COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

```
THE APPLICATION OF )
CELLCO PARTNERSHIP D/B/A VERIZON WIRELESS )
FOR ISSUANCE OF A CERTIFICATE OF PUBLIC )
CONVENIENCE AND NECESSITY TO CONSTRUCT )
A WIRELESS COMMUNICATIONS FACILITY )
IN THE COMMONWEALTH OF KENTUCKY )
IN THE COUNTY OF BALLARD
```

SITE NAME: BARLOW

APPLICATION FOR
 CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY FOR CONSTRUCTION OF A WIRELESS COMMUNICATIONS FACILITY

Cellco Partnership, d/b/a Verizon Wireless ("Applicant"), by counsel, pursuant to (i) KRS §§278.020, 278.040, 278.650, 278.665, and other statutory authority, and the rules and regulations applicable thereto, and (ii) the Telecommunications Act of 1996, respectfully submits this Application requesting issuance of a Certificate of Public Convenience and Necessity ("CPCN") from the Kentucky Public Service Commission ("PSC") to construct, maintain, and operate a Wireless Communications Facility ("WCF") to serve the customers of the Applicant with wireless communications services.

In support of this Application, Applicant respectfully provides and states the following information:

1. The complete name and address of the Applicant: Cellco Partnership, $\mathrm{d} / \mathrm{b} / \mathrm{a}$ Verizon Wireless, having a local address of 2421 Holloway Road, Louisville, KY 40299.
2. Applicant is a Delaware general partnership and a copy of the Amended Certificate of Assumed Name is on file with the Secretary of State of Commonwealth of Kentucky is included as part of Exhibit A.
3. Applicant proposes construction of an antenna tower for communications services, which is to be located in an area outside the jurisdiction of a planning commission, and Applicant submits this application to the PSC for a certificate of public convenience and necessity pursuant to KRS §§ 278.020(1), 278.040, 278.650, 278.665, and other statutory authority.
4. The Applicant operates on frequencies licensed by the Federal Communications Commission ("FCC") pursuant to applicable FCC requirements. A copy of the Applicant's FCC licenses to provide wireless services are attached to this Application or described as part of Exhibit B, and the facility will be constructed and operated in accordance with applicable FCC regulations.
5. The public convenience and necessity require the construction of the proposed WCF. The construction of the WCF will bring or improve the Applicant's services to an area currently not served or not adequately served by the Applicant by increasing coverage or capacity and thereby enhancing the public's access to innovative and competitive wireless communications services. A statement from Applicant's RF Design Engineer outlining said need is attached as Exhibit Q along with Propagation Maps attached as Exhibit Qa. The WCF is an integral link in the Applicant's network design that must be in place to provide adequate coverage to the service area.
6. To address the above-described service needs, Applicant proposes to construct a WCF at 2244 Steve Denton Road, Barlow KY 42024 ($37^{\circ} 06^{\prime} 42.15^{\prime}$ North latitude, $89^{\circ} 02^{\prime}$
44.58 " West longitude), on a parcel of land located entirely within the county referenced in the caption of this application. The property on which the WCF will be located is owned by Myatt Family Trust pursuant to a Deed recorded at Deed Book 93, Page 150 in the office of the County Clerk. The proposed WCF will consist of a 285 -foot tall tower, with an approximately 5 -foot tall lightning arrestor attached at the top, for a total height of 290 -feet. The WCF will also include concrete foundations and a shelter or cabinets to accommodate the placement of the Applicant's radio electronics equipment and appurtenant equipment. The Applicant's equipment cabinet or shelter will be approved for use in the Commonwealth of Kentucky by the relevant building inspector. The WCF compound will be fenced and all access gate(s) will be secured. A description of the manner in which the proposed WCF will be constructed is attached as Exhibit C and Exhibit D.
7. A list of utilities, corporations, or persons with whom the proposed WCF is likely to compete along with a map showing the proposed location as well as the identified like facilities is attached as Exhibit E.
8. The site development plan and a vertical profile sketch of the WCF signed and sealed by a professional engineer registered in Kentucky depicting the tower height, as well as a proposed configuration for the antennas of the Applicant has also been included as part of Exhibit C.
9. Foundation design plans signed and sealed by a professional engineer registered in Kentucky and a description of the standards according to which the tower was designed are included as part of Exhibit D.
10. Applicant has considered the likely effects of the installation of the proposed WCF on nearby land uses and values and has concluded that there is no more suitable location
reasonably available from which adequate services can be provided, and that there are no reasonably available opportunities to co-locate Applicant's antennas on an existing structure. When suitable towers or structures exist, Applicant attempts to co-locate on existing structures such as communications towers or other structures capable of supporting Applicant's facilities; however, no other suitable or available co-location site was found to be located in the vicinity of the site.
11. A copy of the Determination of No Hazard to Air Navigation issued by the Federal Aviation Administration ("FAA") is attached as Exhibit F.
12. A copy of the Kentucky Airport Zoning Commission ("KAZC") Approval to construct the tower is attached as Exhibit G.
13. A geotechnical engineering report was performed at the WCF site by Alt \& Witzig Engineering, Inc. Indianapolis, IN, dated August 30, 2018, and is attached as Exhibit H. The name and address of the geotechnical engineering firm and the professional engineer registered in Kentucky who prepared the report are included as part of Exhibit H.
14. Clear directions to the proposed WCF site from the County seat are attached as Exhibit I. The name and telephone number of the preparer of Exhibit I are included as part of this exhibit.
15. Applicant, pursuant to a written agreement, has acquired the right to use the WCF site and associated property rights. A copy of the agreement or an abbreviated agreement recorded with the County Clerk is attached as Exhibit J.
16. Personnel directly responsible for the design and construction of the proposed WCF are well qualified and experienced. The tower and foundation drawings for the proposed tower submitted as part of Exhibit D bear the signature and stamp of a professional engineer
registered in the Commonwealth of Kentucky. All tower designs meet or exceed the minimum requirements of applicable laws and regulations.
17. The Construction Manager for the proposed facility is Vince Caprino and the identity and qualifications of each person directly responsible for design and construction of the proposed tower are contained in Exhibits C \& D.
18. As noted on the Survey attached as part of Exhibit C, the surveyor has determined that the tower site and access easement are not within any flood hazard area per Flood Hazard Boundary Map, Community Panel Number 21007C0085C, Dated July 7, 2014. Also find a letter from the surveyor regarding the Flood Data, attached as Exhibit Ca.
19. Exhibit C includes a map drawn to an appropriate scale that shows the location of the proposed tower and identifies every owner of real estate within 500 feet of the proposed tower (according to the records maintained by the County Property Valuation Administrator). Every structure and every easement within 500 feet of the proposed tower or within 200 feet of the access road including intersection with the public street system is illustrated in Exhibit C.
20. Applicant has notified every person who, according to the records of the County Property Valuation Administrator, owns property which is within 500 feet of the proposed tower or contiguous to the site property, by certified mail, return receipt requested, of the proposed construction. Each notified property owner has been provided with a map of the location of the proposed construction, the PSC docket number for this application, the address of the PSC, and will be informed of his or her right to request intervention. A list of the notified property owners and a copy of the form of the notice to be sent by certified mail to each landowner are attached as Exhibit K and Exhibit L, respectively.
21. Applicant has notified the applicable County Judge/Executive by certified mail, return receipt requested, of the proposed construction. This notice included the PSC docket number under which the application will be processed and informed the County Judge/Executive of his/her right to request intervention. A copy of this notice is attached as Exhibit M.
22. Notice signs meeting the requirements prescribed by 807 KAR 5:063, Section 1(2) that measure at least 2 feet in height and 4 feet in width and that contain all required language in letters of required height, have been posted, one in a visible location on the proposed site and one on the nearest public road. Such signs shall remain posted for at least two weeks after filing of the Application, and a copy of the posted text is attached as Exhibit N. A legal notice advertisement regarding the location of the proposed facility has been published in a newspaper of general circulation in the county in which the WCF is proposed to be located. A copy of the newspaper legal notice advertisement is attached as Exhibit O.
23. The general area where the proposed facility is to be located is undeveloped and removed a significant distance from any residential structures. The nearest residential structure is 284.38 feet from the proposed tower site.
24. The process that was used by the Applicant's radio frequency engineers in selecting the site for the proposed WCF was consistent with the general process used for selecting all other existing and proposed WCF facilities within the proposed network design area. Applicant's radio frequency engineers have conducted studies and tests in order to develop a highly efficient network that is designed to handle voice and data traffic in the service area. The engineers determined an optimum area for the placement of the proposed facility in terms of elevation and location to provide the best quality service to customers in the service area. A radio frequency design search area prepared in reference to these radio frequency studies was
considered by the Applicant when searching for sites for its antennas that would provide the coverage deemed necessary by the Applicant. A map of the area in which the tower is proposed to be located which is drawn to scale and clearly depicts the necessary search area within which the site should be located pursuant to radio frequency requirements is attached as Exhibit \mathbf{P}.
25. The tower must be located at the proposed location and proposed height to provide necessary service to wireless communications users in the subject area, as set out and documented in the RF Design Engineers' Statement of Need and Propagation Maps attached as Exhibit Q. The proposed tower will expand and improve voice and data service for Verizon Wireless customers.
26. All Exhibits to this Application are hereby incorporated by reference as if fully set out as part of the Application.
27. All responses and requests associated with this Application may be directed to:

Russell L. Brown
Clark, Quinn, Moses, Scott \& Grahn, LLP
320 North Meridian Street, Suite 1100
Indianapolis, IN 46204
Phone: (317) 637-1321
FAX: (317) 687-2344
Email: rbrown@clarkquinnlaw.com

WHEREFORE, Applicant respectfully request that the PSC accept the foregoing Application for filing, and having met the requirements of KRS §§278.020(1), 278.650, and 278 .665 and all applicable rules and regulations of the PSC, grant a Certificate of Public Convenience and Necessity to construct and operate the WCF at the location set forth herein.

Respectfully submitted,

Russell L. Brown
Clark, Quinn, Moses, Scott \& Grahn, LLP
320 North Meridian Street, Suite 1100
Indianapolis, IN 46204
Phone: (317) 637-1321 / FAX: (317) 687-2344
Email: rbrown@clarkquinnlaw.com
Attorney for Cellco Partnership d/b/a Verizon Wireless

LIST OF EXHIBITS

A Applicant Entity
B FCC License Documentation
Site Development Plan:
C 500^{\prime} Vicinity Map Legal Descriptions
Flood Plain Certification Site Plan
Vertical Tower Profile
$\mathrm{Ca} \quad$ Letter from Surveyor regarding Flood Data
D Tower and Foundation Design
E Competing Utilities, Corporations, or Persons List And Map of Like Facilities in Vicinity

F FAA
G KAZC Approval
H Geotechnical Report
I Directions to WCF Site
J Copy of Real Estate Agreement
K Notification Listing
L Copy of Property Owner Notification
M Copy of County Judge/Executive Notice
N Copy of Posted Notices
O Copy of Newspaper Legal Notice Advertisement
P Copy of Radio Frequency Design Search Area
Q Copy of RF Design Engineer Statement of Need
Qa Propagation Maps

1uns
Secrelary or siate
Received and Filed 08/212006 12:05:00 PM
Fae Rorcelpl: $\$ 20.0 \mathrm{OJ}$

This certifios that tho bssurres name of

Elaine N. Walker, Segretary of State

Dhusion on Bushoess Flings Eusiness FiAngs PO BOK 715 Frankfort, KY 40802 (502) 506×3400 Muw sor ky gov	Amanded Certificate of Assumed Name (Domestic or Forelgn Rusinass Entity)	AAN

 purpase, bukenlis the following staisment:

2 The cerrincate of assumbed name was fled yith the secratery of slato in:		20212008	
One Verizon Way	Basking Ridge	NS	07920
	cing	50\%	\%1a

4. The princligal olice andiess is horeby changed to:

 of the delayed effactive date cannot be prifor fathe dete the pppdeptionls fited. The dete andfor time is
undor Uant
B. The changes in une ldentily of the parture ara as tollowe: See Addendum for current partners

Addendum

The full name of the Patnership is Celloo Permership, a Delawawe general pernership composed of the following panizers:

General Pardurs of Celfo Pastuershly	Address
Bellintlaatic Mobilo Systems LLE	One Verizaid Way
GTE Wittiess meomparaed	Ono Varizon Wiy Baxking Ridge, NJ $\operatorname{bTg} 20$
PCS Nuctems, L. P .	$\begin{aligned} & \text { Denver Place } \\ & \text { Sounh Tower } \\ & 999 \cdot 18^{f} \text { Eraet, Sutio } 1730 \\ & \text { Denver, CO } 0202 \end{aligned}$
JV Parinerco, LLC	Denver phice Soulh Town 999-1 $8^{\boldsymbol{H}^{\circ}}$ Stret, Sulke 1750 Denver, CO \$0202

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau RADIO STATION AUTHORIZATION

ATTN: REGULATORY
KENTUCKY RSA NO. 1 PARTNERSHIP
5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING
ALPHARETTA, GA 30022

Call Sign KNKQ306	File Number
Radio Service CL - Cellular	
Market Numer CMA443	Channel Block B
Sub-Market Designator	
0	

FCC Registration Number (FRN): 0001836709
0
Market Name
Kentucky 1 - Fulton

Grant Date $08-30-2011$	Effective Date $11-02-2016$	Expiration Date $10-01-2021$	Five Yr Build-Out Date	Print Date

Site Information:

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
1	$36-20-59.2 \mathrm{~N}$	$089-22-12.3 \mathrm{~W}$	98.0	

Address: 0.68 MILE SOUTH OF LASSITER CORNER \& REEL FOOT LAKE
City: LASSITER CORNER County: LAKE State: TN Construction Deadline:

Antenna: 1

| Ansimum Transmitting ERP in Watts: | 135.800 | | | | | | | |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Azimuth(from true north) | $\mathbf{0}$ | $\mathbf{4 5}$ | $\mathbf{9 0}$ | $\mathbf{1 3 5}$ | $\mathbf{1 8 0}$ | $\mathbf{2 2 5}$ | $\mathbf{2 7 0}$ | $\mathbf{3 1 5}$ |
| Antenna Height AAT (meters) | 148.000 | 117.000 | 107.000 | 117.000 | 121.000 | 147.000 | 149.000 | 146.000 |
| Transmitting ERP (watts) | 133.300 | 103.500 | 36.500 | 4.500 | 1.500 | 3.900 | 38.800 | 109.600 |

Conditions:

Pursuant to $\S 309(\mathrm{~h})$ of the Communications Act of 1934 , as amended, 47 U.S.C. $\S 309$ (h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934 , as amended. See 47 U.S.C. § 310 (d). This license is subject in terms to the right of use or control conferred by $\S 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Call Sign: KNKQ306

Location Latitude Longitude

$8 \quad 37-03-51.4 \mathrm{~N}$
File Number:
Print Date:
Address: (La Center) 220 RICHARDSON LN
City: LA CENTER County: BALLARD State: KY Construction Deadline:

Antenna: 4 Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	0	45	90	135	180	225	270	315
	85.600	78.400	71.900		$\begin{aligned} & 65.300 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 67.000 \\ & 0.890 \end{aligned}$		$\begin{aligned} & 96.100 \\ & 223.870 \end{aligned}$
	165.960	6.610	0.910					
Location Latitude Longitude 10 $36-44-07.9 \mathrm{~N}$ $088-58-29.2 \mathrm{~W}$			Ground Elevation (meters)		Structure Hgt to Tip (meters)		Antenna Structure Registration No.	
			131.9				1030723	
Address: 3975 State Route 2206								
City: CLINTON County: HICKMAN State: KY Construction Deadline:								
Antenna: 2								
Maximum Transmitting ERP in Watts: 140.820								
Antenna Height AAT (meters)	100.500	101.900	98.900	84.700	107.900	118.900	119.900	100.400
Transmitting ERP (watts)	96.610	96.610	96.610	96.610	96.610	96.610	96.610	96.610

Location	Latitude	Longitude
11	$37-02-00.0 \mathrm{~N}$	$088-22-10.0 \mathrm{~W}$

Address: (Calvert City) 641 Jary Johnson Rd.
City: Calvert City County: MARSHALL State: KY Construction Deadline:

Antenna: 2								
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	78.900	77.600	88.100	83.000	68.600	85.300	97.900	93.100
Transmitting ERP (watts)	23.380	330.300	378.360	36.130	0.970	0.970	0.970	0.970
Antenna: 3								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	78.900	77.600	88.100	83.000	68.600	85.300	97.900	93.100
Transmitting ERP (watts) Antenna: 4	0.970	0.970	0.970	14.730	240.930	357.480	49.940	1.230
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	78.900	77.600	88.100	83.000	68.600	85.300	97.900	93.100
Transmitting ERP (watts)	63.740	2.060	0.660	0.660	0.660	4.020	107.530	274.970

Call Sign: KNKQ306	File Number:		Print Date:		
Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.	
12	$36-34-49.2 \mathrm{~N}$	$088-31-45.2 \mathrm{~W}$	155.5	91.4	1202399

Address: 12201 SR 97
City: TriCity County: GRAVES State: KY Construction Deadline:

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
14	$37-05-47.2 \mathrm{~N}$	$088-42-35.2 \mathrm{~W}$	104.2	63.4

Address: (Paducah West) 4415 Merredith Rd.
City: Paducah County: MCCRACKEN State: KY Construction Deadline: 07-08-2014

Antenna: 4								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	59.900	55.900	65.200	50.700	38.200	34.700	42.800	64.600
Transmitting ERP (watts)	24.580	50.820	50.310	19.100	0.840	0.330	0.330	1.370
Antenna: 5								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	59.900	55.900	65.200	50.700	38.200	34.700	42.800	64.600
Transmitting ERP (watts)	0.440	0.440	12.210	76.570	112.800	57.980	5.460	0.440
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	59.900	55.900	65.200	50.700	38.200	34.700	42.800	64.600
Transmitting ERP (watts)	20.830	0.780	0.440	0.440	2.790	42.940	108.040	89.900

GRANTEE: THE MYAT FAMILY TRUST
DATE: NOVEMBER 16,2011
GRANTOR: CHARLES MYAT AND DEENA MYATT, HUSBAND \& WIFE, AND
BOOK/PAGE: 112 . 227

 SURVEGOR STATEMENT-MT COMMENTS ARE BASED SOLELY ON THE TIILE DOCUMENT THAT HAVE BEEN
 EXCLUSIONS THAT CAN DETERMINE AFFECT ONLY OUR PORTION OF THE PARENT TRACT. NO BOUNDARY SURVE WAS PERFORMED ON THE PARENT TRACT, THUS IT IS NOT POSSIIIE TO DETERMINE WITH CERTAINTY
schedule "b" section il exceptions ITEM 1 -NOT A SUPVYOR RLAATED ITEM
TTEM 2 -NOT A SURVYOR RELLTED ITEM ITEM 3 -NOT A SURVEYOR RELATED ITEM.

Rale - wien

END of sChEDULE B-II
EFFECTVE DATE: NOVEMBER 10, 2015

VERIZON LEASE AREA

LEASE AREA DESCRIPTION

A PART OF A 59 ACRE PARCEL OF LAND OWNED BY THE MYATT FAMILY TRUST AS RECORDED IN DEED BOOK 112, PAGE 227, AND LYING SOUTHWEST OF THE
INTERSECTION OF SALIE CIRCLE ROAD AND STEVE DENTON ROAD, BALLARD COUNTY, kENTUCKY.
COMMENCING AT AN IRON PIN FOUND AT THE INTERSECTION OF SAID SALIE CIRCLE ROAD AND STEVE DENTON ROAD, SAID POINT ALSO BEING THE NORTHEAST CORNER 93 , PAGE 150, THENCE ALONG THE CENTERLINE OF SALIE CIRCLE ROAD NORTH $6 B$ OEGREES 26 MINUTES OS SECONDS WEST 172.37 FEET; THENCE SOUTH 71 DEGREES 49 MINUTES 20 SECONDS WEST 78.70 FEET; THENCE NORTH 76 DEGREES 05 . MINUTES 17 SECONDS WEST 128.76 FEET: THENCE SOUTH 32 DEGREES 16 MINUTES
40 SECONDS WEST 132.35 FEET: THENCE NORTH 57 DEGREES 43 MINUTES 20 SECONDS WEST 30.00 FEET TO THE SOUTHERNMOST LEASE CORNER AND GEING THE TRUE PLACE OF 日EGINNING OF THIS LLEASE AREA DESCRIPTION: THENCE NORTH 57 DEGREES 43 MINUTES 20 SECONDS WEST 100.00 FEET; THENCE NORTH 32 DEGREES 16 MINUTE 20 SECONDS EAST 100.00 FEET; THENCE SOLTH 32 DEGREES 16 MINUTES
 CONTAINING 10,000 SQUARE FEET, (0.23 ACRES), MORE OR LESS.

30' ACCESS \& UTILITY EASEMENT DESCRIPTION

A PART OF A 59 ACRE PARCEL OF LAND OWNED GY THE MYATT FAMILY TRUST AS RECORDED IN DEED BOOK 112, PAGE 227, AND LYING SOUTHWEST OF THE INTERSECTIC
KENTUCKY.

COMMENCING AT AN IRON PIN FOUND AT THE INTERSECTION OF SAID SALIE CIRCLE ROAD AND STEVE DENTON ROAD, SAID POINT ALSO BEING THE NORTHEAST CORNER OF A PARCEL OF LAND OWNED BY DAVID L. JONES AS RECORDED IN DEED BOOK 93. PAGE 150 , THENCE ALONG THE CENTERLINE OF SALIE CIRCLE ROAD NORTH
DEGREES 26 MINUTES O
SECONDS
WEST 172.37 FEET TO THE TRUE PLACE OF BEGININMG OF THIS ACCESS AND EASEMENT DESCRIPTION: THENCE SOUTH 71 DEGREES 49 MINUTES 20 SECONDS WEST 78.70 FEET; THENCE NORTH 76 DEGREES 06 MINUTES 17 SECONDS WEST 128.75 FEET, THENCE SDUTH 32 DEGREES 16 2 IINUTES 40 SECONDS WEST 132,35 FEET: THENCE NORTH 57 DEGREES 43 MINUTE NORTH 32 DEGREES 16 MINUTES 40 SECONDS EAST 143.4 E FEET; THENGE SOLTH 76 DEGREES OG MINUTES 17 SECONDS EAST 141.78 FEET; THENCE NORTH 00 DEGREES OO MINUTES OO SECONDS EAST 23.37 FEET; THENCE SOUTH 68 DEGREES AND CONTAINING $10,105.1$ SQUARE FEET, (0.23 ACRES), MORE OR LESS.

VERIZON LEASE AREA DESCRIPTION

A PART OF A 69 ACRE PARCEL OF LAND OWNED GY THE MYATT FAMILY TRUST AS RECORDED IN DEED BOOK 112 , PAGE 227, AND LYING SOUTHWEST OF THE
NTERSECTION OF SALIE CIRCLE ROAD AND STEVE DENTON ROAD. BALLARD COUNTY, KENTUCKY.

COMMENCING AT AN IRON PIN FOUND AT THE INTERSECTION OF SAID SALIE CIRCLE ROAD AND STEVE DENTON ROAD, SAID POINT ALSO BEING THE NORTHEAST CORNER 93. PAGE 150, THENCE ALONG THE CENTERLINE OF SALIE CIRCLE ROAD NORTH G8 DEGREES 26 MINUTES O9 SECONDS WEST 172.37 FEET; THENCE SOUTH 71 DEGREES 49 MINUTES 20 SECONDS WEST 78.70 FEET: THENCE NORTH 76 DEGREES OG MINUTES 17 SECONDS WEST 128.76 FEET; THENCE SOUTH 32 DEGREES 15 MINUTES 40 SECONDS WEST 132.35 FEET; THENCE NORTH 57 DEGREES 43 MINUTES 20
SECONDS WEST 30.00 FEET TO THE SOUTHERNMOST LEASE CORNER; THENCE NORTH 37 DEGREES 57 MINUTES 19 SECONDS WEST 31.94 FEET TO THE TRUE PLACE OF BEGINNING OF THIS VERIZON LEASE AREA; THENCE NORTH 56 DEGREES 46 MINUTES 12 SECONDS WEST 30,00 FEET; THENCE NORTH 33 DEGREES 13 MINUTES 48 SEGON 12.00 FEET AND CONTAINING 360 SQUARE FEET.

Tele C D
 Wireless

1961 NORTHPOINT BLVD. SUITE 130
HIXSON, TN 3734

PFOECCT MRHEER:

20161508055

STIE KUNE EV BARLOW 5/7 ABBPES5:

2887 STEVE DENTON RD

mgoperfy owner:
MYATT FAMMLIY TRUST

2244 STEVE DENTON FCAD AFLCN, KENTUCKY 4202 TAY PAPCA A

24-30

EALLARD COUNTY
Sotsece or IIIF:
DEED BK 112, PG 227
CATHUEE $37^{\circ} 06^{\prime} 42.146^{\prime} \mathrm{N}$

SURVEY PLAN
2 OF 3

PARENT PARCEL DESCRIPTION

TRACT NO 1: EEGINNING AT A STAKE IN THE CORNER OF THE HULDA CRICE TRACT WITH DOUBLE WHITE OAK, SOUTH 41 DEG. WEST 13 LINKS. ELACK OAK NORTH 18/2
DEG. EAST 30 LINKS: THENCE NORTH 71 DEC. WEST 58 POLES TO A STAKE IN TERRELI'S LINE: THENGE NORTH 18/2 DEG. EAST WITH TERRELL LINE 127 POLS TO DEG. WEST 1 POLE AND LARGE WHITE OAK NORTH 18 DEG EAST 2 POLES AND B7 LINKS: THENCE SOUTH 84 DEG, EAST WITH THE CENTER OF SAID ROAD 84 POLES TO A STAKE IN HULDA CRICE'S LINE; THENCE SOUTH 28 DEG. WEST 134 POLLES TO THE EEGINNING CCONTANIING 56 ACRES AND 34 POLES, MORE OR LESS. SUBJECT
TO LEGAL HIGHAYS.

EXCEPTION NO. 1: LESS AND EXCEPT HOWEVER, A ONE ACRE TRACT OF LAND CONVEYED BY WILLLAM B. WATSON TO JIMMIE MYAT GY DEED DATED JANUARY 27 ,
1960 DEED BOOK 64 , PAGE 250 AND DESCRIIED AS FOLLOWS: BEGINNING AT A 1950, DEED BOOK 64, PAGE 550 AND DESCRIBED AS FOLLOWS: BEGINNING AT A STAKE AT THE SOUTHEAST CORNER OF A 56 ACRE TRACT OF LANDD SAID STAKE
BEING THE CENTER OF AND AT A TURN OF A COUNTY GRAVEL ROAD KNOWN AS STEVE DENTON ROAD; THENCE NORTH 71 DEG. WEST 210 FEET TO A STAKE IN THE CENTER OF SAID ROAD; THENCE NORTH 1S\% DEG. WEST 210 FEET WITH THE CENTER OF STEVE DENTON ROAD TO THE POINT OF BEGINNNG, CONAANING ONE (1) ACRE,

EXCEPTION NO. 2; LESS AND EXCEPT HOWEVER, A ONE AND ONE-HALF ACRE TRACT OF LAND CONVEYED BY BILLIE EVELYN EWING AND HUSBAND, BILL N. EWING TO DAVID JONES BY DEED DATED APRIL 18, 19B4 OF RECORD IN MICROFILM CABINET RRAWER 9, CARD NO. AND DESCRIEED AS FOLLOWS: EEGINNING AT A POIN IN THE CENTER OF THE TERRELL LANDING COUNTT ROAD, SAID POINT BEING THE CENTER OF THE DENTON COUNTY ROAD SOUTH 30 DEG. WEST 413 FEET TO A NEW
CORNER IN THE HENRY ADAMS TRACT OF LAND: THENCE ON A NEW LINE WITH THE ADAMS LAND NORTH 80 DEG. WEST 160 FEET: THENCE NORTH 30 DEG. EAST 413 EEET TO A POINT IN THE CENTER OF TERRELL LANDING COUNTY GRAVEL ROAD; THENCE WITH THE CENTER OF SAID RDAD SOUTH 80 DEG. EAST 160 FEET TD THE ACCORING TO A SURVEY MADE APRIL 13. 1983 BY B. ALLIE, SURVEYOR, WICKLFFE, KENTUCKY.
tract no. 2: beginning at a black oak on the bank of a ravine, in TERRELL'S LINE; THENCE NORTH 18 DEG. EAST SV/ POLES TO A STAKE IN THE CERTH 65 DEG. NORTH 65 DEG. WEST 33 POLES TO A STAKE IN THE RAVINE; THENCE SOUTH 82 TEERREL'S LINE IN A SOUTHERN DRECTION TO THE BEGINMING AND CONTAINING $2 \nmid$ CRES HODE OR CESS SUBHCT TO HECA HEHWOVS

TRACT NO. 3: 日EGINNING AT A STAKE IN THE NORTHEAST CORNER OF THE ORIGINAL 191/2, ACRE TRACT OF LAND OWNED BY J.H. CRICEE THENCE SOUTH 20 DEG. WEST TJR CORNER; THENGE NORTH. 20 DEG. EAST 1 I3V/2 POLES TO A STAKE IN THE NORTH 27.17 POLES TO THE BEGINNING, CONTAINING $23 / 2$ ACRES, MORE OR LESS, BY
ACTUAL SURVEY MADE BY D.W. JUDO, MCCRACKEN COUNTY SURVEYOR, IN YEAR 1938, BUT SUBJECT TO ALL LEGAL HIGHWAYS.

LESS AND EXCEPT HOWEVER, A TWO ACRE TRACT OF LAND CONVEYED BY JESSIE C. HOWLE AND HUSBAND, A.K. HOWLE TO JESSIE ROSS BY DEED DATED MAY 7, 1945 ,
DEED BOOK 51, PAGE 212 , AND DESCRIEED AS FOLLOWS: BEGGNNING AT A STAKE IN THE ROAD AT THE SOUTHEAST CORNER OF THE 22/2 ACRE TRACT; THENCE NORTH 7 HEG. WEST 450 FEET TO THE SOUTHWEST CORNER OF THE $22 / 2$ ACRE TRACT, CORNER, THENCE SOUTH 71 DEG. EAST 450 FEET TO A STAKE, THE SOUTHWEST CORNER OF THE SE ACRE TRACT; THENCE SOUTH 20 DEG. WEST APPROXIMATEL 195 FEET TO THE PLACE OF BEGINNING, CONTANING TWO (2) ACRES, MORE DR
geing in all respects the same property conveyed to ummie myat and WIFE, ETHEL MYATT, 5 ONE-HALF (\%) INTEREST, AND CHARLES MYATT AND WIFE, DEENA MYAT, A ONE-HALF (2) INTEREST, BY DEED DATED APRIL 19, 1984, EECORDED IN CABINET 1, DRAWER 9 , CARD 16, 1128 BALLARD COUNTY CLERK'S OFFICE. ETHEL MYATT PREDECEASED JIMMME MYATT. UPON HER DEATH THEER ONE-HALL (Y) IN THE PROPERTY FULLY VESTED IN JIMMIE MYAT PURSUANT TO THE DESEASED. PURSUANT TO THE TERMS OF THE LAST WILL AND TESTAMENT OF JIMMIE MYAT RECORDED IN WILL BOOK 6. PAGE 71. CHARLES MYAT IS APPOINTED AS XECUTOR WITH THE POWER TO TRANSFER REAL ESTATE.

TO HAVE AND TO HOLD THE ABOVE PREMISES. TOGETHER WITH ALL APPURTENANCES

PARENT PARCEL DEED DESCRIPTION FURNISHED TO BENCHMARK SERVICES, INC. NO BOUNDARY SURVEY WAS PERFORMED TO CREATE THIS LEASE/ACCESS AREA.

Wirelass

1961 NORTHPOINT BLVD. SUITE 130
HIXSON, TN 3734

BENCHMARK SERVICES, INC:
Cowwhing Eagower Land Sufvenors mingoty mivetiacta benctimudenumestan
PROACC MRMAEER: 20161508055
SITE NAKE: EV BARLOW
STI ABOPESS:
2867 STEVE DENTON P BARLOW, KY 42024
$\begin{aligned} & \text { LEASE ARE4: } \\ & 10000 \mathrm{sa} \text {. FT. } \end{aligned}$
FGOPERTY OWNER: MYATT FAMILYTRUST
2244 STEVE DENTON PR BAFLCN, KENTUCKY 48
PCH 0

GALLARD COUNTY
Sothec or IIIF:
DEED BK 112, PG 227
ATITSE: $37^{\circ} 06^{4} 42.146^{\prime} \mathrm{N}$

DWF		
OWW	CHAD BK	DAFE:
RMW	12.22 .1	

SURVEY PLAN SHEEF:

3 OF 3

GENERAL SITE CONSTRUCTION NOTES

towerownerbeprsentative	+20
VERIZON WIRELESS 2421 HOLLOWAY ROAD 2421 HOLLOWAY ROAD CONTACT: AMY HARPER MOBLE: 502-552-0330	

2. ANTENNA MSTAMATOM
 THE VCINTIT OF THE TOWE

 btain orie permit or new acces drive.

6. UTLITIES:


```
LLECTRIC SERVIC PRovideD BY
M
```


IBER OPTIC SERVICE Provide B BY

sif geame

 4. STE GRaING AND DRAMAGE SHOULD DE COSSTTUUTTDD To PREVENT WATER FROM
B. MoISture control - Uniformly moiten or aerate subg grade ano each

8 . TRASH Removall santration:

The generbal contractoor shall provide and mantan pootion

C. THHC GENERAL CONTRACTOR SHALL V
10. ExCAVATON OF UTLTTIES:

 BEFORE YOU DIG AT 1-800-382-5544 OR 811.

 11. CONTRACTTRS LCENSE:

12 SEDCC

 11 Conssruction siaking.

 OLOSSAK ACCOMPLISH THE ITTENT OF THESE LLANS
\qquad

 24. WORR STE SAFETY:

GROUNDING KEYED NOTES

ror

GROUNDING NOTES

. No sharp oo benos shall be used. a long suinging radus benv reaured.
whiverzon wirless specifications.

$\xlongequal{\text { GATE GROUNDING DETAIL }} 4$

THEFT DETERRENT POST MOUNT GROUND DETAIL (CEPSG)

5. U-o

GROUND LUG TO BASEPLATE INSTALLATION DETAIL

VERIZON WIRELESS
SITE NAME: EV BARLOW - B
SITE ADDRESS: $\begin{aligned} & \text { XXXX STEVE DENTON RD } \\ & \text { BARLOW, KY } 42024\end{aligned}$
SITE EMIS\#: $\quad 616190973$
SITE COORDINATES: $\quad 37^{\circ} 06^{\prime} 42.15^{\prime \prime} \mathrm{N}, 89^{\circ} 02^{\prime 244.58 " ~} \mathrm{~W}$
\uparrow

SALLIE CRICE RD

VERIZON WIRELESS
SITE NAME: EV BARLOW - B
SITE ADDRESS: $\begin{gathered}\text { XXXX STEVE DENTON } \\ \text { BARLOW, KY } 42024\end{gathered}$
SITEEMIS\#: 616190973
SITE COORDINATES: $\quad 37^{\circ} 06^{\prime} 42.15^{\prime \prime} \mathrm{N}, 89^{\circ} 02^{\prime 2} 44.58^{\prime \prime} \mathrm{W}$

NOTE: IN RELATION TO PUBLIC RIGHTS OF WAY ARE FOR
REFERENCE ONLY. DISTANCE TO RIGHTS OF WAY
VARIES.

Sabre Industries

No.: 19-5171-TJH

Date: $12 / 13 / 2018$
By: NM
Customer: VERIZON WIRELESS
280 It. Model SSte: Barlow, KY Series S2179

PLAN VIEW

Elevation view
(1 REOD.; NOT TO SCALE
CAUTION: Center of tower is
not in center of slab.

Rebar Schedule per Mat and per Pler	
Pier	(18) \#7 vertical rebar w/ hooks at bottom w/ $\# 4$ rebar ties, two (2) within top $5^{\prime \prime}$ of pier then $4^{\prime \prime} \mathrm{C} / \mathrm{C}$
Mat	(59) \#9 horizontal rebar evenly spaced each way top and bottom. (236 total)
(6) $1.25^{\prime \prime}$ dia. $\times 63^{\prime \prime}$ F1554-105 on a $10^{\prime \prime}$ B.C. w/ $7.5^{"}$ max. projection above concrete.	

[^0]7) 4.5^{5} of soil cover is required over the entire area of the
toundation slab. 8) The bottom anchor bolt template shall be positioned . a) Tie overlaps shall be staggered with a nominal 180°
separation.

BENCHMARK SERVICES, INC.
 Consulting Engineers $\boldsymbol{\&}$ Land Surveyors

318 NORTH MAIN STREET
HUNTINGBURG, INDIANA 47542
(812) 683-3049

January 15, 2019
TO: Whom it may concern,
RE: Verizon Site Name: EV Barlow
Flood Data Ballard County, KY
Parcel Owner: Kyat Family Trust
Charles Myatt \& Deena Myatt, Trustees
2557 Steve Denton Road
Barlow, KY 42024
Proposed Center of Tower: Latitude $37^{\circ} 06^{\prime} 42.145^{\prime \prime}$ and the Longitude of $89^{\circ} 02^{\prime} 44.583$ " and a ground elevation of 363.85^{\prime} AMSL.

A small portion on the Northwest Parent Parcel Property is located in Zone "AE", The proposed Lease Area, the proposed Access \& Utility Easements and the proposed Center of Tower are not located in a 100-year flood plain (Zone X) per Flood Hazard Boundary Map, Community Panel No 21007C0085C, dated of July, 7, 2014.

Please see the attached Map 21007C0085C.

RALPH M. WALLEM
BENCHMARK SERVICES, INC.
Consulting Engineers \& Land Surveyors
DATE: 1.15.2019
PROFESSIONAL LAND SURVEYOR NO. 2195

STATE of KENTUCK RALPH M. SALEM 2195
LICENSED
PROFESSIONAL
LAND SURVEYOR
む!!!!!!!!!!!!!!!!!!!!

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

SPECIAL FLOOD	Without Base Flood Elevation (BFE) Zone $A, V, A 99$ With BFE or Depth Zone AE, AO, AH, vE, AR
HAZARD AREAS	
Regulatory Floodway	

NO SCREEN Area of Minimal Flood Hazard Zone x
 Effective LOMR
OTHER AREAS
GENERAL

- - - - Channel, Culvert, or Storm Sewer STRUCTURES $\|$ lllull Levee, Dike, or Floodwall

This map complies with FEMA's standards for the use of This map complies with FEMA's standards for the use
digital flood maps if it is not void as described below. digital flood maps if it is not void as described below.
The basemap shown complles with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authorltative NFHL web services provided by FEMA. This map was exported on 1/15/2019 at 12:38:07 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over tlme.
This map image is void if the one or more of the following map elements do not appear besemap Imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, arm panel un, ader ine ine mage regulatory purposes.

Sabre Industries"
 Towers and Poles

Structural Design Report 280' S3R Series SD Self-Supporting Tower Site: Barlow, KY
Site Number: 232179

Prepared for: VERIZON WIRELESS by: Sabre Towers \& Poles ${ }^{T M}$

Job Number: 19-5171-TJH

December 13, 2018
Tower Profile 1-2
Foundation Design Summary (Option 1) 3
Foundation Design Summary (Option 2) 4
Maximum Leg Loads 5
Maximum Diagonal Loads. 6
Maximum Foundation Loads 7
Calculations 8-26

280°

Designed Appurtenance Loading

Elev	Description	Tx-Line
275	3V-Boom-12ft Face - 3ft Standoff	
275	(1) RCMDC-6627-PF-48	
275	(3) 4449 B13 + B5	
275	(3) 8843 B2 + B66A	
275	(3) CBC78T-DS-43	(2) $11 / 4^{\prime \prime}$
275	(6) JAHH-65C-R3B	
260	Leg Dish Mount	(1) $15 / 8^{\prime \prime}$
260	(1) 8' Solid Dish W/ Radome	
245	3V-Boom - 10ft Face - 3ft Standoff	

Elev	Description	Tx-Line
245	(6) JAHH-65C-R3B	(12) $15 / 8^{\prime \prime}$
230	3V-Boom- 10ft Face - 3ft Standoff	
230	(6) JAHH-65C-R3B	(12) $15 / 8^{\prime \prime}$
215	3V-Boom- 10ft Face - 3ft Standoff	
215	(6) JAHH-65C-R3B	(12) $15 / 8^{\prime \prime}$
200	3V-Boom - 10ft Face - 3ft Standoff	
200	(6) JAHH-65C-R3B	(12) $15 / 8^{\prime \prime}$
185	Leg Dish Mount	
185	(1) $8^{\prime \prime}$ Solid Dish W/ Radome	(1) $15 / 8^{\prime \prime}$

Customer: VERIZON WIRELESS

Site: Barlow, KY 232179

280 ft . Model S3R Series SD Self Supporting Tower

($58.7 \mathrm{cu} . \mathrm{vds}$.)
(1 REQD.; NOT TO SCALE)
CAUTION: Center of tower is not in center of slab.

Notes:

1) Concrete shall have a minimum 28 -day compressive strength of $4,500 \mathrm{psi}$, in accordance with ACl 318-14.
2) Rebar to conform to ASTM specification A615 Grade 60.
3) All rebar to have a minimum of $3^{\prime \prime}$ concrete cover.
4) All exposed concrete corners to be chamfered $3 / 4^{\prime \prime}$.
5) The foundation design is based on the geotechnical report by Alt \& Witzig Engineering, Inc., Project No. 18IN0510 dated: August 30th, 2018.
6) See the geotechnical report for compaction requirements, if specified.
7) 4.5' of soil cover is required over the entire area of the foundation slab.
8) The bottom anchor bolt template shall be positioned as closely as possible to the bottom of the anchor bolts.
9) Tie overlaps shall be staggered with a nominal 180° separation.

Rebar Schedule per Mat and per Pier		
Pier	(18) \#7 vertical rebar w/ hooks at bottom w/ $\# 4$ rebar ties, two (2) within top 5" of pier then 4" C/C	
Mat	(59) \#9 horizontal rebar evenly spaced each way top and bottom. (236 total)	
Anchor Bolts per Leg		
(6) $1.25^{\prime \prime}$ dia. $\times 63^{\prime \prime}$ F1554-105 on a 10" B.C. w/ 7.5" max.		
projection above concrete.		

Customer: VERIZON WIRELESS
 Site: Barlow, KY 232179

280 ft . Model S3R Series SD Self Supporting Tower

ELEVATION VIEW

(15.8 cu. vds.)
(3 REQUIRED; NOT TO SCALE)

Notes:

1) Concrete shall have a minimum 28 -day compressive strength of 4,500 psi, in accordance with ACl 318-14.
2) Rebar to conform to ASTM specification A615 Grade 60.
3) All rebar to have a minimum of $3^{\prime \prime}$ concrete cover.
4) All exposed concrete corners to be chamfered $3 / 4^{\prime \prime}$.
5) The foundation design is based on the geotechnical report by Alt \& Witzig Engineering, Inc., Project No. 18 IN0510 dated: August 30th, 2018.
6) See the geotechnical report for drilled pier installation requirements, if specified.
7) The bottom anchor bolt template shall be positioned as closely as possible to the bottom of the anchor bolts.
8) Tie overlaps shall be staggered with a nominal 180° separation.

Rebar Schedule per Pier
Pier
(12) \#9 vertical rebar w/ \#4 ties, two (2) within top $5^{\prime \prime}$ of pier then 12 " C / C
Anchor Bolts per Leg
(6) 1.25 " dia. x 63 " F1554-105 on a $10^{\prime \prime}$ B.C. w/ 7.5" max. projection above concrete.

Maximum

Maximum

DRAWFORCE Ver 2.2	(c) Guymast Inc. 2006-2009	Phone: (416)
Licensed to: Sabre Towers and Poles		13 dec 2018
	$13: 23: 34$	

Maximum

INDIVIDUAL FOOTING LOADS (kip)

$381.60 \uparrow \downarrow^{443.50}$

MAST GEOMETRY (ft)

PANEL TYPE	$\begin{gathered} \text { NO.OF } \\ \text { LEGS } \end{gathered}$	$\begin{aligned} & \text { ELEV.AT } \\ & \text { BOTTOM } \end{aligned}$	$\begin{array}{r} \text { ELEV.AT } \\ \text { TOP } \end{array}$	$\begin{aligned} & \text { F.W. .AT } \\ & \text { BOTTOM } \end{aligned}$	$\begin{array}{r} \text { F.W. . AT } \\ \text { TOP } \end{array}$	TYPICAL PANEL HEIGHT
x	3	275.00	280.00	5.00	5.00	5.00
x	3	260.00	275.00	5.00	5.00	5.00
X	3	255.00	260.00	5.00	5.00	5.00
X	3	240.00	255.00	5.00	5.00	5.00
X	3	235.00	240.00	5.00	5.00	5.00
X	3	220.00	235.00	5.00	5.00	5.00
X	3	215.00	220.00	5.44	5.00	5.00
x	3	200.00	215.00	6.75	5.44	5.00
X	3	180.00	200.00	8.50	6.75	5.00
X	3	160.00	180.00	10.25	8.50	5.00
X	3	140.00	160.00	12.00	10.25	5.00
X	3	120.00	140.00	13.75	12.00	6.67
X	3	100.00	120.00	15.50	13.75	6.67
X	3	80.00	100.00	17.25	15.50	6.67
X	3	60.00	80.00	19.00	17.25	6.67
X	3	40.00	60.00	20.75	19.00	6.67
X	3	20.00	40.00	22.50	20.75	6.67
\checkmark	3	10.00	20.00	23.37	22.50	10.00
A	3	0.00	10.00	24.25	23.37	10.00

MEMBER PROPERTIES

MEMBER TYPE	$\begin{array}{r} \text { BOTTOM } \\ \text { ELEV } \\ \mathrm{ft} \end{array}$	$\begin{array}{r} \text { TOP } \\ \text { ELEV } \\ \text { ft } \end{array}$	$\begin{array}{r} \text { X-SECTN } \\ \text { AREA } \\ \text { in.sq } \end{array}$	$\begin{array}{r} \text { RADIUS } \\ \text { OF GYRAT } \\ \text { in } \end{array}$	ELASTIC MODULUS ksi	THERMAL EXPANSN /deg
LE	260.00	280.00	2.405	0.438	29000.	0.0000117
LE	240.00	260.00	3.142	0.438	29000.	0.0000117
LE	220.00	240.00	4.909	0.438	29000.	0.0000117
LE	200.00	220.00	5.940	0.438	29000.	0.0000117
LE	160.00	200.00	7.069	0.438	29000.	0.0000117
LE	140.00	160.00	8.296	0.438	29000.	0.0000117
LE	100.00	140.00	11.045	0.438	29000.	0.0000117
LE	60.00	100.00	12.566	0.438	29000.	0.0000117
LE	0.00	60.00	14.186	0.438	29000.	0.0000117
DI	160.00	280.00	0.484	0.626	29000.	0.0000117
DI	140.00	160.00	0.715	0.626	29000.	0.0000117
DI	100.00	140.00	0.902	0.626	29000.	0.0000117
DI	60.00	100.00	1.090	0.626	29000.	0.0000117
DI	20.00	60.00	1.688	0.626	29000.	0.0000117
DI	0.00	20.00	1.438	0.626	29000.	0.0000117
HO	275.00	280.00	0.484	0.626	29000.	0.0000117
HO	255.00	260.00	0.484	0.626	29000.	0.0000117
HO	235.00	240.00	0.484	0.626	29000.	0.0000117
HO	215.00	220.00	0.484	0.626	29000.	0.0000117
HO	0.00	10.00	1.438	0.626	29000.	0.0000117
BR	0.00	10.00	1.090	0.000	29000.	0.0000117

FACTORED MEMBER RESISTANCES

BOTTOM	TOP	LEGS		DIAGONALS		HORIZONTALS		INT	BRACING
ELEV	ELEV	COMP	TENS	COMP	TENS	COMP	TENS	COMP	TENS
ft	ft	kip							
275.0	280.0	28.89	108.24	7.62	7.62	7.37	7.37	0.00	0.00
260.0	275.0	28.89	108.24	7.62	7.62	0.00	0.00	0.00	0.00
255.0	260.0	49.29	120.41	7.62	7.62	7.37	7.37	0.00	0.00
240.0	255.0	49.29	120.41	7.62	7.62	0.00	0.00	0.00	0.00
235.0	240.0	112.60	220.89	7.62	7.62	7.37	7.37	0.00	0.00
220.0	235.0	112.60	220.89	7.62	7.62	0.00	0.00	0.00	0.00

215.0	220.0	153.15	267.28	7.62	7.62	$79-5171-T J H$	7.37	7.37	0.00
200.0	215.0	153.15	267.28	7.62	7.62	0.00	0.00	0.00	0.00
180.0	200.0	199.21	318.09	7.62	7.62	0.00	0.00	0.00	0.00
160.0	180.0	199.21	318.09	5.68	5.68	0.00	0.00	0.00	0.00
140.0	160.0	250.56	373.31	6.19	6.19	0.00	0.00	0.00	0.00
120.0	140.0	291.83	457.90	8.39	8.39	0.00	0.00	0.00	0.00
100.0	120.0	291.83	457.90	6.77	6.77	0.00	0.00	0.00	0.00
80.0	100.0	354.16	457.90	10.03	10.03	0.00	0.00	0.00	0.00
60.0	80.0	354.16	457.90	8.35	8.35	0.00	0.00	0.00	0.00
40.0	60.0	421.75	457.90	15.39	15.39	0.00	0.00	0.00	0.00
20.0	40.0	421.75	457.90	13.14	13.14	0.00	0.00	0.00	0.00
10.0	20.0	505.61	545.12	14.02	14.02	0.00	0.00	0.00	0.00
0.0	10.0	505.61	545.12	12.71	12.71	13.05	13.05	9.39	9.39

* Only 3 condition(s) shown in full
* RRUS/TMAs were assumed to be behind antennas
* Some wind loads may have been derived from full-scale wind tunnel testing

LOADING CONDITION A

MAST LOADING

$\begin{aligned} & \text { LOAD } \\ & \text { TYPE } \end{aligned}$	ELEV ft	APPLY..LOAD. AT		$\begin{array}{r} \text { LOAD } \\ \text { AZI } \end{array}$ FORCES MOMMENTS.			
		RADIUS	AZI		HORIZ	DOWN	VERTICAL	TORSNAL
		$f t$			kip	kip	ft-kip	ft-kip
C	275.0	0.00	0.0	0.0	1.98	2.79	0.00	0.00
c	245.0	0.00	0.0	0.0	1.74	2.10	0.00	0.00
C	230.0	0.00	0.0	0.0	1.71	2.10	0.00	0.00
C	215.0	0.00	0.0	0.0	1.69	2.10	0.00	0.00
c	200.0	0.00	0.0	0.0	1.66	2.10	0.00	0.00
D	280.0	0.00	180.0	0.0	0.06	0.05	0.00	0.00
D	275.0	0.00	180.0	0.0	0.06	0.05	0.00	0.00
D	275.0	0.00	42.0	0.0	0.07	0.06	0.01	0.03
D	260.0	0.00	42.0	0.0	0.07	0.06	0.01	0.03
D	260.0	0.00	42.0	0.0	0.08	0.07	0.02	0.03
D	245.0	0.00	42.0	0.0	0.07	0.06	0.02	0.03
D	245.0	0.00	42.0	0.0	0.11	0.08	0.05	0.08
D	240.0	0.00	42.0	0.0	0.11	0.08	0.05	0.08
D	240.0	0.00	42.0	0.0	0.12	0.11	0.05	0.08
D	230.0	0.00	42.0	0.0	0.11	0.10	0.05	0.08
D	230.0	0.00	56.0	0.0	0.13	0.12	0.06	0.10
D	220.0	0.00	56.0	0.0	0.14	0.12	0.06	0.10
D	220.0	0.00	57.2	0.0	0.14	0.14	0.06	0.10
D	215.0	0.00	57.2	0.0	0.14	0.14	0.06	0.10
D	215.0	0.00	83.4	0.0	0.15	0.15	0.06	0.11
D	200.0	0.00	87.2	0.0	0.15	0.15	0.06	0.10
D	200.0	0.00	90.5	0.0	0.17	0.19	0.06	0.06
D	185.0	0.00	93.1	0.0	0.18	0.19	0.05	0.06
D	185.0	0.00	84.7	0.0	0.18	0.19	0.06	0.06
D	160.0	0.00	86.2	0.0	0.18	0.19	0.06	0.06
D	160.0	0.00	80.8	0.0	0.18	0.22	0.08	0.07
D	140.0	0.00	82.6	0.0	0.19	0.23	0.07	0.06
D	140.0	0.00	78.2	0.0	0.19	0.26	0.09	0.07
D	120.0	0.00	79.5	0.0	0.19	0.27	0.08	0.07
D	120.0	0.00	76.2	0.0	0.19	0.27	0.10	0.07
D	100.0	0.00	77.2	0.0	0.19	0.27	0.09	0.07
D	100.0	0.00	74.7	0.0	0.20	0.30	0.11	0.07
D	80.0	0.00	75.5	0.0	0.21	0.31	0.10	0.07
D	80.0	0.00	73.4	0.0	0.20	0.31	0.12	0.07
D	60.0	0.00	74.1	0.0	0.20	0.31	0.12	0.07
D	60.0	0.00	72.4	0.0	0.21	0.38	0.14	0.07
D	40.0	0.00	72.9	0.0	0.21	0.39	0.13	0.07
D	40.0	0.00	71.5	0.0	0.20	0.39	0.15	0.07
D	20.0	0.00	72.0	0.0	0.20	0.40	0.14	0.07
D	20.0	0.00	70.8	0.0	0.15	0.34	0.16	0.06
D	10.0	0.00	70.8	0.0	0.15	0.34	0.16	0.06
D	10.0	0.00	71.1	0.0	0.18	0.41	0.15	0.06
D	0.0	0.00	71.1	0.0	0.18	0.41	0.15	0.06

ANTENNA LOADING

MAST LOADING

$\begin{aligned} & \text { LOAD } \\ & \text { TYPE } \end{aligned}$	$\begin{array}{r} \text { ELEV } \\ \mathrm{ft} \end{array}$	APPLY..LOAD. AT		$\begin{aligned} & \text { LOAD } \\ & \text { AZI } \end{aligned}$ FORCES	 MOMENTS.	
		RADIUS	AZI		HORIZ	DOWN	VERTICAL	TORSNAL
					kip	kip	ft-kip	ft-kip
C	275.0	0.00	0.0	0.0	1.98	2.09	0.00	0.00
C	245.0	0.00	0.0	0.0	1.74	1.58	0.00	0.00
C	230.0	0.00	0.0	0.0	1.71	1.58	0.00	0.00
C	215.0	0.00	0.0	0.0	1.69	1.58	0.00	0.00
C	200.0	0.00	0.0	0.0	1.66	1.58	0.00	0.00
D	280.0	0.00	180.0	0.0	0.06	0.04	0.00	0.00
D	275.0	0.00	180.0	0.0	0.06	0.04	0.00	0.00
D	275.0	0.00	42.0	0.0	0.07	0.04	0.01	0.03
D	260.0	0.00	42.0	0.0	0.07	0.04	0.01	0.03
D	260.0	0.00	42.0	0.0	0.08	0.05	0.01	0.03
D	245.0	0.00	42.0	0.0	0.07	0.05	0.01	0.03
D	245.0	0.00	42.0	0.0	0.11	0.06	0.03	0.08
D	240.0	0.00	42.0	0.0	0.11	0.06	0.03	0.08
D	240.0	0.00	42.0	0.0	0.12	0.08	0.03	0.08
D	230.0	0.00	42.0	0.0	0.11	0.08	0.03	0.08
D	230.0	0.00	56.0	0.0	0.13	0.09	0.05	0.10
D	220.0	0.00	56.0	0.0	0.14	0.09	0.05	0.10
D	220.0	0.00	57.2	0.0	0.14	0.11	0.05	0.10
D	215.0	0.00	57.2	0.0	0.14	0.11	0.05	0.10
D	215.0	0.00	83.4	0.0	0.15	0.11	0.05	0.11
D	200.0	0.00	87.2	0.0	0.15	0.11	0.04	0.10
D	200.0	0.00	90.5	0.0	0.17	0.14	0.04	0.06
D	185.0	0.00	93.1	0.0	0.18	0.14	0.04	0.06
D	185.0	0.00	84.7	0.0	0.18	0.14	0.05	0.06
D	160.0	0.00	86.2	0.0	0.18	0.15	0.04	0.06
D	160.0	0.00	80.8	0.0	0.18	0.17	0.06	0.07
D	140.0	0.00	82.6	0.0	0.19	0.17	0.05	0.06
D	140.0	0.00	78.2	0.0	0.19	0.20	0.07	0.07
D	120.0	0.00	79.5	0.0	0.19	0.20	0.06	0.07
D	120.0	0.00	76.2	0.0	0.19	0.20	0.07	0.07
D	100.0	0.00	77.2	0.0	0.19	0.20	0.07	0.07
D	100.0	0.00	74.7	0.0	0.20	0.23	0.08	0.07
D	80.0	0.00	75.5	0.0	0.21	0.23	0.08	0.07
D	80.0	0.00	73.4	0.0	0.20	0.23	0.09	0.07
D	60.0	0.00	74.1	0.0	0.20	0.24	0.09	0.07
D	60.0	0.00	72.4	0.0	0.21	0.29	0.10	0.07
D	40.0	0.00	72.9	0.0	0.21	0.29	0.10	0.07
D	40.0	0.00	71.5	0.0	0.20	0.29	0.11	0.07
D	20.0	0.00	72.0	0.0	0.20	0.30	0.11	0.07
D	20.0	0.00	70.8	0.0	0.15	0.26	0.12	0.06
D	10.0	0.00	70.8	0.0	0.15	0.26	0.12	0.06
D	10.0	0.00	71.1	0.0	0.18	0.31	0.12	0.06
D	0.0	0.00	71.1	0.0	0.18	0.31	0.12	0.06

antenna loading

TYPE	ATTACHMENT					. ANTENNA FORCES		
	$\begin{aligned} & \text { ELEV } \\ & \mathrm{ft} \end{aligned}$	AZI	RAD ft	AZI	AXIAL kip	SHEAR kip	GRAVITY kip	TORSION ft-kip
STD+R	260.0	0.0	4.4	0.0	1.40	0.00	0.30	0.00
STD+R	185.0	0.0	6.2	0.0	1.31	0.00	0.30	0.00

LOAD	ELEV	APPLY..LOAD. .AT		$\begin{array}{r} \text { LOAD } \\ \text { AZI } \end{array}$ FORCES.	mOMENTS	
TYPE	$f t$	RADIUS	AZI		HORIZ	DOWN	VERTICAL	TORSNAL
c	275.0	0.00	0.0	0.0	0.29	5.78	0.00	0.00
c	245.0	0.00	0.0	0.0	0.25	4.66	0.00	0.00
c	230.0	0.00	0.0	0.0	0.25	4.64	0.00	0.00
c	215.0	0.00	0.0	0.0	0.24	4.63	0.00	0.00
c	200.0	0.00	0.0	0.0	0.24	4.61	0.00	0.00
D	280.0	0.00	180.0	0.0	0.01	0.19	0.00	0.00
D	275.0	0.00	180.0	0.0	0.01	0.19	0.00	0.00
D	275.0	0.00	42.0	0.0	0.01	0.19	0.07	0.01
D	260.0	0.00	42.0	0.0	0.01	0.19	0.07	0.01
D	260.0	0.00	42.0	0.0	0.01	0.24	0.08	0.01
D	255.0	0.00	42.0	0.0	0.01	0.24	0.08	0.01
D	255.0	0.00	42.0	0.0	0.01	0.21	0.08	0.01
D	245.0	0.00	42.0	0.0	0.01	0.21	0.08	0.01
D	245.0	0.00	42.0	0.0	0.01	0.26	0.20	0.01
D	240.0	0.00	42.0	0.0	0.01	0.26	0.20	0.01
D	240.0	0.00	42.0	0.0	0.01	0.32	0.20	0.01
D	235.0	0.00	42.0	0.0	0.01	0.32	0.20	0.01
D	235.0	0.00	42.0	0.0	0.01	0.29	0.20	0.01
D	230.0	0.00	42.0	0.0	0.01	0.29	0.20	0.01
D	230.0	0.00	62.1	0.0	0.02	0.35	0.21	0.01
D	220.0	0.00	62.1	0.0	0.02	0.35	0.21	0.01
D	220.0	0.00	63.2	0.0	0.02	0.40	0.21	0.01
D	215.0	0.00	63.2	0.0	0.02	0.40	0.21	0.01
D	215.0	0.00	91.3	0.0	0.02	0.42	0.23	0.01
D	205.0	0.00	93.2	0.0	0.02	0.43	0.22	0.01
D	205.0	0.00	95.1	0.0	0.02	0.43	0.21	0.01
D	200.0	0.00	95.1	0.0	0.02	0.43	0.21	0.01
D	200.0	0.00	85.6	0.0	0.02	0.52	0.17	0.00
D	185.0	0.00	87.6	0.0	0.02	0.53	0.15	0.00
D	185.0	0.00	79.6	0.0	0.02	0.53	0.19	0.00
D	160.0	0.00	80.5	0.0	0.02	0.56	0.17	0.00
D	160.0	0.00	76.3	0.0	0.02	0.59	0.22	0.00
D	140.0	0.00	77.7	0.0	0.02	0.60	0.20	0.00
D	140.0	0.00	74.3	0.0	0.02	0.63	0.26	0.00
D	120.0	0.00	75.2	0.0	0.02	0.64	0.23	0.00
D	120.0	0.00	72.7	0.0	0.02	0.64	0.29	0.00
D	100.0	0.00	73.4	0.0	0.02	0.66	0.27	0.00
D	100.0	0.00	71.4	0.0	0.02	0.71	0.32	0.00
D	80.0	0.00	72.0	0.0	0.02	0.72	0.30	0.00
D	80.0	0.00	70.4	0.0	0.02	0.72	0.36	0.00
D	60.0	0.00	70.9	0.0	0.02	0.74	0.33	0.00
D	60.0	0.00	69.6	0.0	0.02	0.82	0.39	0.00
D	40.0	0.00	70.0	0.0	0.02	0.84	0.37	0.00
D	40.0	0.00	69.0	0.0	0.02	0.83	0.42	0.00
D	20.0	0.00	69.3	0.0	0.02	0.84	0.40	0.00
-	20.0	0.00	68.4	0.0	0.02	0.74	0.50	0.00
	10.0	0.00	68.4	0.0	0.02	0.74	0.50	0.00
D	10.0	0.00	68.4	0.0	0.02	0.99	0.62	0.00
D	0.0	0.00	68.4	0.0	0.02	0.99	0.62	0.00

ANTENNA LOADING

TYPE			ATTAC	ENT	.antenna forces.			
	$\begin{aligned} & \mathrm{ELEV} \\ & \mathrm{ft} \end{aligned}$	AZI	$\begin{aligned} & \text { RAD } \\ & \mathrm{ft} \end{aligned}$	AZI	AXIAL kip	SHEAR kip	GRAVITY kip	TORSION ft-kip
STD+R	260.0	0.0	4.4	0.0	0.12	0.00	1.57	0.00
STD+R	185.0	0.0	6.2	0.0	0.11	0.00	1.53	0.00

MAXIMUM ANTENNA AND REFLECTOR ROTATIONS:

ELEV AZI TYPEBEAM DEFLECTIONS (deg).........

MAXIMUM TENSION IN MAST MEMBERS (kip)

100.0							
	258.96	6.54	j				
93.3	267.70	6.80	AE	0.04	A	0.00	A
86.7				0.03	A	0.00	A
80.0	276.27	6.94	U	0.03	A	0.00	A
73.3	284.97 k	7.20	AE		A		A
	293.52 k	7.36	U	0.03	A	0.00	A
66.7	302.16			0.03	A	0.00	A
60.0			AE	0.03	A	0.00	A
53.3	310.65	7.78	U	0.03	A	0.00	A
	319.16	8.03	AE				
46.7	327.59 k	8.22	U	0.02	A	0.00	A
40.0				0.02	A	0.00	A
33.3	336.10	8.48	U	0.04	AE	0.00	A
26.7	344.54	8.70	u				
	353.00	8.96	S				
20.0	369.91 k	11.17	AT	0.22	A	0.00	A
10.0				0.62	k	0.00	AF
0.0	368.97	11.50	AT	0.00	A	0.00	A

MAXIMUM COMPRESSION IN MAST MEMBERS (kip)

FORCE/RESISTANCE RATIO IN LEGS

MAST	-- LEG COMPRESSION -			---- LEG TENSION ---		
			FORCE/			FORCE/
	Max	COMP	RESIST	MAX	TENS	RESIST
ft	COMP	RESIST	RATIO	TENS	RESIST	Ratio
280.00						
	0.25	28.89	0.01	0.16	108.24	0.00
275.00	2.64	28.89	0.09	0.63	108.24	0.01
270.00	6.01	28.89	0.21	3.78	108.24	0.03
65.00	9.45	28.89	0.33	6.96	108.24	0.06
6.00	14.58	49.29	0.30	11.26	120.41	0.09
255.00	20.66	49.29	0.42	17.18	120.41	0.14

					19-5171-тנ	
	26.88	49.29	0.55	23.37	120.41	0.19
	35.31	49.29	0.72	30.25	120.41	0.25
	45.07	112.60	0.40	39.77	220.89	0.18
	55.75	112.60	0.50	49.79	220.89	0.23
	68.29	112.60	0.61	60.71	220.89	0.27
	82.62	112.60	0.73	74.39	220.89	0.34
	92.65	153.15	0.60	84.01	267.28	0.31
	102.21	153.15	0.67	91.47	267.28	0.34
	110.19	153.15	0.72	98.93	267.28	0.37
	118.42	153.15	0.77	106.43	267.28	0.40
200.00	127.18	199.21	0.64	113.33	318.09	0.36
	136.47	199.21	0.69	121.72	318.09	0.38
	144.73	199.21	0.73	129.31	318.09	0.41
	154.26	199.21	0.77	137.53	318.09	0.43
	162.45	199.21	0.82	144.93	318.09	0.46
	171.51	199.21	0.86	153.56	318.09	0.48
	179.61	199.21	0.90	160.78	318.09	0.51
	188.17	199.21	0.94	168.77	318.09	0.53
	196.14	250.56	0.78	175.84	373.31	0.47
	204.45	250.56	0.82	183.39	373.31	0.49
	212.31	250.56	0.85	190.30	373.31	0.51
	220.40	250.56	0.88	197.57	373.31	0.53
	229.45	291.83	0.79	205.43	457.90	0.45
	240.11	291.83	0.82	214.77	457.90	0.47
	250.42	291.83	0.86	223.61	457.90	0.49
	260.90	291.83	0.89	232.70	457.90	0.51
	271.14	291.83	0.93	241.44	457.90	0.53
. 67	281.50	291.83	0.96	250.34	457.90	0.55
	291.73	354.16	0.82	258.96	457.90	0.57
	302.12	354.16	0.85	267.70	457.90	0.58
	312.42	354.16	0.88	276.27	457.90	0.60
	322.83	354.16	0.91	284.97	457.90	0.62
73.33	333.17	354.16	0.94	293.52	457.90	0.64
66.67	343.59	354.16	0.97	302.16	457.90	0.66
	354.04	421.75	0.84	310.65	457.90	0.68
	364.65	421.75	0.86	319.16	457.90	0.70
	375.25	421.75	0.89	327.59	457.90	0.72
, 0	385.92	421.75	0.92	336.10	457.90	0.73
33.33	396.60	421.75	0.94	344.54	457.90	0.75
26.67	407.30	421.75	0.97	353.00	457.90	0.77

FORCE/RESISTANCE RATIO IN DIAGONALS

$\begin{aligned} & \text { MAST } \\ & \text { ELEV } \\ & \mathrm{ft} \end{aligned}$	- diag compression -			--- DIAG TENSION --		
			FORCE/			FORCE/
	MAX	COMP	RESIST	MAX	TENS	RESIST
	COMP	RESIST	RATIO	TENS	RESIST	RATIO
280.00						
275.00	37	7.62	0.05	0.38	7.62	0.05
	1.17	7.62	0.15	1.16	7.62	0.15
270.00	1.34	7.62	0.18	1.35	7.62	0.18
265.00	1.55	7.62	0.20	1.51	7.62	0.20
260.00	2.75	7.62	0.36	2.58	7.62	0.34
55.00	2.77	7.62	0.36	2.87	7.62	0.38
250.00	3.04	7.62	0.40	2.96	7.62	0.39
245.00	4.03	7.62	0.53	4.07	7.62	0.53
. 00	4.37	7.62	0.57	4.27	7.62	0.56
. 00	4.57	7.62	0.60	4.63	7.62	0.61
230.00						
	5.73	7.62	0.75	5.68	7.62	0.75
5.00	6.01	7.62	0.79	6.01	7.62	0.79
220.00	3.64	7.62	0.48	3.43	7.62	0.45
215.00	3.87	7.62	0.51	3.91	7.62	0.51
210.00	3.87	7.62	0.51	3.77	7.62	0.49
205.00	3.74	7.62	0.49	3.75	7.62	0.49
200.00	4.58	7.62	0.60	4.40	7.62	0.58
195.00	4.35	7.62	0.57	4.35	7.62	0.57
190.00	4.48	7.62	0.59	4.37	7.62	0.57
185.00	5.59	7.62	0.73	5.29	7.62	0.69
180.00	5.21	5.68	0.92	5.44	5.68	0.96
175.00	5.37	5.68	0.95	5.15	5.68	0.91
170.00	5.14	5.68	0.91	5.31	5.68	0.93
165.00	5.31	5.68	0.93	5.14	5.68	0.90
160.00	5.19	6.19	0.84	5.31	6.19	0.86
155.00	5.35	6.19	0.86	5.21	6.19	0.84
150.00	5.35	6.19	0.86	5.37	6.19	0.87
145.00	5.44	6.19	0.88	5.33	6.19	0.86
140.00	5.89	8.39	0.70	5.80	8.39	0.69
133.33	5.91	8.39	0.70	5.83	8.39	0.69
	5.91					
126.67	6.16	8.39	0.73	5.99	8.39	0.71
120.00	6.20	6.77	0.92	6.12	6.77	0.90
113.33	6.46	6.77	0.95	6.23	6.77	0.92

106.67					19-5171-тЈн	
	6.54	6.77	0.97	6.43	6.77	0.95
100.00	6.80	10.03	0.68	6.54	10.03	0.65
93.33	6.93	10.03	0.69	6.80	10.03	0.68
86.67	7.20	10.03	0.72	6.94	10.03	0.69
80.00	7.35	8.35	0.88	7.20	8.35	0.86
73.33	7.59	8.35	0.91	7.36	8.35	0.88
66.67	7.75	8.35	0.93	7.60	8.35	0.91
60.00	8.01	15.39	0.52	7.78	15.39	0.51
53.33	8.20	15.39	0.53	8.03	15.39	0.52
46.67	8.46	15.39	0.55	8.22	15.39	0.53
40.00	8.64	13.14	0.66	8.48	13.14	0.65
33.33	8.82	13.14	0.67	8.70	13.14	0.66
26.67	8.96	13.14	0.68	8.96	13.14	0.68
20.00	11.91	14.02	0.85	11.17	14.02	0.80
10.00	12.27	12.71	0.97	11.50	12.71	0.91
0.00						

MAXIMUM INDIVIDUAL FOUNDATION LOADS: (kip)

MAXIMUM TOTAL LOADS ON FOUNDATION : (kip \& kip-ft)

------HORIZONTAL-----			DOWN	NORTH	ERTURNEAST	TORSION	
NORTH	EAST	$\begin{array}{r} \text { TOTAL } \\ 0.0 \end{array}$				$\begin{array}{r} \text { TOTAL } \\ @ \quad 0.0 \end{array}$	
61.5	52.9	61.5	189.4	8767.6	7480.3	8767.6	29.0
S	b	S	BK	S	b	S	AT

MAST LOADING

$\begin{aligned} & \text { LOAD } \\ & \text { TYPE } \end{aligned}$	ELEV ft	APPLY.. LOAD. . AT		$\begin{aligned} & \text { LOAD } \\ & \text { AZI } \end{aligned}$	FOR	$\begin{aligned} & \text { DOWN } \\ & \text { kip } \end{aligned}$ MOMENTS.	
		ft			$\begin{array}{r} \text { HORIZ } \\ \text { kip } \end{array}$		VERTICAL ft-kip	TORSNAL ft-kip
C	275.0	0.00	0.0	0.0	0.62	2.33	0.00	0.00
c	245.0	0.00	0.0	0.0	0.55	1.75	0.00	0.00
c	230.0	0.00	0.0	0.0	0.54	1.75	0.00	0.00
C	215.0	0.00	0.0	0.0	0.53	1.75	0.00	0.00
C	200.0	0.00	0.0	0.0	0.52	1.75	0.00	0.00
D	280.0	0.00	180.0	0.0	0.02	0.05	0.00	0.00
D	260.0	0.00	42.0	0.0	0.02	0.05	0.02	0.01
D	260.0	0.00	42.0	0.0	0.03	0.06	0.01	0.01
D	245.0	0.00	42.0	0.0	0.02	0.05	0.01	0.01
D	245.0	0.00	42.0	0.0	0.03	0.07	0.04	0.03
D	240.0	0.00	42.0	0.0	0.03	0.07	0.04	0.03
D	240.0	0.00	42.0	0.0	0.04	0.09	0.04	0.03
D	230.0	0.00	42.0	0.0	0.04	0.09	0.04	0.03
D	230.0	0.00	56.0	0.0	0.04	0.10	0.05	0.03
D	220.0	0.00	56.0	0.0	0.04	0.10	0.05	0.03
D	220.0	0.00	57.2	0.0	0.05	0.12	0.05	0.03
D	215.0	0.00	57.2	0.0	0.05	0.12	0.05	0.03
D	215.0	0.00	83.4	0.0	0.05	0.13	0.05	0.03
D	200.0	0.00	87.2	0.0	0.05	0.13	0.05	0.03
D	200.0	0.00	90.5	0.0	0.05	0.16	0.05	0.02
D	185.0	0.00	93.1	0.0	0.06	0.16	0.04	0.02
D	185.0	0.00	84.7	0.0	0.06	0.16	0.05	0.02
D	160.0	0.00	86.2	0.0	0.06	0.16	0.05	0.02
D	160.0	0.00	80.8	0.0	0.06	0.19	0.06	0.02
D	140.0	0.00	82.6	0.0	0.06	0.19	0.06	0.02
D	140.0	0.00	78.2	0.0	0.06	0.22	0.07	0.02
D	120.0	0.00	79.5	0.0	0.06	0.22	0.07	0.02
D	120.0	0.00	76.2	0.0	0.06	0.22	0.08	0.02
D	100.0	0.00	77.2	0.0	0.06	0.23	0.08	0.02
D	100.0	0.00	74.7	0.0	0.06	0.25	0.09	0.02
D	80.0	0.00	75.5	0.0	0.06	0.26	0.09	0.02
D	80.0	0.00	73.4	0.0	0.06	0.26	0.10	0.02
D	60.0	0.00	74.1	0.0	0.06	0.26	0.10	0.02
D	60.0	0.00	72.4	0.0	0.07	0.32	0.11	0.02
D	40.0	0.00	72.9	0.0	0.07	0.32	0.11	0.02
D	40.0	0.00	71.5	0.0	0.06	0.33	0.12	0.02
D	20.0	0.00	72.0	0.0	0.06	0.33	0.12	0.02
D	20.0	0.00	70.8	0.0	0.05	0.28	0.13	0.02
D	10.0	0.00	70.8	0.0	0.05	0.28	0.13	0.02
D	10.0	0.00	71.1	0.0	0.06	0.34	0.13	0.02
D	0.0	0.00	71.1	0.0	0.06	0.34	0.13	0.02

ANTENNA LOADING

TYPE	ELEV..... AṪI RADACHMENT				AXIAL kip	. ANTENNA FORCES		
	$\begin{aligned} & \text { ELEV } \\ & \mathrm{ft} \end{aligned}$	AZI	$\begin{aligned} & \text { RAD } \\ & \text { ft } \end{aligned}$	AZI		SHEAR kip	GRAVITY kip	TORSION ft-kip
STD+R	260.0	0.0	4.4	0.0	0.44	0.00	0.34	0.00
STD+R	185.0	0.0	6.2	0.0	0.41	0.00	0.34	0.00

$=========================$
MAXIMUM MAST DISPLACEMENTS:

ELEV	------DEFLECTIONS				(ft)-----		--TILTS (DEG)---				TWIST
$f t$	NORTH		EAST		DOWN		NORTH		EAST		DEG
280.0	1.192	S	-1.009	J	0.012	S	0.498	S	-0.422	J	-0.147
275.0	1.148	S	-0.972	J	0.012	S	0.498	S	-0.423	J	-0.147
270.0	1.104	S	-0.935	J	0.012	S	0.497	S	-0.422	J	-0.147
265.0	1.061	S	-0.898	J	0.011	S	0.495	S	-0.420	J	-0.147
260.0	1.017	S	-0.862	J	0.011	S	0.492	S	-0.416	J	-0.148
255.0	0.974	S	-0.825	J	0.011	S	0.487	S	-0.412	J	-0.141
250.0	0.932	S	-0.789	J	0.011	S	0.480	S	-0.406	J	-0.134
245.0	0.889	S	-0.753	J	0.010	S	0.472	S	-0.399	J	-0.128
240.0	0.848	S	-0.718	J	0.010	S	0.460	S	-0.389	J	-0.122

		19-5171-TJH				
235.0	0.807 s	-0.684	0.010 s	0.451 s	-0.381 J	-0.116 d
230.0	0.768 S	-0.650 J	0.010 s	0.439 s	-0.371 J	-0.110 d
225.0	0.728 S	-0.617 J	0.009 s	0.425 s	-0.359 J	-0.104 d
220.0	0.691 s	-0.586 J	0.009 s	0.407 s	-0.344 J	-0.098
215.0	0.656 s	-0.556 J	0.009 s	0.392 s	-0.331 J	-0.092 d
210.0	0.621 s	-0.527 J	0.009 s	0.378 s	-0.319 J	-0.088 d
205.0	0.588 S	-0.499 J	0.009 s	0.362 s	-0.306 J	-0.083 d
200.0	0.557 s	-0.472 J	0.008 s	0.347 s	-0.293 J	-0.079
195.0	0.526 s	-0.446 J	0.008 s	0.335 s	-0.283 J	-0.075 d
190.0	0.497 s	-0.421 J	0.008 s	0.322 s	-0.272 J	-0.072
185.0	0.468 s	-0.397 J	0.008 s	0.309 s	-0.262 J	-0.069
180.0	0.441 s	-0.374 J	0.007 s	0.297 s	-0.251 J	-0.063
175.0	0.414 S	-0.352 J	0.007 s	0.284 S	-0.240 J	-0.057
170.0	0.389 s	-0.330 J	0.007 s	0.271 s	-0.229 J	-0.052
165.0	0.364 s	-0.310 J	0.007 s	0.258 s	-0.218 J	-0.047
160.0	0.341 s	-0.290 J	0.007 s	0.245 s	-0.207 J	-0.042
155.0	0.319 s	-0.272 J	0.006 s	0.234 s	-0.198 J	-0.039
150.0	0.298 s	-0.254 J	0.006 s	0.223 S	-0.189 J	-0.036
145.0	0.279 s	-0.237 J	0.006 s	0.212 s	-0.179 J	-0.034
140.0	0.260 s	-0.221 J	0.006 s	0.201 s	-0.170 J	-0.031
133.3	0.236 s	-0.201 J	0.005	0.189 s	-0.161 J	-0.028
126.7	0.213 s	-0.182 J	0.005 s	0.178 S	-0.151 J	-0.026
120.0	0.192 s	-0.164 J	0.005 s	0.167 s	-0.142 J	-0.024 d
113.3	0.172 s	-0.147 J	0.005 s	0.156 s	-0.133 J	-0.022 d
106.7	0.153 s	-0.131 J	0.005 s	0.145 s	-0.123 J	-0.020
100.0	0.136 s	-0.116 J	0.004 s	0.134 s	-0.114 J	-0.018
93.3	0.120 s	-0.102 J	0.004 s	0.125 s	-0.106 J	-0.016
86.7	0.104 s	-0.089 J	0.004 s	0.115 s	-0.098 J	-0.014
80.0	0.090 S	-0.077 J	0.004 s	0.105 S	-0.090 J	-0.013
73.3	0.077 S	-0.066 J	0.003 s	0.096 s	-0.082	-0.011
66.7	0.065 s	-0.055 J	0.003 s	0.086 s	-0.073 J	-0.010
60.0	0.054 s	-0.046 J	0.003 s	0.077 s	-0.065 J	-0.008
53.3	0.044 s	-0.038 J	0.003 s	0.068 s	-0.058 J	-0.007 d
46.7	0.036 s	-0.031 J	0.002 s	0.060 s	-0.051 J	-0.006 d
40.0	0.028 S	-0.024 J	0.002 s	0.051 s	-0.044 J	0.005 h
33.3	0.021 s	-0.018 J	0.002 u	0.043 s	-0.037 J	0.004
26.7	0.015 s	-0.013 J	0.001 c	0.034 s	-0.029 J	0.003
20.0	0.007 s	-0.006 J	0.001 I	0.025 s	-0.021 J	0.002
10.0	0.002 U	-0.002 L	0.001 C	0.013 s	-0.011 J	0.001 h
0.0	0.000 A					

MAXIMUM ANTENNA AND REFLECTOR ROTATIONS:

$\begin{aligned} & \text { ELEV } \\ & \text { ft } \end{aligned}$	$\begin{aligned} & \text { AZI } \\ & \text { deg } \end{aligned}$	$\underset{\underset{\sim}{T}}{ }$	PITCH	BEAM	DEFLECTIONS YAW		$\begin{aligned} & \text { S (deg) } \\ & \text { ROLL } \end{aligned}$		TOTAL
260.0	0.0	STD+R	0.416	J	0.148	d -	-0.492	S	0.442
185.0	0.0	STD+R	0.262	J	0.069	d -	-0.309	S	0.270

MAXIMUM TENSION IN MAST MEMBERS (kip)

$\begin{array}{r} \text { ELEV } \\ \mathrm{ft} \end{array}$	LEGS	DIAG		HORIZ	BRACE
280.0				0.080	0.00 A
	0.03 g	0.12	e		
275.0	0.00 A	0.36	D	0.01 g	0.00 A
270.0				0.01 A	0.00 A
265.0	0.51 A	0.43	D	0.01 b	0.00 A
	1.48 A	0.47	V		0.00 A
260.0				$0.15 \times$	0.00 A
255.0	2.64 M	0.84	D	0.03 M	0.00 A
50.0	4.38 A	0.92	D	0.00 C	
250.0	6.32 A	0.92	V	0.00 C	0.00 A
245.0				0.03 A	0.00 A
240.0	7.99 A	1.29	D	0.19 A	0.00 A
235.0	10.97 A	1.32	D	0.07 A	
	13.98 A	1.48	D	0.07 A	0.00 A
230.0	16.96 A	1.79	-	0.02 s	0.00 A

225.0	21.17 A	1.91	D	0.07	19-5171-TJH		
220.0				0.14	S	0.00	A
215.0	24.16 A	1.04	A	0.06	A	0.00	A
	25.88 A	1.25	X				
210.0				0.01	A	0.00	A
205.0	28.13 A	1.17	x	0.06	A	0.00	A
	30.33 A	1.18	X		A		A
200.0				0.00	A	0.00	A
	31.95 A	1.37	A	0.04	A	0.00	A
195.0	34.38 A	1.38	S				
190.0				0.03	e	0.00	A
	36.62 A	1.35	X	0.03	A	0.00	A
185.0	38.80 A	1.62	x				
180.0				0.03	e	0.00	A
	40.94 A	1.74	F	0.03	A	0.00	A
175.0	43.53 A	1.59	x		A		A
170.0	45.58 A	1.69	F	0.02	e	0.00	A
165.0				0.02	A	0.00	A
	47.94 A	1.59	X	0.02			
160.0	49.94 A	1.68	F				
155.0				0.02	A	0.00	A
	52.13 A	1.62	X	0.02	M	0.00	A
150.0	54.07 A	1.70	F				
145.0				0.02	A	0.00	A
140.0	56.16 A	1.66	X	0.02	M	0.00	A
	58.34 A	1.83	F				
133.3	60.96 A	1.82	S	0.02	A	0.00	A
126.7				0.02	M	0.00	A
	63.39 A	1.89	F	0.02	A	0.00	A
120.0	65.92 A	1.92	S				
113.3	68.32 A	1.97	F	0.01	M	0.00	A
106.7				0.02	A	0.00	A
	70.78 A	2.01	S	0.01	M	0.00	A
100.0	73.12 A	2.07	j		A		
93.3	75.49 A	2.14	S	0.01	A	0.00	A
86.7				0.01	A	0.00	A
	77.78 A	2.18	S				
80.0	80.13 A	2.26	S	0.01	A	0.00	A
73.3				0.01	A	0.00	A
	82.42 A	2.32	S	0.01	A	0.00	A
66.7	84.74 A	2.39	S			0.00	
60.0				0.01	A	0.00	A
53.3	86.96 A	2.45	S	0.01	A	0.00	A
	89.14 A	2.53	S				
46.7	91.29 A	2.59	S	0.01	A	0.00	
40.0				0.01	A	0.00	A
	93.47 A	2.67	S	0.01	g	0.00	
33.3	95.61 A	2.74	S		9		
26.7		2.83		0.04	S	0.00	A
	97.76 A	2.83	S	0.08	A	0.00	A
20.0	102.56 A	3.49	j				
10.0	101.51 A	3.59	j	0.17	A	0.00	Y
0.0				0.00	A	0.00	A

MAXIMUM COMPRESSION IN MAST MEMBERS (kip)

$\begin{array}{r} \text { ELEV } \\ \mathrm{ft} \end{array}$	LEGS	DIAG		HORIZ	BRACE	
280.0				-0.08 g	0.00	A
	-0.10 0	-0.12	M	0.000		A
275.0	-1.36 S	-0.38	D	0.000	0.00	A
270.0				0.00 s	0.00	A
265	-2.51 e	-0.42	V	0.00 A	0.00	A
	-3.62 S	-0.50	D	0.00 A		
260.0				-0.20 h	0.00	A
255.0	-5.48 S	-0.90	G	-0.01 S	0.00	A
	-7.45 S	-0.86	V			
250.0				-0.01 F	0.00	A
245.0	-9.43 S	-0.97	D	-0.01 s	0.00	A
	-12.54 S	-1.28	V			
240.0				-0.11 G	0.00	A
235.0	-15.68 S	-1.41	D	-0.04 S	0.00	A
	-19.21 S	-1.43	D			
230.0	-23.61 S	-1.83	D	-0.02 A	0.00	A
225.0				-0.04 S	0.00	A
	-28.27 S	-1.91	D			
220.0	-31.50 S	-1.20	S	-0.23 A	0.00	A
215.0				-0.03 S	0.00	A
210.0	-35.09 S	-1.21	x	0.00 s	0.00	A
	-37.70 S	-1.24	S			
205.0				-0.03 S	0.00	A
200.0	-40.45 S	-1.18	X	0.00 A	0.00	A
195.0	-43.69 S	-1.46	S	-0.03 s		
	-46.82 S	-1.36	X	.	,	A
190.0				-0.01 M	0.00	A
185.0	-49.55 S	-1.43	S	-0.03 A	0.00	A
180.0	-52.91 5	-1.80	F	-0.01 b		
	-55.66 S	-1.62	X	-0.01 b	. 0	A
175.0				-0.02 A	0.00	A
170.0	-58.63 S	-1.72	F	-0.01 S	0.00	A
	-61.38 5	-1.60	x			A
165.0	-64.21 S	-1.69	F	-0.02 h	0.00	A
160.0				-0.01 S	0.00	A
155.0	-66.93 s	-1.63	S	-0.01 h	0.00	A
	-69.72 S	-1.70	F			
150.0	-72.40 S			-0.01 S	0.00	A
145.0	-72.40 S	-1.68	S	-0.01 S	0.00	A
140.0	-75.14 S	-1.73	F	-0.01 S	0.00	A
	-78.24 S	-1.86	S			
133.3	-81.90 S	-1.88	F	-0.01 S	0.00	A
126.7				-0.01 S	0.00	A
	-85.46 S	-1.94	S			
120.0	-89.06 S	-1.97	S	-0.01 S	0.00	A
113.3				-0.01 S	0.00	A
106.7	-92.61 S	-2.04	S	-0.01 S	0.00	A
	-96.18 S	-2.07	S			
100.0				-0.01 S	0.00	A
93.3	-99.74 S	-2.15	S	-0.01 S	0.00	A
	103.36 S	-2.19	S			
86.7				-0.01 S	0.00	A

				19-5171-тכ			
80.0	-106.97	-2.27	S				
	-110.60	-2.33	S		s	0.00	A
73.3	-114. 23 S	-2 40	s	-0.01	S	0.00	A
66.7	-114		S	-0.01	S	0.00	A
	-117.87	-2.45	S				
	-121.58	-2.54	S	-0.01	S	0.00	A
53.3	-125.36	-2.60	5	-0.01	5	0.00	A
46.7	-125.36	-2.60	S	0.00	S	0.00	A
40.0	-129.15	-2.67	S	0.00	s	0.00	A
	-132.97	-2.74	S				
33.3	-136.80	-2.79	5	-0.02	c	0.00	A
26.7	-140.63	-2.83		-0.07	A	0.00	A
20.0	-140.63			-0.04	S	0.00	A
10.0	-147.40	-3.80	5	-0.25	s		G
	-148.44	-3.91	s				
0.0				0.00	A	0.00	A

MAXIMUM INDIVIDUAL FOUNDATION LOADS: (kip)

MAXIMUM TOTAL LOADS ON FOUNDATION : (kip \& kip-ft)

NORTH	$\begin{gathered} \text { ORIZONTA } \\ \text { EAST } \end{gathered}$	$\begin{array}{r} \text { TOTAL } \\ 0.0 \end{array}$	DOWN	NORTH	OVERTURNING-	TORSION	
						$\begin{array}{r} \text { TOTAL } \\ 0.0 \end{array}$	
19.4	-16.6	19.4	65.0	2769.9	-2364.1	2769.9	9.1
S	J	S	X	S	J	S	h

MAT FOUNDATION DESIGN BY SABRE TOWERS \& POLES

Tower Description 280' S3R Series SD
Customer VERIZON WIRELESS
Project Number 19-5171-TJH
Date 12/13/2018
Engineer NM

Overall Loads:

Factored Moment (ft-kips)	8767.62
Factored Axial (kips)	189.36
Factored Shear (kips)	61.54
Individual Leg Loads:	
Factored Uplift (kips)	382.00
Factored Download (kips)	444.00
Factored Shear (kips)	38.00
Width of Tower (ft)	24.25
Ultimate Bearing Pressure	9.00
Bearing S $^{\text {S }}$	0.75
Bearing Design Strength (ksf)	6.75
Water Table Below Grade (ft)	999
Width of Mat (ft)	31
Thickness of Mat (ft)	1.5
Depth to Bottom of Slab (ft)	6
Bolt Circle Diameter (in)	10
Effective Anchor	
Bolt Embedment	52.625
Diameter of Pier (ft)	3.5
Ht. of Pier Above Ground (ft)	0.5
Ht. of Pier Below Ground (ft)	4.5
Quantity of Bars in Mat	59
Bar Diameter in Mat (in)	1.128
Area of Bars in Mat (in ${ }^{2}$)	58.96
Spacing of Bars in Mat (in)	6.29
Quantity of Bars Pier	18
Bar Diameter in Pier (in)	0.875
Tie Bar Diameter in Pier (in)	0.5
Spacing of Ties (in)	4
Area of Bars in Pier (in ${ }^{2}$)	10.82
Spacing of Bars in Pier (in)	5.93
$\mathrm{f}^{\prime} \mathrm{c}$ (ksi)	4.5
fy (ksi)	60
Unit Wt. of Soil (kcf)	0.12
Unit Wt. of Concrete (kcf)	0.15
Volume of Concrete ($\mathrm{yd}^{\text {3 }}$)	58.73

Tower eccentric from mat $(\mathrm{ft})=$ \square

Allowable Bearing Pressure (ksf) Safety Factor

3.00
3.00

Max. Factored Net Bearing Pressure (ksf)	4.49
Minimum Mat Width (ft)	30.08

Minimum Pier Diameter (ft)	2.17
Equivalent Square b (ft)	3.10

Recommended Spacing (in)
6 to 12

Minimum Pier $\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2}\right)$

Recommended Spacing (in)

6.93
5 to 12

MAT FOUNDATION DESIGN BY SABRE TOWERS \& POLES (CONTINUED)

Two-Way Shear:

Average d (in)
$\phi v_{c}(k s i)$
$\phi v_{c}=\phi\left(2+4 / \beta_{c}\right) f_{c}^{1 / 2}$

13.872
0.201
0.302

$\phi v_{c}=\phi\left(\alpha_{s} d / b_{0}+2\right) f_{c}^{1 / 2}$
0.237
$\phi v_{c}=\phi 4 f_{c}^{\prime}{ }^{1 / 2}$
0.201

Shear perimeter, b_{o} (in)
β_{c}
204.37

Stability:
Overturning Design Strength (ft-k) 11045.8
One-Way Shear:

$$
\phi \mathrm{V}_{\mathrm{c}} \text { (kips) }
$$

Pier Design:
Design Tensile Strength (kips)

> Shear: ϕ $\mathrm{V}_{\mathrm{c}}(\mathrm{kips})$ $\mathrm{V}_{\mathrm{s}}(\mathrm{kips})$ $\phi \mathrm{V}_{\mathrm{n}}(\mathrm{kips})$
$\phi \quad 0.75$
$\begin{array}{ll}\mathrm{V}_{\mathrm{c}} \text { (kips) } & 84.9\end{array}$

Maximum Spacing (in)
Actual Hook Development (in)

197.9
212.1
11.15

$$
\begin{gathered}
V_{\mathrm{s}, \text { max }}(\mathrm{kips}) \\
\mathrm{V}_{\mathrm{u}}(\mathrm{kips})
\end{gathered}
$$

757.3
38.0

Factored Overturning Moment (tt-k

Anchor Bolt Pull-Out:	
$\mathrm{N}_{\text {ua }} / \varnothing \mathrm{N}_{\mathrm{n}}$	0.81
Pier Rebar Development Length (in)	41.18

Flexure in Slab:

 $\phi \mathrm{M}_{\mathrm{n}}$ (tt -kips) a (in)Steel Ratio β_{1}

Maximum Steel Ratio $\left(\rho_{\mathrm{t}}\right)$
Minimum Steel Ratio
Rebar Development in Pad (in)
3350.7
2.49
0.01143 0.825 0.0197 0.0018 93.61
$V_{\mathrm{ua}} / \emptyset \mathrm{V}_{\mathrm{n}}$
Required Length of Development (in)

23.48

Condition	1 is OK, 0 Fails
Minimum Mat Width	1
Maximum Soil Bearing Pressure	1
Pier Area of Steel	1
Pier Shear	1
Two-Way Shear	1
Overturning	1
Anchor Bolt Pull-Out	1
Flexure	1
Steel Ratio	1
Interaction Diagram Visual Check	1
One-Way Shear	1
Hook Development	1
Minimum Mat Depth	1
Anchor Bolt Punching Shear	1

DRILLED STRAIGHT PIER DESIGN BY SABRE TOWERS \& POLES

```
Tower Description 280' S3R Series SD
Customer Name VERIZON WIRELESS
Job Number 19-5171-TJH
Date 12/13/2018
Engineer NM
```

Factored Uplift (kips)
Factored Download (kips) Factored Shear (kips)
Ultimate Bearing Pressure Bearing ϕ_{s}
Bearing Design Strength (ksf)
Water Table Below Grade (ft) Bolt Circle Diameter (in)

382
444
38
12
0.75
9
999
10

Effective Anchor
Bolt Embedment
Pier Diameter (ft)
Ht. Above Ground (ft)
Pier Length Below Ground (ft)
Quantity of Bars
Bar Diameter (in)
Area of Bars (in^{2})
Spacing of Bars (in)
Tie Bar Diameter (in)
Spacing of Ties (in)

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{c}}(\mathrm{ksi}) \\
& \mathrm{f}_{\mathrm{y}}(\mathrm{ksi})
\end{aligned}
$$

52.625
4
0.5
33.5
12
1.128
11.99
10.32
0.5
12
4.5
60

Minimum Pier Diameter (ft)
2.17

Minimum Area of Steel $\left(\mathrm{in}^{2}\right)$
9.05

Unit Wt. of Concrete (kcf) Download Friction ϕ_{s} Uplift Friction ϕ_{s}
Volume of Concrete (yd^{3})
Skin Friction Factor for Uplift Ignore Bottom Length in Download?

Depth at Bottom of Layer (ft)

Depth at Bottom of Layer (ft)	Ult. Skin Friction (ksf)	(Ult. Skin Friction)*(Uplift Factor)	$\gamma(\mathrm{kcf})$
6	0.00	0.00	0.12
23.5	1.20	1.20	0.12
28.5	1.20	1.20	0.13
35	2.00	2.00	0.13
0	0.00	0.00	0
0	0.00	0.00	0
0	0.00	0.00	0
0	0.00	0.00	0
0	0.00	0.00	0
0	0.00	0.00	0

DRILLED STRAIGHT PIER DESIGN BY SABRE TOWERS \& POLES (CONTINUED)

Download:
Factored Net Weight of Concrete (kips) Bearing Design Strength (kips) Skin Friction Design Strength (kips) Download Design Strength (kips)

14.8
113.1
348.7
461.8

Uplift:
Nominal Skin Friction (kips)
465.0

Wc, Weight of Concrete (kips)
64.1
W_{R}, Soil Resistance (kips)
2070.4
$\phi_{s} \mathrm{~W}_{\mathrm{r}}+0.9 \mathrm{~W}_{\mathrm{c}}$ (kips)
Uplift Design Strength (kips)
1610.5
406.4

Factored Uplift (kips) $\quad 382.0$
Tension:
Design Tensile Strength (kips)
647.6
$T_{u}(k i p s)$
382.0

Shear:

ϕ	0.75
$\mathrm{~V}_{\mathrm{c}}($ kips $)$	142.9
$\mathrm{~V}_{\mathrm{s}}$ (kips)	75.4
$\phi \mathrm{~V}_{\mathrm{n}}(\mathrm{kips})$	163.7

$$
\begin{aligned}
& V_{s, \max }(k i p s) \\
& V_{u}(k i p s)
\end{aligned}
$$

989.2

Anchor Bolt Pull-Out:
$\mathrm{N}_{\mathrm{ua}} / \phi \mathrm{N}_{\mathrm{n}}$
Rebar Development Length (in)

0.81
39.17

$V_{\text {ua }} / \phi V_{n}$
0.17

Condition	1 is OK, 0 Fails
Download	1
Uplift	1
Area of Steel	1
Shear	1
Anchor Bolt Pull-Out	1
Interaction Diagram Visual Check	1

KENTUCKY RSA No. 1 PARTNERSHIP d/b/a

GPD GROUP, INC:

BALLARD COUNTY, KENTUCKY VERIZON WIRELESS TOWER SITE EV BARIOW TOWER LOCATION EXHIBIT

BROADCAST AND TRANSMIT STRUCTURE LOCATIONS DEPICTED ARE ALL KNOWN STRUCTURE SITES THAT HAVE BEEN REGISTERED WITH THE FEDERAL COMMUNICATIONS COMMISSION WITHIN $1 / 2$ MILE OF THE LIMITS OF BALLARD COUNTY ON OR BEFORE JANUARY 31, 2022

Mentucky

SITE \#1: FCC\# 1030662 CROWN CASTLE GT COMPANY, LLC N3654'35.5", W89004'01.6" SITE \#2: FCC\# 1030664 CROWN CASTLE GT COMPANY, LLCN37003'51.4", W88057'23.6" SITE \#3: FCC\# 1044387 AMERICAM FAMILY ASSOCIATION N37¹1'36.0", W8858'40.0"
SITE \#4: FCC\# 1044596 WITHERS BROADCASTING COMPANY OF PADUCAH, LLC N3656'17.0", W8858'01.0" SITE \#5: FCC\# 1061534 SBA PROPERTIES, LLC N3701'59.6", W8855'53.8'
SITE \#6: FCC\# 1222068 AMERICAN FAMILY ASSOCIATION N $36^{\circ} 59^{\prime} 32.1^{\prime \prime}$, W88059'19.2"
SITE \#7: FCC\# 1229412 TOWERS III, LLC N37004'30.1", W88ㅇ52'42.7"

SITE \#8: FCC\# 1244919 CCATT, LLC N3706'39.7", W885ㄱ'32.4"
SITE \#9: FCC\# 1252613 KENTUCKY RSA NO. 1 PARTNERSHIP N370 ${ }^{\circ} 0^{\prime} 55.4^{\prime \prime}$, W88ㅇ56'43. ${ }^{\prime \prime \prime}$ SITE \#10:FCC\# 1265272 TV6 HOLDINGS, LLC N $37^{\circ} 05^{\prime} 12.6^{\prime \prime}$, W $88^{\circ} 52^{\prime} 56.7^{\prime \prime}$
SITE \#11: FCC\# 1265530 KENTUCKY RSA NO. 1 PARTNERSHIP N3659'01.1", W890ㅇ'29.2" SITE \#12: FCC\# 1313667 KENTUCKY RSA NO. 1 PARTNERSHIP N3701'45.6", W8900'07.6" SITE \#13: FCC\# 1318625 KENTUCKY STATE POLICE N $36^{\circ} 58^{\prime} 24.9^{\prime \prime}$, W89 ${ }^{\circ} 04^{\prime} 58.4^{\prime \prime}$

Mail Processing Center
Federal Aviation Administration
Obstruction Evaluation Group
10101 Hillwood Parkway
Fort Worth, TX 76177
Issued Date: 10/01/2018

Network Regulatory
Kentucky RSA No. 1 Partnership
5055 North Point Pkwy
Alpharetta, GA 30005

** DETERMINATION OF NO HAZARD TO AIR NAVIGATION **

The Federal Aviation Administration has conducted an aeronautical study under the provisions of 49 U.S.C., Section 44718 and if applicable Title 14 of the Code of Federal Regulations, part 77, concerning:

Structure:	Antenna Tower EV Barlow - B (2580839)
Location:	Barlow, KY
Latitude:	$37-06-42.14 \mathrm{~N}$ NAD 83
Longitude:	$89-02-44.58 \mathrm{~W}$
Heights:	364 feet site elevation (SE)
	285 feet above ground level (AGL)

This aeronautical study revealed that the structure does not exceed obstruction standards and would not be a hazard to air navigation provided the following condition(s), if any, is(are) met:

As a condition to this Determination, the structure is to be marked/lighted in accordance with FAA Advisory circular 70/7460-1 L Change 2, Obstruction Marking and Lighting, a med-dual system - Chapters 4,8(MDual),\&12.

Any failure or malfunction that lasts more than thirty (30) minutes and affects a top light or flashing obstruction light, regardless of its position, should be reported immediately to (877) 487-6867 so a Notice to Airmen (NOTAM) can be issued. As soon as the normal operation is restored, notify the same number.

It is required that FAA Form 7460-2, Notice of Actual Construction or Alteration, be e-filed any time the project is abandoned or:

At least 10 days prior to start of construction (7460-2, Part 1)
\qquad Within 5 days after the construction reaches its greatest height (7460-2, Part 2)

This determination expires on 04/01/2020 unless:
(a) the construction is started (not necessarily completed) and FAA Form 7460-2, Notice of Actual Construction or Alteration, is received by this office.
(b) extended, revised, or terminated by the issuing office.
(c) the construction is subject to the licensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within 6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for completion of construction, or the date the FCC denies the application.

NOTE: REQUEST FOR EXTENSION OF THE EFFECTIVE PERIOD OF THIS DETERMINATION MUST BE E-FILED AT LEAST 15 DAYS PRIOR TO THE EXPIRATION DATE. AFTER RE-EVALUATION OF CURRENT OPERATIONS IN THE AREA OF THE STRUCTURE TO DETERMINE THAT NO SIGNIFICANT AERONAUTICAL CHANGES HAVE OCCURRED, YOUR DETERMINATION MAY BE ELIGIBLE FOR ONE EXTENSION OF THE EFFECTIVE PERIOD.

This determination is based, in part, on the foregoing description which includes specific coordinates, heights, frequency(ies) and power. Any changes in coordinates, heights, and frequencies or use of greater power, except those frequencies specified in the Colo Void Clause Coalition; Antenna System Co-Location; Voluntary Best Practices, effective 21 Nov 2007, will void this determination. Any future construction or alteration, including increase to heights, power, or the addition of other transmitters, requires separate notice to the FAA.This determination includes all previously filed frequencies and power for this structure.

If construction or alteration is dismantled or destroyed, you must submit notice to the FAA within 5 days after the construction or alteration is dismantled or destroyed.

This determination does include temporary construction equipment such as cranes, derricks, etc., which may be used during actual construction of the structure. However, this equipment shall not exceed the overall heights as indicated above. Equipment which has a height greater than the studied structure requires separate notice to the FAA.

This determination concerns the effect of this structure on the safe and efficient use of navigable airspace by aircraft and does not relieve the sponsor of compliance responsibilities relating to any law, ordinance, or regulation of any Federal, State, or local government body.

A copy of this determination will be forwarded to the Federal Communications Commission (FCC) because the structure is subject to their licensing authority.

If we can be of further assistance, please contact our office at (718) 553-2611, or angelique.eersteling@faa.gov. On any future correspondence concerning this matter, please refer to Aeronautical Study Number 2018-ASO-17808-OE.

Signature Control No: 381530823-386435140
Angelique Eersteling
Technician
Attachment(s)
Frequency Data
Map(s)
cc: FCC

LOW FREQUENCY	$\begin{gathered} \text { HIGH } \\ \text { FREQUENCY } \\ \hline \end{gathered}$	FREQUENCY UNIT	ERP	$\begin{gathered} \text { ERP } \\ \text { UNIT } \end{gathered}$
6	7	GHz	55	dBW
6	7	GHz	42	dBW
10	11.7	GHz	55	dBW
10	11.7	GHz	42	dBW
17.7	19.7	GHz	55	dBW
17.7	19.7	GHz	42	dBW
21.2	23.6	GHz	55	dBW
21.2	23.6	GHz	42	dBW
614	698	MHz	1000	W
614	698	MHz	2000	W
698	806	MHz	1000	W
806	901	MHz	500	W
806	824	MHz	500	W
824	849	MHz	500	W
851	866	MHz	500	W
869	894	MHz	500	W
896	901	MHz	500	W
901	902	MHz	7	W
929	932	MHz	3500	W
930	931	MHz	3500	W
931	932	MHz	3500	W
932	932.5	MHz	17	dBW
935	940	MHz	1000	W
940	941	MHz	3500	W
1670	1675	MHz	500	W
1710	1755	MHz	500	W
1850	1910	MHz	1640	W
1850	1990	MHz	1640	W
1930	1990	MHz	1640	W
1990	2025	MHz	500	W
2110	2200	MHz	500	W
2305	2360	MHz	2000	W
2305	2310	MHz	2000	W
2345	2360	MHz	2000	W
2496	2690	MHz	500	W

TOPO Map for ASN 2018-ASO-17808-OE

KENTUCKY AIRPORT ZONING COMMISSION

421 Buttermilk Pike

MATTHEW BEVIN
Governor
Covington, KY 41017
www.transportation.ky.gov
859-341-2700

CONSTRUCTION/ALTERATION STATUS REPORT

December 21, 2018
AERONAUTICIAL STUDY NUMBER: AS-004-PAH-2018-092
Verizon Wireless Tennessee
Verizon Wireless Tennessee
5055 North Point Pkwy, NP2NE
Alpharetta, GA 30022
This concerns the permit which was issued to you by the Kentucky Airport Zoning Commission on December 21, 2018. This permit is valid for a period of $18 \mathrm{Month}(\mathrm{s})$ from its date of issuance. If construction is not completed within the said 18-Month period, this permit shall lapse and be void, and no work shall be performed without the issuance of a new permit. When appropriate, please indicate the status of the project in the place below and return this letter to John Houlihan, Administrator, Kentucky Airport Zoning Commission, 421 Buttermilk Pike, Covington, KY, 41017. 859-341-2700.

```
STRUCTURE: Antenna Tower
LOCATION: Barlow, KY
COORDINATES: }\quad3\mp@subsup{7}{}{\circ}\mp@subsup{6}{}{\prime}42.14"N/ 89o 2'44.58" W
HEIGHT: 285' AGL /649'AMSL
```


CONSTRUCTION/ALTERATION STATUS

1. The project () is abandoned. () is not abandoned.
2. Construction status is as follows:

Structure reached its greatest height of \qquad ft. AGL
\qquad ft. AMSL on \qquad (date).

Date construction was completed. \qquad
Type of obstruction marking/painting. \qquad
Type of obstruction lighting. \qquad
As built coordinates. \qquad
Miscellaneous Information. \qquad

DATE \qquad
SIGNATURE/TITLE \qquad

Geotechnical Report and Resistivity Verizon Wireless EV Barlow

2244 Steve Denton Road Barlow, Kentucky

August 30, 2018

Prepared For:

Verizon Wireless
250 East $\mathbf{9 6}^{\text {th }}$ Street
Suite 175
Indianapolis, Indiana

SUBSURFACE INVESTIGATION \&
 GEOTECHNICAL RECOMMENDATIONS

EV BARLOW - CELL TOWER
2244 Steve Denton Road BARLOW, KENTUCKY

A\&W Project No: 18IN0510

Prepared For:

GPD GROUP
IndIANAPOLIS, INDIANA

Prepared By:
Alt \& Witzig Engineering, Inc. GEOTECHNICAL DIVISION

August 30, 2018
GPD Group
8275 Allison Pointe Trail, Suite 220
Indianapolis, Indiana 46250
ATTN: Ms. Traci Preble

Report of Subsurface Investigation \& Geotechnical Recommendations

RE: EV Barlow - Cell Tower
2244 Steve Denton Road
Barlow, Kentucky
Alt \& Witzig File: 18IN0510

Dear Ms. Preble:
In compliance with your request, we have completed a subsurface investigation and geotechnical evaluation for the above referenced project. It is our pleasure to transmit herewith one (1) electronic copy of our report.

The purpose of this subsurface investigation was to determine the various soils profile components and the engineering characteristics of the materials encountered in order to provide information to be used for preparing a foundation for the proposed cellular tower and equipment building.

Project Description

It is anticipated that a new 285 -foot tall self-support cell tower will be constructed at this site. A prefabricated equipment building will also be constructed at this site

The site is located west of State Road 1105 and approximately one-hundred (100) feet south of Sallie Crice Road near Barlow, Kentucky (Exhibit 1). The site may be located using the Barlow Quadrangle, Kentucky-Illinois 7½ minute topographic map.

Based upon the project plans provided by GPD to Alt \& Witzig Engineering, the ground surface elevation at the tower center is taken to be 348.0' AMSL. All depths referred to in this report and on the Boring Logs are referenced from the existing ground surface.

Exhibit 1: 2017 Aerial Photograph with Overlay

Field Methods

The field investigation included a reconnaissance of the project site, performing one (1) soil boring (B-1) for the proposed tower and one (1) soil boring for the equipment building (B-2), performing standard penetration tests, and obtaining soil samples retained in the standard split-spoon sampler. The apparent groundwater level at the boring location was also determined.

The soil boring was performed with an all terrain vehicle-mounted drilling rig equipped with a rotary head. Conventional hollow-stem augers were used to advance the holes. The advancement of the borings was temporarily stopped at regular intervals in order to perform standard penetration tests in accordance with ASTM Procedure D-1586. The standard penetration test involves driving a split spoon soil sampler into the ground by dropping a 140 -pound hammer, thirty (30) inches. The number of hammer drops required to advance the split-spoon sampler one (1) foot into the soil is defined as the standard penetration value. The soil samples retained in the split-spoon sampling device as a result of the penetration tests were obtained, classified, and labeled for further laboratory investigation.

Laboratory Investigation

A laboratory investigation was conducted to ascertain additional pertinent engineering characteristics of the subsurface materials at the site of the proposed tower. The laboratory testing program included:

- Visual classification of soils.
- Moisture content determination in accordance with ASTM D-2216.
- Samples of the cohesive soil were frequently tested in unconfined compression by use of a calibrated spring testing machine.
- A pocket penetrometer was used as an aid in determining the strength of the soil.

The values of the unconfined compressive strength as determined on soil samples from the split-spoon sampling must be considered approximate recognizing the manner in which they were obtained since the split-spoon sampling techniques provide a representative but somewhat disturbed soil sample.

Site Specific Subsurface Conditions

At the ground surface, the borings encountered approximately six (6) inches of topsoil. Beneath the topsoil, the borings encountered very soft to stiff silty clays with varying amounts of sand and gravel extending to depths of twenty-three and one-half ($23^{1 / 2}$) feet (Elev. 319.5 feet) in boring B-1 and ten (10) feet (Elev. 338.0 feet) in boring B-2. In boring B-1, these soils transitioned into a hard consistency that extended to a depth of twenty-eight and one-half (281/2) feet. At this depth, dry, very dense, clayey sand was encountered to the termination depth of the boring at thirty-seven (37) feet, where auger refusal was encountered. Detailed soil descriptions at the boring location have been included on the Boring Logs in the Appendix of this report.

Bedrock

The site is located along the Mississippi Embayment of the Mississippi Alluvial Plain within the Jackson Purchase Region of Kentucky. This part of Kentucky is relatively flat-lying, with numerous lakes, ponds, sloughs, and swamps. Geologic maps published by the US Geological Service indicate the Mississippi Embayment is the northward continuation of the fluvial sediments of the Mississippi River Delta. The current sedimentary area was formed in the Cretaceous and early Cenozoic periods by the filling with sediment of an existing basin. The soils in this region consists primarily of loess. The underlying bedrock in this region consists primarily of limestone formed in the Ordovician period.

Groundwater

Water level observations made during and upon completion of drilling operations yielded dry boreholes. These measurements are noted on the Boring Logs presented herewith. The exact location at which water is encountered should be anticipated to fluctuate somewhat depending upon normal seasonal variations in precipitation and surface runoff.

It should be noted that the groundwater level measurement recorded on the individual Boring Logs in the Appendix of this report is accurate for the specific date on which the measurements was performed. It must be understood that the groundwater level will fluctuate throughout the year. The Boring Logs do not indicate these fluctuations.

Seismic Parameters

An evaluation of the seismic site class has been performed for this site. The State of Kentucky has integrated the 2015 International Building Code into the Indiana Building Code (IBC). The seismic site class is determined by averaging soil conditions within the top 100 feet with respect to the shear wave velocity in accordance with ASCE 7. Our evaluation is based on data obtained for borings performed to depths of 33 feet at this site and information provided by the Indiana Geological Survey for a depth of 100 feet. A detailed report generated by the USGS Earthquake Hazard program (http://earthquake.usgs.gov/designmaps/us/application.php) has been attached to this letter. Following are the summarized requested seismic parameters.

Seismic Parameters

Site Soil Classification	Site Class D
MCE Spectral Response Accelerations	$\mathrm{S}_{\mathrm{s}}=2.506$
	$\mathrm{~S}_{1}=0.951$
Site Coefficients	$\mathrm{F}_{\mathrm{a}}=1.0$
	$\mathrm{~F}_{\mathrm{v}}=1.5$

Geotechnical Recommendations

Information provided by GPD Group indicates that the proposed 285-foot self-support cell tower will be constructed in the general vicinity of soil boring B-1; and an equipment building will be constructed in the general vicinity of boring B-2. Our experience with this type of structure indicates that the structural loads of the tower will be supported by an extended mat foundation or a caisson system and the buildings will be supported by conventional spread footings and continuous wall footings. It is recommended that a representative of Alt \& Witzig Engineering, Inc. be on-site to monitor the excavation and inspect the base of the foundations.

Tower Foundation Recommendations

Extended Footing or Extended Mat Foundation

If spread footings are desired, they should be founded at a minimum depth of four (4) feet below existing grade. The soil parameters presented in Table 1 may be utilized for the design of a shallow foundation.

Table 1: Shallow Foundation Soil Parameters

Soil Description	Depth Below Existing Grade (feet)	Allowable Bearing Pressure (psf) FS=3	Unit Weight (pef)	$\mathbf{C ~ (p s f) / ~}$ $\mathbf{\Phi}$ ($\left.{ }^{\circ}\right)$	Adhesion (psf)
Silty Clay	$4-9$	3,000	120	2,000	1250

It is anticipated that lateral wind loads and overturning moments will act on the spread footing. To help resist the overturning moment, it may be necessary to place a larger footing than necessary for bearing capacity. Also, any soil placed above the footing may be considered to help resist overturning moments if compacted to a minimum of 98 percent of the maximum dry density as determined from ASTM D-698 (Standard Proctor).

Depending upon the time of the year that the excavations are made, seepage from surface runoff may occur. Since these foundation materials tend to soften/loosen when exposed to free water, every effort should be made to keep the excavations dry should water be encountered. It is also recommended that concrete for footings be poured as soon as possible after the excavations are complete. A mud mat may be placed to provide the contractors a firm working surface and protect the exposed subgrade soils from softening.

Caissons/Drilled Piers

A caisson type foundation is advantageous to use when it is necessary to resist large overturning moments such as those caused by wind loads against the proposed structure. As an alternative to a shallow foundation system, a caisson type foundation system may be considered to support this tower structure. A straight shaft caisson/drilled pier may be considered. If a caisson or drilled shaft is used to support the structure, it should be designed using the soil parameters provided in Table 2.

Table 2: Deep Foundation Soil Parameters

Soil Type	Depth Below Grade (Feet)	Allowable Skin Friction for Gravity Loads SF=2	Design End Bearing Pressure SF=3	Effective Unit Weight (pcf)	C (psf) / $\mathbf{\Phi}\left({ }^{\circ}\right)$
Silty Clay	$6-23.5$	600 psf	NA	120 pcf	2000 psf
Hard Silty Clay	$23.5-28.5$	600 psf	$4,000 \mathrm{psf}$	130 pcf	2000 psf
Clayey Sand	$28.5+$	1000 psf	$4,000 \mathrm{psf}$	130 pcf	28°

*Skin friction may be utilized in shaft compression and tension. The top one-shaft diameter should be neglected.

Equipment Building Foundation Recommendations

A net allowable bearing pressure of $\mathbf{2 , 0 0 0} \mathbf{~ p s f}$ is recommended for dimensioning continuous wall footings at this site. The above-suggested bearing pressure is provided assuming the footings will be founded on medium stiff natural soils or properly compacted fill materials at a minimum depth of three (3) feet below grade.

Equipment Building Slab Recommendations

This structure will be a slab-on-grade supported by natural soils and/or compacted fill materials. In those areas where the existing grade is lower than the design floor elevation, a well-compacted structural fill will be necessary to raise the site to the desired grade. The fill material shall consist of INDOT No. 53 Stone.

After the building areas have been raised to the proper elevation, a granular fill should be placed immediately beneath the floor slab. It is recommended that all material placed in the floor slab areas be compacted to a density of 100 percent of maximum dry density in accordance with ASTM D-698. Recommendations for proper filling procedures are presented later in the Appendix of this report.

Statement of Limitations

Our subsurface investigation was conducted in accordance with guidelines set forth in the scope of services and applicable industry standards.

An inherent limitation of any geotechnical engineering study is that conclusions must be drawn on the basis of data collected at a limited number of discrete locations. The geotechnical parameters provided in this report were developed from the information obtained from the test borings that depict subsurface conditions only at these specific locations and on the particular date indicated on the boring logs. Soil conditions at other locations may differ from conditions encountered at these

GPD Group
EV Barlow - Cell Tower
Alt \& Witzig File: $181 N 0510$
August 30, 2018
Page 7
boring locations and groundwater levels shall be expected to vary with time. The nature and extent of variations between the borings may not become evident until the course of construction.

Often, because of design and construction details that occur on a project, questions rise concerning the soil conditions. If we can give further service in these matters, please contact us at your convenience.

Very truly yours,

Alt \& Witzig Engineering, Inc.

David M. Shumate
Staff Geologist

David C. Harness, P.E.

APPENDIX

Recommended Specifications for Compacted Fills and Backfills
Site Location Map
Boring Location Plan
Boring Logs
General Notes
USGS Design Maps Summary
Custom Soil Resource Report for Ballard and McCracken Counties, Kentucky

RECOMMENDED SPECIFICATIONS FOR COMPACTED FILLS AND BACKFILLS

All fill shall be formed from material free of vegetable matter, rubbish, large rock, and other deleterious material. Prior to placement of fill, a sample of the proposed fill material should be submitted to the soils engineer for his approval. The fill material should be placed in layers not to exceed eight (8) inches in loose thickness and should be sprinkled with water as required to secure specified compactions. Each layer should be uniformly compacted by means of suitable equipment of the type required by the materials composing the fill. Under no circumstances should a bulldozer or similar tracked vehicles be used as compacting equipment. Material containing an excess of water so the specified compaction limits cannot be attained should be spread and dried to a moisture content which will permit proper compaction. All fill should be compacted to the specified percent of the maximum density obtained in accordance with ASTM density Test D-698 (100 percent of maximum dry density below and above the base of footing elevation). Should the results of the in-place density tests indicate that the specified compaction limits are not obtained; the areas represented by such tests should be reworked and retested as required until the specified limits are reached.

SITE LOCATION MAP

CLIENT_GPD Group
PROJECT NAME EV Barlow Cell Tower PROJECT LOCATION \qquad Barlow, Kentucky

| BORING \# | B-1 |
| :--- | :--- | :--- | :--- |
| ALT \& WITZIG FILE \# | 18IN0510 |
| Latitude | |

DRILLING and SAMPLING INFORMATION

Date Started	$8 / 7 / 18$		Hammer Wt.	140
	lbs.			
Date Completed	$8 / 7 / 18$		Hammer Drop	30
in.				
Boring Method	HSA		Spoon Sampler OD $\frac{2}{} \mathrm{in}$.	
Driller S. Champion		Rig Type D-50 Track ATV		

Sample Type

- Driven Split Spoon

ST - Pressed Shelby Tube
CA - Continuous Flight Auger
RC - Rock Core
CU - Cuttings
CT - Continuous Tube

Groundwater
O During Drilling
ㄱ At Completion
\qquad

Boring Method
HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
DC - Driving Casing
MD - Mud Drilling

CLIENT GPD Group		BORING \#	B-2
PROJECT NAME EV Barlow Cell Tower		ALT \& WITZIG FILE \# 18IN0510	
PROJECT LOCATION _ Barlow, Kentucky		Latitude $\quad 37.11167$	Longitude

DRILLING and SAMPLING INFORMATION

Date Started	8/7/18	Hammer Wt.	140
Date Completed	8/7/18	Hammer Drop	30
Boring Method	HSA	Spoon Sampler OD	2
Driller S. Champion		Rig Type D-50 Tra	ATV

MATERIAL GRAPHICS LEGEND

CL-ML: USCS Low Plasticity Silty Clay

SOIL PROPERTY SYMBOLS

N: Standard "N" penetration value. Blows per foot of a 140-lb hammer falling 30" on a 2" O.D. split-spoon.

Qu:Unconfined Compressive Strength, tsf
LL: Liquid Limit, \%

PL: Plastic Limit, \% PP:Pocket Penetrometer, tsf PI: Plasticity Index, \%

DRILLING AND SAMPLING SYMBOLS

GROUNDWATER SYMBOLS

SAMPLER SYMBOLS

- Apparent water level noted while drilling.

Øss: Split Spoon
$\underline{\boldsymbol{\nabla}}$ Apparent water level noted upon completion.

- Apparent water level noted upon delayed time.

RELATIVE DENSITY \& CONSISTANCY CLASSIFICATION
(NON-COHESIVE SOILS)

TERM	BLOWS PER FOOT
Very Loose	$0-5$
Loose	$6-10$
Medium Dense	$11-30$
Dense	$31-50$
Very Dense	>51

RELATIVE DENSITY \& CONSISTANCY CLASSIFICATION (COHESIVE SOILS)
TERM
Very Soft
Soft
Medium Stiff
Stiff
Very Stiff
Hard
BLOWS PER FOOT
0-3
4-5
6-10
11-15
16-30
>31

Alt \& Witzig Engineering, Inc. 4105 West 99th St.
Carmel, IN 46032
Telephone: 317-875-7000
Fax:

GENERAL NOTES

Project: EV Barlow Cell Tower
Location: Barlow, Kentucky
Number: 18IN0510

EUSGS

Report Title 18IN0510
 Wed August 15, 2018 15:23:27 UTC
 Building Code Reference Document 2012/2015 International Building Cade
 (which utilizes USGS hazard data available in 2008)
 Site Coordinates $37.11175^{\circ} \mathrm{N}, 89.04577^{\circ} \mathrm{W}$
 Site Soil Classification Site Class D - "Stiff Sail"
 Risk Category I/II/III

USGS-Provided Output

$$
\begin{array}{lll}
\mathbf{S}_{\mathrm{s}}=2.506 \mathrm{~g} & \mathbf{S}_{\mathrm{Ms}}=2.506 \mathrm{~g} & \mathbf{S}_{\mathrm{DS}}=1.671 \mathrm{~g} \\
\mathbf{S}_{1}=0.951 \mathrm{~g} & \mathbf{S}_{\mathrm{M} 1}=1.426 \mathrm{~g} & \mathbf{S}_{\mathrm{D} 1}=0.951 \mathrm{~g}
\end{array}
$$

For information on how the $\mathbf{S S}$ and $\mathbf{S 1}$ values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the " 2009 NEHRP" building code reference document.

[^1]Site Class D - "Stiff Soil", Risk Category I/II/III

Section 1613.3.1 - Mapped acceleration parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_{s}) and 1.3 (to obtain S_{1}). Maps in the 2012/2015 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.3.3.

From Figure $1613.3 .1(\underline{1})^{[1]} \quad S_{5}=2.506 \mathrm{~g}$

From Figure $1613,3,1(\underline{2})^{[2]}$
$\mathrm{S}_{1}=0.951 \mathrm{~g}$

Section 1613.3.2 - Site class definitions

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Section 1613.

2010 ASCE-7 Standard - Table 20.3-1
 SITE CLASS DEFINITIONS

Site Class	$\overrightarrow{\mathbf{v}}_{\mathrm{s}}$	$\overline{\boldsymbol{N}}$ or $\overline{\boldsymbol{N}}_{\mathrm{ch}}$	$\overline{\boldsymbol{s}}_{\mathrm{u}}$
A. Hard Rock	$>5,000 \mathrm{ft} / \mathrm{s}$	N / A	N / A
B. Rock	2,500 to $5,000 \mathrm{ft} / \mathrm{s}$	N / A	N / A
C. Very dense soil and soft rock	1,200 to $2,500 \mathrm{ft} / \mathrm{s}$	>50	$>2,000 \mathrm{psf}$
D. Stiff Soil	600 to $1,200 \mathrm{ft} / \mathrm{s}$	15 to 50	1,000 to $2,000 \mathrm{psf}$
E. Soft clay soil	$<600 \mathrm{ft} / \mathrm{s}$	<15	$<1,000 \mathrm{psf}$

Any profile with more than 10 ft of soil having the characteristics:

- Plasticity index PI>20,
- Moisture content $w \geq 40 \%$, and
- Undrained shear strength $\bar{s}_{u}<500 \mathrm{psf}$
F. Soils requiring site response See Section 20.3.1
analysis in accordance with Section
21.1

$$
\text { For SI: } 1 \mathrm{ft} / \mathrm{s}=0.3048 \mathrm{~m} / \mathrm{s} 1 \mathrm{lb} / \mathrm{ft}^{2}=0.0479 \mathrm{kN} / \mathrm{m}^{2}
$$

Section 1613.3.3 - Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters

TABLE 1613.3.3(1)
VALUES OF SITE COEFFICIENT F_{s}

Site Class	Mapped Spectral Response Acceleration at Short Period				
	$\mathrm{S}_{\mathrm{s}} \leq 0.25$	$\mathrm{~S}_{\mathrm{S}}=0.50$	$\mathrm{~S}_{\mathrm{s}}=0.75$	$\mathrm{~S}_{\mathrm{S}}=1.00$	$\mathrm{~S}_{\mathrm{s}} \geq 1.25$
A	0.8	0.8	0.8	0.8	0.8
B	1.0	1.0	1.0	1.0	1.0
C	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F		See Section 11.4 .7 of ASCE 7			

Note: Use straight-line interpolation for intermediate values of S_{5}

$$
\text { For Site Class }=D \text { and } S_{s}=2.506 \mathrm{~g}, \mathrm{~F}_{\mathrm{a}}=1.000
$$

TABLE 1613.3.3(2)
VALUES OF SITE COEFFICIENT F_{v}

Site Class	Mapped Spectral Response Acceleration at 1-s Period				
	$\mathrm{S}_{1} \leq 0.10$	$\mathrm{~S}_{1}=0.20$	$\mathrm{~S}_{1}=0.30$	$\mathrm{~S}_{1}=0.40$	$\mathrm{~S}_{1} \geq 0.50$
A	0.8	0.8	0.8	0.8	0.8
B	1.0	1.0	1.0	1.0	1.0
C	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
E	3.5	3.2	2.8	2.4	2.4
F		See Section 11.4.7 of ASCE 7			

Note: Use straight-line interpolation for intermediate values of S_{1}

For Site Class $=\mathbf{D}$ and $\mathbf{S}_{1}=0.951 \mathrm{~g}, \mathrm{~F}_{v}=1.500$

$$
S_{M 1}=F_{V} S_{1}=1.500 \times 0.951=1.426 \mathrm{~g}
$$

Section 1613.3.4 - Design spectral response acceleration parameters

Equation (16-39):

$$
S_{D S}=2 / 3 S_{M S}=2 / 3 \times 2.506=1.671 \mathrm{~g}
$$

Equation (16-40):

$$
S_{D 1}=2 / 3 S_{M 1}=2 / 3 \times 1.426=0.951 \mathrm{~g}
$$

Section 1613.3.5 - Determination of seismic design category

TABLE 1613.3.5(1)
SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD (0.2 second) RESPONSE ACCELERATION

VALUE OF S	RISK CATEGORY		
	I or II	III	IV
$\mathbf{S}_{\mathrm{DS}}<\mathbf{0 . 1 6 7 g}$	A	A	A
$\mathbf{0 . 1 6 7} \mathbf{g} \leq \mathbf{S}_{\mathrm{DS}}<\mathbf{0 . 3 3 g}$	B	B	C
$\mathbf{0 . 3 3 \mathrm { g }} \leq \mathbf{S}_{\mathrm{DS}}<\mathbf{0 . 5 0 g}$	C	C	D
$\mathbf{0 . 5 0 g} \leq \mathbf{S}_{\mathrm{DS}}$	D	D	D

For Risk Category $=\mathbf{I}$ and $S_{D s}=1.671$ g, Seismic Design Category = D

TABLE 1613.3.5(2)
SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

VALUE OF S	RISK CATEGORY		
	I Or II	III	IV
$\mathbf{S}_{\mathrm{D} 1}<\mathbf{0 . 0 6 7 g}$	A	A	A
$\mathbf{0 . 0 6 7 g} \leq \mathbf{S}_{\mathrm{D} 1}<0.133 \mathrm{~g}$	B	B	C
$\mathbf{0 . 1 3 3 g} \leq \mathbf{S}_{\mathrm{D} 1}<0.20 \mathrm{~g}$	C	C	D
$\mathbf{0 . 2 0 g} \leq \mathbf{S}_{\mathrm{D} 1}$	D	D	D

For Risk Category $=\mathrm{I}$ and $\mathrm{S}_{\mathrm{D} 1}=0.951 \mathrm{~g}$, Seismic Design Category $=\mathrm{D}$
Note: When S_{1} is greater than or equal to 0.75 g , the Seismic Design Category is \mathbf{E} for buildings in Risk Categories I, II, and III, and F for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with
Table 1613.3.5(1) or $1613.3 .5(2)^{\prime \prime}=E$

Note: See Section 1613.3.5.1 for alternative approaches to calculating Seismic Design Category.

References

1. Figure 1613.3.1(1): https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012Fig1613p3p1(1).pdf
2. Figure 1613.3.1(2): https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012Fig1613p3p1(2).pdf

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Ballard and McCracken Counties, Kentucky

18IN0510

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
Soil Map 5
Soil Map 6
Legend 7
Map Unit Legend 8
Map Unit Descriptions. 8
Ballard and McCracken Counties, Kentucky 10
GrB2-Grenada silt loam, 2 to 6 percent slopes, eroded 10
GrC3-Grenada silt loam, 6 to 12 percent slopes, severely eroded 11

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soi line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed cale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Ballard and McCracken Counties, Kentucky Survey Area Data: Version 11, Oct 3, 2017

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 13, 2011—Oct 7, 2011

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
GrB2	Grenada silt loam, 2 to 6 percent slopes, eroded	0.2	
GrC3	Grenada silt loam, 6 to 12 percent slopes, severely eroded	0.9	
Totals for Area of Interest		$\mathbf{1 . 1}$	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the
development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Ballard and McCracken Counties, Kentucky

GrB2—Grenada silt loam, 2 to 6 percent slopes, eroded

Map Unit Setting

National map unit symbol: 2wn5t
Elevation: 310 to 640 feet
Mean annual precipitation: 52 to 62 inches
Mean annual air temperature: 48 to 69 degrees F
Frost-free period: 175 to 244 days
Farmland classification: All areas are prime farmland

Map Unit Composition

Grenada, eroded, and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Grenada, Eroded

Setting

Landform: Ridges
Landform position (two-dimensional): Shoulder
Landform position (three-dimensional): Nose slope
Down-slope shape: Convex
Across-slope shape: Linear
Parent material: Fine-silty noncalcareous loess

Typical profile

Ap-0 to 5 inches: silt loam
Bw - 5 to 21 inches: silt loam
E-21 to 28 inches: silt loam
Btx/E - 28 to 38 inches: silt loam
Btx - 38 to 80 inches: silt loam
Properties and qualities
Slope: 2 to 6 percent
Depth to restrictive feature: 17 to 36 inches to fragipan
Natural drainage class: Moderately well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 18 to 32 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Moderate (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2e
Hydrologic Soil Group: C
Ecological site: Northern Loess Fragipan Upland - PROVISIONAL (F134XY012AL)
Hydric soil rating: No

Minor Components

Calloway

Percent of map unit: 6 percent
Landform: Flats
Landform position (three-dimensional): Tread
Down-slope shape: Concave
Across-slope shape: Linear
Hydric soil rating: No
Collins
Percent of map unit: 4 percent
Landform: Flood-plain steps
Landform position (three-dimensional): Talf
Down-slope shape: Linear
Across-slope shape: Linear
Hydric soil rating: No

GrC3—Grenada silt loam, 6 to 12 percent slopes, severely eroded

Map Unit Setting

National map unit symbol: 1qls1
Elevation: 320 to 500 feet
Mean annual precipitation: 40 to 56 inches
Mean annual air temperature: 46 to 69 degrees F
Frost-free period: 177 to 222 days
Farmland classification: Not prime farmland

Map Unit Composition

Grenada, severely eroded, and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Grenada, Severely Eroded

Setting
Landform: Ridges
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Linear
Parent material: Thick fine-silty noncalcareous loess

Typical profile

H1-0 to 4 inches: silt loam
H2-4 to 18 inches: silt loam
H3-18 to 22 inches: silt loam
H4-22 to 32 inches: silt loam
H5-32 to 80 inches: silt loam

Properties and qualities

Slope: 6 to 12 percent
Depth to restrictive feature: 18 to 23 inches to fragipan
Natural drainage class: Moderately well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 18 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: D
Hydric soil rating: No

Minor Components

Purchase, severely eroded

Percent of map unit: 7 percent
Landform: Ridges
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Linear
Hydric soil rating: No

Calloway

Percent of map unit: 4 percent
Landform: Ridges
Landform position (two-dimensional): Shoulder
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Linear
Hydric soil rating: No

Falaya

Percent of map unit: 2 percent
Landform: Drainageways
Down-slope shape: Linear
Across-slope shape: Linear
Hydric soil rating: No

Collins

Percent of map unit: 2 percent
Landform: Drainageways
Down-slope shape: Linear
Across-slope shape: Linear
Hydric soil rating: No

Alt \& Witzig Engineering, Inc.
 4105 West 99th Street • Indianapolis • Indiana•46032
 Ph (317) 875-7000 • Fax (317) 876-3705

August 30, 2018
GPD Group
8275 Allison Pointe Trail, Suite 220
Indianapolis, Indiana 46250
ATTN: Ms. Traci Preble

Resistivity Results

RE: EV Barlow - Cell Tower
2244 Steve Denton Road
Barlow, Kentucky
Alt \& Witzig File: 18IN0510

Dear Ms. Preble:
To aid in the design of the grounding equipment for the referenced project, soil resistivity tests were performed at the site. The resistivity testing was performed using an AEMC Model 6472 Soil Resistance Meter per ASTM G-57 (The Wenner Vertical Profiling Method). A qualified technician familiar with this equipment and testing procedure performed the appropriate test to obtain the resistivity values at multiple depths. Alt \& Witzig Engineering, Inc. was able to gather the necessary resistivity information in all four (4) directions.

The Wenner Vertical Profiling Method was used by centering the potential electrodes on a traverse line between the current electrodes and maintaining an equal "a" spacing between the electrodes. The depths of interests or "a" spacing of $21 / 2$ feet, 5 feet, $121 / 2$ feet, 20 feet and 50 feet.

The resistivity test was performed on August 28, 2018. The weather during data collection was between 80 and 92 degrees and sunny. The measurements were taken in general vicinity of the proposed tower location and approximately one-hundred (100) feet south of Sallie Crice Road. The layouts of the arrays are shown below in Exhibit 1.

Exhibit 1: Aerial Photograph of Site Showing the Layout of the Resistivity Array.

We appreciate the opportunity to be of service to you on this project. If we can give further service in these matters, please contact us at your convenience.

Very truly yours,
Alt \& Witzig Engineering, Inc.

David M. Shumate
Geologist

David C. Harness, P.E.
Sr. Geotechnical Engineer

Attachments:
Boring Location Plan
Resistivity Testing Results

FROM BALLARD COUNTY SEAT; TAKE US-60 E TO N 6TH ST IN BARLOW (6. 8 MI), HEAD NORTH ON 4TH ST TOWARD OHIO ST, PASS BY NAPA AUTO PARTS AUTO TIRE AND PARTS OF WICKCKLIFFE (ON THE RIGHT IN 0.2 MI$)(0.5 \mathrm{MI})$, 4TH ST TURNS SLIGHTLY RIGHT AND BECOMES LEE ST (0.1 MI), CONTINUE ONTO US-60 E/N 6TH ST (CONTINUE TO FOLLOW US-60 E) (6.1 MI), TURN RIGHT ONTO BROADWAY ST (0.2 MI), TAKE KY-1105 N/OSCAR RD TO STEVE DENTON RD (5.3 MI), TURN LEFT AT THE 2ND CROSS STREET ONTO N 6TH ST (0.2 M), CONTINUE ONTO KY-1105 N/OSCAR RD (4.3 MI), TURN LEFT ONTO SALLIE CRICE RD (226 FT), TURN LEFT ONTO STEVE DENTON RD, ARRIVE AT DESTINATION 2244 STEVE DENTON RD.

PREPARED BY: GPD GROUP, INC. (317) 299-2996

Prepared By and Upon Recording, Return to:

Matthew R. Clark, Esq.

CLARK, QUINN, MOSES, SCOTT \& GRAHN, LLP
320 North Meridian Street, Suite 1100
Indianapolis, IN 46204

COMMONWEALTH OF KENTUCKY)
COUNTY OF BALLARD)

Deed Reference: Deed Book 112, Page 227

MEMORANDUM OF LAND LEASE AGREEMENT

Whis Memorandum of Land Lease Agreement is made this $\mathcal{M Q} M$ day of Novenctiv, 2018, between The Myatt Family Trust, dated September 9, 2011, by and between Charles Myatt and Deena Myatt, Trustees, with a mailing address of 2224 Steve Denton Road, Barlow, Kentucky 42024, hereinafter collectively referred to as "LESSOR", and Kentucky RSA 1 Partnership d/b/a Verizon Wireless with its principal offices at One Verizon Way, Mail Stop 4AW100, Basking Ridge, New Jersey 07920, hereinafter referred to as "LESSEE". LESSOR and LESSEE are at times collectively referred to hereinafter as the "Parties" or individually as the "Party".

1. LESSOR and LESSEE entered into a Land Lease Agreement (the "Agreement") on NoV ${ }^{16}, 2018$ for an initial term of five (5) years, commencing on the Commencement Date. The Land Lease Agreement shall automatically be extended for four (4) additional five (5) year terms unless the LESSEE terminates it at the end of the then current term by giving the LESSOR written notice of the intent to terminate at least three (3) months prior to the end of the then current term.
2. LESSOR hereby leases to LESSEE a portion of that certain parcel of property (the entirety of LESSOR's property is referred to hereinafter as the "Property"), located at 2557 Steve Denton Road, Barlow, Kentucky 42024 and being described as a $100^{\prime} \times 100^{\prime}$ parcel containing 10,000 square feet, as shown on the Tax Map of Ballard County as a portion of Tax Parcel No. 24-30 and $24-30 \mathrm{CH}$, and being part of that real property further described in Deed Book 112, at Page 227, recorded in the Office of the Register of Deeds for Ballard County, together with the non-exclusive right for ingress and egress, seven (7) days a week twenty-four (24) hours a day, on foot or motor vehicle, Including trucks, and for the installation and maintenance of utility wires, poles, cables, conduits, and pipes over, under, or along a thirty (30) foot wide right-of-way extending from the nearest public right-of-way, Steve Denton Road, to the demised premises. The demised premises and right-of-way are hereinafter collectively referred to as the "Premises". The Premises are described in Exhibit A attached hereto and made a part hereof, and as shown on the plat of survey attached hereto and Incorporated herein as Exhibit B. In the event any public
utility is unable to use the aforementioned right-of-way, LESSOR has agreed to grant an additional right-of-way either to the LESSEE or to the public utility at no cost to the LESSEE.
3. The Commencement Date of the Agreement, of which this is a Memorandum, is the first day of the month after LESSEE begins installation of LESSEE'S communication equipment.
4. LESSEE has the right of first refusal to purchase the Premises during the initial term and all renewal terms of the Agreement.
5. The terms, covenants and provisions of the Agreement, the terms of which are hereby Incorporated by reference into this Memorandum, shall extend to and be binding upon the respective executors, administrators, heirs, successors and assigns of LESSOR and LESSEE.

IN WITNESS WHEREOF, hereunto and to a duplicate hereof, LESSOR and LESSEE have caused this Memorandum to be duly executed on the date first written hereinabove.

LESSOR:
THE MYATT FAMILY TRUST, DATED SEPTEMBER 9, 2011, BY AND THROUGH CHARLES MYATT AND DEENA MYATT, TRUSTEES

BY:

BY:

LESSEE:
KENTUCKY RSA 1 PARTNERSHIP D/B/A VERIZON WIRELESS

Name: Ed Maker
Title: Director Network Field Engineering

ACKNOWLEDGEMENT

COUNTY OF BALLARD

1, Kreer Denton_, a Notary Public for said County and State, do hereby certify that Charles Myatt and Deena Myatt, personally came before me this day and acknowledged that they are the Trustees of The Myatt Family Trust, dated September 9, 2011, and being authorized to do so, executed the foregoing Memorandum of Land Lease Agreement as their own act and deed on behalf of The Myatt Family Trust, dated September 9, 2011.

WITNESS my hand and official Notarial Seal, this $) 6_{0}^{74}$ day of Oetoosen_, 2018.

My Commission Expires:
7-17-2022

STATE OF MICHIGAN

ACKNOWLEDGMENT

COUNTY OF OAKLAND

1. Rablowel Luchiogulwauh, a Notary Public for said County and State, do hereby certify that Ed Maher personaliy came before me this day and acknowledged that he is the Director Network Field Engineering for Kentucky RSA 1 Partnership d/b/a Verizon Wireless, and that he, as Director Network Field Engineering, being authorized to do so, executed the foregoing Memorandum of Land Lease Agreement on behalf of Kentucky RSA 1 Partnership d/b/a Verizon Wireless.

WITNESS my hand and official Notarial Seal, this ∂ ikfuday of boventren 2018.

> BARBARA MADIGAN EVANS NOTARY PUBLIC, STATE OF MICHIGAN
> County Or Oakland
> My Cominission Expires O5-10-2020
> ACTNG IN THE COUNTY OF

My Commission Expires:

[^2]
EXHIBIT A

[WRITTEN METES AND BOUNDS OF THE PREMISES AND INGRESS/EGRESS AND UTILITY EASEMENT]

LEASE AREA DESCRIPTION

A PART OF A G9 ACRE PARCEL OF LAND OWNED GY THE MYAT FAMIY TRUST AS RECORRED IN DEED BOOK 112, PACE 227. AND LYING SOUTHWEST OF THE KENTUCKY.

COMMENCING AT AN IRON PIN FOUND AT THE INTERSECTION OF SAID SALIE CIRCLE ROAD AND STEVE DENTON ROAD, SAID POINT ALSO BEING THE NORTHEAST CORNER 93. PAGE 150. THENCE ALONG THE CENTERLINE OF SALIE CIRCLE ROAD NORTH 68 DEGREES 26 MINUTES O9 SECONDS WEST 172.37 FEET; THENCE SOUTH 71 DEGREES 49 MINUTES 20 SECONOS WEST 78.70 FEET; THENCE NORTH 76 DEGREES O6 MINUTES 17 SECONDS WEST 128.76 FEET: THENCE SOUTH 32 DEGREES 16 MINUTES
40 SECONDS WEST 132.35 FEET; THENCE NORTH 57 DEGREES 43 MINUTES 20 SECONDS WEST 30.00 FEET TO THE SOUTHERNMOST LEASE CORNER AND BEING THE TRUE PLACE OF BEGINNING OF THIS LEASE AREA DESCRIPTION; THENCE NORTH 57 DEGREES 43 MINUTES 20 SECONDS WEST 100.00 FEET: THENCE NDRTH 32 DEGREES
16 MINUTES 40 SECONDS EAST 100.00 FEET; THENCE SOUTH 57 DEGREES 43 16 MINUTES 40 SECONDS EAST 100.00 FEET: THENCE SOUTH 57 DEGREES 43
MINUTE 20 SECONDS EAST 100.00 FEET: THENCE SOUTH 32 DEGREES 16 MINUTES MINUTE 20 SECONDS EAST 100.00 FEET: THENCE SOUTH 22 DEGRES 16
40 SECONDS WEST 100.00 FEET TO THE TRUE PLACE OF BEGINNING AND CONTAINING 10,000 SOUARE FEET. (0.23 ACRES). MORE OR LESS.
30' ACCESS \& UTILITY EASEMENT DESCRIPTION
A PART OF A 69 ACRE PARCEL OF LAND OWNED BY THE MYATT FAMILY TRUST AS INTERSECTION OF SALIE CIRCLE ROAD AND STEVE DENTON ROAD, BALLARD COUNTY, KENTUCKY.
COMMENCING AT AN IRON PIN FOUND AT THE INTERSECTION OF SAID SALIE CIRCLE ROAD AND STEVE DENTON ROAD, SAID POINT ALSO BEING THE NORTHEAST CORNER
OF A PARCEL OF LAND OWNED, BY DAVID L. JONES AS RECORDED IN DEED BOOK 93. PAGE 150 . THENCE ALONG THE CENTERLINE OF SALIE CIRCLE ROAD NORTH 6 DEGREES 26 MINUTES OS SECONDS WEST 172.37 FEET TO THE TRUE PLACE O
BEGINNING OF THIS ACCESS AND EASEMENT DESCRIPTION: THENCE SOUTH 71 DEGREES 49 MINUTES 20 SECONDS WEST 78.70 FEET; THENCE NORTH 76 DEGREES 06 MINUTES 17 SECONDS WEST 128.76 FEET; THENCE SOUTH 32 DEGREES 16 MINUTES 40 SECONDS WEST 132.35 FEET; THENCE NORTH 57 DEGREES 43 MINUTES NORTH 32 DEGREES 16 MINUTES 40 SECONDS EAST 143.46 FEET; THENCE SOUTH 76 DEGREES 06 MINUTES 17 SECONDS EAST 141.78 FEET; THENCE NORTH 00 DEGREES 00 MINUTES OO SECONDS EAST 23.37 FEET: THENCE SOUTH 68 DEGREES AND CONTAINING 10.105.1 SOUARE FEET, (0.23 ACRES), MORE OR IESS.

LAND SURVEYOR'S CERTIFICATE
1 HEREGY CERTIF THAT THIS PLLT AND SURVE WERE MDE UNDER MY

EXHIBIT B

[BOUNDARY SURVEY OF THE PREMISES AND INGRESS/EGRESS AND UTILITY EASEMENT]

NOTICE LIST

1. Commonwealth of Kentucky

Dept of Fish \& Wildlife
Oscar Road
Highway 1105
La Center, KY 42056
2. Myatt Family Trust

Charles Myatt \& Dee Anm Myatt, Trustees
2224 Steve Denton Road
Barlow, KY 42024
3. David L. Jones

2925 Steve Denton Road
Barlow, KY 42024
4. Flint Renfo

4540 Oscar Road
Batlow, KY 42024
5. Rhonda Rice \& Coy Simmons

11930 Wallace Rd.
Kevil, KY 42053

Matthew R. Clark Robert B. Scott Charles R. Grahn Frank D. Ute*
John "Bart" Herriman William W. Gooden**

Land Use Consultant

Notice of Proposed Construction of Wireless Communications Facility Site Name: Barlow

Raymond J. Grahn (2015)
Alex M. Clark (1991)
Peter A. Pappas (1986)
Thomas M. Quinn (1973)
Joseph M. Howard (1964)
*Also admitted in Montana
${ }^{\dagger}$ Also admitted in Kentucky
**Registered Civil Mediator

Cello Partnership, d/b/a Verizon Wireless has filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at Steve Denton Road, Barlow, KY, 42024 (North Latitude: ($37^{\circ} 06^{\prime} 42.15^{\prime \prime}$, West Longitude $89^{\circ} 02^{\prime} 44.58^{\prime \prime}$). The proposed facility will include a 285 -foot tall antenna tower, plus a 5 -foot lightning arrestor, for a total height of 290 feet with related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

This notice is being sent to you because the County Property Valuation Administrator's records indicate that you may own property that is within a 500^{\prime} radius of the proposed tower site or contiguous to the property on which the tower is to be constructed. You have a right to submit testimony to the Kentucky Public Service Commission ("PSC"), either in writing or to request intervention in the PSC's proceedings on the application. You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2022-00016 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. Applicant's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us at 317-637-1321 if you have any comments or questions about this proposal.

Sincerely,
Russell L. Brown
Attorney for Applicant
RLB/jdj
enclosure

VICINITY MAP

Matthew R. Clark

> VIA CERTIFIED MAIL
> 70201810000218530596

Travis W. Cohron Maggie L. Sadler Kristin A. McIlwain Olivia A. Hess

Hon. Todd Cooper
437 Ohio Street
Wickliffe, KY 402087

Dear Judge Cooper:

Cello Partnership, d/b/a Verizon Wireless has filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at Steve Denton Road, Barlow, KY, 42024 (North Latitude: ($37^{\circ} 06^{\prime} 42.15^{\prime \prime}$, West Longitude 89° $02^{\prime} 44.58^{\prime \prime}$). The proposed facility will include a 285 -foot tall antenna tower, plus a 5 -foot lightning arrestor, for a total height of 290 feet with related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

You have a right to submit comments to the PSC or to request intervention in the PSC's proceedings on the application. You may contact the PSC at: Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2022-00016 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. Verizon Wireless' radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us with any comments or questions you may have.

Attorney for Applicants

RLB/jdj
enclosure

VICINITY MAP

Matthew R. Clark
Robert B. Scott
Charles R. Grahn Frank D. Otte*
John "Bart" Herriman
William W. Gooden**
February 2, 2022
Michael P. Maxwell
Russell L. Brown** ${ }^{*}$
Jennifer F. Perry
Keith L. Beall N. Davey Neal

Travis W. Cohron Maggie L. Sadler Kristin A. Mcllwain Olivia A. Hess

Land Use Consultant Elizabeth Bentz Williams, AICP

Notice of Proposed Construction of Wireless Communications Facility

Site Name: Barlow

Raymond J. Grahn (2015)
Alex M. Clark (1991)
Peter A. Pappas (1986)
Thomas M. Quinn (1973)
Joseph M. Howard (1964)

Cellco Partnership, d/b/a Verizon Wireless has filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at Steve Denton Road, Barlow, KY, 42024 (North Latitude: ($37^{\circ} 06^{\prime} 42.15^{\prime \prime}$, West Longitude $89^{\circ} 02^{\prime} 44.58^{\prime \prime}$). The proposed facility will include a 285 -foot tall antenna tower, plus a 5 -foot lightning arrestor, for a total height of 290 feet with related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

This notice is being sent to you because the County Property Valuation Administrator's records indicate that you may own property that is within a 500^{\prime} radius of the proposed tower site or contiguous to the property on which the tower is to be constructed. You have a right to submit testimony to the Kentucky Public Service Commission ("PSC"), either in writing or to request intervention in the PSC's proceedings on the application. You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2022-00016 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. Applicant's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us at 317-637-1321 if you have any comments or questions about this proposal.

Sincerely,

Attorney for Applicant
RLB/jdj
enclosure

SITE NAME: Barlow NOTICE SIGNS

The signs are at least (2) feet by four (4) feet in size, of durable material, with the text printed in black letters at least one (1) inch in height against a white background, except for the word "tower," which is at least four (4) inches in height.

Cellco Partnership, d/b/a Verizon Wireless propose to construct a telecommunications tower on this site. If you have questions, please contact Clark, Quinn, Moses, Scott \& Grahn, LLP, 320 N. Meridian Street, Indianapolis, IN 46204; 317-637-1321, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2022-00016 in your correspondence.

Cellco Partnership, d/b/a Verizon Wireless propose to construct a telecommunications tower on this site. If you have questions, please contact Clark, Quinn, Moses, Scott \& Grahn, LLP, 320 N. Meridian Street, Indianapolis, IN 46204; 317-637-1321, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2022-00016 in your correspondence.

VIA EMAIL: larrah@ky-news.com
advanceyeoman@gmail.com

Kentucky Publishing Inc.
1540 McCracken Blvd.
Paducah, KY 42001
February 1, 2022

$$
\begin{array}{ll}
\text { RE: } & \text { Legal Notice Advertisement } \\
\text { Site Name: } & \text { Barlow }
\end{array}
$$

Dear Ms. Workman:
Please publish the following legal notice advertisement in the next available edition of the Advance Yeoman:

NOTICE
Cellco Partnership, d/b/a Verizon Wireless has filed an application with the Kentucky Public Service Commission ('PSC") to construct a new wireless communications facility on a site located at Steve Denton Road, Barlow, KY, 42024 (North Latitude: ($3^{\circ} 0{ }^{\circ} 6^{\prime} 42.15{ }^{\prime \prime}$, West Longitude 89${ }^{\circ}$ 02' 44.58'). You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2022-00016 in any correspondence sent in connection with this matter.

After this advertisement has been published, please forward a tearsheet copy, affidavit of publication, and invoice to Clark, Quinn, Moses, Scott \& Grahn, LLC, 320 N. Meridian Street, Indianapolis, IN 46204 or by email to ebw@clarkquinnlaw.com. Please call me or Elizabeth Bentz Williams, in our offices at (317) 637-1321 if you have any questions. Thank you for your assistance.

Sincerely
Morg buth Baty wheican
Elizabeth Bentz Williams
Clark, Quinn, Moses, Scott \& Grahn, LLC

Radio Frequency Design Search Area

Wednesday, December 5, 2018

RE: Proposed Verizon Wireless Communications Facility
Site Name: EV Barlow.
Type of Tower: 280' self-support Tower.
Location: 2557 Steve Denton Rd Barlow, KY 42024.

To Whom It May Concern:

As a radio frequency engineer for Verizon Wireless, I am providing this letter to state the need for a Verizon Wireless site called EV Barlow.

The EV Barlow site is proposed with the below objectives:

1. Offload 4 G traffic from busy site to the northwest.
2. Offload 4 G traffic from busy site to the northeast.
3. Improve 4 G throughput to existing heavy data users.
4. Improve 4 G network reliability by increasing the amount of time our customers operate on 4G instead of 3G.

Currently the area is experiencing high demand for wireless high-speed data. Growth forecasts have triggered the need for an additional site in the area. The tower is needed to provide all Verizon customers in the area with the best experience on their 4G wireless devices.

Raw Land - Design plans for a new tower would provide tower height of $\mathbf{2 8 0}^{\prime}$. The new structure height was decided upon to best cover the offload area and interact with the existing Verizon sites. If we are limited to building a structure less than the proposed height, another tower would be needed in the vicinity in the near future. In addition, building a structure that is too short can cause existing taller sites to shoot over the proposed site and building a site that is too tall can cause the proposed site to shoot over existing sites. Both situations create a poor experience from a user perspective. The new structure will be placed near the center of the area with high traffic demand and offload the surrounding sites greatly. The new tower design meets stated objectives.

Verizon Wireless cares about the communities as well as the environment and prefers to collocate on existing structures when available. It can be noticed from any map that Verizon Wireless is currently collocated on many existing structures in the area. We prefer collocation due to reduced construction costs, faster deployment, and environment protection. However, Verizon Wireless was unable to find a suitable structure within the center of demand area to collocate the proposed EV Barlow site.

Verizon Wireless design engineers establish search area criteria in order to effectively meet coverage objectives as well as offload existing Verizon cell sites. When met, the criterion also reduces the need for a new site to cover the area in the immediate future. Each cellular site covers a limited area, depending on site configuration and the surrounding terrain. Cell sites are built in an interconnected network; which means each cell site must be located so that their respective coverage areas are contiguous. This provides uninterrupted communications throughout the coverage area.

Since collocation is generally the most cost-effective means for prompt deployment of new facilities, Verizon Wireless makes every effort to investigate the feasibility for using existing towers or other tall structures for collocation when designing a new site or system expansion. However, collocation on an existing tower or tall structure is not always feasible due to location of existing cell sites. Cell sites are placed in a way so they provide smooth hand off to each other and are placed at some distance from each other to eliminate too much overlap. Too much overlap may result in a waste of resources and raise a system capacity overload concern.

This cell site has been designed, and shall be constructed and operated in a manner that satisfies regulations and requirements of all applicable governmental agencies that have been charged with regulating tower specifications, operation, construction, and placement, including the FAA and FCC.

Sincerely,

Michael Fahim.

RF Engineer, Verizon Wireless

verizon ${ }^{\wedge}$

STATE OF INDIANA

Subscribed and sworn to before me this 5 Th day of DECEMBER, 2018.

Notary Public

THOMAS D. HERNDON Notary Public, State of Indiana SEAL
My Commission Express 9/2/2023

My Commission expires:
$9-2-2023$

verizon ${ }^{\checkmark}$

Wednesday, December 5, 2018
RE: Ballard County Zoning Plots
Site Name: EV Barlow.

To Whom It May Concern:

This map is not a guarantee of coverage and may contain areas with no service. This map reflects a depiction of predicted and approximate wireless coverage of the network and is intended to provide a relative comparison of coverage. The depictions of coverage do not guarantee service availability as there are many factors that can influence coverage and service availability. These factors vary from location to location and change over time. The coverage areas may include locations with limited or no coverage. Even within a coverage area shown, there are many factors, including but not limited to, usage volumes, service, outage, and customer's equipment, and terrain, proximity to buildings, foliage, and weather that may impact service.

The proposed site is needed to offload capacity from existing sites. This map reflects the predicted coverage area that will be offloaded from existing sites and transferred to the proposed site.

Michael Fahim.

RF Engineer, Verizon Wireless

verizon

Legend:
Existing Verizon Sites
Proposed Verizon Site
Future Verizon Site
County Border

verizon

Legend:

Existing Verizon Sites	
Proposed Verizon Site	
Future Verizon Site	
County Border	-----------

verizon ${ }^{\wedge}$

[^0]:

[^1]: Although this information is a groduct of the U.S. Geological Survey, we provile no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-rnatter knowledge.

[^2]: "I affirm, under the penalties for perjury, that I have taken reasonable care to redact each Social Security number in this document, unless required by law." Matthew R. Clark

