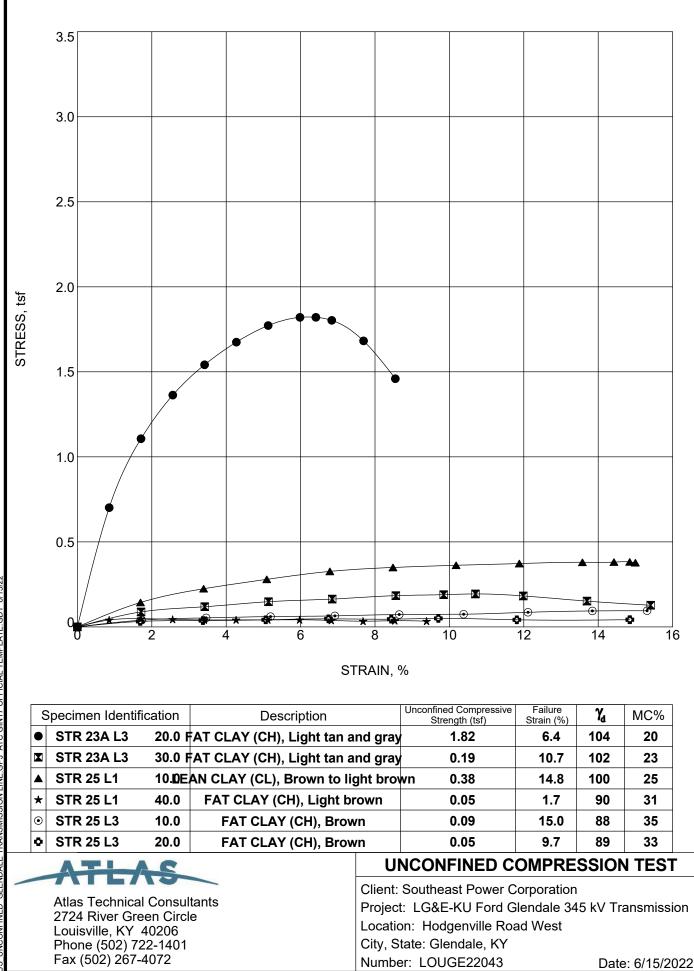




ATC Group Services, LLC 2724 River Green Circle Louisville, KY 40206 phone (502) 722-1401 Fax (502) 267-4072

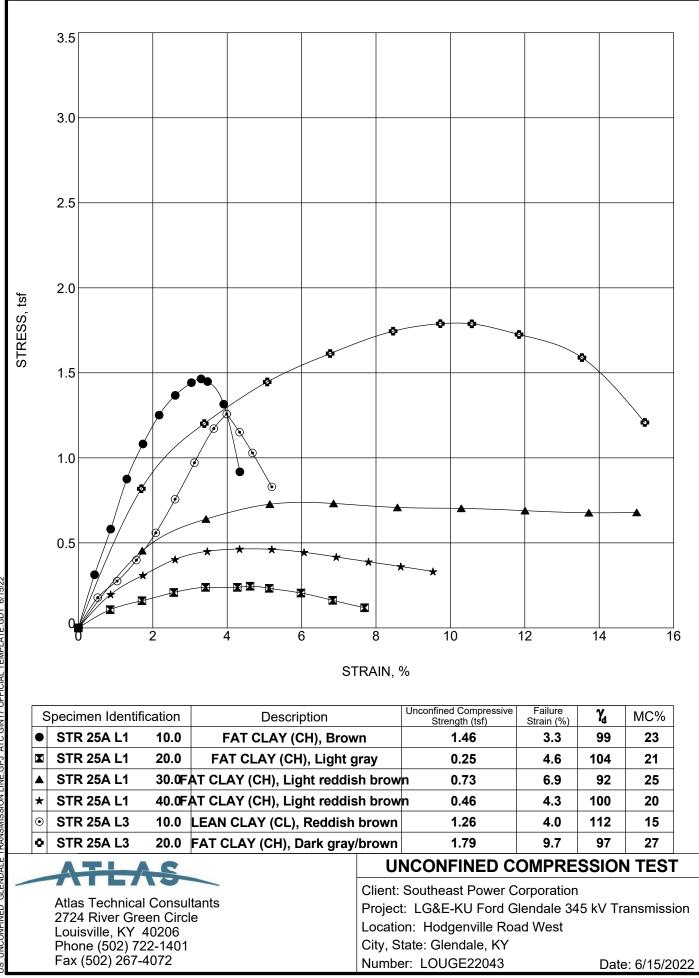

JS\_LAB-SUMMARY LANDSCAPE


# Summary of Laboratory Results

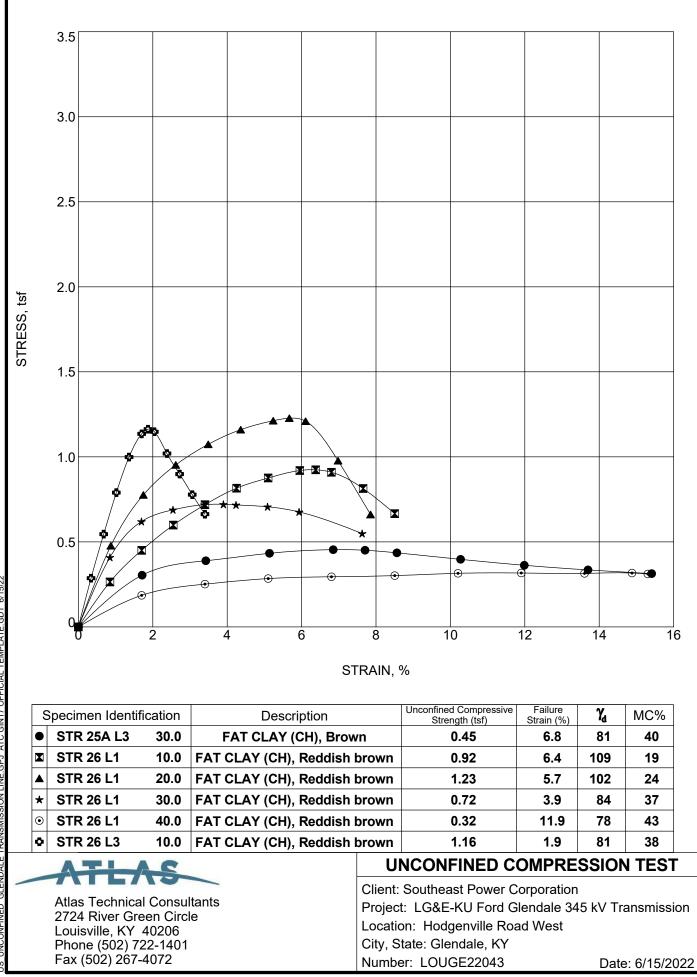
Client: Southeast Power Corporation Project: LG&E-KU Ford Glendale 345 kV Transmission Location: Hodgenville Road West City, State: Glendale, KY Number: LOUGE22043 Date: 6/15/2022

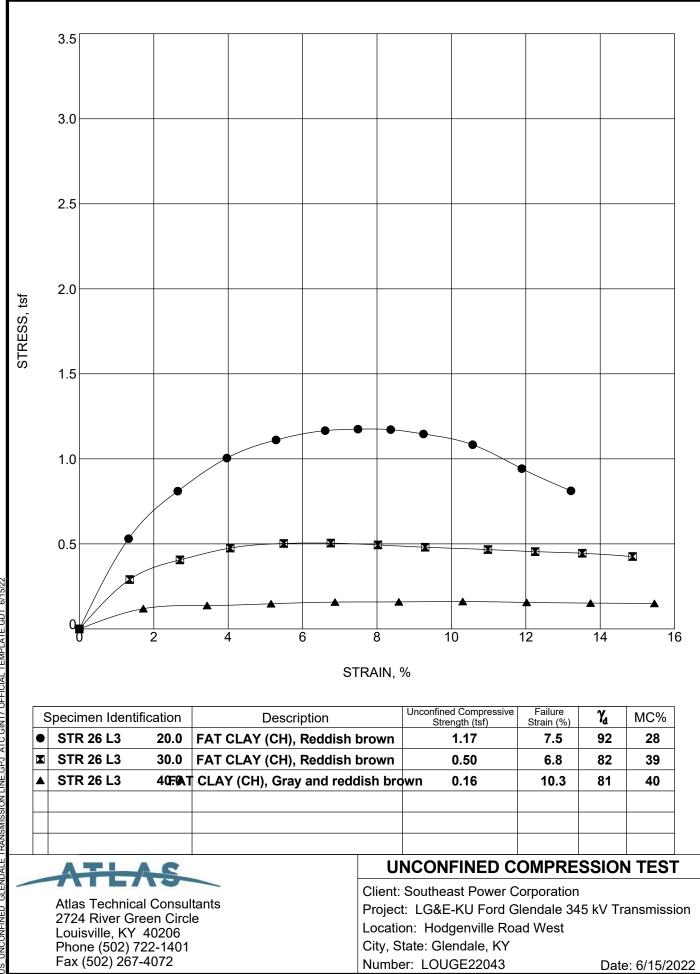








JS UNCONFINED GLENDALE TRANSMISSION LINE.GPJ ATC GINT7 OFFICIAL TEMPLATE.GDT 6/15/22




US\_UNCONFINED\_GLENDALE TRANSMISSION LINE.GPJ\_ATC GINT7\_OFFICIAL TEMPLATE.GDT\_6/15/22



UNCONFINED GLENDALE TRANSMISSION LINE.GPJ ATC GINT7 OFFICIAL TEMPLATE.GDT 6/15/22





US UNCONFINED GLENDALE TRANSMISSION LINE.GPJ ATC GINT7 OFFICIAL TEMPLATE.GDT 6/15/22



| Project:     | LG&E-KU Ford Glendale 345 kV Transmission |       |          |  |  |  |
|--------------|-------------------------------------------|-------|----------|--|--|--|
| Project No.: | LOUGE22043                                |       |          |  |  |  |
| By:          | ZN/JK                                     | Date: | 05/20/22 |  |  |  |
| Checked By:  | RCO                                       | Date: | 05/23/22 |  |  |  |

# Unconfined Compression Test on Rock Cores ASTM D7012 Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens

Equipment Usage: **Calipers, Scale, Compression Machine** 

**Compression Test Results** 

| Core<br>ID | Depth<br>(feet) | Diameter<br>(inches) | Area<br>(in <sup>2</sup> ) | Length<br>after<br>Capping<br>(inches) | L/D<br>Ratio | Maximum<br>Test<br>Load<br>(lbs) | Compressive<br>Strength<br>(psi) | Strength<br>Correction<br>Factor | Corrected<br>Compressive<br>Strength<br>(psi) |
|------------|-----------------|----------------------|----------------------------|----------------------------------------|--------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------------------|
| STR4       | 51.9            | 1.98                 | 3.09                       | 4.24                                   | 2.14         | 15,790                           | 5,120                            | 1.00                             | 5,120                                         |
| STR4-E     | 56              | 1.98                 | 3.07                       | 4.30                                   | 2.18         | 18,735                           | 6,100                            | 1.00                             | 6,100                                         |
| STR5L1     | 21.4            | 1.83                 | 2.62                       | 4.11                                   | 2.25         | 17,893                           | 6,830                            | 1.00                             | 6,830                                         |
| STR16      | 51.5            | 1.97                 | 3.05                       | 3.78                                   | 1.92         | 10,975                           | 3,600                            | 0.99                             | 3,560                                         |
| STR17L1    | 42              | 1.96                 | 3.00                       | 3.67                                   | 1.88         | 10,040                           | 3,340                            | 0.99                             | 3,310                                         |
| STR17L1    | 52.3            | 1.97                 | 3.06                       | 3.65                                   | 1.85         | 10,340                           | 3,380                            | 0.99                             | 3,350                                         |
| STR21L1    | 41.7            | 1.96                 | 3.03                       | 4.01                                   | 2.04         | 10,567                           | 3,490                            | 1.00                             | 3,490                                         |
| STR23AL1   | 55.5            | 1.97                 | 3.05                       | 3.15                                   | 1.60         | 6,265                            | 2,060                            | 0.97                             | 2,000                                         |

### **Unit Weight Determination**

| Core<br>ID | Depth<br>(feet) | Core<br>Description | Diameter<br>(inches) | Initial<br>Length as<br>Received<br>(inches) | Length<br>before<br>Capping<br>(inches) | Weight<br>(grams) | Unit<br>Weight<br>(pcf) |
|------------|-----------------|---------------------|----------------------|----------------------------------------------|-----------------------------------------|-------------------|-------------------------|
| STR4       | 51.9            | LIMESTONE           | 1.98                 | 11.00                                        | 4.24                                    | 460.58            | 134.3                   |
| STR4-E     | 56              | LIMESTONE           | 1.98                 | 16.00                                        | 4.30                                    | 566.78            | 163.3                   |
| STR5L1     | 21.4            | LIMESTONE           | 1.83                 | 35.00                                        | 4.11                                    | 544.01            | 192.6                   |
| STR16      | 51.5            | LIMESTONE           | 1.97                 | 7.00                                         | 3.78                                    | 481.8             | 159.4                   |
| STR17L1    | 42              | LIMESTONE           | 1.96                 | 15.00                                        | 3.67                                    | 502.3             | 173.6                   |
| STR17L1    | 52.3            | LIMESTONE           | 1.97                 | 7.00                                         | 3.65                                    | 529.9             | 180.9                   |
| STR21L1    | 41.7            | LIMESTONE           | 1.96                 | 9.00                                         | 4.01                                    | 491.5             | 154.2                   |
| STR23AL1   | 55.5            | LIMESTONE           | 1.97                 | 10.00                                        | 3.15                                    | 417.2             | 165.5                   |

Specimens not prepared in accordance with ASTM D4543

Specimens are tested at the "as received" mositure condition.

Rate of loading:  $100psi/s \pm 10\%$  or  $100 x area(in) lbs/s \pm 10\%$ 

| Length-to-<br>Diameter Ratio | Strength Correction Factor |
|------------------------------|----------------------------|
| 1.00                         | 0.87                       |
| 1.25                         | 0.93                       |
| 1.50                         | 0.96                       |
| 1.75                         | 0.98                       |
| 2.00-2.50                    | 1.00                       |



| Project:     | LG&E-KU Ford Glendale 345 kV Transmission |       |          |  |  |  |
|--------------|-------------------------------------------|-------|----------|--|--|--|
| Project No.: | LOUGE22043                                |       |          |  |  |  |
| By:          | ZN/JK                                     | Date: | 05/20/22 |  |  |  |
| Checked By:  | RCO                                       | Date: | 05/23/22 |  |  |  |

# Unconfined Compression Test on Rock Cores ASTM D7012 Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens

Equipment Usage: **Calipers, Scale, Compression Machine** 

**Compression Test Results** 

| Core<br>ID | Depth<br>(feet) | Diameter<br>(inches) | Area<br>(in <sup>2</sup> ) | Length<br>after<br>Capping<br>(inches) | L/D<br>Ratio | Maximum<br>Test<br>Load<br>(lbs) | Compressive<br>Strength<br>(psi) | Strength<br>Correction<br>Factor | Corrected<br>Compressive<br>Strength<br>(psi) |
|------------|-----------------|----------------------|----------------------------|----------------------------------------|--------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------------------|
| STR25AL1   | 53.0            | 1.98                 | 3.07                       | 4.37                                   | 2.21         | 11,820                           | 3,850                            | 1.00                             | 3,850                                         |
| SR25L1     | 51.7            | 1.97                 | 3.05                       | 4.16                                   | 2.11         | 12,115                           | 3,970                            | 1.00                             | 3,970                                         |
|            |                 |                      |                            |                                        |              |                                  |                                  |                                  |                                               |
|            |                 |                      |                            |                                        |              |                                  |                                  |                                  |                                               |
|            |                 |                      |                            |                                        |              |                                  |                                  |                                  |                                               |
|            |                 |                      |                            |                                        |              |                                  |                                  |                                  |                                               |
|            |                 |                      |                            |                                        |              |                                  |                                  |                                  |                                               |
|            |                 |                      |                            |                                        |              |                                  |                                  |                                  |                                               |

### **Unit Weight Determination**

| Core<br>ID | Depth<br>(feet) | Core<br>Description | Diameter<br>(inches) | Initial<br>Length as<br>Received<br>(inches) | Length<br>before<br>Capping<br>(inches) | Weight<br>(grams) | Unit<br>Weight<br>(pcf) |
|------------|-----------------|---------------------|----------------------|----------------------------------------------|-----------------------------------------|-------------------|-------------------------|
| STR25AL1   | 53.0            | LIMESTONE           | 1.98                 | 7.00                                         | 4.37                                    | 583.94            | 165.8                   |
| SR25L1     | 51.7            | LIMESTONE           | 1.97                 | 8.00                                         | 4.16                                    | 503.37            | 151.2                   |
|            |                 |                     |                      |                                              |                                         |                   |                         |
|            |                 |                     |                      |                                              |                                         |                   |                         |
|            |                 |                     |                      |                                              |                                         |                   |                         |
|            |                 |                     |                      |                                              |                                         |                   |                         |
|            |                 |                     |                      |                                              |                                         |                   |                         |
|            |                 |                     |                      |                                              |                                         |                   |                         |

Specimens not prepared in accordance with ASTM D4543

Specimens are tested at the "as received" mositure condition.

Rate of loading:  $100psi/s \pm 10\%$  or  $100 x area(in) lbs/s \pm 10\%$ 

| Length-to-<br>Diameter Ratio | Strength Correction Factor |
|------------------------------|----------------------------|
| 1.00                         | 0.87                       |
| 1.25                         | 0.93                       |
| 1.50                         | 0.96                       |
| 1.75                         | 0.98                       |
| 2.00-2.50                    | 1.00                       |