COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

```
THE APPLICATION OF
NEW CINGULAR WIRELESS PCS, LLC,
A DELAWARE LIMITED LIABILITY COMPANY, )
DIBIATAT MOBILITY LIABLITYCOMPANY,
D/B/A AT&T MOBILITY
AND HARMONI TOWERS LLC, A DELAWARE
LIMITED LIABILITY COMPANY
FOR ISSUANCE OF A CERTIFICATE OF PUBLIC
CONVENIENCE AND NECESSITY TO CONSTRUCT
A WIRELESS COMMUNICATIONS FACILITY
IN THE COMMONWEALTH OF KENTUCKY
IN THE COUNTY OF MCCREARY
```

SITE NAME: PARKERS LAKE RELO

APPLICATION FOR
 CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY FOR CONSTRUCTION OF A WIRELESS COMMUNICATIONS FACILITY

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT\&T Mobility and Harmoni Towers LLC, a Delaware limited liability company (formerly known as Uniti Towers LLC) ("Applicants"), by counsel, pursuant to (i) KRS §§ 278.020, 278.040, 278.650, 278.665, and other statutory authority, and the rules and regulations applicable thereto, and (ii) the Telecommunications Act of 1996, respectfully submit this Application requesting issuance of a Certificate of Public Convenience and Necessity ("CPCN") from the Kentucky Public Service Commission ("PSC") to construct, maintain, and operate a Wireless Communications Facility ("WCF") to serve the customers of the Applicants with wireless communications services.

In support of this Application, Applicants respectfully provide and state the following
information:

1. The complete names and addresses of the Applicants are: New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT\&T Mobility, having an address of Meidinger Tower, 462 S. $4^{\text {th }}$ Street, Suite 2400, Louisville, Kentucky 40202 and Harmoni Towers LLC, a Delaware limited liability company having an address of 11101 Anderson Drive, Suite 200, Little Rock, Arkansas 72212.
2. Applicants propose construction of an antenna tower for communications services, which is to be located in an area outside the jurisdiction of a planning commission, and Applicants submit this application to the PSC for a certificate of public convenience and necessity pursuant to KRS §§ 278.020(1), 278.040, 278.650, 278.665, and other statutory authority.
3. AT\&T Mobility is a limited liability company organized in the State of Delaware on October 20, 1994. Harmoni Towers is a limited liability company organized in the State of Delaware on December 2, 2015.
4. Applicants attest that they are in good standing in the state in which they are organized and further state that they are authorized to transact business in Kentucky.
5. The Certificates of Authority filed with the Kentucky Secretary of State for both Applicants are attached as part of Exhibit A pursuant to 807 KAR 5:001: Section 14(3). Note that Harmoni Towers LLC was formerly organized as Uniti Towers LLC (see an Amended Certificate of Authority to change entity name dated March 22, 2021 attached as part of Exhibit A). The Certificates of Authority for Uniti Towers LLC along with the Amended Certificate of Authority for Harmoni Towers LLC is attached as part of Exhibit A.
6. AT\&T Mobility operates on frequencies licensed by the Federal Communications Commission ("FCC") pursuant to applicable FCC requirements. Copies of AT\&T Mobility's FCC licenses to provide wireless services are attached to this Application or described as part of Exhibit A, and the facility will be constructed and operated in accordance with applicable FCC regulations.
7. The public convenience and necessity require the construction of the proposed WCF. The construction of the WCF will bring or improve AT\&T Mobility's services to an area currently not served or not adequately served by AT\&T Mobility by increasing coverage or capacity and thereby enhancing the public's access to innovative and competitive wireless communications services. The WCF will provide a necessary link in AT\&T Mobility's communications network that is designed to meet the increasing demands for wireless services in Kentucky's wireless communications service area. The WCF is an integral link in AT\&T Mobility's network design that must be in place to provide adequate coverage to the service area.
8. To address the above-described service needs, Applicants propose to construct a WCF 141 Joe Neal Road, Parkers Lake, KY 42634 (E-911) / Joe Neal Road, Parkers Lake, KY 42634 (PARCEL) ($36^{\circ} 50^{\prime} 21.56^{\prime \prime}$ North latitude, $84^{\circ} 29^{\prime} 06.37^{\prime \prime}$ West longitude), on a parcel of land located entirely within the county referenced in the caption of this application. The property on which the WCF will be located is owned by Richard E. Corder and Sheryl F. Corder pursuant to a deed recorded at Deed Book 205, Page 106 in the office of the County Clerk. The proposed WCF will consist of a 2-foot tall foundation below a 255-foot tall tower, with an approximately 10-foot tall lightning arrestor attached at
the top, for a total height of 267 -feet, plus related ground facilities. The WCF will also include concrete foundations and a shelter or cabinets to accommodate the placement of AT\&T Mobility's radio electronics equipment and appurtenant equipment. The Applicants' equipment cabinet or shelter will be approved for use in the Commonwealth of Kentucky by the relevant building inspector. The WCF compound will be fenced and all access gate(s) will be secured. A description of the manner in which the proposed WCF will be constructed is attached as Exhibit B and Exhibit C.
9. A list of utilities, corporations, or persons with whom the proposed WCF is likely to compete is attached as Exhibit D.
10. The site development plan and a vertical profile sketch of the WCF signed and sealed by a professional engineer registered in Kentucky depicting the tower height, as well as a proposed configuration for AT\&T Mobility's antennas has also been included as part of Exhibit B.
11. Foundation design plans signed and sealed by a professional engineer registered in Kentucky and a description of the standards according to which the tower was designed are included as part of Exhibit C.
12. Applicants have considered the likely effects of the installation of the proposed WCF on nearby land uses and values and have concluded that there is no more suitable location reasonably available from which adequate services can be provided, and that there are no reasonably available opportunities to co-locate AT\&T Mobility's antennas on an existing structure. When suitable towers or structures exist, AT\&T Mobility attempts to co-locate on existing structures such as communications towers or other structures
capable of supporting AT\&T Mobility's facilities; however, no other suitable or available colocation site was found to be located in the vicinity of the site.
13. A copy of the Determination of No Hazard to Air Navigation issued by the Federal Aviation Administration ("FAA") is attached as Exhibit E.
14. A copy of the Kentucky Airport Zoning Commission ("KAZC") application for the proposed construction is attached as Exhibit F.
15. A geotechnical engineering firm has performed soil boring(s) and subsequent geotechnical engineering studies at the WCF site. A copy of the geotechnical engineering report, signed and sealed by a professional engineer registered in the Commonwealth of Kentucky, is attached as Exhibit G. The name and address of the geotechnical engineering firm and the professional engineer registered in the Commonwealth of Kentucky who supervised the examination of this WCF site are included as part of this exhibit.
16. Clear directions to the proposed WCF site from the County seat are attached as Exhibit H . The name and telephone number of the preparer of Exhibit H are included as part of this exhibit.
17. Harmoni Towers LLC, pursuant to a written agreement, has acquired the right to use the WCF site and associated property rights. A copy of the agreements or abbreviated agreements recorded with the County Clerk are attached as Exhibit I.
18. Personnel directly responsible for the design and construction of the proposed WCF are well qualified and experienced. The tower and foundation drawings for the proposed tower submitted as part of Exhibit \mathbf{C} bear the signature and stamp of a
professional engineer registered in the Commonwealth of Kentucky. All tower designs meet or exceed the minimum requirements of applicable laws and regulations.
19. The Construction Manager for the proposed facility is Marshall Corbin and the identity and qualifications of each person directly responsible for design and construction of the proposed tower are contained in Exhibits B \& C.
20. As noted on the Survey attached as part of Exhibit B, the surveyor has determined that the site is not within any flood hazard area.
21. Exhibit B includes a map drawn to an appropriate scale that shows the location of the proposed tower and identifies every owner of real estate within 500 feet of the proposed tower (according to the records maintained by the County Property Valuation Administrator). Every structure and every easement within 500 feet of the proposed tower or within 200 feet of the access road including intersection with the public street system is illustrated in Exhibit B.
22. Applicants have notified every person who, according to the records of the County Property Valuation Administrator, owns property which is within 500 feet of the proposed tower or contiguous to the site property, by certified mail, return receipt requested, of the proposed construction. Each notified property owner has been provided with a map of the location of the proposed construction, the PSC docket number for this application, the address of the PSC, and has been informed of his or her right to request intervention. A list of the notified property owners and a copy of the form of the notice sent by certified mail to each landowner are attached as Exhibit J and Exhibit K, respectively.
23. Applicants have notified the applicable County Judge/Executive by certified
mail, return receipt requested, of the proposed construction. This notice included the PSC docket number under which the application will be processed and informed the County Judge/Executive of his/her right to request intervention. A copy of this notice is attached as Exhibit L.
24. Notice signs meeting the requirements prescribed by 807 KAR 5:063, Section 1(2) that measure at least 2 feet in height and 4 feet in width and that contain all required language in letters of required height, have been posted, one in a visible location on the proposed site and on the nearest public road. Such signs shall remain posted for at least two weeks after filing of the Application, and a copy of the posted text is attached as Exhibit M. A legal notice advertisement regarding the location of the proposed facility has been published in a newspaper of general circulation in the county in which the WCF is proposed to be located. A copy of the newspaper legal notice advertisement is attached as part of Exhibit M.
25. The general area where the proposed facility is to be located is rural in character.
26. The process that was used by AT\&T Mobility's radio frequency engineers in selecting the site for the proposed WCF was consistent with the general process used for selecting all other existing and proposed WCF facilities within the proposed network design area. AT\&T Mobility's radio frequency engineers have conducted studies and tests in order to develop a highly efficient network that is designed to handle voice and data traffic in the service area. The engineers determined an optimum area for the placement of the proposed facility in terms of elevation and location to provide the best quality service to
customers in the service area. A radio frequency design search area prepared in reference to these radio frequency studies was considered by the Applicants when searching for sites for its antennas that would provide the coverage deemed necessary by AT\&T Mobility. A map of the area in which the tower is proposed to be located which is drawn to scale and clearly depicts the necessary search area within which the site should be located pursuant to radio frequency requirements is attached as Exhibit \mathbf{N}.
27. The tower must be located at the proposed location and proposed height to provide necessary service to wireless communications users in the subject area.
28. All Exhibits to this Application are hereby incorporated by reference as if fully set out as part of the Application.
29. All responses and requests associated with this Application may be directed to:

David A. Pike

Pike Legal Group, PLLC
1578 Highway 44 East, Suite 6
P. O. Box 369

Shepherdsville, KY 40165-0369
Telephone: (502) 955-4400
Telefax: (502) 543-4410
Email: dpike@pikelegal.com

WHEREFORE, Applicants respectfully request that the PSC accept the foregoing Application for filing, and having met the requirements of KRS §§ 278.020(1), 278.650, and 278.665 and all applicable rules and regulations of the PSC, grant a Certificate of Public Convenience and Necessity to construct and operate the WCF at the location set forth herein.

Respectfully submitted,

David A. Pike
Pike Legal Group, PLLC
1578 Highway 44 East, Suite 6
P. O. Box 369

Shepherdsville, KY 40165-0369
Telephone: (502) 955-4400
Telefax: (502) 543-4410
Email: dpike@pikelegal.com
Attorney for Applicants

LIST OF EXHIBITS

A - Certificate of Authority \& FCC License Documentation
B - Site Development Plan:
500' Vicinity Map
Legal Descriptions
Flood Plain Certification
Site Plan
Vertical Tower Profile
C - Tower and Foundation Design
D - Competing Utilities, Corporations, or Persons List
E - FAA
F - Kentucky Airport Zoning Commission
G - Geotechnical Report
H - Directions to WCF Site
I - Copy of Real Estate Agreement
J - Notification Listing
K - Copy of Property Owner Notification
L - Copy of County Judge/Executive Notice
M - Copy of Posted Notices and Newspaper Notice Advertisement
N - Copy of Radio Frequency Design Search Area

EXHIBIT A

CERTIFICATE OF AUTHORITY \& FCC LICENSE DOCUMENTATION

Commonwealth of Kentucky Alison Lundergan Grimes, Secretary of State

Alison Lundergan Grimes
Secretary of State P. O. Box 718

Frankfort, KY 40602-0718
(502) 564-3490
http://www.sos.ky.gov

Certificate of Authorization

Authentication number: 216299
Visit https://app.sos.ky.gov/ftshow/certvalidate.aspx to authenticate this certificate.
I, Alison Lundergan Grimes, Secretary of State of the Commonwealth of Kentucky, do hereby certify that according to the records in the Office of the Secretary of State,

NEW CINGULAR WIRELESS PCS, LLC

, a limited liability company authorized under the laws of the state of Delaware, is authorized to transact business in the Commonwealth of Kentucky, and received the authority to transact business in Kentucky on October 14, 1999.

I further certify that all fees and penalties owed to the Secretary of State have been paid; that an application for certificate of withdrawal has not been filed; and that the most recent annual report required by KRS 14A.6-010 has been delivered to the Secretary of State.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my Official Seal at Frankfort, Kentucky, this $28^{\text {th }}$ day of May, 2019, in the $227^{\text {th }}$ year of the Commonwealth.

Alison Lundergan Grimes Kentucky Secretary of State

8. The names and businoss addresses of the ently's representatives (secrotary, oflicers and drectors, menagers. triswes or peneral partiners):

Daniel L. Heard		Little Rock	AR	72211
Mamo	Strock or P.O. Box	ciny	Stote	Z0. Code
Kenneth Gunderman		Little Rock	AR	72211
Neme	strod or P.O. Dox	city	Stare	2p Code
Mark A. Wallace		Little Rock	AR	72211
Neme	8trod or P.O. Eax	city	State	2 LCOS

10. I centity that, as of the date of filling this appltcallon, the above-named entity vallaty exisia under the laws of the furisdiction of is formation.
11. If a imited pertnership, it elects to be a limited liabillty limited parnership. Check ine box if applicable: \square
12. If a limited liability company, check box if manager-managed:
13. This spplication will be effective upon fuling, uniest a detared offiective date and/or time io provided.

1, C T Corporation System
conaent to serve as the ragiatered agent ori behall of the businees onity.

(0M15)

Multi-page document. Select page: 12

COMMOWNEALTH OF KENTUCKY Michael Adams, Secretary of State

Division of Business Fillings P.O. Box 718 Frankfort, KY 40602 (502) 564-3490 wWw.sos.ky.gov	Amended Certificate of Authority (Foreign Business Entity)	FCA

Pursuant to the provisions of KRS Chapter KRS 14A and 271B, 273, 274, 275, 362 or 386 the undersigned hereby applies for an amended certificate of authority on behalf of the entity named below and, for that purpose, submits the following statements:

1. The business entity is:
profit corporation (KRS 271B)
professional service corporation (KRS 274).
x limited liability company (KRS 275).
professional limited liability company (KRS 275 limited cooperative association
cooperative association
\square nonprofit corporation (KRS 273).
\rightarrow business trust (KRS 386).
\rightarrow limited partnership (KRS 362).
\rightarrow statutory trust (KRS 386)
non-profit LCC (KRS 275).
2. The name of the company is: Uniti Towers LLC
(The name must be lefenticy to the nalime on necocd with the Secretery of State.)
3. It is an entity organized and existing under the laws of the state or country of Delaware
4. The entity received authority to transact business in Kentucky on 1/3/2017
5. The entity has changed its (check ell that apply)
[7] Domicile name to Harmoni Towers LLC
[7] Name to be used in Kentucky to Harmoni Towers LLC
[D) Jurisdiction of organization to \qquad
\square Period of duration

- Form of organization
(1) Management type:
$[x]$ Member managed
[. I Manager managed

6. This application will be effective upon filing, unless a delayed effective date and/or time is provided. The eflective date or the delayed effective date cannot be prior to the date the application is filed. The effective date is \qquad

I declare under penalty of perjury under the laws of the state of Kentucky that the foregoing is true and correct.

Delaware

The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF TEF STATE OF DELANARE, DO EEREBY CERTIFY TEAT THE SAID "ONTTI TONERS LLCN, FILED A CERTIFICATE OF AMENDYENT, CEANGING ITS NANE TO "HARMONI TONERS LIC" ON TRE EIGHTEENTE DAY OF SEPTENBER, A.D. 2020, AT 5:13 O`CLOCK P.M.

- AND I DO HEREBY FURTHKR CERTIEY THAT THE AFORESATD LIMTTED LIABILITY COYPANY IS DULY FORUED UNDER THE LANS OF TEBS STATE OF dELAMARE AND IS IN GOOD STANDING AND HAS A LEGAL EXISTENCE NOT HAVING BEAN CANCELLED OR REVORED SO FAR AS THE RECORDS OF THIS OFTICE SHON AND IS DOLY AUYHORIZED TO TRANSACT BUSINESS.

AND I DO HERBBY FURTHER CRERTIFY THAT THE SAID "EARGONI TOWERS ILC" WIS PORMED ON THE SECOND DAY OF DECEMAER, A.D. 2015.

Authentication: 202491953
Date: 02-11-21

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: FCC GROUP
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 2100
DALLAS, TX 75202

Call Sign KNKN666	File Number 0009619100
Radio Service CL - Cellular	
Market Numer CMA447	Channel Block A
Sub-Market Designator	
0	

FCC Registration Number (FRN): 0003291192
Market Name
Kentucky 5 - Barren

Grant Date $09-08-2021$	Effective Date $09-08-2021$	Expiration Date $10-01-2031$	Five Yr Build-Out Date	Print Date $09-08-2021$

Site Information:

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
7	$37-10-00.0 \mathrm{~N}$	$085-18-37.0 \mathrm{~W}$	282.5	291.4

Address: 1210 Cane Valley Road (94238)
City: Columbia County: ADAIR State: KY Construction Deadline:

Antenna: 1								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	180.300	151.200	132.800	140.500	155.800	172.800	186.200	183.500
Transmitting ERP (watts)	250.037	98.154	10.266	2.559	0.527	0.738	12.510	102.333
Antenna: 2 (R)	250.037	98.154	10.266	2.559	0.527	0.738	12.510	102.333
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	180.300	151.200	132.800	140.500	155.800	172.800	186.200	183.500
Transmitting ERP (watts)	1.408	30.262	153.476	217.337	49.025	5.207	1.772	0.660
Antenna: 3 (${ }^{\text {a }}$		30.262	153.476	21.337				
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)		45	90	135	180	225	270	315
Antenna Height AAT (meters)	180.300	151.200	132.800	140.500	155.800	172.800	186.200	183.500
Transmitting ERP (watts)	2.948	0.454	0.942	4.366	59.310	210.546	155.347	22.706

Conditions:

Pursuant to $\S 309(\mathrm{~h})$ of the Communications Act of 1934 , as amended, 47 U.S.C. $\S 309(\mathrm{~h})$, this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934 , as amended. See 47 U.S.C. $\S 310(\mathrm{~d})$. This license is subject in terms to the right of use or control conferred by $\S 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. $\$ 606$.

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
8	$36-43-12.0 \mathrm{~N}$	$084-28-13.0 \mathrm{~W}$	409.3	91.1

Address: 100 Manor Circle (94260)
City: Whitley City County: MCCREARY State: KY Construction Deadline:

Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	123.400	147.100	135.800	109.800	103.700	143.600	127.300	165.300
Transmitting ERP (watts)	244.175	220.925	36.790	4.400	1.072	1.113	3.637	56.485
Antenna: 2								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	123.400	147.100	135.800	109.800	103.700	143.600	127.300	165.300
Transmitting ERP (watts)	2.526	8.109	37.053	64.172	73.466	23.019	4.143	0.935
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	123.400	147.100	135.800	109.800	103.700	143.600	127.300	165.300
Transmitting ERP (watts)	13.438	3.125	0.649	0.912	15.291	122.113	297.793	117.856

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
17	$36-56-36.9 \mathrm{~N}$	$086-00-52.2 \mathrm{~W}$	218.8	91.1

Address: 638 GRAHAM ROAD (87368)
City: GLASGOW County: BARREN State: KY Construction Deadline:

tenna: 1								
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	76.900	78.700	69.100	74.800	91.600	116.000	101.800	89.500
Transmitting ERP (watts)	138.618	59.574	7.477	1.200	0.283	0.661	10.185	66.521
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	76.900	78.700	69.100	74.800	91.600	116.000	101.800	89.500
Transmitting ERP (watts) Antenna: 3	2.142	19.146	94.547	124.562	33.322	3.559	0.817	0.257
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	76.900	78.700	69.100	74.800	91.600	116.000	101.800	89.500
Transmitting ERP (watts)	2.434	0.360	0.244	4.119	40.205	121.384	90.927	17.264

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
18	$36-48-31.1 \mathrm{~N}$	$084-50-43.5 \mathrm{~W}$	466.6	61.0

Address: 6565 MORRIS HILL ROAD (87856)
City: MONTICELLO County: WAYNE State: KY Construction Deadline:

na: 1								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	216.900	160.100	180.400	174.000	158.000	164.800	204.700	214.300
Transmitting ERP (watts)	159.083	70.430	5.874	0.769	0.334	0.371	9.558	76.538
Antenna: 2								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	216.900	160.100	180.400	174.000	158.000	164.800	204.700	214.300
Transmitting ERP (watts)	1.547	33.128	166.094	241.154	55.397	5.855	1.952	0.731
Antenna: 3 (
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	216.900	160.100	180.400	174.000	158.000	164.800	204.700	214.300
Transmitting ERP (watts)	1.611	0.321	0.293	4.972	42.968	145.725	111.912	13.218

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
19	$36-53-52.1 \mathrm{~N}$	$084-47-02.5 \mathrm{~W}$	353.6	94.2

Address: ROUTE 5, BOX 9516 (87058)
City: Monticello County: WAYNE State: KY Construction Deadline:

Antenna: 1								
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	153.300	160.500	119.100	104.500	62.300	124.200	155.000	148.700
Transmitting ERP (watts)	151.264	65.591	5.815	0.740	0.328	0.344	9.075	72.988
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	153.300	160.500	119.100	104.500	62.300	124.200	155.000	148.700
Transmitting ERP (watts) Antenna: 3	2.029	20.018	108.704	142.806	33.266	2.825	0.395	0.478
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	153.300	160.500	119.100	104.500	62.300	124.200	155.000	148.700
Transmitting ERP (watts)	1.536	0.299	0.287	4.752	41.633	135.419	106.546	12.709

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
20	$37-05-19.7 \mathrm{~N}$	$084-54-47.3 \mathrm{~W}$	331.6	106.4

Address: 1101 PINE TOP ROAD (86918)
City: RUSSELL SPRINGS County: RUSSELL State: KY Construction Deadline:

Antenna: 1								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	118.700	77.600	105.400	136.900	148.600	127.700	120.400	134.300
Transmitting ERP (watts)	106.145	47.603	4.827	0.278	0.215	0.233	6.909	51.527
Antenna: 2	106.145	47.603		0.27	0.215	0.23	6.909	51.527
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	118.700	77.600	105.400	136.900	148.600	127.700	120.400	134.300
Transmitting ERP (watts)	2.313	23.146	119.606	157.272	35.853	3.353	0.454	0.536
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	
Antenna Height AAT (meters)	118.700	77.600						
Transmitting ERP (watts)	1.748	0.347	0.313	5.295	45.951	158.160	122.299	14.137

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
22	$36-45-21.5 \mathrm{~N}$	$085-03-35.7 \mathrm{~W}$	353.6	78.6

Address: RR BOX 200 STATE ROUTE 90 (97275) City: Albany County: CLINTON State: KY Construction Deadline:

Antenna: 1								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	159.200	140.400	108.000	36.100	88.900	81.600	132.000	170.300
Transmitting ERP (watts)	61.485	218.225	164.915	26.293	2.922	0.471	0.954	4.500
Antenna: 2								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	159.200	140.400	108.000	36.100	88.900	81.600	132.000	170.300
Transmitting ERP (watts) Antenna: 3	1.000	4.591	60.220	229.906	159.544	23.590	2.912	0.466
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	159.200	140.400	108.000	36.100	88.900	81.600	132.000	170.300
Transmitting ERP (watts)	7.041	2.307	0.511	1.072	23.419	142.307	232.641	64.969

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.	
23			$36-44-36.2 \mathrm{~N}$	$085-08-34.1 \mathrm{~W}$	350.5

Address: 127 North Cross (Route 6 Box 991) (94257)
City: Albany County: CLINTON State: KY Construction Deadline:

Antenna: 1								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth (from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	181.800	142.800	72.800	100.300	157.000	167.400	157.200	193.400
Transmitting ERP (watts)	31.597	145.107	168.768	30.884	3.418	1.072	0.669	1.670
Antenna: 2		14.10	168.768					
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	181.800	142.800	72.800	100.300	157.000	167.400	157.200	193.400
Transmitting ERP (watts)	1.105	1.668	14.838	36.641	44.724	30.421	5.045	2.474
Antenna: 3								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	181.800	142.800	72.800	100.300	157.000	167.400	157.200	193.400
Transmitting ERP (watts)	40.424	4.384	1.518	0.529	1.123	24.617	125.244	176.237
Location Latitude Longitude		Ground Elevation (meters)			Structure Hgt to Tip (meters)		Antenna Structure Registration No.	
26 37-18-17.2 N 085-55	5-38.3 W						1200030	
Address: 824 I CHILDRESS ROAD (37618)								
City: Munfordville County: HART	State: KY C		Construction Deadline:					
Antenna: 1								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	137.000	120.900	185.100	176.500	166.200	156.000	134.000	170.100
Transmitting ERP (watts) Antenna: 2	87.882	116.157	30.423	3.076	0.288	0.394	1.136	15.107
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	137.000	120.900	185.100	176.500	166.200	156.000	134.000	170.100
Transmitting ERP (watts) Antenna: 3	0.236	4.016	34.037	111.204	87.767	11.936	0.954	0.231
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	137.000	120.900	185.100	176.500	166.200	156.000	134.000	170.100
Transmitting ERP (watts)	0.893	0.228	0.217	2.143	29.130	110.300	94.526	17.072

File Number: 0009619100
Print Date: 09-08-2021

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.	
27	$36-41-54.0 \mathrm{~N}$	$085-41-07.0 \mathrm{~W}$	286.5	90.2	1065560

Address: 403 MARTIN SUBDIVISION (87881)
City: TOMPKINSVILLE County: MONROE State: KY Construction Deadline:

Antenna: 1								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	69.700	75.300	146.800	80.100	75.200	103.200	86.800	75.200
Transmitting ERP (watts)	271.841	109.386	7.417	0.800	0.553	0.537	18.630	138.505
Antenna: 2	27.841	10.386				0.53	18.630	138.505
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	69.700	75.300	146.800	80.100	75.200	103.200	86.800	75.200
Transmitting ERP (watts)	1.721	17.109	89.000	121.386	26.164	2.348	0.328	0.400
Antenna: 3		17.10		12.386	26.16	2.348	0.328	0.400
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	69.700	75.300	146.800	80.100	75.200	103.200	86.800	75.200
Transmitting ERP (watts)	1.247	0.244	0.229	4.118	34.693	116.367	90.021	10.295
Location Latitude Longitude		Ground Elevation (meters)			Structure Hgt to Tip (meters)		Antenna Structure Registration No.	
28 37-21-17.2 N 085-5	2-24.7 W						1220496	
Address: 2830 Frenchman's Knob Road (94236)								
City: Bonnieville County: HART	State: K	Construction Deadline:						
Antenna: 1								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	193.700	191.000	195.200	238.600	217.000	184.800	226.800	216.700
Transmitting ERP (watts) Antenna: 2	184.924	99.849	11.423	0.450	0.602	0.510	8.026	87.512
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	193.700	191.000	195.200	238.600	217.000	184.800	226.800	216.700
Transmitting ERP (watts) Antenna: 3	2.115	37.767	246.087	328.098	100.148	5.709	0.676	0.788
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	193.700	191.000	195.200	238.600	217.000	184.800	226.800	216.700
Transmitting ERP (watts)	1.310	0.350	0.339	3.061	46.385	170.557	144.024	26.849

Location Latitude	Longitude	
32	$37-04-19.5 \mathrm{~N}$	$084-59-59.4 \mathrm{~W}$

Ground Elevation
(meters)
317.0

Structure Hgt to Tip (meters)	Antenna Structure Registration No.
78.0	1257488

Address: 227 Hom Rd (94247)
City: Russell Springs County: RUSSELL State: KY Construction Deadline:

Antenna: 1								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	149.200	77.200	79.700	105.800	146.300	99.500	80.900	89.500
Transmitting ERP (watts)	221.223	212.121	177.242	71.356	77.801	28.148	33.937	155.008
Antenna: 2								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	149.200	77.200	79.700	105.800	146.300	99.500	80.900	89.500
Transmitting ERP (watts)	18.208	41.435	173.839	236.936	272.788	110.954	36.898	14.156
Antenna: 3		41.435	17.839	23.936	27.788	10.954	36.898	14.156
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	149.200	77.200	79.700	105.800	146.300	99.500	80.900	89.500
Transmitting ERP (watts)	68.660	39.848	0.532	12.732	74.296	228.506	206.369	227.920

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
33	$36-50-28.6 \mathrm{~N}$	$086-02-47.1 \mathrm{~W}$	225.9	60.7

Address: Austin Tracy Rd (115120)
City: Lucas County: BARREN State: KY Construction Deadline:

tenna: 1								
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	91.800	79.300	63.800	43.400	95.100	66.500	80.300	112.900
Transmitting ERP (watts)	79.481	128.527	48.267	34.537	0.275	16.613	58.629	118.330
Antenna: 2								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	91.800	79.300	63.800	43.400	95.100	66.500	80.300	112.900
Transmitting ERP (watts)	16.424	105.957	212.448	227.867	141.232	41.336	29.497	11.208
Antenna: 3								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	91.800	79.300	63.800	43.400	95.100	66.500	80.300	112.900
Transmitting ERP (watts)	3.736	0.847	2.276	7.728	35.347	59.316	65.492	20.964
Antenna: 4 ERP								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	91.800	79.300	63.700	43.400	95.100	66.500	80.300	112.900
Transmitting ERP (watts)	80.215	129.717	48.867	34.856	0.278	16.767	59.174	119.427
Antenna: 5								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	91.800	79.300	63.700	43.400	95.100	66.500	80.300	112.900
Transmitting ERP (watts)	16.576	106.934	215.086	229.984	142.541	41.717	29.770	11.312

Address: 9096 W. Hwy 90 (94262)
City: Monticello County: WAYNE State: KY Construction Deadline:

Address: 6135 Hwy 1651 (115765)
City: Pine Knot County: MCCREARY State: KY Construction Deadline:

Antenna: 1								
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	132.500	143.700	119.600	95.500	88.700	114.200	161.300	166.800
Transmitting ERP (watts) Antenna: 2	69.450	261.545	232.470	44.008	2.017	0.559	0.530	4.304
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	132.500	143.700	119.600	95.500	88.700	114.200	161.300	166.800
Transmitting ERP (watts)	0.210	0.184	2.662	25.143	50.189	30.009	3.791	0.206

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.	
35	$36-39-45.3 \mathrm{~N}$	$084-26-36.2 \mathrm{~W}$	428.2	79.9	1275397

Address: 6135 Hwy 1651 (115765)
City: Pine Knot County: MCCREARY State: KY Construction Deadline:

Address: 165 HWY 90 (114139)
City: Parkers Lake County: MCCREARY State: KY Construction Deadline:

Antenna: 1									
Maximum Transmitting ERP in Watts: 140.820									
Azimuth(from true north)		0	45	90	135	180	225	270	315
Antenna Height AAT (meters)		185.500	163.600	170.800	152.900	106.200	178.000	165.700	183.000
Transmitting ERP (watts)		23.185	14.817	1.670	0.153	0.104	0.150	1.655	13.513
Antenna: 2									
Maximum Transmitting ERP in Watts: 140.820									
Azimuth(from true north)		0	45	90	135	180	225	270	315
Antenna Height AAT (meters)		185.500	163.600	170.800	152.900	106.200	178.000	165.700	183.000
Transmitting ERP (watts) Antenna: 3		2.683	26.605	140.903	189.301	44.170	3.813	0.542	0.629
Maximum Transmitting ERP in Watts: 140.820									
Azimuth(from true north)		0	45	90	135	180	225	270	315
Antenna Height AAT (meters)		185.500	163.600	170.800	152.900	106.200	178.000	165.700	183.000
Transmitting ERP (watts)		2.063	0.405	0.373	6.243	54.676	179.706	144.196	16.857
Location Latitude	Longitude		$\begin{array}{ll}\text { Ground Elevation } \\ \text { (meters) } & \mathbf{S} \\ \text { (}\end{array}$			Structure Hgt to Tip (meters)		Antenna Structure Registration No.	
$37 \quad 36-41-51.7 \mathrm{~N}$	085-07	7-19.1 W		.9				1273817	

Address: 399 Daylton Road (112920)
City: Albany County: CLINTON State: KY Construction Deadline:

Antenna: 1
Maximum Transmitting ERP in Watts: 140820
Azimuth (from true north)
Antenna Height AAT (meters)
Transmitting ERP (watts)
Antenna: 2
Maximum Transmitting ERP in Watts: 140.820
Azimuth(from true north)
Antenna Height AAT (meters)
Transmitting ERP (watts)

$\mathbf{0}$	$\mathbf{4 5}$	$\mathbf{9 0}$	$\mathbf{1 3 5}$	$\mathbf{1 8 0}$	$\mathbf{2 2 5}$	$\mathbf{2 7 0}$	$\mathbf{3 1 5}$
103.500	53.600	30.000	64.200	100.300	112.300	$\mathbf{9 4 . 4 0 0}$	$\mathbf{7 6 . 3 0 0}$
255.895	112.531	6.303	1.065	0.524	$\mathbf{0 . 8 8 6}$	$\mathbf{1 5 . 7 7 8}$	134.111
140.820							
$\mathbf{0}$	$\mathbf{4 5}$	$\mathbf{9 0}$	$\mathbf{1 3 5}$	$\mathbf{1 8 0}$	$\mathbf{2 2 5}$	$\mathbf{2 7 0}$	$\mathbf{3 1 5}$
103.500	53.600	30.000	64.200	100.300	112.300	$\mathbf{9 4 . 4 0 0}$	76.300
1.151	13.278	68.092	80.326	20.259	1.984	0.205	0.284

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
37	$36-41-51.7 \mathrm{~N}$	$085-07-19.1 \mathrm{~W}$	303.9	78.0

Address: 399 Daylton Road (112920)
City: Albany County: CLINTON State: KY Construction Deadline:

Address: 3151 EDMONTON ROAD (94259)
City: TOMPKINSVILLE County: MONROE State: KY Construction Deadline:

Antenna: 1										
Maximum Transmitting ERP in Watts:			140.820							
			0	45	90	135	180	225	270	315
Antenna H	leight AAT (meters)		111.100	109.700	147.100	108.800	126.000	145.900	125.000	125.900
Transmitt	ing ERP (watts)		189.524	72.806	7.444	1.950	0.393	0.557	9.583	77.626
Antenna:										
Maximum Transmitting ERP in Watts: 140.820										
Azimuth(from true north) Antenna Height AAT (meters)			0	45	90	135	180	225	270	315
			111.100	109.700	147.100	108.800	126.000	145.900	125.000	125.900
Transmitting ERP (watts)			1.067	23.007	114.837	166.790	36.523	3.864	1.339	0.493
Antenna:					14.837	,	36.523			
Maximum Transmitting ERP in Watts:			140.820							
Azimuth(from true north) Antenna Height AAT (meters)			0	45	90	135	180	225	270	315
			111.100	109.700	147.100	108.800	126.000	145.900	125.000	125.900
Transmitting ERP (watts)			2.199	0.335	0.702	3.359	45.136	159.373	117.688	16.866
Location	Latitude	Longitude		Ground Elevation (meters)			Structure Hgt to Tip (meters)		Antenna Structure Registration No.	
39	36-38-51.6 N	085-17	7-33.1 W							

Address: 5163 State Park (117828)
City: Cumberland County: CUMBERLAND State: KY Construction Deadline:

Antenna: 1								
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	$\mathbf{4 5}$	$\mathbf{9 0}$	$\mathbf{1 3 5}$	$\mathbf{1 8 0}$	$\mathbf{2 2 5}$	$\mathbf{2 7 0}$	$\mathbf{3 1 5}$
Antenna Height AAT (meters)	100.500	86.500	93.600	115.600	123.000	167.100	133.100	121.800
Transmitting ERP (watts)	24.683	224.514	184.090	16.413	0.520	0.462	0.466	0.469
Antenna $\boldsymbol{2}$								
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	$\mathbf{0}$	$\mathbf{4 5}$	$\mathbf{9 0}$	$\mathbf{1 3 5}$	$\mathbf{1 8 0}$	$\mathbf{2 2 5}$	$\mathbf{2 7 0}$	$\mathbf{3 1 5}$
Antenna Height AAT (meters)	100.500	86.500	93.600	115.600	123.000	167.100	133.100	121.800
Transmitting ERP (watts)	46.321	0.611	0.527	0.529	0.541	7.711	140.237	265.546

Call Sign: KNKN666
File Number: 0009619100
Print Date: 09-08-2021

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
40	$37-11-42.5 \mathrm{~N}$	$085-57-13.0 \mathrm{~W}$	267.6	99.1

Address: 1515 FISHER RIDGE ROAD (37620)
City: Horse Cave County: HART State: KY Construction Deadline:

Antenna: 1									
Maximum Transmitting ERP in Watts: 140.820									
Azimuth(from true north)		0	45	90	135	180	225	270	315
Antenna Height AAT (meters)		148.700	170.000	148.400	148.400	138.900	116.100	137.500	147.400
Transmitting ERP (watts)		96.574	101.465	19.855	1.861	0.214	0.322	2.056	21.126
Antenna: 2			.						
Maximum Transmitting ERP in Watts:		140.820							
Azimuth(from true north) Antenna Height AAT (meters)		0	45	90	135	180	225	137.500	147.400
		148.700	170.000	148.400	148.400	188.900	116.100		
Transmitting ERP (watts)		8.514	101.153	307.468	229.726	25.253	1.925	0.630	0.630
Antenna: 3 (${ }^{\text {a }}$									
Maximum Transmitting ERP in Watts:		140.820		90	135				
Azimuth(from true north) Antenna Height AAT (meters)		${ }_{148}^{0} 700$	45			$\begin{aligned} & 180 \\ & 138.900 \\ & 109.116 \end{aligned}$	$\begin{aligned} & 225 \\ & 116.100 \\ & 83.424 \end{aligned}$	$\begin{aligned} & 270 \\ & 137.500 \\ & 11.320 \end{aligned}$	$\begin{aligned} & 315 \\ & 147.400 \\ & 0.928 \end{aligned}$
			170.000	148.400	148.400				
Transmitting ERP (watts)		0.226	0.222	3.795	33.295				
Location Latitude	Longitude		Ground Elevation (meters)			Structure Hgt to Tip (meters)		Antenna Structure Registration No.	
$41 \quad 37-01-03.9 \mathrm{~N}$	085-5	4-42.3 W	254.8		68.6			1230168	

Address: 170 Robert Bishop Lane (94244) City: Glasgow County: BARREN State: KY Construction Deadline:

Control Points:

Control Pt. No. 1
Address: 124 South Keeneland Drive (Suite 103)
City: RICHMOND County: MADISON State: KY Telephone Number: (859)544-4804

Licensee Name: NEW CINGULAR WIRELESS PCS, LLC

Call Sign: KNKN666

File Number: 0009619100
Print Date: 09-08-2021

Waivers/Conditions:
NONE

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Call Sign KNLF251	File Number
Radio Service CW - PCS Broadband	

FCC Registration Number (FRN): 0003291192

Grant Date $06-02-2015$	Effective Date 12-07-2020	Expiration Date $06-23-2025$	Print Date
Market Number MTA026			Sub-Market Designator 15
Market Name Louisville-Lexington-Evansvill			
1st Build-out Date 06-23-2000	2nd Build-out Date 06-23-2005	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

This authorization is subject to the condition that the remaining balance of the winning bid amount will be paid in accordance with Part 1 of the Commission's rules, 47 C.F.R. Part 1.

Conditions:

Pursuant to $\S 309(\mathrm{~h})$ of the Communications Act of 1934 , as amended, 47 U.S.C. $\S 309$ (h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. $\S 310(\mathrm{~d})$. This license is subject in terms to the right of use or control conferred by $\$ 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

File Number:

Print Date:

This license is conditioned upon compliance with the provisions of Applications of AT\&T Wireless Services, Inc. and Cingular Wireless Corporation For Consent to Transfer Control of Licenses and Authorizations, Memorandum Opinion and Order, FCC 04-255 (rel. Oct. 26, 2004).

Spectrum Lease Associated with this License. See Spectrum Leasing Arrangement Letter dated 12/06/2004 and File \# 0001918512.

Commission approval of this application and the licenses contained therein are subject to the conditions set forth in the Memorandum Opinion and Order, adopted on December 29, 2006 and released on March 26, 2007, and revised in the Order on Reconsideration, adopted and released on March 26, 2007. See AT\&T Inc. and BellSouth Corporation Application for Transfer of Control, WC Docket No. 06-74, Memorandum Opinion and Order, FCC 06-189 (rel. Mar. 26, 2007); AT\&T Inc. and BellSouth Corporation, WC Docket No. 06-74, Order on Reconsideration, FCC 07-44 (rel. Mar. 26, 2007).

Call Sign: KNLF251

File Number:

700 MHz Relicensed Area Information:

Market Market Name Buildout Deadline Buildout Notification Status

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau
RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: CECIL J MATHEW
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 1015
DALLAS, TX 75202

Call Sign WPOI255	File Number
Radio Service	
CW - PCS Broadband	

FCC Registration Number (FRN): 0003291192

Grant Date 05-27-2015	Effective Date $03-12-2020$	Expiration Date 06-23-2025	Print Date
Market Number MTA026			Sub-Market Designator 19
Market Name Louisville-Lexington-Evansvill			
$\begin{aligned} & \text { 1st Build-out Date } \\ & 06-23-2000 \end{aligned}$	2nd Build-out Date $06-23-2005$	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

This authorization is subject to the condition that the remaining balance of the winning bid amount will be paid in accordance with Part 1 of the Commission's rules, 47 C.F.R. Part 1.

Conditions:

Pursuant to $\S 309(\mathrm{~h})$ of the Communications Act of 1934 , as amended, 47 U.S.C. $\S 309(\mathrm{~h})$, this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934 , as amended. See 47 U.S.C. $\S 310(\mathrm{~d})$. This license is subject in terms to the right of use or control conferred by $\S 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. $\S 606$.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

This license is conditioned upon compliance with the provisions of Applications of AT\&T Wireless Services, Inc. and Cingular Wireless Corporation For Consent to Transfer Control of Licenses and Authorizations, Memorandum Opinion and Order, FCC 04-255 (rel. Oct. 26, 2004).

Spectrum Lease Associated with this License. See Spectrum Leasing Arrangement Letter dated 12/06/2004 and File \# 0001918558.

The Spectrum Leasing Arrangement, which became effective upon approval of application file number 0001918558 , was terminated on 04/14/2005. See file number 0002135370.

Commission approval of this application and the licenses contained therein are subject to the conditions set forth in the Memorandum Opinion and Order, adopted on December 29, 2006 and released on March 26, 2007, and revised in the Order on Reconsideration, adopted and released on March 26, 2007. See AT\&T Inc. and BellSouth Corporation Application for Transfer of Control, WC Docket No. 06-74, Memorandum Opinion and Order, FCC 06-189 (rel. Mar. 26, 2007); AT\&T Inc. and BellSouth Corporation, WC Docket No. 06-74, Order on Reconsideration, FCC 07-44 (rel. Mar. 26, 2007).

File Number:

700 MHz Relicensed Area Information:
Market Market Name Buildout Deadline Buildout Notification Status

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: CECIL J MATHEW
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 1015
DALLAS, TX 75202

Call Sign WPOK659	File Number 0008716070
Radio Service	
CW - PCS Broadband	

FCC Registration Number (FRN): 0003291192

Grant Date $09-12-2019$	Effective Date 09-12-2019	Expiration Date 09-29-2029	Print Date 09-13-2019
Market Number BTA423	Channel Block C		Sub-Market Designator 1
Market Name Somerset, KY			
$\begin{gathered} \text { 1st Build-out Date } \\ 09-29-2004 \end{gathered}$	$\begin{gathered} \text { 2nd Build-out Date } \\ 09-29-2009 \end{gathered}$	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

Conditions:

Pursuant to $\S 309$ (h) of the Communications Act of 1934, as amended, 47 U.S.C. $\S 309$ (h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934 , as amended. See 47 U.S.C. $\S 310$ (d). This license is subject in terms to the right of use or control conferred by $\S 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. $\S 606$.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Market

Market Name

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission
Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: CECIL J MATHEW
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 1015
DALLAS, TX 75202

Call Sign WPXT205	File Number
Radio Service	
CW - PCS Broadband	

FCC Registration Number (FRN): 0003291192

Grant Date $06-02-2015$	$\begin{gathered} \text { Effective Date } \\ 08-31-2018 \end{gathered}$	Expiration Date 06-23-2025	Print Date
Market Number MTA026			Sub-Market Designator 8
Market Name Louisville-Lexington-Evansvill			
1 st Build-out Date 06-23-2000	2nd Build-out Date 06-23-2005	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

This authorization is subject to the condition that the remaining balance of the winning bid amount will be paid in accordance with Part 1 of the Commission's rules, 47 C.F.R. Part 1.

Conditions:

Pursuant to $\S 309(\mathrm{~h})$ of the Communications Act of 1934 , as amended, 47 U.S.C. $\S 309$ (h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934 , as amended. See 47 U.S.C. $\S 310(\mathrm{~d})$. This license is subject in terms to the right of use or control conferred by $\S 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. $\$ 606$.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

File Number:

Print Date:

Commission approval of this application and the licenses contained therein are subject to the conditions set forth in the Memorandum Opinion and Order, adopted on December 29, 2006 and released on March 26, 2007, and revised in the Order on Reconsideration, adopted and released on March 26, 2007. See AT\&T Inc. and BellSouth Corporation Application for Transfer of Control, WC Docket No. 06-74, Memorandum Opinion and Order, FCC 06-189 (rel. Mar. 26, 2007); AT\&T Inc. and BellSouth Corporation, WC Docket No. 06-74, Order on Reconsideration, FCC 07-44 (rel. Mar. 26, 2007).

File Number:

700 MHz Relicensed Area Information:

Market

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission
Wireless Telecommunications Bureau
RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: LESLIE WILSON
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 1016
DALLAS, TX 75202

Call Sign WQFA872	File Number
Radio Service	
CW - PCS Broadband	

FCC Registration Number (FRN): 0003291192

Grant Date $04-14-2017$	Effective Date 08-31-2018	Expiration Date 04-28-2027	Print Date
Market Number BTA423	Channel Block E		Sub-Market Designator 7
Market Name Somerset, KY			
1st Build-out Date	2nd Build-out Date	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

This authorization is subject to the condition that the remaining balance of the winning bid amount will be paid in accordance with Part 1 of the Commission's rules, 47 C.F.R. Part 1.

Conditions:

Pursuant to $\S 309(\mathrm{~h})$ of the Communications Act of 1934, as amended, 47 U.S.C. $\S 309(\mathrm{~h})$, this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934 , as amended. See 47 U.S.C. $\S 310(\mathrm{~d})$. This license is subject in terms to the right of use or control conferred by $\S 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

File Number:

700 MHz Relicensed Area Information:

Market Market Name

Buildout Deadline
Buildout Notification
Status

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission
 Wireless Telecommunications Bureau RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: FCC GROUP
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 2100
DALLAS, TX 75202

Call Sign WQGA818	File Number 0009696747
Radio Service	
AW - AWS (1710-1755 MHz and	
$2110-2155 \mathrm{MHz})$	

FCC Registration Number (FRN): 0003291192

Grant Date $11-16-2021$	Effective Date $11-16-2021$	Expiration Date 11-29-2036	Print Date 11-17-2021
Market Number CMA447			Sub-Market Designator 0
Market Name Kentucky 5 - Barren			
1st Build-out Date	2nd Build-out Date	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

This authorization is conditioned upon the licensee, prior to initiating operations from any base or fixed station, making reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the $1710-1755 \mathrm{MHz}$ band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the 1710-1755 MHz Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.

Abstract

Conditions: Pursuant to $\S 309(\mathrm{~h})$ of the Communications Act of 1934, as amended, 47 U.S.C. $\S 309(\mathrm{~h})$, this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934 , as amended. See 47 U.S.C. $\S 310$ (d). This license is subject in terms to the right of use or control conferred by $\S 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. $\$ 606$.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission
Wireless Telecommunications Bureau
RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: FCC GROUP
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 2100
DALLAS, TX 75202

Call Sign WQGA824	File Number 0009696759
Radio Service	
AW - AWS (1710-1755 MHz and	
$2110-2155 \mathrm{MHz})$	

FCC Registration Number (FRN): 0003291192

Grant Date $11-16-2021$	Effective Date 11-16-2021	Expiration Date 11-29-2036	Print Date 11-17-2021
Market Number CMA453			Sub-Market Designator 0
Market Name Kentucky 11 - Clay			
1st Build-out Date	2nd Build-out Date	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

This authorization is conditioned upon the licensee, prior to initiating operations from any base or fixed station, making reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the $1710-1755 \mathrm{MHz}$ band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the $1710-1755 \mathrm{MHz}$ Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.

Conditions:

Pursuant to $\$ 309(\mathrm{~h})$ of the Communications Act of 1934 , as amended, 47 U.S.C. $\S 309(\mathrm{~h})$, this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934 , as amended. See 47 U.S.C. $\S 310$ (d). This license is subject in terms to the right of use or control conferred by $\S 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. $\S 606$.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: FCC GROUP
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 2100
DALLAS, TX 75202

Call Sign WQGD755	File Number 0009778271
Radio Service	
AW - AWS (1710-1755 MHz and	
$2110-2155 \mathrm{MHz})$	

FCC Registration Number (FRN): 0003291192

Grant Date $01-10-2022$	Effective Date $01-10-2022$	Expiration Date $12-18-2036$	Print Date $01-11-2022$
Market Number			
BEA047	Channel Block	Sub-Market Designator 9	

Market Name
 Lexington, KY-TN-VA-WV

1st Build-out Date	2nd Build-out Date	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

This authorization is conditioned upon the licensee, prior to initiating operations from any base or fixed station, making reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the $1710-1755 \mathrm{MHz}$ band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the $1710-1755 \mathrm{MHz}$ Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.

Special Condition for AU/name change ($6 / 4 / 2016$): Grant of the request to update licensee name is conditioned on it not reflecting an assignment or transfer of control (see Rule 1.948); if an assignment or transfer occurred without proper notification or FCC approval, the grant is void and the station is licensed under the prior name.

Conditions:

Pursuant to $\S 309$ (h) of the Communications Act of 1934, as amended, 47 U.S.C. $\S 309(\mathrm{~h})$, this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. $\S 310(\mathrm{~d})$. This license is subject in terms to the right of use or control conferred by $\S 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

700 MHz Relicensed Area Information:

Market Market Name Buildout Deadline \quad Buildout Notification \quad Status

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC
ATTN: FCC GROUP
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST. RM 2100
DALLAS, TX 75202

Call Sign	File Number
WQUZ670	0009696437

Radio Service

AW - AWS (1710-1755 MHz and $2110-2155 \mathrm{MHz})$

FCC Registration Number (FRN): 0003291192

Grant Date	Effective Date	Expiration Date	Print Date
$11-16-2021$	$11-16-2021$	$11-29-2036$	$11-17-2021$

Market Number	Channel Block	Sub-Market Designator
REA004	D	10

Market Name Mississippi Valley			
1st Build-out Date	2nd Build-out Date	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

This authorization is conditioned upon the licensee, prior to initiating operations from any base or fixed station, making reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the $1710-1755 \mathrm{MHz}$ band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the 1710-1755 MHz Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.

Conditions:

Pursuant to $\S 309(\mathrm{~h})$ of the Communications Act of 1934 , as amended, 47 U.S.C. $\S 309(\mathrm{~h})$, this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. $\S 310$ (d). This license is subject in terms to the right of use or control conferred by $\S 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Licensee Name: NEW CINGULAR WIRELESS PCS, LLC

The license is subject to compliance with the provisions of the January 12, 2001 Agreement between Deutsche Telekom AG, VoiceStream Wireless Corporation, VoiceStream Wireless Holding Corporation and the Department of Justice (DOJ) and the Federal Bureau of Investigation (FBI), which addresses national security, law enforcement, and public safety issues of the FBI and the DOJ regarding the authority granted by this license. Nothing in the Agreement is intended to limit any obligation imposed by Federal lawor regulation including, but not limited to, 47 U.S.C. Section 222(a) and (c)(1) and the FCC's implementing regulations. The Agreement is published at VoiceStream-DT Order, IB Docket No. 00-187, FCC 01-142, 16 FCC Rcd 9779, 9853 (2001).

700 MHz Relicensed Area Information:
Market Market Name Buildout Deadline Buildout Notification Status

EXHIBIT B

SITE DEVELOPMENT PLAN:

500' VICINITY MAP
LEGAL DESCRIPTIONS
FLOOD PLAIN CERTIFICATION SITE PLAN
VERTICAL TOWER PROFILE

FA NUMBER:15435106/10134060 SITE ID: KYLEX2061

$$
\text { PACE \#: MRTNK } 052247
$$

PROJECT TRACKING \#: 2457A0XDBG SITE NAME: PARKERS LAKE

DRAWING INDEX	
SHEET \#	SHEET DESCRIPTION
T-1	TITLE SHEET
1-3	SuRVEY
c-1.0	500' RAOIUS \& ADUOINER'S DRAWNG
C-1.1	OVERaLL ADJOINER'S DRAWING
C-2	overall site layout
C-3	ENLARGED COMPOUND LAYOUT
C-4	tower elevation
	CALL KENTUCKY ONE CALL (800) 752-6007 CALL 3 WORKING DAYS BEFORE YOU DIG!

PROPERTY ADDRESS: 911 ADDRESS:
PARKERS LAKE, KY 42634 PARKERS LAKE, KY 42634
MCCREARY COUNTY MCCREARY COUNTY
PROPOSED 255' SELF-SUPPORT TOWER
ZONING DRAWINGS

PROJECT DESCRIPTION	DO NOT SCALE DRAWINGS
The Proposeb prouect macluoes: - CONSTRUCT (1) NEW $255^{\text {' SELF-SUPPoRT TowER }}$ - ToNER COUC FENCED GRavel uTuri compouno wit LOCKING GCCESS CAAEE, $60^{\circ} \times 60^{\circ}$ WTHMN $10^{\circ} \times 100$ - LaSE AREA H-FRME W/ UTUUT EOUPMENT. 	

DRIVING DIRECTIONS

HARMONI

HARMON

TITLE SHEET
$\stackrel{\text { Sheet number: }}{\square}$

LEGAL DESCRIPTION SHEET

PARENT PARCEL

PER COMMITMEN NO 34093552
AN INTEREST IN LAND, SADI INTEREST BEING OVER A PORTION OF THE FOLLOWNG DESCRIBED
A CERTAN TRACT OF LAND LYNG AND BEING LOCATED AT PARKERS LAKE IN MCCREARY COUNTY,
A CERTANTIRACT OF LAND LYNG AND BENG
KENUCKY, ANO DESCRBED AS FOLLOWS:
BEGINNING AT A LARGE PNE ON A RIDGE WEL MARKED A CORNER COMMON TO A CUMBERL AND NATIONAL FOREST UNIT; THENCE THER LINE S 27 E 40 POLES TO A HICKORY STAND MARKED IN THEIR LINE A CORNER TO A ELLA WA KER TRACT OF LAND; THENCE LEAVNG THE SAD FOREST PARCEL AND WTH THE WALKER PARCEL REVERSING N 70 DEG. 30 MIN. E 36 POLES TO A SET
STONE ANO SMALL PINE ON A SLATE DUMP HER CORNER LOCATED IN THE RALROAD RIGHT OF WAY: THENCE THER LINES 26 DEG. W 44 POLES TO A BLACK OAK MARKED AT TURN OF THER FENCE; THENCE THER LINE N 36 DEG. E 18 POLES CROSSING THE DRAN BELOW THE OLD DAM TO A SE
STONE WTNESS BY A SMLL POP AR AND MAPIE THER CORNER NEAR THE RAL ROAD: THENCE

 THE SAD FOREST LINE S 20 DEG. W
218/10TH ACRES MORE ORLESS.
AND BEING THE SAME PROPERTY CONEYED TO RICHARD E. CORDER AND SHERML F. CORDER FROM AND BEING THE SAME PROPERTY CONEYED TO RICHARD E. CORDER AND SHERYL F. CORDER FGO
BRUCE WATTERS BY GENERAL WARRANTY DEED DATED NOVEMBER 26, 2014 AND RECORDED DECEMBER 2,2014 IN DEED BOOK D205, PAGE 106.
TAX PARCEL NO. 09900000019.00

LEASE AREA

ALL THAT TRACT OR PARCEL OF LAND LYNG AND BEING IN PARKERS LAKE, MCCREARY COUNTY KENTUCKY, ANO BEING A PORTION OF THE LANDS OF RCHARD E. CORDER AND SHERV F. CORDER,
AS RECORDED IN DEED BOOK 205, PAGE 106, MCCREARY COUNTY RECORDS, AND BEING MORE AS RECORDED $\operatorname{IN~DEED~BOOK~205,~PAGE~}$
PARTCUARLY DESCRIBED AS FOLIOWS:
TO FIND THE POINT OF BEGINNING, COMMENCE AT A CAPPED आNCH PPPE FOUND, STAMPED 24.1320. A A THE WESTERIY PROPERTY CORNER OF SAD CORDER LANDS. SAD PONT HAVNG KENTUCKY GRID NORTH, NAD 83, SIIGLE ZONE VALUE OF N:3467724.0851 E:5291294.2045;
THENCE RUNNING ALONG A TEUINE, SOUTH $33^{3} 3653$ E EAST. 128.72 FEET TO APOINT HAVNG A

 WETT, 10.00 fEET TA A PONT; THENCE, NORTH $21^{\circ} 071^{\prime}$ WEST, 100.00 FEET TO A POIN AND
THE POINT OF EEGINNN.

BEARINGS BASED ON KENTUCKY GRID NORTH, NAD 83, SINGLE ZONE.
SAD TRACT CONTANS 0.2296 ACRES (10,000 SQUARE FEET), MORE OR LESS.

30' INGRESS-EGRESS \& UTILITY EASEMENT

TOGETHER WTH A 3OFOOT WDE INGRESSEGRESS AND UTUUTV EASEMENT LING AND BEING IN PARKERS LAKE, MCCREARY COUNTY, KENTUCKY, MEASURING 15 FEET EACH SIDE OF
CENTERINE THE SIDE LNES OF WHICH ARE TO BE IENGTHENED AND SHORTENED TO
 OF THE LANDS OF RICHARD E. CORDER AND SHERM F. CORDER, AS RECORDED IN DEED BOOK 205, PAGE 106, MCCREARY COUNTY RECORDS, AND BEING MORE PARTICULARLY DESCRIBED BY
THE FOLOWNG CENTERIME DATA:

TO FIND THE POINT OF BEGINNING, COMMENCE, AT A CAPPED आNCH PIPE FOUND, STAMPED 241320": AT THE WESTERY PROPERTY CORNER OF SADD CORDER LANDS, SAD POINT HAYNG
 LEASE AREA AAYNG AKENTUCKY GRID NORTH, NAD 83, SNGGLE ZONE VAUUE O TO A POINT: THENCE LEAVNG THE I TAENCE RUNNING, NORTH $68^{\circ} 52229$ EAST, 100.00 FEET

 108.34 FEET TO A PONT; THENCE, SOUTH $64^{4} 2718^{\text {E }}$ EAST, 102.44 EEET TO APOINT; THENCE

BEARINGS BASED ON KENTUCKY GRID NORTH, NAD 83, SINGIE ZONE.

SPEGIFC PURPOSE SURVEY PREPARED FOR

HARMONI 10801 EXECUTME CENTER DPNE SHANON BDDG. STE 100
UTIEE ROCK AR 72211SITE NO. KYLEX2061,
MPCRFRERS LKEE,
MCOUNT,

DPaun Br: GH	StEET:
Checked br: Ji	
APPROVED: D. MLEER	
DATE: MARCH 25,2021	
P2P fob \#: 210275 sk	Of 3

EXHIBIT C TOWER AND FOUNDATION DESIGN

January 21, 2022

Kentucky Public Service Commission
211 Sower Blvd.
P.O. Box 615

Frankfort, KY 40602-0615

RE: Site Name - Parkers Lake Relo/Parkers Lake
Proposed Cell Tower
36.839322 North Latitude, 84.485103 West Longitude

Dear Commissioners:

The Construction Manager for the proposed new communications facility will be Marshall Corbin. His contact information is (540) 287-8142 or Marshall Corbin@harmonitowers.com. Marshall has been in the industry completing civil construction and constructing towers since 1996. He has worked at Harmoni Towers LLC since 2021 completing project and construction management on new site build projects.

Thank you,
Marshall Corbin
Marshall Corbin
Construction Manager - Tennessee/Kentucky Market
Harmoni Towers LLC

Feed Line Plan

\qquad
\qquad Flat \qquad

SST Unit Base Foundation

Project \#: 161350.001 .01
Site Name: Parkers Lake
Site \#: 9424
TIA-222 Revision: $\quad \mathrm{H}$

Top \& Bot. Pad Rein. Different?:	\square	
Tower Centroid Offset?:	\square	
Block Foundation?:	\square	
Rectangular Pad?:	\square	

Superstructure Analysis Reactions			
Global Moment, M:	10739	ft-kips	
Global Axial, P:	81	kips	
Global Shear, V:	68	kips	
Leg Compression, $\mathbf{P}_{\text {comp }}$	543	kips	
Leg Comp. Shear, $\mathbf{V}_{\text {u comp }}$	40	kips	
Leg Uplift, $\mathbf{P}_{\text {upin }}$	474	kips	
Leg Uplift. Shear, $\mathbf{V}_{\text {u upin }}$	37	kips	
Tower Height, H:	255	ft	
Base Face Width, BW:	24	ft	
BP Dist. Above Fdn, bposut	3	in	

Pier Properties			
Pier Shape:	Circular		
Pier Diameter, dpier:	3.5	ft	
Ext. Above Grade, E:	0.50	ft	
Pier Rebar Size, Sc:	8		
Pier Rebar Quantity, mc:	13		
Pier Tie/Spiral Size, St:	4		
Pier Tie/Spiral Quantity, mt:	9		
Pier Reinforcement Type:	Tie		
Pier Clear Cover, cc pier:	3	in	

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	2228.81	68.00	2.9\%	Pass
Bearing Pressure (ksf)	10.62	7.35	69.2\%	Pass
Overturning (kip**t)	11815.19	11469.19	97.1\%	Pass
Pier Flexure (Comp.) (kip ${ }^{\text {cif) }}$	1288.37	180.00	13.3\%	Pass
Pier Flexure (Tension) (kip*tt)	202.09	166.50	78.5\%	Pass
Pier Compression (kip)	6123.66	550.79	8.6\%	Pass
Pad Flexure (kip"fl)	3178.80	3144.64	94.2\%	Pass
Pad Shear - 1-way (kips)	710.37	706.44	94.7\%	Pass
Pad Shear - Comp 2-way (ksi)	0.190	0.150	75.1\%	Pass
Flexural 2-way (Comp) (kip*ti)	1585.38	108.00	6.5\%	Pass
Pad Shear - Tension 2-way (ksi)	0.190	0.154	77.1\%	Pass
Flexural 2-way (Tension) (kip*ti)	1585.38	99.90	6.0\%	Pass
		*Rating per TIA-222-H Section 155		
		Structural Rating*:		94.7\%
		Soil Rating*:		97.1\%

Pad Properties		
Depth, D:	6.00	ft
Pad Width, W	32.00	ft
Pad Thickness. T:	2.00	ft
Pad Rebar Size (Bottom dir. 2), Sp	8	
Pad Rebar Quantity (Bottom dir. 2), mp	mp $_{2}$	48
Pad Clear Cover, $\mathbf{c c}_{p a d}:$	3	in

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	4	ksi
Dry Concrete Density, $\mathbf{~} \mathrm{c}:$	150	pcf

Soil Properties		
Total Soill Unit Weight, y	110	pof
Ulitimate Net Bearing. Qnet:	13.500	ksf
Cohesion, Cu :	2.500	ksf
Friction Angle, ϕ :		degrees
SPT Blow Count, $\mathrm{N}_{\text {bieas }}$:		
Base Friction, $\boldsymbol{\mu}$:		
Neglected Depth, \mathbf{N} :	3.0	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw.	N/A	ft

Drilled Pier Foundation

| \qquad BU \#: | 161350.001 .01 |
| ---: | :--- | :--- |
| Site Name: | Parkers Lake |
| Order Number: | 9424 |
| TIA-222 Revison: | H |
| Tower Type: | Self Support |
| | |

Applied Loads		
Comp.		
Moment (kip-ft)	Uplift	
Axial Force (kips)	543	474
Shear Force (kips)	40	37

Material Properties		
Concrete Strength, fc	4	ksi
Rebar Strength. Fy	60	ksi
Tie Yield Strength, Fyt	40	ksi

Analysis Results		
Soil Lateral Check	Compression	Uplift
$\mathrm{D}_{\text {ro }}$ (ft from TOC)	11.32	11.32
Soll Safety Factor	19.27	20.84
Max Moment (kip-ft)	317.34	293.54
Rating	6.9\%	6.4\%
Soil Vertical Check	Compression	Uplift
Skin Friction (kips)	457.10	457.10
End Bearing (kips)	482.21	.
Weight of Concrete (kips)	81.29	60.97
Total Capacity (kips)	939.31	518.07
Axial (kips)	624.29	474.00
Rating	66.5\%	91.5\%
Reinforced Concrete Flexure	Compression	Uplift
Critical Depth (ft from TOC)	11.63	9.63
Critical Moment (kip-ft)	316.94	282.56
Critical Moment Capacity	2398.13	975.81
Rating	13.2\%	29.0\%
Reinforced Concrete Shear	Compression	Uplift
Critical Depth (ft from TOC)	17.54	17.54
Critical Shear (kip)	51.65	47.77
Critical Shear Capacity	504.32	250.32
Rating	10.2\%	19.1\%

Check Limitation	
Apply TIA-222-H Section 15.5:	
N/A	
Additional Longitudinal Rebar	
Input Effective Depths (else Actual):	
Shear Design Options	
Check Shear along Depth of Pier:	[]
Utilize Shear-Friction Methodology:	
Override Critical Depth:	

Bethe kh her Optiens
tonbedded Pole laput
Bedled her laputs

Structural Foundation Rating	29.0%
Soil Interaction Rating	91.5%

Soil Profite														
Groundwater Depth		N/A	II of Layers				5							
Layer	Top (ft)	Bottom (ft)	Thickness (ft)	$\begin{aligned} & Y_{\text {off }} \\ & (\mathrm{pcf}) \end{aligned}$	Yonerres (pct)	Cohesion (ksf)	Angle of Friction (degrees)	Calculated Ultimate Skin Friction Comp (ksf)	Calculated Ultimate Skin Friction Uplift (ksf)	Ultimate Skin Friction Comp Override (ksf)	Ultimate Skin Friction Uplift Override (ksf)	Ult. Net Bearing Capacity (ksf)	SPT Blow Count	Soil Type
1	0	3	3	115	150	0	0	0.000	0.000	0.00	0.00			Cohesionless
2	3	9	6	115	150	2		1.100	1.100	1.30	1.30			Cohesive
3	9	13.5	4.5	120	150	4		2.045	2.045	2.00	2.00			Cohesive
4	13.5	22	8.5	130	150	4.		2.045	2.045	2.00	2.00			Cohesive
5	22	22.5	0.5	130	150	10		4.500	4.500	10.00	10.00	30		Cohesive

tnxTower	Job ATS\#9424-Parkers Lake (Site\# KYLEX2061)		$\begin{array}{ll} \hline \text { Page } \\ & \\ & \\ \end{array}$
$B+T$ Group 1717 S Boulder dve. Suite 300	Project	$255{ }^{\prime}$ SST/36.839322, -84.485103	$\begin{array}{\|l\|} \hline \text { Date } \\ \hline 16: 11: 55 \quad 02 / 22 / 22 \end{array}$
Tulsa. OK 74119 Phone (918) 587-4630 FAX: (918) 295-0265	Client	Harmoni Towers	Designed by mwilliams

Tower Input Data

The main tower is a 3 x free standing tower with an overall height of 255.000 ft above the ground line.
The base of the tower is set at an elevation of 0.000 ft above the ground line.
The face width of the tower is 4.875 ft at the top and 24.000 ft at the base.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower is located in McCreary County, Kentucky.
Tower base elevation above sea level: 1385.000 ft .
Basic wind speed of 105 mph .
Risk Category II.
Exposure Category C.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.000 ft .
Nominal ice thickness of 1.500 in .
Ice thickness is considered to increase with height.
Ice density of 56.000 pcf .
A wind speed of 30 mph is used in combination with ice.
Temperature drop of $50.000{ }^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
Please see feedline plan for proper feedline placement. Deviation from plan may reduce tower capacity..
A non-linear (P -delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in tower member design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs

Considet Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
, Use Code Stress Ratios
\checkmark Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
\checkmark Include Bolts In Member Capacity
\checkmark Leg Bolts Are At Top Of Section
\checkmark Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned
, Assume Rigid Index Plate
, Use Clear Spans For Wind Area
, Use Clear Spans For KL/r Retension Guys To Initial Tension
\checkmark Bypass Mast Stability Checks
\checkmark Use Azimuth Dish Coefficients
\checkmark Project Wind Area of Appurt Autocalc Torque Arm Areas Add IBC 6D + W Combination
\checkmark Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed tine Bundles As Cylinder Ignore KL/ry For 60 Deg Angle Legs

Use ASCE 10 X-Brace Ly Rules
\checkmark Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
\checkmark SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
\checkmark Consider Feed Line Torque
\checkmark Include Angle Block Shear Check
Use T1A-222-H Bracing Resist Exemption
Use TIA-222-H Tension Splice Exemption Poles
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Comer Radin Are
Known

tnxTower	Job ATS\#9424 - Parkers Lake (Site\# KYLEX2061)		$\text { Page } \quad 2 \text { of } 34$
B+T Group 1717 S Boulder Ave. Suite 300	Project	255' SST/36.839322, -84.485103	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:11:55 02/22/22 } \end{array}$
$\begin{gathered} \text { Tulsa. OK } 74119 \\ \text { Phone (918) 587-4630 } \\ \text { FAX (9/8) 295-0265 } \\ \hline \end{gathered}$	Client	Harmoni Towers	Designed by mwilliams

Triangular Tower

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
	ft			ft		f
TI	$255000-240000$			4875	1	15.000
T2	$240000-220000$			6.000	1	20000
T3	$220000-200000$			7500	1	20000
T4	$200000-180000$			9000	1	20000
T5	$180000-160000$			10500	1	20000
T6	$160000-140000$			12000	1	20000
17	$140.000-120.000$			13500	1	20000
T8	$120000-100000$			15000	I	20000
19	$100000-80000$			16.500	1	20000
T10	$80000-60000$			18000	1	20000
T11	$60000-40000$			19500	1	20000
T12	$40000-20000$			21.000	1	20000
T13	20000-0000			22500	1	20000

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation ft	Diagonal Spacing ft	Bracing Tipe	Has K Brace End Panels	Has Horizontals	Top Girt Offset in	Bottom Girt Offset in
T1	$255000-240000$	4.667	X Brace	No	No	6000	6.000
T2	$240000-220000$	4750	X Brace	No	No	6000	6000

tnxTower	Job ATS\#9424-Parkers Lake (Site\# KYLEX2061)		$\begin{aligned} & \text { Page } \\ & \\ & \\ & \end{aligned}$
B+T Group 1717 S Boulder Ave. Siute 300	Project	255^{\prime} SST/36.839322, -84.485103	$\begin{array}{\|l\|} \hline \text { Date } \\ 16: 11: 5502 / 22 / 22 \end{array}$
$\begin{gathered} \text { Tiulsa, OK } 74119 \\ \text { Phone (9IX) 587-4630 } \\ \text { FAX }(9 / 8) \text { 295-0265 } \\ \hline \end{gathered}$	Client	Harmoni Towers	Designed by mwilliams

Tower Section	Tower Elevation $f t$	Diagonal Spacing tt	Bracing Tipe	Has K Brace End Panels	Has Horizontals	Top Girt Offset in	Bottom Girt Offset in
T3	220000-200000	4750	X Brace	No	No	6000	6.000
T4	200000-180000	4750	X Brace	No	No	6000	6000
T5	180000-160 000	4750	X Brace	No	No	6000	6000
T6	160000-140000	4750	X Brace	No	No	6000	6000
T7	140000-120000	4750	X Brace	No	No	6000	6000
T8	$120000-100.000$	4750	X Brace	No	No	6000	6000
T9	$100000-80000$	4750	X Brace	No	No	6000	6000
T10	$80000-60000$	4750	Double K	No	Yes	6.000	6.000
TII	$60000-40000$	4750	Double K	No	Yes	6000	6000
T12	$40000-20000$	4750	Double K	No	Yes	6000	6000
T13	$20000-0000$	4750	Double K	No	Yes	6.000	6000

Tower Section Geometry (cont'd)

Tower Elevation ft	$\begin{aligned} & \text { Leg } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Leg } \\ & \text { Size } \end{aligned}$	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
$\begin{gathered} \mathrm{TI} \\ 255000-240.000 \end{gathered}$	Solid Round	13/4	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	1.13/4×13/4×3/16	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} 12 \\ 240000-220000 \end{gathered}$	Solid Round	21/4	$\begin{aligned} & \text { A } 529-50 \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	L. $1^{3 / 4 \times 13 / 4 \times 3 / 16 ~}$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \mathrm{T3} \\ 220000-200000 \end{gathered}$	Solid Round	23/4	$\begin{aligned} & \mathrm{A} 529-50 \\ & (50 \mathrm{kst}) \end{aligned}$	Equal Angle	$1.2 \times 2 \times 3 / 16$	$\begin{gathered} \text { A } 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T4 } \\ 200.000-180000 \end{gathered}$	Solid Round	3	$\begin{aligned} & \mathrm{A} 529-50 \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	1.21/2×2 1/2×3/16	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{kst}) \end{gathered}$
$\begin{gathered} \text { T5 } \\ 180000-160000 \end{gathered}$	Solid Round	$31 / 4$	$\begin{aligned} & \text { A } 529-50 \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	1.2 1/2 $21 / 2 \times 3 / 16$	A36M-50 (50 kst)
$\begin{gathered} \text { T6 } \\ 160000-140.000 \end{gathered}$	Solid Round	31/4	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	$1.3 \times 3 \times 3 / 16$	A $36 \mathrm{M}-50$ (50 ksi)
$\begin{gathered} 17 \\ 140000-120000 \end{gathered}$	Solid Round	$31 / 2$	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	L $3 \times 3 \times 3 / 16$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T8 } \\ 120.000-100.000 \end{gathered}$	Solid Round	$33 / 4$	$\begin{aligned} & \text { A } 529-50 \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	L. $3 \times 3 \times 3 / 16$	$\begin{gathered} \text { A } 36 \mathrm{M}-50 \\ (50 \mathrm{kst}) \end{gathered}$
$\begin{gathered} \text { T9 } \\ 100000-80000 \end{gathered}$	Solid Round	4	$\begin{aligned} & \text { A } 529-50 \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	L. $3 \times 3 \times 1 / 4$	$\begin{gathered} \text { A } 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T10 } \\ 80000-60000 \end{gathered}$	Solid Round	4	$\begin{aligned} & \text { A } 529-50 \\ & (50 \mathrm{ksi}) \end{aligned}$	Double Angle	$21.21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T11 } \\ 60000-40000 \end{gathered}$	Solid Round	41/4	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Double Angle	2L $21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \text { A } 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \mathrm{T} 12 \\ 40.000-20000 \end{gathered}$	Sohd Round	$41 / 4$	$\begin{aligned} & \text { A } 529-50 \\ & (50 \mathrm{ksi}) \end{aligned}$	Double Angle	$21.21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
T1320000-0.000	Solid Round	41/2	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Double Angle	$21.3 \times 3 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \\ \hline \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Top Girt Type		Top Girt Size		Top Girt Grade	Bottom Girt Type

Tower Section Geometry (cont'd)

Tower Elevation \qquad fl	No of Mid Girts	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade
$\begin{gathered} \text { T10 } \\ 80000-60000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Double Angle	2 L. $3 / 4 \times 13 / 4 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \text { A } 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T11 } \\ 60.000-40000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{kst}) \end{gathered}$	Double Angle	$2 \mathrm{~L} 2 \times 2 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T12 } \\ 40.000-20.000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \mathrm{A36} \\ (36 \mathrm{ksi}) \end{gathered}$	Double Angle	2L $2 \times 2 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \text { A } 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
T13 $20000-0.000$	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Double Angle	$21.21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \\ \hline \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation ft	Secondary Horizontal Type	Secondan Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
$\begin{gathered} \text { T10 } \\ 80000-60000 \end{gathered}$	Solid Round		$\begin{aligned} & \text { A572-50 } \\ & \text { (50 ksi) } \end{aligned}$	Single Angle	L. $3 / 4 \times 13 / 4 \times 3 / 16$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { TII } \\ 60000-40000 \end{gathered}$	Solid Round		$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	$1.13 / 4 \times 13 / 4 \times 3 / 16$	$\begin{gathered} \text { A } 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T12 } \\ 40000-20000 \end{gathered}$	Solid Round		$\begin{aligned} & \text { A572-50 } \\ & \text { (50 ksi) } \end{aligned}$	Single Angle	L. $3 / 4 \times 13 / 4 \times 3 / 16$	$\begin{aligned} & \text { A36M-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$
T13 $20000-0000$	Solid Round		$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	L. $3 / 4 \times 13 / 4 \times 3 / 16$	$\begin{gathered} \text { A } 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \\ \hline \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation \qquad ft	Gusset Arca (per face) \qquad	Gussel Thickness in	Gusset Grade	Adjust. Factor A,	Adjust Factor A.	Weight Mult.	Double Angle Sritch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
$\begin{gathered} \mathrm{T} 1 \\ 255000-2400 \\ 00 \end{gathered}$	0.000	0375	$\begin{aligned} & \text { A } 36 \mathrm{M}-50 \\ & (50 \mathrm{ksi}) \end{aligned}$	1	1	1	36.000	36.000	36.000
$\begin{gathered} T 2 \\ 240000-2200 \\ 00 \end{gathered}$	0.000	0.375	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	36000	36.000	36000
$\begin{gathered} T 3 \\ 220000-2000 \\ 00 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A } 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$	I	1	1	36.000	36.000	36.000
$\begin{gathered} \text { T4 } \\ 200000-1800 \\ 00 \end{gathered}$	0.000	0375	$\begin{gathered} \text { A } 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	36000	36000	36000

tnxTower	Job ATS\#9424 - Parkers Lake (Site\# KYLEX2061)		$\begin{aligned} & \text { Page } \\ & 5 \text { of } 34 \end{aligned}$
B + T Group 1717 S Boulder Ave, Suite 300	Project	255' SST/36.839322, -84.485103	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:11:55 02/22/22 } \end{array}$
Tulsa. OK 7 flly Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Harmoni Towers	Designed by mwilliams

Tower Elevation ft	Gusset Area (per face) $f t^{\circ}$	Gusset Thickness in	Gusset Grade	$\begin{gathered} \text { Adjust Factor } \\ \text { A, } \end{gathered}$	Adjust. Factor A.	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Sutch Bolt Spacing Redundants in
$\begin{gathered} \text { T5 } \\ 180000-1600 \\ 00 \end{gathered}$	0000	0.375	$\begin{aligned} & \text { A36M-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	1	1	1	36000	36000	36000
$\begin{gathered} \text { T6 } \\ 160000-1400 \\ 00 \end{gathered}$	0.000	0.375	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	I	36000	36.000	36000
$\begin{gathered} \mathrm{T} 7 \\ 140000-1200 \\ 00 \end{gathered}$	0000	0.375	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	36000	36000	36000
$\begin{gathered} \text { T8 } \\ 120.000-1000 \\ 00 \end{gathered}$	0000	0375	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$	1	I	1	36000	36000	36000
$\begin{gathered} \text { T9 } \\ 100000-8000 \\ 0 \end{gathered}$	0.000	0375	A36M-50 (50 ksi)	1	1	1	36000	36.000	36000
$\begin{gathered} \text { T10 } \\ 80000-60000 \end{gathered}$	0000	0375	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	Mid-Pl	Mid-Pt	36000
$\begin{gathered} \text { T11 } \\ 60000-40000 \end{gathered}$	0000	0.375	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	Mid-Pt	Mid-Pt	36000
$\begin{gathered} \text { T12 } \\ 40000-20000 \end{gathered}$	0000	0.375	$\begin{aligned} & \text { A } 36 \mathrm{M}-50 \\ & (50 \mathrm{ksi}) \end{aligned}$	1	1	1	Mid-Pt	Mid-Pt	36000
$\begin{gathered} \text { T13 } \\ 20000-0 \end{gathered}$	0000	0.375	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \\ \hline \end{gathered}$	1	I	I	Mid-Pt	Mid-Pl	36000

Tower Section Geometry (cont'd)

Tower Elevation	Calc K	Calc K	K Factors							
			Legs			Single Diags	Girts	Horiz	Sec Horiz	Inner Brace
	Single	Solid		Diags	Diags					
$f t$	Angles	Rounds		X	X	X	X	X	X	X
				Y	Y	γ	Y	Y	γ	Y
T1	No	No	1	1	1	1	1	1	1	1
$255000-2400$				1	1	1	1	1	1	1
00										
$\mathrm{T} 2$	No	No	1	1	1	1	1	1	1	1
$240000-220.0$				1	1	1	1	1	1	1
00										
T3	No	No	1	1	1	1	1	1	1	1
220.000-200.0				1	I	I	1	1	1	1
00 (1)										
T4	No	No	1	1	1	1	1	1	1	1
$200000-1800$				1	1	1	1	1	1	1
00										
T5	No	No	1	1	1	1	1	1	1	1
$180.000-1600$				1	1	1	1	1	1	1
T6	No	No	1	1	1	1	1	1	1	1
$160.000-1400$				1	1	1	1	1	1	1
00 (1)										
17	No	No	1	1	1	1	1	1	1	1
$140.000-120.0$				1	1	1	1	1	1	1
00										
T8	No	No	1	1	1	1	1	1	1	1
120.000-100.0				1	1	1	1	1	1	1

Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	K Factors ${ }^{\text {l }}$							
			Legs	X	K	Single	Girts	Horiz.	Sec. Horiz	Inner Brace
				Brace	Brace	Diags				
				Diags	Diags					
				x						
t				γ	γ	γ	γ	Y	γ	γ
00										
T9	No	No	1	1	1	1	1	1	1	1
$100000-8000$				1	1	1	1	1	1	1
0										
T10	No	No	1	1	1	1	1	1	1	1
$80.000-60.000$				1	1	1	1	1	1	1
T11	No	No	1	1	1	1	1	1	1	1
$60000-40000$				1	1	1	1	1	1	1
T12	No	No	1	1	1	1	1	1	1	1
$40000-20000$				1	1	1	1	1	1	1
T13	No	No	1	1	1	1	1	1	1	1
$20000-0000$				1	1	1	1	1	1	1

'Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horisontal		Short Horizontal	
	Net Width Deduct in	U	Net WidthDeduct in	U	Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in 0 one	U	Net Width Deduct in	U
$\begin{gathered} \mathrm{TI} \\ 255000-2400 \\ 00 \end{gathered}$	0000	1	0.000	0.75	0.000	0.75	0000	075	0000	0.75	0000	0.75	0000	0.75
$\begin{gathered} \mathrm{T} 2 \\ 240.000-2200 \\ 00 \end{gathered}$	0.000	1	0.000	0.75	0.000	0.75	0.000	075	0000	0.75	0.000	0.75	0000	0.75
$\begin{gathered} T 3 \\ 220.000-200.0 \\ 00 \end{gathered}$	0.000	1	0.000	0.75	0.000	0.75	0.000	075	0000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T4 } \\ 200000-180.0 \\ 00 \end{gathered}$	0.000	1	0000	0.75	0000	0.75	0000	075	0000	075	0.000	0.75	0000	0.75
$\begin{gathered} \text { T5 } \\ 180.000-160.0 \\ 00 \end{gathered}$	0.000	1	0.000	0.75	0000	0.75	0.000	075	0000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T6 } \\ 160000-1400 \\ 00 \end{gathered}$	0.000	1	0.000	0.75	0000	0.75	0000	075	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} T 7 \\ 140.000-120.0 \\ 00 \end{gathered}$	0000	1	0000	0.75	0000	0.75	0000	075	0.000	0.75	0.000	0.75	0.000	075
$\begin{gathered} \text { T8 } \\ 120.000-100.0 \\ 00 \end{gathered}$	0000	1	0.000	0.75	0.000	0.75	0.000	075	0000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T9 } \\ 100.000-80.00 \\ 0 \end{gathered}$	0.000	1	0000	0.75	0000	0.75	0000	075	0000	0.75	0.000	075	0.000	0.75
$\begin{gathered} \text { T10 } \\ 80.000-60000 \end{gathered}$	0000	1	0.000	0.75	0000	075	0.000	075	0.000	075	0000	075	0000	0.75

Tower Elevation ft	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in		Net WidthDeduct in		Net Width Deduct in	U	Net Width Deduct in 0 incol	U	Net Width Deduct in	U	Net Width Deduct in 0 in	U
$\begin{gathered} \text { T11 } \\ 60000-40.000 \end{gathered}$	0000	1	0.000	0.75	0000	0.75	0000	075	0000	075	0.000	0.75	0000	0.75
$\begin{gathered} \mathrm{T} 12 \\ 40000-20000 \end{gathered}$	0000	1	0000	0.75	0000	0.75	0000	075	0000	075	0.000	075	0000	075
$\begin{gathered} \mathrm{T} 13 \\ 20.000-0000 \\ \hline \end{gathered}$	0000	1	0000	0.75	0000	075	0000	075	0000	075	0000	075	0000	075

Tower Section Geometry (cont'd)

Tower Elevation ft	LegConnectionType	Leg		Diagonal		Top Girt		Bottom Girt		Mid Gort		Long Horizontal		Short Horizontal	
		$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$	No	$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$	No.	$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$	No.	$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$	No	$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$	No	$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$	No.	$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$	No
$\begin{gathered} \mathrm{T1} \\ 255000-2400 \\ 00 \end{gathered}$	Flange	$\begin{gathered} 0000 \\ \mathrm{~A} 325 \mathrm{~N} \end{gathered}$	0	$\begin{gathered} 0625 \\ \mathrm{~A} 325 \mathrm{X} \end{gathered}$	1	$\begin{array}{r} 0625 \\ \mathrm{~A} 325 \mathrm{X} \end{array}$	1	$\begin{gathered} 0000 \\ \mathrm{~A} 325 \mathrm{~N} \end{gathered}$	0	$\begin{gathered} 0625 \\ \mathrm{~A} 325 \mathrm{~N} \end{gathered}$	0	$\begin{gathered} 0000 \\ \text { A325X } \end{gathered}$	0	$\begin{gathered} 0625 \\ \mathrm{~A} 325 \mathrm{~N} \end{gathered}$	0
12	Flange	${ }_{0} 0.750$	6	0625	1	0.000	0	0.000	0	0625	0	0000	0	0625	0
$\begin{gathered} 240000-2200 \\ 00 \end{gathered}$		A325N		$\mathrm{A} 325 \mathrm{X}$		A325X		$\mathrm{A} 325 \mathrm{~N}$		A 325 N		$\mathrm{A} 325 \mathrm{X}$		$\mathrm{A} 325 \mathrm{~N}$	
T3	Flange	0750	6	0625	1	0000	0	0000	0	0625	0	0000	0	0.625	0
$\begin{gathered} 220000-2000 \\ 00 \end{gathered}$		$\mathrm{A} 325 \mathrm{~N}$		$\mathrm{A} 325 \mathrm{X}$		$\mathrm{A} 325 \mathrm{X}$		$\mathrm{A} 325 \mathrm{~N}$		$\mathrm{A} 325 \mathrm{~N}$		$\mathrm{A} 325 \mathrm{X}$		$\mathrm{A} 325 \mathrm{~N}$	
T4	Flange	1000	6	0625	1	0000	0	0000	0	0625	0	0000	0	0625	0
$\begin{gathered} 200000-1800 \\ 00 \end{gathered}$		$\mathrm{A} 325 \mathrm{~N}$		$\mathrm{A} 325 \mathrm{X}$		$\mathrm{A} 325 \mathrm{X}$		$\mathrm{A} 325 \mathrm{~N}$		$\mathrm{A} 325 \mathrm{~N}$		$\mathrm{A} 325 \mathrm{X}$		$\mathrm{A} 325 \mathrm{~N}$	
T5	Flange	1000	6	0.625	1	0.000	0	0.000	0	0625	0	0000	0	0625	0
$\begin{gathered} 180000-1600 \\ 00 \end{gathered}$		A 325 N		$\mathrm{A} 325 \mathrm{X}$		A325X		A325N		A325N		A325X		A 325 N	
T6	Flange	1000	6	0625	1	0000	0	0000	0	0625	0	0000	0	0625	0
$\begin{gathered} 160000-1400 \\ 00 \end{gathered}$		A 325 N		A 325 X		A325 X		A 325 N		A 325 N		A325X		A 325 N	
17	Flange	1000	6	0625	1	0000	0	0000	0	0625	0	0000	0	0625	0
$\begin{gathered} 140000-1200 \\ 00 \end{gathered}$		A 325 N		A325X		A325X		A 325 N		A325N		A325X		A 325 N	
T8	Flange	1250	6	0625	1	0000	0	0000	0	0625	0	0000	0	0625	0
$\begin{gathered} 120000-1000 \\ 00 \end{gathered}$		A325N		A325X		A325X		A 325 N		A 325 N		A325X		A 325 N	
T9	Flange	1250	6	0625	1	0000	0	0000	0	0.625	0	0000	0	0.625	0
$\begin{gathered} 100000-8000 \\ 0 \end{gathered}$		A325N		A325X		A325X		A325N		A 325 N		A325X		A 325 N	
T10	Flange	1250	6	0625	1	0000	0	0000	0	0625	0	0625	1	0625	0
$80.000-60.000$		A 325 N		A325X		A325X		A 325 N		A 325 N		A325X		A 325 N	
$\mathrm{T} 11$	Flange	1250	6	0625	1	0000	0	0.000	0	0625	0	0.625	1	0625	0
60.000-40.000		A325N		A325X		A325X		A 325 N		A 325 N		A325X		A 325 N	
T12	Flange	1250	6	0625	1	0.000	0	0000	0	0625	0	0625	1	0625	0
$40000-20000$		A 325 N		A 325 X		A325X		A 325 N		A 325 N		A325X		$\mathrm{A} 325 \mathrm{~N}$	
T13	Flange	1500	6	0625	1	0000	0	0000	0	0.625	0	0.625	1	0625	0
$20000-0000$		A 325 N		A 325 X		A 325 X		A 325 N		A 325 N		A325X		A 325 N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allons Shield	Exclude From Torque Calculation	Component Type	Placement f	Face Offset in	Lateral Offset (Frac FW)	\#	\# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight $k l f$
$1625^{\prime \prime}$ coax (Carrier 1)	C	No	No	Ar (CaAa)	$\begin{gathered} 250000= \\ 10000 \end{gathered}$	0000	0	9	5	0750	1980		0001
15^{-}Hybrid (Carrier 1)	C	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 250.000- \\ 10.000 \end{gathered}$	0.000	-02	6	3	0.750	1.500		0001
$1625^{\prime \prime} \operatorname{coax}$ (Carrier 2)	B	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 238000= \\ 10000 \end{gathered}$	0.000	0	9	5	0.750	1980		0001
15° Hybrid (Carrier 2)	B	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 238000= \\ 10000 \end{gathered}$	0000	02	6	3	0750	1500		0.001
$1625^{\prime \prime}$ coax	A	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$226000-$	0.000	0	9	5	0.750	1980		0.001

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	Component Type	Placement f	Face Offset in	Lateral Offset (Frac FW)	\#		Clear Spacing in	Width or Diameter in	Perimeter in	Weight klf
(Carrier 3) $15^{\prime \prime}$ Hybrid (Carner 3)	A	No	No	$\operatorname{Ar}(\mathrm{CaAa})$	$\begin{gathered} 10.000 \\ 226.000= \\ 10.000 \end{gathered}$	0000	-02	6	3	0750	1500		0001
$\begin{gathered} 1625^{\circ} \text { coax } \\ \text { (Carner } 4 \text {) } \\ \ldots \end{gathered}$	C	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 214000- \\ 10.000 \end{gathered}$	0000	-0.35	2	1	0750	1980		0.001
$\begin{gathered} 1.625^{\prime \prime} \text { coax } \\ \text { (Carrier } 5 \text {) } \\ \ldots \end{gathered}$	C	No	No	Ar (CaAa)	$\begin{gathered} 202000- \\ 10000 \end{gathered}$	0000	-0.4	2	1	0.750	1980		0.001
$\begin{gathered} \text { Safety Line } \\ 3 / 8 \end{gathered}$	A	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 255000- \\ 10000 \end{gathered}$	0000	045	1	1	0375	0375		0000
Strobe Cable	A	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 255000- \\ 10000 \end{gathered}$	0.000	-0.45	1	1	1250	1250		0001
Feedline Ladder (Af)	C	No	No	Af (CaAa)	$\begin{gathered} 250000= \\ 10.000 \end{gathered}$	0.000	03	1	1	3000	0.250		0.008
Feedline Ladder (Af)	B	No	No	Af(CaAa)	$\begin{gathered} 238000= \\ 10000 \end{gathered}$	0.000	03	1	1	3000	0.250		0008
$\begin{aligned} & \text { Feedline } \\ & \text { Ladder (Af) } \end{aligned}$	A	No	No	Af(CaAa)	$\begin{gathered} 226000- \\ 10000 \end{gathered}$	0000	03	I	1	3000	0250		0008

Feed Line/Linear Appurtenances - Entered As Area

| Description | Face
 or
 Leg | Shlow
 Shield | Exclude
 From
 Calculation | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad| Component |
| :---: |
| |

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation $f t$	Face	A_{R} $f r^{*}$	A_{f} ft	$C_{4} H_{1}$ In Face fr	$\begin{gathered} C_{i} A_{i} \\ \text { Out Face } \\ \text { fr }^{\circ} \end{gathered}$	Weight K
TI	255.000-240.000	A	0000	0.000	2438	0.000	0.014
		B	0000	0.000	0.000	0000	0000
		C	0000	0000	27237	0000	0214
T2	$240000-220.000$	A	0000	0.000	19.592	0.000	0.147
		B	0000	0.000	49026	0.000	0386
		C	0.000	0.000	54.473	0.000	0428
T3	220000-200000	A	0000	0.000	57.723	0000	0.447
		B	0000	0000	54473	0000	0428
		C	0.000	0.000	60809	0.000	0455
T4	200.000-180.000	A	0.000	0000	57723	0000	0.447
		B	0000	0000	54.473	0.000	0428
		C	0000	0.000	70.313	0.000	0.494
T5	$180.000-160.000$	A	0.000	0.000	57723	0000	0.447
		B	0000	0.000	54.473	0.000	0.428

Tower Section	Tower Elevation ft	Face	A_{2} πr^{2}	A) $f r^{\circ}$	$C_{1} A_{1}$ In Face ft	$C_{3} A_{1}$ Out Face ft°	Weight K
T6	$160000-140000$	C	0000	0.000	70313	0.000	0.494
		A	0000	0.000	57.723	0000	0447
		B	0000	0.000	54.473	0.000	0428
T7	140.000-120000	C	0.000	0000	70.313	0.000	0.494
		A	0000	0.000	57723	0.000	0447
		B	0000	0.000	54.473	0000	0428
T8	$120000-100000$	C	0.000	0.000	70.313	0.000	0494
		A	0000	0000	57723	0000	0447
		B	0000	0000	54.473	0000	0428
T9	$100000-80000$	C	0000	0.000	70313	0000	0494
		A	0.000	0000	57.723	0.000	0447
		B	0000	0000	54473	0.000	0428
T10	$80.000-60.000$	C	0000	0000	70313	0000	0494
		A	0000	0.000	57723	0000	0447
		B	0000	0.000	54.473	0000	0428
T11	$60.000-40.000$	C	0000	0.000	70313	0000	0494
		A	0000	0.000	57723	0.000	0.447
		B	0.000	0000	54473	0.000	0428
T12	40000-20.000	C	0.000	0000	70313	0.000	0.494
		A	0000	0.000	57.723	0000	0447
		B	0.000	0.000	54.473	0.000	0428
T13	$20000-0000$	C	0000	0000	70313	0.000	0494
		A	0.000	0.000	28862	0.000	0223
		B	0000	0.000	27237	0000	0214
		C	0000	0.000	35.157	0.000	0247

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation ft	Face or Leg	\qquad	A_{k} $f{ }^{\circ}$	A f^{\prime}	$\begin{gathered} \mathrm{C} \\|_{t} \\ \ln \text { Face } \\ \mathrm{fr}^{\circ} \end{gathered}$	$C_{1} A_{1}$ Out Face f^{2}	Weight K
TI	255.000-240.000	A	1835	0.000	0000	13.447	0000	0.192
		B		0.000	0000	0.000	0000	0000
		C		0.000	0.000	42532	0000	0881
12	240000-220000	A	1821	0.000	0000	43269	0000	0.779
		B		0.000	0000	76.343	0000	1578
		C		0.000	0.000	84826	0000	1753
T3	$220000-200.000$	A	1805	0.000	0.000	102.223	0000	1990
		B		0.000	0.000	84.533	0000	1741
		C		0.000	0000	104580	0000	2035
T4	200.000-180000	A	1.787	0.000	0.000	101761	0000	1.974
		B		0000	0000	84215	0000	1.728
		C		0.000	0000	134082	0000	2452
T5	180000-160000	A	1.767	0.000	0000	101252	0000	1956
		B		0000	0000	83865	0000	1714
		C		0.000	0000	133.458	0000	2427
T6	160.000-140.000	A	1.745	0.000	0000	100687	0000	1936
		B		0.000	0000	83475	0.000	1699
		C		0000	0000	132.763	0000	2400
17	140.000-120.000	A	1720	0.000	0000	100049	0000	1913
		B		0.000	0000	83036	0000	1682
		C		0.000	0.000	131980	0000	2.370
T8	120000-100 000	A	1692	0.000	0000	99316	0000	1887
		B		0.000	0000	82.531	0000	1662
		C		0.000	0.000	131080	0000	2335
T9	$100000-80.000$	A	1658	0.000	0.000	98.452	0.000	1857
		B		0.000	0000	81.936	0000	1639
		C		0000	0000	130019	0000	2294

tnxTower	Job ATS\#9424 - Parkers Lake (Site\# KYLEX2061)		$\begin{aligned} & \text { Page } \\ & \\ & \\ & \end{aligned}$
B+T Group 1717 S Boulder Ave, Suite 300	Project	255' SST/36.839322, -84.485103	$\begin{aligned} & \text { Date } \\ & 16: 11: 55 \quad 02 / 22 / 22 \end{aligned}$
$\begin{gathered} \text { Tulsa, OK } 74119 \\ \text { Phone (918) } 587-4630 \\ \text { FAX (918) 295-0265 } \\ \hline \end{gathered}$	Client	Harmoni Towers	Designed by mwilliams

Tower Section	Tower Elevation ft	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Ice Thichness in	A_{8} $f t^{\circ}$	A, fr	$\begin{gathered} C_{y} A_{1} \\ \ln \text { Face } \\ f t r^{\prime} \end{gathered}$	$C_{1} A_{1}$ Out Face $f{ }^{\circ}$	Weright K
T10	$80000-60000$	A	1617	0.000	0000	97395	0000	1821
		B		0000	0000	81207	0000	1610
		C		0000	0000	128721	0000	2245
TII	$60000-40000$	A	1564	0.000	0.000	96020	0000	1774
		B		0000	0000	80261	0000	1574
		C		0000	0000	127033	0000	2181
T12	$40000-20000$	A	1486	0.000	0.000	94020	0000	1707
		B		0000	0000	78884	0000	1522
		C		0000	0000	124579	0000	2091
T13	$20.000-0.000$	A	1331	0.000	0000	45026	0000	0790
		B		0000	0000	38076	0000	0711
		C		0000	0000	59857	0000	0959

Feed Line Center of Pressure

Section	Elevation \qquad f	$C P_{X}$ in	$C P_{C}$ in	$\begin{gathered} C P_{X} \\ \text { lee } \\ \text { in } \end{gathered}$	$\begin{aligned} & C P_{C} \\ & \text { loe } \\ & \text { in } \end{aligned}$
TI	$255000-240000$	0496	4712	-1209	3502
T2	$240000-220000$	2680	-1 335	1485	-0. 342
T3	220000-200.000	0580	-2012	0023	-0 741
T4	$200000-180000$	1750	-0.492	1884	1419
T5	180000-160000	1907	-0534	2071	1542
T6	$160000-140.000$	1923	-0 542	2176	1614
17	$140000-120.000$	2032	-0.572	2318	1707
T8	$120000-100000$	2128	-0 599	2445	1789
T9	$100000-80000$	2215	-0623	2559	1860
T10	$80000-60000$	2860	-0 786	3063	2178
T11	$60000-40000$	2936	-0 809	3173	2238
T12	$40000-20000$	3058	-0 843	3296	2298
T13	$20.000-0000$	1739	-0.497	1992	1398

Shielding Factor Ka

Tower Section	Feed Line Record No	Description	Feed Line Segment Elev	$\begin{gathered} K_{1} \\ \text { Nolce } \\ \hline \end{gathered}$	K Ice
TI	1	$1625^{\prime \prime}$ coax	$\begin{array}{r} 24000- \\ 25000 \end{array}$	06000	06000
TI	2	15* Hybrid	$\begin{array}{r} 24000- \\ 25000 \end{array}$	06000	06000
TI	14	Safety Line 3/8	$\begin{array}{r} 24000- \\ 25500 \end{array}$	06000	06000
T1	15	Strobe Cable	$\begin{array}{r} 24000- \\ 25500 \end{array}$	06000	06000
TI	17	Feedline Ladder (Af)	$\begin{array}{r} 24000- \\ 25000 \end{array}$	06000	06000
12	1	$1625^{\prime \prime}$ coax	$\begin{array}{r} 220.00- \\ 240.00 \end{array}$	06000	06000
T2	2	15" Hybrid	$\begin{array}{r} 22000- \\ 24000 \end{array}$	06000	06000
T2	4	$1625^{\prime \prime}$ coax	$220.00-$	06000	06000

tnxTower	Job ATS\#9424 - Parkers Lake (Site\# KYLEX2061)		$\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$
B+T Group 1717 S Boulder Ave. Suite 300	Project	255 ' SST/36.839322, -84.485103	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:11:55 02/22/22 } \end{array}$
$\begin{gathered} \text { Tulsa. OK } 74119 \\ \text { Phone: }(918) 587-4630 \\ \text { FAX: }(918) 295-0265 \\ \hline \end{gathered}$	Client	Harmoni Towers	Designed by mwilliams

Tower Section	Feed Line Record No	Description	Feed Line Segment Elev:	$\begin{gathered} K_{1} \\ \text { Nolce } \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
T2	5	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 238.00 \\ 220.00- \\ 238.00 \end{array}$	06000	06000
T2	7	$1625^{\prime \prime}$ coax	$\begin{array}{r} 228000 \\ 220.00 \\ 226.00 \end{array}$	0.6000	06000
T2	8	15" Hybrid	$\begin{array}{r} 220.00- \\ 226.00 \end{array}$	06000	06000
T2	14	Safety Line 3/8	$\begin{array}{r} 22000- \\ 24000 \end{array}$	06000	06000
T2	15	Strobe Cable	$\begin{array}{r} 220.00- \\ 24000 \end{array}$	06000	06000
12	17	Feedline Ladder (Af)	$\begin{array}{r} 220.00- \\ 24000 \end{array}$	06000	06000
T2	18	Feedline Ladder (Af)	$\begin{array}{r} 22000- \\ 23800 \end{array}$	06000	0.6000
T2	19	Feedline Ladder (Af)	$\begin{array}{r} 22000- \\ 22600 \end{array}$	06000	06000
T3	1	$1625^{\prime \prime}$ coax	$\begin{array}{r} 200.00- \\ 220.00 \end{array}$	06000	06000
T3	2	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 200.00- \\ 220.00 \end{array}$	06000	06000
T3	4	$1625^{\prime \prime}$ coax	$\begin{array}{r} 200.00- \\ 220.00 \end{array}$	06000	06000
T3	5	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 20000- \\ 220.00 \end{array}$	06000	06000
T3	7	$1625^{\prime \prime}$ coax	$\begin{array}{r} 20000- \\ 220.00 \end{array}$	06000	06000
T3	8	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 200.00= \\ 220.00 \end{array}$	06000	06000
T3	10	$1625^{\prime \prime}$ coax	$\begin{array}{r} 20000- \\ 21400 \end{array}$	06000	06000
T3	12	$1625^{\prime \prime}$ coax	$\begin{array}{r} 20000- \\ 202.00 \end{array}$	0.6000	06000
T3	14	Safety Line 3/8	$\begin{array}{r} 200.00- \\ 220.00 \end{array}$	06000	0.6000
T3	15	Strobe Cable	$\begin{array}{r} 200.00- \\ 220.00 \end{array}$	06000	06000
T3	17	Feedline Ladder (Af)	$\begin{array}{r} 200.00- \\ 220.00 \end{array}$	06000	0.6000
T3	18	Feedline Ladder (Af)	$\begin{array}{r} 20000- \\ 220.00 \end{array}$	06000	06000
T3	19	Feedline Ladder (Af)	$\begin{array}{r} 200.00- \\ 220.00 \end{array}$	0.6000	0.6000
T4	1	$1625^{\prime \prime}$ coax	$\begin{array}{r} 180.00- \\ 20000 \end{array}$	06000	06000
T4	2	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 18000- \\ 200000 \end{array}$	06000	06000
T4	4	1625" coax	$\begin{array}{r} 18000- \\ 200.00 \end{array}$	06000	06000
T4	5	$15^{\circ} \mathrm{Hybrid}$	$\begin{array}{r} 18000- \\ 20000 \end{array}$	06000	06000
T4	7	$1625^{\prime \prime}$ coax	$\begin{array}{r} 180.00- \\ 20000 \end{array}$	06000	06000
T4	8	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 180.00- \\ 20000 \end{array}$	06000	066000
T4	10	$1625^{\prime \prime}$ coax	$\begin{array}{r} 18000= \\ 20000 \end{array}$	06000	0.6000
T4	12	1625" coax	$\begin{array}{r} 18000- \\ 20000 \end{array}$	06000	0.6000
T4	14	Safety Line 3/8	$\begin{array}{r} 18000- \\ 20000 \end{array}$	06000	06000
T4	15	Strobe Cable	$180.00-1$	0.6000	0.6000

Tower Section	Feed line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No lce } \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { loe } \end{aligned}$
T4	17	Feedline Ladder (A)	$\begin{array}{r} 200.00 \\ 180.00- \\ 200.00 \end{array}$	06000	0.6000
T4	18	Feedline Ladder (A)	$\begin{array}{r} 18000- \\ 20000 \end{array}$	06000	0.6000
T4	19	Feedline Ladder (A)	$\begin{array}{r} 180.00- \\ 200.00 \end{array}$	06000	06000
T5	1	$1625^{\prime \prime}$ coax	$\begin{array}{r} 16000- \\ 18000 \end{array}$	06000	0.6000
T5	2	15* Hybrid	$\begin{array}{r} 16000- \\ 180.00 \end{array}$	06000	0.6000
T5	4	$1625^{\prime \prime}$ coax	$\begin{array}{r} 16000- \\ 180.00 \end{array}$	06000	06000
T5	5	15^{*} Hybrid	$\begin{array}{r} 160.00- \\ 18000 \end{array}$	06000	0.6000
T5	7	1625° coax	$\begin{array}{r} 16000= \\ 18000 \end{array}$	06000	06000
TS	8	15^{*} Hybrid	$16000-$ 18000	06000	06000
T5	10	$1625^{\circ} \operatorname{coax}$	$\begin{gathered} 160.00- \\ 180.00 \end{gathered}$	0.6000	0.6000
T5	12	1625° coax	$\begin{array}{r} 16000= \\ 180.00 \end{array}$	06000	06000
T5	14	Safety Line 3/8	$\begin{array}{r} 160.00- \\ 180.00 \end{array}$	0.6000	06000
T5	15	Strobe Cable	$\begin{array}{r} 16000- \\ 18000 \end{array}$	06000	06000
T5	17	Feedline Ladder (Af)	$\begin{array}{r} 16000- \\ 180.00 \end{array}$	06000	0.6000
T5	18	Feedline Ladder (A)	$\begin{array}{r} 16000- \\ 18000 \end{array}$	06000	06000
T5	19	Feedline Ladder (A)	$\begin{array}{r} 160.00- \\ 180.00 \end{array}$	06000	06000
T6	1	$1625^{\prime \prime}$ coax	$\begin{array}{r} 14000- \\ 16000 \end{array}$	06000	06000
T6	2	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 14000- \\ 160.00 \end{array}$	0.6000	06000
T6	4	1625° coax	$\begin{array}{r} 140.00- \\ 16000 \end{array}$	06000	0.6000
T6	5	$15^{\prime \prime} \mathrm{Hybrid}$	$\begin{array}{r} 14000- \\ 16000 \end{array}$	06000	06000
T6	7	1.625^{*} coax	$\begin{array}{r} 140.00- \\ 16000 \end{array}$	06000	06000
T6	8	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	06000	06000
T6	10	$1625^{\prime \prime}$ coax	$\begin{array}{r} 14000= \\ 160.00 \end{array}$	0.6000	06000
T6	12	$1625^{\prime \prime}$ coax	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	06000	06000
T6	14	Safety Line 3/8	$\begin{array}{r} 140.00= \\ 160.00 \end{array}$	06000	06000
T6	15	Strobe Cable	$\begin{array}{r} 14000- \\ 16000 \end{array}$	06000	06000
T6	17	Feedine Ladder (Af)	$\begin{array}{r} 14000= \\ 160.00 \end{array}$	06000	06000
T6	18	Feedline Ladder (A)	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	06000	06000
T6	19	Feedline Ladder (Af)	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	0.6000	06000
T7	1	$1625^{\prime \prime}$ coax	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	0.6000	0.6000
77	2	15* Hybrid	120.00-1	0.6000	06000

tnxTower	Job ATS\#9424 - Parkers Lake (Site\# KYLEX2061)		$\begin{aligned} & \text { Page } \\ & \\ & 14 \text { of } 34 \end{aligned}$
B + T Group 1717 S Boulder Ave. Suite 300	Project	255' SST/36.839322, -84.485103	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:11:55 02/22/22 } \end{array}$
Tulsa. OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Harmoni Towers	Designed by mwilliams

Tower Section	Feed Line Record No	Description	Feed line Segment Elev	K_{0} No lce	$\begin{aligned} & K_{2} \\ & \text { Ice } \end{aligned}$
17	4	1625° coax	$\begin{array}{r} 14000 \\ 12000- \\ 14000 \end{array}$	06000	0.6000
77	5	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 12000- \\ 140.00 \end{array}$	06000	06000
17	7	1625° coax	$\begin{gathered} 120.00- \\ 140.00 \end{gathered}$	06000	0.6000
17	8	15° Hybrid	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	06000	0.6000
17	10	1625^{*} coax	$\begin{array}{r} 12000- \\ 14000 \end{array}$	06000	06000
17	12	$1625^{\prime \prime}$ coas	$\begin{array}{r} 12000- \\ 140.00 \end{array}$	06000	06000
17	14	Safety Line 3/8	$\begin{array}{r} 120.00- \\ 14000 \end{array}$	06000	06000
17	15	Strobe Cable	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	06000	06000
77	17	Feedline Ladder (A)	$\begin{array}{r} 12000- \\ 140.00 \end{array}$	06000	06000
77	18	Feedline Ladder (Af)	$\begin{array}{r} 120.00= \\ 140.00 \end{array}$	06000	0.6000
77	19	Feedline Ladder (A)	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	06000	06000
T8	1	$1625^{\prime \prime}$ coax	$\begin{array}{r} 10000= \\ 120.00 \end{array}$	06000	06000
T8	2	15^{*} Hybrid	$\begin{array}{r} 100.00- \\ 120.00 \end{array}$	06000	06000
78	4	$1625^{\prime \prime}$ coax	$100.00-$	06000	06000
T8	5	15^{*} Hybrid	$\begin{gathered} 10000- \\ 120.00 \end{gathered}$	06000	0.6000
T8	7	1625" coax	$\begin{array}{r} 100.00- \\ 120.00 \end{array}$	06000	06000
T8	8	15^{*} Hybrid	$\begin{array}{r} 100.00- \\ 120.00 \end{array}$	06000	06000
T8	10	1625" coax	$\begin{gathered} 10000= \\ 12000 \end{gathered}$	06000	06000
T8	12	$1625^{\prime \prime}$ coax	$\begin{array}{r} 100.00- \\ 120.00 \end{array}$	06000	06000
T8	14	Safety Line 3/8	$\begin{array}{r} 10000 \\ 120.00 \end{array}$	06000	06000
T8	15	Strobe Cable	$100.00-$ 120.00	06000	06000
T8	17	Feedline Ladder (Af)	$\begin{gathered} 10000- \\ 120.00 \end{gathered}$	06000	06000
T8	18	Feedline Ladder (Af)	$\begin{array}{r} 100.00- \\ 120.00 \end{array}$	06000	0.6000
T8	19	Feedline Ladder (Af)	100.00 120.00	06000	06000
T9	1	$1625^{\prime \prime}$ coax	$80.00-10000$	06000	0.6000
T9	2	$15^{\prime \prime}$ Hybrid	$80.00-10000$	0.6000	0.6000
T9	4	$1625^{\prime \prime}$ coax	$80.00-10000$	0.6000	0.6000
T9	5	$15^{\prime \prime} \mathrm{Hybrid}$	$8000-10000$	06000	06000
T9	7	$1625^{\prime \prime}$ coax	$80.00-100.00$	06000	0.6000
T9	8	$15^{\prime \prime}$ Hybrid	$8000-10000$	0.6000	0.6000
T9	10	$1625^{\prime \prime}$ coax	$8000-10000$	06000	0.6000
T9	12	$1625^{\prime \prime}$ coax	$80.00-10000$	0.6000	0.6000
T9	14	Safety Line 3/8	$80.00-10000$	06000	06000
T9	15	Strobe Cable	$8000-10000$	06000	0.6000
T9	17	Feedline Ladder (Af)	$80.00-100.00$	06000	0.6000
T9	18	Feedline Ladder (A)	80.00-100.00	0.6000	0.6000
T9	19	Feedline Ladder (Af)	8000-100.00\|	06000	06000

Tower Section	Feed Line Record No	Description	Feed Line Segment Elev	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & K_{1} \\ & \text { ICe } \end{aligned}$
T10	1	1625" coax	$6000-8000$	06000	06000
T10	2	$15^{\prime \prime}$ Hybrid	$6000-8000$	06000	06000
T10	4	$1625^{\prime \prime}$ coax	$6000-8000$	0.6000	06000
T10	5	$15^{\prime \prime}$ Hybrid	$6000-8000$	06000	06000
T10	7	$1625^{\prime \prime}$ coax	$6000-8000$	06000	06000
T10	8	$15^{\prime \prime}$ Hybrid	6000-8000	06000	06000
T10	10	$16225^{\prime \prime}$ coax	$6000-8000$	06000	06000
T10	12	$1625^{\prime \prime}$ coax	$6000-80.00$	06000	06000
T10	14	Safety Line 3/8	6000-8000	06000	06000
T10	15	Strobe Cable	6000-80 00	06000	06000
T10	17	Feedlane Ladder (Af)	$6000-8000$	06000	06000
T10	18	Feedline Ladder (A)	$6000-80.00$	06000	06000
T10	19	Feedline Ladder (Af)	$6000-8000$	06000	06000
T11	1	$1625^{\prime \prime}$ coax	$4000-6000$	06000	06000
T11	2	$15^{\prime \prime}$ Hybrid	$40.00-6000$	06000	06000
T11	4	$1625^{\prime \prime}$ coax	4000-60 00	06000	06000
T11	5	$15^{\prime \prime}$ Hybrid	$4000-6000$	06000	06000
T11	7	$1625^{\prime \prime}$ coax	$4000-6000$	06000	06000
T11	8	$15^{\prime \prime}$ Hybrid	$4000-6000$	06000	06000
T11	10	$1625^{\prime \prime}$ coax	$4000-6000$	0.6000	06000
T11	12	$1625^{\prime \prime}$ coax	$4000-6000$	06000	06000
T11	14	Safety Line 3/8	$4000-6000$	06000	06000
TII	15	Strobe Cable	$4000-6000$	06000	06000
T11	17	Feedline Ladder (Af)	4000-60 00	06000	06000
T11	18	Feedline Ladder (Af)	4000-60 00	06000	06000
T11	19	Feedline Ladder (Af)	$4000-6000$	06000	06000
T12	1	$1625^{\prime \prime}$ coax	2000-4000	0.6000	06000
T12	2	$15^{\prime \prime}$ Hybrid	$2000-4000$	06000	06000
T12	4	$1625^{\prime \prime}$ coax	$2000-4000$	06000	06000
T12	5	$15^{\prime \prime}$ Hybrid	$2000-4000$	06000	06000
T12	7	$1625^{\prime \prime}$ coax	$2000-4000$	06000	06000
T12	8	$15^{\prime \prime}$ Hybrid	$2000=4000$	06000	06000
T12	10	$1625^{\prime \prime}$ coax	2000 - 4000	06000	06000
T12	12	$1625^{\prime \prime}$ coax	2000-4000	0.6000	06000
T12	14	Safety Line $3 / 8$	2000 - 4000	06000	06000
T12	15	Strobe Cable	$2000-4000$	06000	06000
T12	17	Feedline Ladder (Af)	2000-40 00	0.6000	06000
T12	18	Feedline Ladder (Af)	2000-40 00	06000	06000
T12	19	Feedline Ladder (Af)	$2000-4000$	06000	06000
T13	1	$1625^{\prime \prime}$ coax	1000-2000	06000	06000
T13	2	$15^{\prime \prime}$ Hybrid	1000-2000	06000	06000
T13	4	$1625^{\prime \prime}$ coax	$1000-2000$	06000	06000
T13	5	$15^{\prime \prime}$ Hybrid	1000-2000	06000	06000
T13	7	$1625^{\prime \prime}$ coax	$1000-2000$	06000	06000
T13	8	$15^{\prime \prime}$ Hybrid	10.00-20 00	06000	06000
T13	10	$16225^{\prime \prime}$ coax	$1000-2000$	06000	06000
T13	12	$1625^{\prime \prime}$ coax	1000-2000	06000	06000
T13	14	Safety Line 3/8	$1000-2000$	06000	06000
T13	15	Strobe Cable	$10.00-20.00$	0.6000	06000
T13	17	Feedlune Ladder (Af)	1000-2000	06000	06000
T13	18	Feedline Ladder (Af)	1000-2000	06000	06000
T13	19	Feedlane Ladder (AD)	$1000-2000$	06000	06000

tnxTower	ATS\#9424 - Parkers Lake (Site\# KYLEX2061)		$\begin{aligned} & \text { Page } \\ & 16 \text { of } 34 \end{aligned}$
B+T Group 1717 S Boulder Ave. Suite 300	Project	255' SST/36.839322, -84.485103	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:11:55 02/22/22 } \end{array}$
$\begin{gathered} \text { Tulsa. OK } 74119 \\ \text { Phone (9/8) 587-4630 } \\ \text { FAX }(9 / 5) 295-0265 \\ \hline \end{gathered}$	Client	Harmoni Towers	Designed by mwilliams

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustment 6	Placement		C. A_{1} Front $f{ }^{\prime}$	$C_{1} A_{1}$ Side $f r^{\circ}$	Weight	
Lightning Rod $1^{\prime \prime} \times 10^{\prime}$	C	From Leg	0000	0000	255000	Nolce	1000	1000	0040	
			0000			$1 / 2^{\prime \prime}$ Ice	2017	2017	0049	
						$1^{\prime \prime}$ Ice	3050	3050	0065	
						2" Ice	5148	5148	0.116	
Top Beacon	B	From Leg	0000	0000	255000	No Ice	2.700	2700	0050	
			0000			1/2' Ice	3100	3100	0070	
			1000			$1^{\prime \prime}$ Ice	3500	3500	0.090	
						$2^{\prime \prime}$ Ice	4300	4300	0130	
**										
Sector $1(\mathrm{CaAa}=1333333$		A	From Leg	4000	0000	250000	Nolce	92.600	62040	0700
	0000			1/2" Ice			115750	77550	1400	
(Carner 1)				$1^{\prime \prime}$ Ice			138900	93060	2100	
				$2^{\prime \prime}$ Ice			185200	124080	3.500	
Sector 2 ($\mathrm{CaAa}=1333333$ Sq in) No Ice (Carrier I)	B	From Leg		0000	250.000	Nolce	92600	62040	0700	
			0000			1/2" Ice	115750	77550	1400	
			0000			$1^{\prime \prime}$ Ice	138900	93060	2100	
						$2^{\prime \prime}$ Ice	185200	124080	3500	
Sector 3 ($\mathrm{CaAa}=1333333$ Sq in) No Ice (Carrier 1)	C	From Leg	4000	0000	250000	Nolce	92600	62040	0.700	
			0000			$1 / 2^{\prime \prime}$ Ice	115750	77550	1400	
			0000			$1^{\prime \prime}$ Ice	138900	93060	2.100	
						$2^{\prime \prime}$ Ise	185200	124080	3500	
Sector I $\mathrm{CaAa}=10000$ Sq in) No Ice (Carrier 2)	A	From Leg	4000	0000	238000	No Ice	69440	46525	0700	
			0000			1/2" Ice	86.800	58156	1400	
			0000			$1^{\prime \prime}$ Ice	104160	69787	2100	
						$2^{\prime \prime}$ Ise	138880	93050	3500	
Sector2(CaAa=10000 Sq in) No Ice (Carrier 2)	B	From Leg	4000	0000	238000	Nolce	69440	46525	0700	
			0000			$1 / 2^{\prime \prime}$ Ice	86800	58156	1400	
			0000			I' Ice	104160	69787	2.100	
						$2^{\prime \prime}$ Ice	138880	93050	3500	
Sector 3 (CaAa $=10000$ Sq in)No Ice (Carrier 2)	C	From Leg		0000	238.000	Nolce	69440	46525	0.700	
			0000			$1 / 2^{\prime \prime} \text { Ice }$	86.800	58156	1400	
						$\mathrm{I}^{\prime \prime}$ Ice	104160	69787	2100	
						$2^{\prime \prime}$ Ise	138880	93050	3500	
Sector 1 CaAa=10000 Sq in) No Ice (Carrier 3)	A	From Leg		0000	226000	No Ice				
			0000			$1 / 2^{\prime \prime} \text { Ice }$	86800	58156	1400	
			0000			$1^{\prime \prime}$ Ice	104160	69787	2100	
						$2^{\prime \prime}$ Ise	138880	93050	3500	
Sector $2(\mathrm{CaAa}=10000$ Sq in) No Ice (Carrier 3)	B	From Leg		0000	226000	No lce	69440	46525	0700	
			0000			1/2" Ise	86800	58156	1400	
			0000			$1^{\prime \prime}$ Ice	104160	69787	2100	
						$2^{\prime \prime}$ Ise	138880	93050	3500	
Sector 3 (CaAa $=10000$ Sq in)No Ice (Carrier 3)	C	From Leg	4000	0000	226.000	No Ice	69440	46525	0700	
			0.000			1/2" Ise	86800	58156	1400	
			0000			I' Ice	104160	69787	2.100	
						$2^{\prime \prime}$ Ise	138880	93050	3500	
**										
4 1/2" OD Dish Mount (Carnier 4)	C	From Leg	0500	0.000	214000	No lce	1870	1870	0.057	
			0000			1/2" Ise	2207	2207	0.074	
			0000			$\mathrm{I}^{\prime \prime}$ Ise	2543	2543	0094	
						$2^{\prime \prime}$ Ise	3241	3241	0148	
$41 / 2^{\prime \prime}$ OD Dish Mount (Carrier 4)	B	From Leg		0.000	214.000	No lce	1870	1870	0057	
			0000			1/2" Ice	2207	2207	0074	
			0000			1 " Ice	2543	2543	0094	
						$2^{\prime \prime}$ Ice	3241	3241	0.148	

Description	Face or Leg	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets Horz Lateral Vert f f ft	Azimuth Adjustment	Placement $f t$		CHI Front $\pi{ }^{\circ}$	C_{M} Side $t{ }^{\circ}$	Weight K
$41 / 2^{*}$ OD Dish Mount (Carrier 5)	C	From Leg	0500 0000 0.000	0000	202000	No Ice 1/2" Ise I" Ice 2"Ice	$\begin{aligned} & 1870 \\ & 2207 \\ & 2543 \\ & 3241 \end{aligned}$	$\begin{aligned} & 1870 \\ & 2207 \\ & 2543 \\ & 3241 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0074 \\ & 0094 \\ & 0.148 \end{aligned}$
41/2" OD Dish Mount (Carrier 5)	B	From Leg	$\begin{aligned} & 0500 \\ & 0000 \\ & 0000 \end{aligned}$	0.000	202000	No Ice 1/2" Ice I" Ice $2^{\prime \prime}$ Ice	$\begin{aligned} & 1870 \\ & 2207 \\ & 2543 \\ & 3241 \end{aligned}$	$\begin{aligned} & 1870 \\ & 2207 \\ & 2543 \\ & 3241 \end{aligned}$	$\begin{aligned} & 0057 \\ & 0074 \\ & 0094 \\ & 0.148 \end{aligned}$

Dishes

Description	Face or Leg	Dish Type	Offset Type	Offisets: Horz Lateral Vert ft	Azimuth Adjusiment	$3 d B$ Beam Width	Elevation	Outside Diameter		Aperture Area	Weight K
6^{\prime} MW Dish (Carrier 4)	C	Parabolosd w/o Radome	From Leg	$\begin{aligned} & 1000 \\ & 0000 \\ & 0000 \end{aligned}$	0.000		214000	6000	No Ice 1/2" Ice $\mathrm{I}^{\prime \prime}$ Ice $2^{\prime \prime}$ Ice	$\begin{aligned} & 28270 \\ & 29050 \\ & 29831 \\ & 31392 \end{aligned}$	$\begin{aligned} & 0.143 \\ & 0.292 \\ & 0.441 \\ & 0.740 \end{aligned}$
6' MW Dish (Carnier 4)	B	Parabolord w/o Radome	From Leg	$\begin{aligned} & 1000 \\ & 0000 \\ & 0000 \end{aligned}$	0.000		214000	6000	No Ice 1/2" Ice $\mathrm{I}^{\prime \prime}$ Ice $2^{\prime \prime}$ Ice	$\begin{aligned} & 28270 \\ & 29050 \\ & 29831 \\ & 31392 \end{aligned}$	$\begin{aligned} & 0.143 \\ & 0292 \\ & 0.441 \\ & 0740 \end{aligned}$
$6{ }^{\prime}$ MW Dish (Cartier 5)	C	Parabolotd w/o Radome	From Leg	$\begin{aligned} & 1000 \\ & 0000 \\ & 0000 \end{aligned}$	0000		202000	6000	No Ice 1/2" Ice $1^{\prime \prime}$ Ice 2^{-1} Ice	$\begin{aligned} & 28270 \\ & 29050 \\ & 29831 \\ & 31392 \end{aligned}$	$\begin{aligned} & 0.143 \\ & 0.292 \\ & 0.441 \\ & 0.740 \end{aligned}$
6 MW Dish (Carner 5)	B	Parabolord w/o Radome	From Leg	$\begin{aligned} & 1000 \\ & 0000 \\ & 0000 \end{aligned}$	0000		202.000	6000	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\prime \prime} \text { Ice } \\ & 1^{\prime} \text { Ice } \\ & 2^{-} \text {Ice } \end{aligned}$	$\begin{aligned} & 28270 \\ & 29050 \\ & 29831 \\ & 31392 \end{aligned}$	$\begin{aligned} & 0.143 \\ & 0292 \\ & 0.441 \\ & 0740 \end{aligned}$

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	12 Dead +10 Wind 0 deg - No Ice	
3	09 Dead +10 Wind 0 deg - No Ice	
4	12 Dead +10 Wind 30 deg - No Ice	
5	09 Dead +10 Wind 30 deg - No Ice	
6	12 Dead +10 Wind 60 deg - No Ice	

tnxTower	Job ATS\#9424 - Parkers Lake (Site\# KYLEX2061)		$\begin{aligned} & \text { Page } \\ & \\ & 18 \text { of } 34 \end{aligned}$
B+T Group 1717 S Boulder Ave. Suite 300	Project	255' SST/36.839322, -84.485103	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:11:55 02/22/22 } \end{array}$
Tulsa. OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Harmoni Towers	Designed by mwilliams

Comb No.	Description
7	09 Dead+10 Wind 60 deg - No Ice
8	12 Dead +10 Wind 90 deg - No Ice
9	09 Dead 10 Wind 90 deg - No lce
10	12 Dead +10 Wind 120 deg - No lce
11	09 Dead +10 Wind 120 deg - No lce
12	$12 \mathrm{Dead}+10 \mathrm{Wind} 150 \mathrm{deg}$ - No lce
13	09 Dead+10 Wind 150 deg - No lce
14	12 Dead+10 Wind 180 deg - No lce
15	09 Dead+10 Wind 180 deg - No lce
16	12 Dead +10 Wind 210 deg - No lee
17	09 Dead +10 Wind 210 deg - No lce
18	12 Dead +10 Wind 240 deg - No lce
19	09 Dead +10 Wind 240 deg - No lce
20	12 Dead +10 Wind 270 deg - No lce
21	$09 \mathrm{Dead}+10$ Wind 270 deg - No lce
22	12 Dead +10 Wind 300 deg - No lce
23	09 Dead+10 Wind 300 deg - No lce
24	12 Dead +10 Wind 330 deg - No Ice
25	09 Dead+10 Wind 330 deg - No lce
26	$12 \mathrm{Dead}+10 \mathrm{Ice}+10 \mathrm{Temp}$
27	12 Dead+10 Wind 0 deg+1 0 Jce+ 10 Temp
28	12 Dead+10 Wind $30 \mathrm{deg}+10$ Ice 10 Temp
29	12 Dead 100 Wind 60 deg+10 Ice+10 Temp
30	12 Dead+10 Wind $90 \mathrm{deg}+10 \mathrm{Ice}+10$ Temp
31	12 Dead +10 Wind $120 \mathrm{deg}+10$ Ice+10 Temp
32	12 Dead+10 Wind $150 \mathrm{deg}+10$ Ice +10 Temp
33	12 Dead+ 10 Wind $180 \mathrm{deg}+10$ Ice 10 Temp
34	12 Dead +10 Wind $210 \mathrm{deg}+10 \mathrm{lce}+10$ Temp
35	12 Dead +10 Wind 240 deg 10 Ice+ 10 Temp
36	12 Dead +10 Wind 270 deg +10 Ice 10 Temp
37	12 Dead +10 Wind $300 \mathrm{deg}+1.0$ Ice 10 Temp
38	12 Dead +10 Wind $330 \mathrm{deg}+10$ lce 10 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead-Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
4.	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead-Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead-Wind 300 deg - Service
50	Dead - Wind 330 deg - Service

Maximum Member Forces

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Condition	Gov: Load Comb	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
T1	255-240	Leg	Max Tension	15	14360	0588	-0 004
			Max Compression	2	-16327	0874	-0004
			Max. Mx	2	-16327	0874	-0 004
			Max My	4	-1269	-0028	-0 686
			Max Vy	2	-3034	0874	-0004
			Max VX_{X}	24	-2289	-0,005	0169
		Diagonal	Max Tension	2	3505	0000	0000
			Max Compression	2	-3583	0000	0000
			Max Mx	37	0489	0018	-0001

Section No	$\begin{gathered} \text { Elevation } \\ f f \end{gathered}$	Component Type	Condition	Gov: Load Comb	Axial K	Major Axis Moment kip-ft	$\begin{gathered} \text { Minor Axis } \\ \text { Moment } \\ \text { kip-ft } \end{gathered}$
17	$140-120$	Diagonal	Max Vy	18	-13158	0980	0044
			Max V_{x}	4	5113	0021	.0457
			Max Tension	20	9765	0000	0000
			Max Compression	20	-9699	0000	0000
			Max Mx	30	1643	0103	0008
		Leg	Max My	20	-9 588	-0008	0018
			Max Vy	3.4	0072	0.103	-0, 010
			Max Vx	20	-0003	0000	0000
			Max Tension	7	276807	4671	0188
			Max Compression	18	-305 173	1010	0041
			Max Mx	18	-262 120	7533	0358
			Max My	4	-18477	0191	$.3017$
		Diagonal	Max Vy	18	-14191	1010	0041
			Max Vx	4	5330	0022	-0 467
	$120 \cdot 100$		Max Tension	20	10229	0000	0000
			Max Compression	20	-10243	0000	0000
			Max Mx	34	0.444	0.123	-0012
		Leg	Max My	6	-8.775	0021	-0017
			Max Vy	34	0079	0123	-0.012
			Max Vx	28	-0.003	0000	0000
T8			Max Tension	7	313142	4939	0.178
			Max Compression	18	-347330	1231	0065
			Max Mx	18	-305.198	8083	0344
		Diagonal	Max My	4	-21 605	0189	-3135
			Max Vy	18	-15 192	1231	0065
			Max Vx	4	5635	0030	-0 717
	$100-80$		Max Tension	20	10701	0000	0.000
			Max Compression	20	-10.728	0000	0000
			Max Mx	34	0463	0145	-0014
		Leg	Max My	6	-9.257	0028	-0016
			Max Vy	34	0086	0145	-0014
			Max Vx	28	-0003	0000	0000
T9			Max Tension	7	348356	6034	0.195
			Max Compression	18	-389.239	0061	0.060
			Max Mx	18	-347359	8800	0360
		Diagonal	Max My	4	-24638	0202	-3537
			Max Vy	18	-15901	0061	0060
			Max Vx	4	6412	-0 020	-0823
	$80-60$		Max Tension	20	11511	0000	0000
			Max Compression	20	-11437	0000	0000
			Max Mx	34	0.625	0183	0017
		Leg	Max My	6	-10510	0058	-0021
			Max Vy	34	0099	0.175	-0016
			Max Vx	28	-0004	0000	0000
T10			Max Tension	7	382246	6258	0198
			Max Compression	18	-429936	0274	0.057
			Max Mx	18	-429 910	-8047	-0 245
			Max My	4	-27887	0.169	-4032
		Diagonal	Max Vy	18	-16629	0274	0057
			Max Vx	4	6481	-0012	-0 797
			Max Tension	21	12.683	0000	0.000
			Max Compression	18	-12983	0000	0000
		Horizontal	Max Mx	30	1758	0279	0000
			Max My	35	-0 140	0000	0007
			Max Vy	30	-0.103	0000	0000
			Max Vx	35	0003	0000	0000
			Max Tension	18	1709	-0059	0001
			Max Compression	20	-1791	0000	0000
			Max Mx	33	0.164	-0.179	0003
			Max My	6	0767	-0.049	0005
			Max Vy	33	0.095	-0.179	0003

Section No	Elevation f	Component Tipe	Condition		Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
		Diagonal	Max Tension	21	13189	0000	0000
			Max Compression	20	-13.435	0000	0000
			Max Mx	35	2477	0414	0000
			Max My	35	0887	0000	0010
			Max Vy	35	0.128	0000	0000
			Max Vx	35	-0.003	0000	0000
		Horizontal	Max Tension	18	2062	-0.131	0002
			Max Compression	20	-1962	0000	0000
			Max Mx	31	-0124	-0 326	0007
			Max My	37	0078	-0 324	0009
			Max Vy	31	0.133	-0. 326	0007
			Max Vx	37	0003	-0 324	0009
		Inner Bracing	Max Tension	1	0000	0000	0000
			Max Compression	37	-0012	0000	0000
			Max Mx	35	-0011	-0) 152	0000
			Max My	31	-0011	0000	-0 000
			Max Vy	35	-0.051	0000	0000
			Max Vx_{x}	31	0000	0000	0000

Location	Condition	Maximum Reactions			
		Gov: Load Comb	Vertical K	$\underset{K}{\text { Horizontal, } X}$	$\begin{gathered} \text { Horizontal. Z } \\ K \end{gathered}$
Leg C	Max Vert	18	543327	35029	-19696
	Max H_{1}	18	543327	35029	-19696
	Max H	7	-473559	-32061	17913
	Min Vert	7	-473559	-32061	17913
	Min H_{5}	7	-473559	-32061	17913
	Min H ,	18	543327	35029	-19696
Leg B	Max Vert	10	541353	-34850	-19767
	Max H ,	23	-471062	31860	17990
	Max H_{3}	23	-471062	31860	17990
	Min Vert	23	-471062	31860	17990
	$\mathrm{Min} H,$	10	541353	-344850	-19767
	Min $\mathrm{H}_{\text {, }}$	10	541353	-34850	-19767
$\operatorname{Leg~A}$		2	540190	0187	
	Max 11	21	32354	5323	1597
	Max $\mathrm{H}^{\text {, }}$	2	540190	0187	39831
	Min Vert	15	-456 393	-0 207	-35419
	Min H.	9	32354	-5319	1596
	Min $\mathrm{H}_{\text {f }}$	15	-456 393	-0 207	-35419

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear, K	Shear: K	Overturning Moment. M, kip-ft	Overturning Moment, M. kip-ft	Torque kip-ft
Dead Only	67707	0000	0000	6502	-3005	0000
1.2 Dead+10 Wind 0 deg - No	81248	-0 000	-66 993	-10664 739	-3.677	8237
Ice 09 Dead+10 Wind 0 deg - No	60936	-0 000	-66991	-10646227	-2 764	8228

Load Combination	Vertical K	Shear. K	Shear: K	Overfurning Moment. M. kip-ff	Overturning Moment, M kip-ft	Torque kip-ft
12 Dead+ 10 Wind 30 deg - No Ice	81248	33056	. 54612	-8726 118	-5366 536	32.399
09 Dead +10 Wind 30 deg - No Ice	60936	33057	-54613	-8711841	-5355607	32377
12 Dead+ 10 Wind 60 deg - No Ice	81248	55333	.31634	-5085 135	-8938926	19911
0.9 Dead +1.0 Wind 60 deg - No Ice	60936	55334	-31634	-5077628	-8921 345	19882
12 Dead+1 0 Wind 90 deg - No Ice	81248	64617	-1224	-248793	-10369 328	2579
09 Dead +10 Wind 90 deg - No Ice	60936	64618	-1224	-250280	-10349 148	2545
12 Dead+10 Wind 120 deg No Ice	81248	59489	31904	4964751	. 9476091	9015
09 Dead+10 Wind 120 deg No lce	60936	59488	31903	4953329	-9457025	8.993
12 Dead+1.0 Wind 150 deg No Ice	81248	31483	$54+12$	8696.156	-5033993	11565
0.9 Dead +10 Wind 150 deg No lce	60.936	31484	54413	8678019	-5023 714	11558
12 Dead+1 0 Wind 180 deg No Ice	81248	-0000	61587	9928627	-3666	-8236
09 Dead+1 0 Wind 180 deg No lce	60936	-0000	61589	9908120	-2755	-8228
12 Dead+ 10 Wind 210 deg No Ice	81248	-31586	54591	8737600	5050578	-26.939
09 Dead+1 10 Wind 210 deg No Ice	60.936	-31 587	54592	8719373	5042070	.26919
1.2 Dead+1 0 Wind 240 deg No lee	81248	. 59666	32006	4988.435	9509780	-15654
0.9 Dead+1 0 Wind 240 deg No Ice	60936	. 59664	32005	4976959	9492446	-15623
12 Dead+10 Wind 270 deg No lce	81248	-64617	-1224	-248791	10362068	-2 2778
09 Dead+10 Wind 270 deg No Ice	60.936	-64618	-1224	-250279	10343712	-2544
12 Dead+1 0 Wind 300 deg No Ice	81248	-55156	-31532	-5061510	8890687	-13272
0.9 Dead+1 10 Wind 300 deg No Ice	60936	-55157	.31 532	-5054055	8875019	.13251
12 Dead+10 Wind 330 deg No Ice	81248	-32953	-54 434	-8684.750	5335301	-17.025
09 Dead+1 0 Wind 330 deg No Ice	60936	.32954	. 54.435	-8670 56-4	5326249	-17017
12 Dead+10 Ice +10 Temp 12 Dead +10 Wind 0 deg +10	217568	-0001 -0 000	$\begin{aligned} & -0003 \\ & -9330 \end{aligned}$	42183	$\begin{aligned} & -29188 \\ & -29684 \end{aligned}$	0.001 1148
lce +10 Temp 12 Dead 10 Wind $30 \mathrm{deg}+10$ Ice+1 0 Temp	217568	4655	-7826	-1263698	-813420	3455
12 Dead+1 0 Wind $60 \mathrm{deg}+10$ Ice +10 Temp	217568	7955	-4 565	.720637	-1362946	2865
12 Dead+10 Wind $90 \mathrm{deg}+10$ Ice +10 Temp	217568	9267	-0.110	19675	-1575 501	1.341
12 Dead 10 Wind 120 deg+ 1.0 Ice 10 Temp	217568	8253	4546	788966	-1402583	1143
12 Dead+ 10 Wind 150 $\mathrm{deg}+10 \mathrm{Ice}+10 \mathrm{Temp}$	217568	4515	7809	1346078	. 783261	0866
12 Dead +10 Wind 180 deg+1.0 Ice+10 Temp	217.568	-0 000	8934	1540886	-29680	-1.146
12 Dead +10 Wind 210 $\mathrm{deg}+1.0 \mathrm{Ice}+10 \mathrm{Temp}$	217568	4523	7824	1349530	725891	-2964

Load Combination	Vertical K	Shear. K	Shear: K	Overturning Moment, M. kip-fl	Overturning Moment, $M_{\text {F }}$ kip-ft	Torque kip-ft
$\begin{aligned} & 12 \text { Dead }+10 \text { Wind } 240 \\ & \text { deg }+10 \text { Ice }+10 \text { Temp } \end{aligned}$	217568	-8.267	4554	790.882	1346530	-2 483
12 Dead+ 10 Wind 270 $\mathrm{deg}+10 \mathrm{Ice}+10 \mathrm{Temp}$	217.568	-9267	-0 110	19678	1516.138	-1340
12 Dead +10 Wind 300 deg+1. $0 \mathrm{Ice}+10 \mathrm{Temp}$	217568	-7940	-4556	-718 641	1300.130	-1524
12 Dead +1.0 Wind 330 $\mathrm{deg}+10 \mathrm{lce}+10 \mathrm{Temp}$	217568	-4647	.7811	-1260.245	752062	-1357
Dead+Wind 0 deg - Service	67.707	-0.000	-21874	-3474085	-3.028	2688
Dead+Wind 30 deg - Service	67707	10794	-17833	-2842048	-1752026	10.594
Dead+Wind 60 deg - Service	67.707	18068	-10 329	-1654 538	-2917.193	6.496
Dead+Wind 90 deg - Service	67707	21100	-0 400	.77.137	-3383760	0.817
Dead+Wind 120 deg - Service	67707	19.425	10417	1623124	-3092277	2936
Dead+Wind 150 deg - Service	67.707	10280	17.767	2840174	-1643697	3.793
Dead+Wind 180 deg - Service	67.707	-0 000	20.110	3242133	-3026	-2688
Dead+Wind 210 deg - Service	67707	-10314	17826	2853679	1645444	-8 808
Dead+Wind 240 deg - Service	67.707	-19.482	10.451	1630840	3099591	-5.102
Dead+Wind 270 deg - Service	67707	-21 100	-0 400	-77.137	3377715	-0.816
Dead+Wind 300 deg - Service	67707	-18.010	-10296	-1646826	2897789	-4.330
Dead+Wind 330 deg - Service	67.707	-10.760	-17775	-2828 547	1738.178	-5.574

Solution Summary

Load Comb.	Sum of Applied Forces			Sum of Reactions			\% Error
	PX	PY	$P Z$	PX	PY	PZ	
	K	K	K	K	K	K	
1	0000	-67 707	0000	-0000	67707	-0.000	0000\%
2	0.000	-81248	-66 995	0000	81248	66.993	0002\%
3	0000	-60.936	-66.995	0.000	60936	66.991	0.005\%
4	33059	-81.248	-54.617	-33.056	81248	54.612	0.005\%
5	33059	-60936	-54617	-33.057	60936	54.613	0004\%
6	55337	-81248	-31.636	-55.333	81248	31.634	0.005\%
7	55337	-60.936	-31.636	-55.334	60936	31.634	0.004\%
8	64622	-81248	-1224	-64 617	81248	1224	0.005\%
9	64.622	-60 936	-1224	-64 618	60936	1224	0.004\%
10	59492	. 81.248	31905	. 59.489	81248	. 31.904	0002\%
11	59492	-60936	31.905	-59.488	60.936	-31.903	0.005\%
12	31.486	-81248	54.417	-31483	81248	-54.412	0.005\%
13	31486	-60.936	54.417	-31 484	60936	-54413	0.004\%
14	0000	-81248	61592	0.000	81248	-61 587	0.005\%
15	0000	-60936	61592	0000	60936	-61.589	0.004\%
16	-31589	-81248	54.595	31586	81248	-54591	0005\%
17	-31 589	-60.936	54595	31587	60.936	-54.592	0.004\%
18	-59 668	-81248	32007	59666	81248	-32006	0002\%
19	-59 668	-60 936	32007	59664	60936	-32005	0005\%
20	-64 622	-81248	-1224	64617	81248	1224	0005\%
21	-64 622	-60.936	-1224	64618	60.936	1224	0004\%
22	-55.160	-81248	-31534	55.156	81248	31.532	0005\%
23	-55160	-60.936	-31 534	55157	60936	31.532	0004\%
24	-32.956	-81.248	-54.438	32.953	81248	54.434	0.005\%
25	-32.956	-60.936	-54.438	32954	60.936	54435	0004\%
26	0.000	-217568	0000	0001	217568	0003	0001\%
27	0000	-217.568	-9332	0000	217568	9330	0001\%
28	4656	-217.568	-7.827	-4655	217.568	7826	0.001\%
29	7956	-217568	-4565	-7.955	217568	4565	0001\%
30	9268	-217568	-0.110	-9.267	217568	0.110	0.001\%
31	8254	-217568	4.546	-8253	217568	-4546	0000\%
32	4515	-217568	7810	-4515	217568	-7809	0001\%

tnxTower	Job ATS\#9424 - Parkers Lake (Site\# KYLEX2061)		$\begin{aligned} & \text { Page } \\ & 25 \text { of } 34 \end{aligned}$
B + T Group 1717 S Boulder Ave. Suite 300	Project	255 ' SST/36.839322, -84.485103	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:11:55 02/22/22 } \end{array}$
Tulsa. OK 74119 Phone: (918) 5×7-4630 FAX (9/K) 295-0265	Client	Harmoni Towers	Designed by mwilliams

$\begin{aligned} & \text { Load } \\ & \text { Camb } \end{aligned}$	Sum of Applied Forces			Sum of Reactions			\% Error
	$P X$	PY	$P Z$	$P X$	PY	$P Z$	
	K	K	K	K	K	K	
33	0000	-217568	8935	0000	217568	-8934	0001%
34	-4524	-217568	7825	4523	217.568	-7824	0001\%
35	-8268	-217568	4554	8267	217568	-4554	0001%
36	-9268	-217568	-0110	9267	217568	0.110	0001\%
37	-7941	-217568	-4 557	7940	217568	4556	0001%
38	4647	-217568	-7812	4647	217568	7811	0001%
39	0000	-67707	-21876	0000	67707	21874	0002\%
40	10795	-67707	-17834	-10794	67707	17833	0002\%
41	18069	-67707	-10.330	-18068	67707	10329	0002\%
42	21101	-67.707	-0.400	-21.100	67707	0400	0002\%
43	19426	-67 707	10418	-19425	67707	-10417	0002\%
44	10281	-67707	17769	-10280	67707	-17767	0002\%
45	0000	-67707	20112	0000	67707	-20110	0002\%
46	-10315	-67707	17.827	10314	67707	-17826	0002\%
47	-19484	-67707	10451	19482	67.707	-10451	0002\%
48	-21 101	-67707	-0) 400	21100	67707	0400	0002\%
49	. 18012	-67 707	-10297	18010	67707	10296	0002\%
50	-10.761	-67707	-17.776	10.760	67707	17775	0002\%

Non-Linear Convergence Results

Load Combination	Converged'	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	6	0.00000001	0.00000001
2	Yes	13	000002896	000006798
3	Yes	12	000005201	000011664
4	Yes	12	0.00006438	000014413
5	Yes	12	000004779	000010746
6	Yes	12	000006070	000013617
7	Yes	12	000004420	000009961
8	Yes	12	000006444	000014420
9	Yes	12	0.00004786	0.00010755
10	Yes	13	000002892	000006785
11	Yes	12	000005194	000011640
12	Yes	12	000006469	000014477
13	Yes	12	000004809	000010810
14	Yes	12	0.00006080	000013646
15	Yes	12	000004429	000009986
16	Yes	12	000006471	00001448.4
17	Yes	12	000004811	000010815
18	Yes	13	000002894	000006791
19	Yes	12	000005198	0.00011652
20	Yes	12	000006444	000014421
21	Yes	12	000004786	000010756
22	Yes	12	000006069	000013614
23	Yes	12	000004420	000009959
24	Yes	12	000006436	000014406
25	Yes	12	0.00004777	0.00010741
26	Yes	7	000000001	0.00014954
27	Yes	13	000000001	000014482
28	Yes	13	0.00000001	000014418
29	Yes	13	00000001	0.00014626
30	Yes	13	000000001	0.00014895
31	Yes	14	000000001	0.00006587
32	Yes	13	0.0000001	000014911
33	Yes	13	000000001	000014830

34	Yes	13	000000001	000014787
35	Yes	13	000000001	000014906
36	Yes	13	000000001	000014571
37	Yes	13	000000001	000014310
38	Yes	13	000000001	000014201
39	Yes	12	000000001	000011962
40	Yes	12	000000001	000011671
41	Yes	12	00000001	000011431
42	Yes	12	000000001	000011669
43	Yes	12	0.0000001	0.00011945
44	Yes	12	000000001	000011686
45	Yes	12	000000001	000011443
46	Yes	12	000000001	000011693
47	Yes	12	00000001	000011954
48	Yes	12	000000001	000011670
49	Yes	12	000000001	000011426
50	Yes	12	000000001	000011665

Maximum Tower Deflections - Service Wind

Section No.	Elevation ft	Hor: Deflection in	Gov. Load Comb	Tilt	Twist
TI	255-240	13145	47	0438	0.076
T2	240-220	11746	47	0433	0073
T3	220-200	9879	47	0408	0070
T4	200-180	8125	47	0374	0061
T5	$180-160$	6544	47	0332	0051
T6	$160-140$	5139	47	0291	0041
T7	140-120	3925	47	0245	0.033
18	120-100	2888	47	0203	0026
T9	100-80	2011	47	0165	0018
T10	80-60	1297	47	0130	0012
T11	$60-40$	0765	47	0094	0009
T12	40-20	0374	47	0062	0.006
T13	20-0	0.118	47	0029	0003

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov: Load Comb	Deflection in	Tilt	Twist -	Radius of Cunvature ft
255000	Lightning Rod 1"x ${ }^{(10}$	47	13145	0.438	0076	343605
250000	$\begin{gathered} \text { Sector } 1(\mathrm{CaA} a=13333.33 \mathrm{Sq} \text { in }) \text { No } \\ \text { Ice } \end{gathered}$	47	12.679	0.437	0.075	343605
238000	Sector $1(\mathrm{CaAa}=10000 \mathrm{Sq}$ in) No Ise	47	11558	0432	0.073	214071
226000	Sector 1 $\mathrm{CaAa}=10000 \mathrm{Sq}$ in) No lce	47	10433	0417	0071	56549
214000	6^{\prime} MW Dish	47	9337	0399	0067	31253
202000	$6{ }^{\text {6 MW Dish }}$	47	8293	0.378	0.062	25913

Section No	Elevation ft	Hor: Deflection in	Gor Load Comb	Tilt	Twist
TI	255-240	40321	18	1343	0231
12	240-220	36033	18	1328	0225
T3	220-200	30309	18	1252	0213
T4	$200-180$	24927	18	1146	0187
T5	$180-160$	20080	18	1019	0155
T6	160 - 140	15769	18	0892	0.127
17	$140-120$	12042	18	0750	0103
T8	$120-100$	8861	18	0621	0079
T9	100-80	6170	18	0505	0056
T10	80-60	3981	18	0400	0038
TII	$60 \cdot 40$	2347	18	0289	0027
T12	$40-20$	1149	18	0190	0017
T13	20-0	0362	18	0090	0008

Critical Deflections and Radius of Curvature - Design Wind

Elcuation	Appurtenance	Gov: Load Comb	Deflection in	Tilt	Twist a.	Radius of Cunvature ft
255000	Lightning Rod 1"x10	18	40321	1343	0231	113472
250000	$\begin{gathered} \text { SectorI(CaAa=13333 } 33 \mathrm{Sq} \text { in }) \text { No } \\ \text { lce } \end{gathered}$	18	38.895	1341	0229	113472
238000	Sector I(CaAa=10000 Sq in)No Ice	18	35.457	1323	0224	71508
226000	Sectorl($\mathrm{CaAa}=10000 \mathrm{Sq}$ in) No Ice	18	32008	1280	0217	18588
214000	$6{ }^{6} \mathrm{MW}$ Dish	18	28.645	1222	0206	10251
202000	$6{ }^{6}$ MW Dish	18	25443	1158	0190	8496

Bolt Design Data

Section No	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of Bolts	$\begin{gathered} \text { Maximum } \\ \text { Load } \\ \text { per Bolt } \\ K \end{gathered}$	Allowable Load per Bolt K	Ratio Load	Allowable Ratio	Criteria
	tt			in				Allowable		
TI	255	Diagonal	A325X	0625	1	3505	9.598	0365	1	Member Block Shear
		Top Girt	A325 X	0625	1	0403	9598	$0042 \quad$	1	Member Block Shear
T2	240	Leg	A325N	0.750	6	2392	30.101	0.079	1	Bolt Tension
		Diagonal	A325X	0625	1	7765	9598	0809	1	Member Block Shear
T3	220	Leg	A 325 N	0.750	6	9685	30.101	0322 V	1	Bolt Tension
		Diagonal	A325X	0.625	1	8793	10740	0819	1	Member Block Shear
T4	200	Leg	A 325 N	1.000	6	17947	54517	0329 V	1	Bolt Tension
		Diagonal	A325X	0625	1	9168	13025	0704	1	Member Block Shear
T5	180	Leg	A 325 N	1000	6	26004	54517	0477	1	Bolt Tenston
		Dagonal	A325X	0625	1	9446	13025	0725	1	Member Block Shear
T6	160	Leg	A 325 N	1.000	6	33206	54517	0609	1	Bolt Tension

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation$f t$	Size	L	L_{0}	Kl/r	A in	$P_{\mathrm{s}}$$K$	$\begin{gathered} \phi P_{=} \\ K \end{gathered}$	Ratio P_{n} ϕP_{n}
			$f t$	$f t$					
TI	255-240	13/4	15014	4671	$\begin{gathered} 1281 \\ K=100 \end{gathered}$	2405	-13354	33103	$0^{0.403}$
12	$240-220$	21/4	20.019	4.754	$\begin{gathered} 1014 \\ K=100 \end{gathered}$	3976	-57763	84331	0.685^{\prime}
13	$220-200$	23/4	20.019	4754	$\begin{gathered} 830 \\ K=100 \end{gathered}$	5940	-112051	161540	$0^{0.694}$
T4	$200-180$	3	20019	4.754	$\begin{gathered} 76.1 \\ K=100 \end{gathered}$	7069	-164526	208347	$0^{0790^{\circ}}$
T5	$180-160$	$31 / 4$	20019	4754	702	8296	-212039	260312	0.815^{\prime}

tnxTower	Job ATS\#9424-Parkers Lake (Site\# KYLEX2061)		$\begin{aligned} & \text { Page } \\ & 29 \text { of } 34 \end{aligned}$
B+T Group 1717 S Boulder Ave. Suute 300	Project	255' SST/36.839322, -84.485103	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:11:55 02/22/22 } \end{array}$
Tulsa. OK $741 / 9$ Phone: (9I8) 587-4630 FAX (918) 295-0265	Client	Harmoni Towers	Designed by mwilliams

Section No	Elevation	Size	L	L_{n}	Klr	A $i n^{2}$	P. K	ϕP K	$\begin{gathered} \text { Ratio } \\ P_{\sigma} \\ \hline \phi P_{n} \end{gathered}$
	$f t$								
					$\mathrm{K}=100$				\checkmark
T6	$160 \cdot 140$	$31 / 4$	20019	4754	$\begin{gathered} 702 \\ K=100 \end{gathered}$	8296	-256435	260312	
17	$140 \cdot 120$	$31 / 2$	20.019	4.754	$\begin{gathered} 652 \\ \mathrm{~K}=100 \end{gathered}$	9621	-299 377	317273	0.944
T8	$120 \cdot 100$	33/4	20019	4.754	$\begin{gathered} 609 \\ K=100 \end{gathered}$	11045	-341522	379106	
T9	$100-80$	4	20.019	4754	$\begin{gathered} 57.1 \\ \mathrm{~K}=100 \end{gathered}$	12566	-383494	445717	$\begin{gathered} 0860 \\ V \end{gathered}$
T10	$80-60$	4	20019	4754	$\begin{gathered} 57.1 \\ \mathrm{~K}=1.00 \end{gathered}$	12566	-419419	445717	0.941
T11	$60 \cdot 40$	41/4	20019	4.754	$\begin{gathered} 53.7 \\ K=100 \end{gathered}$	14.186	-458991	517034	$\begin{gathered} 0888 \\ V \end{gathered}$
T12	40-20	41/4	20019	4754	$\begin{gathered} 53.7 \\ K=100 \end{gathered}$	14186	-497389	517034	0.962
T13	20-0	41/2	20019	4754	$\begin{gathered} 50.7 \\ K=100 \end{gathered}$	15904	-534 375	593004	

${ }^{1} P_{\alpha} / \phi P_{n}$ controls

Diagonal Design Data (Compression)

Section No	Elevation	Size	L	\boldsymbol{L}_{α}	Kl/r	A	P_{*}	ϕP_{*}	Ratio P_{*}
	$f t$		$f 1$	f		in	K	K	ϕP_{n}
T1	255-240	L. $3 / 4 \mathrm{x}$ \| $3 / 4 \times 3 / 16$	7.166	3605	$\begin{gathered} 1259 \\ \mathrm{~K}=100 \end{gathered}$	0621	-3583	11206	0320^{1}
12	$240-220$	L. $3 / 4 \times 13 / 4 \times 3 / 16$	8697	4343	$\begin{gathered} 1517 \\ \mathrm{~K}=100 \end{gathered}$	0621	.7332	7721	0950
T3	$220 \cdot 200$	$1.2 \times 2 \times 3 / 16$	9987	4964	$\begin{gathered} 1512 \\ \mathrm{~K}=100 \end{gathered}$	0715	-8096	8951	0.904^{\prime}
T4	$200-180$	$1.21 / 2 \times 21 / 2 \times 3 / 16$	11.329	5.625	$\begin{gathered} 1364 \\ K=100 \end{gathered}$	0902	-8754	13885	0630
T5	$180 \cdot 160$	$1.21 / 2 \times 21 / 2 \times 3 / 16$	12706	6303	$\begin{gathered} 1528 \\ K=100 \end{gathered}$	0902	.9 023	11057	0.816^{1}
16	$160 \cdot 140$	L $3 \times 3 \times 3 / 16$	14108	7005	$\begin{gathered} 1410 \\ K=100 \end{gathered}$	1090	.9.276	15683	
17	$140-120$	L. $3 \times 3 \times 3 / 16$	15.529	7705	$\begin{gathered} 155.1 \\ \mathrm{~K}=1 \\ \hline 100 \end{gathered}$	1090	-9.865	12964	0761
T8	$120 \cdot 100$	L $3 \times 3 \times 3 / 16$	16.963	8.412	$\begin{gathered} 1694 \\ K=100 \end{gathered}$	1090	-10495	10877	0.965^{\prime}
T9	$100-80$	$1.3 \times 3 \times 1 / 4$	18.408	9124	$\begin{gathered} 184.9 \\ K=100 \end{gathered}$	1440	-11284	12.050	0^{0936}
T10	$80-60$	$21.21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	10829	10644	$\begin{gathered} 1684 \\ K=100 \end{gathered}$	1800	-12525	17598	$\overbrace{}^{0.712}$
T11	60.40	$\begin{aligned} & 2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>60.948 \text { in }-245 \\ & 21.2 \mathrm{I} / 2 \times 2 \mathrm{I} / 2 \times 3 / 16 \times 3 / 8 \end{aligned}$	11508	11313	$\begin{gathered} 179.0 \\ K=1.00 \end{gathered}$	1800	-13031	15.641	0.833^{\prime}
T12	$40-20$	$\begin{aligned} & \text { 21. ' } a^{\prime}>64783 \text { in }-284 \\ & 2121 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8 \end{aligned}$	12.195	12003	189.9	1800	-13.149	13944	$0943{ }^{\prime}$

tnxTower	Job ATS\#9424-Parkers Lake (Site\# KYLEX2061)		$\begin{aligned} & \text { Page } \\ & \\ & 30 \text { of } 34 \end{aligned}$
B + T Group 1717 S Boulder Ave. Suite 300	Project	255' SST/36.839322, -84.485103	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:11:55 02/22/22 } \end{array}$
Tulsa. OK 74119 Phone: (918) 587-4630 FAX (918) 295-0265	Client	Harmoni Towers	Designed by mwilliams

Section No.	Elevation	Size	L	$L_{\text {\% }}$	Klr	A	P_{*}	ϕP_{n}	Ratio P_{4}
	fr		ft	n		in'	K	K	$\phi P_{\text {a }}$
T13	20.0				$\mathrm{K}=100$				V
		$\begin{gathered} \text { 2L. } \mathrm{a}^{\prime}>68729 \text { in }-323 \\ 2 \mathrm{~L} .3 \times 3 \times 3 / 16 \times 3 / 8 \end{gathered}$	12889	12.687	$\begin{gathered} 1688 \\ K=100 \end{gathered}$	2180	-13.435	20849	
		21. $\mathrm{a}^{\prime}>72475$ in - 362							

${ }^{1} P_{\sim} / \phi P_{n}$ controls

Horizontal Design Data (Compression)									
Scction	Elcation	SEe	t	\llcorner	Kır	1	${ }^{\text {P. }}$	${ }_{8} P^{\text {P }}$	Ratio
	f		f	${ }^{\prime \prime}$		${ }^{i n}{ }^{\text {? }}$	κ	κ	¢P.
T10	80.60	$21.134 \times 134 \times 3 / 16 \times 3 / 8$	19106	9386	$\begin{gathered} 2098 \\ k=100 \end{gathered}$	1242	-7452	8079	,
${ }^{111}$	${ }^{60}$		20606	10126	1981 $\mathrm{~K}=100$	1430	-8138	10289	0791
${ }^{12}$	$40-20$	2L ' a ' >58196 in - 289 $21.2 \times 2 \times 3 / 16 \times 3 / 8$	22106	10876	$\begin{gathered} 2128 \\ \mathrm{~K}=100 \end{gathered}$	1430	-8798	8936	$\stackrel{0.855^{\prime}}{ }$
113	20.0	2L. $\mathrm{a}^{\prime}>62506$ in -328 2L. $21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$ $21^{\prime} \mathrm{a}^{\prime}>66.514 \mathrm{in}-367$	23606	11616	1888 $K=100$	1800	-9437	14861	${ }^{0635}$

${ }^{1} P_{*} / \phi P_{*}$ controls

Top Girt Design Data (Compression)

Section No.	Elcuation	Size	L	L_{*}	Kl / r	A	$P_{\text {s }}$	ϕP_{*}	Ratio P_{α}
	$f t$		f	f		$i n^{2}$	K	K	ϕP_{*}
TI	255 - 240	1.13/4x $3 / 4 \times 3 / 16$	4913	4767	$\begin{gathered} 1665 \\ K=100 \end{gathered}$	0621	-0) 456	6409	$0^{0.071}$

${ }^{1} P_{\alpha} / \phi P_{\text {, }}$ controls

Inner Bracing Design Data (Compression)									
Section No.	Elevation	Size	L	L_{*}	Kl / r	A	P_{\sim}	ϕP_{*}	$\begin{gathered} \text { Ratio } \\ P_{*} \end{gathered}$
	$f t$		$f t$	ft		in ${ }^{2}$	K	K	ϕP,
T10	$80-60$	L.I 3/4×13/4×3/16	9.553	9553	3338	0621	-0010	1596	$0.00{ }^{\prime}$

Section No	Elevation	Sise	L	L	Klr	A	P_{\sim}	ϕP_{n}	Ratio P_{o}
	f		f	f		$i{ }^{\prime}$	K	κ	ϕP_{\sim}
T11	60.40	$\mathrm{K}=100$							V
		$\begin{gathered} \mathrm{KL} / \mathrm{R}>250(\mathrm{C})-255 \\ 1.13 / 4 \times 13 / 4 \times 3 / 16 \end{gathered}$	10303	10303	$\begin{gathered} 3600 \\ K=100 \end{gathered}$	0.621	-0011	1372	0.008^{\prime}
T12	$40 \cdot 20$	$\begin{gathered} \mathrm{KL} / \mathrm{R}>250(\mathrm{C})-294 \\ \mathrm{~L} 13 / 4 \times 13 / 4 \times 3 / 16 \end{gathered}$	11053	11053	$\begin{gathered} 386.2 \\ K=100 \end{gathered}$	0621	-0.011	1192	
713	20-0	$\begin{gathered} \mathrm{KL} / \mathrm{R}>250(\mathrm{C})-333 \\ \mathrm{~L} 13 / 4 \times 13 / 4 \times 3 / 16 \end{gathered}$	11803	11803	$\begin{gathered} 412.4 \\ K=100 \end{gathered}$	0621	-0.012	1045	
		$K L / R>250(C)-370$							

[^0]
Tension Checks

Leg Design Data (Tension)

Section No	Elevation	Size	L	1.	Kl / r	A	P_{\sim}	ϕP_{6}	Ratio P_{-}
	ft		$f t$	f		$i n^{2}$	K	K	ϕP^{\prime}
TI	$255-240$	$13 / 4$	15014	0.500	13.7	2405	14360	108238	$0.13{ }^{\prime}$
T2	$240-220$	$21 / 4$	20019	0.500	10.7	3976	58123	178924	0325^{1}
T3	$220-200$	$23 / 4$	20.019	0.500	87	5940	107694	267281	0.403^{1}
T4	$200-180$	3	20.019	0.500	80	7069	156036	318086	
T5	$180-160$	$31 / 4$	20019	0500	74	8296	199247	373310	
T6	$160-140$	$31 / 4$	20019	0500	74	8296	238991	373310	0640^{1}
17	$140 \cdot 120$	$31 / 2$	20019	0.500	69	9621	276807	432951	0639 '
T8	$120 \cdot 100$	$33 / 4$	20.019	0.500	64	11045	313.142	497010	0.630^{1}
T9	$100-80$	4	20.019	0500	60	12566	348356	565487	
T10	$80 \cdot 60$	4	20.019	0.500	60	12.566	382.246	565487	0.676^{1}
T11	$60-40$	41/4	20019	0500	5.7	14186	414647	638381	0.650^{\prime}
T12	$40=20$	41/4	20019	0.500	57	14186	445483	638381	
T13	$20-0$	$41 / 2$	20019	0.500	53	15904	474779	715694	0663^{\prime}

${ }^{1} P_{\sim} / \phi P_{-}$controls

Diagonal Design Data (Tension)									
Section No	Elevation	Size		L_{\sim}	K/r		${ }_{\text {P }}$	ϕP	$\begin{gathered} \text { Ratio } \\ P_{s} \\ \hline \end{gathered}$
	f		f	ft		in?	K	κ	ϕP_{\sim}
TI	255.240	L. 3 3/4x $13 / 4 \times 3 / 16$	7435	3736	835	0360	3505	17567	$0200{ }^{1}$
									\checkmark
12	$240 \cdot 220$	L. $3 / 4 \times 13 / 4 \times 3 / 16$	8697	4343	971	0360	7765	17567	0442
T3	220-200	$12 \times 2 \times 3 / 16$	9987	4964	966	0431	8793	21001	0.419
									\checkmark
T4	200-180	L. $2^{1 / 2 \times 21 / 2 \times 3 / 16 ~}$	11329	5625	868	0.571	9168	27838	0329
T5	$180-160$	1.2 $1 / 2 \times 21 / 2 \times 3 / 16$	12706	6303	972	0571	9.446	27838	${ }_{0339}$
									\checkmark
T6	160-140	L $3 \times 3 \times 3 / 16$	14108	7005	895	0712	9765	34712	$0281{ }^{\prime}$
17	$140 \cdot 120$	$1.3 \times 3 \times 3 / 16$						34712	
	$140 \cdot 120$	L3x3x3/16	15529	7705	985	0.712	10229	34712	
T8	$120 \cdot 100$	L. $3 \times 3 \times 3 / 16$	16963	8412	1075	0712	10701	34712	0308
T9	$100-80$	$1.3 \times 3 \times 1 / 4$	18.408	9124	1177	0939	11.511	45794	0251^{\prime}
T10	$80-60$	21.2 1/2×2 1/2×3/16×3/8	10829	106.4	1642	1139	12683	55529	${ }^{0} 228{ }^{1}$
		$\text { 2L ' } a^{\prime}>60948 \text { in }-246$							\checkmark
T11	60.40	$21.21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	11508	11.313	1745	1139	13032	55.529	$023{ }^{1}$
									\checkmark
		2L ' $\mathrm{a}^{\prime}>64.783$ in -285							
T12	40-20	$21.21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	12195	12003	185.1	1139	13044	55529	0.235^{\prime}
		$\begin{gathered} \text { 2L. } a^{\prime}>68729 \text { in }-324 \\ 2 \mathrm{~L} .3 \times 3 \times 3 / 16 \times 3 / 8 \end{gathered}$							
T13	$20 \cdot 0$	2 L. $3 \times 3 \times 3 / 16 \times 3 / 8$	12889	12687	1621	1424	13189	69423	
		2L ' $\mathrm{a}^{\prime}>72475$ in - 363							

${ }^{1} P_{*} / \phi P_{*}$ controls

Horizontal Design Data (Tension)

Section No.	Elevation	Size	L	L	Kl/r	A	P_{*}	ϕP_{n}	Ratio P_{+}
	$f 1$		$f t$	f		$m m^{2}$	K	K	$\phi P_{\text {n }}$
T10	$80-60$	2L. $3 / 4 \times$ I $3 / 4 \times 3 / 16 \times 3 / 8$	19.106	9386	2098	0.721	7452	35134	0.212^{1}
		$2 L^{\prime} \mathrm{a}^{\prime}>54.035 \mathrm{n}-250$							
T11	60.40	$2 \mathrm{~L} 2 \times 2 \times 3 / 16 \times 3 / 8$	20606	10126	1969	0862	8138	42001	0.194^{1}

tnxTower	Job ATS\#9424 - Parkers Lake (Site\# KYLEX2061)		$\begin{aligned} & \text { Page } \\ & \\ & 33 \text { of } 34 \end{aligned}$
B+T Group 1717 S Boulder Ave, Suite 300	Project	255 ' SST/36.839322, -84.485103	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:11:55 02/22/22 } \end{array}$
Tulsa OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Harmoni Towers	Designed by mwilliams

Section No.	Elevation	Suze	L	L_{4}	$\mathrm{Kl/r}$	A	P	ϕP_{*}	Ratio P_{+}
	n		f	f		in ${ }^{2}$	K	κ	ϕP_{*}
T12	$40-20$	$\begin{gathered} \text { 2L } \mathrm{L}^{\prime}>58 \quad 196 \text { in }-289 \\ 2 \mathrm{~L} \cdot 2 \times 2 \times 3 / 16 \times 3 / 8 \end{gathered}$	22.106	10876	2115	0862	8.798	42001	$0209{ }^{\text {I }}$
T13	20.0	$\begin{aligned} & \text { 2L. } \mathrm{a}^{\prime}>62506 \mathrm{in}-328 \\ & 2 \mathrm{~L}, 2 \mathrm{I} / 2 \times 2 \mathrm{I} / 2 \times 3 / 16 \times 3 / 8 \end{aligned}$	22894	11259	1737	1139	9437	55529	0.170^{1}
		$2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>64474 \mathrm{~m}-385$							

${ }^{1} P_{-} / \phi P_{\text {. }}$ controls

Top Girt Design Data (Tension)

Section No	Elevation	Size	1.	L_{\sim}	Klr	A	P_{*}	$\phi P_{\text {s }}$	Ratio P_{u}
	f		f	"		in ${ }^{\prime}$	κ	K	$\phi P_{\text {。 }}$
T1	255-240	L. $3 / 4 \times 13 / 4 \times 3 / 16$	4913	4.767	1065	0360	0403	17567	0.023

${ }^{1} P, / \phi P$. controls

Section Capacity Table

Section No	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Sise	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	${ }_{o P_{K}}^{K}$	\% Capacity	$\begin{aligned} & \text { Pass } \\ & \text { Fail } \end{aligned}$
TI	255-240	Leg	$13 / 4$	1	-13 354	33103	403	Pass
12	$240-220$	Leg	21/4	27	-57 763	84331	685	Pass
T3	$220-200$	Leg	23/4	54	-112051	161540	694	Pass
T4	200-180	Leg	3	81	-164 526	208347	790	Pass
T5	180-160	Leg	$31 / 4$	108	-212039	260312	815	Pass
T6	$160-140$	Leg	$31 / 4$	135	-256435	260312	985	Pass
T7	$140-120$	Leg	$31 / 2$	160	-299 377	317273	94.4	Pass
T8	$120-100$	Leg	31/4	187	-341522	379106	90.1	Pass
T9	100-80	Leg	4	214	-383494	445717	86.0	Pass
T10	$80-60$	Leg	4	241	-419419	445717	941	Pass
T11	$60-40$	Leg	$41 / 4$	280	-458991	517034	88.8	Pass
T12	$40-20$	Leg	$41 / 4$	319	-497389	517034	96.2	Pass
T13	20-0	Leg	$41 / 2$	358	-534 375	593004	90.1	Pass
T1	255-240	Daagonal	L.1 $3 / 4 \times 13 / 4 \times 3 / 16$	16	-3 583	11206	$\begin{gathered} 320 \\ 365 \text { (b) } \end{gathered}$	Pass
12	240-220	Diagonal	L. $3 / 4 \times 13 / 4 \times 3 / 16$	28	-7332	7721	950	Pass
T3	220-200	Diagonal	$1.2 \times 2 \times 3 / 16$	55	-8096	8951	904	Pass
T4	$200-180$	Diagonal	L. $21 / 2 \times 21 / 2 \times 3 / 16$	82	-8.754	13885	$\begin{gathered} 630 \\ 704 \text { (b) } \end{gathered}$	Pass
T5	180-160	Diagonal	1.2 1/2 $221 / 2 \times 3 / 16$	109	-9023	11057	816	Pass
T6	$160-140$	Diagonal	L. $3 \times 3 \times 3 / 16$	136	-9276	15683	$\begin{gathered} 591 \\ 689 \text { (b) } \end{gathered}$	Pass
17	$140 \cdot 120$	Diagonal	L. $3 \times 3 \times 3 / 16$	163	-9865	12964	761	Pass
T8	120-100	Diagonal	$1.3 \times 3 \times 3 / 16$	190	-10.495	10877	965	Pass
T9	$100-80$	Diagonal	L. $3 \times 3 \times 1 / 4$	217	-11284	12050	936	Pass
T10	80-60	Diagonal	2L. $21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	245	-12525	17598	712	Pass

Section No	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\stackrel{o P_{\text {ata.. }}}{\kappa}$	\% Capacin	Pass Fail
T11	$60-40$	Diagonal	$2 \mathrm{~L} 21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	284	-13031	15641	833	Pass
T12	40-20	Diagonal	$2 \mathrm{~L} 21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	323	-13149	139.4	943	Pass
T13	20-0	Diagonal	$2 \mathrm{~L} .3 \times 3 \times 3 / 16 \times 3 / 8$	362	-13435	20849	644	Pass
T10	80-60	Horizontal	2 L. $3 / 4 \times 13 / 4 \times 3 / 16 \times 3 / 8$	250	-7452	8079	922	Pass
TII	$60-40$	Horizontal	$2 \mathrm{~L} 2 \times 2 \times 3 / 16 \times 3 / 8$	289	-8138	10289	791	Pass
T12	40-20	Horizontal	$21.2 \times 2 \times 3 / 16 \times 3 / 8$	328	-8798	8936	985	Pass
T13	20-0	Horizontal	2L2 $1 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	367	-9437	14861	635	Pass
TI	255-240	Top Girt	LI $3 / 4 \times 13 / 4 \times 3 / 16$	6	-0456	6409	71	Pass
T10	$80-60$	Inner Bracing	LI $3 / 4 \times 13 / 4 \times 3 / 16$	255	-0010	1596	06	Pass
T11	60-40	Inner Bracing	LI $3 / 4 \times \mathrm{x}$ \| $3 / 4 \times 3 / 16$	29.4	-0011	1372	08	Pass
T12	$40-20$	Inner Bracing	L. $3 / 4 \times 13 / 4 \times 3 / 16$	333	-0011	1192	0.9	Pass
T13	$20-0$	Inner Bracing	L. $13 / 4 \times 13 / 4 \times 3 / 16$	370	-0012	1045	11	Pass
							Summary	
						Leg (T6)	985	Pass
						Diagonal (T8)	965	Pass
						$\begin{aligned} & \text { Honizontal } \\ & \text { (T12) } \end{aligned}$	985	Pass
						Top Girt (TI)	71	Pass
						Inner Bracing (T13)	11 819	Pass
						Bolt Checks	819 98.5	Pass

Program Version $8110-6 / 3 / 2021$ File S /Projects/Arcosa Telecom Structures/161350_9424_Parkers Lake/Engineering/tnxTower/001/0222-120_255SST_Parkers Lake eri

EXHIBIT D

COMPETING UTILITIES, CORPORATIONS, OR PERSONS LIST

Master Utility Search

- Search for the utility of interest by using any single or combination of criteria.
- Enter Partial names to return the closest match for Utility Name and Address/City/Contact entries.

	Utility ID	Utility Name	Utility	Class	City	State
View	4111300	2600Hz, Inc. dba ZSWITCH	Cellular D	San Francisco	CA	
View	4108300	Air Voice Wireless, LLC	Cellular	B	Bloomfield Hill	MI
View	4110650	Alliant Technologies of KY, L.L.C.	Cellular D	Morristown	NJ	
View	4111900	ALLNETAIR, INC.	Cellular D	West Palm Beach	FL	
View	44451184	Alltel Corporation d/b/a Verizon Wireless	Cellular A	Lisle	IL	
View	4110850	AltaWorx, LLC	Cellular D	Fairhope	AL	
View	4107800	American Broadband and Telecommunications Company	Cellular D	Toledo	OH	
View	4108650	AmeriMex Communications Corp.	Cellular A	Safety Harbor	FL	
View	4105100	AmeriVision Communications, Inc. d/b/a Affinity 4	Cellular D	Virginia Beach	VA	
View	4105700	Assurance Wireless USA, L.P.	Cellular A	Atlanta	GA	
View	4108600	BCN Telecom, Inc.	Cellular D	Morristown	NJ	
View	4106000	Best Buy Health, Inc. d/b/a GreatCall d/b/a Jitterbug	Cellular A	San Diego	CA	
View	4110550	Blue Casa Mobile, LLC	Cellular D	Santa Barbara	CA	
View	4111050	BlueBird Communications, LLC	Cellular D	New York	NY	
View	4202300	Bluegrass Wireless, LLC	Cellular A	Elizabethtown KY		
View	4107600	Boomerang Wireless, LLC	Cellular C	Hiawatha	IA	
B						

View	4105500	BullsEye Telecom, Inc.	Cellular		Southfield	MI
View	4100700	Cellco Partnership dba Verizon Wireless	Cellular	A	Basking Ridge	NJ
View	4106600	Cintex Wireless, LLC	Cellular	D	Houston	TX
View	4111150	Comcast OTR1, LLC	Cellular	B	Phoeniexville	PA
View	4101900	Consumer Cellular, Incorporated	Cellular	A	Portland	OR
View	4106400	Credo Mobile, Inc.	Cellular	A	San Francisco	CA
View	4108850	Cricket Wireless, LLC	Cellular	A	San Antonio	TX
View	4111500	CSC Wireless, LLC d/b/a Altice Wireless	Cellular	D	Long Island City	NY
View	10640	Cumberland Cellular Partnership	Cellular	A	Elizabethtown	KY
View	4111650	DataBytes, Inc.	Cellular	D	Rogers	AR
View	4112000	DISH Wireless L.L.C.	Cellular	A	Englewood	CO
View	4111200	Dynalink Communications, Inc.	Cellular	C	Brooklyn	NY
View	4111800	Earthlink, LLC	Cellular	D	Atlanta	GA
View	4101000	East Kentucky Network, LLC dba Appalachian Wireless	Cellular	A	Ivel	KY
View	4002300	Easy Telephone Service Company dba Easy Wireless	Cellular	D	Ocala	FL
View	4109500	Enhanced Communications Group, LLC	Cellular	D	Bartlesville	OK
View	4110450	Excellus Communications, LLC	Cellular	D	Chattanooga	TN
View	4112400	Excess Telecom Inc.	Cellular	C	Beverly Hills	CA
View	4105900	Flash Wireless, LLC	Cellular	C	Concord	NC
View	4104800	France Telecom Corporate Solutions L.L.C.	Cellular	D	Herndon	VA
View	4111750	Gabb Wireless, Inc.	Cellular	D	Provo	UT
View	4112300	Gen Mobile Inc.	Cellular	C	Redondo Beach	CA
View	4109350	Global Connection Inc. of America	Cellular	D	Newport	KY
View	4102200	Globalstar USA, LLC	Cellular	B	Covington	LA
View	4112050	GLOTELL US, Corp.	Cellular	D	Hallandale	FL
View	4109600	Google North America Inc.	Cellular	A	Mountain View	CA
View	33350363	Granite Telecommunications, LLC	Cellular	D	Quincy	MA
View	4111350	HELLO MOBILE TELECOM LLC	Cellular	D	Dania Beach	FL
View	4103100	i-Wireless, LLC	Cellular	B	Newport	KY
View	4112550	IDT Domestic Telecom, Inc.	Cellular	C	Newark	NJ
View	4109800	IM Telecom, LLC d/b/a Infiniti Mobile	Cellular	D	Plano	TX
View	4111950	J Rhodes Enterprises LLC	Cellular	D	Gulf Breeze	FL
View	22215360	KDDI America, Inc.	Cellular	D	Staten Island	NY
View	10872	Kentucky RSA \#1 Partnership	Cellular	A	Basking Ridge	NJ
View	10680	Kentucky RSA \#3 Cellular General	Cellular	A	Elizabethtown	KY

View	10681	Kentucky RSA \#4 Cellular General	Cellular ${ }^{\text {a }}$		\|Elizabethtown	KY
View	4109550	Kynect Communications, LLC	Cellular	D	Dallas	TX
View	4112200	Lexvor Inc.	Cellular	D	Invine	CA
View	4111250	Liberty Mobile Wireless, LLC	Cellular	A	Sunny Isles Beach	FL
View	4111400	Locus Telecommunications, LLC	Cellular	A	Fort Lee	NJ
View	4107300	Lycamobile USA, Inc.	Cellular	D	Newark	NJ
View	4112500	Marconi Wireless Holdings, LLC	Cellular	C	Westlake Village	CA
View	4112450	Matrix Telecom, LLC dba Excel Telecommunications	Cellular	C	Irving	TX
View	4108800	MetroPCS Michigan, LLC	Cellular	A	Bellevue	WA
View	4111700	Mint Mobile, LLC	Cellular	D	Costa Mesa	CA
View	4109650	Mitel Cloud Services, Inc.	Cellular	D	Mesa	AZ
View	4111850	Mobi, Inc.	Cellular	D	Honolulu	HI
View	4109400	NetZero Wireless, Inc. dba magicJack Wireless	Cellular	D	Westlake Village	CA
View	4202400	New Cingular Wireless PCS, LLC dba AT\&T Mobility, PCS	Cellular	A	San Antonio	TX
View	4112350	NewPhone Wireless, L.L.C.	Cellular	C	Houston	TX
View	4000800	Nextel West Corporation	Cellular	D	Overland Park	KS
View	4110700	Norcell, LLC	Cellular	D	Buford	GA
View	4001300	NPCR, Inc. dba Nextel Partners	Cellular	D	Overland Park	KS
View	4001800	OnStar, LLC	Cellular	A	Detroit	MI
View	4110750	Onvoy Spectrum, LLC	Cellular	D	Chicago	IL
View	4109050	Patriot Mobile LLC	Cellular	D	Irving	TX
View	4110250	Plintron Technologies USA LLC	Cellular	D	Bellevue	WA
View	33351182	PNG Telecommunications, Inc. dba PowerNet Global Communications	Cellular	D	Cincinnati	OH
View	4107700	Puretalk Holdings, Inc.	Cellular	A	Covington	GA
View	4106700	Q Link Wireless, LLC	Cellular	A	Dania	FL
View	4108700	Ready Wireless, LLC	Cellular	C	Hiawatha	IA
View	4110500	Republic Wireless, Inc.	Cellular	A	Raleigh	NC
View	4106200	Rural Cellular Corporation	Cellular	A	Basking Ridge	NJ
View	4108550	Sage Telecom Communications, LLC dba TruConnect	Cellular	B	Los Angeles	CA
View	4109150	SelecTel, Inc. d/b/a SelecTel Wireless	Cellular	D	Fremont	NE
View	4110150	Spectrotel of the South LLC dba Touch Base Communications	Cellular	D	Neptune	NJ
View	4111450	Spectrum Mobile, LLC	Cellular	A	St. Louis	MO
View	4200100	Sprint Spectrum, L.P.	Cellular	A	Atlanta	GA
View	4200500	SprintCom, Inc.	Cellular	A	Atlanta	GA
View	4111600	STX Group LLC dba Twigby	Cellular	D	Murfreesboro	TN
	4202200	T-Mobile Central, LLC dba T-	Cellular	A	Bellevue	WA

View	4002500	TAG Mobile, LLC	Cellular ${ }^{\text {D }}$	D	Plano	TX
View	4109700	Telecom Management, Inc. dba Pioneer Telephone	Cellular D	D	Portland	ME
View	4107200	Telefonica USA, Inc.	Cellular D	D	Miami	FL
View	4112100	Tello LLC	Cellular D	D	Atlanta	GA
View	4108900	Telrite Corporation	Cellular D	D	Covington	GA
View	4108450	Tempo Telecom, LLC	Cellular C	C	Atlanta	GA
View	4109000	Ting, Inc.	Cellular B	B	Toronto	ON
View	4110400	Torch Wireless Corp.	Cellular D	D	Jacksonville	FL
View	4103300	Touchtone Communications, Inc.	Celiular D	D	Cedar Knolls	NJ
View	4104200	TracFone Wireless, Inc.	Cellular D	D	Miami	FL
View	4112250	TROOMI WIRELESS, Inc.	Cellular C	C	Lehi	UT
View	4002000	Truphone, Inc.	Cellular D	D	Durham	NC
View	4112600	Tube Incorporated dba Reach Mobile	Cellular C	C	Chelmsford	MA
View	4110300	UVNV, Inc. d/b/a Mint Mobile	Cellular D	D	Costa Mesa	CA
View	10630	Verizon Americas LLC dba Verizon Wireless	Cellular A	A	Basking Ridge	NJ
View	4110800	Visible Service LLC	Cellular D	D	Basking Ridge	NJ
View	4106500	WiMacTel, Inc.	Cellular D	D	Palo Alto	CA
View	4110950	Wing Tel Inc.	Cellular D	D	New York	NY
View	4112150	Zefcom, LLC	Cellular C	C	Wichita Falls	TX

EXHIBIT E

FAA

Issued Date: 10/25/2021

Andrew Smith
RESCOM Environmental Corp
PO Box 361
Petoskey, MI 49770
** DETERMINATION OF NO HAZARD TO AIR NAVIGATION **
The Federal Aviation Administration has conducted an aeronautical study under the provisions of 49 U.S.C., Section 44718 and if applicable Title 14 of the Code of Federal Regulations, part 77, concerning:

Structure:	Antenna Tower Parkers Lake
Location:	Parkers Lake, KY
Latitude:	$36-50-21.56$ N NAD 83
Longitude:	$84-29-06.37 \mathrm{~W}$
Heights:	1383 feet site elevation (SE)
	267 feet above ground level (AGL)
	1650 feet above mean sea level (AMSL)

This aeronautical study revealed that the structure does not exceed obstruction standards and would not be a hazard to air navigation provided the following condition(s), if any, is(are) met:

As a condition to this Determination, the structure is to be marked/lighted in accordance with FAA Advisory circular 70/7460-1 M, Obstruction Marking and Lighting, a med-dual system-Chapters 4,8(M-Dual),\&15.

Any failure or malfunction that lasts more than thirty (30) minutes and affects a top light or flashing obstruction light, regardless of its position, should be reported immediately to (877) 487-6867 so a Notice to Airmen (NOTAM) can be issued. As soon as the normal operation is restored, notify the same number.

It is required that FAA Form 7460-2, Notice of Actual Construction or Alteration, be e-filed any time the project is abandoned or:

> At least 10 days prior to start of construction (7460-2, Part 1)
> _X__ Within 5 days after the construction reaches its greatest height (7460-2, Part 2)

This determination expires on 04/25/2023 unless:
(a) the construction is started (not necessarily completed) and FAA Form 7460-2, Notice of Actual Construction or Alteration, is received by this office.
(b) extended, revised, or terminated by the issuing office.
(c) the construction is subject to the licensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within

6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for completion of construction, or the date the FCC denies the application.

NOTE: REQUEST FOR EXTENSION OF THE EFFECTIVE PERIOD OF THIS DETERMINATION MUST BE E-FILED AT LEAST 15 DAYS PRIOR TO THE EXPIRATION DATE. AFTER RE-EVALUATION OF CURRENT OPERATIONS IN THE AREA OF THE STRUCTURE TO DETERMINE THAT NO SIGNIFICANT AERONAUTICAL CHANGES HAVE OCCURRED, YOUR DETERMINATION MAY BE ELIGIBLE FOR ONE EXTENSION OF THE EFFECTIVE PERIOD.

This determination is based, in part, on the foregoing description which includes specific coordinates, heights, frequency(ies) and power. Any changes in coordinates, heights, and frequencies or use of greater power, except those frequencies specified in the Colo Void Clause Coalition; Antenna System Co-Location; Voluntary Best Practices, effective 21 Nov 2007, will void this determination. Any future construction or alteration, including increase to heights, power, or the addition of other transmitters, requires separate notice to the FAA.This determination includes all previously filed frequencies and power for this structure.

If construction or alteration is dismantled or destroyed, you must submit notice to the FAA within 5 days after the construction or alteration is dismantled or destroyed.

This determination does include temporary construction equipment such as cranes, derricks, etc., which may be used during actual construction of the structure. However, this equipment shall not exceed the overall heights as indicated above. Equipment which has a height greater than the studied structure requires separate notice to the FAA.

This determination concerns the effect of this structure on the safe and efficient use of navigable airspace by aircraft and does not relieve the sponsor of compliance responsibilities relating to any law, ordinance, or regulation of any Federal, State, or local government body.

A copy of this determination will be forwarded to the Federal Communications Commission (FCC) because the structure is subject to their licensing authority.

If we can be of further assistance, please contact our office at (718) 553-2611, or angelique.eersteling@faa.gov. On any future correspondence concerning this matter, please refer to Aeronautical Study Number 2021-ASO-37318-OE.

Signature Control No: 495060207-498600221
(DNE)
Angelique Eersteling
Technician

Attachment(s)
Case Description
Frequency Data
Map(s)
cc: FCC

Case Description for ASN 2021-ASO-37318-OE

Construction of telecom tower.

Page 3 of 7

LOW FREQUENCY	HIGH FREQUENCY	FREQUENCY UNIT	ERP ERP	
6	7	GHz	55	dBW
6	7	GHz	42	dBW
10	11.7	GHz	55	dBW
10	11.7	GHz	42	dBW
17.7	19.7	GHz	55	dBW
17.7	19.7	GHz	42	dBW
21.2	23.6	GHz	55	dBW
21.2	23.6	GHz	42	dBW
614	698	MHz	1000	W
614	698	MHz	2000	W
698	806	MHz	1000	W
806	901	MHz	500	W
806	824	MHz	500	W
824	849	MHz	500	W
851	866	MHz	500	W
869	894	MHz	500	W
896	901	MHz	500	W
901	902	MHz	7	W
929	932	MHz	3500	W
930	931	MHz	3500	W
931	932	MHz	3500	W
932	932.5	MHz	17	dBW
935	940	MHz	1000	W
940	941	MHz	3500	W
1670	1675	MHz	500	W
1710	1755	MHz	500	W
1850	1910	1990	MHz	1640
1850	1990	MHz	1640	W
1930	2025	MHz	1640	W
1990	2200	MHz	500	W
2110	2360	MHz	500	W
2305	2310	MHz	2000	W
2305	2690	MHz	2000	
2345		MHz	500	
2496				

Verified Map for ASN 2021-ASO-37318-OE

Page 5 of 7

TOPO Map for ASN 2021-ASO-37318-OE

Page 6 of 7

EXHIBIT F

KENTUCKY AIRPORT ZONING COMMISSION

EXHIBIT G

GEOTECHNICAL REPORT

SUBSURFACE INVESTIGATION \& GeOtechnical Recommendations

Harmoni Tower - KYLEX2061 Parkers Lake
 Parkers Lake, Kentucky
 A\&W Project No: 21EV0094

Prepared For:
B+T GROUP
TULSA, OKLAHOMA

Prepared By:
 Alt \& Witzig Engineering, Inc. Geotechnical Division

Alt \& Witzig Engineering, Inc.

6200 East Maxwell Avenue, Suite C • Evansville, Indiana 47715
Ph: (812) 422-4446 • Fax: (812) 422-8377

February $18^{\text {th }}, 2022$
B+T Group
1717 S. Boulder Ave., Suite 300
Tulsa, Oklahoma 74119
ATTN: Patricia Parr

Report of Subsurface Investigation \& Geotechnical Recommendations

RE: Harmoni KYLEX2061 Tower - Parkers Lake
Parkers Lake, Kentucky
B+T Group \# 144645.001.06
Alt \& Witzig File: 21EV0094

Dear Ms. Parr:
In compliance with your request, we have completed a subsurface investigation and geotechnical evaluation for the above referenced project. It is our pleasure to transmit herewith one (1) electronic copy of our report.

The purpose of this subsurface investigation was to determine the various soils profile components and the engineering characteristics of the materials encountered to provide design parameters for the design and construction of the proposed 255 -foot-tall self-support communication tower.

Project Description

The site is located west of Kentucky Highway 27 in Daniel Boone National Forest (Exhibit 1). The nearest street address of the adjoining property owner is 35 Ballou Road, Parker's Lake, Kentucky. The center elevation of the tower is listed on the survey provided by the client at 1383.0 feet.

The ground surface at the time of our investigation consisted of pasture grass. The site was sloping gently downward from south to north and the slope steepened substantially immediately to the north. The subgrade was firm and well drained. The shallow soil types as mapped for this site were derived from the USDA's Web Soil Survey. A Custom Soil Resource Report for this site is included in the Appendix.

B + T Group
Harmoni Tower-KYLEX2061 Parker's Lake
Alt \& Witzig File: 21 EV0094
February 17 $7^{\text {th }}, 2022$
Page 2

Exhibit 1: 2020 Aerial Photograph

Field Methods

The field investigation included a reconnaissance of the project site, performing one (1) soil boring near the tower center, and obtaining soil samples for laboratory testing. The apparent groundwater level at the boring location was also determined.

Laboratory Investigation

A laboratory investigation was conducted to ascertain additional pertinent engineering characteristics of the subsurface materials at the site of the proposed tower. The laboratory testing program included visual classification of all soils, and pocket penetrometer and moisture content testing of cohesive samples.

Site Specific Subsurface Conditions

At the ground surface, the boring encountered approximately six (6) inches of topsoil. Beneath the topsoil the boring encountered stiff to very stiff, gray and tan clayey silt with some organics and shale clasts. These soils are residual from weathering of the underlying bedrock. The cohesive soil gradually transitioned to a weathered shale/siltstone at depth of 9 feet below the ground surface. (Elev. 1374 feet).

The siltstone continued until to a depth of 22.5 feet below the ground surface (Elev. 1360.5) where competent limestone was encountered to the termination depth of the boring (Elev. 1358). The downhole camera inspection uncovered two small open joints at a depth of 16 feet and 22 feet below the ground surface. However, no large voids were noted in the depth investigated. Images of the core hole are presented in the appendix for reference.

Water level observations made during and upon completion of drilling operations indicated dry conditions. It should be noted that the groundwater level measurement recorded on the individual Boring Logs in the Appendix of this report is accurate for the specific date on which the measurements was performed. It must be understood that the groundwater level will fluctuate throughout the year. The Boring Logs do not indicate these fluctuations.

Seismic Parameters

An evaluation of the seismic site class has been performed for this site. The Commonwealth of Kentucky has integrated the 2015 International Building Code into the Kentucky Building Code (KBC). The seismic site class is determined by averaging soil conditions within the top 100 feet with respect to the shear wave velocity in accordance with ASCE 7. Our evaluation is based on data obtained for a single boring performed to a depth of 25 feet at this site and limited information provided by the Kentucky Geological Survey for a depth of 100 feet. A detailed report generated by data from USGS and formatted by SEAOC and OSHPD (seismicmaps.org) has been attached to this letter. Following are the summarized requested seismic parameters.

Seismic Parameters

Site Soil Classification	Site Class C
MCE Spectral Response Accelerations	$\mathrm{S}_{\mathrm{s}}=0.217$
$\mathrm{~S}_{1}=0.101$	

B+T Group
Harmoni Tower-KYLEX2061 Parker's Lake
Alt \& Witzig File: 21 EV0094
February 17 ${ }^{\text {th }}, 2022$
Page 4

Geotechnical Recommendations

Information provided by $\mathrm{B}+\mathrm{T}$ Group indicates that a new 255 -foot-tall self-support communications tower will be constructed at this site. This investigation was conducted to provide information for use in the design and construction of the foundations for the proposed structure.

Tower Foundation Recommendations

Extended Footing or Extended Mat Foundation

The soil parameters presented in Table I may be utilized for the evaluation of a shallow foundation at the tower location.

Table 1: Shallow Foundation Soil Parameters

Soil Description	Depth Below Existing Grade (feet)	Allowable Bearing Pressure (psf) FS=3	Unit Weight (pcf)	C(psf)/ $\mathbf{\Phi}$ (')	Adhesion (psf)
Stiff to Very Stiff Clayey Silt	$3-9$	4,500	120	2,500	1,750

Drilled Piers

Drilled shaft foundations may be designed using the soil parameters provided in Table 2. Skin friction within the soil shall not be summed for support of vertical loads for foundations that are embedded in the underlying bedrock.

Table 2: Deep Foundation Soil/Bedrock Parameters

Depth Below Grade (Feet)	Allowable Skin Friction for Gravity Loads SF=2	Design End Bearing Pressure SF=3	Effective Unit Weight (pcf)	C (psf) $\mathbf{\prime}$ $\mathbf{\Phi}\left({ }^{(}\right)$	e50	Lateral p-y Model
3-9 Clayey Silt	650 psf	$4,500 \mathrm{psf}$	115	2,000	0.006	Stiff Clay
9-13.5 Shale	$1,000 \mathrm{psf}$	$5,000 \mathrm{psf}$	120	4,000	0.004	Weak Rock
$13.5-22$ Siltstone	$1,000 \mathrm{psf}$	$6,000 \mathrm{psf}$	130	4,000	0.004	Weak Rock
$22.5-25$ Limestone	$5,000 \mathrm{psf}$	$10,000 \mathrm{psf}$	150	$10 \mathrm{k}+$.001	Bedrock

*Skin friction may be utilized in shaft compression and tension
** The unconfined compressive strength of the limestone bedrock may be assumed to be $7,500 \mathrm{psi}$ for purposes of excavation evaluation.

Equipment Building Foundation Recommendations

A net allowable bearing pressure of $\mathbf{3 , 0 0 0} \mathbf{~ p s f}$ is recommended for evaluating continuous wall footings at this site for lightly loaded ancillary buildings. The above-suggested bearing pressure is provided assuming the footings will be founded on medium stiff natural soils or properly compacted fill materials at a minimum depth of two (2) feet below grade.

Statement of Limitations

Our subsurface investigation was conducted in accordance with guidelines set forth in the scope of services and applicable industry standards.

An inherent limitation of any geotechnical engineering study is that conclusions must be drawn based on data collected at a limited number of discrete locations. The geotechnical parameters provided in this report were developed from the information obtained from the test borings that depict subsurface conditions only at these specific locations and on the date indicated on the boring logs. Soil conditions at other locations may differ from conditions encountered at these boring locations and groundwater levels shall be expected to vary with time. The nature and extent of variations between the borings may not become evident until the course of construction.

Often, because of design and construction details that occur on a project, questions rise concerning the soil conditions. If we can give further service in these matters, please contact us at your convenience.

Sincerely,
Sincerely,
ALT \& WITZIG ENGINEERING, INC.

David C. Harness, P.E.

APPENDIX

Boring Log
General Notes
Bedrock Core Hole Images
U.S. Seismic Design Maps

Custom Soil Resource Report

CLIENT B+T Group
PROJECT NAME Harmoni KYLEX2061 Tower-Parker's Lake PROJECT LOCATION Parker's Lake

BORING \#_B-1
ALT \& WITZIG FILE \# 21EV0094
Latitude 36.839322 Longitude -84.485103

DRILLING and SAMPLING INFORMATION

Date Started	2/9/22	Hammer Wt.	140
Date Completed	2/9/22	Hammer Drop	30
Boring Method	HSA	Spoon Sampler OD	2
D. Samsel		Rig TypGeoprobe 6712DT	

Sample Type
SS - Driven Split Spoon
ST - Pressed Shelby Tube
CA - Continuous Flight Auger
RC - Rock Core
CU - Cuttings
CT - Continuous Tube

Boring Method
HSA - Hollow Stem Augers CFA - Continuous Flight Augers DC - Driving Casing MD - Mud Drilling

MATERIAL GRAPHICS LEGEND

DRILLING AND SAMPLING SYMBOLS

GROUNDWATER SYMBOLS

ヌ Apparent water level noted upon completion.
F Apparent water level noted upon delayed time.

SAMPLER SYMBOLS

\me macro coreAS AUGER SAMPLE

WELL GRAPHICS LEGEND

Alt \& Witzig Engineering, Inc. 4105 West 99th St.
Carmel, IN
Telephone: (317) 875-7000
Fax: (317) 876-3705

GENERAL NOTES

Project: Harmoni KYLEX2061 Tower-Parker's Lake
Location: Parker's Lake
Number: 21EV0094

Photo 1

Shale at -9'
Photo 2

Small Seam Opening at -16 ,

Photo 3

Small Seam Opening at -22 '
Photo 4

Competent Limestone at - 23 ’

Photo 5

Closeup of the base of the core hole at -25 '

DISCLAIMER

While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

USDA
—20rn

United States
Department of Agriculture

Natural
Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for McCreary-Whitley Area, Kentucky

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.
Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
How Soil Surveys Are Made 5
Soil Map. 8
Soil Map 9
Legend 10
Map Unit Legend 11
Map Unit Descriptions 11
McCreary-Whitley Area, Kentucky 13
3D—Wernock-Sequoia complex, 12 to 25 percent slopes. 13
22E-Shelocta-Sequoia complex, 20 to 35 percent slopes, rocky 14
References 17

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report

MAP LEGEND

Area of Interest (AOI)	Spoil Area		
Area of Interest (AOI)	0	Stony Spot	
Soils		Sol Map Unit Polygons	
Spery Stony Spot			

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15.800.

> Warning: Soil Map may not be valid at this scale.
> Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: McCreary-Whitley Area, Kentucky Survey Area Data: Version 20, Sep 8, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 3, 2021-Apr 12 2021

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
3D	Wernock-Sequoia complex, 12 to 25 percent slopes	0.7	Percent of AOI
22E	Shelocta-Sequoia complex, 20 to 35 percent slopes, rocky	0.0	54.2%
Totals for Area of Interest		0.7	$\mathbf{5 . 8 \%}$

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

Custom Soil Resource Report

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.
An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

McCreary-Whitley Area, Kentucky

3D-Wernock-Sequoia complex, 12 to 25 percent slopes

Map Unit Setting

National map unit symbol: ng8r
Elevation: 800 to 2,130 feet
Mean annual precipitation: 27 to 37 inches
Mean annual air temperature: 36 to 56 degrees F
Frost-free period: 131 to 170 days
Farmland classification: Not prime farmland

Map Unit Composition

Wernock and similar soils: 50 percent
Sequoia and similar soils: 40 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wernock

Setting

Landform: Ridges
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Mountaintop
Down-slope shape: Convex
Across-slope shape: Linear
Parent material: Fine-silty residuum weathered from siltstone

Typical profile

H1-0 to 5 inches: silt loam
H2-5 to 25 inches: silty clay loam
H3-25 to 35 inches: silty clay loam
$\mathrm{Cr}-35$ to 45 inches: weathered bedrock
Properties and qualities
Slope: 12 to 25 percent
Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 5.6 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: C
Hydric soil rating: No

Description of Sequoia

Setting

Landform: Ridges

Custom Soil Resource Report

Landform position (two-dimensional): Summit Landform position (three-dimensional): Mountaintop
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Clayey residuum weathered from shale and siltstone

Typical profile

H1-0 to 4 inches: silt loam
H2-4 to 22 inches: silty clay
$\mathrm{Cr}-22$ to 30 inches: weathered bedrock

Properties and qualities

Slope: 12 to 25 percent
Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.9 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6e
Hydrologic Soil Group: C
Hydric soil rating: No

Minor Components

Lily
Percent of map unit: 5 percent
Hydric soil rating: No

Muse

Percent of map unit: 3 percent
Hydric soil rating: No
Rayne
Percent of map unit: 2 percent
Hydric soil rating: No

22 E -Shelocta-Sequoia complex, 20 to 35 percent slopes, rocky

Map Unit Setting

National map unit symbol: ngc7
Elevation: 800 to 2,130 feet
Mean annual precipitation: 27 to 37 inches
Mean annual air temperature: 36 to 56 degrees F
Frost-free period: 131 to 170 days

Custom Soil Resource Report

Farmland classification: Not prime farmland

Map Unit Composition

Shelocta and similar soils: 55 percent
Sequoia and similar soils: 30 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Shelocta

Setting

Landform: Mountain slopes
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Mountainbase
Down-slope shape: Concave
Across-slope shape: Linear
Parent material: Fine-loamy colluvium derived from sandstone and shale

Typical profile

H1-0 to 4 inches: silt loam
H2-4 to 48 inches: silty clay loam
H3-48 to 65 inches: channery silt loam
Properties and qualities
Slope: 20 to 35 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 8.6 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6e
Hydrologic Soil Group: B
Hydric soil rating: No

Description of Sequoia

Setting

Landform: Mountain slopes
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Mountainflank
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Clayey residuum weathered from shale and siltstone

Typical profile

H1-0 to 4 inches: silt loam
H2-4 to 22 inches: silty clay
$\mathrm{Cr}-22$ to 30 inches: weathered bedrock
Properties and qualities
Slope: 20 to 35 percent

Custom Soil Resource Report

Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.9 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6e
Hydrologic Soil Group: C
Hydric soil rating: No

Minor Components

Bethesda, unstable fill

Percent of map unit: 3 percent
Hydric soil rating: No

Bouldin

Percent of map unit: 3 percent
Hydric soil rating: No

Wernock

Percent of map unit: 3 percent
Hydric soil rating: No

Highsplint

Percent of map unit: 2 percent
Hydric soil rating: No
Lily
Percent of map unit: 2 percent
Hydric soil rating: No
Fairpoint, unstable fill
Percent of map unit: 2 percent
Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service.
U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation
Service, U.S. Department of Agriculture Handbook 436. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

EXHIBIT H

DIRECTIONS TO WCF SITE

Driving Directions to Proposed Tower Site

1. Beginning at 1 North Main Street, Whitley City, KY 42653, head north on Main Street toward Maple Commodity Road / Sampson Ave and travel approximately 0.1 miles.
2. Turn right onto Jesus Hill Road and travel approximately 0.1 miles.
3. Turn left onto US-27 N and travel approximately 7.7 miles.
4. Turn left onto Joe Neal Road and travel approximately 0.2 miles.
5. The site is located on the left. The E-911 address for the site is: 141 Joe Neal Road, Parkers Lake, KY 42634. The parcel address for the site is: Joe Neal Road, Parkers Lake, KY 42634.
6. The site coordinates are:
a. North 36 deg 50 min 21.56 sec
b. West 84 deg 29 min 06.37 sec

Prepared by:
Chris Shouse
Pike Legal Group
1578 Highway 44 East, Suite 6
P.O. Box 396

Shepherdsville, KY 40165-3069
Telephone: 502-955-4400 or 800-516-4293

EXHIBIT I

COPY OF REAL ESTATE AGREEMENT

OPTION AND LEASE AGREEMENT

THIS OPTION AND LEASE AGREEMENT ("Agreement"), dated as of the latter of the signature dates below (the "Effective Date"), is entered into by Richard E. Corder and Sheryl F. Corder, husband and wife, ("Landlord") having a mailing address of 170 Highway 90, Parkers Lake, Kentucky 42634, and Harmoni Towers LLC, a Delaware limited liability company having a mailing address of 10801 Executive Center Drive, Shannon Building, Suite 100, Little Rock AR 72211 ("Tenant").

BACKGROUND

Landlord owns or controls that certain plot, parcel or tract of land, as described on Exhibit 1, together with all rights and privileges arising in connection therewith, located at Joe Neal Road, in the City/Town of Parkers Lake, County of McCreary, State of Kentucky (collectively, the "Property"). Landlord desires to grant to Tenant the right to use a portion of the Property in accordance with this Agreement.

The parties agree as follows:

1. OPTION TO LEASE.

(a) Landlord grants to Tenant an exclusive option (the "Option") to lease a certain portion of the Property containing approximately ten thousand $(10,000)$ square feet including the air space above such ground space, as described on attached Exhibit 1, (the "Premises"), for the placement of a Communication Facility.
(b) During the Option Term, and during the Term, Tenant and its agents, engineers, surveyors and other representatives will have the right to enter upon the Property to inspect, examine, conduct soil borings, drainage testing, material sampling, radio frequency testing and other geological or engineering tests or studies of the Property (collectively, the "Tests"), to apply for and obtain licenses, permits, approvals, or other relief required of or deemed necessary or appropriate at Tenant's sole discretion for its use of the Premises and include, without limitation, applications for zoning variances, zoning ordinances, amendments, special use permits, and construction permits (collectively, the "Government Approvals"), initiate the ordering and/or scheduling of necessary utilities, and otherwise to do those things on or off the Property that, in the opinion of Tenant, are necessary in Tenant's sole discretion to determine the physical condition of the Property, the environmental history of the Property, Landlord's title to the Property and the feasibility or suitability of the Property for Tenant's Permitted Use, all at Tenant's expense. Tenant will not be liable to Landlord or any third party on account of any pre-existing defect or condition on or with respect to the Property, whether or not such defect or condition is disclosed by Tenant's inspection. Tenant will restore the Property to its condition as it existed at the commencement of the Option Term, reasonable wear and tear and loss by casualty or other causes beyond Tenant's control excepted.
(c) In consideration of Landlord granting Tenant the Option, Tenant agrees to pay Landlord the sum of \square within thirty (30) business days after the Effective Date. The Option may be exercised during an initial term of one (1) year commencing on the Effective Date (the "Initial Option Term") which term may be renewed by Tenant for an additional one (1) year (the "Renewal Option Term") upon written notification to Landlord and the payment of an additional
ho later than five (5) days prior to the expiration date of the Initial Option Term. The Initial Option Term and any Renewal Option Term are collectively referred to as the "Option Term."
(d) The Option may be sold, assigned or transferred at any time by Tenant without the written consent of Landlord. Upon notification to Landlord of such sale, assignment, or transfer, Tenant shall immediately be released from any and all liability under this Agreement, including the payment of any rental or other sums due, without any further action.
(e) During the Option Term, Tenant may exercise the Option by notifying Landlord in writing. If Tenant exercises the Option, then Landlord leases the Premises to Tenant subject to the terms and conditions of
this Agreement. If Tenant does not exercise the Option during the Initial Option Term or any extension thereof, this Agreement will terminate, and the parties will have no further liability to each other.
(f) If during the Option Term, or during the Term if the Option is exercised, Landlord decides to subdivide, sell, or change the status of the zoning of the Premises, Property or any of Landlord's contiguous, adjoining or surrounding property (the "Surrounding Property,") or in the event of a threatened foreclosure, Landlord shall immediately notify Tenant in writing. Landlord agrees that during the Option Term, or during the Term if the Option is exercised, Landlord shall not initiate or consent to any change in the zoning of the Premises, Property or Surrounding Property or impose or consent to any other use or restriction that would prevent or limit Tenant from using the Premises for the Permitted Use. Any and all terms and conditions of this Agreement that by their sense and context are intended to be applicable during the Option Term shall be so applicable.
2. PERMITTED USE. Tenant may use the Premises for the transmission and reception of communications signals and the installation, construction, maintenance, operation, repair, replacement and upgrade of communications fixtures and related equipment, cables, accessories and improvements, which may include a suitable support structure ("Structure"), associated antennas, equipment shelters or cabinets and fencing and any other items necessary to the successful and secure use of the Premises (collectively, the "Communication Facility"), as well as the right to test, survey and review title on the Property; Tenant further has the right but not the obligation to add, modify and/or replace equipment in order to be in compliance with any current or future federal, state or local mandated application, including, but not limited to, emergency 911 communication services, at no additional cost to Tenant or Landlord (collectively, the "Permitted Use"). Landlord and Tenant agree that any portion of the Communication Facility that may be conceptually described on Exhibit 1 will not be deemed to limit Tenant's Permitted Use. If Exhibit 1 includes drawings of the initial installation of the Communication Facility, Landlord's execution of this Agreement will signify Landlord's approval of Exhibit 1. For a period of ninety (90) days following the start of construction, Landlord grants Tenant, its subtenants, licensees and sublicensees, the right to use such portions of the Surrounding Property as may reasonably be required during construction and installation of the Communication Facility. Tenant has the right to install and operate transmission cables from the equipment shelter or cabinet to the antennas, electric lines from the main feed to the equipment shelter or cabinet and communication lines from the Property's main entry point to the equipment shelter or cabinet, install a generator and to make other improvements, alterations, upgrades or additions appropriate for Tenant's Permitted Use including the right to construct a fence around the Premises or equipment, install warning signs to make individuals aware of risks, install protective barriers, install any other control measures reasonably required by Tenant's safety procedures or applicable law, and undertake any other appropriate means to secure the Premises or equipment at Tenant's expense. Tenant has the right to modify, supplement, replace, upgrade, expand the Communication Facility (including, for example, increasing the number of antennas or adding microwave dishes) or relocate the Communication Facility within the Premises at any time during the Term. Tenant will be allowed to make such alterations to the Property in order to ensure that the Communication Facility complies with all applicable federal, state or local laws, rules or regulations. In the event Tenant desires to modify or upgrade the Communication Facility, in a manner that requires an additional portion of the Property (the "Additional Premises") for such modification or upgrade, Landlord agrees to lease to Tenant the Additional Premises, upon the same terms and conditions set forth herein, except that the Rent shall increase, in conjunction with the lease of the Additional Premises by the amount equivalent to the then-current per square foot rental rate charged by Landlord to Tenant times the square footage of the Additional Premises. Landlord agrees to take such actions and enter into and deliver to Tenant such documents as Tenant reasonably requests in order to effect and memorialize the lease of the Additional Premises to Tenant.

3. TERM.

(a) The initial lease term will be five (5) years (the "Initial Term"), commencing on the effective date of written notification by Tenant to Landlord of Tenant's exercise of the Option (the "Term Commencement Date"). The Initial Term will terminate on the fifth ($5^{\text {th }}$) anniversary of the Term Commencement Date.
(b) This Agreement will automatically renew for seventeen (17) additional five (5) year term(s) (each additional five (5) year term shall be defined as an "Extension Term"), upon the same terms and conditions set forth herein unless Tenant notifies Landlord in writing of Tenant's intention not to renew this Agreement at least sixty (60) days prior to the expiration of the Initial Term or then-existing Extension Term.
(c) Unless (i) Landlord or Tenant notifies the other in writing of its intention to terminate this Agreement at least six (6) months prior to the expiration of the final Extension Term, or (ii) the Agreement is terminated as otherwise permitted by this Agreement prior to the end of the final Extension Term, this Agreement shall continue in force upon the same covenants, terms and conditions for a further term of one (1) year, and for annual terms thereafter ("Annual Term") until terminated by either party by giving to the other party written notice of its intention to so terminate at least six (6) months prior to the end of any such Annual Term. Monthly rent during such Annual Terms shall be

If Tenant remains in possession of the Premises after the termination of this Agreement, then Tenant will be deemed to be occupying the Premises on a month-to-month basis (the "Holdover Term"), subject to the terms and conditions of this Agreement.
(d) The Initial Term, any Extension Terms, any Annual Terms and any Holdover Term are collectively referred to as the "Term".

4. RENT.

(a) Commencing on the first day of the month following the date that Tenant commences construction (the "Rent Commencement Date"). Tenant will pay Landlord on or before the fifth (5") day of each calendar month in advance
(the "Rent"), at the address set forth above. In any partial month occurring after the Rent Commencement Date, Rent will be prorated. The initial Rent payment will be forwarded by Tenant to Landlord within forty-five (45) days after the Rent Commencement Date.
(b) In the first year of an Extension Term, the monthly Rent will increase by \qquad over the Rent paid during the previous five (5) year term, effective the first day of the month in which the anniversary of the Term Commencement Date occurs.
(c) All charges payable under this Agreement such as utilities and taxes shall be billed by Landlord within one (1) year from the end of the calendar year in which the charges were incurred; any charges beyond such period shall not be billed by Landlord, and shall not be payable by Tenant. The foregoing shall not apply to monthly Rent which is due and payable without a requirement that it be billed by Landlord. The provisions of this subsection shall survive the termination or expiration of this Agreement.

5. APPROVALS.

(a) Landlord agrees that Tenant's ability to use the Premises is contingent upon the suitability of the Premises and Property for the Permitted Use and Tenant's ability to obtain and maintain all Government Approvals. Landlord authorizes Tenant to prepare, execute and file all required applications to obtain Government Approvals for the Permitted Use and agrees to reasonably assist Tenant with such applications and with obtaining and maintaining the Government Approvals.
(b) Tenant has the right to obtain a title report or commitment for a leasehold title policy from a title insurance company of its choice and to have the Property surveyed by a surveyor of its choice.
(c) Tenant may also perform and obtain, at Tenant's sole cost and expense, soil borings, percolation tests, engineering procedures, environmental investigation or other tests or reports on, over, and under the Property, necessary to determine if Tenant's use of the Premises will be compatible with Tenant's engineering specifications, system, design, operations or Government Approvals.
6. TERMINATION. This Agreement may be terminated, without penalty or further liability, as follows:
(a) by either party on thirty (30) days prior written notice, if the other party remains in default under Section 15 of this Agreement after the applicable cure periods;
(b) by Tenant upon written notice to Landlord, if Tenant is unable to obtain, or maintain, any required approval(s) or the issuance of a license or permit by any agency, board, court or other governmental authority necessary for the construction or operation of the Communication Facility as now or hereafter
intended by Tenant; or if Tenant determines, in its sole discretion that the cost of or delay in obtaining or retaining the same is commercially unreasonable;
(c) by Tenant, upon written notice to Landlord, if Tenant determines, in its sole discretion, due to the title report results or survey results, that the condition of the Premises is unsatisfactory for its intended uses;
(d) by Tenant upon written notice to Landlord for any reason or no reason, at any time prior to commencement of construction by Tenant; or
(e) by Tenant upon sixty (60) days' prior written notice to Landlord for any reason or no reason, so long as Tenant pays Landlord a termination fee
provided, however, that no such termination fee will be payable on account of the termination of this Agreement by Tenant under any termination provision contained in any other Section of this Agreement, including the following: Section 5 Approvals, Section 6(a) Termination, Section 6(b) Termination, Section 6(c) Termination, Section 6(d) Termination, Section 11(d) Environmental, Section 18 Condemnation or Section 19 Casualty.
7. INSURANCE. During the Option Term and throughout the Term, Tenant will purchase and maintain in full force and effect such general liability policy as Tenant may deem necessary. Said policy of general liability insurance will at a minimum provide a combined single limit of

Notwithstanding the foregoing, Tenant shall have the right to self-insure such general liability coverage.

8. INTERFERENCE.

(a) Prior to or concurrent with the execution of this Agreement, Landlord has provided or will provide Tenant with a list of radio frequency user(s) and frequencies used on the Property as of the Effective Date. Tenant warrants that its use of the Premises will not interfere with those existing radio frequency uses on the Property, as long as the existing radio frequency user(s) operate and continue to operate within their respective frequencies and in accordance with all applicable laws and regulations.
(b) Landlord will not grant, after the Effective Date, a lease, license or any other right to any third party, if the exercise of such grant may in any way adversely affect or interfere with the Communication Facility, the operations of Tenant or the rights of Tenant under this Agreement. Landlord will notify Tenant in writing prior to granting any third party the right to install and operate communications equipment on the Property.
(c) Landlord will not, nor will Landlord permit its employees, tenants, licensees, invitees, agents or independent contractors to interfere in any way with the Communication Facility, the operations of Tenant or the rights of Tenant under this Agreement. Landlord will cause such interference to cease within twentyfour (24) hours after receipt of notice of interference from Tenant. In the event any such interference does not cease within the aforementioned cure period, Landlord shall cease all operations which are suspected of causing interference (except for intermittent testing to determine the cause of such interference) until the interference has been corrected.
(d) For the purposes of this Agreement, "interference" may include, but is not limited to, any use on the Property or Surrounding Property that causes electronic or physical obstruction with, or degradation of, the communications signals from the Communication Facility.

9. INDEMNIFICATION.

(a) Tenant agrees to indemnify, defend and hold Landlord harmless from and against any and all injury, loss, damage or liability, costs or expenses in connection with a third party claim (including reasonable attorneys' fees and court costs) arising directly from the installation, use, maintenance, repair or removal of the Communication Facility or Tenant's breach of any provision of this Agreement, except to the extent attributable to the negligent or intentional act or omission of Landlord, its employees, invitees, agents or independent contractors.
(b) Landlord agrees to indemnify, defend and hold Tenant harmless from and against any and all injury, loss, damage or liability, costs or expenses in connection with a third party claim (including reasonable attorneys' fees and court costs) arising directly from the actions or failure to act of Landlord, its employees,
invitees agents or independent contractors, or Landlord's breach of any provision of this Agreement, except to the extent attributable to the negligent or intentional act or omission of Tenant, its employees, agents or independent contractors.
(c) The indemnified party: (i) shall promptly provide the indemnifying party with written notice of any claim, demand, lawsuit, or the like for which it seeks indemnification pursuant to this Section and provide the indemnifying party with copies of any demands, notices, summonses, or legal papers received in connection with such claim, demand, lawsuit, or the like; (ii) shall not settle any such claim, demand, lawsuit, or the like without the prior written consent of the indemnifying party; and (iii) shall fully cooperate with the indemnifying party in the defense of the claim, demand, lawsuit, or the like. A delay in notice shall not relieve the indemnifying party of its indemnity obligation, except (1) to the extent the indemnifying party can show it was prejudiced by the delay; and (2) the indemnifying party shall not be liable for any settlement or litigation expenses incurred before the time when notice is given.

10. WARRANTIES.

(a) Each of Tenant and Landlord (to the extent not a natural person) acknowledge and represent that it is duly organized, validly existing and in good standing and has the right, power and authority or capacity, as applicable, to enter into this Agreement and bind itself hereto through the party or individual set forth as signatory for the party below.
(b) Landlord represents, warrants and agrees that: (i) Landlord solely owns the Property as a legal lot in fee simple, or controls the Property by lease or license; (ii) the Property is not and will not be encumbered by any liens, restrictions, mortgages, covenants, conditions, easements, leases, or any other agreements of record or not of record, which would adversely affect Tenant's Permitted Use and enjoyment of the Premises under this Agreement; (iii) as long as Tenant is not in default then Landlord grants to Tenant sole, actual, quiet and peaceful use, enjoyment and possession of the Premises without hindrance or ejection by any persons lawfully claiming under Landlord ; (iv) Landlord's execution and performance of this Agreement will not violate any laws, ordinances, covenants or the provisions of any mortgage, lease or other agreement binding on Landlord; and (v) if the Property is or becomes encumbered by a deed to secure a debt, mortgage or other security interest, Landlord will provide promptly to Tenant a mutually agreeable subordination, nondisturbance and attornment agreement executed by Landlord and the holder of such security interest in the form attached hereto as Exhibit 10(b).

11. ENVIRONMENTAL.

(a) Landlord represents and warrants, except as may be identified in Exhibit 11 attached to this Agreement, (i) the Property, as of the Effective Date, is free of hazardous substances, including asbestoscontaining materials and lead paint, and (ii) the Property has never been subject to any contamination or hazardous conditions resulting in any environmental investigation, inquiry or remediation. Landlord and Tenant agree that each will be responsible for compliance with any and all applicable governmental laws, rules, statutes, regulations, codes, ordinances, or principles of common law regulating or imposing standards of liability or standards of conduct with regard to protection of the environment or worker health and safety, as may now or at any time hereafter be in effect, to the extent such apply to that party's activity conducted in or on the Property.
(b) Landlord and Tenant agree to hold harmless and indemnify the other from, and to assume all duties, responsibilities and liabilities at the sole cost and expense of the indemnifying party for, payment of penalties, sanctions, forfeitures, losses, costs or damages, and for responding to any action, notice, claim, order, summons, citation, directive, litigation, investigation or proceeding ("Claims"), to the extent arising from that party's breach of its obligations or representations under Section 11(a). Landlord agrees to hold harmless and indemnify Tenant from, and to assume all duties, responsibilities and liabilities at the sole cost and expense of Landlord for, payment of penalties, sanctions, forfeitures, losses, costs or damages, and for responding to any Claims, to the extent arising from subsurface or other contamination of the Property with hazardous substances prior to the Effective Date or from such contamination caused by the acts or omissions of Landlord during the Term. Tenant agrees to hold harmless and indemnify Landlord from, and to assume all duties, responsibilities and liabilities at the sole cost and expense of Tenant for, payment of penalties, sanctions, forfeitures, losses,
costs or damages, and for responding to any Claims, to the extent arising from hazardous substances brought onto the Property by Tenant.
(c) The indemnification provisions contained in this Section 11 specifically include reasonable costs, expenses and fees incurred in connection with any investigation of Property conditions or any clean-up, remediation, removal or restoration work required by any governmental authority. The provisions of this Section 11 will survive the expiration or termination of this Agreement.
(d) In the event Tenant becomes aware of any hazardous materials on the Property, or any environmental, health or safety condition or matter relating to the Property, that, in Tenant's sole determination, renders the condition of the Premises or Property unsuitable for Tenant's use, or if Tenant believes that the leasing or continued leasing of the Premises would expose Tenant to undue risks of liability to a government agency or other third party. Tenant will have the right, in addition to any other rights it may have at law or in equity, to terminate this Agreement upon written notice to Landlord.
12. ACCESS. At all times throughout the Term of this Agreement, and at no additional charge to Tenant, Tenant and its employees, agents, and subcontractors, will have twenty-four (24) hour per day, seven (7) day per week pedestrian and vehicular access ("Access") to and over the Property, from an open and improved public road to the Premises, for the installation, maintenance and operation of the Communication Facility and any utilities serving the Premises. If Tenant elects to utilize an Unmanned Aircraft System ("UAS") in connection with its installation, construction, monitoring, site audits, inspections, maintenance, repair, modification, or alteration activities at the Property, Landlord hereby grants Tenant, or any UAS operator acting on Tenant's behalf, express permission to fly over the applicable Property and Premises, and consents to the use of audio and video navigation and recording in connection with the use of the UAS. As may be described more fully in Exhibit 1, Landlord grants to Tenant an easement for such Access and Landlord agrees to provide to Tenant such codes, keys and other instruments necessary for such Access at no additional cost to Tenant. Upon Tenant's request, Landlord will execute a separate recordable easement evidencing this right. Landlord shall execute a letter granting Tenant Access to the Property substantially in the form attached as Exhibit 12; upon Tenant's request, Landlord shall execute additional letters during the Term. Landlord acknowledges that in the event Tenant cannot obtain Access to the Premises, Tenant shall incur significant damage. If Landlord fails to provide the Access granted by this Section 12, such failure shall be a default under this Agreement. In connection with such default, in addition to any other rights or remedies available to Tenant under this Agreement or at law or equity, Landlord shall pay Tenant, as liquidated damages and not as a penalty, per day in consideration of Tenant's damages until Landlord cures such default. Landlord and Tenant agree that Tenant's damages in the event of a denial of Access are difficult, if not impossible, to ascertain, and the liquidated damages set forth above are a reasonable approximation of such damages.
13. REMOVAL/RESTORATION, All portions of the Communication Facility brought onto the Property by Tenant will be and remain Tenant's personal property and, at Tenant's option, may be removed by Tenant at any time during or after the Term. Landlord covenants and agrees that no part of the Communication Facility constructed, erected or placed on the Premises by Tenant will become, or be considered as being affixed to or a part of, the Property, it being the specific intention of Landlord that all improvements of every kind and nature constructed, erected or placed by Tenant on the Premises will be and remain the property of Tenant and may be removed by Tenant at any time during or after the Term. Tenant will repair any damage to the Property resulting from Tenant's removal activities. Any portions of the Communication Facility that Tenant does not remove within one hundred twenty (120) days after the later of the end of the Term and cessation of Tenant's operations at the Premises shall be deemed abandoned and owned by Landlord. Notwithstanding the foregoing. Tenant will not be responsible for the replacement of any trees, shrubs or other vegetation.

14. MAINTENANCE/UTILITIES.

(a) Tenant will keep and maintain the Premises in good condition, reasonable wear and tear and damage from the elements excepted. Tenant will repair any damage to the access area if directly attributable to Tenant use of the non-exclusive access. Landlord will maintain and repair the Property and access thereto and
all areas of the Premises where Tenant does not have exclusive control, in good and tenantable condition, subject to reasonable wear and tear and damage from the elements. If the Landlord adds fences and gates to the Property, Landlord will be responsible for all costs and expenses associated with installation and maintenance of fences and gates and will provide Tenant with access to the Premises pursuant to Section 12 of this Agreement.
(b) Tenant will be responsible for paying on a monthly or quarterly basis all utilities charges for $*$ electricity, telephone service or any other utility used or consumed by Tenant on the Premises. In the event Tenant cannot secure its own metered electrical supply, Tenant will have the right, at its own cost and expense, to sub-meter from Landlord. When sub-metering is required under this Agreement, Landlord will read the meter and provide Tenant with an invoice and usage data on a monthly basis. Tenant shall reimburse Landlord for such utility usage at the same rate charged to Landlord by the utility service provider. Landlord further agrees to provide the usage data and invoice on forms provided by Tenant and to send such forms to such address and/or agent designated by Tenant. Tenant will remit payment within sixty (60) days of receipt of the usage data and required forms. Landlord shall maintain accurate and detailed records of all utility expenses, invoices and payments applicable to Tenant's reimbursement obligations hereunder. Within fifteen (15) days after a request from Tenant, Landlord shall provide copies of such utility billing records to the Tenant in the form of copies of invoices, contracts and cancelled checks. If the utility billing records reflect an overpayment by Tenant, Tenant shall have the right to deduct the amount of such overpayment from any monies due to Landlord from Tenant.
(c) As noted in Section 4(c) above, any utility fee recovery by Landlord is limited to a twelve (12) month period. If Tenant submeters electricity from Landlord, Landlord agrees to give Tenant at least twentyfour (24) hours advance notice of any planned interruptions of said electricity. Landlord acknowledges that Tenant provides a communication service which requires electrical power to operate and must operate twentyfour (24) hours per day, seven (7) days per week. If the interruption is for an extended period of time, in Tenant's reasonable determination, Landlord agrees to allow Tenant the right to bring in a temporary source of power for the duration of the interruption. Landlord will not be responsible for interference with, interruption of or failure, beyond the reasonable control of Landlord, of such services to be furnished or supplied by Landlord.
(d) Tenant will have the right to install utilities on the Property and the Premises, at Tenant's expense and to improve present utilities on the Property and the Premises; by way of example, such utilities shall include overhead and underground electric, water, data transmission, and other necessary utility facilities (including guys, wires, poles, and other appurtenant equipment). Landlord hereby grants to Tenant and any service company providing utility or similar services, including electric power and telecommunications, an easement over the Property, from an open and improved public road to the Premises, and upon the Premises, for the purpose of constructing, operating and maintaining such lines, guys, wires, poles, circuits, conduits, associated equipment cabinets, and appurtenances thereto, as may from time to time be required. Upon Tenant's or service company's request, Landlord will execute a separate recordable easement evidencing this grant, at no cost to Tenant or service company.

15. DEFAULT AND RIGHT TO CURE.

(a) The following will be deemed a default by Tenant and a breach of this Agreement: (i) nonpayment of Rent if such Rent remains unpaid for more than thirty (30) days after written notice from Landlord of such failure to pay; or (ii) Tenant's failure to perform any other term or condition under this Agreement within forty-five (45) days after written notice from Landlord specifying the failure. No such failure, however, will be deemed to exist if Tenant has commenced to cure such default within such period and provided that such efforts are prosecuted to completion with reasonable diligence. Delay in curing a default will be excused if due to causes beyond the reasonable control of Tenant. If Tenant remains in default beyond any applicable cure period, Landlord will have the right to exercise any and all rights and remedies available to it under law and equity.
(b) The following will be deemed a default by Landlord and a breach of this Agreement: (i) Landlord's failure to provide Access to the Premises as required by Section 12 within twenty-four (24) hours
after written notice of such failure; (ii) Landlord's failure to cure an interference problem as required by Section 8 within twenty-four (24) hours after written notice of such failure; or (iii) Landlord's failure to perform any term, condition or breach of any warranty or covenant under this Agreement within forty-five (45) days after written notice from Tenant specifying the failure. No such failure, however, will be deemed to exist if Landlord has commenced to cure the default within such period and provided such efforts are prosecuted to completion with reasonable diligence. Delay in curing a default will be excused if due to causes beyond the reasonable control of Landlord. If Landlord remains in default beyond any applicable cure period, Tenant will have: (i) the right to cure Landlord's default and to deduct the costs of such cure from any monies due to Landlord from Tenant, and (ii) any and all other rights available to it under law and equity.
16. ASSIGNMENT/SUBLEASE. Tenant will have the right to assign this Agreement or sublease the Premises and its rights herein, in whole or in part, without Landlord's consent. Upon notification to Landlord of such assignment, Tenant will be relieved of all future performance, liabilities and obligations under this Agreement to the extent of such assignment.
17. NOTICES. All notices, requests and demands hereunder will be given by first class certified or registered mail, return receipt requested, or by a nationally recognized overnight courier, postage prepaid, to be effective when properly sent and received, refused or returned undelivered. Notices will be addressed to the parties as follows:

If to Tenant:	Harmoni Towers LLC Attn: Real Estate 10801 Executive Center Drive Shannon Building, Suite 100 Little Rock AR 72211 REAdmin@harmonitowers.com
cc:	
	Harmoni Towers LLC c/o Symphony Wireless Attn: Legal
	44 South Broadway, Suite 601 White Plains, NY 10601
For Emergencies:	NOC@harmonitowers.com
If to Landlord:	Richard E. Corder and Sheryl F. Corder 170 Highway 90 Parkers Lake, KY 42634
	Telephone:

Either party hereto may change the place for the giving of notice to it by thirty (30) days' prior written notice to the other party as provided herein.
18. CONDEMNATION, In the event Landlord receives notification of any condemnation proceedings affecting the Property, Landlord will provide notice of the proceeding to Tenant within twenty-four (24) hours. If a condemning authority takes all of the Property, or a portion sufficient, in Tenant's sole determination, to render the Premises unsuitable for Tenant, this Agreement will terminate as of the date the title vests in the condemning authority. The parties will each be entitled to pursue their own separate awards in the condemnation proceeds, which for Tenant will include, where applicable, the value of its Communication

Facility, moving expenses, prepaid Rent, and business dislocation expenses. Tenant will be entitled to reimbursement for any prepaid Rent on a pro rata basis.
19. CASUALTY. Landlord will provide notice to Tenant of any casualty or other harm affecting the Property within twenty-four (24) hours of the casualty or other harm. If any part of the Communication Facility or Property is damaged by casualty or other harm as to render the Premises unsuitable, in Tenant's sole determination, then Tenant may terminate this Agreement by providing written notice to Landlord, which termination will be effective as of the date of such casualty or other harm. Upon such termination, Tenant will be entitled to collect all insurance proceeds payable to Tenant on account thereof and to be reimbursed for any prepaid Rent on a pro rata basis. Landlord agrees to permit Tenant to place temporary transmission and reception facilities on the Property, but only until such time as Tenant is able to activate a replacement transmission facility at another location; notwithstanding the termination of this Agreement, such temporary facilities will be governed by all of the terms and conditions of this Agreement, including Rent. If Landlord or Tenant undertakes to rebuild or restore the Premises and/or the Communication Facility, as applicable, Landlord agrees to permit Tenant to place temporary transmission and reception facilities on the Property at no additional Rent until the reconstruction of the Premises and/or the Communication Facility is completed. If Landlord determines not to rebuild or restore the Property, Landlord will notify Tenant of such determination within thirty (30) days after the casualty or other harm. If Landlord does not so notify Tenant and Tenant decides not to terminate under this Section, then Landlord will promptly rebuild or restore any portion of the Property interfering with or required for Tenant's Permitted Use of the Premises to substantially the same condition as existed before the casualty or other harm. Landlord agrees that the Rent shall be abated until the Property and/or the Premises are rebuilt or restored, unless Tenant places temporary transmission and reception facilities on the Property.
20. WAIVER OF LANDLORD'S LIENS. Landlord waives any and all lien rights it may have, statutory or otherwise, concerning the Communication Facility or any portion thereof. The Communication Facility shall be deemed personal property for purposes of this Agreement, regardless of whether any portion is deemed real or personal property under applicable law; Landlord consents to Tenant's right to remove all or any portion of the Communication Facility from time to time in Tenant's sole discretion and without Landlord's consent.

TAXES.

(a) Landlord shall be responsible for (i) all taxes and assessments levied upon the lands, improvements and other property of Landlord including any such taxés that may be calculated by a taxing authority using any method, including the income method (ii) all sales, use, license, value added, documentary, stamp, gross receipts, registration, real estate transfer, conveyance, excise, recording, and other similar taxes and fees imposed in connection with this Agreement and (iii) all sales, use, license, value added, documentary, stamp, gross receipts, registration, real estate transfer, conveyance, excise, recording, and other similar taxes and fees imposed in connection with a sale of the Property or assignment of Rent payments by Landlord. Tenant shall be responsible for (y) any taxes and assessments attributable to and levied upon Tenant's leasehold improvements on the Premises if and as set forth in this Section 21 and (z) all sales, use, license, value added, documentary, stamp, gross receipts, registration, real estate transfer, conveyance, excise, recording, and other similar taxes and fees imposed in connection with an assignment of this Agreement or sublease by Tenant. Nothing herein shall require Tenant to pay any inheritance, franchise, income, payroll, excise, privilege, rent, capital stock, stamp, documentary, estate or profit tax, or any tax of similar nature, that is or may be imposed upon Landlord.
(b) In the event Landlord receives a notice of assessment with respect to which taxes or assessments are imposed on Tenant's leasehold improvements on the Premises, Landlord shall provide Tenant with copies of each such notice immediately upon receipt, but in no event later than thirty (30) days after the date of such notice of assessment. If Landlord does not provide such notice or notices to Tenant in a timely manner and Tenant's rights with respect to such taxes are prejudiced by the delay, Landlord shall reimburse Tenant for any increased costs directly resulting from the delay and Landlord shall be responsible for payment of the tax or assessment set forth in the notice, and Landlord shall not have the right to reimbursement of such amount from

Tenant. If Landlord provides a notice of assessment to Tenant within such time period and requests reimbursement from Tenant as set forth below, then Tenant shall reimburse Landlord for the tax or assessments identified on the notice of assessment on Tenant's leasehold improvements, which has been paid by Landlord. If Landlord seeks reimbursement from Tenant, Landlord shall, no later than thirty (30) days after Landlord's payment of the taxes or assessments for the assessed tax year, provide Tenant with written notice including evidence that Landlord has timely paid same, and Landlord shall provide to Tenant any other documentation reasonably requested by Tenant to allow Tenant to evaluate the payment and to reimburse Landlord.
(c) For any tax amount for which Tenant is responsible under this Agreement, Tenant shall have the right to contest, in good faith, the validity or the amount thereof using such administrative, appellate or other proceedings as may be appropriate in the jurisdiction, and may defer payment of such obligations, pay same under protest, or take such other steps as permitted by law. This right shall include the ability to institute any legal, regulatory or informal action in the name of Landlord, Tenant, or both, with respect to the valuation of the Premises. Landlord shall cooperate with respect to the commencement and prosecution of any such proceedings and will execute any documents required therefor. The expense of any such proceedings shall be borne by Tenant and any refunds or rebates secured as a result of Tenant's action shall belong to Tenant, to the extent the amounts were originally paid by Tenant. In the event Tenant notifies Landlord by the due date for assessment of Tenant's intent to contest the assessment, Landlord shall not pay the assessment pending conclusion of the contest, unless required by applicable law.
(d) Landlord shall not split or cause the tax parcel on which the Premises are located to be split, bifurcated, separated or divided without the prior written consent of Tenant.
(e) Tenant shall have the right but not the obligation to pay any taxes due by Landlord hereunder if Landlord fails to timely do so, in addition to any other rights or remedies of Tenant. In the event that Tenant exercises its rights under this Section 21(e) due to such Landlord default, Tenant shall have the right to deduct such tax amounts paid from any monies due to Landlord from Tenant as provided in Section 15(b), provided that Tenant may exercise such right without having provided to Landlord notice and the opportunity to cure per Section 15(b).
(f) Any tax-related notices shall be sent to Tenant in the manner set forth in Section 17. Promptly after the Effective Date of this Agreement, Landlord shall provide the Notice address set forth in Section 17 to the taxing authority for the authority's use in the event the authority needs to communicate with Tenant. In the event that Tenant's tax address changes by notice to Landlord, Landlord shall be required to provide Tenant's new tax address to the taxing authority or authorities.
(g) Notwithstanding anything to the contrary contained in this Section 21, Tenant shall have no obligation to reimburse any tax or assessment for which the Landlord is reimbursed or rebated by a third party.

22. SALE OF PROPERTY.

(a) Landlord may sell the Property or a portion thereof to a third party, provided: (i) the sale is made subject to the terms of this Agreement; and (ii) if the sale does not include the assignment of Landlord's full interest in this Agreement, the purchaser must agree to perform, without requiring compensation from Tenant or any subtenant, any obligation of Landlord under this Agreement, including Landlord's obligation to cooperate with Tenant as provided hereunder.
(b) If Landlord, at any time during the Term of this Agreement, decides to rezone or sell, subdivide or otherwise transfer all or any part of the Premises, or all or any part of the Property or Surrounding Property, to a purchaser other than Tenant, Landlord shall promptly notify Tenant in writing, and such rezoning, sale, subdivision or transfer shall be subject to this Agreement and Tenant's rights hereunder. In the event of a change in ownership, transfer or sale of the Property, within ten (10) days of such transfer, Landlord or its successor shall send the documents listed below in this Section 22(b) to Tenant. Until Tenant receives all such documents, Tenant's failure to make payments under this Agreement shall not be an event of default and Tenant reserves the right to hold payments due under this Agreement.
i. Old deed to Property
ii. New deed to Property
iii. Bill of Sale or Transfer
iv. Copy of current Tax Bill
v. New IRS Form W-9
vi. Completed and Signed Tenant Payment Direction Form
vii. Full contact information for new Landlord including phone number(s)
(c) Landlord agrees not to sell, lease or use any areas of the Property or Surrounding Property for the installation, operation or maintenance of other wireless communication facilities if such installation, operation or maintenance would interfere with Tenant's Permitted Use or communications equipment as determined by radio propagation tests performed by Tenant in its sole discretion. Landlord or Landlord's prospective purchaser shall reimburse Tenant for any costs and expenses of such testing. If the radio frequency propagation tests demonstrate levels of interference unacceptable to Tenant, Landlord shall be prohibited from selling, leasing or using any areas of the Property or the Surrounding Property for purposes of any installation, operation or maintenance of any other wireless communication facility or equipment.
(d) The provisions of this Section shall in no way limit or impair the obligations of Landlord under this Agreement, including interference and access obligations.
23. RIGHT OF FIRST REFUSAL. Notwithstanding the provisions contained in Section 22, if at any time after the Effective Date, Landlord receives a bona fide written offer from a third party seeking any sale, conveyance, assignment or transfer, whether in whole or in part, of any property interest in or related to the Premises, including without limitation any offer seeking an assignment or transfer of the Rent payments associated with this Agreement or an offer to purchase an easement with respect to the Premises ("Offer"), Landlord shall immediately furnish Tenant with a copy of the Offer. Tenant shall have the right within ninety (90) days after it receives such copy to match the Offer and agree in writing (the "Exercise Notice") to match the financial terms of the Offer. For the avoidance of doubt, to exercise its rights under this Section 23, Tenant shall not be required to match any compensation due to parties unrelated Landlord, including but not limited to broker compensation. The Exercise Notice shall be in the form of a contract substantially similar to the Offer (matching the financial terms as set forth herein); provided, however, that Landlord and Tenant acknowledge and agree that the Exercise Notice is intended to be a letter of intent or similar, and the parties shall thereafter negotiate in good faith the documents reasonably required to consummate Tenant's exercise of its rights under this Section 23. Tenant may assign its rights under this Section 23. If Tenant chooses not to exercise this right or fails to provide written notice to Landlord within the ninety (90) day period, Landlord may sell, convey, assign or transfer such property interest in or related to the Premises pursuant to the Offer, subject to the terms of this Agreement. If Landlord attempts to sell, convey, assign or transfer such property interest in or related to the Premises without complying with this Section 23, the sale, conveyance, assignment or transfer shall be void. Tenant shall not be responsible for any failure to make payments under this Agreement and reserves the right to hold payments due under this Agreement until Landlord complies with this Section 23. Tenant's failure to exercise the right of first refusal shall not be deemed a waiver of the rights contained in this Section 23 with respect to any future proposed conveyances as described herein.

24. MISCELLANEOUS.

(a) Amendment/Waiver. This Agreement cannot be amended, modified or revised unless done in writing and signed by Landlord and Tenant. No provision may be waived except in a writing signed by both parties. The failure by a party to enforce any provision of this Agreement or to require performance by the other party will not be construed to be a waiver, or in any way affect the right of either party to enforce such provision thereafter.
(b) Memorandum. Contemporaneously with the execution of this Agreement, the parties will execute a recordable Memorandum of Lease substantially in the form attached as Exhibit 24b. Either party may record this Memorandum of Lease at any time during the Term, in its absolute discretion. Thereafter during the Term, either party will, at any time upon fifteen (15) business days' prior written notice from the other, execute, acknowledge and deliver to the other a recordable Memorandum of Lease.
(c) Limitation of Liability. Except for the indemnity obligations set forth in this Agreement, and otherwise notwithstanding anything to the contrary in this Agreement, Tenant and Landlord each waives any
claims that each may have against the other with respect to consequential, incidental or special damages, however caused, based on any theory of liability.
(d) Compliance with Law. Tenant agrees to comply with all federal, state and local laws, orders, rules and regulations ("Laws") applicable to Tenant's use of the Communication Facility on the Property. Landlord agrees to comply with all Laws relating to Landlord's ownership and use of the Property and any improvements on the Property.
(e) Bind and Benefit. The terms and conditions contained in this Agreement will run with the Property and bind and inure to the benefit of the parties, their respective heirs, executors, administrators, successors and assigns.
(f) Entire Agreement. This Agreement and the exhibits attached hereto, all being a part hereof, constitute the entire agreement of the parties hereto and will supersede all prior offers, negotiations and agreements with respect to the subject matter of this Agreement. Exhibits are numbered to correspond to the Section wherein they are first referenced. Except as otherwise stated in this Agreement, each party shall bear its own fees and expenses (including the fees and expenses of its agents, brokers, representatives, attorneys, and accountants) incurred in connection with the negotiation, drafting, execution and performance of this Agreement and the transactions it contemplates.
(g) Governing Law. This Agreement will be governed by the laws of the state in which the Premises are located, without regard to conflicts of law.
(h) Interpretation. Unless otherwise specified, the following rules of construction and interpretation apply: (i) captions are for convenience and reference only and in no way define or limit the construction of the terms and conditions hereof; (ii) use of the term "including" will be interpreted to mean "including but not limited to"; (iii) whenever a party's consent is required under this Agreement, except as otherwise stated in the Agreement or as same may be duplicative, such consent will not be unreasonably withheld, conditioned or delayed; (iv) exhibits are an integral part of this Agreement and are incorporated by reference into this Agreement; (v) use of the terms "termination" or "expiration" are interchangeable; (vi) reference to a default will take into consideration any applicable notice, grace and cure periods; (vii) to the extent there is any issue with respect to any alleged, perceived or actual ambiguity in this Agreement, the ambiguity shall not be resolved on the basis of who drafted the Agreement; (viii) the singular use of words includes the plural where appropriate and (ix) if any provision of this Agreement is held invalid, illegal or unenforceable, the remaining provisions of this Agreement shall remain in full force if the overall purpose of the Agreement is not rendered impossible and the original purpose, intent or consideration is not materially impaired.
(i) Affiliates. All references to "Tenant" shall be deemed to include any Affiliate of Harmoni Towers LLC using the Premises for any Permitted Use or otherwise exercising the rights of Tenant pursuant to this Agreement. "Affiliate" means with respect to a party to this Agreement, any person or entity that (directly or indirectly) controls, is controlled by, or under common control with, that party. "Control" of a person or entity means the power (directly or indirectly) to direct the management or policies of that person or entity, whether through the ownership of voting securities, by contract, by agency or otherwise.
(j) Survival. Any provisions of this Agreement relating to indemnification shall survive the termination or expiration hereof. In addition, any terms and conditions contained in this Agreement that by their sense and context are intended to survive the termination or expiration of this Agreement shall so survive.
(k) W-9. As a condition precedent to payment, Landlord agrees to provide Tenant with a completed IRS Form W-9, or its equivalent, upon execution of this Agreement and at such other times as may be reasonably requested by Tenant, including any change in Landlord's name or address.
(l) Execution/No Option. The submission of this Agreement to any party for examination or consideration does not constitute an offer, reservation of or option for the Premises based on the terms set forth herein. This Agreement will become effective as a binding Agreement only upon the handwritten legal execution, acknowledgment and delivery hereof by Landlord and Tenant. This Agreement may be executed in two (2) or more counterparts, all of which shall be considered one and the same agreement and shall become effective when one or more counterparts have been signed by each of the parties. All parties need not sign the same counterpart.
(m) Attorneys' Fees. In the event that any dispute between the parties related to this Agreement should result in litigation, the prevailing party in such litigation shall be entitled to recover from the other party all reasonable fees and expenses of enforcing any right of the prevailing party, including reasonable attorneys' fees and expenses. Prevailing party means the party determined by the court to have most nearly prevailed even if such party did not prevail in all matters. This provision will not be construed to entitle any party other than Landlord, Tenant and their respective Affiliates to recover their fees and expenses.
(n) WAIVER OF JURY TRIAL. EACH PARTY, TO THE EXTENT PERMITTED BY LAW, KNOWINGLY, VOLUNTARILY AND INTENTIONALLY WAIVES ITS RIGHT TO A TRIAL BY JURY IN ANY ACTION OR PROCEEDING UNDER ANY THEORY OF LIABILITY ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS AGREEMENT OR THE TRANSACTIONS IT CONTEMPLATES.
(o) Incidental Fees. Unless specified in this Agreement, no unilateral fees or additional costs or expenses are to be applied by either party to the other party, including review of plans, structural analyses, consents, provision of documents or other communications between the parties.
(p) Further Acts. Upon request, Landlord will cause to be promptly and duly taken, executed, acknowledged and delivered all such further acts, documents, and assurances as Tenant may request from time to time in order to effectuate, carry out and perform all of the terms, provisions and conditions of this Agreement and all transactions and permitted use contemplated by this Agreement.
(q) Force Majeure. No party shall be liable or responsible to the other party, nor be deemed to have defaulted under or breached this Agreement, for any failure or delay in fulfilling or performing any term of this Agreement, when and to the extent such failure or delay is caused by or results from acts beyond the affected party's reasonable control, including, without limitation: (a) acts of God; (b) flood, fire, earthquake, or explosion; (c) war, invasion, hostilities (whether war is declared or not), terrorist threats or acts, riot, or other civil unrest; (d) government order or law; (e) embargoes, or blockades in effect on or after the date of this Agreement; (f) action by any governmental authority; (g) national or regional emergency; and (h) strikes, labor stoppages or slowdowns, or other industrial disturbances. The party suffering a force majeure event shall give written notice to the other party, stating the period of time the occurrence is expected to continue and shall use diligent efforts to end the failure or delay and ensure the effects of such force majeure event are minimized.

[SIGNATURES APPEAR ON NEXT PAGE]

IN WITNESS WHEREOF, the parties have caused this Agreement to be effective as of the last date written below.

"LANDLORD"

"LANDLORD"

Sheryl F. Corder

By: Sthupi f. Couden
Print Name: Sheryl F. Corder
Its: \qquad
Date: $12 \cdot 27$-21
"TENANT"
Harmoni Towers LLC

|ACKNOWLEDGMENTS APPEAR ON NEXT PAGE|

TENANT ACKNOWLEDGMENT

STATE OF ARKANSAS

COUNTY OF PULASKI

 and as such was authorized to execute this instrument on behalf of the Tenant.

LANDLORD ACKNOWLEDGMENT

STATE OF KENTUCKY

COUNTY OF MCCREARY

BE IT REMEMBERED, that on this 27 day of December. 2021 before me, the subscriber, a person authorized to take oaths in the State of Kentucky, personally appeared Richard E. Corder who, being duly sworn on his/her/their oath. deposed and made proof to my satisfaction that he/she/they is/are the person(s) named in the within instrument: and I. having first made known to him/her/them the contents thereof. he/she/they did acknowledge that he/she/they signed. sealed and delivered the same as his/her/their voluntary act and deed for the purposes therein contained.

LANDLORD ACKNOWLEDGMENT

STATE OF KENTUCKY

COUNTY OF MCCREARY

BE IT REMEMBERED, that on this 27 day of December, 2021 before me, the subscriber, a person authorized to take oaths in the State of Kentucky, personally appeared Sheryl F. Corder who, being duly sworn on his/her/their oath, deposed and made proof to my satisfaction that he/she/they is/are the person(s) named in the within instrument; and I , having first made known to him/her/them the contents thereof, he/she/they did acknowledge that he/she/they signed, sealed and delivered the same as his/her/their voluntary act and deed for the purposes therein contained.

EXHIBIT 1

DESCRIPTION OF PREMISES

Page 1 of 5
to the Option and Lease Agreement dated Auccoy/7, 20,27, by and between Richard E. Corder and Sheryl F. Corder, husband and wife, as Landlord, and Harmoni Towers LLC, a Delaware limited liability company, as Tenant.

The Property is legally described as follows:
Beginning at a large pine on a ridge well marked a corner common to a Cumberland National Forest unit; thence their line S 27 E 40 poles to a hickory stand marked in their line a corner to a Ella Walker tract of land; thence leaving the said forest parcel and with the Walker parcel reversing N 70 deg. 30 min . E 36 poles to a set stone and small pine on a slate dump her corner located in the railroad right of way; thence their lines N 26 deg . W 44 poles to a black oak marked at turn of their fence; thence their line N 36 deg. E 18 poles crossing the drain below the old dam to a set stone witness by a small poplar and maple, their comer near the railroad; thence their fence line N 32 W 27 poles to a set stone in their fence line where a forest line crosses the said right of way, thence leaving the said railway right of way and with the said forest line S 20 deg W 68 poles to the place of Beginning. Containing 21-8/10th acres more or less

AND BEING the same property conveyed to Richard E. Corder and Sheryl F. Corder from Bruce Watters by General Warranty Deed dated November 26, 2014 and recorded December 2, 2014 in Deed Book D205, Page 106.

Tax Parcel No. 099-00-00-019.00

The Premises are described and/or depicted as follows:

LEASE AREA

All that tract or parcel of land lying and being in Parkers Lake, McCreary County, Kentucky, and being a portion of the lands of Richard E. Corder and Shery I F. Corder, as recorded in Deed Book 205, Page 106, McCreary County records, and being more particularly described as follows:

To find the point of beginning, COMMENCE at a capped 3-inch pipe found, stamped "24-1320", at the westerly property corner of said Corder lands, said point having a Kentucky Grid North. NAD 83, Single Zone value of N:3467724.0851 E:5291294.2045; thence running along a tie-line, South $33^{\circ} 366^{\prime} 53^{\prime \prime}$ East, 128.72 feet to a point having a Kentucky Grid North, NAD 83. Single Zone value of N:3467616.8864 E:5291365.4670, and the true POINT OF BEGINNING; Thence running, North $68^{\circ} 52^{\prime} 29^{\prime \prime}$ East, 100.00 feet to a point; Thence, South $21^{\circ} 07^{\prime} 31^{\prime \prime}$ East, 100.00 feet to a point; Thence, South $68^{\circ} 52^{\prime} 29^{\prime \prime}$ West, 100.00 feet to a point; Thence. North $21^{\circ} 0731^{\prime \prime}$ West, 100.00 feet to a point and the POINT OF BEGINNING.

Bearings based on Kentucky Grid North, NAD 83, Single Zone.
Said tract contains 0.2296 acres (10.000 square feet), more or less, as shown in a survey prepared for Harmoni Towers by POINT TO POINT LAND SURVEYORS, INC. dated March 25, 2021, and last revised on December 2, 2021.

30' INGRESS-EGRESS \& UTILITY EASEMENT

Together with a 30 -foot wide Ingress-Egress and Utility Easement lying and being in Parkers Lake, McCreary County, Kentucky, measuring 15 feet each side of centerline, the side lines of which are to be lengthened and shortened to terminate at the west right-of-way line of an existing railroad, and being a portion of the lands of Richard E. Corder and Sheryl F, Corder, as recorded in Deed Book 205, Page 106, McCreary County records, and being more particularly described by the following centerline data:

To find the point of beginning, COMMENCE, at a capped 3 -inch pipe found, stamped "24-1320", at the westerly property corner of said Corder lands, said point having a Kentucky Grid North, NAD 83, Single Zone value of N:3467724.0851 E:5291294.2045; thence running along a tie-line, South $33^{\circ} 36^{\prime} 53^{\prime \prime}$ East, 128.72 feet to a point on the Lease Area having a Kentucky Grid North, NAD 83, Single Zone value of N:3467616.8864 E:5291365.4670; thence running, North $68^{\circ} 52^{\prime} 29^{\prime \prime}$

East, 100.00 feet to a point; thence leaving the Lease Area and running along a tie-line, North $21^{\circ} 071^{\prime \prime}$ West, 15.00 feet to a point and the true POINT OF BEGINNING; Thence, South $68^{\circ} 52^{\prime} 29^{\prime \prime}$ West, 50.37 feet to a point; Thence, North $21^{\circ} 08^{\prime} 58^{\prime \prime}$ West, 157.53 feet to a point; Thence, North $20^{\circ} 27^{\prime} 25^{\prime \prime}$ East, 212.71 feet to a point; Thence, North $31^{\circ} 10^{\prime} 00^{\prime \prime}$ East, 81.51 feet to a point; Thence, South $52^{\circ} 45^{\prime} 12^{\prime \prime}$ East, 164.58 feet to a point; Thence, South $66^{\circ} 48^{\prime} 47^{\prime \prime}$ East, 108.47 feet to a point; Thence, South $55^{\circ} 09^{\prime} 43^{\prime \prime}$ East, 108.34 feet to a point; Thence, South $64^{\circ} 27^{\prime} 18^{\prime \prime}$ East, 102.44 feet to a point; Thence, South $48^{\circ} 32^{\prime} 06^{\prime \prime}$ East, 68.51 feet to the ENDING at a point on the west right-of-way line of an existing railroad.

Bearings based on Kentucky Grid North, NAD 83, Single Zone.
As shown in a survey prepared for Harmoni Towers by POINT TO POINT LAND SURVEYORS, INC. dated March 25, 2021, and last revised on December 2, 2021.

Notes:

1. THIS EXHIBIT MAY BE REPLACED BY A LAND SURVEY AND/OR CONSTRUCTION DRAWINGS OF THE PREMISES ONCE RECEIVED BY TENANT.
2. ANY SETBACK OF THE PREMISES FROM THE PROPERTY'S BOUNDARIES SHALL BE THE DISTANCE REQUIRED BY THE APPLICABLE GOVERNMENT AUTHORITIES.
3. WIDTH OF ACCESS ROAD SHALL BE THE WIDTH REQUIRED BY THE APPLICABLE GOVERNMENT AUTHORITIES, INCLUDING POLICE AND FIRE DEPARTMENTS.
4. THE TYPE, NUMBER AND MOUNTING POSITIONS AND LOCATIONS OF ANTENNAS AND TRANSMISSION LINES ARE ILLUSTRATIVE ONLY. ACTUAL TYPES, NUMBERS AND MOUNTING POSITIONS MAY VARY FROM WHAT IS SHOWN ABOVE.

Access drive to Lease area to be asphalt up to 500 ft inituffel 87 C

LEGAL DESCRIPTION SHEET

PARENT PARCEL

(PER COMMITMENT NO. 34093552)

LEASE AREA

30' INGRESS-EGRESS \& UTILITY EASEMENT

 20. Fition uccour coury

 OOO NNOSTM RUUOL

EXHIBIT J NOTIFICATION LISTING

Parkers Lake Relo - Notice List

CORDER RICHARD E \& SHERYL F
170 HWY 90
PARKERS LAKE KY 42634
DANIEL BOONE NATIONAL FOREST
1700 BYPASS RD
LONDON, KY 40744
CORDER RICHARD E \& SHERYL
170 HWY 90
PARKERS LAKE KY 42634
COFFEY FRANCIS \& DEBBIE
PO BOX 125
PARKERS LAKE KY 42634
SMITH APRIL M \& JERRY
PO BOX 897
WHITLEY CITY KY 42653
OWENS GARY
PO BOX 63
PARKERS LAKE KY 42634
CORDER SHIRLEY W
128 P P WALKER LN
PARKERS LAKE KY 42634
VANOVER DONALD LEE
7335 HWY 90
PARKERS LAKE KY 42634
MILLS ZELLA FAYE
548 VANOVER RDG RD
PARKERS LAKE KY 42634
CORDER RICHARD E \& SHERYL
170 HWY 90
PARKERS LAKE KY 42634

EXHIBIT K

COPY OF PROPERTY OWNER NOTIFICATION

Notice of Proposed Construction of Wireless Communications Facility Site Name: Parkers Lake Relo

Dear Landowner:
New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT\&T Mobility and Harmoni Towers LLC, a Delaware limited liability company have filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at 141 Joe Neal Road, Parkers Lake, KY 42634 (E-911) / Joe Neal Road, Parkers Lake, KY 42634 (PARCEL) ($36^{\circ} 50^{\prime} 21.56^{\prime \prime}$ North latitude, 84° 29' 06.37" West longitude). The proposed facility will include a 2 -foot tall foundation below a 255 -foot tall tower, with an approximately 10 -foot tall lightning arrestor attached at the top, for a total height of 267feet, plus related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

This notice is being sent to you because the County Property Valuation Administrator's records indicate that you may own property that is within a 500' radius of the proposed tower site or contiguous to the property on which the tower is to be constructed. You have a right to submit testimony to the Kentucky Public Service Commission ("PSC"), either in writing or to request intervention in the PSC's proceedings on the application. You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2022-00062 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. AT\&T Mobility's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us toll free at (800) 516-4293 if you have any comments or questions about this proposal.

Sincerely,
David A. Pike
Attorney for Applicants
enclosures

Driving Directions to Proposed Tower Site

1. Beginning at 1 North Main Street, Whitley City, KY 42653, head north on Main Street toward Maple Commodity Road / Sampson Ave and travel approximately 0.1 miles.
2. Turn right onto Jesus Hill Road and travel approximately 0.1 miles.
3. Turn left onto US-27 N and travel approximately 7.7 miles.
4. Turn left onto Joe Neal Road and travel approximately 0.2 miles.
5. The site is located on the left. The E-911 address for the site is: 141 Joe Neal Road, Parkers Lake, KY 42634. The parcel address for the site is: Joe Neal Road, Parkers Lake, KY 42634.
6. The site coordinates are:
a. North 36 deg 50 min 21.56 sec
b. West 84 deg 29 min 06.37 sec

Prepared by:
Chris Shouse
Pike Legal Group
1578 Highway 44 East, Suite 6
P.O. Box 396

Shepherdsville, KY 40165-3069
Telephone: 502-955-4400 or 800-516-4293

EXHIBIT L

COPY OF COUNTY JUDGE/EXECUTIVE NOTICE

VIA CERTIFIED MAIL

Jimmie W. Greene, II
County Judge Executive
P. O. Box 579
1 North Main Street
Whitley City, KY 42653

RE: Notice of Proposal to Construct Wireless Communications Facility Kentucky Public Service Commission Docket No. 2022-00062 Site Name: Parkers Lake

Dear Judge/Executive:
New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT\&T Mobility and Harmoni Towers LLC, a Delaware limited liability company have filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at 141 Joe Neal Road, Parkers Lake, KY 42634 (E-911) / Joe Neal Road, Parkers Lake, KY 42634 (PARCEL) ($36^{\circ} 50^{\prime} 21.56^{\prime \prime}$ North latitude, $84^{\circ} 29^{\prime} 06.37^{\prime \prime}$ West longitude). The proposed facility will include a 2 -foot tall foundation below a 255 -foot tall tower, with an approximately 10 -foot tall lightning arrestor attached at the top, for a total height of 267feet, plus related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

You have a right to submit comments to the PSC or to request intervention in the PSC's proceedings on the application. You may contact the PSC at: Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2022-00062 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. AT\&T Mobility's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us with any comments or questions you may have.

Sincerely,
David A. Pike
Attorney for Applicants
enclosures

Driving Directions to Proposed Tower Site

1. Beginning at 1 North Main Street, Whitley City, KY 42653, head north on Main Street toward Maple Commodity Road / Sampson Ave and travel approximately 0.1 miles.
2. Turn right onto Jesus Hill Road and travel approximately 0.1 miles.
3. Turn left onto US-27 N and travel approximately 7.7 miles.
4. Turn left onto Joe Neal Road and travel approximately 0.2 miles.
5. The site is located on the left. The E-911 address for the site is: 141 Joe Neal Road, Parkers Lake, KY 42634. The parcel address for the site is: Joe Neal Road, Parkers Lake, KY 42634.
6. The site coordinates are:
a. North 36 deg 50 min 21.56 sec
b. West 84 deg 29 min 06.37 sec

Prepared by:
Chris Shouse
Pike Legal Group
1578 Highway 44 East, Suite 6
P.O. Box 396

Shepherdsville, KY 40165-3069
Telephone: 502-955-4400 or 800-516-4293

EXHIBIT M
COPY OF POSTED NOTICES AND NEWSPAPER NOTICE ADVERTISEMENT

SITE NAME: PARKERS LAKE RELO NOTICE SIGNS

The signs are at least (2) feet by four (4) feet in size, of durable material, with the text printed in black letters at least one (1) inch in height against a white background, except for the word "tower," which is at least four (4) inches in height.

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT\&T Mobility and Harmoni Towers LLC, a Delaware limited liability company propose to construct a telecommunications tower on this site. If you have questions, please contact Pike Legal Group, PLLC, P.O. Box 369, Shepherdsville, KY 40165; telephone: (800) 516-4293, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2022-00062 in your correspondence.

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT\&T Mobility and Harmoni Towers LLC, a Delaware limited liability company propose to construct a telecommunications tower near this site. If you have questions, please contact Pike Legal Group, PLLC, P.O. Box 369, Shepherdsville, KY 40165; telephone: (800) 516-4293, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2022-00062 in your correspondence.

VIA FAX: (606) 376-8609
VIA EMAIL: susie@tmcvoice.com
McCreary County Voice
P.O. Box 190

Whitley City, KY 42653
RE: Legal Notice Advertisement
Site Name: Parkers Lake Relo
Dear McCreary County Voice:
Please publish the following legal notice advertisement in the next edition of The McCreary County Voice:

NOTICE

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT\&T Mobility and Harmoni Towers LLC, a Delaware limited liability company have filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located on 141 Joe Neal Road, Parkers Lake, KY 42634 (E-911) / Joe Neal Road, Parkers Lake, KY 42634 (PARCEL) ($36^{\circ} 50^{\prime} 21.56^{\prime \prime}$ North latitude, $84^{\circ} 29^{\prime} 06.37$ " West longitude). You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2022-00062 in any correspondence sent in connection with this matter.

After this advertisement has been published, please forward a tearsheet copy, affidavit of publication, and invoice to Pike Legal Group, PLLC, P. O. Box 369, Shepherdsville, KY 40165. Please call me at (800) 516-4293 if you have any questions. Thank you for your assistance.

Sincerely,
Chris Shouse
Pike Legal Group, PLLC

EXHIBIT N

COPY OF RADIO FREQUENCY DESIGN SEARCH AREA

[^0]: ${ }^{1} P_{\mathrm{N}} / \phi P_{\text {. }}$ controls

