KyPSC Case No. 2021-00190
 TABLE OF CONTENTS

DATA REQUEST

STAFF-DR-03-001
STAFF-DR-03-002
STAFF-DR-03-003
STAFF-DR-03-004
STAFF-DR-03-005
STAFF-DR-03-006
STAFF-DR-03-007
STAFF-DR-03-008
STAFF-DR-03-009
STAFF-DR-03-010
STAFF-DR-03-011
STAFF-DR-03-012
STAFF-DR-03-013
STAFF-DR-03-014
STAFF-DR-03-015
STAFF-DR-03-016
STAFF-DR-03-017

WITNESS
TAB NO.
Jeff Kern 1
Jeff Kern 2
Benjamin W. Passty 3
Jeff Kern 4
Lesley G. Quick 5
Chris R. Bauer 6
Dylan W. D’Ascendis 7
Dylan W. D’Ascendis 8
Dylan W. D’Ascendis 9
Dylan W. D'Ascendis 10
Dylan W. D’Ascendis 11
Dylan W. D’Ascendis 12
Dylan W. D’Ascendis 13
Retha Hunsicker 14
Jeff Kern 15
Jeff Kern 16
Lesley G. Quick 17

STAFF-DR-03-018STAFF-DR-03-019STAFF-DR-03-020STAFF-DR-03-021
STAFF-DR-03-022
STAFF-DR-03-023
STAFF-DR-03-024
STAFF-DR-03-025
Jay Brown James Ziolkowski 18
Jay Brown 19
Jake J. Stewart 20
Jake J. Stewart 21
Jake J. Stewart 22
Jeff KernJames Ziolkowski23
Jeff Kern 24
James Ziolkowski 25
David Raiford
Abby Motsinger 26

REQUEST:

Refer to the Application, Schedule L-1, page 10 of 88, Application for Service.
a. Provide the personal information requested of each new potential customer, explain why each item is needed, and for each one, indicate whether the information is required in order for the customer to receive service or if it is optional for the customer to provide.
b. Indicate whether Duke Kentucky has a standard Application for Service. If so, provide a copy.

RESPONSE:

a. To start service, the customer is requested to provide information on the location where service is to be provided, which includes the address, whether it is owned or rented, whether it is a mobile home, what services are required (gas and/or electric) and the date service is to begin. The Company will also run a credit check and request information to prove the customer's identity and creditworthiness. The information listed below is requested to positively identify each customer based on the rules established by the Fair and Accurate Credit Transaction Act (FACTA).

1. Full legal first and last name.
2. Date of Birth.
3. Former Address.
4. Social Security Number and/or Driver’s License Number, or alternate ID (State ID, Passport, Matricula, Visa).

Finally, contact information for the customer is requested which includes an e-mail address, phone number and mailing address (if different from service address). All of the requested information is optional except for the customer's full legal name, Social Security Number or alternate ID, telephone number, date of birth, previous location (address, city and state) and the new service address.
b. The Company has an online service application. Screen shots are provided in STAFF-DR-03-001b Attachment.

PERSON RESPONSIBLE: Jeff L. Kern

Start Service

0

Mave In \quad Verify Identity \quad Contact Info Review
Where are you moving?
Tell us the location of your new service address.

Street Address

Apt/Floor/Suite/Lot

City

State
Zip Code

Da yau rent or awn this praperty?OwnRentThis property is a mobile home.

What services are needed?

ElectricGasStart, Stop \& Move (/home/start-stop-move)

Start Service

Move In \quad Verify Identity \quad Contact Info Review
Whose name should be on this account?
Next, we'll need to verify your identity. Please use your legal name, since this will be the name associated with the account.
\qquad Legal Last Name

Social Security Number
Before starting new service, we run a credit check.

Date of Birth (MM / DD / YYYY)

Current Street Address

Apt/Floor/Suite/Lot

City

State \quad Zip Code

Don't have a Social Security Number? Contact Us (/customer-service/contact-us).
\square

```
CONTINUE
```

PREVIOUS

Start, Stop \& Move (/home/start-stop-move)

Start Service

Move In
Verify Identity
Cantact Infa
Review
How should we contact you?

Email

Confirm Email

Phone Number

Phone Type

What's your mailing address?
(This is where we'll send your bill.)Same as Service Address

Street Address

Apt/Floor/Suite/Lot

City
State \quad Zip Code

CONTINUE

PREVIOUS

REQUEST:

Refer to the Application, Schedule L-2.2, page 23 of 92, Budget Billing Plan Description. With the proposed change to revise the bill amount after three, six, and nine months if the budget bill amount compared to the actual amount exceeds a Company-set threshold, explain what differentiates the annual budget billing plan from the quarterly budget billing plan.

RESPONSE:

Both the quarterly and annual budget billing plans will be reviewed every three months for adjustments, and the recalculation is intended to prevent large variances between the payment plan amount and the actual monthly amount due.

The annual plan is settled every 12 months. If the customer has paid more than their actual usage amount, a credit will be applied to the account. If they have used more energy than paid for through the budget billing plan, the difference is billed on the 12th month's bill, in addition to the monthly budget bill amount. Conversely, the quarterly plan does not have a year-end settle-up. Any difference in energy used versus what was paid under the plan is calculated into the next quarterly budget amount. The quarterly plan will be settled if the customer is removed from the budget billing program for any reason, including ending service with the Company.

PERSON RESPONSIBLE: Jeff L. Kern

REQUEST:

Refer to the Application, the Direct Testimony of Benjamin Passty, Ph.D., page 13, lines 9-10.
a. For the energy forecast, the rolling 30-year period is used for the weather normalization adjustment (WNA). Explain why a 30-year period is not used for the updated WNA.
b. Provide an update to the baseload and heat sensitivity factor using a 20-year WNA.
c. Provide an update to the baseload and heat sensitivity factor using a 30-year WNA.

RESPONSE:

a. The model for the WNA exposes sales to a temperature measure only, for the purpose of measuring how volumes can be normalized to express what the sales would have been had there been normal weather. For the WNA calculation, only thirty-six months are used to give an ample representation of the weather cycle without being affected by long-term changes in demographics/economics. This equation differs from the modeling equations-used for the load forecast-which are designed to account for long-term economic and demographic factors. In these, thirty years of weather are used to calculate what weather is expected during the forecast period, but weather is not the only driver of these projections. Using thirty years of data to perform an estimation without these economic factors would suffer
from an extreme omitted-variable bias that would weight recent, strong weather far too much.
b. (and c.) Since the "normal weather" is not used for the calculation of the WNA parameters, calculating normal weather using only the last twenty years doesn't affect the calculations. Excluding the oldest ten years from the sample produces the following average normal heating degree days (base 59) for the billing periods used in the estimation:

Month	20 -Year Normal	30 -Year Normal
Jan	810.13	838.06
Feb	880.95	865.14
Mar	612.13	609.67
Apr	276.13	289.56
May	66.99	71.09
Jun	5.07	3.54
Jul	0.00	0.00
Aug	0.00	0.00
Sep	0.00	29.91
Oct	26.79	609.46
Nov	638.47	
Dec		

PERSON RESPONSIBLE: Benjamin W. Passty, Ph.D.

REQUEST:

Refer to Duke Kentucky's Response to Commission Staff's Second Request for Information (Staff's Second Request), Item 2.
a. Explain whether the information in the tables provided with this response is conveyed to customers when they sign up for the budget billing programs. If so, explain how the information is conveyed to customers. If not, explain why not.
b. Indicate whether the tables provided with the response apply no matter whether the actual amount exceeds or is less than the budget bill amount.

RESPONSE:

a. The thresholds provided in response to STAFF-DR-02-002 are not provided to customers or call center specialists. Customers who enroll via the Company's call center are told that the plans are reviewed every third, sixth and ninth months and that the monthly amount will be adjusted if their actual usage amount falls outside the established thresholds. Additionally, the Company's website provides general information about the budget billing plans. The tables provided in the response to STAFF-DR-02-002 are not provided to customers since the thresholds are configurable and can be adjusted. In addition, providing these tables to customers would be more likely to cause confusion than help the customer in a meaningful way.
b. The budget billing plan amount is adjusted if the customer's actual usage amount falls outside of the established threshold, whether it exceeds or is lower than the budget bill amount.

PERSON RESPONSIBLE: Jeff L. Kern

Duke Energy Kentucky

Case No. 2021-00190
STAFF Third Set Data Requests
Date Received: August 4, 2021
STAFF-DR-03-005

REQUEST:

Refer to Duke Kentucky's Response to Staff's Second Request, Item 6.
a. Explain how the provided information supports a bad check charge of $\$ 11.00$.
b. Explain whether Duke Kentucky's current $\$ 11.00$ bad check charge includes labor expense. If so, provide the amount that represents labor expense.
c. Explain why the bad check charge should not be broken down into two separate charges, one for ACH return items and one for deposited checks, seeing as they have different charges associated with them.

RESPONSE:

a. The Company provided the elements involved in the handling of a check when its returned as unpaid by the bank. The response described both Company actions and the bank fees to justify the $\$ 11$ charge. However, the Company’s bad check charge is not solely based on costs. The charge is intended to cover the costs associated with bank assessed fees and to deter customers from making payments that utilize accounts with insufficient funds. Also, the Company has found that the amount of its fee is supported by how it compares with other industries, including the bad check charge established in KRS 131.180 for the Kentucky Department of Revenue related to their collection practices, which shall not be less than $\$ 10$.
b. As noted in the Company's previous response, there is time and labor involved in the administrative processes of handling returned checks, exceptions and returns by

Company employees, but it is not priced into the $\$ 11$ bad check charge. The labor costs associated with handling bad checks would be captured in general O\&M labor as part of cost of service.
c. The Company does not differentiate its pricing to customers based on the costs or necessary Company actions for the payment channel a customer chooses. Payment channel costs, except credit/debit card transactions, are included in the cost of service and borne by all customers. As stated above, the bad check charge is structured to cover the increment costs associated with bank assessed fees and to deter customers from making payments that utilize accounts with insufficient funds. Finally, charging multiple fees amounts would be administratively burdensome and additional manual intervention would be required to adjust each fee amount based on how the check originated in the system.

PERSON RESPONSIBLE: Lesley G. Quick

STAFF-DR-03-006

REQUEST:

Refer to Duke Kentucky's Response to Staff's Second Request, Item 15c. Explain why the weighted tenor average is 20.5 years.

RESPONSE:

The assumed tenor of 20.5 years was selected as it aligns with the average tenor of the Company's current long-term debt portfolio, excluding the two series of pollution control bonds, (see Table 1). Kentucky issues long-term debt securities in the private placement market where investor tenor demand is unknown from year to year. Therefore, the Company assumed the historical investor tenor demand average for the purpose of forecasting future issuances.

Table 1

Issuer	Type	Principal	Tenor
Duke Energy Kentucky	Unsecured	$65,000,000$	30.00
Duke Energy Kentucky	Unsecured	$45,000,000$	10.00
Duke Energy Kentucky	Unsecured	$50,000,000$	30.00
Duke Energy Kentucky	Unsecured	$30,000,000$	12.00
Duke Energy Kentucky	Unsecured	$30,000,000$	30.00
Duke Energy Kentucky	Unsecured	$30,000,000$	40.00
Duke Energy Kentucky	Unsecured	$25,000,000$	5.00
Duke Energy Kentucky	Unsecured	$40,000,000$	10.00
Duke Energy Kentucky	Unsecured	$35,000,000$	30.00
Duke Energy Kentucky	Unsecured	$40,000,000$	30.00
Duke Energy Kentucky	Unsecured	$95,000,000$	6.00
Duke Energy Kentucky	Unsecured	$75,000,000$	10.00
Duke Energy Kentucky	Unsecured	$35,000,000$	10.00
Duke Energy Kentucky	Unsecured	$35,000,000$	30.00
		Average	20.21

PERSON RESPONSIBLE: Chris R. Bauer

Duke Energy Kentucky
Case No. 2021-00190
STAFF Third Set Data Requests
Date Received: August 4, 2021
STAFF-DR-03-007

REQUEST:

Provide the article entitled "Comparative Evaluation of the Predictive Risk Premium Model, the Discounted Cash Flow Model and the Capital Asset Pricing Model for Estimating the Cost of Common Equity" (2013) in which Dylan W. D’Ascendis was an author.

RESPONSE:

Please see STAFF-DR-03-007 Attachment.

PERSON RESPONSIBLE: Dylan W. D'Ascendis

Richard A. Michelfelder is Clinical Associate Professor of Finance at Rutgers University, School of Business, Camden, New Jersey. He earlier held a number of entrepreneurial and executive positions in the public utility industry, some of them involving the application of renewable and energy efficiency resources in utility planning and regulation. He was CEO and chairperson of the board of Quantum Consulting, Inc., a national energy efficiency and utility consulting firm, and Quantum Energy Services and Technologies, LLC, an energy services company that he co-founded. He also helped to co-found and build Comverge, Inc., currently one of the largest demand-response firms in the world that went public in 2006 on the NASDAQ. He was also an executive at Atlantic Energy, Inc. and Chief Economist at Associated Utilities Services, where he testified on the cost of capital for public utilities in a number of state jurisdictions and before the Federal Energy Regulatory Commission. He holds a Ph.D. in Economics from Fordham University and has published numerots articles in academic journals.

Pauline M. Ahem is a Principal and with AUS Consultants located in Mount Laurel, New Jersey. She has served investor-owned and municipal utilities andauthorities for nearly 25 years. A Certified Rate of Return Analyst (CRRA), she is responsible for the development of rate-ofreturn analyses, including the development of ratemaking capital structure ratios, senior capital cost rates, and the cost rate of common equity and related issues for regulated public utilities. She has testified as an expert witness before 29 regulatory commissions in the U.S. and Canada. In addition, she supervises the production of the various AUS Utility Reports publications and maintains the benchmark index against which the Americm Gas Association's Muttal Fund perfornance is measured. She holds an M.B.A. in finance from Rutgers University and a Bachelor of Arts Degree in Economics/Econometrics from Clark University.

Dylan W. D'Ascendis is Principal at AUS Consultants, located in Mt. Laurel, New Jersey. He is responsible for preparing fair-rate-of-return studies for AUS Consultants' rate-of-return expert witnesses and assists in every aspect of the rate case procedural process. He is also a Certified Rate of Return Analyst. He is the Editor of AUS Utility Reports and is responsible for the data collection and production of the AUS Monthly Utility Report. He also assists in the calculation and production of the AGA Index, a market capitalization weighted index of the common stocks of the approximately 70 corporate members of the American Gas Association. Mr. D'Ascendis holds an M.B.A. in both Finance and International Business from Rutgers University and a Bachelor of Arts Degree in Economic History from the University of Pennsylvania.

Frank J. Hanley is a Principal of AUS Consultants located in Mt. Laurel, New Jersey. He joined the firm in 1971 as Vice President, was elected Senior Vice President in 1975, and President of the Utility Services Group in 1989. Mr. Hanley has testified on cost-of-capital and related financial issues in more than 300 cases before 33 state regulatory commissions, the District of Columbia Public Service Commission, the Public Services Commission of the U.S. Virgin Islands, the Federal Energy Regulatory Commission, a U.S. District Court, a U.S. Bankruptcy Court and the U.S. Tax Coutt. He is a graduate of Drexel University and is a Certified Rate of Return Analyst. He is an Associate Member of the American Gas Association as well as a member of its Rate Committee. Also, he is a member of the Executive Advisory Council of the Rutgers University School of Business at Camden as well as a member of the Advisory Council of New Mexico State University's Center for Public Utilities.

The authors wish to thank Selby P. Jones, III, Associate, AUS Consultants, for his technical assistance.

Comparative Evaluation of the Predictive Risk Premium Model, the Discounted Cash Flow Model and the Capital Asset Pricing Model for Estimating the Cost of Common Equity

Abstract

The regulatory process for setting a utility's allowed rate of return on common equity has generally relied upon the Gordon Discounted Cash Flow Model and Capital Asset Pricing Model. The Predictive Risk Premium Model, introduced a year ago, resolves several of the widely known problems with these models. Further testing since its introduction a year ago suggests that it produces stable results which are consistent over time.

Richard A. Michelfelder, Pauline M. Ahern, Dylan W. D'Ascendis and Frank J. Hanley

I. Introduction

The lead article in the July 2008 issue of this Journal, "Integrating Renewables into the US Grid: Is it Sustainable," by Professors Peter Mark Jansson and Richard A. Michelfelder, ${ }^{1}$ called for the
reregulation of the electric utility industry and putting the planning of generation assets, whether renewable or not, back in the hands of the experts and those ultimately responsible for reliability, the electric utilities. During the last 10 years or so,
states have been backpedaling on deregulation and therefore methods for estimating the cost of common equity and the allowed rate of return have generated new interest as regulating rate of return is not going away as once thought.
I he regulatory process for
allowed rate of return on common equity has generally relied upon the familiar Gordon Discounted Cash Flow Model (DCF) and Capital Asset Pricing Model (CAPM). Despite the widely known problems with these models, there has been little initiative to adopt more recently developed asset pricing models with fewer limiting assumptions and requiring less subjective judgment than these traditional models. In December 2011, the article "New Approach to Estimating the Cost of Common Equity Capital for Public Utilities, ${ }^{\prime 2}$ published in The Journal of Regulatory Economics, introduced the Predictive Risk Premium Model (PRPM). The PRPM trademark refers to a general, yet simple, consumptionbased asset pricing model of the risk/return relationship for common stocks which can be used to estimate the cost rate of common equity (ROE). The stability and consistency of the results of PRPM and the ex ante, i.e., expectational, nature of those results indicate that the model should be used to provide additional input into the process of determining an allowed rate of return on common equity for public utilities.

Since publication, more exhaustive empirical testing of the PRPM was conducted for the four utility industry groups which comprise the AUS Utility Reports ${ }^{3}$ universe of publicly traded utilities: an electric utility group; a combination electric and natural gas distribution utility group; a natural gas distribution utility group, and a water utility group. The empirical testing confirms the conclusion of the

> Despite the widely known problems with these models, there has been little initiative to adopt more recently developed asset pricing models with fewer limiting assumptions and requiring less subjective judgment.

original Journal of Regulatory Economics article: the PRPM produces stable results which are consistent over time.

II. Development of the PRPM

The cost rate of common equity is not directly observable in the capital markets and must be inferred using various financial models. The most commonly used cost of common equity models in the regulatory arena are the aforementioned DCF and the CAPM. Since these models are based upon many restrictive
assumptions, they involve a significant amount of analyst subjectivity in their application, resulting in much debate over the application and results of these models.

The empirical approach to the PRPM is based upon the work of Robert F. Engle, Ph.D., ${ }^{4}$ who shared the Nobel Prize in Economics in 2003 "for methods of analyzing economic time series with time-varying volatility (ARCH), ${ }^{\prime 5}$ with " ARCH " standing for autoregressive conditional heteroskedasticity. In other words, volatility (variance) changes over time and is related to itself from one period to the next, especially in financial markets. Engle discovered that the volatility (usually measured by variance) in prices and returns clusters over time. Therefore, volatility is highly predictable and can be used to predict future levels of risk. The theoretical asset pricing model was recently developed in the Journal of Economics and Business in
December 2011 by Rutgers University professors Richard Michelfelder and Eugene Pilotte. ${ }^{6}$

In this study, the PRPM estimates the risk/return relationship directly using the outcomes of investors' historical pricing decisions and actual longterm U.S. Treasury security yields, with the predicted equity risk premium generated by the prediction of volatility, i.e., the risk, based upon the volatility of past equity risk premiums for the AUS Utility Reports universe of companies.

III. Estimation Method

The statistical details of the estimation method of the PRPM can be found in the original article in the Journal of Regulatory Economics, "New Approach to Estimating the Cost of Common Equity Capital for Public Utilities." Essentially, there are two steps to the application of the PRPM. First, predicted volatility, i.e., risk, is derived based upon previous volatility plus previous prediction error, because volatility is highly predictable and correlated over time. Second, the predicted volatility can then be used to generate the predicted equity risk premium (ERP) by multiplying it by the GARCH coefficient, i.e., the slope of the predicted volatility. A risk-free rate is then added to the ERP to estimate the ROE, i.e., the market based cost of common equity.

IV. Application of the PRPM to Publicly Traded Utility Companies

The PRPM was applied to the companies comprising the AUS Utility Reports' utility industry groups: the electric, combination electric and natural gas distribution, natural gas distribution, and water groups. The PRPM variances were calculated monthly for each individual utility beginning with the first available monthly data included for each individual utility in the University of Chicago Booth School of Business'

Center for Research in Security Prices (CRSP) and corresponding monthly long-term U.S. Treasury bond yields from Morningstar's Ibbotson SBBI-2012 Valuation Yearbook - Market Results for Stocks, Bonds, Bills and Inflation -1926-2011 (SBBI) through 72-month ending periods, i.e., January 2006 through December 2011.

J sing EViews Version 7.2, predicted monthly variances were estimated as described in the $J R E$ article for each time series of equity risk premiums. Consistent with the conclusion drawn in the $J R E$ article, the predicted equity risk premiums were calculated using the averaged predicted volatilities (variances) over the entire time period for which CRSP data were available for each utility, multiplied by the GARCH, or slope, coefficient generated through EViews for each time series. To calculate the PRPM cost
rate of common equity for each utility, the average predicted utility specific equity risk premium through each month ending from January 2006 through December 2011 was then added to the projected consensus forecast of the expected yields on 30-year U.S. Treasury bonds for the next six quarters by the reporting economists in the concurrent Blue Chip Financial Forecasts (Blue Chip).

The DCF was applied in a simple manner, using a dividend yield, D_{0} / P_{0}, derived by dividing the month-end indicated dividend per share (D_{0}) by the month-end closing market price (P_{0}) for each utility. The dividend yield was then grown by the month-end I/B/E/S consensus five-year projected earnings per share (EPS) growth rate (g) to derive $\left(D_{0}(1+g) / P_{0}\right)$. The onemonth predicted dividend yield was then added to the concurrent month's I/B/E/S consensus

Figure 1: Indicated Return on Common Equity Based upon the PRPM for the AUS Utility Reports Companies
five-year average projected EPS growth rate to obtain the DCF estimate of the cost of common equity capital, k. The DCF estimates were also calculated for each month from January 2006 through December 2011.

The CAPM was applied by multiplying Value Line Inc.'s beta (β), ${ }^{7}$ for each utility, by the long-term historical arithmetic mean market equity risk premium $\left(R_{m}-R_{f}\right)$ through the previous year. $\left(R_{m}-R_{f}\right)$ was derived as the spread of the total return of large company common stocks over the income return on long-term government bonds from the annual SBBI Valuation Yearbooks for the years ending 2005 through 2010. The resulting utility-specific equity risk
premium was then added to the same projected consensus forecast of the expected yields on 30-year U.S. Treasury bonds for the next six quarters by the reporting economists in the concurrent Blue Chip discussed above, to obtain the CAPM estimate of the cost of common equity capital, k. The CAPM estimates were also calculated for each month from January 2006 through December 2011.

I inally, the results for each of the models, the PRPM, DCF, and CAPM, were averaged for each utility group. ${ }^{8}$ Figure 1 presents the average PRPM results for each of the AUS Utility Reports utility groups for each month from January 2006 through December 2011.

Figure 1 shows that indicated ROEs derived from the PRPM

Figure 2: Indicated Return on Common Equity Based upon the PRPM, CAPM and DCF Methodologies for the AUS Utility Reports Electric Companies
were stable for all utility groups until the global financial crisis of 2008-2009. During 2008 and 2009, the PRPM-derived ROEs decline, which in the authors' opinion, was a result of a "flight to quality" by investors, i.e., the willingness of an investor to accept a lower, but more certain, return during financial downturns. Figure 1 also indicates that the PRPM-derived ROEs for the electric, combination
electric and natural gas distribution, and natural gas distribution utility groups follow a nearly identical pattern throughout the 72-month period, with the water utility group following a similar, but more volatile pattern.
Figures 2-5 present a comparison of the average PRPM, DCF, and CAPM cost of common equity estimates for each AUS

Figure 3: Indicated Return on Common Equity Based upon the PRPM, CAPM, and DCF Methodologies for the AUS Utility Reports Combination Companies

Figure 4: Indicated Return on Common Equity Based upon the PRPM, CAPM and DCF Methodologies for the AUS Utility Reports Gas Companies

Figure 5: Indicated Return on Common Equity Based upon the PRPM, CAPM and DCF Methodologies for the AUS Utility Reports Water Companies

Utility Reports utility industry group, i.e., the electric utility group; the combination electric and natural gas distribution utility group; the natural gas distribution utility group; and, the water utility group for each month from January 2006 through December 2011.

Figures 2-5 clearly show that, for the most part, the PRPM produces a higher average indicated ROE than both the DCF and CAPM. This is due to the fact that the PRPM prices all of the risk that investors actually face collectively. In contrast, the CAPM prices systematic risk (that
investors face only if they have a perfectly diversified portfolio, which does not exist) and the DCF uses accounting-based, not market-based, I/B/E/S consensus five-year projected EPS growth rates.

V. Conclusion

In the authors' opinion, the PRPM benefits ratemaking with an additional model to estimate ROE. To that end, the authors have been including the PRPM in their rate-of-return testimonies and the model has been presented publicly in several venues. ${ }^{9}$

Tts results are stable and consistent over time. It is not based upon restrictive assumptions, as are the DCF and CAPM. The PRPM is also not based upon an estimate of investor behavior, but rather, upon a statistical analysis of actual investor behavior by evaluating the results of that behavior, i.e., the volatility (variance) of historical equity risk premiums. In contrast, subjective decisions surround the choice of the inputs to both the DCF and CAPM, from the choice of the time period over which to measure the dividend yield for the DCF, the choice of the DCF growth rate (e.g., historical or projected, earnings per share or dividends per share, and the like), to the selection of the appropriate beta (e.g., adjusted or unadjusted), market equity risk premium (e.g., historical or projected) and the appropriate
risk-free rate (e.g., historical or projected and/or long vs. short term) for the CAPM. In addition, as previously discussed, the CAPM exclusively prices systematic risk. In contrast, the PRPM prices all of the risk actually faced collectively by investors, because the model does not assume that investors' portfolios are perfectly diversified containing no unsystematic risk.
I n addition, the inputs to the PRPM are widely available. The GARCH coefficient is calculated with the relatively inexpensive EViews, or other statistical, software, based upon the realized ERP, i.e., total returns minus the risk-free rate. The only subjective decisions to be made when applying the PRPM relate to which risk-free rate to use, e.g., long-term or short-term, and over what time period to estimate the PRPM-derived ROEs.
F or all of these reasons, the authors conclude that the
PRPM should be considered as appropriate additional evidence
to measure the cost of common equity in regulatory rate setting for public utilities.

Endnotes:

1. Peter Mark Jansson and Richard A. Michelfelder, Integrating Renewables into the US Grid: Is It Sustainable? ELEc. J.July 2008, at 9-21.
2. Pauline M. Ahern, Frank J. Hanley and Richard A. Michelfelder, New Approach to Estimating the Cost of Common Equity Capital for Public Utilities, J.REG. ECON.(2011) 40, at 261-78.
3. AUS Monthly Utility Reports is a monthly pocket reference book covering the electricity, combination electricity \& natural gas distribution, natural gas distribution, and water companies which have publicly traded common stock. The monthly reports provide comprehensive information on key ratios and industry rankings based upon the financial statistics presented in the report.
4. Professor Emeritus, University of California, San Diego, and currently the Michael Armellino Professor in Management of Financial Services at New York University's Stern School of Business.
5. See www.nobelprize.org.
6. Richard Michelfelder and Eugene

Pilotte, Treasury Bond Risk and Return,
the Implications for the Hedging of Consumption and Lessons for Asset Pricing, J.ECON. \& Bus. (2011) 63, at 605-37.
7. Using a proprietary data base available at mid-March, June, September, and December at the end of each year, from 2006-2011 from Value Line, Inc.
8. The results shown in the accompanying figures represent AUS Utility group averages of only those utilities in each group for which it was possible to estimate all three models in any given month. For example, if ABC Utility did not have the I/B/E/S consensus growth rate necessary to calculate the DCF in a given month, that utility's PRPM and CAPM were not included in the group average for that month.
9. Edison Electric Institute Cost of Capital Working Group (Webinar Oct. 2012); NARUC Staff Subcommittee on Accounting \& Finance (Sept. 2012 and Mar. 2010); National Association of Water Companies Finance/
Accounting/Taxation and Rates \& Regulations Committees (Mar. 2012); NARUC Water Committee (Feb. 2012); Wall St. Utility Group (Dec. 2011); IN Utility Regulatory Commission Cost of Capital Task Force (Sept. 2010); Financial Research Inst. of the Univ. of Missouri Hot Topic Hotline Webinar (Dec. 2010); and Center for Research in Regulated Industries Annual Eastern Conference (May 2010 \& May 2009).

Subjective decisions surround the choice of the inputs to both the DCF and CAPM.

May 2013, Vol. 26, Issue 4 1040-6190/\$-see front matter © 2013 Elsevier Inc. All rights reserved., http://dx.doi.org/10.1016/j.tej.2013.04.005

REQUEST:

Refer to Duke Kentucky's Response to Staff's Second Request, Item 17a.
a. Explain why it is reasonable to include non-price regulated companies in any of the analyses and yet restrict the utility proxy group to a small number of natural gas utilities.
b. The commodity notwithstanding, explain why it would be unreasonable to include water utilities in the utility proxy group. Include in the response an analysis of risk comparing a proxy group of water utilities to both the utility proxy group and the non-price regulated proxy group.

RESPONSE:

a. As discussed on page 40, lines 3-11 of Mr. D’Ascendis' direct testimony, the proxy group of domestic, non-price regulated companies was chosen for their comparability to the Utility Proxy Group based on total risk.
b. One could not ignore the commodity when looking for similar risk companies, so Mr. D'Ascendis does not agree with the premise of the question. Nevertheless, the price of alternative energy sources indicates that natural gas utilities face competitive pressures from other energy sources and suppliers. Water utilities do not face similar risks, because there is no substitute for water. Further, because water is generally directly consumed by customers it must be treated before it is
delivered. Lastly, water consumption is generally highest during warmer months, the opposite of natural gas usage.

PERSON RESPONSIBLE: Dylan W. D'Ascendis

REQUEST:

Refer to Duke Kentucky's Response to Staff's Second Request, Item 18c, and to the Direct Testimony of Dylan W D’Ascendis (D’Ascendis Testimony), page 12, line 12-15. Explain whether the lack of size consideration in S\&P and Moody's bond ratings implies flaws within their rating methodologies.

RESPONSE:

Mr. D'Ascendis does not believe that the rating methodologies utilized by S\&P or Moody's are flawed. As noted on page 10, lines 4-15 of Mr. D'Ascendis' direct testimony, analysts and rating agencies consider a variety of interrelated business risks that utilities face including size of the company (more specifically, the diversification of its operations) to measure the standalone risk of a firm. However, estimating the cost of equity is a comparative exercise and given that neither rating agency has a minimum company size requirement for a given rating level, a relative size analysis is required between companies with similar bond ratings.

PERSON RESPONSIBLE: Dylan W. D'Ascendis

REQUEST:

Refer to Duke Kentucky's Response to Staff's Second Request, Item 18, and to D'Ascendis Testimony, pages 44-48.
a. Explain whether Mr. D’Ascendis has ever proposed a negative size adjustment in any regulatory proceeding. If so, include in the response the docket/case number and copies of expert testimony and exhibits in PDF format.
b. Explain whether Mr. D'Ascendis has ever proposed a negative credit risk adjustment in any regulatory proceeding. If so, include in the response the docket/case number and copies of expert testimony and exhibits in PDF format.
c. Of the utilities included in the Utility Proxy Group, performing an identical analysis to the one provided in the expert testimony, explain which would require a negative size adjustment.
d. Of the utilities included in the Utility Proxy Group, performing an identical analysis to the one provided in the expert testimony, explain which would require a negative credit risk adjustment.

RESPONSE:

a. Mr. D'Ascendis has not performed an exhaustive review of all past regulatory proposals of size adjustments, but he has recently recommended against a size adjustment in his direct testimony for Piedmont Natural Gas Company (NC) in Docket No. G-9, Sub 781. Please see STAFF-DR-03-010(a) Attachment.
b. Mr. D'Ascendis has not performed an exhaustive review of all past regulatory proposals of credit risk adjustments but does regularly recommend negative credit risk adjustments for operations that have a higher credit rating than their representative proxy group. For example, Mr. D’Ascendis recommended a negative risk adjustment for Atmos Energy's Kentucky operations in Docket No. 202100214. Please see STAFF-DR-03-010(b) Attachment.
c. Please see STAFF-DR-03-010(c) Attachment.
d. Please see STAFF-DR-03-010(d) Attachment.

PERSON RESPONSIBLE: Dylan W. D'Ascendis

BEFORE THE

DIRECT TESTIMONY

OF

DYLAN W. D'ASCENDIS, CRRA, CVA

ON BEHALF OF

PIEDMONT NATURAL GAS COMPANY, INC.

Docket No. G-9, Sub 781

TABLE OF CONTENTS

I. Introduction 1
A. Witness Identification 1
B. Background and Qualifications 1
II. Purpose and Summary. 2
III. General Principles 6
A. Business Risk 10
B. Financial Risk 12
IV. Piedmont's Operations and the Utility Proxy Group 13
V. Common Equity Cost Rate Models 16
A. Discounted Cash Flow Model 18
B. The Risk Premium Model 20

1. The Predictive Risk Premium Model 21
2. The Total Market Risk Premium Approach 24
C. The Capital Asset Pricing Model. 35
D. Common Equity Cost Rates for a Proxy Group of Domestic, Non-Price Regulated Companies Based on the DCF, RPM, and CAPM 42
VI. Conclusion of Common Equity Cost Rate Before Adjustments 45
VII. Adjustments to the Common Equity Cost Rate 46
A. Size Adjustment 46
B. Flotation Cost Adjustment 48
VIII. Economic Conditions in North Carolina. 51
IX. Conclusion 60

I. INTRODUCTION

A. Witness Identification

Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.

A. My name is Dylan W. D'Ascendis. My business address is 3000 Atrium Way, Suite 241, Mount Laurel, NJ 08054.
Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?
A. I am a Director at ScottMadden, Inc.

B. Background and Qualifications

Q. PLEASE SUMMARIZE YOUR PROFESSIONAL EXPERIENCE AND EDUCATIONAL BACKGROUND.
A. I have offered expert testimony on behalf of investor-owned utilities before over 25 state regulatory commissions in the United States, the Federal Energy Regulatory Commission, the Alberta Utility Commission, and one American Arbitration Association panel on issues including, but not limited to, common equity cost rate, rate of return, valuation, capital structure, class cost of service, and rate design.

On behalf of the American Gas Association ("AGA"), I calculate the AGA Gas Index, which serves as the benchmark against which the performance of the American Gas Index Fund ("AGIF") is measured on a monthly basis. The AGA Gas Index and AGIF are a market capitalization weighted index and mutual fund, respectively, comprised of the common stocks of the publicly traded corporate members of the AGA.

I am a member of the Society of Utility and Regulatory Financial Analysts ("SURFA"). In 2011, I was awarded the professional designation "Certified Rate of Return Analyst" by SURFA, which is based on education, experience, and the successful completion of a comprehensive written examination.

I am also a member of the National Association of Certified Valuation Analysts ("NACVA") and was awarded the professional designation "Certified Valuation Analyst" by the NACVA in 2015.

I am a graduate of the University of Pennsylvania, where I received a Bachelor of Arts degree in Economic History. I have also received a Master of Business Administration with high honors and concentrations in Finance and International Business from Rutgers University.

The details of my educational background and expert witness appearances are shown in Appendix A.

II. PURPOSE AND SUMMARY

Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS PROCEEDING?
A. The purpose of my testimony is to present evidence and provide a recommendation regarding Piedmont Natural Gas Company, Inc.'s ("Piedmont" or the "Company") return on common equity ("ROE").
Q. HAVE YOU PREPARED AN EXHIBIT IN SUPPORT OF YOUR RECOMMENDATION?
A. Yes. I have prepared Exhibit No. __, consisting of Schedules DWD-1 through DWD-8, which were prepared by me or under my direction.
Q. PLEASE SUMMARIZE YOUR RECOMMENDED COMMON EQUITY COST RATE.
A. My recommended common equity cost rate of 10.25% is summarized on page 2 of Schedule DWD-1. I have assessed the market-based common equity cost rates of companies of relatively similar, but not necessarily identical, risk to Piedmont. Using companies of relatively comparable risk as proxies is consistent with the principles of fair rate of return established in the Hope ${ }^{1}$ and Bluefield ${ }^{2}$ decisions. No proxy group can be identical in risk to any single company. Consequently, there must be an evaluation of relative risk between the company and the proxy group to determine if it is appropriate to adjust the proxy group's indicated rate of return.

My recommendation results from applying several cost of common equity models, specifically the Discounted Cash Flow ("DCF") model, the Risk Premium Model ("RPM"), ${ }^{3}$ and the Capital Asset Pricing Model ("CAPM"), to the market data of a proxy group of eight natural gas distribution utilities ("Utility Proxy Group") whose selection criteria will be discussed below. In addition, I applied the

[^0]DCF model, RPM, and CAPM to a proxy group of 47 domestic, non-price regulated companies comparable in total risk to the Utility Proxy Group ("Non-Price Regulated Proxy Group"). The results derived from each are as follows:

Table 1: Summary of Common Equity Cost Rates

Discounted Cash Flow Model	9.46%
Risk Premium Model	10.11%
Capital Asset Pricing Model	12.05%
Cost of Equity Models Applied to Comparable	$\underline{12.18 \%}$
Risk, Non-Price Regulated Companies	
	$9.46 \%-12.18 \%$
Indicated Range	0.00%
Size Adjustment	$\underline{0.12 \%}$
Flotation Cost Adjustment	$9.58 \%-12.30 \%$
Recommended Range	$\underline{\underline{10.25 \%}}$

The indicated range of common equity cost rates applicable to the Utility Proxy Group is between 9.46% and 12.18% before any adjustment for flotation costs, which were $0.12 \%{ }^{4}$ My Company-specific indicated range of common equity cost rates, adjusted for flotation costs, is between 9.58% and 12.30%. Given the Utility Proxy Group and Company-specific ranges of common equity cost rates, my recommended ROE for the Company is 10.25\%. I have selected the lower end of my range to reflect the uncertainty surrounding the COVID-19 recovery and my
recommendation should be considered a conservative measure of the Company's required ROE at this time.

Q. HOW IS THE REMAINDER OF YOUR DIRECT TESTIMONY ORGANIZED?

A. The remainder of my Direct Testimony is organized as follows:

- Section III - Provides a summary of financial theory and regulatory principles pertinent to the development of the cost of common equity;
- Section IV - Explains my selection of the Utility Proxy Group used to develop my Cost of Common Equity analytical results;
- Section V - Describes the analyses on which my Cost of Common Equity recommendation is based;
- Section VI - Summarizes my common equity cost rate before adjustments to reflect Company-specific factors;
- Section VII - Explains my consideration of adjustments to my common equity cost rate to reflect Company-specific factors;
- Section VIII - Discusses economic conditions in North Carolina; and
- Section IX - Presents my conclusions.

III. GENERAL PRINCIPLES

Q. WHAT GENERAL PRINCIPLES HAVE YOU CONSIDERED IN

 ARRIVING AT YOUR RECOMMENDED COMMON EQUITY COST RATE OF 10.25\%?A. In unregulated industries, marketplace competition is the principal determinant of the price of products or services. For regulated public utilities, regulation must act as a substitute for marketplace competition. Assuring that the utility can fulfill its obligations to the public, while providing safe and reliable service at all times, requires a level of earnings sufficient to maintain the integrity of presently invested capital. Sufficient earnings also permit the attraction of needed new capital at a reasonable cost, for which the utility must compete with other firms of comparable risk, consistent with the fair rate of return standards established by the U.S. Supreme Court in the previously cited Hope and Bluefield cases.

The U.S. Supreme Court affirmed the fair rate of return standards in Hope, when it stated:

The rate-making process under the Act, i.e., the fixing of 'just and reasonable' rates, involves a balancing of the investor and the consumer interests. Thus we stated in the Natural Gas Pipeline Co. case that 'regulation does not insure that the business shall produce net revenues.' 315 U.S. at page 590, 62 S.Ct. at page 745. But such considerations aside, the investor interest has a legitimate concern with the financial integrity of the company whose rates are being regulated. From the investor or company point of view it is important that there be enough revenue not only for operating expenses but also for the capital costs of the business. These include service on the debt and dividends on the stock. Cf. Chicago \& Grand Trunk R. Co. v. Wellman, 143 U.S. 339, 345, 34612 S.Ct. 400,402. By that standard the return to the equity owner should be commensurate with returns on investments in other enterprises
having corresponding risks. That return, moreover, should be sufficient to assure confidence in the financial integrity of the enterprise, so as to maintain its credit and to attract capital. ${ }^{5}$

In summary, the U.S. Supreme Court has found a return that is adequate to attract capital at reasonable terms enables the utility to provide service while maintaining its financial integrity. As discussed above, and in keeping with established regulatory standards, that return should be commensurate with the returns expected elsewhere for investments of equivalent risk. The Commission's decision in this proceeding, therefore, should provide the Company with the opportunity to earn a return that is: (1) adequate to attract capital at reasonable cost and terms; (2) sufficient to ensure their financial integrity; and (3) commensurate with returns on investments in enterprises having corresponding risks.

Lastly, the required return for a regulated public utility is established on a stand-alone basis, i.e., for the utility operating company at issue in a rate case. Parent entities, like other investors, have capital constraints and must look at the attractiveness of the expected risk-adjusted return of each investment alternative in their capital budgeting process. That is, utility holding companies that own many utility operating companies have choices as to where they will invest their capital within the holding company family. Therefore, the opportunity cost concept applies regardless of the source of the funding, public funding or corporate funding.

When funding is provided by a parent entity, the return still must be sufficient to provide an incentive to allocate equity capital to the subsidiary or

[^1]business unit rather than other internal or external investment opportunities. That is, the regulated subsidiary must compete for capital with all the parent company's affiliates, and with other, similarly situated companies. In that regard, investors value corporate entities on a sum-of-the-parts basis and expect each division within the parent company to provide an appropriate risk-adjusted return.

It therefore is important that the authorized ROE reflects the risks and prospects of the utility's operations and supports the utility's financial integrity from a stand-alone perspective as measured by their combined business and financial risks. Consequently, the ROE authorized in this proceeding should be sufficient to support the operational (i.e., business risk) and financing (i.e., financial risk) of the Company's North Carolina utility operations on a stand-alone basis.

Q. WITHIN THAT BROAD FRAMEWORK, HOW IS THE COST OF CAPITAL ESTIMATED IN REGULATORY PROCEEDINGS?

A. Regulated utilities primarily use common stock and long-term debt to finance their permanent property, plant, and equipment (i.e., rate base). The fair rate of return for a regulated utility is based on its weighted average cost of capital, in which, as noted earlier, the costs of the individual sources of capital are weighted by their respective book values.

The cost of capital is the return investors require to make an investment in a firm. Investors will provide funds to a firm only if the return that they expect is equal to, or greater than, the return that they require to accept the risk of providing funds to the firm.

The cost of capital (that is, the combination of the costs of debt and equity) is based on the economic principle of "opportunity costs." Investing in any asset (whether debt or equity securities) represents a forgone opportunity to invest in alternative assets. For any investment to be sensible, its expected return must be at least equal to the return expected on alternative, comparable risk investment opportunities. Because investments with like risks should offer similar returns, the opportunity cost of an investment should equal the return available on an investment of comparable risk.

Whereas the cost of debt is contractually defined and can be directly observed as the interest rate or yield on debt securities, the cost of common equity must be estimated based on market data and various financial models. Because the cost of common equity is premised on opportunity costs, the models used to determine it are typically applied to a group of "comparable" or "proxy" companies.

In the end, the estimated cost of capital should reflect the return that investors require in light of the subject company's business and financial risks, and the returns available on comparable investments.

Q. IS THE AUTHORIZED RETURN SET IN REGULATORY PROCEEDINGS GUARANTEED?

A. No, it is not. Consistent with the Hope and Bluefield standards, the rate-setting process should provide the utility a reasonable opportunity to recover its return of, and return on, its prudently incurred investments, but it does not guarantee that return. While a utility may have control over some factors that affect the ability to
earn its authorized return (e.g., management performance, operating and maintenance expenses, etc.), there are several factors beyond a utility's control that affect its ability to earn its authorized return. Those may include factors such as weather, the economy, and the prevalence and magnitude of regulatory lag.

A. Business Risk

Q. PLEASE DEFINE BUSINESS RISK AND EXPLAIN WHY IT IS IMPORTANT FOR DETERMINING A FAIR RATE OF RETURN.
A. The investor-required return on common equity reflects investors' assessment of the total investment risk of the subject firm. Total investment risk is often discussed in the context of business and financial risk.

Business risk reflects the uncertainty associated with owning a company's common stock without the company's use of debt and/or preferred stock financing. One way of considering the distinction between business and financial risk is to view the former as the uncertainty of the expected earned return on common equity, assuming the firm is financed with no debt.

Examples of business risks generally faced by utilities include, but are not limited to, the regulatory environment, mandatory environmental compliance requirements, customer mix and concentration of customers, service territory economic growth, market demand, risks and uncertainties of supply, operations, capital intensity, size, and the like, all of which have a direct bearing on earnings. Although analysts, including rating agencies, may categorize business risks individually, as a practical matter, such risks are interrelated and not wholly distinct
from one another. Therefore, it is difficult to quantify the effect of any individual risk specifically and numerically on investors' required return, i.e., the cost of capital. For determining an appropriate return on common equity, the relevant issue is where investors see the subject company as falling within a spectrum of risk. To the extent investors view a company as being exposed to high risk, the required return will increase, and vice versa.

For regulated utilities, business risks are both long-term and near-term in nature. Whereas near-term business risks are reflected in year-to-year variability in earnings and cash flow brought about by economic or regulatory factors, long-term business risks reflect the prospect of an impaired ability of investors to obtain both a fair rate of return on, and return of, their capital. Moreover, because utilities accept the obligation to provide safe, adequate and reliable service at all times (in exchange for a reasonable opportunity to earn a fair return on their investment), they generally do not have the option to delay, defer, or reject capital investments. Because those investments are capital-intensive, utilities generally do not have the option to avoid raising external funds during periods of capital market distress, if necessary.

Because utilities invest in long-lived assets, long-term business risks are of paramount concern to equity investors. That is, the risk of not recovering the return on their investment extends far into the future. The timing and nature of events that may lead to losses, however, also are uncertain and, consequently, those risks and their implications for the required return on equity tend to be difficult to quantify.

Regulatory commissions (like investors who commit their capital) must review a variety of quantitative and qualitative data and apply their reasoned judgment to determine how long-term risks weigh in their assessment of the market-required return on common equity.

B. Financial Risk

Q. PLEASE DEFINE FINANCIAL RISK AND EXPLAIN WHY IT IS IMPORTANT IN DETERMINING A FAIR RATE OF RETURN.
A. Financial risk is the additional risk created by the introduction of debt and preferred stock into the capital structure. The higher the proportion of debt and preferred stock in the capital structure, the higher the financial risk to common equity owners (i.e., failure to receive dividends due to default or other covenants). Therefore, consistent with the basic financial principle of risk and return, common equity investors demand higher returns as compensation for bearing higher financial risk.
Q. CAN BOND AND CREDIT RATINGS BE A PROXY FOR A FIRM'S COMBINED BUSINESS AND FINANCIAL RISKS TO EQUITY OWNERS (I.E., INVESTMENT RISK)?
A. Yes, similar bond ratings/issuer credit ratings reflect, and are representative of, similar combined business and financial risks (i.e., total risk) faced by bond investors. ${ }^{6}$ Although specific business or financial risks may differ between companies, the same bond/credit rating indicates that the combined risks are

[^2]roughly similar from a debtholder perspective. The caveat is that these debtholder risk measures do not translate directly to risks for common equity.

Q. DO RATING AGENCIES ACCOUNT FOR COMPANY SIZE IN THEIR BOND RATINGS?

A. No. Neither Standard \& Poor's ("S\&P") nor Moody’s Investor Service ("Moody's") have minimum company size requirements for any given rating level. This means, all else equal, a relative size analysis must be conducted for equity investments in companies with similar bond ratings.

IV. PIEDMONT'S OPERATIONS AND THE UTILITY PROXY GROUP

 Q. ARE YOU FAMILIAR WITH PIEDMONT'S OPERATIONS?A. Yes. Piedmont, a subsidiary of Duke Energy Corporation ("DUK"), provides natural gas distribution service to approximately 1,085,000 customers in North Carolina, South Carolina, and Tennessee. ${ }^{7}$ Of this total customer base, the Company's North Carolina operations services approximately 775,000 customers. ${ }^{8}$ Piedmont currently has senior unsecured ratings of A3 (outlook: Stable) and BBB+ (outlook: Stable) from Moody's Investor Service and Standard \& Poor's Rating Services, respectively. ${ }^{9}$
Q. PLEASE EXPLAIN HOW YOU CHOSE THE COMPANIES IN THE UTILITY PROXY GROUP.
A. The companies selected for the Utility Proxy Group met the following criteria:

[^3](i) They were included in the Natural Gas Utility Group of Value Line's Standard Edition ("Value Line") (January 29, 2021);
(ii) They have 60% or greater of fiscal year 2019 total operating income derived from, and 60% or greater of fiscal year 2019 total assets attributable to, regulated gas distribution operations;
(iii) At the time of preparation of this testimony, they had not publicly announced that they were involved in any major merger or acquisition activity (i.e., one publicly-traded utility merging with or acquiring another);
(iv) They have not cut or omitted their common dividends during the five years ended 2019 or through the time of preparation of this testimony;
(v) They have Value Line and Bloomberg Professional Services ("Bloomberg") adjusted Betas;
(vi) They have positive Value Line five-year dividends per share ("DPS") growth rate projections; and
(vii) They have Value Line, Zacks, Yahoo! Finance, or Bloomberg consensus five-year earnings per share ("EPS") growth rate projections.

The following eight companies met these criteria: Atmos Energy
Corporation, New Jersey Resources Corp., NiSource Inc., Northwest Natural Gas Company, ONE Gas, Inc., South Jersey Industries, Inc., Southwest Gas Holdings, Inc., and Spire, Inc.

Q. WHY IS IT NECESSARY TO DEVELOP A PROXY GROUP WHEN ESTIMATING THE ROE FOR THE COMPANY?

A. Because the Company is not publicly traded and does not have publicly traded equity securities, it is necessary to develop groups of publicly traded, comparable companies to serve as "proxies" for the Company. In addition to the analytical necessity of doing so, the use of proxy companies is consistent with the Hope and

Bluefield comparable risk standards, as discussed above. I have selected two proxy groups that, in my view, are fundamentally risk-comparable to the Company: a Utility Proxy Group and a Non-Price Regulated Proxy Group, which is comparable in total risk to the Utility Proxy Group. ${ }^{10}$

Even when proxy groups are carefully selected, it is common for analytical results to vary from company to company. Despite the care taken to ensure comparability, because no two companies are identical, market expectations regarding future risks and prospects will vary within the proxy group. It therefore is common for analytical results to reflect a seemingly wide range, even for a group of similarly situated companies. At issue is how to estimate the ROE from within that range. That determination will be best informed by employing a variety of sound analyses that necessarily must consider the sort of quantitative and qualitative information discussed throughout my Direct Testimony. Additionally, a relative risk analysis between the Company and the Utility Proxy Group must be made to determine whether or not explicit Company-specific adjustments need to be made to the Utility Proxy Group indicated results.

My analyses are based on the Utility Proxy Group which is comprised of U.S. natural gas distribution utilities. As discussed earlier, utilities must compete for capital with other companies with commensurate risk (including non-utilities) and, to do so, must be provided the opportunity to earn a fair and reasonable return.

Consequently, it is appropriate to consider the Utility Proxy Group’s market data in determining the Company's ROE.

V. COMMON EQUITY COST RATE MODELS

Q. IS IT IMPORTANT THAT COST OF COMMON EQUITY MODELS BE

 MARKET BASED?A. Yes. While a public utility such as DUK operates a regulated business within the states in which it operates, it still must compete for equity in capital markets along with all other companies of comparable risk, which includes non-utilities. The cost of common equity is thus determined based on equity market expectations for the returns of those companies. If an individual investor is choosing to invest their capital among companies of comparable risk, they will choose a company providing a higher return over a company providing a lower return.

Q. ARE YOUR COST OF COMMON EQUITY MODELS MARKET BASED?

A. Yes. The DCF model uses market prices in developing the model's dividend yield component. Regarding the RPM, the Predictive Risk Premium Model ("PRPM") uses monthly market returns in addition to expectations of the risk-free rate and the total market risk premium approach uses bond ratings and expected bond yields that reflect the market's assessment of bond/credit risk. In addition, Beta coefficients (" β "), which reflect the market/systematic risk component of equity risk premium, are derived from regression analyses of market prices. The CAPM is market based for many of the same reasons that the RPM is market based (i.e., the use of expected bond yields and Betas). Selection criteria for comparable risk
non-price regulated companies are based on regression analyses of market prices and reflect the market's assessment of total risk.

Q. WHAT ANALYTICAL APPROACHES DID YOU USE TO DETERMINE THE COMPANY'S ROE?

A. As discussed earlier, I have relied on the DCF model, the RPM, and the CAPM, which I apply to the Utility Proxy Group described above. I also applied these same models to a Non-Price Regulated Proxy Group described later in this section.

I rely on these models because reasonable investors use a variety of tools and do not rely exclusively on a single source of information or single model. Moreover, the models on which I rely focus on different aspects of return requirements, and provide different insights to investors’ views of risk and return. The DCF model, for example, estimates the investor-required return assuming a constant expected dividend yield and growth rate in perpetuity, while Risk Premium-based methods (i.e., the RPM and CAPM approaches) provide the ability to reflect investors' views of risk, future market returns, and the relationship between interest rates and the cost of common equity. Just as the use of market data for the Utility Proxy Group adds the reliability necessary to inform expert judgment in arriving at a recommended common equity cost rate, the use of multiple generally accepted common equity cost rate models also adds reliability and accuracy when arriving at a recommended common equity cost rate.

A. Discounted Cash Flow Model

Q. WHAT IS THE THEORETICAL BASIS OF THE DCF MODEL?

A. The theory underlying the DCF model is that the present value of an expected future stream of net cash flows during the investment holding period can be determined by discounting those cash flows at the cost of capital, or the investors' capitalization rate. DCF theory indicates that an investor buys a stock for an expected total return rate, which is derived from the cash flows received from dividends and market price appreciation. Mathematically, the dividend yield on market price plus a growth rate equals the capitalization rate; i.e., the total common equity return rate expected by investors as shown below:
$K_{e}=\left(D_{0}(1+g)\right) / P+g$
where:
$K_{e}=$ the required Return on Common Equity;
$D_{0}=$ the annualized Dividend Per Share;
$P=$ the current stock price; and
$g=$ the growth rate.

Q. WHICH VERSION OF THE DCF MODEL DID YOU USE?

A. I used the single-stage constant growth DCF model in my analyses.

Q. PLEASE DESCRIBE THE DIVIDEND YIELD YOU USED IN APPLYING THE CONSTANT GROWTH DCF MODEL.

A. The unadjusted dividend yields are based on the proxy companies' dividends as of January 29, 2021, divided by the average closing market price for the 60 trading days ended January 29, 2021. ${ }^{11}$

11 See, column 1, page 1 of Schedule DWD-2.

Q. PLEASE EXPLAIN YOUR ADJUSTMENT TO THE DIVIDEND YIELD.

A. Because dividends are paid periodically (e.g. quarterly), as opposed to continuously (daily), an adjustment must be made to the dividend yield. This is often referred to as the discrete, or the Gordon Periodic, version of the DCF model.

DCF theory calls for using the full growth rate, or D_{1}, in calculating the model's dividend yield component. Since the companies in the Utility Proxy Group increase their quarterly dividends at various times during the year, a reasonable assumption is to reflect one-half the annual dividend growth rate in the dividend yield component, or $\mathrm{D}_{1 / 2}$. Because the dividend should be representative of the next 12-month period, this adjustment is a conservative approach that does not overstate the dividend yield. Therefore, the actual average dividend yields in Column 1, page 1 of Schedule DWD-2 have been adjusted upward to reflect one-half the average projected growth rate shown in Column 6.

Q. PLEASE EXPLAIN THE BASIS FOR THE GROWTH RATES YOU APPLY TO THE UTILITY PROXY GROUP IN YOUR CONSTANT GROWTH DCF MODEL.

A. Investors with more limited resources than institutional investors are likely to rely on widely available financial information services, such as Value Line, Zacks, Yahoo! Finance, and Bloomberg. Investors realize that analysts have significant insight into the dynamics of the industries and individual companies they analyze, as well as companies' ability to effectively manage the effects of changing laws and
regulations, and ever-changing economic and market conditions. For these reasons, I used analysts' five-year forecasts of EPS growth in my DCF analysis.

Over the long run, there can be no growth in DPS without growth in EPS. Security analysts' earnings expectations have a more significant influence on market prices than dividend expectations. Thus, using earnings growth rates in a DCF analysis provides a better match between investors' market price appreciation expectations and the growth rate component of the DCF.

Q. PLEASE SUMMARIZE THE CONSTANT GROWTH DCF MODEL RESULTS.

A. As shown on page 1 of Schedule DWD-2, for the Utility Proxy Group, the mean result of applying the single-stage DCF model is 9.59%, the median result is 9.32%, and the average of the two is 9.46%. In arriving at a conclusion for the constant growth DCF-indicated common equity cost rate for the Utility Proxy Group, I relied on an average of the mean and the median results of the DCF. This approach considers all the proxy utilities' results, while mitigating the high and low outliers of those individual results.

B. The Risk Premium Model

Q. PLEASE DESCRIBE THE THEORETICAL BASIS OF THE RPM.

A. The RPM is based on the fundamental financial principle of risk and return; namely, that investors require greater returns for bearing greater risk. The RPM recognizes that common equity capital has greater investment risk than debt capital, as common equity shareholders are behind debt holders in any claim on a company's
assets and earnings. As a result, investors require higher returns from common stocks than from bonds to compensate them for bearing the additional risk.

While it is possible to directly observe bond returns and yields, investors' required common equity returns cannot be directly determined or observed. According to RPM theory, one can estimate a common equity risk premium over bonds (either historically or prospectively) and use that premium to derive a cost rate of common equity. The cost of common equity equals the expected cost rate for long-term debt capital, plus a risk premium over that cost rate, to compensate common shareholders for the added risk of being unsecured and last-in-line for any claim on the corporation's assets and earnings upon liquidation.

Q. PLEASE EXPLAIN HOW YOU DERIVED YOUR INDICATED COST OF COMMON EQUITY BASED ON THE RPM.

A. To derive my indicated cost of common equity under the RPM, I used two risk premium methods. The first method was the PRPM and the second method was a risk premium model using a total market approach. The PRPM estimates the riskreturn relationship directly, while the total market approach indirectly derives a risk premium by using known metrics as a proxy for risk.

1. The Predictive Risk Premium Model

Q. PLEASE EXPLAIN THE PRPM.

A. The PRPM, published in the Journal of Regulatory Economics, ${ }^{12}$ was developed

[^4]from the work of Robert F. Engle, who shared the Nobel Prize in Economics in 2003 "for methods of analyzing economic time series with time-varying volatility ("ARCH")". ${ }^{13}$ Engle found that volatility changes over time and is related from one period to the next, especially in financial markets. Engle discovered that volatility of prices and returns clusters over time and is therefore highly predictable and can be used to predict future levels of risk and risk premiums.

The PRPM estimates the risk-return relationship directly, as the predicted equity risk premium is generated by predicting volatility or risk. The PRPM is not based on an estimate of investor behavior, but rather on an evaluation of the results of that behavior (i.e., the variance of historical equity risk premiums).

The inputs to the model are the historical returns on the common shares of each Utility Proxy Group company minus the historical monthly yield on long-term U.S. Treasury securities through January 2021. Using a generalized form of ARCH, known as GARCH, I calculated each Utility Proxy Group company's projected equity risk premium using Eviews ${ }^{\ominus}$ statistical software. When the GARCH model is applied to the historical return data, it produces a predicted GARCH variance series ${ }^{14}$ and a GARCH coefficient. ${ }^{15}$ Multiplying the predicted monthly variance by the GARCH coefficient and then annualizing it^{16} produces the predicted annual equity risk premium. I then added the forecasted 30-year U.S. Treasury bond yield

[^5]of $2.31 \%^{17}$ to each company's PRPM-derived equity risk premium to arrive at an indicated cost of common equity. The 30 -year U.S. Treasury bond yield is a consensus forecast derived from Blue Chip Financial Forecasts ("Blue Chip"). ${ }^{18}$ The mean PRPM indicated common equity cost rate for the Utility Proxy Group is 9.69%, the median is 9.94%, and the average of the two is 9.82%. Consistent with my reliance on the average of the median and mean results of the DCF models, I relied on the average of the mean and median results of the Utility Proxy Group PRPM to calculate a cost of common equity rate of 9.82%.

Q. PLEASE DESCRIBE YOUR SELECTION OF A RISK-FREE RATE OF RETURN.

A. As shown in Schedules DWD-3 and 4, the risk-free rate adopted for applications of the RPM and CAPM is 2.31%. This risk-free rate is based on the average of the Blue Chip consensus forecast of the expected yields on 30-year U.S. Treasury bonds for the six quarters ending with the second calendar quarter of 2022, and long-term projections for the years 2022 to 2026 and 2027 to 2031.

Q. WHY DO YOU USE THE PROJECTED 30-YEAR TREASURY YIELD IN YOUR ANALYSES?

A. The yield on long-term U.S. Treasury bonds is almost risk-free and its term is consistent with the long-term cost of capital to public utilities measured by the yields on Moody's A2-rated public utility bonds; the long-term investment horizon inherent in utilities' common stocks; and the long-term life of the jurisdictional rate
base to which the allowed fair rate of return (i.e., cost of capital) will be applied. In contrast, short-term U.S. Treasury yields are more volatile and largely a function of Federal Reserve monetary policy.
Q. DID YOU INCLUDE CURRENT INTEREST RATES IN YOUR ANALYSES?
A. Yes. Even though I do not agree with using current interest rates in a rate of return analysis, I recognize that the Commission has stated its preference for the use of current, and not projected, interest rates. ${ }^{19}$ As such, in addition to my normal practice of relying on projected interest rates, I have also presented my ROE analyses based on current interest rates.

2. The Total Market Risk Premium Approach

Q. PLEASE EXPLAIN THE TOTAL MARKET APPROACH RPM.

A. The total market approach RPM adds a prospective public utility bond yield to an average of: 1) an equity risk premium that is derived from a Beta-adjusted total market equity risk premium, 2) an equity risk premium based on the S\&P Utilities Index, and 3) an equity risk premium based on authorized ROEs for gas distribution utilities.

Q. PLEASE EXPLAIN THE BASIS OF THE EXPECTED BOND YIELD OF 3.56\% APPLICABLE TO THE UTILITY PROXY GROUP.

A. The first step in the total market approach RPM analysis is to determine the expected bond yield. Because both ratemaking and the cost of capital, including

19 See, North Carolina Utilities Commission, Docket Nos. W-354, Sub 363, 364, 365, Order Granting Partial Rate Increase and Requiring Customer Notice, at 72.
common equity cost rate, are prospective in nature, a prospective yield on similarlyrated long-term debt is essential. I relied on a consensus forecast of about 50 economists of the expected yield on Aaa-rated corporate bonds for the six calendar quarters ending with the second calendar quarter of 2022, and Blue Chip's longterm projections for 2022 to 2026, and 2027 to 2031. As shown on line 1, page 3 of Schedule DWD-3, the average expected yield on Moody's Aaa-rated corporate bonds is 3.06%. To derive an expected yield on Moody's A2-rated public utility bonds, I made an upward adjustment of 0.50%, which represents a recent spread between Aaa-rated corporate bonds and A2-rated public utility bonds, in order to adjust the expected Aaa-rated corporate bond yield to an equivalent A2-rated public utility bond yield. ${ }^{20}$ Adding that recent 0.50% spread to the expected Aaa-rated corporate bond yield of 3.06% results in an expected A2-rated public utility bond yield of 3.56%.

I then reviewed the average credit rating for the Utility Proxy Group from Moody's to determine if an adjustment to the estimated A2-rated public utility bond was necessary. Since the Utility Proxy Group's average Moody's long-term issuer rating is A3, another adjustment to the expected A2-rated public utility bond is needed to reflect the difference in bond ratings. An upward adjustment of 0.10%, which represents one-third of a recent spread between A2-rated and Baa2-rated public utility bond yields, is necessary to make the A2 prospective bond yield
applicable to an A3-rated public utility bond. ${ }^{21}$ Adding the 0.10% to the 3.56% prospective A2-rated public utility bond yield results in a 3.66% expected bond yield applicable to the Utility Proxy Group.

Table 2: Summary of the Calculation of the Utility Proxy Group Projected Bond Yield ${ }^{22}$

Prospective Yield on Moody's Aaa-Rated Corporate Bonds (Blue Chip)	3.06%
Adjustment to Reflect Yield Spread Between Moody's Aaa- Rated Corporate Bonds and Moody's A2-Rated Utility Bonds	0.50%
Adjustment to Reflect the Utility Proxy Group's Average Moody's Bond Rating of A3	$\underline{0.10 \%}$
Prospective Bond Yield Applicable to the Utility Proxy Group	$\underline{\underline{3.66 \%}}$

To develop the indicated ROE using the total market approach RPM, this prospective bond yield is then added to the average of the three different equity risk premiums described below.

a. The Beta-Derived Risk Premium

Q. PLEASE EXPLAIN HOW THE BETA-DERIVED EQUITY RISK PREMIUM IS DETERMINED.

A. The components of the Beta-derived risk premium model are: 1) an expected market equity risk premium over corporate bonds, and 2) the Beta coefficient. The derivation of the Beta-derived equity risk premium that I applied to the Utility

[^6]Proxy Group is shown on lines 1 through 9, page 8 of Schedule DWD-3. The total Beta-derived equity risk premium I applied is based on an average of three historical market data-based equity risk premiums, two Value Line-based equity risk premiums, and a Bloomberg-based equity risk premium. Each of these is described below.

Q. HOW DID YOU DERIVE A MARKET EQUITY RISK PREMIUM BASED ON LONG-TERM HISTORICAL DATA?

A. To derive a historical market equity risk premium, I used the most recent holding period returns for the large company common stocks from the Stocks, Bonds, Bills, and Inflation ("SBBI") Yearbook 2020 ("SBBI - 2020") ${ }^{23}$ less the average historical yield on Moody's Aaa/Aa-rated corporate bonds for the period 1928 to 2019. Using holding period returns over a very long time is appropriate because it is consistent with the long-term investment horizon presumed by investing in a going concern, i.e., a company expected to operate in perpetuity.

SBBI's long-term arithmetic mean monthly total return rate on large company common stocks was 11.83%, and the long-term arithmetic mean monthly yield on Moody's Aaa/Aa-rated corporate bonds was $6.05 \% .{ }^{24}$ As shown on line 1, page 8 of Schedule DWD-3, subtracting the mean monthly bond yield from the total return on large company stocks results in a long-term historical equity risk premium of 5.78\%.

[^7]I used the arithmetic mean monthly total return rates for the large company stocks and yields (income returns) for the Moody's Aaa/Aa corporate bonds, because they are appropriate for the purpose of estimating the cost of capital as noted in SBBI - 2020. ${ }^{25}$ Using the arithmetic mean return rates and yields is appropriate because historical total returns and equity risk premiums provide insight into the variance and standard deviation of returns needed by investors in estimating future risk when making a current investment. If investors relied on the geometric mean of historical equity risk premiums, they would have no insight into the potential variance of future returns, because the geometric mean relates the change over many periods to a constant rate of change, thereby obviating the year-to-year fluctuations, or variance, which is critical to risk analysis.

Q. PLEASE EXPLAIN THE DERIVATION OF THE REGRESSION-BASED MARKET EQUITY RISK PREMIUM.

A. To derive the regression-based market equity risk premium of 9.30% shown on line 2, page 8 of Schedule DWD-3, I used the same monthly annualized total returns on large company common stocks relative to the monthly annualized yields on Moody's Aaa/Aa-rated corporate bonds as mentioned above. I modeled the relationship between interest rates and the market equity risk premium using the observed monthly market equity risk premium as the dependent variable, and the monthly yield on Moody's Aaa/Aa-rated corporate bonds as the independent variable. I then used a linear Ordinary Least Squares ("OLS") regression, in which
the market equity risk premium is expressed as a function of the Moody's Aaa/Aarated corporate bonds yield:

$$
\mathrm{RP}=\alpha+\beta\left(\mathrm{R}_{\mathrm{Aaa} / \mathrm{Aa}}\right)
$$

Q. PLEASE EXPLAIN THE DERIVATION OF THE PRPM EQUITY RISK PREMIUM.

A. I used the same PRPM approach described above as applied to the Utility Proxy Group to the historical equity risk premium. The inputs to the model are the historical monthly returns on large company common stocks minus the monthly yields on Moody's Aaa/Aa-rated corporate bonds during the period from January 1928 through January 2021. ${ }^{26}$ Using the previously discussed generalized form of ARCH, known as GARCH, the projected equity risk premium is determined using Eviews ${ }^{\oplus}$ statistical software. The resulting PRPM predicted a market equity risk premium of $9.65 \% .{ }^{27}$

Q. PLEASE EXPLAIN THE DERIVATION OF A PROJECTED EQUITY RISK

 PREMIUM BASED ON VALUE LINE DATA FOR YOUR RPM ANALYSIS.A. As noted above, because both ratemaking and the cost of capital are prospective, a prospective market equity risk premium is needed. The derivation of the forecasted or prospective market equity risk premium can be found in note 4 , page 8 of Schedule DWD-3. Consistent with my calculation of the dividend yield component in my DCF analysis, this prospective market equity risk premium is derived from

26 Data from January 1928 to December 2019 is from SBBI - 2020. Data from January 2020 to January 2021 is from Bloomberg.
$27 \quad$ Shown on line 3, page 8 of Schedule DWD-3.
an average of the three- to five-year median market price appreciation potential by Value Line for the 13 weeks ended January 29, 2021, plus an average of the median estimated dividend yield for the common stocks of the 1,700 firms covered in Value Line's Standard Edition. ${ }^{28}$

The average median expected price appreciation is 35%, which translates to a 7.79% annual appreciation, and, when added to the average of Value Line's median expected dividend yields of 2.04%, equates to a forecasted annual total return rate on the market of 9.83%. The forecasted Moody's Aaa-rated corporate bond yield of 3.06% is deducted from the total market return of 9.83%, resulting in an equity risk premium of 6.77%, as shown on line 4 , page 8 of Schedule DWD-3.

Q. PLEASE EXPLAIN THE DERIVATION OF AN EQUITY RISK PREMIUM BASED ON THE S\&P 500 COMPANIES.

A. Using data from Value Line, I calculated an expected total return on the S\&P 500 companies using expected dividend yields and long-term growth estimates as a proxy for capital appreciation. The expected total return for the S\&P 500 is 14.10%. Subtracting the prospective yield on Moody's Aaa-rated corporate bonds of 3.06\% results in an 11.04% projected equity risk premium.

Q. PLEASE EXPLAIN THE DERIVATION OF AN EQUITY RISK PREMIUM BASED ON BLOOMBERG DATA.

A. Using data from Bloomberg, I calculated an expected total return on the S\&P 500 using expected dividend yields and long-term growth estimates as a proxy for
capital appreciation, identical to the method described above. The expected total return for the S\&P 500 is 17.78%. Subtracting the prospective yield on Moody's Aaa-rated corporate bonds of 3.06% results in a 14.72% projected equity risk premium.
Q. WHAT IS YOUR CONCLUSION OF A BETA-DERIVED EQUITY RISK PREMIUM FOR USE IN YOUR RPM ANALYSIS?
A. I gave equal weight to all six equity risk premiums based on each source - historical, Value Line, and Bloomberg - in arriving at a 9.54% equity risk premium.

Table 3: Summary of the Calculation of the Equity Risk Premium Using Total Market Returns ${ }^{29}$

Historical Spread Between Total Returns of Large Stocks and Aaa and Aa2-Rated Corporate Bond Yields (1928-2019)	5.78%
Regression Analysis on Historical Data	9.30%
PRPM Analysis on Historical Data	9.65%
Prospective Equity Risk Premium using Total Market Returns from Value Line Summary \& Index less Projected Aaa Corporate Bond Yields	6.77%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Value Line for the S\&P 500 less Projected Aaa Corporate Bond Yields	11.04%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Bloomberg Professional Services for the S\&P 500 less Projected Aaa Corporate Bond Yields	$\underline{14.72 \%}$
Average	$\underline{\underline{9.54 \%}}$

After calculating the average market equity risk premium of 9.54%, I adjusted it by the Beta coefficient to account for the risk of the Utility Proxy Group. As discussed below, the Beta coefficient is a meaningful measure of prospective relative risk to the market as a whole, and is a logical way to allocate a company's, or proxy
group's, share of the market's total equity risk premium relative to corporate bond yields. As shown on page 1 of Schedule DWD-4, the average of the mean and median Beta coefficient for the Utility Proxy Group is 0.93 . Multiplying the 0.93 average by the market equity risk premium of 9.54% results in a Beta-adjusted equity risk premium for the Utility Proxy Group of 8.87\%.

b. The S\&P Utility Index Derived Risk Premium

Q. HOW DID YOU DERIVE THE EQUITY RISK PREMIUM BASED ON THE S\&P UTILITY INDEX AND MOODY'S A-RATED PUBLIC UTILITY BONDS?

A. I estimated three equity risk premiums based on S\&P Utility Index holding period returns, and two equity risk premiums based on the expected returns of the S\&P Utilities Index, using Value Line and Bloomberg data, respectively. Turning first to the S\&P Utility Index holding period returns, I derived a long-term monthly arithmetic mean equity risk premium between the S\&P Utility Index total returns of 10.74%, and monthly Moody's A-rated public utility bond yields of 6.53% from 1928 to 2019, to arrive at an equity risk premium of $4.21 \% \cdot{ }^{30}$ I then used the same historical data to derive an equity risk premium of 6.83% based on a regression of the monthly equity risk premiums. The final S\&P Utility Index holding period equity risk premium involved applying the PRPM using the historical monthly equity risk premiums from January 1928 to January 2021 to arrive at a PRPMderived equity risk premium of 5.59% for the S\&P Utility Index.

I then derived expected total returns on the S\&P Utilities Index of 10.36\% and 7.67% using data from Value Line and Bloomberg, respectively, and subtracted the prospective Moody's A2-rated public utility bond yield of $3.56 \%{ }^{31}$, which resulted in equity risk premiums of 6.80% and 4.11%, respectively. As with the market equity risk premiums, I averaged each risk premium based on each source (i.e., historical, Value Line, and Bloomberg) to arrive at my utility-specific equity risk premium of 5.51\%.

Table 4: Summary of the Calculation of the Equity Risk Premium Using S\&P Utility Index Holding Returns ${ }^{32}$

Historical Spread Between Total Returns of the S\&P Utilities Index and A2-Rated Utility Bond Yields (1928 - 2019)	4.21%
Regression Analysis on Historical Data	6.83%
PRPM Analysis on Historical Data	5.59%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Value Line for the S\&P Utilities Index less Projected A2 Utility Bond Yields	6.80%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Bloomberg Professional Services for the S\&P Utilities Index less Projected A2 Utility Bond Yields	$\underline{4.11 \%}$
Average	$\underline{\underline{5.51 \%}}$

c. Authorized Return-Derived Equity Risk Premium

Q. HOW DID YOU DERIVE AN EQUITY RISK PREMIUM OF 5.83\% BASED ON AUTHORIZED ROES FOR GAS DISTRIBUTION UTILITIES?

A. The equity risk premium of 5.83% shown on line 3, page 7 of Schedule DWD-3 is the result of a regression analysis based on regulatory awarded ROEs related to the yields on Moody's A-rated public utility bonds. That analysis is shown on page 13

[^8]Piedmont Natural Gas, Inc.
Docket No. G-9, Sub 781
Direct Testimony of Dylan W. D'Ascendis
Page 34 of 61
of Schedule DWD-3. Page 13 of Schedule DWD-3 contains the graphical results of a regression analysis of 797 rate cases for gas distribution utilities which were fully litigated during the period from January 1, 1980 through January 29, 2021. It shows the implicit equity risk premium relative to the yields on A-rated public utility bonds immediately prior to the issuance of each regulatory decision. It is readily discernible that there is an inverse relationship between the yield on A-rated public utility bonds and equity risk premiums. In other words, as interest rates decline, the equity risk premium rises and vice versa, a result consistent with financial literature on the subject. ${ }^{33}$ I used the regression results to estimate the equity risk premium applicable to the projected yield on Moody's A2-rated public utility bonds of 3.56%. Given the expected A-rated utility bond yield of 3.56%, it can be calculated that the indicated equity risk premium applicable to that bond yield is 5.83%, which is shown on line 3 , page 7 of Schedule DWD-3.

Q. WHAT IS YOUR CONCLUSION OF AN EQUITY RISK PREMIUM FOR USE IN YOUR TOTAL MARKET APPROACH RPM ANALYSIS?
 A. The equity risk premium I apply to the Utility Proxy Group is 6.74%, which is the average of the Beta-adjusted equity risk premium for the Utility Proxy Group, the S\&P Utilities Index, and the authorized return utility equity risk premiums of $8.87 \%, 5.51 \%$, and 5.83%, respectively. ${ }^{34}$

[^9]Q. WHAT IS THE INDICATED RPM COMMON EQUITY COST RATE BASED ON THE TOTAL MARKET APPROACH?
A. As shown on line 8, page 3 of Schedule DWD-3, I calculated a common equity cost rate of 10.40% for the Utility Proxy Group based on the total market approach RPM.

Table 5: Summary of the Total Market Return Risk Premium Model ${ }^{35}$

Prospective Moody's A3-Rated Utility Bond Applicable to the Utility Proxy Group	3.66%
Prospective Equity Risk Premium	$\underline{6.74 \%}$
Indicated Cost of Common Equity	$\underline{10.40 \%}$

Q.

WHAT ARE THE RESULTS OF YOUR APPLICATION OF THE PRPM AND THE TOTAL MARKET APPROACH RPM?
A. As shown on page 1 of Schedule DWD-3, the indicated RPM-derived common equity cost rate is 10.11%, which gives equal weight to the PRPM (9.82\%) and the adjusted-market approach results (10.40\%).

C. The Capital Asset Pricing Model

Q. PLEASE EXPLAIN THE THEORETICAL BASIS OF THE CAPM.
A. CAPM theory defines risk as the co-variability of a security's returns with the market's returns as measured by the Beta coefficient (β). A Beta coefficient less than 1.0 indicates lower variability than the market as a whole, while a Beta coefficient greater than 1.0 indicates greater variability than the market.

The CAPM assumes that all non-market or unsystematic risk can be eliminated through diversification. The risk that cannot be eliminated through
diversification is called market, or systematic, risk. In addition, the CAPM presumes that investors only require compensation for systematic risk, which is the result of macroeconomic and other events that affect the returns on all assets. The model is applied by adding a risk-free rate of return to a market risk premium, which is adjusted proportionately to reflect the systematic risk of the individual security relative to the total market as measured by the Beta coefficient. The traditional CAPM model is expressed as:

$$
\text { Where: } \quad \begin{array}{ll}
\mathrm{R}_{\mathrm{s}} & =\mathrm{R}_{\mathrm{f}}+\beta\left(\mathrm{R}_{\mathrm{m}}-\mathrm{Rf}_{\mathrm{f}}\right. \\
\mathrm{R}_{\mathrm{s}} & =\quad \text { Return rate on the common stock } \\
\mathrm{R}_{\mathrm{f}} & =\quad \text { Risk-free rate of return } \\
\mathrm{R}_{\mathrm{m}} & =\quad \text { Return rate on the market as a whole } \\
\beta & =\quad \begin{array}{l}
\text { Adjusted Beta coefficient (volatility of the } \\
\end{array}
\end{array}
$$

Numerous tests of the CAPM have measured the extent to which security returns and Beta coefficients are related as predicted by the CAPM, confirming its validity. The empirical CAPM ("EC") reflects the reality that while the results of these tests support the notion that the Beta coefficient is related to security returns, the empirical Security Market Line ("SML") described by the CAPM formula is not as steeply sloped as the predicted SML. ${ }^{36}$

The ECAPM reflects this empirical reality. Fama and French clearly state regarding Figure 2, below, that " $[t]$ he returns on the low beta portfolios are too high, and the returns on the high beta portfolios are too low." ${ }^{37}$

Figure 2 http://pubs.aeaweb.org/doi/pdfplus/10.1257/0895330042162430
Average Annualized Monthly Return versus Beta for Value Weight Portfolios Formed on Prior Beta, 1928-2003

In addition, Morin observes that while the results of these tests support the notion that Beta is related to security returns, the empirical SML described by the CAPM formula is not as steeply sloped as the predicted SML. Morin states:

With few exceptions, the empirical studies agree that ... low-beta securities earn returns somewhat higher than the CAPM would predict, and high-beta securities earn less than predicted. ${ }^{38}$

Therefore, the empirical evidence suggests that the expected return on a security is related to its risk by the following approximation:

$$
K=R_{F}+x \beta\left(R_{M}-R_{F}\right)+(1-x) \beta\left(R_{M}-R_{F}\right)
$$

where x is a fraction to be determined empirically. The value of x that best explains the observed relationship [is] Return $=0.0829+$ 0.0520β is between 0.25 and 0.30 . If $\mathrm{x}=0.25$, the equation becomes:

$$
K=R_{F}+0.25\left(\mathrm{R}_{\mathrm{M}}-\mathrm{R}_{\mathrm{F}}\right)+0.75 \beta\left(\mathrm{R}_{\mathrm{M}}-\mathrm{R}_{\mathrm{F}}\right)^{39}
$$

Fama and French provide similar support for the ECAPM when they state:
The early tests firmly reject the Sharpe-Lintner version of the CAPM. There is a positive relation between beta and average return, but it is too 'flat.'... The regressions consistently find that the intercept is greater than the average risk-free rate... and the coefficient on beta is less than the average excess market return... This is true in the early tests... as well as in more recent crosssection regressions tests, like Fama and French (1992). ${ }^{40}$

Finally, Fama and French further note:
Confirming earlier evidence, the relation between beta and average return for the ten portfolios is much flatter than the Sharpe-Linter CAPM predicts. The returns on low beta portfolios are too high, and the returns on the high beta portfolios are too low. For example, the predicted return on the portfolio with the lowest beta is 8.3 percent per year; the actual return as 11.1 percent. The predicted return on the portfolio with the t beta is 16.8 percent per year; the actual is 13.7 percent. ${ }^{41}$

Clearly, the justification from Morin, Fama, and French, along with their reviews of other academic research on the CAPM, validate the use of the ECAPM. In view of theory and practical research, I have applied both the traditional CAPM and the ECAPM to the companies in the Utility Proxy Group and averaged the results.

Piedmont Natural Gas, Inc. Docket No. G-9, Sub 781
Direct Testimony of Dylan W. D'Ascendis
Page 39 of 61
Q. WHAT BETA COEFFICIENTS DID YOU USE IN YOUR CAPM ANALYSIS?
A. For the Beta coefficients in my CAPM analysis, I considered two sources: Value Line and Bloomberg Professional Services. While both of those services adjust their calculated (or "raw") Beta coefficients to reflect the tendency of the Beta coefficient to regress to the market mean of 1.00, Value Line calculates the Beta coefficient over a five-year period, while Bloomberg calculates it over a two-year period.

Q. PLEASE DESCRIBE YOUR SELECTION OF A RISK-FREE RATE OF RETURN.

A. As discussed previously, the risk-free rate adopted for both applications of the CAPM is 2.31%. This risk-free rate is based on the average of the Blue Chip consensus forecast of the expected yields on 30-year U.S. Treasury bonds for the six quarters ending with the second calendar quarter of 2022, and long-term projections for the years 2022 to 2026 and 2027 to 2031.
Q. PLEASE EXPLAIN THE ESTIMATION OF THE EXPECTED RISK PREMIUM FOR THE MARKET USED IN YOUR CAPM ANALYSES.
A. The basis of the market risk premium is explained in detail in note 1 on Schedule DWD-4. As discussed above, the market risk premium is derived from an average of three historical data-based market risk premiums, two Value Line data-based market risk premiums, and one Bloomberg data-based market risk premium.

The long-term income return on U.S. Government securities of 5.09% was deducted from the SBBI - 2020 monthly historical total market return of 12.10%, which results in an historical market equity risk premium of $7.01 \% .^{42}$ I applied a linear OLS regression to the monthly annualized historical returns on the S\&P 500 relative to historical yields on long-term U.S. Government securities from SBBI 2020. That regression analysis yielded a market equity risk premium of 9.98%. The PRPM market equity risk premium is 10.76% and is derived using the PRPM relative to the yields on long-term U.S. Treasury securities from January 1926 through January 2021.

The Value Line-derived forecasted total market equity risk premium is derived by deducting the forecasted risk-free rate of 2.31%, discussed above, from the Value Line projected total annual market return of 9.83%, resulting in a forecasted total market equity risk premium of 7.52%. The S\&P 500 projected market equity risk premium using Value Line data is derived by subtracting the projected risk-free rate of 2.31% from the projected total return of the S\&P 500 of 14.10%. The resulting market equity risk premium is 9.66%.

The S\&P 500 projected market equity risk premium using Bloomberg data is derived by subtracting the projected risk-free rate of 2.31% from the projected total return of the S\&P 500 of 17.78%. The resulting market equity risk premium is 15.47%. These six measures, when averaged, result in an average total market equity risk premium of 10.42%.

42 SBBI - 2020, at Appendix A-1 (1) through A-1 (3) and Appendix A-7 (19) through A-7 (21).

Table 6: Summary of the Calculation of the Market Risk Premium for Use in the CAPM ${ }^{43}$

Historical Spread Between Total Returns of Large Stocks and Long-Term Government Bond Yields (1926-2019)	7.01%
Regression Analysis on Historical Data	9.98%
PRPM Analysis on Historical Data	10.76%
Prospective Equity Risk Premium using Total Market Returns from Value Line Summary \& Index less Projected 30-Year Treasury Bond Yields	7.52%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Value Line for the S\&P 500 less Projected 30-Year Treasury Bond Yields	11.79%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Bloomberg Professional Services for the S\&P 500 less Projected 30-Year Treasury Bond Yields	$\underline{15.47 \%}$
Average	$\underline{\underline{10.42 \%}}$

Q. WHAT ARE THE RESULTS OF YOUR APPLICATION OF THE TRADITIONAL AND EMPIRICAL CAPM TO THE UTILITY PROXY GROUP?
A. As shown on page 1 of Schedule DWD-4, the mean result of my CAPM/ECAPM analyses is 12.09%, the median is 12.00%, and the average of the two is 12.05%. Consistent with my reliance on the average of mean and median DCF results discussed above, the indicated common equity cost rate using the CAPM/ECAPM is 12.05%.

D. Common Equity Cost Rates for a Proxy Group of Domestic, NonPrice Regulated Companies Based on the DCF, RPM, and CAPM

Q. WHY DO YOU ALSO CONSIDER A PROXY GROUP OF DOMESTIC, NON-PRICE REGULATED COMPANIES?
A. In the Hope and Bluefield cases, the U.S. Supreme Court did not specify that comparable risk companies had to be utilities. Since the purpose of rate regulation is to be a substitute for marketplace competition, non-price regulated firms operating in the competitive marketplace make an excellent proxy group if they are comparable in total risk to the Utility Proxy Group being used to estimate the cost of common equity. The selection of such domestic, non-price regulated competitive firms theoretically and empirically results in a proxy group which is comparable in total risk to the Utility Proxy Group, since all of these companies compete for capital in the exact same markets.

Q. HOW DID YOU SELECT NON-PRICE REGULATED COMPANIES THAT

 ARE COMPARABLE IN TOTAL RISK TO THE UTILITY PROXY GROUP?A. In order to select a proxy group of domestic, non-price regulated companies similar in total risk to the Utility Proxy Group, I relied on the Beta coefficients and related statistics derived from Value Line regression analyses of weekly market prices over the most recent 260 weeks (i.e., five years). These selection criteria resulted in a proxy group of 47 domestic, non-price regulated firms comparable in total risk to the Utility Proxy Group. Total risk is the sum of non-diversifiable market risk and
diversifiable company-specific risks. The criteria used in selecting the domestic, non-price regulated firms was:
(i) They must be covered by Value Line (Standard Edition);
(ii) They must be domestic, non-price regulated companies, i.e., not utilities;
(iii) Their Beta coefficients must lie within plus or minus two standard deviations of the average unadjusted Beta coefficients of the Utility Proxy Group; and
(iv) The residual standard errors of the Value Line regressions which gave rise to the unadjusted Beta coefficients must lie within plus or minus two standard deviations of the average residual standard error of the Utility Proxy Group.

Beta coefficients measure market, or systematic, risk, which is not diversifiable. The residual standard errors of the regressions measure each firm's company-specific, diversifiable risk. Companies that have similar Beta coefficients and similar residual standard errors resulting from the same regression analyses have similar total investment risk.

Q. HAVE YOU PREPARED A SCHEDULE WHICH SHOWS THE DATA FROM WHICH YOU SELECTED THE 47 DOMESTIC, NON-PRICE REGULATED COMPANIES THAT ARE COMPARABLE IN TOTAL RISK TO THE UTILITY PROXY GROUP?

A. Yes, the basis of my selection and both proxy groups' regression statistics are shown in Schedule DWD-5.

Q. DID YOU CALCULATE COMMON EQUITY COST RATES USING THE DCF MODEL, RPM, AND CAPM FOR THE NON-PRICE REGULATED PROXY GROUP?

A. Yes. Because the DCF model, RPM, and CAPM have been applied in an identical manner as described above, I will not repeat the details of the rationale and application of each model. One exception is in the application of the RPM, where I did not use public utility-specific equity risk premiums, nor did I apply the PRPM to the individual non-price regulated companies.

Page 2 of Schedule DWD-6 derives the constant growth DCF model common equity cost rate. As shown, the indicated common equity cost rate, using the constant growth DCF for the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group, is 11.97%.

Pages 3 through 5 of Schedule DWD-6 contain the data and calculations that support the 12.82% RPM common equity cost rate. As shown on line 1 , page 3 of Schedule DWD-6, the consensus prospective yield on Moody's Baa-rated corporate bonds for the six quarters ending in the second quarter of 2022, and for the years 2022 to 2026 and 2027 to 2031, is $4.04 \% .^{44}$

When the Beta-adjusted risk premium of $8.78 \%{ }^{45}$ relative to the Non-Price Regulated Proxy Group is added to the prospective Baa2-rated corporate bond yield of 4.04%, the indicated RPM common equity cost rate is 12.82%.

[^10]Piedmont Natural Gas, Inc. Docket No. G-9, Sub 781
Direct Testimony of Dylan W. D'Ascendis
Page 45 of 61

Page 6 of Schedule DWD-6 contains the inputs and calculations that support my indicated CAPM/ECAPM common equity cost rate of 12.07%.

Q. HOW IS THE COST RATE OF COMMON EQUITY BASED ON THE NONPRICE REGULATED PROXY GROUP COMPARABLE IN TOTAL RISK TO THE UTILITY PROXY GROUP?
 A. As shown on page 1 of Schedule DWD-6, the results of the common equity models applied to the Non-Price Regulated Proxy Group -- which group is comparable in total risk to the Utility Proxy Group -- are as follows: 11.97\% (DCF), 12.82\% (RPM), and 12.07% (CAPM). The average of the mean and median of these models is 12.18%, which I used as the indicated common equity cost rates for the NonPrice Regulated Proxy Group.

VI. CONCLUSION OF COMMON EQUITY COST RATE BEFORE ADJUSTMENTS

Q. WHAT ARE THE INDICATED COMMON EQUITY COST RATES BEFORE ADJUSTMENTS?

A. By applying multiple cost of common equity models to the Utility Proxy Group and the Non-Price Regulated Proxy Group, the indicated range of common equity cost rates before any relative risk adjustment is between 9.46% and 12.18%. I used multiple cost of common equity models as primary tools in arriving at my recommended common equity cost rate, because no single model is so inherently precise that it can be relied on to the exclusion of other theoretically sound models. Using multiple models adds reliability to the estimated common equity cost rate, with the prudence of using multiple cost of common equity models supported in
both the financial literature and regulatory precedent.
Based on these common equity cost rate results, I conclude that a common equity cost rate between 9.46% and 12.18% is reasonable and appropriate before any adjustments for relative risk differences between Piedmont and the Utility Proxy Group are made. ${ }^{46}$

VII. ADJUSTMENTS TO THE COMMON EQUITY COST RATE

A. Size Adjustment

Q. DOES A COMPANY'S SIZE RELATIVE TO THE UTILITY PROXY GROUP COMPANIES IMPACT ITS BUSINESS RISK?
A. Yes. A smaller size relative to the Utility Proxy Group companies indicates greater relative business risk for a utility because, all else being equal, size has a material bearing on risk.

Size affects business risk because smaller companies generally are less able to cope with significant events that affect sales, revenues and earnings. For example, smaller companies face more risk exposure to business cycles and economic conditions, both nationally and locally. Additionally, the loss of revenues from a few larger customers would have a greater effect on a small company than on a bigger company with a larger, more diverse, customer base.

Consistent with the financial principle of risk and return discussed above, increased relative risk due to small size must be considered in the allowed rate of return on common equity.
Q. HAVE YOU APPLIED A RELATIVE RISK ADJUSTMENT DUE TO PIEDMONT'S SMALL SIZE RELATIVE TO THE UTILITY PROXY GROUP?
A. No. While Piedmont has greater relative risk than the average utility in the Utility Proxy Group as measured by its estimated market capitalization of common equity, the difference is not large enough to merit a relative risk adjustment as shown on Table 7, below.

Table 7: Size as Measured by Market Capitalization for Piedmont and the Utility Proxy Group

	Market Capitalization*	Times Greater than The Company
	(\$ Millions)	
Piedmont	$\$ 4,004.929$	
Utility Proxy Group	$\$ 4,505.920$	1.1 x
*From page 1 of Schedule DWD-7.		

Piedmont's estimated market capitalization for its North Carolina operations was $\$ 4.0$ billion as of January 29, 2021, ${ }^{47}$ compared with the market capitalization of the average company in the Utility Proxy Group of $\$ 4.5$ billion as

[^11]of January 29, 2021. The average company in the Utility Proxy Group has a market capitalization 1.1 times the size of Piedmont's estimated market capitalization.

As a result, even though there is a difference in size between Piedmont and the Utility Proxy Group, in my opinion, it is not necessary to upwardly adjust the range of indicated common equity cost rates between 9.46% to 12.18% to reflect greater risk due to smaller relative size.

B. Flotation Cost Adjustment

Q. WHAT ARE FLOTATION COSTS?

A. Flotation costs are those costs associated with the sale of new issuances of common stock. They include market pressure and the mandatory unavoidable costs of issuance (e.g., underwriting fees and out-of-pocket costs for printing, legal, registration, etc.). For every dollar raised through debt or equity offerings, the Company receives less than one full dollar in financing.

Q. WHY IS IT IMPORTANT TO RECOGNIZE FLOTATION COSTS IN THE

ALLOWED COMMON EQUITY COST RATE?

A. It is important because there is no other mechanism in the ratemaking paradigm through which such costs can be recognized and recovered. Because these costs are real, necessary, and legitimate, recovery of these costs should be permitted. As noted by Morin:

The costs of issuing these securities are just as real as operating and maintenance expenses or costs incurred to build utility plants, and fair regulatory treatment must permit recovery of these costs....

The simple fact of the matter is that common equity capital is not free....[Flotation costs] must be recovered through a rate of return adjustment. ${ }^{48}$

Q. SHOULD FLOTATION COSTS BE RECOGNIZED ONLY IF THERE WAS AN ISSUANCE DURING THE TEST YEAR OR THERE IS AN IMMINENT POST-TEST YEAR ISSUANCE OF ADDITIONAL COMMON STOCK?

A. No. As noted above, there is no mechanism to recapture such costs in the ratemaking paradigm other than an adjustment to the allowed common equity cost rate. Flotation costs are charged to capital accounts and are not expensed on a utility's income statement. As such, flotation costs are analogous to capital investments, albeit negative, reflected on the balance sheet. Recovery of capital investments relates to the expected useful lives of the investment. Since common equity has a very long and indefinite life (assumed to be infinity in the standard regulatory DCF model), flotation costs should be recovered through an adjustment to common equity cost rate, even when there has not been an issuance during the test year, or in the absence of an expected imminent issuance of additional shares of common stock.

Historical flotation costs are a permanent loss of investment to the utility and should be accounted for. When any company, including a utility, issues common stock, flotation costs are incurred for legal, accounting, printing fees and the like. For each dollar of issuing market price, a small percentage is expensed and is permanently unavailable for investment in utility rate base. Since these
expenses are charged to capital accounts and not expensed on the income statement, the only way to restore the full value of that dollar of issuing price with an assumed investor required return of 10% is for the net investment, $\$ 0.95$, to earn more than 10% to net back to the investor a fair return on that dollar. In other words, if a company issues stock at $\$ 1.00$ with 5% in flotation costs, it will net $\$ 0.95$ in investment. Assuming the investor in that stock requires a 10% return on his or her invested $\$ 1.00$ (i.e., a return of $\$ 0.10$), the company needs to earn approximately 10.5% on its invested $\$ 0.95$ to receive a $\$ 0.10$ return.

Q. DO THE COMMON EQUITY COST RATE MODELS YOU HAVE USED ALREADY REFLECT INVESTORS' ANTICIPATION OF FLOTATION COSTS?

A. No. All of these models assume no transaction costs. The literature is quite clear that these costs are not reflected in the market prices paid for common stocks. For example, Brigham and Daves confirm this and provide the methodology utilized to calculate the flotation adjustment. ${ }^{49}$ In addition, Morin confirms the need for such an adjustment even when no new equity issuance is imminent. ${ }^{50}$ Consequently, it
is proper to include a flotation cost adjustment when using cost of common equity models to estimate the common equity cost rate.

Q. HOW DID YOU CALCULATE THE FLOTATION COST ALLOWANCE?

A. I modified the DCF calculation to provide a dividend yield that would reimburse investors for issuance costs in accordance with the method cited in literature by Brigham and Daves, as well as by Morin. The flotation cost adjustment recognizes the actual costs of issuing equity that were incurred by DUK in its last three equity issuances. Based on the issuance costs shown on page 1 of Schedule DWD-8, an adjustment of 0.12% is required to reflect the flotation costs applicable to the Utility Proxy Group.

Q. WHAT IS THE INDICATED COST OF COMMON EQUITY AFTER YOUR COMPANY-SPECIFIC ADJUSTMENTS?

A. Applying the 0.12% flotation cost adjustment to the indicated cost of common equity range of 9.46% to 12.18% results in a Company-specific cost of common equity rate range of 9.58% to 12.30%, which is my recommended common equity cost rate range. Based on that range I recommend a Company-specific cost of common equity rate of 10.25%.

VIII. ECONOMIC CONDITIONS IN NORTH CAROLINA

Q. DID YOU CONSIDER THE ECONOMIC CONDITIONS IN NORTH CAROLINA IN ARRIVING AT YOUR ROE RECOMMENDATION?

A. Yes, I did. As a preliminary matter, I understand and appreciate that the Commission must balance the interests of investors and customers in setting the

Piedmont Natural Gas, Inc.
 Docket No. G-9, Sub 781
 Direct Testimony of Dylan W. D’Ascendis

Page 52 of 61
return on common equity. As the Commission has stated, it "...is and must always be mindful of the North Carolina Supreme Court's command that the Commission's task is to set rates as low as possible consistent with the dictates of the United States and North Carolina Constitutions."51 In that regard, the return should be neither excessive nor confiscatory; it should be the minimum amount needed to meet the Hope and Bluefield Comparable Risk, Capital Attraction, and Financial Integrity standards.

The Commission also has found the role of cost of capital experts is to determine the investor-required return, not to estimate increments or decrements of return in connection with consumers' economic environment:
... adjusting investors' required costs based on factors upon which investors do not base their willingness to invest is an unsupportable theory or concept. The proper way to take into account customer ability to pay is in the Commission's exercise of fixing rates as low as reasonably possible without violating constitutional proscriptions against confiscation of property. This is in accord with the "end result" test of Hope. This the Commission has done. ${ }^{52}$

The North Carolina Supreme Court agreed, and upheld the Commission's Order on Remand. ${ }^{53}$ The North Carolina Supreme Court has also, however, made clear that the Commission "must make findings of fact regarding the impact of

[^12]changing economic conditions on customers when determining the proper ROE for a public utility." ${ }^{\text {5 }}$ In Cooper II, the North Carolina Supreme Court directed the Commission on remand to "make additional findings of fact concerning the impact of changing economic conditions on customers", ${ }^{55}$ which the Commission made in its Order on Remand. ${ }^{56}$ In light of the Cooper II decision and the North Carolina Supreme Court precedent that preceded it, ${ }^{57}$ I appreciate the Commission's need to consider economic conditions in the State. As such, I have undertaken several analyses to provide such a review.

Q. PLEASE SUMMARIZE YOUR ANALYSES AND CONCLUSIONS.

A. In its Order on Remand in Docket No. E-22, Sub 479, the Commission observed that economic conditions in North Carolina were highly correlated with national conditions, such that they were reflected in the analyses used to determine the cost of common equity. ${ }^{58}$ As discussed below, those relationships still hold:

- Although economic conditions in North Carolina declined significantly in the second quarter of 2020 as a result of the COVID-19 pandemic, they improved considerably in the third and fourth quarters. Notably, economic conditions in North Carolina continued to be strongly correlated to the U.S. economy;

[^13]- Unemployment at both the state and county level remains highly correlated with national rates of unemployment;
- Real Gross Domestic Product ("GDP") in North Carolina also remains highly correlated with U.S. real GDP growth; and
- Median household income in North Carolina has grown at a rate consistent with the rest of the U.S. and remains strongly correlated with national levels.

Q. PLEASE NOW DESCRIBE THE SPECIFIC MEASURES OF ECONOMIC CONDITIONS THAT YOU REVIEWED.

A. Turning first to the seasonally adjusted unemployment rate, prior to April 2020, the unemployment rate had fallen substantially in North Carolina and the U.S. since the 2008/2009 financial crisis. Although the unemployment rate in North Carolina exceeded the national rate during and after the 2008/2009 financial crisis, by the latter portion of 2013, the two were largely consistent. As the COVID-19 pandemic hit the U.S., unemployment in North Carolina and across the U.S. spiked in April 2020 as many communities closed non-essential businesses to contain the spread of the COVID-19 virus. Notably, North Carolina's unemployment rate has fared better than the overall U.S., even as both fell considerably by the end of 2020 (see Chart 1, below).

Chart 1: Unemployment Rate (Seasonally Adjusted) ${ }^{59}$

Between 2005 and 2020, the correlation between North Carolina's unemployment rate and the national rate was 96.66%, indicating the two are highly correlated.

Second, I reviewed (seasonally unadjusted) unemployment rates in the counties served by Piedmont. As with the seasonally adjusted statistics described above, the unemployment rate in those counties spiked in April 2020 at 11.58\% (0.92% below the state-wide average), but by November 2020 it had fallen substantially to 6.26%, somewhat above the rate statewide in North Carolina (6.10\%) and below the overall rate in the U.S. (6.40\%). From 2005 through November 2020, the correlation in unemployment rates between the counties served by Piedmont and the U.S., as well as North Carolina, were approximately 93.76% and 98.91%, respectively. In summary, county-level unemployment has
fallen considerably since it recently spiked in April 2020, is similar to the U.S. and statewide unemployment rates, and is highly correlated to state and national unemployment rates.

Chart 2: Seasonally Unadjusted Unemployment Rates ${ }^{60}$

Looking to real Gross Domestic Product growth, there also has been a relatively strong correlation between North Carolina and the national economy (approximately 81.50\%). While the national rate of growth at times outpaced North Carolina between 2010 and 2014, since the first quarter of 2015, North Carolina’s economic growth has been relatively consistent with U.S. economic growth. Moreover, North Carolina's real GDP growth fared better than the overall U.S. in 2020; North Carolina’s real GDP grew faster than the overall U.S. in the first quarter, and did not decline as much as the U.S. economy declined in the second and third quarters.

Chart 3: Real Gross Domestic Product Growth Rate (Year over Year) ${ }^{61}$

As to median household income, the correlation between North Carolina and the U.S. is relatively strong (94.00\% from 2005 through 2019). Since 2009 (that is, the years subsequent to the financial crisis), nominal median household income in North Carolina has grown at a slightly faster pace than the national median income (3.85% vs. 3.27%, respectively; see Chart 4, below). To put household income in perspective, the Missouri Economic Research and Information Center reports that in the second quarter of 2019, North Carolina had the $22^{\text {nd }}$ lowest cost of living index among the 50 states, the District of Columbia, and Puerto Rico. ${ }^{62}$ Chart 4: Median Household Income ${ }^{63}$

Chart 5: United States Income and Consumption ${ }^{64}$

Q. HOW WOULD YOU SUMMARIZE THE ECONOMIC INDICATORS THAT YOU HAVE ANALYZED AND DISCUSSED IN YOUR TESTIMONY?

A. Based on the data presented above, I observe the following:

- Unemployment at both the state and county level remains highly correlated with national rates of unemployment. North Carolina's unemployment rate and the rate in the counties served by Piedmont have fallen significantly since spiking in April 2020.
- The state's real Gross Domestic Product remains highly correlated with national GDP.
- Similarly, since 2005, median household income has grown in North

Carolina and has grown at a rate slightly faster than the national average. Additionally, the overall cost of living in North Carolina also is below the national average. Furthermore, at the national level, income has generally been increasing since the financial crisis.

The U.S. and North Carolina economies both experienced an historically difficult and challenging year as a result of the COVID-19 pandemic; yet the data show that economic conditions have improved significantly. Moreover, although economic conditions remain uncertain, North Carolina and the counties contained within Piedmont's service area have fared better than the rest of the U.S. during the COVID-19 pandemic.
Q. IN YOUR OPINION, IS AN ROE OF 10.25\% FAIR AND REASONABLE TO PIEDMONT, ITS SHAREHOLDERS, AND ITS CUSTOMERS, AND NOT UNDULY BURDENSOME TO PIEDMONT'S CUSTOMERS CONSIDERING THE CHANGING ECONOMIC CONDITIONS?
A. Yes. Based on the factors I have discussed here, I believe that an ROE of 10.25% is fair and reasonable to Piedmont, its shareholders, and its customers in light of the uncertainty surrounding the COVID-19 recovery.

IX. CONCLUSION

Q. WHAT IS YOUR RECOMMENDED OVERALL ROE FOR PIEDMONT?

A. Given the indicated ROE range applicable to the Utility Proxy Group of 9.46% to 12.18% and the Company-specific ROE range of 9.58% to 12.30%, I conclude that an appropriate ROE for the Company is 10.25%.

1 Q. IN YOUR OPINION, IS YOUR PROPOSED ROE OF 10.25\% FAIR AND
2 REASONABLE TO PIEDMONT AND ITS CUSTOMERS?
3 A. Yes, it is.
4 Q. DOES THIS CONCLUDE YOUR DIRECT TESTIMONY?
5 A. Yes, it does.

APPENDIX A

Appendix A - Resume \& Testimony Listing of: Dylan W. D'Ascendis, CRRA, CVA

Summary

Dylan is an experienced consultant and a Certified Rate of Return Analyst (CRRA) and Certified Valuation Analyst (CVA). He has served as a consultant for investor-owned and municipal utilities and authorities for 12 years. Dylan has extensive experience in rate of return analyses, class cost of service, rate design, and valuation for regulated public utilities. He has testified as an expert witness in the subjects of rate of return, cost of service, rate design, and valuation before 30 regulatory commissions in the U.S., one Canadian province, and an American Arbitration Association panel.

He also maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured.

Areas of Specialization

\square	Regulation and Rates	■	Financial Modeling	\square	Rate of Return
\square	Utilities	\square	Valuation	\square	Cost of Service
\square	Mutual Fund Benchmarking	\square	Regulatory Strategy	-	Rate Design
■	Capital Market Risk	\square	Rate Case Support		

Recent Expert Testimony Submission/Appearances

Jurisdiction

- Massachusetts Department of Public Utilities
- New Jersey Board of Public Utilities
- Hawaii Public Utilities Commission
- South Carolina Public Service Commission
- American Arbitration Association

Topic

Rate of Return
Rate of Return
Cost of Service, Rate Design
Return on Common Equity
Valuation

Recent Assignments

- Provided expert testimony on the cost of capital for ratemaking purposes before numerous state utility regulatory agencies
- Maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured
- Sponsored valuation testimony for a large municipal water company in front of an American Arbitration Association Board to justify the reasonability of their lease payments to the City
- Co-authored a valuation report on behalf of a large investor-owned utility company in response to a new state regulation which allowed the appraised value of acquired assets into rate base

Recent Publications and Speeches

- Co-Author of: "Decoupling, Risk Impacts and the Cost of Capital", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. The Electricity Journal, March, 2020.
- Co-Author of: "Decoupling Impact and Public Utility Conservation Investment", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. Energy Policy Journal, 130 (2019), 311-319.
- "Establishing Alternative Proxy Groups", before the Society of Utility and Regulatory Financial Analysts: 51st Financial Forum, April 4, 2019, New Orleans, LA.
- "Past is Prologue: Future Test Year", Presentation before the National Association of Water Companies 2017 Southeast Water Infrastructure Summit, May 2, 2017, Savannah, GA.
- Co-author of: "Comparative Evaluation of the Predictive Risk Premium Model ${ }^{\top \mathrm{TM}}$, the Discounted Cash Flow Model and the Capital Asset Pricing Model", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University, Pauline M. Ahern, and Frank J. Hanley, The Electricity Journal, May, 2013.
- "Decoupling: Impact on the Risk and Cost of Common Equity of Public Utility Stocks", before the Society of Utility and Regulatory Financial Analysts: 45th Financial Forum, April 17-18, 2013, Indianapolis, IN.

KyPSC Case No. 2021-00190 STAFF-DR-03-010(a) Attachment

Page 66 of 117

Appendix A - Resume \& Testimony Listing of: Dylan W. D'Ascendis, CRRA, CVA

Director

SpONSOR	Date	CASE/APPLICANT	Docket No.	SubJect
Regulatory Commission of Alaska				
Alaska Power Company	09/20	Alaska Power Company; Goat Lake Hydro, Inc.; BBL Hydro, Inc.	Tariff Nos. TA886-2; TA6- 521; TA4-573	Capital Structure
Alaska Power Company	07/16	Alaska Power Company	Docket No. TA857-2	Rate of Return
Alberta Utilities Commission				
AltaLink, L.P., and EPCOR Distribution \& Transmission, Inc.	01/20	AltaLink, L.P., and EPCOR Distribution \& Transmission, Inc.	2021 Generic Cost of Capital, Proceeding ID. 24110	Rate of Return
Arizona Corporation Commission				
EPCOR Water Arizona, Inc.	06/20	EPCOR Water Arizona, Inc.	Docket No. WS-01303A-200177	Rate of Return
Arizona Water Company	12/19	Arizona Water Company Western Group	Docket No. W-01445A-19- 0278	Rate of Return
Arizona Water Company	08/18	Arizona Water Company Northern Group	Docket No. W-01445A-180164	Rate of Return
Colorado Public Utilities Commission				
Summit Utilities, Inc.	04/18	Colorado Natural Gas Company	Docket No. 18AL-0305G	Rate of Return
Atmos Energy Corporation	06/17	Atmos Energy Corporation	Docket No. 17AL-0429G	Rate of Return
Delaware Public Service Commission				
Delmarva Power \& Light Co.	11/20	Delmarva Power \& Light Co.	Docket No. 20-0149 (Electric)	Return on Equity
Delmarva Power \& Light Co.	10/20	Delmarva Power \& Light Co.	Docket No. 20-0150 (Gas)	Return on Equity
Tidewater Utilities, Inc.	11/13	Tidewater Utilities, Inc.	Docket No. 13-466	Capital Structure
Public Service Commission of the District of Columbia				
Washington Gas Light Company	09/20	Washington Gas Light Company	Formal Case No. 1162	Rate of Return
Federal Energy Regulatory Commission				
LS Power Grid California, LLC	10/20	LS Power Grid California, LLC	Docket No. ER21-195-000	Rate of Return
Florida Public Service Commission				
Peoples Gas System	09/20	Peoples Gas System	Docket No. 20200051-GU	Rate of Return
Utilities, Inc. of Florida	06/20	Utilities, Inc. of Florida	Docket No. 20200139-WS	Rate of Return
Hawaii Public Utilities Commission				
Launiupoko Irrigation Company, Inc.	12/20	Launiupoko Irrigation Company, Inc.	Docket No. 2020-0217 I Transferred to 2020-0089	Capital Structure
Lanai Water Company, Inc.	12/19	Lanai Water Company, Inc.	Docket No. 2019-0386	Cost of Service / Rate Design
Manele Water Resources, LLC	08/19	Manele Water Resources, LLC	Docket No. 2019-0311	Cost of Service / Rate Design
Kaupulehu Water Company	02/18	Kaupulehu Water Company	Docket No. 2016-0363	Rate of Return
Aqua Engineers, LLC	05/17	Puhi Sewer \& Water Company	Docket No. 2017-0118	Cost of Service / Rate Design
Hawaii Resources, Inc.	09/16	Laie Water Company	Docket No. 2016-0229	Cost of Service / Rate Design
Illinois Commerce Commission				
Ameren Illinois Company d/b/a Ameren Illinois	07/20	Ameren Illinois Company d/b/a Ameren Illinois	Docket No. 20-0308	Return on Equity
Utility Services of Illinois, Inc.	11/17	Utility Services of Illinois, Inc.	Docket No. 17-1106	Cost of Service / Rate Design

KyPSC Case No. 2021-00190 STAFF-DR-03-010(a) Attachment

Page 67 of 117

Appendix A - Resume \& Testimony Listing of: Dylan W. D'Ascendis, CRRA, CVA

Director

SPONSOR	Date	CASE/APPLICANT	Docket No.	Subject
Aqua Illinois, Inc.	04/17	Aqua Illinois, Inc.	Docket No. 17-0259	Rate of Return
Utility Services of Illinois, Inc.	04/15	Utility Services of Illinois, Inc.	Docket No. 14-0741	Rate of Return
Indiana Utility Regulatory Commission				
Aqua Indiana, Inc.	03/16	Aqua Indiana, Inc. Aboite Wastewater Division	Docket No. 44752	Rate of Return
Twin Lakes, Utilities, Inc.	08/13	Twin Lakes, Utilities, Inc.	Docket No. 44388	Rate of Return
Kansas Corporation Commission				
Atmos Energy	07/19	Atmos Energy	19-ATMG-525-RTS	Rate of Return
Kentucky Public Service Commission				
Bluegrass Water Utility Operating Company	10/20	Bluegrass Water Utility Operating Company	2020-00290	Return on Equity
Louisiana Public Service Commission				
Southwestern Electric Power Company	12/20	Southwestern Electric Power Company	Docket No. U-35441	Return on Equity
Atmos Energy	04/20	Atmos Energy	Docket No. U-35535	Rate of Return
Louisiana Water Service, Inc.	06/13	Louisiana Water Service, Inc.	Docket No. U-32848	Rate of Return
Maryland Public Service Commission				
Washington Gas Light Company	08/20	Washington Gas Light Company	Case No. 9651	Rate of Return
FirstEnergy, Inc.	08/18	Potomac Edison Company	Case No. 9490	Rate of Return
Massachusetts Department of Public Utilities				
Unitil Corporation	12/19	Fitchburg Gas \& Electric Co. (Elec.)	D.P.U. 19-130	Rate of Return
Unitil Corporation	12/19	Fitchburg Gas \& Electric Co. (Gas)	D.P.U. 19-131	Rate of Return
Liberty Utilities	07/15	Liberty Utilities d/b/a New England Natural Gas Company	Docket No. 15-75	Rate of Return
Minnesota Public Utilities Commission				
Northern States Power Company	11/20	Northern States Power Company	Docket No. E002/GR-20-723	Rate of Return
Mississippi Public Service Commission				
Atmos Energy	03/19	Atmos Energy	Docket No. 2015-UN-049	Capital Structure
Atmos Energy	07/18	Atmos Energy	Docket No. 2015-UN-049	Capital Structure
Missouri Public Service Commission				
Spire Missouri, Inc.	12/20	Spire Missouri, Inc.	Case No. GR-2021-0108	Return on Equity
Indian Hills Utility Operating Company, Inc.	10/17	Indian Hills Utility Operating Company, Inc.	Case No. SR-2017-0259	Rate of Return
Raccoon Creek Utility Operating Company, Inc.	09/16	Raccoon Creek Utility Operating Company, Inc.	Docket No. SR-2016-0202	Rate of Return
Public Utilities Commission of Nevada				
Southwest Gas Corporation	08/20	Southwest Gas Corporation	Docket No. 20-02023	Return on Equity
New Hampshire Public Utilities Commission				
Aquarion Water Company of New Hampshire, Inc.	12/20	Aquarion Water Company of New Hampshire, Inc.	Docket No. DW 20-184	Rate of Return
New Jersey Board of Public Utilities				
Atlantic City Electric Company	12/20	Atlantic City Electric Company	Docket No. ER20120746	Return on Equity

KyPSC Case No. 2021-00190 STAFF-DR-03-010(a) Attachment

Page 68 of 117

Appendix A - Resume \& Testimony Listing of: Dylan W. D'Ascendis, CRRA, CVA

Director

SpONSOR	Date	CaselApplicant	Docket No.	Subject
FirstEnergy	02/20	Jersey Central Power \& Light Co.	Docket No. ER20020146	Rate of Return
Aqua New Jersey, Inc.	12/18	Aqua New Jersey, Inc.	Docket No. WR18121351	Rate of Return
Middlesex Water Company	10/17	Middlesex Water Company	Docket No. WR17101049	Rate of Return
Middlesex Water Company	03/15	Middlesex Water Company	Docket No. WR15030391	Rate of Return
The Atlantic City Sewerage Company	10/14	The Atlantic City Sewerage Company	Docket No. WR14101263	Cost of Service / Rate Design
Middlesex Water Company	11/13	Middlesex Water Company	Docket No. WR1311059	Capital Structure
New Mexico Public Regulation Commission				
Southwestern Public Service Company	01/21	Southwestern Public Service Company	Case No. 20-00238-UT	Return on Equity
North Carolina Utilities Commission				
Duke Energy Carolinas, LLC	07/20	Duke Energy Carolinas, LLC	Docket No. E-7, Sub 1214	Return on Equity
Duke Energy Progress, LLC	07/20	Duke Energy Progress, LLC	Docket No. E-2, Sub 1219	Return on Equity
Aqua North Carolina, Inc.	12/19	Aqua North Carolina, Inc.	Docket No. W-218 Sub 526	Rate of Return
Carolina Water Service, Inc.	06/19	Carolina Water Service, Inc.	Docket No. W-354 Sub 364	Rate of Return
Carolina Water Service, Inc.	09/18	Carolina Water Service, Inc.	Docket No. W-354 Sub 360	Rate of Return
Aqua North Carolina, Inc.	07/18	Aqua North Carolina, Inc.	Docket No. W-218 Sub 497	Rate of Return
North Dakota Public Service Commission				
Northern States Power Company	11/20	Northern States Power Company	Case No. PU-20-441	Rate of Return
Public Utilities Commission of Ohio				
Aqua Ohio, Inc.	05/16	Aqua Ohio, Inc.	Docket No. 16-0907-WW-AIR	Rate of Return
Pennsylvania Public Utility Commission				
Valley Energy, Inc.	07/19	C\&T Enterprises	Docket No. R-2019-3008209	Rate of Return
Wellsboro Electric Company	07/19	C\&T Enterprises	Docket No. R-2019-3008208	Rate of Return
Citizens' Electric Company of Lewisburg	07/19	C\&T Enterprises	Docket No. R-2019-3008212	Rate of Return
Steelton Borough Authority	01/19	Steelton Borough Authority	Docket No. A-2019-3006880	Valuation
Mahoning Township, PA	08/18	Mahoning Township, PA	Docket No. A-2018-3003519	Valuation
SUEZ Water Pennsylvania Inc.	04/18	SUEZ Water Pennsylvania Inc.	Docket No. R-2018-000834	Rate of Return
Columbia Water Company	09/17	Columbia Water Company	Docket No. R-2017-2598203	Rate of Return
Veolia Energy Philadelphia, Inc.	06/17	Veolia Energy Philadelphia, Inc.	Docket No. R-2017-2593142	Rate of Return
Emporium Water Company	07/14	Emporium Water Company	Docket No. R-2014-2402324	Rate of Return
Columbia Water Company	07/13	Columbia Water Company	Docket No. R-2013-2360798	Rate of Return
Penn Estates Utilities, Inc.	12/11	Penn Estates, Utilities, Inc.	Docket No. R-2011-2255159	Capital Structure / Long-Term Debt Cost Rate
South Carolina Public Service Commission				
Blue Granite Water Co.	12/19	Blue Granite Water Company	Docket No. 2019-292-WS	Rate of Return
Carolina Water Service, Inc.	02/18	Carolina Water Service, Inc.	Docket No. 2017-292-WS	Rate of Return
Carolina Water Service, Inc.	06/15	Carolina Water Service, Inc.	Docket No. 2015-199-WS	Rate of Return
Carolina Water Service, Inc.	11/13	Carolina Water Service, Inc.	Docket No. 2013-275-WS	Rate of Return
United Utility Companies, Inc.	09/13	United Utility Companies, Inc.	Docket No. 2013-199-WS	Rate of Return

Appendix A - Resume \& Testimony Listing of: Dylan W. D'Ascendis, CRRA, CVA

Director

Sponsor	Date	CASEIAPPLICANT	Docket No.	Subject
Utility Services of South Carolina, Inc.	09/13	Utility Services of South Carolina, Inc.	Docket No. 2013-201-WS	Rate of Return
Tega Cay Water Services, Inc.	11/12	Tega Cay Water Services, Inc.	Docket No. 2012-177-WS	Capital Structure
Tennessee Public Utility Commission				
Piedmont Natural Gas Company	07/20	Piedmont Natural Gas Company	Docket No. 20-00086	Return on Equity
Public Utility Commission of Texas				
Southwestern Public Service Company	02/21	Southwestern Public Service Company	Docket No. 51802	Return on Equity
Southwestern Electric Power Company	10/20	Southwestern Electric Power Company	Docket No. 51415	Rate of Return
Virginia State Corporation Commission				
Massanutten Public Service Corporation	12/20	Massanutten Public Service Corporation	Case No. PUE-2020-00039	Return on Equity
Aqua Virginia, Inc.	07/20	Aqua Virginia, Inc.	PUR-2020-00106	Rate of Return
WGL Holdings, Inc.	07/18	Washington Gas Light Company	PUR-2018-00080	Rate of Return
Atmos Energy Corporation	05/18	Atmos Energy Corporation	PUR-2018-00014	Rate of Return
Aqua Virginia, Inc.	07/17	Aqua Virginia, Inc.	PUR-2017-00082	Rate of Return
Massanutten Public Service Corp.	08/14	Massanutten Public Service Corp.	PUE-2014-00035	Rate of Return / Rate Design

Piedmont Natural Gas Company, Inc.
Table of Contents
Supporting Schedules Accompanying the Direct Testimony of Dylan W. D'Ascendis, CRRA, CVA

	Schedule
Summary of Cost of Capital	DWD-1
Indicated Common Equity Cost Rate Using the Discounted	
Cash Flow Model	
Indicated Common Equity Cost Rate Using the Risk Premium Model	
Indicated Common Equity Cost Rate Using the Capital Asset	
\quad Pricing Model	DWD-2
Basis of selection for the Non-Price Regulated Companies	
Comparable in Total Risk to the Utility Proxy Group	
Cost of Common Equity Models Applied to the	
Non-Price Regulated Proxy Group	DWD-4
Estimated Market Capitalization for Piedmont	
Natural Gas Company and the Utility Proxy Group	DWD-5
Derivation of the Flotation Cost Adjustment to the Cost of Common Equity	DWD-8

			Schedule DWD-1 Page 1 of 1
	Piedmont Natural Gas C Brief Summary of Common Eq		
$\underline{\text { Line No. }}$	Principal Methods	Proxy Group of Eight Natural Gas Distribution Companies	Results using Current Interest Rates
1.	Discounted Cash Flow Model (DCF) (1)	9.46\%	9.46\%
2.	Risk Premium Model (RPM) (2)	10.11\%	9.64\%
3.	Capital Asset Pricing Model (CAPM) (3)	12.05\%	11.83\%
4.	Market Models Applied to Comparable Risk, Non-Price Regulated Companies (4)	12.18\%	12.03\%
5.	Indicated Range of Common Equity Cost Rates before Adjustment for Size Risk	9.46\%-12.18\%	9.46\%-12.03\%
6.	Size Risk Adjustment (5)	0.00\%	0.00\%
7	Flotation Cost Adjustment (6)	0.12\%	0.12\%
8.	Recommended Range of Common Equity Cost Rates after Adjustment for Size Risk	9.58\%-12.30\%	9.58\%-12.15\%
9.	Recommended Cost of Common Equity Cost Rates after Adjustment for Size Risk	10.25\%	

Notes: (1) From Schedule DWD-2.
(2) From page 1 of Schedule DWD-3.
(3) From page 1 of Schedule DWD-4.
(4) From page 1 of Schedule DWD-5.
(5) As discussed in the accompanying Direct Testimony, a size adjustment not applicable in this proceeding.
(6) From Schedule DWD-8.

Proxy Group of Eight Natural Gas
Distribution Companies
Atmos Energy Corporation
New Jersey Resources Corporation
NiSource, Inc.
Northwest Natural Holding Company
ONE Gas, Inc.
South Jersey Industries, Inc.
Southwest Gas Holdings, Inc.
Spire Inc.

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Average Dividend Yield (1)	Value Line Projected Five Year Growth in EPS (2)	Zack's Five Year Projected Growth Rate in EPS	Yahoo! Finance Projected Five Year Growth in EPS	Bloomberg Projected Five Year Growth in EPS	Average Projected Five Year Growth in EPS (3)	Adjusted Dividend Yield (4)	Indicated Common Equity Cost Rate (5)
2.64 \%	7.00 \%	7.10 \%	6.77 \%	7.22 \%	7.02 \%	2.73 \%	9.76 \%
3.80	2.00	6.00	6.00	6.63	5.16	3.90	9.06
3.81	13.00	5.60	1.65	5.92	6.54	3.93	10.48
4.10	NMF	3.10	3.10	2.96	3.05	4.16	7.22
3.05	6.50	6.00	5.00	5.67	5.79	3.14	8.93
5.42	12.50	24.50	24.50	13.75	18.81	5.93	24.74 (6)
3.59	9.00	5.00	4.00	4.50	5.63	3.69	9.32
4.13	5.50	16.50	5.37	5.00	8.09	4.30	12.39
						Average	9.59 \%
						Median	9.32 \%
					Average of Mean and Median		9.46 \%

$\mathrm{NA}=$ Not Available

Notes:
(1) Indicated dividend at $01 / 29 / 2021$ divided by the average closing price of the last 60 trading days ending $01 / 29 / 2021$ for each company.
(2) From pages 2 through 9 of this Schedule.
(3) Average of columns 2 through 5 excluding negative growth rates.
(4) This reflects a growth rate component equal to one-half the conclusion of growth rate (from column 6) x column 1 to reflect the periodic payment of dividends (Gordon Model) as opposed to the continuous payment. Thus, for Atmos Energy Corporation, $2.64 \% \times(1+(1 / 2 \times 7.02 \%))=2.73 \%$.
(5) Column $6+$ column 7.
(6) South Jersey Industries, Inc.'s DCF results were excluded from the final average and median as they were more than 2 standard deviations above the proxy group's mean.

Value Line Investment Survey
www.zacks.com Downloaded on 01/29/2021
www.yahoo.com Downloaded on 01/29/2021

Schedule DWD-2
Page 2 of 9

CURRENT POSITION (\$MILL.)	ON 2018	2019	6/30/20
Cash Assets	13.8	24.5	208.1
Other	465.1	433.5	394.1
Current Assets	478.9	458.0	602.2
Accts Payable	217.3	265.0	200.1
Debt Due	1150.8	464.9	. 2
Other	547.0	479.5	502.4
Current Liab.	1915.1	1209.4	702.7
Fix. Chg. Cov.	926\%	990\%	980\%
ANNUAL RATES P of change (per sh)	Past 10 Yrs.	$\begin{array}{ll} \text { Past } & \text { Est } \\ 5 \text { Yrs. } \end{array}$	$\begin{aligned} & \text { t'd '17-'19 } \\ & 0 \text { '23-'25 } \end{aligned}$
Revenues	-9.0\%	-9.5\%	6.5\%
"Cash Flow"	5.5\%	7.0\%	5.5\%
Earnings	7.5\%	9.5\%	7.0\%
Dividends	4.0\%	6.5\%	7.5\%
Book Value	6.5\%	8.5\%	7.5\%

Fiscal Year Ends	QUARTERLY REVENUES (\$ mill.) ${ }^{\mathrm{A}}$ Dec 31 Mar 31 Jun 30 Sep 30				$\begin{aligned} & \text { Full } \\ & \text { Fiscal } \\ & \text { Year } \end{aligned}$
2017	780.2	988.2	526.5	464.8	2759.7
2018	889.2	1219.4	562.2	444.7	3115.5
2019	877.8	1094.6	485.7	443.7	2901.8
2020	875.6	977.6	493.0	474.9	2821.1
2021	890	1050	540	485	2965
Fiscal Year Ends	EARNINGS PER SHARE A B E				FullFiscal Year
	Dec. 31	Mar. 31	Jun. 30	Sep. 30	
2017	1.08	1.52	67	. 34	3.60
2018	1.40	1.57	64	. 41	4.00
2019	1.38	1.82	. 68	. 49	4.35
2020	1.47	1.95	. 79	. 53	4.72
2021	1.54	2.06	. 83	. 57	500
Calendar	QUARTERLY DIVIDENDS PAID ${ }^{\text {c. }}$				
	Mar. 31	Jun. 30	Sep. 30	Dec. 31	Year
16	. 42	42	42	45	1.71
2017	. 45	. 45	45	. 485	1.84
2018	485	. 485	485	. 525	1.98
2019	525	525	525	. 575	2.15
2020	575	575	575	625	

BUSINESS: Atmos Energy Corporation is engaged primarily in the distribution and sale of natural gas to over three million customers through six regulated natural gas utility operations: Louisiana Division, West Texas Division, Mid-Tex Division, Mississippi Division, Colorado-Kansas Division, and Kentucky/Mid-States Division. Gas sales breakdown for fiscal 2019: 66\%, residential; 27%, commer-
We expect another decent profit advance for Atmos Energy Corporation in fiscal 2021. (The year started on October 1st.) The natural gas distribution unit, which generates the lion's share of total revenues, might well enjoy higher consumption levels, assuming that temperatures across the service areas are generally favorable. Furthermore, there ought to be a respectable showing from the pipeline and storage division. If there are no significant coronavirus-related setbacks, consolidated share net stands to increase around 6%, to $\$ 5.00$, compared to last year's figure of $\$ 4.72$. Regarding fiscal 2022, we believe the company's bottom line can rise at a similar percentage rate, to $\$ 5.30$ a share, as operating margins expand further.
Prospects out to mid-decade are solid, in our opinion. Atmos ranks as one of the country's largest natural gas-only distributors, boasting more than three million customers across several states, including Texas, Louisiana, and Mississippi. Moreover, we think the pipeline and storage unit has healthy overall growth op-
cial; 5%, industrial; and 2% other. The company sold Atmos Energy Marketing, $1 / 17$. Officers and directors own approximately 1.4% of common stock (12/19 Proxy). President and Chief Executive Officer: Kevin Akers. Incorporated: Texas. Address: Three Lincoln Centre, Suite 1800, 5430 LBJ Freeway, Dallas, Texas 75240. Telephone: 972-934-9227. Internet: www.atmosenergy.com.
the most-active drilling regions in the world. Finally, corporate finances are in strong shape. In the company's present configuration, annual earnings increases may be between 5% and 7% during the 2023-2025 horizon.
The quarterly common stock dividend was raised 8.7%, to $\$ 0.625$ a share. What's more, our 3- to 5 -year projections show that additional steady hikes in the distribution may occur. The payout ratio over that span should be in the vicinity of 50%, which seems manageable. However, the dividend yield is not spectacular relative to the average of Value Line's Natural Gas Utility Industry group.
These shares ought to draw the attention of various types of investors. The Timeliness rank resides at 1 (Highest). Also, capital gains potential in the 18month period is appealing. Appreciation possibilities out to mid-decade are decent, as well. Consider, too, the stock's defensive characteristics, indicated by the 1 (Highest) rank for Safety, good Price Stability score (i.e., 95 out of 100), and lower-thanmarket Beta coefficient.
Frederick L. Harris, III November 27, 2020

| (A) Fiscal year ends Sept. 30th. (B) Diluted | '17, 136. Next egs. rpt. due early Feb. | (D) In millions. |
| :--- | :--- | :--- | :--- | :--- | shrs. Excl. nonrec. gains (IOSS): 10, $5 ¢$; 11, (C) Dividends historically paid in early March, (E) Qtrs may not add due to change in shrs (1¢); 18, \$1.43; 3Q'20, 17¢. Excludes discon- June, Sept., and Dec. EDiv. reinvestment plan. outstanding.

tinued operations: '11, 10¢; '12, 27c; '13, 14¢; \mid Direct stock purchase plan avail.
© 2020 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind. of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication senice. No part

KyPSC Case No. 2021-00190 STAFF-DR-03-010(a) Attachment Page 76 of 117

Schedule DWD-2
Page 3 of 9

[^14]Schedule DWD-2
Page 4 of 9

NISOURCE INC. NYSE-N								$\begin{aligned} & \text { RECENT } \\ & \text { PRICE } \end{aligned}$	24.6	$\begin{aligned} & \text { P/E } \\ & \text { RATIO 18.4 (} \left.\begin{array}{l} \text { Trailing: } 17.2 \\ \text { Median: } 21.0 \end{array}\right) \end{aligned}$				$\begin{aligned} & \text { RELATIVE } 0.88 \\ & \text { PIE RATIO } 0.88 \end{aligned}$		$\begin{array}{\|l\|l\|} \hline \text { DIV'D } \\ \text { YLD } \end{array}$	3.4%		$\begin{aligned} & \text { VALUE } \\ & \text { LINE } \end{aligned}$					
TIMELINESS $\mathbf{3}$ Lowered $45 / 1 / 19$ SAFETY $\mathbf{2}$ Raised 1112919 TECHNCAL 5 Lowered $1127 / 20$ BETA .85 (1.00				High:	$\begin{array}{r}15.8 \\ 7.8 \\ \hline\end{array}$	18.0 14.1	24.0 17.7	26.2 22.3	33.5 24.8	44.9 32.1	49.2 16.0	26.9 19.0	$\begin{aligned} & 27.8 \\ & 21.7 \end{aligned}$	$\begin{aligned} & 28.1 \\ & 22.4 \end{aligned}$	$\begin{aligned} & 30.7 \\ & 24.7 \end{aligned}$	$\begin{aligned} & 30.5 \\ & 19.6 \end{aligned}$			$\begin{aligned} & \text { Target Pric } \\ & 2023 \mid 202 \end{aligned}$	$\begin{aligned} & \text { lange } \\ & 0025 \end{aligned}$				
				```LEGENDS \(0.50 \times\) Dividends \(p\) sh divided by Interest Rate Relative P Price Strength Options: Yes Shaded area indicates recession```																				
																50								
18-Month Target Price Range Low-High Midpoint (\% to Mid) \$18-\$39 \$29 (15\%)											, ${ }^{\prime \prime}$									40				
																				30				
									荷曲											25				
																Tा!				20				
																								15
Institutional Decisions															$\because \cdots$									
	402019	102220	20220	Percen shares traded																				
to Buy	255	214	212		\|	"	l																	
to Sell Hld's(000)	203 347952	$\begin{array}{r} 230 \\ 345200 \end{array}$	$\begin{array}{r} 218 \\ 342381 \end{array}$																					
2004	2005	2006	2007	2008	2009	2011	2012	2013	2014		2015	2016	2017	2018	2019	2020	2021	© VALUE LINE PUB. LLC		23-25				
24.63	28.97	27.37	28.96	32.36	24.02	22.99	21.33	16.31	18.04	20.47	14.58	13.90	14.46	13.74	13.63	13.05	14.05			17.20				
3.47	3.14	3.18	3.20	3.32	2.96	3.19	2.98	3.13	3.41	3.60	2.27	2.71	2.07	2.82	3.03	3.10	3.25	"Cash	low" per sh	4.10				
1.62	1.08	1.14	1.14	1.34	. 84	1.06	1.05	1.37	1.57	1.67	63	1.00	. 39	1.30	1.32	1.30	1.40	Earning	per sh ${ }^{\text {A }}$	2.05				
. 92	. 92	. 92	. 92	. 92	. 92	. 92	92	. 94	. 98	1.02	. 83	. 64	. 70	. 78	. 80	. 86	2	Div'd	cl'd per sh ${ }^{\text {B }}$	1.16				
1.91	2.17	2.33	2.88	3.54	2.81	2.88	3.99	4.83	5.99	6.42	4.26	4.57	5.03	4.88	4.72	4.70	4.70	Cap'IS	ending per sh	4.70				
17.69	18.09	18.32	18.52	17.24	17.54	17.63	17.71	17.90	18.77	19.54	12.04	12.60	12.82	13.08	13.36	13.75	14.20	Book V	lue per sh ${ }^{\text {c }}$	16.20				
270.63	272.62	273.65	274.18	274.26	276.79	279.30	282.18	310.28	313.68	316.04	319.11	323.16	337.02	372.36	382.14	383.00	384.00	Comm	Shs Outst'g ${ }^{\text {D }}$	385.00				
13.0	21.4	19.2	18.8	12.1	14.3	15.3	19.4	17.9	18.9	22.7	37.3	23.2	NMF	19.3	21.2	Bold figures are Value Line estimates		Avg Ann'I P/E Ratio Relative P/E Ratio Avg Ann'I Div'd Yield		16.0				
. 69	1.14	1.04	1.00	. 73	. 95	. 97	1.22	1.14	1.06	1.19	1.88	1.22	NMF	1.04	1.15			. 90						
4.4\%	4.0\%	4.2\%	4.3\%	5.7\%	7.6\%	5.7\%	4.5\%	3.8\%	3.3\%	2.7\%	3.5\%	2.8\%	2.8\%	3.1\%	2.9\%			3.5\%						
CAPITAL STRUCTURE as of 9/30/20 Total Debt $\$ 10618.5$ mill. Due in 5 Yrs $\$ 2196$ mill. LT Debt $\$ 9208.9$ mill. LT Interest $\$ 379$ mill. (Interest cov. earned: 2.2x) ( $63 \%$ of Cap'I)						$\begin{array}{r} 6422.0 \\ 294.6 \\ \hline \end{array}$	$\begin{array}{r} 6019.1 \\ 303.8 \end{array}$	$\begin{array}{\|r} 5061.2 \\ 410.6 \\ \hline \end{array}$	$\begin{array}{r} 5657.3 \\ 490.9 \\ \hline \end{array}$	$\begin{array}{r} 6470.6 \\ 530.7 \\ \hline \end{array}$	$\begin{array}{r} 4651.8 \\ 198.6 \end{array}$	$\begin{array}{r} 4492.5 \\ 328.1 \\ \hline \end{array}$	$\begin{array}{r} \hline 4874.6 \\ 128.6 \\ \hline \end{array}$	$\begin{array}{r} 5114.5 \\ 463.3 \\ \hline \end{array}$	$\begin{array}{r} 5208.9 \\ 494.7 \\ \hline \end{array}$	$\begin{array}{r} 5000 \\ 490 \\ \hline \end{array}$	$\begin{array}{r} 5400 \\ 530 \\ \hline \end{array}$			Revenues (\$mill)		6615		
						785																		
						32.4\%	35.0\%	34.4\%	34.8\%	36.9\%	41.6\%	35.7\%	71.0\%	19.7\%	20.2\%	21.0\%	21.0\%	Income	Tax Rate	$\begin{array}{r}22.0 \% \\ 2.0 \% \\ \hline\end{array}$				
														2.9\%	2.0\%	2.0\%	2.0\%	AFUD	\% to Net Profit					
Leases, Uncapitalized Annual rentals $\$ 27.2$ mill. Pension Assets-12/19 $\$ 2.3$ bill. Oblig. $\$ 2.7$ bill.							54.7\%	55.6\%	55.1\%	56.3\%	56.9\%	60.7\%	59.8\%	63.5\%	55.3\%	56.8\%	55.5\%	55.0\%	Long-T	m Debt Ratio	55.0\%			
						45.3\%	44.4\%	44.9\%	43.7\%	43.1\%	39.3\%	40.2\%	36.5\%	37.9\%	36.9\%	44.5\%	45.0\%	Comm	Equity Ratio	45.0\%				
Pfd Stock \$880 mill.			Pfd Div'd \$28.5 mill.			10859	11264	12373	13480	14331	9792.0	10129	11832	12856	13843	15875	16105	Total C	pital (\$mill)	17005				
			11097	11800	12916	14365	16017	12112	13068	14360	15543	16912	15750	16000	Net Pla	t (\$mill)	17250							
						4.5\%	4.4\%	5.0\%	5.2\%	5.3\%	4.0\%	5.0\%	2.6\%	5.0\%	4.9\%	3.0\%	3.5\%	Return	n Total Cap'I	4.5\%				
Common Stock 383,212,193 shs. as of 10/26/20   MARKET CAP: $\$ 9.4$ billion (Large Cap)						6.0\%	6.1\%	7.4\%	8.3\%	8.6\%	5.2\%	8.1\%	3.0\%	8.1\%	8.3\%	8.0\%	8.5\%		n Shr. Equity	11.0\%				
						6.0\%	6.1\%	7.4\%	8.3\%	8.6\%	5.2\%	8.1\%	3.0\%	9.3\%	8.6\%	8.0\%	8.5\%	Return	n Com Equity	11.0\%				
						.8\%	. $9 \%$	$\begin{aligned} & 2.5 \% \\ & 67 \% \end{aligned}$	$\begin{aligned} & 3.1 \% \\ & 62 \% \end{aligned}$	$\begin{aligned} & 3.4 \% \\ & 61 \% \end{aligned}$	$\begin{aligned} & \hline \text { NMF } \\ & \text { NMF } \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \% \\ & 63 \% \end{aligned}$	NMF	3.7\%	2.7\%	2.0\%	2.5\%	Retained to Com Eq All Div'ds to Net Prof		$\begin{aligned} & 4.5 \% \\ & 61 \% \\ & \hline \end{aligned}$				
CURRE	NT POSI	TION				2018							2019	9/30/20	NMF	61\%	72\%			73\%	72\%			



BUSINESS: NiSource Inc. is a holding company for Northern Indiana Public Service Company (NIPSCO), which supplies electricity and gas to the northern third of Indiana. Customers: 472,000 electric in Indiana, 3.5 million gas in Indiana, Ohio, Pennsylvania, Kentucky, Virginia, Maryland, Massachusetts through its Columbia subsidiaries. Revenue breakdown, 2019: electrical, 33\%; gas, 67\%;
NiSource continues to post mixed financial results this year. The September-period revenues fell $3.1 \%$, to $\$ 902.5$ million, reflecting a $7.6 \%$ downturn from the electric division, partially offset by a slight $1.3 \%$ rise in volumes at the gas segment. These trends highlight the continued challenges impacting NiSource's operating environment this year, as the coronavirus weighs on end-user demand. Moreover, the increased volatility with regard to commodity prices adds further uncertainty. On the profitability front, operating expenses declined 440 basis points, as a percentage of the top line. Combined, these factors drove the bottom line significantly higher, to $\$ 0.09$ per share. This was in line with our expectation.
We continue to look for the utility provider to register flattish to slightly lower earnings this year. NiSource will probably experience a $1.5 \%$ downturn in earnings, to $\$ 1.30$ a share, for 2020. Our call falls within management's recently reaffirmed guidance range of \$1.28-\$1.36 per share. This year-over-year earnings decline ought to reflect a $4 \%$ drop in revenues, to $\$ 5.0$ billion due to reduced
other, less than 1\%. Generating sources, 2018: coal, 69.4\%; purchased \& other, $30.6 \%$. 2019 reported depreciation rates: $2.9 \%$ electric, $2.2 \%$ gas. Has 8,087 employees. Chairman: Richard L Thompson. President \& Chief Executive Officer: Joseph Hamrock. Incorporated: Indiana. Address: 801 East 86th Ave., Merrillville, Indiana 46410. Tel.: 877-647-5990. Internet: www.nisource.com.
demand from both its commercial and industrial customers. One big unknown here is the number of accounts that will fall into the bad-debt category, as economic hardship stemming, from the pandemic weighs on customers' ability to pay.
That said, we believe NiSource will be in a good position to turn things around in 2021. The gas distribution segment has pending rate cases in both Pennsylvania and Maryland, which would add roughly $\$ 100$ million and $\$ 3.5$ million in annual revenues, respectively. Additionally, management plans to spend about $\$ 1.75$ billion on capital growth projects this year for both wind and solar initiatives. Those developments should begin to bear fruit in the near future. Finally, assuming a COVID-19 vaccine comes down the pipeline, we may see a return to morenormalized consumer demand.
The healthy dividend yield may appeal to income-seeking accounts. That said, the difficult economic backdrop and pandemic headwinds do add a bit of uncertainty here. And 3- to 5-year appreciation potential is below average.
Bryan J. Fong
November 27, 2020
(A) Dil. EPS. Excl. nonrec. gains (losses): ' 05,
(4c); gains (losses) on disc. ops.: '05, 10¢; '06,
(B) Div'ds historically paid in mid-Feb., May,
(44); gains (losses) on disc. ops.: 05, 10c; ' 0

Me late Feb. Qtly
(B) Div'ds historically paid in mid
Aug., Nov. - Div'd reinv. avail.
(C) Incl. intang in '19: \$1485.9 million,
$\$ 3.89 /$ sh.
(D) In mill.
(E) Spun off Columbia Pipeline Group (7/15)
(E) Spun off Columbia Pipeline Group (7/15)
© 2020 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind.
THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, non-commercial, internal use. No part

Company's Financial Strength
Stock's Price Stability
Price Growth Persistence
Earnings Predictability

Earnings Predictability
To subscribe call 1-800-VALUELINE

KyPSC Case No. 2021-00190 STAFF-DR-03-010(a) Attachment Page 78 of 117

Schedule DWD-2
Page 5 of 9


$\begin{array}{llll}\text { Cash Assets } & 12.6 & 9.6 & 35.9\end{array}$					
			83.3	284.1	206.9
Current Assets			95.9	293.7	242.8
Accts Payable			15.9	113.4	83.8
Debt Due			47.6	224	318.2
Other Current Liab.			45	144.	149.3
			09.1	482.2	551.3
Fix. Chg. Cov.			57\%	336\%	312\%
ANNUAL RATES of change (per sh)		Past		Past E	
		10 Yrs.	5		
		-4.0\%			5\%
"Cash Flow"					
		11.0\%			
				. $6.0 \%$	
Book		1.5\%			
Calendar	QUARTERLY				11
	Mar.31	Jun. 30	Sep.	De	Year
2017	297.3	136.3	88.2	240.4	2
20	264.7	124.6	91.2	226.7	706.1
2019	285.4	123.4	90.3	247.3	746.4
2020	285.2	135.0	93.3	251.5	765
2021	305	145	110	260	820
$\begin{array}{\|l\|l\|} \text { Cal- } \\ \text { endar } \\ \hline \end{array}$	NINGS PER SHARE A				Full Year
	Mar. 31	Jun. 30	ep. 30	Dec. 3	
2017	1.40	10	d. 30	d3.14	. 94
2018	1.46	d. 01	d. 39	1.27	2.33
2019	1.50	. 07	d. 61	1.26	2.19
2020	1.58	d. 17	d. 61	1.45	2.25
2021	1.60	d. 10	d. 50	1.50	2.50
$\begin{gathered} \text { Cal- } \\ \text { endar } \end{gathered}$	QUARTERLY DIVIDENDS PAID ${ }^{\text {a }}$				
	Mar. 31	Jun. 30	Sep. 30	Dec. 31	Year
2016	4675	4675	4675	47	. 87
2017	. 47	47	47	4725	1.88
2018	. 4725	. 4725	. 4725	. 475	1.89
2019	. 475	475	. 475	4775	1.90
2020	4775	4775	. 4775	. 48	

BUSINESS: Northwest Natural Holding Co. distributes natural gas to 1000 communities, 750,000 customers, in Oregon ( $89 \%$ of customers) and in southwest Washington state. Principal cities served: Portland and Eugene, OR; Vancouver, WA. Service area population: 3.7 mill. $(77 \%$ in OR). Company buys gas supply from Canadian and U.S. producers; has transportation rights on Northwest
Northwest Natural Holding recorded flat results in the third quarter. Revenues increased slightly to $\$ 93.3$ million, aided by greater throughput and a larger customer base. Around 13,800 new customers were added in the natural gas space over the past year, while the company benefited from recently acquired operations in water and other utilities. Despite a decline in interest expense (reflecting the rollover of debt at lower rates), higher operating costs (including maintenance and depreciation expenses) were a drag.
These factors netted out to a loss of $\$ 0.61$ per share. Northwest should have decent results in the fourth quarter as cooler weather helps the top line expand. More-
over, recent rates cases should help, as the Oregon Public Utility Commission allowed for an additional $\$ 45$ million in charges. We expect costs will remain steady, allowing earnings to reach $\$ 1.45$ per share. The company ought to see some bottom-line improvements in the years ahead. Revenues will likely ad-
vance as more people move into the Portland area. Additionally, Northwest has purchased several water utilities over the

Pipeline system. Owns local underground storage. Rev. breakdown: residential, $37 \%$; commercial, $22 \%$; industrial, gas transportation, $41 \%$. Employs 1,167 . BlackRock Inc. owns $15.5 \%$ of shares; Off./Dir. own less than $1 \%$ ( $4 / 20$ proxy). CEO: David H. Anderson. Inc.: Oregon. Address: 220 NW 2nd Ave., Portland, OR 97209. Tel.: 503-226-4211. Internet: www.nwnatural.com.
past few years, including some in Texas and Washington, and will likely continue to do so. These ought to help the top line expand in the coming years. Meantime, the company will probably benefit from the additional distribution of natural gas in the Portland area. Economies of scale will start to emerge with these new operations, helping profits expand. All told, we think earnings will reach $\$ 2.50$ per share in 2021 and $\$ 3.20$ per share by 2023-2025.
Management has raised the quarterly dividend by $1 \%$, to $\$ 0.48$. This increase continues the streak of 65 annual dividend hikes, which remains among the longest in the Survey and the payout remains adequately covered by earnings. Looking forward, it should grow at a moderate pace.
Shares of Northwest Natural Holding are ranked Average (3). This stock holds above average 3 - to 5 -year appreciation potential, based on a substantial earnings mprovement. Additionally, the dividend ield is above average, while it holds our Highest (1) Safety rank. Overall, we think that this issue should appeal to most longterm investors.
John E. Seibert III

KyPSC Case No. 2021-00190 STAFF-DR-03-010(a) Attachment Page 79 of 117

Schedule DWD-2
Page 6 of 9



BUSINESS: ONE Gas, Inc. provides natural gas distribution services to more than two million customers. There are three divisions: Oklahoma Natural Gas, Kansas Gas Service, and Texas Gas Service. The company purchased 174 Bcf of natural gas supply in 2019, compared to 180 Bcf in 2018. Total volumes delivered by customer (fiscal 2019): transportation, $56.6 \%$; residential, $32.5 \%$; commercial
It's shaping up to be an underwhelming year for ONE Gas, Inc. Indeed, through the first nine months, share net of $\$ 2.59$ was just a few cents higher than 2019's $\$ 2.55$ tally. This stemmed, to some extent, from lower gas sales, net of weather normalization, primarily in Kansas and Oklahoma because of warmer temperatures. Also, there were diminished fees associated with collection activities and late payments mainly related to moratoriums on disconnects for nonpayment in response to COVID-19. (Notably, expenses incurred due to the pandemic are eligible for future recovery under regulatory orders the company received in each of its jurisdictions.) Meanwhile, the company benefited from new rates (including in Kansas and Texas) plus a rise in residential sales (supported by net customer growth). Still, it seems that the bottom line will increase only modestly, to $\$ 3.56$ a share, for the full year, versus the 2019 figure of $\$ 3.51$. But concerning 2021, the bottom line stands to increase a stronger $4 \%$, to $\$ 3.70$ a share, if operating margins expand further.
We are constructive about the energy
\& industrial, $10.3 \%$; other, $.6 \%$. ONE Gas has around 3,600 employees. BlackRock owns $12.1 \%$ of common stock; The Vanguard Group, $10.1 \%$; T. Rowe Price Associates, $7.0 \%$; officers and directors, $1.9 \%$ ( $4 / 20$ Proxy). CEO: Pierce H. Norton II. Incorporated: Oklahoma. Address: 15 East Fith Street, Tulsa, Oklahoma 74103. Tel.: 918-947-7000. Internet: www.onegas.com.
firm's business prospects over the 2023-2025 horizon. It presently ranks as the leading natural gas distributor (as measured by customer count) in both Oklahoma and Kansas, and holds the number-three position in Texas. Moreover, these markets appear to have decent growth possibilities and are located in one of the most active drilling regions in the United States. Also, with a solid balance sheet, ONE Gas ought to be able to meet its working capital requirements, capital expenditures, and other commitments for a while.
The equity has faced some pressure during the past six months. We think that price movement can be traced, to a certain degree, to the company's not-soexciting results of late. Consider, also, these shares' 4 (Below Average) rank for Timeliness. But capital appreciation potential in the 18 -month period and out to mid-decade is solid. Dividend growth prospects are promising, as well, though the yield does not stand out relative to the group average of Value Line's Natural Gas Utility Industry.
Frederick L. Harris, III November 27, 2020
(A) Diluted EPS. Excludes nonrecurring gain: $\begin{aligned} & \text { (B) Dividends historically paid in early March, } \\ & \text { (June, Sept., and Dec. - Dividend reinvestment }\end{aligned}$ Feb. Quarterly EPS for 2018 don't add up due $\quad$ plan. Direct stock purchase plan. plan. Direct sto
(C) In millions. © 2020 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind. of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product

KyPSC Case No. 2021-00190 STAFF-DR-03-010(a) Attachment Page 80 of 117

Schedule DWD-2
Page 7 of 9

SOUTH JERSEV INDS. NYSE-su								$\begin{aligned} & \text { RECENT } \\ & \text { PRICE } \end{aligned}$	$23 .$	$\begin{aligned} & \text { P/E } \\ & \text { RATIO } 13.4\binom{\text { Trailing: }}{\text { Median: } 19.1} \end{aligned}$				$\begin{aligned} & \text { RELATIVE } \\ & \text { PIE RATIO } 0,64 \end{aligned}$		$4 \left\lvert\, \begin{aligned} & \text { DV'V'D } \end{aligned}\right.$	$5.3 \%$		$\begin{aligned} & \text { VALUE } \\ & \text { LINE } \end{aligned}$		
TIMELINESS $\mathbf{3}$ Lowered 7/20/18   SAFETY $\mathbf{3}$ Lowered 11/27/20   TECHNICAL 3 Rased 4/24/20   BETA $1.05 \quad$ ( $1.00=$ Market)				High: Low:	20.4 16.0	27.1 18.6	29.0 21.4	29.0 22.9	31.1 25.3	30.6 25.9	$\begin{aligned} & 30.4 \\ & 21.2 \end{aligned}$	$\begin{aligned} & 34.8 \\ & 22.1 \end{aligned}$	$\begin{aligned} & 38.4 \\ & 30.8 \end{aligned}$	$\begin{aligned} & 36.7 \\ & 26.0 \end{aligned}$	$\begin{aligned} & 34.5 \\ & 26.6 \end{aligned}$	$\begin{aligned} & 33.4 \\ & 18.2 \end{aligned}$			Target Pris 2023	$\begin{aligned} & \text { 3ange } \\ & 2025 \end{aligned}$	
																60 50					
18-Month Target Price Range Low-High Midpoint (\% to Mid) \$18-\$50 \$34 (45\%)																				40	
																				30	
				-																50	
															I				20		
																					15
Institutional Decisions																			RETURN 10		
	402019	102220	202220	Percent shares traded	$\begin{gathered} 15 \\ 10 \\ 5 \\ 5 \end{gathered}$														$\begin{aligned} & \text { THIS } \\ & \text { STOCK ARITH H } \\ & \text { INDE } \end{aligned}$		
to Buy	124	108	88															1 yr .	38.20 .9		
Hld's(000) 2004	79196   2005   1	2006	83521	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021		JE LINE PUB. LI	-25	
14.75	15.89	15.88	16.15	16.18	14.19	15.48	13.71	11.16	11.18	12.98	13.52	13.04	15.63	19.20	17.63	15.60	16.25	Reve	per sh	19.55	
1.22	1.25	1.75	1.60	1.74	1.86	2.10	2.23	2.34	2.48	2.67	2.42	2.67	2.79	2.91	2.56	2.70	2.90	"Cash	low" per sh	3.85	
. 79	. 86	1.23	1.05	1.14	1.19	1.35	1.45	1.52	1.52	1.57	1.44	1.34	1.23	1.38	1.12	1.65	1.80	Earnin	per sh A	2.50	
. 41	. 43	46	. 51	. 56	. 61	. 68	. 75	. 83	. 90	. 96	1.02	1.06	1.10	1.13	1.16	1.20	1.25	Div'ds	ecl'd per sh ${ }^{\text {B }}$	1.40	
1.34	1.60	1.26	. 94	1.04	1.83	2.79	3.20	4.01	4.84	5.01	4.87	3.50	3.43	3.99	5.46	4.95	5.85	Cap'IS	ending per sh	7.25	
6.20	6.75	7.55	8.12	8.67	9.12	9.54	10.33	11.63	12.64	13.65	14.62	16.22	14.99	14.82	15.41	16.60	17.25	Book V	lue per sh ${ }^{\text {c }}$	20.45	
55.52	57.96	58.65	59.22	59.46	59.59	59.75	60.43	63.31	65.43	68.33	70.97	79.48	79.5	85.51	92.39	101.00	103.00	Comm	Shs Outst'g ${ }^{\text {D }}$	110.00	
14.1	16.6	11.9	17.2	15.9	15.0	16.8	18.4	16.9	18.9	18.0	17.9	21.7	27.9	22.6	28.3	Bold fig	re		P/E Ratio	16.0	
. 74	. 88	. 64	. 91	. 96	1.00	1.07	1.15	1.08	1.06	95	. 90	1.14	1.40	1.22	1.53			Rela	P/E Ratio	. 90	
3.7\%	3.0\%	3.2\%	2.8\%	3.1\%	3.4\%	3.0\%	2.8\%	3.2\%	3.1\%	3.4\%	3.9\%	3.6\%	3.2\%	3.6\%	3.7\%			Avg	Div'd Yield	3.5\%	
CAPITAL STRUCTURE as of 9/30/20 Total Debt $\$ 3271.4$ mill. Due in 5 Yrs $\$ 1045$ mill. LT Debt $\$ 2531.6$ mill. LT Interest $\$ 100$ mill.						925.1	828.6	706.3	731.4	87.0	959.6	1036.5	1243.1	1641.3	1628.6	1575	75		\$mill)	2150	
						81.0	87.0	93.3	97.1	104.0	99.0	102.8	98.	116.2	103.0	165	180	Net Pro	it (\$mill)	275	
						15.2\%	22.4\%	10.8\%			5.9\%	42.0\%			22.0\%	21.0\%	21.0\%	Income	Tax Rate	21.0\%	
						8.8\%	10.5\%	13.2\%	13.3\%	11.7\%	10.3\%	9.9\%	7.9\%	7.1\%	6.3\%	10.5\%	10.7\%	Net Pro	it Margin	12.8\%	
Leases, Uncapitalized Annual rentals $\$ 1.2$ mill. Pension Assets-12/19 \$312.5 mill. Oblig. \$439.4 mill.						37.4\%	40.5\%	45.0\%	45.1\%	48.0\%	49.2\%	38.5\%	48.5\%	62.4\%	59.2\%	61.0\%	61.0\%	Long-T	rm Debt Ratio	59.0\%	
						62.6\%	59.5\%	55.0\%	54.9\%	52.0\%	50.8\%	61.5\%	51.5\%	37.6\%	40.8\%	39.0\%	39.0\%	Comm	Equity Ratio	41.0\%	
						910.1	1048.3	1337.6	1507.4	1791.9	2043.9	2097.2	2315.4	3373.9	3493.9	4275	4575	Total C	ital (\$mill)	5500	
Common Stock 100,590,307 shs. as of $11 / 1 / 20$						1193.3	1352.4	1578.0	1859.1	2134.1	2448.1	2623.8	2700.2	3653.5	4073.5	4350	4700	Net Pla	(\$mill)	5600	
						9.5\%	8.9\%	7.4\%	6.8\%	6.4\%	5.4\%	5.4\%	5.1\%	4.4\%	4.0\%	5.0\%	5.0\%	Return	n Total Cap'l	6.0\%	
						14.2\%	13.9\%	12.7\%	11.7\%	11.2\%	9.5\%	8.0\%	8.2\%	9.2\%	7.2\%	10.0\%	10.0\%	Return	on Shr. Equity	12.0\%	
						14.2\%	13.9\%	12.7\%	11.7\%	11.2\%	9.5\%	8.0\%	8.2\%	9.2\%	7.2\%	10.0\%	10.0\%	Return	on Com Equity	12.0\%	
MARKET CAP: $\$ 2.3$ billion (Mid Cap)						7.1\%	6.7\%	5.8\%	4.8\%	4.3\%	2.8\%	1.6\%	.9\%	1.7\%	NMF	2.5\%	3.0\%	Retain	d to Com Eq	5.5\%	
CURRENT POSITION			2018	2019	9/30/20	50\%	52\%	55\%	59\%	61\%	71\%	80\%	89\%	82\%	104\%	73\%	72\%	All Div	s to Net Prof	56\%	


Cash Assets					
			30.0	6.4	10.1
Other					344.7
Current Assets			63.2	652.5	354.8
Accts Payable			10.5	332.2	162.8
Debt Due			04.41	16.6	739.8
			65.9	183.1	201.1
Current Liab. 1			80.8	731.9	1103.7
Fix. Chg. Cov.			12\%	76\%	216\%
ANNUAL RATES		Past		Past Est'd '17-'19	
		10 Yrs.	5 Yr		23:25
Of change (per					2.0\%
"Cash Flow"		$5.0 \%$			.0\%
Earnings		$1.5 \%$	\% -2.5		2.5\%
Dividends		8.0		$3.5 \%$$5.0 \%$	
Book V	Value	6.5			
Cal-endar	QUARTERLY REVENUES (\$ mill.)				Full
	Mar. 31	Jun. 30	Sep. 30	Dec. 31	Year
2017	425.8	244.4	227.1	345.8	1243.1
2018	521.9	227.3	302.5	589.6	1641.3
2019	637.3	266.9	261.2	463.2	1628.6
2020	534.1	260.0	261.5	519.4	1575
2021	575	285	285	530	1675
$\begin{aligned} & \text { Cal- } \\ & \text { endar } \end{aligned}$	EARNINGS PER SHARE A				Full Year
	Mar. 31	Jun. 30	Sep. 30	Dec. 31	
2017	. 72	. 06	d. 05	. 50	1.23
2018	1.19	. 07	d. 27	. 39	1.38
2019	1.09	d. 13	d. 30	. 46	1.12
2020	1.15	d. 01	d. 06	. 57	1.65
2021	1.20	. 02	d. 05	. 63	1.80
Calendar	QUARTERLY DIVIDENDS PAID ${ }^{\text {B }}$				Full
	Mar. 31	Jun. 30	Sep. 30	Dec. 31	Year
2016		. 264	264	. 536	1.06
2017		. 273	. 273	. 553	1.10
2018		. 280	. 280	. 567	1.13
2019		. 287	. 287	. 582	1.16
2020	--	. 295	. 295	. 295	

BUSINESS: South Jersey Industries, Inc. is a holding company. The company distributes natural gas in New Jersey and Maryland. South Jersey Gas rev. mix '19: residential, 47\%; commercial, 23\%; cogen. and electric gen., $12 \%$; industrial, 18\%. Acq. Elizabethtown Gas and Elkton Gas, 7/18. Nonutil. operations include South Jersey Energy, South Jersey Resources Group, South Jersey Exploration,

## Shares of South Jersey Industries have perked up in price over the past

 three months. The company reported much-improved bottom-line results for the third quarter. The top line was roughly flat compared with the prior-year level. However, operating expenses decreased, and the share deficit narrowed considerably, to $\$ 0.06$. (Losses are common here for the September period.) Looking forward, favorable earnings comparisons probably continued for the fourth quarter, aided by a decrease in costs. All told, we anticipate that earnings per share of $\$ 1.65$ at South Jersey for full-year 2020 will compare favorably with the prior-year tally.We envision solid results for the coming years. The company's utility businesses ought to further benefit from growth in the customer base. Infrastructure investments will allow South Jersey to modernize its system and meet increasing demand for natural gas within its service territories. Infrastructure replacement programs allow the company to earn an authorized return on approved investments. Regulatory initiatives should also bear fruit. Elsewhere, we look for better

Marina Energy, South Jersey Energy Service Plus, and SJI Midstream. Has about 1,100 employees. Off./dir. own less than $1 \%$ of common; BlackRock, $15.5 \%$; The Vanguard Group, $11.4 \%$ ( $3 / 20$ proxy). Pres. \& CEO: Michael J. Renna. Chairman: Joseph M. Rigby. Inc.: NJ. Addr.: 1 South Jersey Plaza, Folsom, NJ 08037. Tel.: 609-561-9000. Internet: www.sjindustries.com.

## results on the nonutility side. Performance

 at the Energy Group business ought to be driven by fuel management and a reshaped wholesale portfolio. The Energy Services operation will probably further benefit from solar investment in support of the New Jersey Master Plan, along with legacy energy production activities. The Midstream business will continue to invest in long-term contracted energy infrastructure projects, such as the PennEast Pipeline.This stock does not stand out for yearahead relative price performance. That said, utility investors with a long time horizon might find something to like here. We anticipate greater revenues and significant growth in earnings per share for the company over the pull to middecade. The payout should also increase at a steady pace. From the recent quotation, these shares offer attractive long-term total return potential. This is aided by a relatively generous dividend yield. On top of that, South Jersey Industries earns favorable marks for Price Stability and Earnings Predictability.
Michael Napoli, CFA

KyPSC Case No. 2021-00190 STAFF-DR-03-010(a) Attachment Page 81 of 117

Schedule DWD-2
Page 8 of 9

SOUTHWEST GAS WYSEs.swx

TIMELINESS 2 Raised $11 / 27 / 20$ SAFETY 3 Lowered 1 1491 TECHNICAL 4 Lowered 11/27/20 BETA .95 ( $1.00=$ Market)				High:	29.5 17.1
					NDS $50 \times$ Divic elative Pric
18-Month Target Price Range Low-High Midpoint (\% to Mid) \$48-\$116 \$82 (15\%)					
2023-25 PROJECTIONS      Price   Gain   Ann' Total      Righ      Heturn      How 120 $(+70 \%)$ $17 \%$   $+15 \%)$ $7 \%$					
				Percen shares traded	
2004	2005	2006	2007	2008	2009
40.14   5.57   1.66   .82   8	43.59	48.47	50.28	48.53	42.00
	5.20	5.97	6.21	5.76	6.16
	1.25	1.98	1.95	1.39	1.94
	. 82	82	86	. 90	95
$\begin{array}{r} 8.23 \\ 19.18 \\ \hline \end{array}$	7.49	8.27	7.96	6.79	4.81
	19.10	21.58	22.98	23.49	24.44
36.79	39.33	41.77	42.81	44.19	45.09
$\begin{array}{r} 14.3 \\ .76 \\ 3.5 \% \end{array}$	20.6	15.9	17.3	20.3	12.2
	1.10	86	. 92	1.22	. 81
	3.2\%	2.6\%	2.6\%	3.2\%	4.0\%

CAPITAL STRUCTURE as of 9/30/20
Total Debt $\$ 2784.6$ mill. Due in 5 Yrs $\$ 898.8$ mill. LT Debt $\$ 2685.7$ mill. LT Interest $\$ 100.0$ mill. (Total interest coverage: 3.6 x ) ( $50 \%$ of Cap'l) Leases, Uncapitalized Annual rentals $\$ 13.0$ mill. Pension Assets-12/19 \$1027.8 mill
Pfd Stock None
Common Stock $56,464,880$ shs. as of 10/30/20
MARKET CAP: $\$ 4.0$ billion (Mid Cap)

L.)	ON 2018	201	9/30
Cash Asse	754		708.9
Other	754.	810.	08.9
Current Assets	839.8	859.9	732.8
Accts Payable	249.0	238.	175.5
Debt		374	
Current Liab.	938.6	1079.9	839.2
Fix. Chg. Cov.	370\%	340\%	259\%
ANNUAL RATES of change (per sh)	Past 10 Yrs.	Past 5 Yrs.	$\begin{aligned} & \text { d'17.'1 } \\ & D^{\prime 2} 23 \cdot 25 \end{aligned}$
Revenues	1.5\%	5.0\%	3.0\%
ash Flo			7.5\%
rning	8.0\%		9.0\%
Dividends	8.5\%	9.5\%	4.0\%
Book Value	6.0\%	6.5\%	6.5\%


$\begin{aligned} & \text { Cal- } \\ & \text { endar } \end{aligned}$	QUARTERLY REVENUES (\$ mill				Full Year
	Mar. 31	Jun. 30	Sep. 30	Dec. 31	
2017	654.7	560.5	593.2	740.4	2548.8
2018	754.3	670.9	668.1	786.7	2880.0
2019	833.6	713.0	725.2	848.1	3119.9
2020	836.3	757.2	791.2	900.3	3285
2021	875	825	850	950	3500
Calendar	EARNINGS PER SHARE A D				Full   Year  
	Mar. 31	Jun. 30	Sep. 30	Dec. 31	
2017	1.45	. 37	. 21	1.58	3.62
2018	1.63	. 44	. 25	1.36	3.68
2019	1.77	. 41	. 10	1.67	3.94
2020	1.31	. 68	. 32	1.69	4.00
2021	1.70	. 65	. 32	1.78	4.45
Cal-   endar	QUARTERLY DIVIDENDS PAID ${ }^{\text {B }} \dagger$				Full
	Mar. 31	Jun. 30	Sep. 30	Dec. 31	Year
2016	405	450	450	450	1.76
2017	450	. 495	. 495	495	1.94
2018	495	. 520	. 520	. 520	2.06
2019	. 520	. 545	. 545	. 545	2.16
2020	. 545	. 570	. 570		

A) Diluted earnings. Excl. nonrec. gains (losses): '05, (11c); '06, 7c. Next egs. report due late February. (B) Dividends historically paid early March June September, and D
cember. - $\dagger$ Div'd reinvestment and stock pur(C) In millions. (D) Totals may not sum due to rounding.
tal throughput: 2.3 billion therms. Has 8,944 employees. Off. \& dir. own $.8 \%$ of common stock; BlackRock, Inc., 13.5\%; The Vanguard Group, Inc., 10.3\%; T.Rowe Price Assoc., Inc., 6.8\% (3/20 Proxy). Chairman: Michael J. Melarkey. Pres. \& CEO: John P. Hester. Inc.: DE. Address: 8360 S. Durango Drive, P.O. Box 98510 Las Vegas, Nevada 89193. Tel.: 702-876-7237. Web: www.swgas.com.
eration continues to make significant infrastructure installation progress in support of its service territory expansions in both northern and southern Nevada. Rate relief will probably also provide support. Elsewhere, the company's infrastructure services business ought to perform quite well in the years ahead. This business should be able to capitalize on the ongoing need for utilities to replace aging infrastructure. It has a robust client base, many with multiyear pipeline replacement programs.
This stock is ranked to outperform the broader market averages for the coming six to 12 months. We anticipate healthy growth in revenues and earnings per share for the company for the pull to mid-decade. From the recent quotation, this equity offers decent long-term total return potential. Dividend growth should continue to be steady in the coming years, assuming earnings come through as projected. Southwest Gas earns attractive marks for Financial Strength, Price Stability, Growth Persistence, and Earnings Predictability.
Michael Napoli, CFA
November 27, 2020

KyPSC Case No. 2021-00190 STAFF-DR-03-010(a) Attachment Page 82 of 117

Schedule DWD-2
Page 9 of 9


(\$MILL.)				
Cash		4.4	5.8	. 4
		655.2	608.7	551.9
Current Assets		659.6	614.5	559.3
Accts Payable		290.1	301.5	. 8
		729.	783.2	
Other		302.5	384.1	424.0
Current Liab.		1321.7	1468.8	1107.8
Fix. Chg. Cov.		284\%	272\%	275
ANNUAL RATES		Past Pa	st Est'd	d'17.'19
		10 Yrs. 5 Y	rs.	
of change (per   Revenues		-8.5\% -1.0	. $\%$	7.5\%
"Cash Flow		5.5\% 13.	0\%	5.5\%
Earnings				5.5\%
Dividen				\%
Book Value		7.0\% 7.	.	8.5\%
$\begin{aligned} & \text { Fiscal } \\ & \text { Year } \\ & \text { Ends } \\ & \hline \end{aligned}$	QUARTERLY REVENUES (\$ mill.)A			Full
	Dec. 31	Mar. 31 Jun. 30	Sep. 30	
2017	495.1	663.4323 .5	258.7	1740.7
2018	561.8	813.4 350.6	239.2	1965.0
2019	602.0	803.5321 .3	225.6	1952.4
2020	566.9	715.5321 .1	251.9	1855.4
2021	580	$760 \quad 340$	250	1930
$\begin{aligned} & \text { Fiscal } \\ & \text { Year } \\ & \text { Ends } \\ & \hline \end{aligned}$	EARNINGS PER SHARE A B F			$\begin{aligned} & \hline \text { Full } \\ & \text { Fiscal } \\ & \text { Year } \\ & \hline \end{aligned}$
	Dec. 3	Mar. 31 Jun. 30	Sep. 30	
2017	99	2.36 . 45	d. 28	3.43
2018	2.39	2.03 . 52	d. 51	4.33
2019	1.32	3.04 d. 09	d. 74	3.52
2020	1.24	2.54 d1.87	d. 45	1.44
2021	1.27	2.61 . 20	d. 78	3.30
Calendar	QUARTERLY DIVIDENDS PAID ${ }^{\text {c }}$			
	Mar. 31	Jun. 30 Sep. 30	Dec. 31	Year
2016	. 49	. 49 . 49	49	1.96
2017	. 525	. 525.525	. 525	2.10
2018	. 5625	. 5625.5625	. 5625	2.25
2019	. 5925	. 5925.5925	. 5925	2.37
2020	. 6225	. 6225.6225	. 6225	

BUSINESS: Spire Inc., formerly known as the Laclede Group, Inc., lated operations: residential, $68 \%$; commercial and industrial, $23 \%$; is a holding company for natural gas utilities, which distributes natu- transportation, $6 \%$; other, $3 \%$. Has about 3,536 employees. Officers ral gas across Missouri, including the cities of St. Louis and Kansas and directors own $2.9 \%$ of common shares; BlackRock, $15.0 \%$ City, Alabama, and Mississippi. Has roughly 1.7 million customers. $\quad$ ( $1 / 20$ proxy). Chairman: Edward Glotzbach; CEO: Suzanne Sither-
Acquired Missouri Gas $9 / 13$, Alabama Gas Co $9 / 14$. Utility therms
wood. Inc.: Missouri. Address: 700 Market Street, St. Louis, MisAcquired Missouri Gas 9/13, Alabama Gas Co 9/14. Utility therms wood. Inc.: Missouri. Address: 700 Market Street, St. Louis, Mis sold and transported in fiscal 2019: 3.4 bili. Revenue mix for regu-
Spire Inc. stands to stage a big earn- new business development initiatives. For ings rebound in fiscal 2021. (The year fiscal 2021, spending is currently expected started on October 1st.) This is based par- to be around $\$ 590$ million. Management tially on our assumption that COVID-19 looks for total expenditures over the 2021has a less severe effect on the company. 2025 period to be some $\$ 3.0$ billion, which Notably, in last year's third quarter, it re- seems reasonable.
corded a total pre-tax impairment charge Value Line continues to be upbeat, in of $\$ 148.6$ million, equivalent to $\$ 2.29$ a general, about the energy firm's opershare after tax, attributed primarily to the ating performance out to mid-decade. writedown of the value of storage assets The gas utilities boast 1.7 million customand, to a lesser degree, two commercial ers in Mississippi, Alabama, and Missouri, compressed natural gas fueling stations. providing a measure of regional diversity. (Spire states, however, that it is pursuing Furthermore, the other operations, particpotential regulatory mechanisms to help ularly pipelines, hold promising potential. offset the damage from the health crisis.) Additional expansionary projects and techSo, at this juncture, it appears that share nological enhancements in customer servnet will jump more than twofold, to $\$ 3.30$, ice and elsewhere ought to help, too. Finalcompared to the fiscal 2020 figure of $\$ 1.44$. ly, Spire's decent finances make acquisiIf operating margins widen further, profits tions possible. The usual risks include unmay advance another $7 \%$, to $\$ 3.55$ a share, fortunate events like leaks and pipeline the following year. ruptures.
Capital expenditures for last year The stock, though untimely, has some were around $\$ 638$ million. (That appealing qualities. Consider the divimarked a significant decrease from the fis- dend yield and payout growth prospects. cal 2019 figure of $\$ 823$ million, reflecting Capital gains potential in both the 18the completion of the Spire STL Pipeline.) month period and out to 2023-2025 is Funds were allocated to such areas as in- solid, too.
frastructure upgrades at the utilities and Frederick L. Harris, III November 27, 2020

## Piedmont Natural Gas Company

Summary of Risk Premium Models for the
Proxy Group of Eight Natural Gas Distribution Companies

Proxy Group of
Eight Natural Gas Results using
Distribution
Current
Companies $\quad$ Interest Rates
Predictive Risk
Premium Model
(PRPM) (1)

$9.82 \%$	$9.21 \%$	
Average	10.40	

Notes:
(1) From page 2 of this Schedule.
(2) From page 3 of this Schedule.



Piedmont Natural Gas Company
Interest Rates and Bond Spreads for
Moody's Corporate and Public Utility Bonds

Selected Bond Yields - Moody's
[1]
[3]
[4]

A2 Rated
$\left.\begin{array}{ccccc} & \begin{array}{c}\text { Aaa Rated } \\ \text { Corporate Bond }\end{array} & & \begin{array}{c}\text { A2 Rated } \\ \text { Public Utility } \\ \text { Bond }\end{array} & \end{array} \begin{array}{c}\text { Baa2 Rated Public } \\ \text { Utility Bond }\end{array}\right]$

Selected Bond Spreads
A2 Rated Public Utility Bonds Over Aaa Rated Corporate Bonds:

$$
0.50 \%(1)
$$

Baa2 Rated Public Utility Bonds Over A2 Rated Public Utility Bonds:

$$
0.30 \%(2)
$$

Notes:
(1) Column [3] - Column [1].
(2) Column [4]-Column [3].

Source of Information:
Bloomberg Professional Service

## Schedule DWD-3

Page 5 of 13

## Piedmont Natural Gas Company

Comparison of Long-Term Issuer Ratings for
Proxy Group of Eight Natural Gas Distribution Companies

$\left.\frac{\text { Moody's }}{\frac{\text { Long-Term Issuer Rating }}{\text { January 2021 }}} \begin{array}{c}\text { Standard \& Poor's } \\ \hline\end{array} \quad \begin{array}{l}\text { Long-Term Issuer Rating } \\ \hline\end{array}\right]$ January 2021


Proxy Group of Eight Natural Gas Distribution Companies	Long-Term Issuer Rating	Numerical   Weighting (1)	Long-Term Issuer Rating	Numerical   Weighting(1)
Atmos Energy Corporation	A1	5.0	A	6.0
New Jersey Resources Corp. (2)	A1	5.0	NR	--
Nisource, Inc. (3)	Baa1	8.0	BBB+	8.0
Northwest Natural Holding Company (4)	Baa1	8.0	A+	5.0
ONE Gas, Inc.	A2	6.0	A	6.0
South Jersey Inds. (5)	A3	7.0	BBB	9.0
Southwest Gas Holdings, Inc. (6)	Baa1	8.0	A-	7.0
Spire Inc. (7)	A1/A2	5.5	A-	7.0
Average	A3	6.6	A-	6.9

Notes:
(1) From page 6 of this Schedule.
(2) Ratings that of New Jersey Natural Gas Company.
(3) Ratings that of Northern Indiana Public Service Co.
(4) Ratings that of Northwest Natural Gas Co.
(5) Ratings that of Elizabethtown Gas Company and South Jersey Gas Company.
(6) Ratings that of Southwest Gas Corp.
(7) Ratings that of Spire Alabama and Spire Missouri.

Source Information: Moody's Investors Service
Standard \& Poor's Global Utilities Rating Service

> Numerical Assignment for Moody's and Standard \& Poor's Bond Ratings

Moody's Bond   Rating	Numerical Bond   Weighting	  Poor's Bond   Rating
Aaa	1	AAA
Aa1	2	AA+
Aa2	3	AA
Aa3	4	AA-
A1	5	A+
A2	6	A
A3	7	$\mathrm{~A}-$
Baa1	8	$\mathrm{BBB}+$
Baa2	9	BBB
Baa3	10	$\mathrm{BBB}-$
Ba1		
Ba2	11	$\mathrm{BB}+$
Ba3	12	BB
B1	13	$\mathrm{BB}-$
B2	14	$\mathrm{~B}+$
B3	15	B

# Schedule DWD-3 <br> Page 7 of 13 

Piedmont Natural Gas Company
Judgment of Equity Risk Premium for
Proxy Group of Eight Natural Gas Distribution Companies

Line
No.

No.

1. Calculated equity risk premium based on the total market using the beta approach (1)
2. Mean equity risk premium based on a study using the holding period returns of public utilities with A2 rated bonds (2) 5.51
3. Predicted Equity Risk Premium Based on Regression Analysis of 797 Fully-Litigated Natural Gas Utility Rate Cases (3)
4. Average equity risk premium

Notes: (1) From page 8 of this Schedule.
(2) From page 12 of this Schedule.
(3) From page 13 of this Schedule.

Proxy Group of Eight
Natural Gas
Distribution
Companies
6.74 \%
$9.29 \%$
5.92
6.18
$7.13 \%$

## Piedmont Natural Gas Company

Derivation of Equity Risk Premium Based on the Total Market Approach Using the Beta for the Proxy Group of Eight Natural Gas Distribution Companies

Line No.	Equity Risk Premium Measure	Proxy Group of Eight Natural Gas Distribution Companies	Results using Current $\qquad$
Ibbotson-Based Equity Risk Premiums:			
1.	Ibbotson Equity Risk Premium (1)	5.78 \%	5.78 \%
2.	Regression on Ibbotson Risk Premium Data	9.30 (2)	10.05 (3)
3.	Ibbotson Equity Risk Premium based on PRPM (4)	9.65	9.65
4.	Equity Risk Premium Based on Value Line Summary and Index	6.77 (5)	7.41 (6)
5.	Equity Risk Premium Based on Value Line S\&P 500 Companies	11.04 (7)	11.68 (8)
6.	Equity Risk Premium Based on Bloomberg S\&P 500 Companies	14.72 (9)	15.36 (10)
7.	Conclusion of Equity Risk Premium	9.54 \%	9.99 \%
8.	Adjusted Beta (11)	0.93	0.93
9.	Forecasted Equity Risk Premium	8.87 \%	9.29 \%

Notes provided on page 9 of this Schedule.

## Schedule DWD-3 <br> Page 9 of 13

Piedmont Natural Gas Company<br>Derivation of Equity Risk Premium Based on the Total Market Approach<br>Using the Beta for the<br>Proxy Group of Eight Natural Gas Distribution Companies

Notes:
(1) Based on the arithmetic mean historical monthly returns on large company common stocks from Ibbotson® SBBI® 2020 Market Report minus the arithmetic mean monthly yield of Moody's average Aaa and Aa2 corporate bonds from 1926-2019.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of large company common stocks relative to Moody's average Aaa and Aa2 rated corporate bond yields from 1928-2019 referenced in Note 1 above. Using the equation generated from the regression, an expected equity risk premium is calculated using the average consensus forecast of Aaa corporate bonds of $3.06 \%$ (from page 3 of this Schedule).
(3) This equity risk premium is based on a regression of the monthly equity risk premiums of large company common stocks relative to Moody's average Aaa and Aa2 rated corporate bond yields from 1928-2019 referenced in Note 1 above. Using the equation generated from the regression, an expected equity risk premium is calculated using the three-month average Aaa and Aa 2 rated corporate bond of $2.43 \%$.
(4) The Predictive Risk Premium Model (PRPM) is discussed in the accompanying direct testimony. The Ibbotson equity risk premium based on the PRPM is derived by applying the PRPM to the monthly risk premiums between Ibbotson large company common stock monthly returns and average Aaa and Aa2 corporate monthly bond yields, from January 1928 through January 2021.
(5) The equity risk premium based on the Value Line Summary and Index is derived by subtracting the average consensus forecast of Aaa corporate bonds of 3.06\% (from page 3 of this Schedule) from the projected 3-5 year total annual market return of $9.83 \%$ (described fully in note 1 on page 2 of Schedule DWD-5).
(6) The equity risk premium based on the Value Line Summary and Index is derived by subtracting the current 3 month average of Aaa and Aa2 corporate bond yields of $2.43 \%$ from the projected 3-5 year total annual market return of $9.83 \%$ (described fully in note 1 on page 2 of Schedule DWD-5).
(7) Using data from Value Line for the S\&P 500, an expected total return of $14.10 \%$ was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of $3.06 \%$ results in an expected equity risk premium of $11.04 \%$.
(8) Using data from Value Line for the S\&P 500, an expected total return of $14.10 \%$ was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the current 3 month average of Aaa and Aa2 corporate bond yields of $2.43 \%$ results in an expected equity risk premium of $11.68 \%$.
(9) Using data from the Bloomberg Professional Service for the S\&P 500, an expected total return of $17.78 \%$ was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of $3.06 \%$ results in an expected equity risk premium of $14.72 \%$.
(10) Using data from the Bloomberg Professional Service for the S\&P 500, an expected total return of 17.78\% was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the current 3 month average of Aaa and Aa2 corporate bond yields of $2.43 \%$ results in an expected equity risk premium of $15.36 \%$.
(11) Average of mean and median beta from Schedule DWD-5.

Sources of Information:
Stocks, Bonds, Bills, and Inflation - 2020 SBBI Yearbook, John Wiley \& Sons, Inc.
Industrial Manual and Mergent Bond Record Monthly Update.
Value Line Summary and Index
Blue Chip Financial Forecasts, February 1, 2021 and December 1, 2020
Bloomberg Professional Service

KyPSC Case No. 2021-00190 STAFF-DR-03-010(a) Attachment

Page 93 of 117

## Consensus Forecasts of U.S. Interest Rates and Key Assumptions

Interest Rates	---------------------------------------History For We-------------------------------------------------								Consensus Forecasts-Quarterly Avg.					
									$\begin{gathered} 1 Q \\ 2021 \\ \hline \end{gathered}$	$\begin{gathered} 2 Q \\ \underline{2021} \\ \hline \end{gathered}$	$\begin{gathered} 3 Q \\ 2021 \\ \hline \end{gathered}$	$\begin{gathered} 4 Q \\ 2021 \\ \hline \end{gathered}$	$\begin{gathered} 1 Q \\ 2022 \\ \hline \end{gathered}$	$\begin{gathered} 2 \mathrm{Q} \\ \mathbf{2 0 2 2} \\ \hline \end{gathered}$
	$\text { Jan } 22$	Jan 15	$\text { Jan } 8$	$\text { Jan } 1$	Dec	Nov	Oct	4Q 2020						
Federal Funds Rate	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.1	0.1	0.1	0.1	0.1	0.1
Prime Rate	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.3	3.3	3.3	3.3	3.3	3.3
LIBOR, 3-mo.	0.22	0.23	0.23	0.24	0.23	0.22	0.22	0.22	0.2	0.3	0.3	0.3	0.3	0.3
Commercial Paper, 1-mo.	0.08	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.1	0.1	0.2	0.2	0.2	0.2
Treasury bill, 3-mo.	0.09	0.09	0.09	0.10	0.09	0.09	0.10	0.09	0.1	0.1	0.1	0.1	0.1	0.2
Treasury bill, 6-mo.	0.10	0.10	0.09	0.10	0.09	0.10	0.11	0.10	0.1	0.1	0.1	0.2	0.2	0.2
Treasury bill, 1 yr.	0.10	0.11	0.10	0.11	0.10	0.12	0.13	0.12	0.1	0.2	0.2	0.2	0.2	0.3
Treasury note, 2 yr .	0.13	0.14	0.13	0.13	0.14	0.17	0.15	0.15	0.2	0.2	0.3	0.3	0.3	0.4
Treasury note, 5 yr.	0.45	0.49	0.42	0.37	0.39	0.39	0.34	0.37	0.5	0.5	0.6	0.7	0.7	0.8
Treasury note, 10 yr .	1.11	1.13	1.03	0.94	0.93	0.87	0.79	0.86	1.1	1.2	1.2	1.3	1.4	1.5
Treasury note, 30 yr .	1.85	1.86	1.78	1.66	1.67	1.62	1.57	1.62	1.8	1.9	2.0	2.1	2.1	2.2
Corporate Aaa bond	2.65	2.67	2.61	2.49	2.52	2.58	2.65	2.58	2.5	2.6	2.7	2.8	2.9	2.9
Corporate Baa bond	3.13	3.16	3.12	3.00	3.03	3.13	3.27	3.14	3.4	3.6	3.7	3.8	3.9	3.9
State \& Local bonds	2.66	2.67	2.67	2.67	2.70	2.82	2.93	2.82	2.5	2.6	2.7	2.8	2.8	2.9
Home mortgage rate	2.77	2.79	2.65	2.67	2.68	2.77	2.83	2.76	2.8	3.0	3.0	3.1	3.2	3.2
				---Histo					Consensus Forecasts-Quarterly					
	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1 Q	2Q	3Q	4Q	1Q	2 Q
Key Assumptions	$\underline{2019}$	$\underline{2019}$	$\underline{2019}$	$\underline{2019}$	$\underline{2020}$	$\underline{2020}$	$\underline{2020}$	$\underline{2020}$	2021	2021	$\underline{2021}$	2021	2022	2022
Fed's AFE \$ Index	109.4	110.3	110.5	110.3	111.2	112.4	107.2	105.2	103.4	102.8	102.7	102.7	102.5	102.6
Real GDP	2.9	1.5	2.6	2.4	-5.0	-31.4	33.4	4.0	2.1	5.4	6.0	4.5	3.4	3.0
GDP Price Index	1.2	2.5	1.5	1.4	1.4	-1.8	3.5	2.0	1.8	1.7	1.9	1.9	1.9	2.0
Consumer Price Index	0.9	3.0	1.8	2.4	1.2	-3.5	5.2	2.2	2.3	1.8	2.1	2.0	2.1	2.1
PCE Price Index	0.6	2.5	1.4	1.5	1.3	-1.6	3.7	1.5	2.1	1.7	1.9	1.9	1.9	1.9

Forecasts for interest rates and the Federal Reserve's Major Currency Index represent averages for the quarter. Forecasts for Real GDP, GDP Price Index and Consumer Price Index are seasonally-adjusted annual rates of change (saar). Individual panel members' forecasts are on pages 4 through 9. Historical data: Treasury rates from the Federal Reserve Board's H.15; AAA-AA and A-BBB corporate bond yields from Bank of America-Merrill Lynch and are 15+ years, yield to maturity; State and local bond yields from Bank of America-Merrill Lynch, A-rated, yield to maturity; Mortgage rates from Freddie Mac, 30-year, fixed; LIBOR quotes from Intercontinental Exchange. All interest rate data are sourced from Haver Analytics. Historical data for Fed's Major Currency Index are from FRSR H.10. Historical data for Real GDP and GDP Chained Price Index are from the Bureau of Economic Analysis (BEA). Consumer Price Index (CPI) history is from the Department of Labor's Bureau of Labor Statistics (BLS).


## Long-Range Survey:

The table below contains the results of our twice-annual long-range CONSENSUS survey. There are also Top 10 and Bottom 10 averages for each variable. Shown are consensus estimates for the years 2022 through 2026 and averages for the five-year periods 2022-2026 and 2027-2031. Apply these projections cautiously. Few if any economic, demographic and political forces can be evaluated accurately over such long time spans.


# KyPSC Case No. 2021-00190 STAFF-DR-03-010(a) Attachment Page 95 of 117 



Notes: (1) Based on S\&P Public Utility Index monthly total returns and Moody's Public Utility Bond average monthly yields from 1928-2019. Holding period returns are calculated based upon income received (dividends and interest) plus the relative change in the market value of a security over a one-year holding period.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of the S\&P Utility Index relative to Moody's A2 rated public utility bond yields from 1928-2019 referenced in note 1 above. Using the equation generated from the regression, an expected equity risk premium is calculated using the prospective A2 rated public utility bond yield of $3.56 \%$ (from line 3, page 3 of this Schedule).
(3) This equity risk premium is based on a regression of the monthly equity risk premiums of the S\&P Utility Index relative to Moody's A2 rated public utility bond yields from 1928-2019 referenced in note 1 above. Using the equation generated from the regression, an expected equity risk premium is calculated using the current A2 rated public utility bond yield of $2.84 \%$ (from line 4, page 3 of this Schedule).
(4) The Predictive Risk Premium Model (PRPM) is applied to the risk premium of the monthly total returns of the S\&P Utility Index and the monthly yields on Moody's A2 rated public utility bonds from January 1928 - January 2021.
(5) Using data from Value Line for the S\&P Utilities Index, an expected return of $10.36 \%$ was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the expected A2 rated public utility bond yield of $3.56 \%$, calculated on line 3 of page 3 of this Schedule results in an equity risk premium of 6.80\%. ( $10.36 \%-3.56 \%=6.80 \%$ )
(6) Using data from Value Line for the S\&P Utilities Index, an expected return of $10.36 \%$ was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the current A2 rated public utility bond yield of $2.84 \%$, shown on line 4 of page 3 of this Schedule results in an equity risk premium of $7.52 \%$. $(10.36 \%-2.84 \%=7.52 \%)$
(7) Using data from Bloomberg Professional Service for the S\&P Utilities Index, an expected return of 7.67\% was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the expected A2 rated public utility bond yield of $3.56 \%$, calculated on line 3 of page 3 of this Schedule results in an equity risk premium of $4.11 \%$. $(7.67 \%-3.56 \%=4.11 \%)$
(8) Using data from Bloomberg Professional Service for the S\&P Utilities Index, an expected return of 7.67\% was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the current A2 rated public utility bond yield of $2.84 \%$, shown on line 4 of page 3 of this Schedule results in an equity risk premium of $4.82 \%$. $(7.67 \%-2.84 \%=4.82 \%)$
(9) Average of lines 1 through 5.

Piedmont Natural Gas Company
Prediction of Equity Risk Premiums Relative to
Moody's A Rated Utility Bond Yields


$\frac{\text { Constant }}{7.558} \%$	Slope	Prospective	
		A2 Rated	Prospective Equity Risk Premium
		Utility Bond	
		(1)	
	-0.4854	3.56	5.83
		Current A2	
		Rated Utility	Equity Risk
Constant	Slope	Bond (2)	Premium
7.558 \%	-0.4854	2.84	6.18

Notes:
(1) From line 3 of page 3 of this Schedule.
(2) From line 4 of page 3 of this Schedule.

Piedmont Natural Gas Company, Inc.
General Rate Case
Docket No. G-9, Sub 781

## SCHEDULE DWD-4

Piedmont Natural Gas Company
Indicated Common Equity Cost Rate Through Use
of the Traditional Capital Asset Pricing Model (CAPM) and Empirical Capital Asset Pricing Model (ECAPM)
Using Prospective Interest Rates

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	
Proxy Group of Eight Natural Gas Distribution Companies	Value Line   Adjusted $\qquad$	Bloomberg   Adjusted Beta	$\begin{gathered} \text { Average } \\ \text { Beta } \\ \hline \end{gathered}$	Market Risk   Premium (1)	Risk-Free Rate (2)	Traditional CAPM Cost $\qquad$ Rate	ECAPM Cost Rate	Indicated Common Equity Cost Rate (4)	
Atmos Energy Corporation	0.80	0.90	0.85	10.42 \%	2.31 \%	11.17 \%	11.56 \%	11.36 \%	
New Jersey Resources Corporation	0.95	0.97	0.96	10.42	2.31	12.32	12.42	12.37	
NiSource, Inc.	0.85	1.00	0.93	10.42	2.31	12.00	12.19	12.09	
Northwest Natural Holding Company	0.80	0.87	0.84	10.42	2.31	11.07	11.48	11.27	
ONE Gas, Inc.	0.80	0.99	0.90	10.42	2.31	11.69	11.95	11.82	
South Jersey Industries, Inc.	1.05	0.99	1.02	10.42	2.31	12.94	12.89	12.92	
Southwest Gas Holdings, Inc.	0.95	1.10	1.03	10.42	2.31	13.05	12.97	13.01	
Spire Inc.	0.85	0.97	0.91	10.42	2.31	11.79	12.03	11.91	
Mean			0.93			12.00 \%	12.19 \%	$12.09 \%$	
Median			0.92			11.90 \%	12.11 \%	12.00 \%	
Average of Mean and Median			0.93			11.95	12.15	12.05 \%	
	Using Current Interest Rates								
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	
Proxy Group of Eight Natural Gas Distribution Companies	Value Line   Adjusted   Beta	Bloomberg Adjusted Beta	Average   Beta	Market Risk   Premium (1)	Risk-Free   Rate (3)	Traditional CAPM Cost Rate	ECAPM Cost Rate	Indicated   Common   Equity Cost   Rate (4)	
Atmos Energy Corporation	0.80	0.90	0.85	10.83 \%	1.70 \%	10.91 \%	11.31 \%	11.11 \%	
New Jersey Resources Corporation	0.95	0.97	0.96	10.83	1.70	12.10	12.20	12.15	
NiSource, Inc.	0.85	1.00	0.93	10.83	1.70	11.77	11.96	11.87	
Northwest Natural Holding Company	0.80	0.87	0.84	10.83	1.70	10.80	11.23	11.01	
ONE Gas, Inc.	0.80	0.99	0.90	10.83	1.70	11.45	11.72	11.58	
South Jersey Industries, Inc.	1.05	0.99	1.02	10.83	1.70	12.75	12.69	12.72	
Southwest Gas Holdings, Inc.	0.95	1.10	1.03	10.83	1.70	12.85	12.77	12.81	
Spire Inc.	0.85	0.97	0.91	10.83	1.70	11.56	11.80	11.68	
Mean			0.93			11.77 \%	11.96 \%	11.87 \%	
Median			0.92			11.66 \%	11.88 \%	11.78 \%	
Average of Mean and Median			0.93			11.72	11.92	11.83 \%	

# KyPSC Case No. 2021-00190 STAFF-DR-03-010(a) Attachment Page 99 of 117 

## Schedule DWD-4 <br> Page 2 of 2

## Piedmont Natural Gas Company <br> Notes to Accompany the Application of the CAPM and ECAPM

Notes:
(1) The market risk premium (MRP) is derived by using six different measures from three sources: Ibbotson, Value Line, and Bloomberg as illustrated below:

Historical Data MRP Estimates:	Using   Prospective   Interest   Rates	Using Current   Interest Rates
Measure 1: Ibbotson Arithmetic Mean MRP (1926-2019)		12.10

## Value Line MRP Estimates:

Measure 4: Value Line Projected MRP (Thirteen weeks ending January 29, 2021)

Total projected return on the market 3-5 years hence*:	9.83	\%	9.83
Projected Risk-Free Rate (see note 2):	2.31		1.70
MRP based on Value Line Summary \& Index:	7.52		8.13

*Forcasted 3-5 year capital appreciation plus expected dividend yield
Measure 5: Value Line Projected Return on the Market based on the S\&P 500

Total return on the Market based on the S\&P 500:		
Projected Risk-Free Rate (see note 2):		
MRP based on Value Line data		
Measure 6: Bloomberg Projected MRP		
Total return on the Market based on the S\&P 500:		
Projected Risk-Free Rate (see note 2):	MRP based on Bloomberg data	$14.10 \%$

(2) For reasons explained in the direct testimony, the appropriate risk-free rate for cost of capital purposes is the average forecast of 30 year Treasury Bonds per the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts. (See pages 10 and 11 of Schedule DWD-3.) The projection of the risk-free rate is illustrated below:

First Quarter 2021	$1.80 \%$
Second Quarter 2021	1.90
Third Quarter 2021	2.00
Fourth Quarter 2021	2.10
First Quarter 2022	2.10
Second Quarter 2022	2.20
2022-2026	2.80
2027-2031	$\underline{\underline{-3.60}} \%$

(3) Three-month average on 30-year Treasury bond yield ended January, 2021 as shown below:

Nov-20	$1.62 \%$
Dec-20	1.67
Jan-21	$\underline{\underline{1.82}} \%$

(4) Average of Column 6 and Column 7.

Sources of Information:
Value Line Summary and Index
Blue Chip Financial Forecasts, February 1, 2021 and December 1, 2020
Stocks, Bonds, Bills, and Inflation - 2020 SBBI Yearbook, John Wiley \& Sons, Inc.
Bloomberg Professional Services

Piedmont Natural Gas Company, Inc.
General Rate Case
Docket No. G-9, Sub 781

## SCHEDULE DWD-5

Piedmont Natural Gas Company, Inc.
Basis of Selection of the Group of Non-Price Regulated Companies
Comparable in Total Risk to the Utility Proxy Group

The criteria for selection of the proxy group of forty-seven non-price regulated companies was that the non-price regulated companies be domestic and reported in Value Line Investment Survey (Standard Edition).

The Non-Price Regulated Proxy Group were then selected based on the unadjusted beta range of $0.64-0.94$ and residual standard error of the regression range of 2.6426-3.1518 of the Utility Proxy Group.

These ranges are based upon plus or minus two standard deviations of the unadjusted beta and standard error of the regression. Plus or minus two standard deviations captures $95.50 \%$ of the distribution of unadjusted betas and residual standard errors of the regression.

The standard deviation of the Utility Proxy Group's residual standard error of the regression is 0.1273 . The standard deviation of the standard error of the regression is calculated as follows:

Standard Deviation of the Std. Err. of the Regr. $=\frac{\text { Standard Error of the Regression }}{\sqrt{2 N}}$
where: $\mathrm{N}=$ number of observations. Since Value Line betas are derived from weekly price change observations over a period of five years, $\mathrm{N}=259$

$$
\text { Thus, } 0.1273=\frac{2.8972}{\sqrt{518}}=\frac{2.8972}{22.7596}
$$




Piedmont Natural Gas Company, Inc.
General Rate Case
Docket No. G-9, Sub 781

## SCHEDULE DWD-6

Piedmont Natural Gas Company
Summary of Cost of Equity Models Applied to
Proxy Group of Forty Seven Non-Price Regulated Companies
Comparable in Total Risk to the
Proxy Group of Eight Natural Gas Distribution Companies

Principal Methods		Proxy Group of Forty Seven NonPrice Regulated Companies	Results using Current Interest Rates
Discounted Cash Flow Model (DCF) (1)		11.97 \%	11.97
Risk Premium Model (RPM) (2)		12.82	12.43
Capital Asset Pricing Model (CAPM) (3)		12.07	11.84
	Mean	12.29 \%	12.08
	Median	12.07 \%	11.97
	Median	12.18 \%	12.03

Notes:
(1) From page 2 of this Schedule.
(2) From page 3 of this Schedule.
(3) From page 6 of this Schedule.



Notes: (1) Average forecast of Baa2 corporate bonds based upon the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts dated February 1, 2021 and December 1, 2020 (see pages 10 and 11 of Schedule DWD-3). The estimates are detailed below.

First Quarter 2021	$3.40 \%$
Second Quarter 2021	3.60
Third Quarter 2021	3.70
Fourth Quarter 2021	3.80
First Quarter 2022	3.90
Second Quarter 2022	3.90
2022-2026	4.60
2027-2031	5.40
Average	

(2) Three-month average Baa2 corporate bond yield ended January, 2021 as reported by Bloomberg Professional Services shown below:

Nov-20	3.30		
Dec-20	3.16		
Jan-21	3.25		
Average	$\%$		

(3) From page 5 of this Schedule.

## Schedule DWD-6 <br> Page 4 of 7

Piedmont Natural Gas Company
Comparison of Long-Term Issuer Ratings for the
Proxy Group of Forty Seven Non-Price Regulated Companies of Comparable risk to the


Moody's
Long-Term Issuer Rating
January 2021

Standard \& Poor's
Long-Term Issuer Rating
January 2021

Proxy Group of Forty Seven NonPrice Regulated Companies	Long-Term Issuer Rating	Numerical Weighting (1)	Long-Term Issuer Rating	Numerical Weighting (1)
Abbot Laboratories	A3	7.0	A	6.0
Analog Devices	Baa1	8.0	BBB	--
Assurant Inc.	Baa3	10.0	BBB	9.0
ANSYS, Inc.	NA	--	NA	--
Smith (A.O.)	NA	--	NA	--
Booz Allen Hamilton	NA	--	NA	--
Becton, Dickinson, and Co.	Baa3	10.0	BBB	9.0
Brown-Forman Corporation	A1	5.0	A-	7.0
Broadridge Fin'l	Baa1	8.0	BBB+	8.0
Cadence Design Sys.	Baa2	9.0	$\mathrm{BBB}+$	8.0
Cerner Corp.	NA	--	NA	--
Cooper Cos.	WR	--	NR	--
CSW Industrials	NA	--	NA	--
Quest Diagnostics	Baa2	9.0	BBB+	8.0
Dolby Labs.	NA	--	NA	--
Estee Lauder	A1	5.0	A+	5.0
Exponent, Inc.	NA	--	NA	--
FirstCash, Inc.	Ba1	11.0	BB	12.0
Gentex Corporation	NA	--	NA	--
Hershey Co.	A1	5.0	A	6.0
Int'l Flavors \& Frag	Baa3	10.0	BBB	9.0
Ingredion Inc.	Baa1	8.0	BBB	9.0
Iron Mountain	Ba3	13.0	BB-	13.0
Hunt (J.B.)	Baa1	8.0	BBB+	8.0
J \& J Snack Foods Corp.	NA	--	NA	--
Jack Henry \& Associates, Inc.	NA	--	NA	--
St. Joe Corp	NA	--	NA	--
ManTech Int'l 'A'	WR	--	$\mathrm{BB}+$	11.0
McCormick and Co.	Baa2	9.0	BBB	9.0
Altria Group	A3	7.0	BBB	9.0
MSCI Inc.	Ba2	12.0	$\mathrm{BB}+$	11.0
Motorola Solutions, Inc.	Baa3	10.0	BBB-	10.0
Maxim Integrated	Baa1	8.0	BBB+	--
Northrop Grumman	Baa2	9.0	BBB	9.0
Old Dominion Freight	NA	--	NA	--
Progressive Corp.	A2	6.0	A	6.0
PerkinElmer, Inc.	Baa3	10.0	BBB	9.0
Pool Corp.	NA	--	NA	--
Post Holdings, Inc.	B2	15.0	B+	14.0
Rollins, Inc.	NA	--	NA	--
Starbucks Corporation	Baa1	8.0	BBB+	8.0
Selective Ins. Group	Baa2	9.0	BBB	9.0
Tetra Tech	NA	--	NA	--
AMERCO	WR	--	NR	--
United Parcel Serv.	A2	6.0	A-	7.0
Waters Corp.	NA	--	NA	--
Western Union	Baa2	9.0	BBB	9.0
Average	Baa2	8.7	BBB	8.8

Notes:
(1) From page 6 of Schedule DWD-3.

Source of Information:
Bloomberg Professional Services

# Piedmont Natural Gas Company <br> Derivation of Equity Risk Premium Based on the Total Market Approach <br> Using the Beta for <br> Proxy Group of Forty Seven Non-Price Regulated Companies of Comparable risk to the Proxy Group of Eight Natural Gas Distribution Companies 

Schedule DWD-6
Page 5 of 7

$\underline{\text { Line No. }}$	Equity Risk Premium Measure	Proxy Group of Forty Seven NonPrice Regulated Companies	Results using Current Interest Rates
1.	Ibbotson Equity Risk Premium (1)	5.78 \%	5.78 \%
2.	Regression on Ibbotson Risk Premium Data	9.30 (2)	10.05 (3)
3.	Ibbotson Equity Risk Premium based on PRPM (4)	9.65	9.65
4.	Equity Risk Premium Based on Value Line Summary and Index	6.77 (5)	7.41 (6)
5	Equity Risk Premium Based on Value Line S\&P 500 Companies	11.04 (7)	11.68 (8)
6.	Equity Risk Premium Based on Bloomberg S\&P 500 Companies	14.72 (9)	15.36 (10)
7.	Conclusion of Equity Risk Premium	9.54 \%	9.99 \%
8.	Adjusted Beta (11)	0.92	0.92
9.	Forecasted Equity Risk Premium	8.78 \%	9.19 \%

Notes:
(1) From note 1 of page 9 of Schedule DWD-3.
(2) From note 2 of page 9 of Schedule DWD-3.
(3) From note 3 of page 9 of Schedule DWD-3.
(4) From note 4 of page 9 of Schedule DWD-3.
(5) From note 5 of page 9 of Schedule DWD-3.
(6) From note 6 of page 9 of Schedule DWD-3.
(7) From note 7 of page 9 of Schedule DWD-3.
(8) From note 8 of page 9 of Schedule DWD-3.
(9) From note 9 of page 9 of Schedule DWD-3.
(10) From note 10 of page 9 of Schedule DWD-3.
(11) Average of mean and median beta from page 6 of this Schedule.

Sources of Information:
Stocks, Bonds, Bills, and Inflation - 2020 SBBI Yearbook, John Wiley \& Sons, Inc.
Value Line Summary and Index
Blue Chip Financial Forecasts, February 1, 2021 and December 1, 2020
Bloomberg Professional Services

Using Prospective Interest Rates

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Proxy Group of Forty   Seven Non-Price   Regulated Companies	Value   Line   Adjusted $\qquad$	Bloomberg $\qquad$	Average $\qquad$	Market   Risk   Premium   (1)	Risk-   Free   Rate (2)	Traditional CAPM Cost Rate	ECAPM   Cost Rate	Indicated Common Equity Cost Rate (4)
Abbot Laboratories	0.95	0.90	0.92	10.42 \%	2.31 \%	11.90 \%	12.11 \%	12.00 \%
Analog Devices	0.95	1.06	1.01	10.42	2.31	12.84	12.81	12.82
Assurant Inc.	0.90	1.01	0.95	10.42	2.31	12.21	12.34	12.28
ANSYS, Inc.	0.90	0.93	0.92	10.42	2.31	11.90	12.11	12.00
Smith (A.O.)	0.90	1.01	0.96	10.42	2.31	12.32	12.42	12.37
Booz Allen Hamilton	0.90	0.90	0.90	10.42	2.31	11.69	11.95	11.82
Becton, Dickinson, and Co.	0.80	0.62	0.71	10.42	2.31	9.71	10.47	10.09 (5)
Brown-Forman Corporation	0.85	0.97	0.91	10.42	2.31	11.79	12.03	11.91
Broadridge Fin'l	0.85	0.83	0.84	10.42	2.31	11.07	11.48	11.27
Cadence Design Sys.	0.95	0.98	0.96	10.42	2.31	12.32	12.42	12.37
Cerner Corp.	0.95	0.91	0.93	10.42	2.31	12.00	12.19	12.09
Cooper Cos.	0.95	0.93	0.94	10.42	2.31	12.11	12.26	12.19
CSW Industrials	0.85	1.02	0.94	10.42	2.31	12.11	12.26	12.19
Quest Diagnostics	0.90	0.99	0.95	10.42	2.31	12.21	12.34	12.28
Dolby Labs.	0.95	0.95	0.95	10.42	2.31	12.21	12.34	12.28
Estee Lauder	0.90	0.97	0.94	10.42	2.31	12.11	12.26	12.19
Exponent, Inc.	0.85	0.91	0.88	10.42	2.31	11.48	11.79	11.64
FirstCash, Inc.	0.80	0.97	0.88	10.42	2.31	11.48	11.79	11.64
Gentex Corporation	0.95	1.05	1.00	10.42	2.31	12.73	12.73	12.73
Hershey Co.	0.85	0.83	0.84	10.42	2.31	11.07	11.48	11.27
Int'l Flavors \& Frag	0.90	1.04	0.97	10.42	2.31	12.42	12.50	12.46
Ingredion Inc.	0.90	0.92	0.91	10.42	2.31	11.79	12.03	11.91
Iron Mountain	0.95	1.08	1.01	10.42	2.31	12.84	12.81	12.82
Hunt (J.B.)	0.95	0.91	0.93	10.42	2.31	12.00	12.19	12.09
J \& J Snack Foods Corp.	0.90	0.78	0.84	10.42	2.31	11.07	11.48	11.27
Jack Henry \& Associates, Inc.	0.85	0.90	0.87	10.42	2.31	11.38	11.72	11.55
St. Joe Corp	0.90	0.96	0.93	10.42	2.31	12.00	12.19	12.09
ManTech Int'l 'A'	0.85	1.11	0.98	10.42	2.31	12.52	12.58	12.55
McCormick and Co.	0.85	0.69	0.77	10.42	2.31	10.34	10.93	10.64 (5)
Altria Group	0.90	0.87	0.89	10.42	2.31	11.59	11.87	11.73
MSCI Inc.	0.95	0.92	0.93	10.42	2.31	12.00	12.19	12.09
Motorola Solutions, Inc.	0.90	0.94	0.92	10.42	2.31	11.90	12.11	12.00
Maxim Integrated	0.95	1.01	0.98	10.42	2.31	12.52	12.58	12.55
Northrop Grumman	0.85	0.78	0.82	10.42	2.31	10.86	11.33	11.09
Old Dominion Freight	0.95	0.98	0.96	10.42	2.31	12.32	12.42	12.37
Progressive Corp.	0.80	0.77	0.79	10.42	2.31	10.54	11.09	10.82
PerkinElmer, Inc.	0.95	0.85	0.90	10.42	2.31	11.69	11.95	11.82
Pool Corp.	0.90	0.94	0.92	10.42	2.31	11.90	12.11	12.00
Post Holdings, Inc.	0.95	0.91	0.93	10.42	2.31	12.00	12.19	12.09
Rollins, Inc.	0.85	0.67	0.76	10.42	2.31	10.23	10.86	10.54 (5)
Starbucks Corporation	0.95	1.07	1.01	10.42	2.31	12.84	12.81	12.82
Selective Ins. Group	0.85	0.97	0.91	10.42	2.31	11.79	12.03	11.91
Tetra Tech	0.90	1.02	0.96	10.42	2.31	12.32	12.42	12.37
AMERCO	0.95	1.09	1.02	10.42	2.31	12.94	12.89	12.92
United Parcel Serv.	0.80	0.85	0.82	10.42	2.31	10.86	11.33	11.09
Waters Corp.	0.95	0.84	0.90	10.42	2.31	11.69	11.95	11.82
Western Union	0.85	1.05	0.95	10.42	2.31	12.21	12.34	12.28
		Mean	0.91			11.83 \%	12.05 \%	12.04 \%
		Median	0.93			12.00 \%	12.19 \%	12.09 \%
Average of Mean and Median			0.92			11.92 \%	12.12 \%	12.07 \%

Schedule DWD-6
Page 7 of 7
Piedmont Natural Gas Company
Traditional CAPM and ECAPM Results for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the Proxy Group of Eight Natural Gas Distribution Companies

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Proxy Group of Forty   Seven Non-Price   Regulated Companies	Value   Line Adjusted Beta	$\begin{gathered} \text { Bloomberg } \\ \text { Beta } \\ \hline \end{gathered}$	Average Beta	Market Risk Premium (1)		Traditional CAPM Cost Rate	ECAPM   Cost Rate	Indicated   Common Equity Cost Rate (4)
Abbot Laboratories	0.95	0.90	0.92	10.83	1.70	11.66 \%	11.88 \%	11.77 \%
Analog Devices	0.95	1.06	1.01	10.83	1.70	12.64	12.61	12.62
Assurant Inc.	0.90	1.01	0.95	10.83	1.70	11.99	12.12	12.06
ANSYS, Inc.	0.90	0.93	0.92	10.83	1.70	11.66	11.88	11.77
Smith (A.O.)	0.90	1.01	0.96	10.83	1.70	12.10	12.20	12.15
Booz Allen Hamilton	0.90	0.90	0.90	10.83	1.70	11.45	11.72	11.58
Becton, Dickinson, and Co.	0.80	0.62	0.71	10.83	1.70	9.39	10.17	9.78 (5)
Brown-Forman Corporation	0.85	0.97	0.91	10.83	1.70	11.56	11.80	11.68
Broadridge Fin'l	0.85	0.83	0.84	10.83	1.70	10.80	11.23	11.01
Cadence Design Sys.	0.95	0.98	0.96	10.83	1.70	12.10	12.20	12.15
Cerner Corp.	0.95	0.91	0.93	10.83	1.70	11.77	11.96	11.87
Cooper Cos.	0.95	0.93	0.94	10.83	1.70	11.88	12.04	11.96
CSW Industrials	0.85	1.02	0.94	10.83	1.70	11.88	12.04	11.96
Quest Diagnostics	0.90	0.99	0.95	10.83	1.70	11.99	12.12	12.06
Dolby Labs.	0.95	0.95	0.95	10.83	1.70	11.99	12.12	12.06
Estee Lauder	0.90	0.97	0.94	10.83	1.70	11.88	12.04	11.96
Exponent, Inc.	0.85	0.91	0.88	10.83	1.70	11.23	11.56	11.39
FirstCash, Inc.	0.80	0.97	0.88	10.83	1.70	11.23	11.56	11.39
Gentex Corporation	0.95	1.05	1.00	10.83	1.70	12.53	12.53	12.53
Hershey Co.	0.85	0.83	0.84	10.83	1.70	10.80	11.23	11.01
Int'l Flavors \& Frag	0.90	1.04	0.97	10.83	1.70	12.20	12.29	12.25
Ingredion Inc.	0.90	0.92	0.91	10.83	1.70	11.56	11.80	11.68
Iron Mountain	0.95	1.08	1.01	10.83	1.70	12.64	12.61	12.62
Hunt (J.B.)	0.95	0.91	0.93	10.83	1.70	11.77	11.96	11.87
J \& J Snack Foods Corp.	0.90	0.78	0.84	10.83	1.70	10.80	11.23	11.01
Jack Henry \& Associates, Inc.	0.85	0.90	0.87	10.83	1.70	11.12	11.47	11.30
St. Joe Corp	0.90	0.96	0.93	10.83	1.70	11.77	11.96	11.87
ManTech Int'l 'A'	0.85	1.11	0.98	10.83	1.70	12.31	12.37	12.34
McCormick and Co.	0.85	0.69	0.77	10.83	1.70	10.04	10.66	10.35 (5)
Altria Group	0.90	0.87	0.89	10.83	1.70	11.34	11.64	11.49
MSCI Inc.	0.95	0.92	0.93	10.83	1.70	11.77	11.96	11.87
Motorola Solutions, Inc.	0.90	0.94	0.92	10.83	1.70	11.66	11.88	11.77
Maxim Integrated	0.95	1.01	0.98	10.83	1.70	12.31	12.37	12.34
Northrop Grumman	0.85	0.78	0.82	10.83	1.70	10.58	11.07	10.82
Old Dominion Freight	0.95	0.98	0.96	10.83	1.70	12.10	12.20	12.15
Progressive Corp.	0.80	0.77	0.79	10.83	1.70	10.26	10.82	10.54
PerkinElmer, Inc.	0.95	0.85	0.90	10.83	1.70	11.45	11.72	11.58
Pool Corp.	0.90	0.94	0.92	10.83	1.70	11.66	11.88	11.77
Post Holdings, Inc.	0.95	0.91	0.93	10.83	1.70	11.77	11.96	11.87
Rollins, Inc.	0.85	0.67	0.76	10.83	1.70	9.93	10.58	10.26 (5)
Starbucks Corporation	0.95	1.07	1.01	10.83	1.70	12.64	12.61	12.62
Selective Ins. Group	0.85	0.97	0.91	10.83	1.70	11.56	11.80	11.68
Tetra Tech	0.90	1.02	0.96	10.83	1.70	12.10	12.20	12.15
AMERCO	0.95	1.09	1.02	10.83	1.70	12.75	12.69	12.72
United Parcel Serv.	0.80	0.85	0.82	10.83	1.70	10.58	11.07	10.82
Waters Corp.	0.95	0.84	0.90	10.83	1.70	11.45	11.72	11.58
Western Union	0.85	1.05	0.95	10.83	1.70	11.99	12.12	12.06
		Mean	0.91			11.59 \%	11.82 \%	11.81 \%
		Median	0.93			11.77 \%	11.96 \%	11.87 \%
Average of Mean and Median			0.92			11.68 \%	11.89 \%	11.84 \%

Notes:
(1) From Schedule DWD-4, note 1.
(2) From Schedule DWD-4, note 2.
(3) From Schedule DWD-4, note 3.
(4) Average of CAPM and ECAPM cost rates.
(5) Results were excluded from the final average and median as they were more than 2 standard deviations from the proxy group's mean.

Piedmont Natural Gas Company, Inc.
General Rate Case
Docket No. G-9, Sub 781


Notes:
(1) From page 2 of this Schedule.
(2) Gleaned from Columns $[B]$ and $[C]$ on the bottom of this page. The appropriate decile (Column $[A]$ ) corresponds to the market capitalization of the proxy group, which is found in Column [1].
(3) Corresponding risk premium to the decile is provided in Column [D] on the bottom of this page.
(4) Line No. 1 Column [3] - Line No. 2 Column [3]. For example, the $0.31 \%$ in Column [4], Line No. 2 is derived as follows $0.31 \%=1.59 \%-0.79 \%$.

$\mathrm{NA}=$ Not Available
Notes: (1) Column 3 / Column 1.
(2) Column 4 / Column 2.
(3) Column $1^{*}$ Column 4.
(4) Requested rate base multiplied by requested equity ratio.
(5) The market-to-book ratio of Piedmont Natural Gas Company on January 29, 2021 is assumed to be equal to the market-to-book ratio of Proxy Group of Eight Natural Gas Distribution Companies on January 29, 2021 as appropriate.
(6) Column [3] multiplied by Column [5].

Piedmont Natural Gas Company, Inc.
General Rate Case
Docket No. G-9, Sub 781

Piedmont Natural Gas Company
Derivation of the Flotation Cost Adjustment to the Cost of Common Equity

Date of Offering	Transaction (1)	[Column 1]   Shares Issued	[Column 2]		[Column 3]		[Column 4]		[Column 5]		[Column 6]		[Column 7]		[Column 8]		[Column 9]		[Column 10]   Flotation   Cost   Percentage   $(7)$
			$\begin{gathered} \text { Market Price } \\ \text { per Share } \\ \hline \end{gathered}$		$\begin{gathered} \text { Average } \\ \text { Offering Price } \\ \text { per Share } \end{gathered}$		$\begin{gathered} \text { Market } \\ \text { Pressure (2) } \\ \hline \end{gathered}$		$\begin{gathered} \text { Total Offering } \\ \text { Expense per } \\ \text { Share } \\ \hline \end{gathered}$		Net Proceeds per Share (3)		Gross Equity Issue before Costs (4)		Total Net Proceeds$(5)$		$\begin{aligned} & \text { Total Flotation } \\ & \text { Costs (6) } \\ & \hline \end{aligned}$		
11/18/19	Equity Offering	28,750,000	\$	88.65	\$	85.99	\$	2.66	\$	0.021	\$	85.9694	\$	2,548,687,500	\$	2,471,620,500	\$	77,067,000	3.02\%
03/06/18	Equity Offering	21,275,000	\$	75.86	\$	74.07	\$	1.79	\$	0.021	\$	74.0508	\$	1,613,921,500	\$	1,575,431,800	\$	38,489,700	2.38\%
02/29/16	Equity Offering	10,637,500	\$	73.35	\$	69.84	\$	3.51	\$	0.038	\$	69.8024	\$	780,260,625	\$	742,523,000	\$	37,737,625	4.84\%
													\$	4,942,869,625	\$	4,789,575,300	\$	153,294,325	3.10\%
Flotation Cost Adjustment																			
	Average Dividend Yield	Average   Projected EPS Growth Rate	Average DCF   Adjusted   Dividend   Yield   Cost Rate   Unadusted for   Flotation (8)   				$\begin{aligned} & \text { DCF } \\ & \text { Fiju } \\ & \text { Fote } \end{aligned}$	st Rate ed for on (9)	$\begin{gathered} \text { Flotation Cost } \\ \text { Adjustment } \\ (10) \\ \hline \end{gathered}$										
Proxy Group of Eight Natural Gas Distribution																			
Companies	3.59 \%	5.90 \%		3.69 \%		9.59 \%		9.71 \%		0.12									

See page 2 of this Schedule for notes.
Source of Information: Company SEC filings

# Piedmont Natural Gas Company, Inc. <br> Notes to Accompany the <br> Derivation of the Flotation Cost Adjustment to the Cost of Common Equity 

(1) Company-provided.
(2) Column 2 - Column 3.
(3) Column 2 - the sum of columns 4 and 5.
(4) Column 1 * Column 2.
(5) Column1 * Column 6.
(6) Column1 * (the sum of columns 4 and 5).
(7) (Column 7 - Column 8) divided by Column 7.
(8) Using the average growth rate from Schedule DWD-2.
(9) Adjustment for flotation costs based on adjusting the average DCF constant growth cost rate in accordance with the following:
$K=\frac{D(1+0.5 g)}{P(1-F)}+g$,
where $g$ is the growth factor and $F$ is the percentage of flotation costs.
(10) Flotation cost adjustment of $0.12 \%$ equals the difference between the flotation adjusted average DCF cost rate of $9.71 \%$ and the unadjusted average DCF cost rate of $9.59 \%$ of the Utility Proxy Group.

Source of Information:
Company provided information

# BEFORE THE PUBLIC SERVICE COMMISSION COMMONWEALTH OF KENTUCKY 

APPLICATION OF ATMOS ENERGY	)
CORPORATION FOR AN ADJUSTMENT	)
	() Case No. 2021-00214
OF RATES AND TARIFF MODIFICATIONS	)

## DIRECT TESTIMONY OF DYLAN W. D'ASCENDIS

RATE OF RETURN

## TABLE OF CONTENTS

I. Introduction and Purpose ..... 1
II. Summary of Testimony ..... 3
III. General Principles ..... 5
A. Business Risk ..... 9
B. Financial Risk ..... 11
IV. Atmos Energy's Kentucky Operations and the Utility Proxy Group ..... 12
V. Common Equity Cost Rate Models ..... 14
A. Discounted Cash Flow Model ..... 16
B. The Risk Premium Model ..... 19

1. The Predictive Risk Premium Model ..... 20
2. The Total Market Risk Premium Approach ..... 22
C. The Capital Asset Pricing Model. ..... 33
D. Common Equity Cost Rates for a Proxy Group of Domestic, Non-Price Regulated Companies Based on the DCF, RPM, and CAPM ..... 39
VI. Conclusion of Common Equity Cost Rate Before Adjustments ..... 42
VII. Adjustments to the Common Equity Cost Rate. ..... 43
A. Size Adjustment ..... 43
B. Credit Risk Adjustment ..... 47
C. Flotation Cost Adjustment ..... 48
VIII. Conclusion ..... 51
Exhibit
Exhibit DWD-1

## I. INTRODUCTION AND PURPOSE

## Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.

A. My name is Dylan W. D'Ascendis. My business address is 3000 Atrium Way, Suite 241, Mount Laurel, NJ 08054.
Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?
A. I am a Partner at ScottMadden, Inc.
Q. PLEASE SUMMARIZE YOUR PROFESSIONAL EXPERIENCE AND EDUCATIONAL BACKGROUND.
A. I have offered expert testimony on behalf of investor-owned utilities before over 25 state regulatory commissions in the United States, the Federal Energy Regulatory Commission, the Alberta Utility Commission, and one American Arbitration Association panel on issues including, but not limited to, common equity cost rate, rate of return, valuation, capital structure, class cost of service, and rate design.

On behalf of the American Gas Association ("AGA"), I calculate the AGA Gas Index, which serves as the benchmark against which the performance of the American Gas Index Fund ("AGIF") is measured on a monthly basis. The AGA Gas Index and AGIF are a market capitalization weighted index and mutual fund, respectively, comprised of the common stocks of the publicly traded corporate members of the AGA.

I am a member of the Society of Utility and Regulatory Financial Analysts ("SURFA"). In 2011, I was awarded the professional designation "Certified Rate of Return Analyst" by SURFA, which is based on education, experience, and the successful completion of a comprehensive written examination.

I am also a member of the National Association of Certified Valuation Analysts ("NACVA") and was awarded the professional designation "Certified Valuation Analyst" by the NACVA in 2015.

I am a graduate of the University of Pennsylvania, where I received a Bachelor of Arts degree in Economic History. I have also received a Master of Business Administration with high honors and concentrations in Finance and International Business from Rutgers University.

The details of my educational background and expert witness appearances are shown in Appendix A.

## Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS PROCEEDING?

A. The purpose of my testimony is to present evidence and provide a recommendation regarding Atmos Energy Corporation's ("Atmos Energy" or the "Company") return on common equity ("ROE") for its natural gas distribution operations in Kentucky.
Q. HAVE YOU PREPARED AN EXHIBIT IN SUPPORT OF YOUR RECOMMENDATION?
A. Yes. I have prepared Exhibit No. DWD-1, consisting of Schedules DWD-1 through DWD-8, which were prepared by me or under my direction.

## Q. WHAT IS YOUR RECOMMENDED ROE FOR ATMOS ENERGY?

A. I recommend that the Commission authorize Atmos Energy the opportunity to earn an ROE of $10.35 \%$ on its rate base. The ratemaking capital structure and cost of long-term debt is sponsored by Company Witness Christian. The overall rate of return is summarized on page 1 of Schedule DWD-1 and in Table 1 below:

Table 1: Summary of Recommended Weighted Average Cost of Capital

Type of Capital	Ratios	Cost Rate	Weighted Cost Rate
Long-Term Debt	$42.77 \%$	$4.00 \%$	$1.71 \%$
Short-Term Debt	$0.18 \%$	$25.17 \%$	$0.05 \%$
Common Equity	$\underline{57.05 \%}$	$\underline{10.35 \%}$	$\underline{5.90 \%}$
Total	$\underline{\underline{100.00 \%}}$		$\underline{\underline{7.66 \%}}$

## II. SUMMARY OF TESTIMONY

## Q. PLEASE SUMMARIZE YOUR RECOMMENDED COMMON EQUITY COST RATE.

A. My recommended common equity cost rate of $10.35 \%$ is summarized on page 2 of Schedule DWD-1. I have assessed the market-based common equity cost rates of companies of relatively similar, but not necessarily identical, risk to Atmos Energy. Using companies of relatively comparable risk as proxies is consistent with the principles of fair rate of return established in the Hope ${ }^{1}$ and Bluefield ${ }^{2}$ decisions. No proxy group can be identical in risk to any single company. Consequently, there must be an evaluation of relative risk between the company and the proxy group to determine if it is appropriate to adjust the proxy group's indicated rate of return.

My recommendation results from applying several cost of common equity models, specifically the Discounted Cash Flow ("DCF") model, the Risk Premium Model ("RPM"), and the Capital Asset Pricing Model ("CAPM"), to the market data of a proxy group of seven natural gas distribution utilities ("Utility Proxy Group") whose selection criteria will be discussed below. In addition, I applied the DCF model, RPM, and CAPM to a proxy group of 48 domestic, non-price regulated
companies comparable in total risk to the Utility Proxy Group ("Non-Price Regulated Proxy Group"). The results derived from each are as follows:

Table 2: Summary of Common Equity Cost Rates

Discounted Cash Flow Model	$9.44 \%$
Risk Premium Model	$10.96 \%$
Capital Asset Pricing Model	$11.75 \%$
Cost of Equity Models Applied to Comparable	$\underline{12.42 \%}$
Risk, Non-Price Regulated Companies	$9.44 \%-12.42 \%$
Indicated Range	$0.20 \%$
Size Adjustment	$-0.10 \%$
Credit Risk Adjustment	$\underline{0.04 \%}$
Flotation Cost Adjustment	$9.58 \%-12.66 \%$
Recommended Range	$\underline{\underline{10.35 \%}}$
Recommended Cost of Common Equity	

The indicated range of common equity cost rates applicable to the Utility Proxy Group is between $9.44 \%$ and $12.42 \%$ before any Company-specific adjustments. As ROE models are based on market data, the indicated results of the models would reflect current and expected capital markets, including the impacts of COVID-19. I then adjusted the indicated range by $0.20 \%$ and negative $0.10 \%$ to reflect the Company's smaller relative size and lower credit risk, as compared to the Utility Proxy Group companies, and by $0.04 \%$ for flotation costs. ${ }^{3}$ These adjustments resulted in a Company-specific indicated range of common equity cost rates between $9.58 \%$ and $12.66 \%$.

The wide range of model results may reflect increased uncertainty related to the COVID-19 pandemic and unknown timeframe for when economic conditions

3 See Section VII for a detailed discussion of my cost of common equity adjustments.
will normalize as vaccinations ramp up and the public health crises subsides. Because of this uncertainty, I recommend an ROE for the Company toward the lower end of my Company-specific range, specifically $10.35 \%$.

## Q. HOW IS THE REMAINDER OF YOUR DIRECT TESTIMONY ORGANIZED?

A. The remainder of my Direct Testimony is organized as follows:

- Section III - Provides a summary of financial theory and regulatory principles pertinent to the development of the cost of common equity;
- Section IV - Explains my selection of the Utility Proxy Group used to develop my Cost of Common Equity analytical results;
- Section V - Describes the analyses on which my Cost of Common Equity recommendation is based;
- Section VI - Summarizes my common equity cost rate before adjustments to reflect Company-specific factors;
- Section VII - Explains my adjustments to my common equity cost rate to reflect Company-specific factors; and
- Section VIII - Presents my conclusions.


## III. GENERAL PRINCIPLES

## Q. WHAT GENERAL PRINCIPLES HAVE YOU CONSIDERED IN

 ARRIVING AT YOUR RECOMMENDED COMMON EQUITY COST RATE OF 10.35\%?A. In unregulated industries, marketplace competition is the principal determinant of the price of products or services. For regulated public utilities, regulation must act
as a substitute for marketplace competition. Assuring that the utility can fulfill its obligations to the public, while providing safe and reliable service at all times, requires a level of earnings sufficient to maintain the integrity of presently invested capital. Sufficient earnings also permit the attraction of needed new capital at a reasonable cost, for which the utility must compete with other firms of comparable risk, consistent with the fair rate of return standards established by the U.S. Supreme Court in the previously cited Hope and Bluefield cases.

The U.S. Supreme Court affirmed the fair rate of return standards in Hope, when it stated:

The rate-making process under the Act, i.e., the fixing of 'just and reasonable' rates, involves a balancing of the investor and the consumer interests. Thus we stated in the Natural Gas Pipeline Co. case that 'regulation does not insure that the business shall produce net revenues.' 315 U.S. at page 590,62 S.Ct. at page 745 . But such considerations aside, the investor interest has a legitimate concern with the financial integrity of the company whose rates are being regulated. From the investor or company point of view it is important that there be enough revenue not only for operating expenses but also for the capital costs of the business. These include service on the debt and dividends on the stock. Cf. Chicago \& Grand Trunk R. Co. v. Wellman, 143 U.S. 339, 345, 34612 S.Ct. 400,402. By that standard the return to the equity owner should be commensurate with returns on investments in other enterprises having corresponding risks. That return, moreover, should be sufficient to assure confidence in the financial integrity of the enterprise, so as to maintain its credit and to attract capital. ${ }^{4}$

Consistent with the findings in Hope, the Commission's decision in this proceeding should provide the Company with the opportunity to earn a return that is: (1) adequate to attract capital at reasonable cost and terms; (2) sufficient to

[^15]ensure their financial integrity; and (3) commensurate with returns on investments in enterprises having corresponding risks.

Also, the required return for a regulated public utility is established on a stand-alone basis, i.e., for the utility operating company at issue in a rate case. When funding is provided by a corporate entity to an operating division or business unit within the entity, the allowed return still must be sufficient to provide an incentive to allocate equity capital to the business unit rather than other internal or external investment opportunities. That is, the regulated operating division must compete for capital with all the operating divisions within the corporate entity, and with other, similarly situated companies. In that regard, investors value corporate entities on a sum-of-the-parts basis and expect each division within the parent company to provide an appropriate risk-adjusted return.

It therefore is important that the authorized ROE reflects the risks and prospects of the utility's operations and supports the utility's financial integrity from a stand-alone perspective as measured by their combined business and financial risks. Consequently, the ROE authorized in this proceeding should be sufficient to support the operational (i.e., business risk) and financing (i.e., financial risk) of the Company's Kentucky utility operations on a stand-alone basis.

## Q. WITHIN THAT BROAD FRAMEWORK, HOW IS THE COST OF CAPITAL ESTIMATED IN REGULATORY PROCEEDINGS?

A. Regulated utilities primarily use common stock and long-term debt to finance their permanent property, plant, and equipment (i.e., rate base). The fair rate of return for a regulated utility is based on its weighted average cost of capital, in which, as
noted earlier, the costs of the individual sources of capital are weighted by their respective book values.

The cost of capital is the return investors require to make an investment in a firm. Investors will provide funds to a firm only if the return that they expect is equal to, or greater than, the return that they require to accept the risk of providing funds to the firm.

The cost of capital (that is, the combination of the costs of debt and equity) is based on the economic principle of "opportunity costs." Investing in any asset (whether debt or equity securities) represents a forgone opportunity to invest in alternative assets. For any investment to be sensible, its expected return must be at least equal to the return expected on alternative, comparable risk investment opportunities. Because investments with like risks should offer similar returns, the opportunity cost of an investment should equal the return available on an investment of comparable risk.

Whereas the cost of debt is contractually defined and can be directly observed as the interest rate or yield on debt securities, the cost of common equity must be estimated based on market data and various financial models. Because the cost of common equity is premised on opportunity costs, the models used to determine it are typically applied to a group of "comparable" or "proxy" companies.

In the end, the estimated cost of capital should reflect the return that investors require in light of the subject company's business and financial risks, and the returns available on comparable investments.

## Q. IS THE AUTHORIZED RETURN SET IN REGULATORY PROCEEDINGS GUARANTEED?

A. No, it is not. Consistent with the Hope and Bluefield standards, the rate-setting process should provide the utility a reasonable opportunity to recover its return of, and return on, its prudently incurred investments, but it does not guarantee that return. While a utility may have control over some factors that affect the ability to earn its authorized return (e.g., management performance, operating and maintenance expenses, etc.), there are several factors beyond a utility's control that affect its ability to earn its authorized return. Those may include factors such as weather, the economy, and the prevalence and magnitude of regulatory lag.

## A. Business Risk

Q. PLEASE DEFINE BUSINESS RISK AND EXPLAIN WHY IT IS IMPORTANT FOR DETERMINING A FAIR RATE OF RETURN.
A. The investor-required return on common equity reflects investors' assessment of the total investment risk of the subject firm. Total investment risk is often discussed in the context of business and financial risk.

Business risk reflects the uncertainty associated with owning a company's common stock without the company's use of debt and/or preferred stock financing. One way of considering the distinction between business and financial risk is to view the former as the uncertainty of the expected earned return on common equity, assuming the firm is financed with no debt.

Examples of business risks generally faced by utilities include, but are not limited to, the regulatory environment, mandatory environmental compliance requirements, customer mix and concentration of customers, service territory
economic growth, market demand, risks and uncertainties of supply, operations, capital intensity, size, the degree of operating leverage, and the like, all of which have a direct bearing on earnings. Although analysts, including rating agencies, may categorize business risks individually, as a practical matter, such risks are interrelated and not wholly distinct from one another. Therefore, it is difficult to specifically and numerically quantify the effect of any individual risk on investors' required return, i.e., the cost of capital. For determining an appropriate return on common equity, the relevant issue is where investors see the subject company as falling within a spectrum of risk. To the extent investors view a company as being exposed to high risk, the required return will increase, and vice versa.

For regulated utilities, business risks are both long-term and near-term in nature. Whereas near-term business risks are reflected in year-to-year variability in earnings and cash flow brought about by economic or regulatory factors, long-term business risks reflect the prospect of an impaired ability of investors to obtain both a fair rate of return on, and return of, their capital. Moreover, because utilities accept the obligation to provide safe, adequate and reliable service at all times (in exchange for a reasonable opportunity to earn a fair return on their investment), they generally do not have the option to delay, defer, or reject capital investments. Because those investments are capital-intensive, utilities generally do not have the option to avoid raising external funds during periods of capital market distress, if necessary.

Because utilities invest in long-lived assets, long-term business risks are of paramount concern to equity investors. That is, the risk of not recovering the return
on their investment extends far into the future. The timing and nature of events that may lead to losses, however, also are uncertain and, consequently, those risks and their implications for the required return on equity tend to be difficult to quantify. Regulatory commissions (like investors who commit their capital) must review a variety of quantitative and qualitative data and apply their reasoned judgment to determine how long-term risks weigh in their assessment of the market-required return on common equity.

## B. Financial Risk

Q. PLEASE DEFINE FINANCIAL RISK AND EXPLAIN WHY IT IS IMPORTANT IN DETERMINING A FAIR RATE OF RETURN.
A. Financial risk is the additional risk created by the introduction of debt and preferred stock into the capital structure. The higher the proportion of debt and preferred stock in the capital structure, the higher the financial risk to common equity owners (i.e., failure to receive dividends due to default or other covenants). Therefore, consistent with the basic financial principle of risk and return, common equity investors demand higher returns as compensation for bearing higher financial risk.
Q. CAN BOND AND CREDIT RATINGS BE A PROXY FOR A FIRM'S COMBINED BUSINESS AND FINANCIAL RISKS TO EQUITY OWNERS

## (I.E., INVESTMENT RISK)?

A. Yes, similar bond ratings/issuer credit ratings reflect, and are representative of, similar combined business and financial risks (i.e., total risk) faced by bond investors. ${ }^{5}$ Although specific business or financial risks may differ between

[^16]companies, the same bond/credit rating indicates that the combined risks are roughly similar from a debtholder perspective. The caveat is that these debtholder risk measures do not translate directly to risks for common equity.

## Q. DO RATING AGENCIES ACCOUNT FOR COMPANY SIZE IN THEIR

 BOND RATINGS?A. No. Neither Standard \& Poor's ("S\&P") nor Moody's have minimum company size requirements for any given rating level. This means, all else equal, a relative size analysis must be conducted for equity investments in companies with similar bond ratings.

## IV. ATMOS ENERGY'S KENTUCKY OPERATIONS AND THE UTILITY PROXY GROUP

## Q. ARE YOU FAMILIAR WITH ATMOS ENERGY'S OPERATIONS?

A. Yes. Atmos Energy's Kentucky operations serve approximately 183,000 customers. ${ }^{6}$ Atmos Energy's Kentucky gas operations are not publicly-traded as they comprise an operating division of Atmos Energy Corporation ("ATO" or the "Company"), which operates in eight states ${ }^{7}$ and serves approximately 3.3 million gas ${ }^{8}$ and is publicly-traded under symbol ATO.
Q. PLEASE EXPLAIN HOW YOU CHOSE THE COMPANIES IN THE UTILITY PROXY GROUP.
A. The companies selected for the Utility Proxy Group met the following criteria:

[^17](i) They were included in the Natural Gas Utility Group of Value Line's Standard Edition (Value Line) (May 28, 2021);
(ii) They have $60 \%$ or greater of fiscal year 2020 total operating income derived from, and $60 \%$ or greater of fiscal year 2020 total assets attributable to, regulated gas distribution operations;
(iii) At the time of preparation of this testimony, they had not publicly announced that they were involved in any major merger or acquisition activity (i.e., one publicly-traded utility merging with or acquiring another);
(iv) They have not cut or omitted their common dividends during the five years ended 2020 or through the time of preparation of this testimony;
(v) They have Value Line and Bloomberg Professional Services ("Bloomberg") adjusted betas;
(vi) They have positive Value Line five-year dividends per share ("DPS") growth rate projections; and
(vii) They have Value Line, Zacks, Yahoo! Finance, or Bloomberg consensus five-year earnings per share ("EPS") growth rate projections.

The following seven companies met these criteria: Atmos Energy Corporation, New Jersey Resources Corp., Northwest Natural Holding Company, One Gas, Inc., South Jersey Industries, Inc., Southwest Gas Holdings, Inc., and Spire, Inc.

## Q. WHY IS IT NECESSARY TO DEVELOP A PROXY GROUP WHEN ESTIMATING THE ROE FOR THE COMPANY?

A. Because the Company is not publicly traded and does not have publicly traded equity securities, it is necessary to develop groups of publicly traded, comparable companies to serve as "proxies" for the Company. In addition to the analytical necessity of doing so, the use of proxy companies is consistent with the Hope and Bluefield comparable risk standards, as discussed above. I have selected two proxy
groups that, in my view, are fundamentally risk-comparable to the Company: a Utility Proxy Group and a Non-Price Regulated Proxy Group, which is comparable in total risk to the Utility Proxy Group. ${ }^{9}$

Even when proxy groups are carefully selected, it is common for analytical results to vary from company to company. Despite the care taken to ensure comparability, because no two companies are identical, market expectations regarding future risks and prospects will vary within the proxy group. It therefore is common for analytical results to reflect a seemingly wide range, even for a group of similarly situated companies. At issue is how to estimate the ROE from within that range. That determination will be best informed by employing a variety of sound analyses that necessarily must consider the sort of quantitative and qualitative information discussed throughout my Direct Testimony. Additionally, a relative risk analysis between the Company and the Utility Proxy Group must be made to determine whether or not explicit Company-specific adjustments need to be made to the Utility Proxy Group indicated results.

## V. COMMON EQUITY COST RATE MODELS

## Q. IS IT IMPORTANT THAT COST OF COMMON EQUITY MODELS BE MARKET BASED?

A. Yes. A public utility must compete for equity in capital markets along with all other companies of comparable risk, which includes non-utilities. The cost of common equity is thus determined based on equity market expectations for the returns of those comparable risk companies. If an individual investor is choosing to invest

The development of the Non-Price Regulated Proxy Group is explained in more detail in Section V. their capital among companies of comparable risk, they will choose a company providing a higher return over a company providing a lower return.

## Q. ARE YOUR COST OF COMMON EQUITY MODELS MARKET BASED?

A. Yes. The DCF model uses market prices in developing the model's dividend yield component. The RPM uses bond ratings and expected bond yields that reflect the market's assessment of bond/credit risk. In addition, beta coefficients $(\beta)$, which reflect the market/systematic risk component of equity risk premium, are derived from regression analyses of market prices. The Predictive Risk Premium Model ("PRPM") uses monthly market returns in addition to expectations of the risk-free rate. The CAPM is market based for many of the same reasons that the RPM is market based (i.e., the use of expected bond yields and betas). Selection criteria for comparable risk non-price regulated companies are based on regression analyses of market prices and reflect the market's assessment of total risk.

## Q. WHAT ANALYTICAL APPROACHES DID YOU USE TO DETERMINE THE COMPANY'S ROE?

A. As discussed earlier, I have relied on the DCF model, the RPM, and the CAPM, which I apply to the Utility Proxy Group described above. I also applied these same models to a Non-Price Regulated Proxy Group described later in this section.

I rely on these models because reasonable investors use a variety of tools and do not rely exclusively on a single source of information or single model. Moreover, the models on which I rely focus on different aspects of return requirements, and provide different insights to investors' views of risk and return. The DCF model, for example, estimates the investor-required return assuming a
constant expected dividend yield and growth rate in perpetuity, while Risk Premium-based methods (i.e., the RPM and CAPM approaches) provide the ability to reflect investors' views of risk, future market returns, and the relationship between interest rates and the cost of common equity. Just as the use of market data for the Utility Proxy Group adds the reliability necessary to inform expert judgment in arriving at a recommended common equity cost rate, the use of multiple generally accepted common equity cost rate models also adds reliability and accuracy when arriving at a recommended common equity cost rate.

## A. Discounted Cash Flow Model

## Q. WHAT IS THE THEORETICAL BASIS OF THE DCF MODEL?

A. The theory underlying the DCF model is that the present value of an expected future stream of net cash flows during the investment holding period can be determined by discounting those cash flows at the cost of capital, or the investors' capitalization rate. DCF theory indicates that an investor buys a stock for an expected total return rate, which is derived from the cash flows received from dividends and market price appreciation. Mathematically, the dividend yield on market price plus a growth rate equals the capitalization rate; i.e., the total common equity return rate expected by investors as shown below:

$$
K_{e}=\left(D_{0}(1+g)\right) / P+g
$$

where:
$K_{e}=$ the required Return on Common Equity;
$D_{0}=$ the annualized Dividend Per Share;
$P=$ the current stock price; and
$g=$ the growth rate.

## Q. WHICH VERSION OF THE DCF MODEL DID YOU USE?

A. I used the single-stage constant growth DCF model in my analyses.

## Q. PLEASE DESCRIBE THE DIVIDEND YIELD YOU USED IN APPLYING THE CONSTANT GROWTH DCF MODEL.

A. The unadjusted dividend yields are based on the proxy companies' dividends as of May 28, 2021, divided by the average closing market price for the 60 trading days ended May 28, 2021. ${ }^{10}$

## Q. PLEASE EXPLAIN YOUR ADJUSTMENT TO THE DIVIDEND YIELD.

A. Because dividends are paid periodically (e.g. quarterly), as opposed to continuously (daily), an adjustment must be made to the dividend yield. This is often referred to as the discrete, or the Gordon Periodic, version of the DCF model.

DCF theory calls for using the full growth rate, or $\mathrm{D}_{1}$, in calculating the model's dividend yield component. Since the companies in the Utility Proxy Group increase their quarterly dividends at various times during the year, a reasonable assumption is to reflect one-half the annual dividend growth rate in the dividend yield component, or $D_{1 / 2}$. Because the dividend should be representative of the next 12-month period, this adjustment is a conservative approach that does not overstate the dividend yield. Therefore, the actual average dividend yields in Column 1, page 1 of Schedule DWD-2 have been adjusted upward to reflect one-half the average projected growth rate shown in Column 6 .

## Q. PLEASE EXPLAIN THE BASIS FOR THE GROWTH RATES YOU APPLY TO THE UTILITY PROXY GROUP IN YOUR CONSTANT GROWTH DCF MODEL.

A. Investors are likely to rely on widely available financial information services, such as Value Line, Zacks, Yahoo! Finance, and Bloomberg. Investors realize that analysts have significant insight into the dynamics of the industries and individual companies they analyze, as well as companies' ability to effectively manage the effects of changing laws and regulations, and ever-changing economic and market conditions. For these reasons, I used analysts' five-year forecasts of EPS growth in my DCF analysis.

Over the long run, there can be no growth in DPS without growth in EPS. Security analysts' earnings expectations have a more significant influence on market prices than dividend expectations. Thus, using earnings growth rates in a DCF analysis provides a better match between investors' market price appreciation expectations and the growth rate component of the DCF.

## Q. PLEASE SUMMARIZE THE CONSTANT GROWTH DCF MODEL RESULTS.

A. As shown on page 1 of Schedule DWD-2, for the Utility Proxy Group, the mean result of applying the single-stage DCF model is $9.57 \%$, the median result is $9.30 \%$, and the average of the two is $9.44 \%$. In arriving at a conclusion for the constant growth DCF-indicated common equity cost rate for the Utility Proxy Group, I relied on an average of the mean and the median results of the DCF. This approach
considers all the proxy utilities' results, while mitigating the high and low outliers of those individual results.

## B. The Risk Premium Model

## Q. PLEASE DESCRIBE THE THEORETICAL BASIS OF THE RPM.

A. The RPM is based on the fundamental financial principle of risk and return; namely, that investors require greater returns for bearing greater risk. The RPM recognizes that common equity capital has greater investment risk than debt capital, as common equity shareholders are behind debt holders in any claim on a company's assets and earnings. As a result, investors require higher returns from common stocks than from bonds to compensate them for bearing the additional risk.

While it is possible to directly observe bond returns and yields, investors' required common equity returns cannot be directly determined or observed. According to RPM theory, one can estimate a common equity risk premium over bonds (either historically or prospectively) and use that premium to derive a cost rate of common equity. The cost of common equity equals the expected cost rate for long-term debt capital, plus a risk premium over that cost rate, to compensate common shareholders for the added risk of being unsecured and last-in-line for any claim on the corporation's assets and earnings upon liquidation.

## Q. PLEASE EXPLAIN HOW YOU DERIVED YOUR INDICATED COST OF COMMON EQUITY BASED ON THE RPM.

A. To derive my indicated cost of common equity under the RPM, I used two risk premium methods. The first method was the PRPM and the second method was a risk premium model using a total market approach. The PRPM estimates the risk-
return relationship directly, while the total market approach indirectly derives a risk premium by using known metrics as a proxy for risk.

## 1. The Predictive Risk Premium Model

## Q. PLEASE EXPLAIN THE PRPM.

A. The PRPM, published in the Journal of Regulatory Economics, ${ }^{11}$ was developed from the work of Robert F. Engle, who shared the Nobel Prize in Economics in 2003 "for methods of analyzing economic time series with time-varying volatility ("ARCH")". ${ }^{12}$ Engle found that volatility changes over time and is related from one period to the next, especially in financial markets. Engle discovered that volatility of prices and returns cluster over time and is therefore highly predictable and can be used to predict future levels of risk and risk premiums.

The PRPM estimates the risk-return relationship directly, as the predicted equity risk premium is generated by predicting volatility or risk. The PRPM is not based on an estimate of investor behavior, but rather on an evaluation of the results of that behavior (i.e., the variance of historical equity risk premiums).

The inputs to the model are the historical returns on the common shares of each Utility Proxy Group company minus the historical monthly yield on long-term U.S. Treasury securities through May 2021. Using a generalized form of ARCH, known as GARCH, I calculated each Utility Proxy Group company's projected equity risk premium using Eviews ${ }^{\ominus}$ statistical software. When the GARCH model is applied to the historical return data, it produces a predicted GARCH variance

11 Autoregressive conditional heteroscedasticity. See "A New Approach for Estimating the Equity Risk Premium for Public Utilities", Pauline M. Ahern, Frank J. Hanley and Richard A. Michelfelder, Ph.D. The Journal of Regulatory Economics (December 2011), 40:261-278. www.nobelprize.org.
series ${ }^{13}$ and a GARCH coefficient ${ }^{14}$. Multiplying the predicted monthly variance by the GARCH coefficient and then annualizing it ${ }^{15}$ produces the predicted annual equity risk premium. I then added the forecasted 30-year U.S. Treasury bond yield of $2.88 \%{ }^{16}$ to each company's PRPM-derived equity risk premium to arrive at an indicated cost of common equity. The 30 -year U.S. Treasury bond yield is a consensus forecast derived from Blue Chip Financial Forecasts (Blue Chip). ${ }^{17}$ The mean PRPM indicated common equity cost rate for the Utility Proxy Group is $11.67 \%$, the median is $11.19 \%$, and the average of the two is $11.43 \%$. Consistent with my reliance on the average of the median and mean results of the DCF models, I relied on the average of the mean and median results of the Utility Proxy Group PRPM to calculate a cost of common equity rate of $11.43 \%$.

## Q. PLEASE DESCRIBE YOUR SELECTION OF A RISK-FREE RATE OF RETURN.

A. As shown in Schedules DWD-3 and 4, the risk-free rate adopted for applications of the RPM and CAPM is $2.88 \%$. This risk-free rate is based on the average of the Blue Chip consensus forecast of the expected yields on 30 -year U.S. Treasury bonds for the six quarters ending with the third calendar quarter of 2022, and longterm projections for the years 2023 to 2027 and 2028 to 2032.

13 Illustrated on Columns 1 and 2, page 2 of Schedule DWD-3.
14 Illustrated on Column 4, page 2 of Schedule DWD-3.
15 Annualized Return = (1+ Monthly Return) ${ }^{\wedge}$ 12-1
16 See Column 6, page 2 of Schedule DWD-3.
17

## Q. WHY DO YOU USE THE PROJECTED 30-YEAR TREASURY YIELD IN YOUR ANALYSES?

A. The yield on long-term U.S. Treasury bonds is almost risk-free and its term is consistent with the long-term cost of capital to public utilities measured by the yields on Moody's A2-rated public utility bonds; the long-term investment horizon inherent in utilities' common stocks; and the long-term life of the jurisdictional rate base to which the allowed fair rate of return (i.e., cost of capital) will be applied. In contrast, short-term U.S. Treasury yields are more volatile and largely a function of Federal Reserve monetary policy.

## 2. The Total Market Risk Premium Approach

## Q. PLEASE EXPLAIN THE TOTAL MARKET APPROACH RPM.

A. The total market approach RPM adds a prospective public utility bond yield to an average of: 1) an equity risk premium that is derived from a beta-adjusted total market equity risk premium, 2) an equity risk premium based on the $S \& P$ Utilities Index, and 3) an equity risk premium based on authorized ROEs for gas distribution utilities.

## Q. PLEASE EXPLAIN THE BASIS OF THE EXPECTED BOND YIELD OF 3.99\% APPLICABLE TO THE UTILITY PROXY GROUP.

A. The first step in the total market approach RPM analysis is to determine the expected bond yield. Because both ratemaking and the cost of capital, including common equity cost rate, are prospective in nature, a prospective yield on similarlyrated long-term debt is essential. I relied on a consensus forecast of about 50 economists of the expected yield on Aaa-rated corporate bonds for the six calendar quarters ending with the third calendar quarter of 2022, and Blue Chip's long-term
projections for 2023 to 2027, and 2028 to 2032. As shown on line 1 , page 3 of Schedule DWD-3, the average expected yield on Moody's Aaa-rated corporate bonds is $3.56 \%$. To derive an expected yield on Moody's A2-rated public utility bonds, I made an upward adjustment of $0.39 \%$, which represents a recent spread between Aaa-rated corporate bonds and A2-rated public utility bonds, in order to adjust the expected Aaa-rated corporate bond yield to an equivalent A2-rated public utility bond yield. ${ }^{18}$ Adding that recent $0.39 \%$ spread to the expected Aaa-rated corporate bond yield of $3.56 \%$ results in an expected A2-rated public utility bond yield of $3.95 \%$.

I then reviewed the average credit rating for the Utility Proxy Group from Moody's to determine if an adjustment to the estimated A2-rated public utility bond was necessary. Since the Utility Proxy Group's average Moody's long-term issuer rating is $\mathrm{A} 2 / \mathrm{A} 3$, another adjustment to the expected A 2 -rated public utility bond is needed to reflect the difference in bond ratings. An upward adjustment of $0.04 \%$, which represents one-sixth of a recent spread between A2-rated and Baa2-rated public utility bond yields, is necessary to make the A2 prospective bond yield applicable to an A2/A3-rated public utility bond. ${ }^{19}$ Adding the $0.04 \%$ to the $3.96 \%$ prospective A2-rated public utility bond yield results in a $3.99 \%$ expected bond yield applicable to the Utility Proxy Group.

As shown on line 2 and explained in note 2, page 3 of Schedule DWD-3.
As shown on line 4 and explained in note 3, page 3 of Schedule DWD-3. Moody's does not provide public utility bond yields for A2/A3-rated bonds. As such, it was necessary to estimate the difference between A2-rated and A2/A3-rated public utility bonds. Because there are three steps between Baa2 and A2 (Baa2 to Baa1, Baa1 to A3, and A3 to A2) I assumed an adjustment of one-sixth of the difference between the A2-rated and Baa2-rated public utility bond yield was appropriate.

Table 3: Summary of the Calculation of the Utility Proxy Group Projected Bond Yield ${ }^{20}$

Prospective Yield on Moody's Aaa-Rated Corporate Bonds (Blue   Chip)	$3.56 \%$
Adjustment to Reflect Yield Spread Between Moody's Aaa-   Rated Corporate Bonds and Moody's A2-Rated Utility Bonds	$0.39 \%$
Adjustment to Reflect the Utility Proxy Group's Average   Moody's Bond Rating of A2/A3	$\underline{0.04 \%}$
Prospective Bond Yield Applicable to the Utility Proxy Group	$\underline{\underline{3.99 \%}}$

To develop the indicated ROE using the total market approach RPM, this prospective bond yield is then added to the average of the three different equity risk premiums described below.

## a. The Beta-Derived Risk Premium

Q. PLEASE EXPLAIN HOW THE BETA-DERIVED EQUITY RISK PREMIUM IS DETERMINED.
A. The components of the beta-derived risk premium model are: 1) an expected market equity risk premium over corporate bonds, and 2) the beta coefficient. The derivation of the beta-derived equity risk premium that I applied to the Utility Proxy Group is shown on lines 1 through 9, page 8 of Schedule DWD-3. The total betaderived equity risk premium I applied is based on an average of three historical market data-based equity risk premiums, two Value Line-based equity risk premiums, and a Bloomberg-based equity risk premium. Each of these is described below.

## Q. HOW DID YOU DERIVE A MARKET EQUITY RISK PREMIUM BASED

 ON LONG-TERM HISTORICAL DATA?A. To derive a historical market equity risk premium, I used the most recent holding period returns for the large company common stocks from the Stocks, Bonds, Bills, and Inflation (SBBI) Yearbook 2021 (SBBI - 2021) ${ }^{21}$ less the average historical yield on Moody's Aaa/Aa-rated corporate bonds for the period 1928 to 2020. Using holding period returns over a very long time is appropriate because it is consistent with the long-term investment horizon presumed by investing in a going concern, i.e., a company expected to operate in perpetuity.

SBBI's long-term arithmetic mean monthly total return rate on large company common stocks was $11.94 \%$, and the long-term arithmetic mean monthly yield on Moody's Aaa/Aa-rated corporate bonds was $6.02 \% .^{22}$ As shown on line 1, page 8 of Schedule DWD-3, subtracting the mean monthly bond yield from the total return on large company stocks results in a long-term historical equity risk premium of $5.92 \%$.

I used the arithmetic mean monthly total return rates for the large company stocks and yields (income returns) for the Moody's Aaa/Aa corporate bonds, because they are appropriate for the purpose of estimating the cost of capital as noted in SBBI - 2021. ${ }^{23}$ Using the arithmetic mean return rates and yields is appropriate because historical total returns and equity risk premiums provide insight into the variance and standard deviation of returns needed by investors in
estimating future risk when making a current investment. If investors relied on the geometric mean of historical equity risk premiums, they would have no insight into the potential variance of future returns, because the geometric mean relates the change over many periods to a constant rate of change, thereby obviating the year-to-year fluctuations, or variance, which is critical to risk analysis.

## Q. PLEASE EXPLAIN THE DERIVATION OF THE REGRESSION-BASED MARKET EQUITY RISK PREMIUM.

A. To derive the regression-based market equity risk premium of $8.69 \%$ shown on line 2, page 8 of Schedule DWD-3, I used the same monthly annualized total returns on large company common stocks relative to the monthly annualized yields on Moody's Aaa/Aa-rated corporate bonds as mentioned above. I modeled the relationship between interest rates and the market equity risk premium using the observed monthly market equity risk premium as the dependent variable, and the monthly yield on Moody's Aaa/Aa-rated corporate bonds as the independent variable. I then used a linear Ordinary Least Squares ("OLS") regression, in which the market equity risk premium is expressed as a function of the Moody's Aaa/Aarated corporate bonds yield:

$$
\mathrm{RP}=\alpha+\beta\left(\mathrm{R}_{\mathrm{Aaa} / \mathrm{Aa}}\right)
$$

## Q. PLEASE EXPLAIN THE DERIVATION OF THE PRPM EQUITY RISK PREMIUM.

A. I used the same PRPM approach described above to the PRPM equity risk premium. The inputs to the model are the historical monthly returns on large company common stocks minus the monthly yields on Moody's Aaa/Aa-rated corporate
bonds during the period from January 1928 through May 2021. ${ }^{24}$ Using the previously discussed generalized form of ARCH, known as GARCH, the projected equity risk premium is determined using Eviews ${ }^{\ominus}$ statistical software. The resulting PRPM predicted a market equity risk premium of $9.02 \% .{ }^{25}$

## Q. PLEASE EXPLAIN THE DERIVATION OF A PROJECTED EQUITY RISK PREMIUM BASED ON VALUE LINE DATA FOR YOUR RPM ANALYSIS.

A. As noted above, because both ratemaking and the cost of capital are prospective, a prospective market equity risk premium is needed. The derivation of the forecasted or prospective market equity risk premium can be found in note 4 , page 9 of Schedule DWD-3. Consistent with my calculation of the dividend yield component in my DCF analysis, this prospective market equity risk premium is derived from an average of the three- to five-year median market price appreciation potential by Value Line for the 13 weeks ended May 28, 2021, plus an average of the median estimated dividend yield for the common stocks of the 1,700 firms covered in Value Line's Standard Edition. ${ }^{26}$

The average median expected price appreciation is $28 \%$, which translates to a $6.37 \%$ annual appreciation, and, when added to the average of Value Line's median expected dividend yields of $1.79 \%$, equates to a forecasted annual total return rate on the market of $8.16 \%$. The forecasted Moody's Aaa-rated corporate bond yield of $3.56 \%$ is deducted from the total market return of $8.16 \%$, resulting in an equity risk premium of $4.60 \%$, as shown on line 4 , page 8 of Schedule DWD-3.

Data from January 1928 to December 2020 is from SBBI - 2021. Data from January 2021 to May 2021 is from Bloomberg.
Shown on line 3, page 8 of Schedule DWD-3.
As explained in detail in note 1, page 2 of Schedule DWD-4.

## Q. PLEASE EXPLAIN THE DERIVATION OF AN EQUITY RISK PREMIUM BASED ON THE S\&P 500 COMPANIES.

A. Using data from Value Line, I calculated an expected total return on the S\&P 500 companies using expected dividend yields and long-term growth estimates as a proxy for capital appreciation. The expected total return for the S\&P 500 is $14.32 \%$. Subtracting the prospective yield on Moody's Aaa-rated corporate bonds of 3.56\% results in an $10.76 \%$ projected equity risk premium.
Q. PLEASE EXPLAIN THE DERIVATION OF AN EQUITY RISK PREMIUM BASED ON BLOOMBERG DATA.
A. Using data from Bloomberg, I calculated an expected total return on the S\&P 500 using expected dividend yields and long-term growth estimates as a proxy for capital appreciation, identical to the method described above. The expected total return for the S\&P 500 is $16.34 \%$. Subtracting the prospective yield on Moody's Aaa-rated corporate bonds of $3.56 \%$ results in a $12.78 \%$ projected equity risk premium.

## Q. WHAT IS YOUR CONCLUSION OF A BETA-DERIVED EQUITY RISK PREMIUM FOR USE IN YOUR RPM ANALYSIS?

A. I gave equal weight to all six equity risk premiums based on each source - historical, Value Line, and Bloomberg - in arriving at a $8.63 \%$ equity risk premium.

Table 4: Summary of the Calculation of the Equity Risk Premium Using Total Market Returns ${ }^{27}$

Historical Spread Between Total Returns of Large Stocks and   Aaa and Aa2-Rated Corporate Bond Yields (1928-2020)	$5.92 \%$
Regression Analysis on Historical Data	$8.69 \%$
PRPM Analysis on Historical Data	$9.02 \%$
Prospective Equity Risk Premium using Total Market Returns   from Value Line Summary \& Index less Projected Aaa   Corporate Bond Yields	$4.60 \%$
Prospective Equity Risk Premium using Measures of Capital   Appreciation and Income Returns from Value Line for the S\&P   500 less Projected Aaa Corporate Bond Yields	$10.76 \%$
Prospective Equity Risk Premium using Measures of Capital   Appreciation and Income Returns from Bloomberg   Professional Services for the S\&P 500 less Projected Aaa   Corporate Bond Yields	$\underline{12.78 \%}$
Average	$\underline{\underline{8.63 \%}}$

After calculating the average market equity risk premium of $8.63 \%$, I adjusted it by the beta coefficient to account for the risk of the Utility Proxy Group. As discussed below, the beta coefficient is a meaningful measure of prospective relative risk to the market as a whole, and is a logical way to allocate a company's, or proxy group's, share of the market's total equity risk premium relative to corporate bond yields. As shown on page 1 of Schedule DWD-4, the average of the mean and median beta coefficient for the Utility Proxy Group is 0.93 . Multiplying the 0.93 average by the market equity risk premium of $8.63 \%$ results in a beta-adjusted equity risk premium for the Utility Proxy Group of $8.03 \%$.

## b. The S\&P Utility Index Derived Risk Premium

## Q. HOW DID YOU DERIVE THE EQUITY RISK PREMIUM BASED ON THE S\&P UTILITY INDEX AND MOODY'S A-RATED PUBLIC UTILITY BONDS?

A. I estimated three equity risk premiums based on S\&P Utility Index holding period returns, and two equity risk premiums based on the expected returns of the S\&P Utilities Index, using Value Line and Bloomberg data, respectively. Turning first to the S\&P Utility Index holding period returns, I derived a long-term monthly arithmetic mean equity risk premium between the S\&P Utility Index total returns of $10.65 \%$, and monthly Moody's A-rated public utility bond yields of $6.49 \%$ from 1928 to 2020 , to arrive at an equity risk premium of $4.16 \%{ }^{28}$ I then used the same historical data to derive an equity risk premium of $6.37 \%$ based on a regression of the monthly equity risk premiums. The final S\&P Utility Index holding period equity risk premium involved applying the PRPM using the historical monthly equity risk premiums from January 1928 to May 2021 to arrive at a PRPM-derived equity risk premium of $5.41 \%$ for the S\&P Utility Index.

I then derived expected total returns on the S\&P Utilities Index of 11.40\% and $9.77 \%$ using data from Value Line and Bloomberg, respectively, and subtracted the prospective Moody's A2-rated public utility bond yield of $3.95 \%{ }^{29}$, which resulted in equity risk premiums of $7.45 \%$ and $5.82 \%$, respectively. As with the market equity risk premiums, I averaged each risk premium based on each source
(i.e., historical, Value Line, and Bloomberg) to arrive at my utility-specific equity risk premium of $5.84 \%$.

Table 5: Summary of the Calculation of the Equity Risk Premium Using S\&P Utility Index Holding Returns ${ }^{30}$

Historical Spread Between Total Returns of the S\&P Utilities   Index and A2-Rated Utility Bond Yields (1928-2020)	$4.16 \%$
Regression Analysis on Historical Data	$6.37 \%$
PRPM Analysis on Historical Data	$5.41 \%$
Prospective Equity Risk Premium using Measures of Capital   Appreciation and Income Returns from Value Line for the S\&P   Utilities Index less Projected A2 Utility Bond Yields	$7.45 \%$
Prospective Equity Risk Premium using Measures of Capital   Appreciation and Income Returns from Bloomberg   Professional Services for the S\&P Utilities Index less Projected   A2 Utility Bond Yields	$\underline{5.82 \%}$
Average	$\underline{\underline{5.84 \%}}$

## Q.

HOW DID YOU DERIVE AN EQUITY RISK PREMIUM OF 5.64\% BASED ON AUTHORIZED ROES FOR GAS DISTRIBUTION UTILITIES?
A. The equity risk premium of $5.64 \%$ shown on line 3 , page 7 of Schedule DWD-3 is the result of a regression analysis based on regulatory awarded ROEs related to the yields on Moody's A-rated public utility bonds. That analysis is shown on page 13 of Schedule DWD-3 which contains the graphical results of a regression analysis of 800 rate cases for gas distribution utilities which were fully litigated during the period from January 1, 1980 through May 28, 2021. It shows the implicit equity risk premium relative to the yields on A-rated public utility bonds immediately prior to the issuance of each regulatory decision. It is readily discernible that there is an inverse relationship between the yield on A-rated public utility bonds and equity risk premiums. In other words, as interest rates decline, the equity risk premium rises and vice versa, a result consistent with financial literature on the subject. ${ }^{31}$ I used the regression results to estimate the equity risk premium applicable to the projected yield on Moody's A2-rated public utility bonds of $3.95 \%$. Given the expected A-rated utility bond yield of $3.95 \%$, it can be calculated that the indicated equity risk premium applicable to that bond yield is $5.64 \%$, which is shown on line 3, page 7 of Schedule DWD-3.

## Q. WHAT IS YOUR CONCLUSION OF AN EQUITY RISK PREMIUM FOR USE IN YOUR TOTAL MARKET APPROACH RPM ANALYSIS?

A. The equity risk premium I apply to the Utility Proxy Group is $6.50 \%$, which is the average of the beta-adjusted equity risk premium for the Utility Proxy Group, the S\&P Utilities Index, and the authorized return utility equity risk premiums of $8.03 \%, 5.84 \%$, and $5.64 \%$, respectively. ${ }^{32}$
Q. WHAT IS THE INDICATED RPM COMMON EQUITY COST RATE BASED ON THE TOTAL MARKET APPROACH?
A. As shown on line 7 , page 3 of Schedule DWD-3, I calculated a common equity cost rate of $10.49 \%$ for the Utility Proxy Group based on the total market approach RPM.

Table 6: Summary of the Total Market Return Risk Premium Model ${ }^{33}$

Prospective Moody's A2/A3-Rated Utility Bond Applicable to   the Utility Proxy Group	$3.99 \%$
Prospective Equity Risk Premium	$\underline{6.50 \%}$
Indicated Cost of Common Equity	$\underline{10.49 \%}$

31 See, e.g., Robert S. Harris and Felicia C. Marston, The Market Risk Premium: Expectational Estimates Using Analysts' Forecasts, Journal of Applied Finance, Vol. 11, No. 1, 2001, at pages 11 to 12; Eugene F. Brigham, Dilip K. Shome, and Steve R. Vinson, The Risk Premium Approach to Measuring a Utility's Cost of Equity, Financial Management, Spring 1985, at pages 33 to 45.
32 As shown on page 7 of Schedule DWD-3.
33 As shown on page 3 of Schedule DWD-3.

## Q. WHAT ARE THE RESULTS OF YOUR APPLICATION OF THE PRPM

 AND THE TOTAL MARKET APPROACH RPM?A. As shown on page 1 of Schedule DWD-3, the indicated RPM-derived common equity cost rate is $10.96 \%$, which gives equal weight to the PRPM (11.43\%) and the adjusted-market approach results (10.49\%).

## C. The Capital Asset Pricing Model

## Q. PLEASE EXPLAIN THE THEORETICAL BASIS OF THE CAPM.

A. CAPM theory defines risk as the co-variability of a security's returns with the market's returns as measured by the beta coefficient ( $\beta$ ). A beta coefficient less than 1.0 indicates lower variability than the market as a whole, while a beta coefficient greater than 1.0 indicates greater variability than the market.

The CAPM assumes that all non-market or unsystematic risk can be eliminated through diversification. The risk that cannot be eliminated through diversification is called market, or systematic, risk. In addition, the CAPM presumes that investors only require compensation for systematic risk, which is the result of macroeconomic and other events that affect the returns on all assets. The model is applied by adding a risk-free rate of return to a market risk premium, which is adjusted proportionately to reflect the systematic risk of the individual security relative to the total market as measured by the beta coefficient. The traditional CAPM model is expressed as:

$$
\text { Where: } \quad \begin{array}{lll}
\mathrm{R}_{\mathrm{s}} & =\mathrm{R}_{\mathrm{f}}+\beta\left(\mathrm{R}_{\mathrm{m}}-\mathrm{R}_{\mathrm{f}}\right) \\
\mathrm{R}_{\mathrm{s}} & = & \text { Return rate on the common stock } \\
\mathrm{R}_{\mathrm{f}} & = & \text { Risk-free rate of return } \\
\mathrm{R}_{\mathrm{m}} & = & \text { Return rate on the market as a whole }
\end{array}
$$

$$
\beta \quad=\quad \text { Adjusted beta coefficient (volatility of the }
$$ security relative to the market as a whole)

Numerous tests of the CAPM have measured the extent to which security returns and beta coefficients are related as predicted by the CAPM, confirming its validity. The empirical CAPM ("ECAPM") reflects the reality that while the results of these tests support the notion that the beta coefficient is related to security returns, the empirical Security Market Line ("SML") described by the CAPM formula is not as steeply sloped as the predicted SML. ${ }^{34}$

The ECAPM reflects this empirical reality. Fama and French clearly state regarding Figure 2, below, that "[t]he returns on the low beta portfolios are too high, and the returns on the high beta portfolios are too low." ${ }^{35}$

Figure 2 http://pubs.aeaweb.org/doi/pdfplus/10.1257/0895330042162430
Average Annualized Monthly Return versus Beta for Value Weight Portfolios Formed on Prior Beta, 1928-2003


Roger A. Morin, New Regulatory Finance (Public Utility Reports, Inc., 2006), at 175. (Morin)
Eugene F. Fama and Kenneth R. French, "The Capital Asset Pricing Model: Theory and Evidence", Journal of Economic Perspectives, Vol. 18, No. 3, Summer 2004 at 33 (Fama \& French).

In addition, Morin observes that while the results of these tests support the notion that beta is related to security returns, the empirical SML described by the CAPM formula is not as steeply sloped as the predicted SML. Morin states:

With few exceptions, the empirical studies agree that ... low-beta securities earn returns somewhat higher than the CAPM would predict, and high-beta securities earn less than predicted. ${ }^{36}$

Therefore, the empirical evidence suggests that the expected return on a security is related to its risk by the following approximation:

$$
K=R_{F}+x \beta\left(R_{M}-R_{F}\right)+(1-x) \beta\left(R_{M}-R_{F}\right)
$$

where x is a fraction to be determined empirically. The value of x that best explains the observed relationship [is] Return $=0.0829+$ $0.0520 \beta$ is between 0.25 and 0.30 . If $\mathrm{x}=0.25$, the equation becomes:

$$
K=R_{F}+0.25\left(R_{M}-R_{F}\right)+0.75 \beta\left(R_{M}-R_{F}\right)^{37}
$$

Fama and French provide similar support for the ECAPM when they state:
The early tests firmly reject the Sharpe-Lintner version of the CAPM. There is a positive relation between beta and average return, but it is too 'flat.'... The regressions consistently find that the intercept is greater than the average risk-free rate... and the coefficient on beta is less than the average excess market return... This is true in the early tests... as well as in more recent crosssection regressions tests, like Fama and French (1992). ${ }^{38}$

Finally, Fama and French further note:
Confirming earlier evidence, the relation between beta and average return for the ten portfolios is much flatter than the Sharpe-Linter CAPM predicts. The returns on low beta portfolios are too high, and the returns on the high beta portfolios are too low. For example, the predicted return on the portfolio with the lowest beta is 8.3 percent per year; the actual return as 11.1 percent. The predicted return on the portfolio with the $t$ beta is 16.8 percent per year; the actual is 13.7 percent. ${ }^{39}$

Clearly, the justification from Morin, Fama, and French, along with their reviews of other academic research on the CAPM, validate the use of the ECAPM. In view of theory and practical research, I have applied both the traditional CAPM and the ECAPM to the companies in the Utility Proxy Group and averaged the results.

## Q. WHAT BETA COEFFICIENTS DID YOU USE IN YOUR CAPM ANALYSIS?

A. For the beta coefficients in my CAPM analysis, I considered two sources: Value Line and Bloomberg Professional Services. While both of those services adjust their calculated (or "raw") beta coefficients to reflect the tendency of the beta coefficient to regress to the market mean of 1.00 , Value Line calculates the beta coefficient over a five-year period, while Bloomberg calculates it over a two-year period.

## Q. PLEASE DESCRIBE YOUR SELECTION OF A RISK-FREE RATE OF RETURN.

A. As discussed previously, the risk-free rate adopted for both applications of the CAPM is $2.88 \%$. This risk-free rate is based on the average of the Blue Chip consensus forecast of the expected yields on 30-year U.S. Treasury bonds for the six quarters ending with the third calendar quarter of 2022, and long-term projections for the years 2023 to 2027 and 2028 to 2032.

## Q. PLEASE EXPLAIN THE ESTIMATION OF THE EXPECTED RISK PREMIUM FOR THE MARKET USED IN YOUR CAPM ANALYSES.

A. The basis of the market risk premium is explained in detail in note 1 on Schedule DWD-4. As discussed above, the market risk premium is derived from an average of three historical data-based market risk premiums, two Value Line data-based market risk premiums, and one Bloomberg data-based market risk premium.

The long-term income return on U.S. Government securities of $5.05 \%$ was deducted from the SBBI - 2021 monthly historical total market return of $12.20 \%$, which results in an historical market equity risk premium of $7.15 \%{ }^{40}$ I applied a linear OLS regression to the monthly annualized historical returns on the S\&P 500 relative to historical yields on long-term U.S. Government securities from SBBI 2021. That regression analysis yielded a market equity risk premium of $9.39 \%$. The PRPM market equity risk premium is $10.04 \%$ and is derived using the PRPM relative to the yields on long-term U.S. Treasury securities from January 1926 through May 2021.

The Value Line-derived forecasted total market equity risk premium is derived by deducting the forecasted risk-free rate of $2.88 \%$, discussed above, from the Value Line projected total annual market return of $8.16 \%$, resulting in a forecasted total market equity risk premium of $5.28 \%$. The $\mathrm{S} \& \mathrm{P} 500$ projected market equity risk premium using Value Line data is derived by subtracting the projected risk-free rate of $2.88 \%$ from the projected total return of the S\&P 500 of $14.32 \%$. The resulting market equity risk premium is $11.44 \%$.
$\underline{\text { SBBI - 2021, at Appendix A-1 (1) through A-1 (3) and Appendix A-7 (19) through A-7 (21). }}$

The S\&P 500 projected market equity risk premium using Bloomberg data is derived by subtracting the projected risk-free rate of $2.88 \%$ from the projected total return of the S\&P 500 of $16.34 \%$. The resulting market equity risk premium is $13.46 \%$. These six measures, when averaged, result in an average total market equity risk premium of $9.46 \%$.

> Table 7: Summary of the Calculation of the Market Risk Premium for Use in the CAPM ${ }^{41}$

Historical Spread Between Total Returns of Large Stocks and   Long-Term Government Bond Yields (1926-2020)	$7.15 \%$
Regression Analysis on Historical Data	$9.39 \%$
PRPM Analysis on Historical Data	$10.04 \%$
Prospective Equity Risk Premium using Total Market Returns   from Value Line Summary \& Index less Projected 30-Year   Treasury Bond Yields	$5.28 \%$
Prospective Equity Risk Premium using Measures of Capital   Appreciation and Income Returns from Value Line for the S\&P   500 less Projected 30-Year Treasury Bond Yields	$11.44 \%$
Prospective Equity Risk Premium using Measures of Capital   Appreciation and Income Returns from Bloomberg   Professional Services for the S\&P 500 less Projected 30-Year   Treasury Bond Yields	$\underline{13.46 \%}$
Average	$\underline{\underline{9.46 \%}}$

Q. WHAT ARE THE RESULTS OF YOUR APPLICATION OF THE TRADITIONAL AND EMPIRICAL CAPM TO THE UTILITY PROXY GROUP?
A. As shown on page 1 of Schedule DWD-4, the mean result of my CAPM/ECAPM analyses is $11.81 \%$, the median is $11.68 \%$, and the average of the two is $11.75 \%$. Consistent with my reliance on the average of mean and median DCF results discussed above, the indicated common equity cost rate using the CAPM/ECAPM is $11.75 \%$.
$41 \quad$ As shown on page 2 of Schedule DWD-4.

## D. Common Equity Cost Rates for a Proxy Group of Domestic, NonPrice Regulated Companies Based on the DCF, RPM, and CAPM

Q. WHY DO YOU ALSO CONSIDER A PROXY GROUP OF DOMESTIC, NON-PRICE REGULATED COMPANIES?
A. In the Hope and Bluefield cases, the U.S. Supreme Court did not specify that comparable risk companies had to be utilities. Since the purpose of rate regulation is to be a substitute for marketplace competition, non-price regulated firms operating in the competitive marketplace make an excellent proxy group if they are comparable in total risk to the Utility Proxy Group being used to estimate the cost of common equity. The selection of such domestic, non-price regulated competitive firms theoretically and empirically results in a proxy group which is comparable in total risk to the Utility Proxy Group, since all of these companies compete for capital in the exact same markets.

## Q. HOW DID YOU SELECT NON-PRICE REGULATED COMPANIES THAT

 ARE COMPARABLE IN TOTAL RISK TO THE UTILITY PROXY GROUP?A. In order to select a proxy group of domestic, non-price regulated companies similar in total risk to the Utility Proxy Group, I relied on the beta coefficients and related statistics derived from Value Line regression analyses of weekly market prices over the most recent 260 weeks (i.e., five years). These selection criteria resulted in a proxy group of 48 domestic, non-price regulated firms comparable in total risk to the Utility Proxy Group. Total risk is the sum of non-diversifiable market risk and diversifiable company-specific risks. The criteria used in selecting the domestic, non-price regulated firms was:
(i) They must be covered by Value Line Investment Survey (Standard Edition);
(ii) They must be domestic, non-price regulated companies, i.e., not utilities;
(iii) Their beta coefficients must lie within plus or minus two standard deviations of the average unadjusted beta coefficients of the Utility Proxy Group; and
(iv) The residual standard errors of the Value Line regressions which gave rise to the unadjusted beta coefficients must lie within plus or minus two standard deviations of the average residual standard error of the Utility Proxy Group.

Beta coefficients measure market, or systematic, risk, which is not diversifiable. The residual standard errors of the regressions measure each firm's company-specific, diversifiable risk. Companies that have similar beta coefficients and similar residual standard errors resulting from the same regression analyses have similar total investment risk.
Q. HAVE YOU PREPARED AN SCHEDULE WHICH SHOWS THE DATA FROM WHICH YOU SELECTED THE 48 DOMESTIC, NON-PRICE REGULATED COMPANIES THAT ARE COMPARABLE IN TOTAL RISK TO THE UTILITY PROXY GROUP?
A. Yes, the basis of my selection and both proxy groups' regression statistics are shown in Schedule DWD-5.

## Q. DID YOU CALCULATE COMMON EQUITY COST RATES USING THE

 DCF MODEL, RPM, AND CAPM FOR THE NON-PRICE REGULATED PROXY GROUP?A. Yes. Because the DCF model, RPM, and CAPM have been applied in an identical manner as described above, I will not repeat the details of the rationale and
application of each model. One exception is in the application of the RPM, where I did not use public utility-specific equity risk premiums, nor did I apply the PRPM to the individual non-price regulated companies.

Page 2 of Schedule DWD-6 derives the constant growth DCF model common equity cost rate. As shown, the indicated common equity cost rate, using the constant growth DCF for the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group, is $12.83 \%$.

Pages 3 through 5 of Schedule DWD-6 contain the data and calculations that support the $12.49 \%$ RPM common equity cost rate. As shown on line 1, page 3 of Schedule DWD-6, the consensus prospective yield on Moody's Baa-rated corporate bonds for the six quarters ending in the third quarter of 2022, and for the years 2023 to 2027 and 2028 to 2032 , is $4.46 \% .^{42}$

When the beta-adjusted risk premium of $8.03 \%{ }^{43}$ relative to the Non-Price Regulated Proxy Group is added to the prospective Baa2-rated corporate bond yield of $4.46 \%$, the indicated RPM common equity cost rate is $12.49 \%$.

Page 6 of Schedule DWD- 6 contains the inputs and calculations that support my indicated CAPM/ECAPM common equity cost rate of $11.69 \%$.
Q. HOW IS THE COST RATE OF COMMON EQUITY BASED ON THE NONPRICE REGULATED PROXY GROUP COMPARABLE IN TOTAL RISK TO THE UTILITY PROXY GROUP?
A. As shown on page 1 of Schedule DWD-6, the results of the common equity models applied to the Non-Price Regulated Proxy Group -- which group is comparable in
$42 \quad$ Blue Chip Financial Forecasts, June 1, 2021, at page 2 and 14.
43 Derived on page 5 of Schedule DWD-6.
total risk to the Utility Proxy Group -- are as follows: $12.83 \%$ (DCF), $12.49 \%$ (RPM), and $11.69 \%$ (CAPM). The average of the mean and median of these models is $12.42 \%$, which I used as the indicated common equity cost rates for the NonPrice Regulated Proxy Group.

## VI. CONCLUSION OF COMMON EQUITY COST RATE BEFORE ADJUSTMENTS

## Q. WHAT ARE THE INDICATED COMMON EQUITY COST RATES BEFORE ADJUSTMENTS?

A. By applying multiple cost of common equity models to the Utility Proxy Group and the Non-Price Regulated Proxy Group, the indicated range of common equity cost rates before any relative risk adjustment is between $9.44 \%$ and $12.42 \%$. The spread between the high and low values in the range ( 298 basis points) indicates that there is still a fair amount of uncertainty around the recovery from the COVID-19 pandemic. I used multiple cost of common equity models as primary tools in arriving at my recommended common equity cost rate, because no single model is so inherently precise that it can be relied on to the exclusion of other theoretically sound models. Using multiple models adds reliability to the estimated common equity cost rate, with the prudence of using multiple cost of common equity models supported in both the financial literature and regulatory precedent.

## VII. ADJUSTMENTS TO THE COMMON EQUITY COST RATE

## A. Size Adjustment

## Q. DOES ATMOS ENERGY'S SMALLER SIZE RELATIVE TO THE UTILITY PROXY GROUP COMPANIES INCREASE ITS BUSINESS RISK?

A. Yes. Atmos Energy's smaller size relative to the Utility Proxy Group companies indicates greater relative business risk for the Company because, all else being equal, size has a material bearing on risk.

Size affects business risk because smaller companies generally are less able to cope with significant events that affect sales, revenues and earnings. For example, smaller companies face more risk exposure to business cycles and economic conditions, both nationally and locally. Additionally, the loss of revenues from a few larger customers would have a greater effect on a small company than on a bigger company with a larger, more diverse, customer base.

As further evidence that smaller firms are riskier, investors generally demand greater returns from smaller firms to compensate for less marketability and liquidity of their securities. Duff \& Phelps $\underline{2020 \text { Valuation Handbook Guide to Cost }}$ of Capital - Market Results through 2019 (D\&P - 2020) discusses the nature of the small-size phenomenon, providing an indication of the magnitude of the size premium based on several measures of size. In discussing "Size as a Predictor of Equity Premiums," D\&P-2020 states:

The size effect is based on the empirical observation that companies of smaller size are associated with greater risk and, therefore, have greater cost of capital [sic]. The "size" of a company is one of the most important risk elements to consider when developing cost of equity capital estimates for use in valuing a business simply because
size has been shown to be a predictor of equity returns. In other words, there is a significant (negative) relationship between size and historical equity returns - as size decreases, returns tend to increase, and vice versa. (footnote omitted) (emphasis in original) ${ }^{44}$

Furthermore, in "The Capital Asset Pricing Model: Theory and Evidence," Fama and French note size is indeed a risk factor which must be reflected when estimating the cost of common equity. On page 14 , they note:
. . . the higher average returns on small stocks and high book-tomarket stocks reflect unidentified state variables that produce undiversifiable risks (covariances) in returns not captured in the market return and are priced separately from market betas. ${ }^{45}$

Based on this evidence, Fama and French proposed their three-factor model which includes a size variable in recognition of the effect size has on the cost of common equity.

Also, it is a basic financial principle that the use of funds invested, and not the source of funds, is what gives rise to the risk of any investment. ${ }^{46}$ Eugene Brigham, a well-known authority, states:

A number of researchers have observed that portfolios of smallfirms (sic) have earned consistently higher average returns than those of large-firm stocks; this is called the "small-firm effect." On the surface, it would seem to be advantageous to the small firms to provide average returns in a stock market that are higher than those of larger firms. In reality, it is bad news for the small firm; what the small-firm effect means is that the capital market demands higher returns on stocks of small firms than on otherwise similar stocks of the large firms. (emphasis added) ${ }^{47}$

44 Duff \& Phelps Valuation Handbook - U.S. Guide to Cost of Capital, Wiley 2020, at 4-1. Journal of Economic Perspectives, Volume 18, Number 3, Summer 2004, at 25-43.
Brealey, Richard A. and Myers, Stewart C., Principles of Corporate Finance (McGraw-Hill Book Company, 1996), at 204-205, 229.
Brigham, Eugene F., Fundamentals of Financial Management, Fifth Edition (The Dryden Press, 1989), at 623.

Consistent with the financial principle of risk and return discussed above, increased relative risk due to small size must be considered in the allowed rate of return on common equity. Therefore, the Commission's authorization of a cost rate of common equity in this proceeding must appropriately reflect the unique risks of Atmos Energy, including its small size, which is justified and supported above by evidence in the financial literature.

## Q. IS THERE A WAY TO QUANTIFY A RELATIVE RISK ADJUSTMENT DUE

 TO ATMOS ENERGY'S SMALL SIZE RELATIVE TO THE UTILITY PROXY GROUP?A. Yes. Atmos Energy has greater relative risk than the average utility in the Utility Proxy Group because of its smaller size compared with the utilities in that group, as measured by an estimated market capitalization of common equity for Atmos Energy.

Table 8: Size as Measured by Market Capitalization for Atmos Energy and the Utility Proxy Group

	Market   Capitalization*	Times   Greater than
	The Company	

Atmos Energy's estimated market capitalization was $\$ 597.101$ million as of May 28, 2021, ${ }^{48}$ compared with the market capitalization of the average company
in the Utility Proxy Group of $\$ 4.6$ billion as of May 28, 2021. The average company in the Utility Proxy Group has a market capitalization 7.7 times the size of Atmos Energy's estimated market capitalization.

As a result, it is necessary to upwardly adjust the range of indicated common equity cost rates between $9.44 \%$ to $12.42 \%$ to reflect Atmos Energy's greater risk due to their smaller relative size. The determination is based on the size premiums for portfolios of New York Stock Exchange, American Stock Exchange, and NASDAQ listed companies ranked by deciles for the 1926 to 2020 period. The average size premium for the Utility Proxy Group with a market capitalization of $\$ 4.6$ billion falls in the $4^{\text {th }}$ decile, while the Company's estimated market capitalization of $\$ 597.101$ million places it in the $8^{\text {th }}$ decile. The size premium spread between the $4^{\text {th }}$ decile and the $8^{\text {th }}$ decile is $0.71 \%$. Even though a $0.71 \%$ upward size adjustment is indicated, I applied a size premium of $0.20 \%$ to the Company's range of indicated common equity cost rates.

## Q. SINCE ATMOS ENERGY IS A DIVISION OF ATO, WHY IS THE SIZE OF THE TOTAL COMPANY NOT MORE APPROPRIATE TO USE WHEN DETERMINING THE SIZE ADJUSTMENT?

A. As discussed previously, rates are set using the stand-alone principle, which maintains that the utility operations of a diversified firm should be regulated as though they were independent (i.e., without subsidies to or from affiliated companies). Because of this, the return derived in this proceeding will not apply to ATO as a whole, but only Atmos Energy's Kentucky gas distribution operations. ATO is the sum of its constituent parts, including those constituent parts' ROEs.

Potential investors in the Company are aware that it is a combination of operations in each state, and that each state's operations experience the operating risks specific to their jurisdiction. The market's expectation of ATO's return is commensurate with the realities of its composite operations in each of the states in which it operates.

## B. Credit Risk Adjustment

## Q. PLEASE DISCUSS YOUR PROPOSED CREDIT RISK ADJUSTMENT.

ATO's long-term issuer ratings are A1 and A from Moody's Investors Services and S\&P, respectively, which are less risky than the average long-term issuer ratings for the Utility Proxy Group of A2/A3 and A-, respectively. ${ }^{49}$ Hence, a downward credit risk adjustment is necessary to reflect the less risky credit rating, i.e., A1, of Atmos Energy relative to the A2/A3 average Moody's bond rating of the Utility Proxy Group. ${ }^{50}$

An indication of the magnitude of the necessary downward adjustment to reflect the lower credit risk inherent in an A1 bond rating is one-third of a recent three-month average spread between Moody's A- and Aa-rated public utility bond yields and one-sixth of a recent spread between A- and Baa-rated public utility bonds, shown on page 4 of Schedule DWD-3, or $0.10 \%{ }^{51}$

[^18]
## C. Flotation Cost Adjustment

## Q. WHAT ARE FLOTATION COSTS?

A. Flotation costs are those costs associated with the sale of new issuances of common stock. They include market pressure and the mandatory unavoidable costs of issuance (e.g., underwriting fees and out-of-pocket costs for printing, legal, registration, etc.). For every dollar raised through debt or equity offerings, the Company receives less than one full dollar in financing.

## Q. WHY IS IT IMPORTANT TO RECOGNIZE FLOTATION COSTS IN THE ALLOWED COMMON EQUITY COST RATE? <br> A. It is important because there is no other mechanism in the ratemaking paradigm through which such costs can be recognized and recovered. Because these costs are real, necessary, and legitimate, recovery of these costs should be permitted. As noted by Morin:

The costs of issuing these securities are just as real as operating and maintenance expenses or costs incurred to build utility plants, and fair regulatory treatment must permit recovery of these costs....

The simple fact of the matter is that common equity capital is not free....[Flotation costs] must be recovered through a rate of return adjustment. ${ }^{52}$

## Q. SHOULD FLOTATION COSTS BE RECOGNIZED ONLY IF THERE WAS

 AN ISSUANCE DURING THE TEST YEAR OR THERE IS AN IMMINENT POST-TEST YEAR ISSUANCE OF ADDITIONAL COMMON STOCK?A. No. As noted above, there is no mechanism to recapture such costs in the ratemaking paradigm other than an adjustment to the allowed common equity cost
$52 \quad$ Morin, at p. 321.
rate. Flotation costs are charged to capital accounts and are not expensed on a utility's income statement. As such, flotation costs are analogous to capital investments, albeit negative, reflected on the balance sheet. Recovery of capital investments relates to the expected useful lives of the investment. Since common equity has a very long and indefinite life (assumed to be infinity in the standard regulatory DCF model), flotation costs should be recovered through an adjustment to common equity cost rate, even when there has not been an issuance during the test year, or in the absence of an expected imminent issuance of additional shares of common stock.

Historical flotation costs are a permanent loss of investment to the utility and should be accounted for. When any company, including a utility, issues common stock, flotation costs are incurred for legal, accounting, printing fees and the like. For each dollar of issuing market price, a small percentage is expensed and is permanently unavailable for investment in utility rate base. Since these expenses are charged to capital accounts and not expensed on the income statement, the only way to restore the full value of that dollar of issuing price with an assumed investor required return of $10 \%$ is for the net investment, $\$ 0.95$, to earn more than $10 \%$ to net back to the investor a fair return on that dollar. In other words, if a company issues stock at $\$ 1.00$ with $5 \%$ in flotation costs, it will net $\$ 0.95$ in investment. Assuming the investor in that stock requires a $10 \%$ return on his or her
invested $\$ 1.00$ (i.e., a return of $\$ 0.10$ ), the company needs to earn approximately $10.5 \%$ on its invested $\$ 0.95$ to receive a $\$ 0.10$ return.

## Q. DO THE COMMON EQUITY COST RATE MODELS YOU HAVE USED ALREADY REFLECT INVESTORS' ANTICIPATION OF FLOTATION COSTS?

A. No. All of these models assume no transaction costs. The literature is quite clear that these costs are not reflected in the market prices paid for common stocks. For example, Brigham and Daves confirm this and provide the methodology utilized to calculate the flotation adjustment. ${ }^{53}$ In addition, Morin confirms the need for such an adjustment even when no new equity issuance is imminent. ${ }^{54}$ Consequently, it is proper to include a flotation cost adjustment when using cost of common equity models to estimate the common equity cost rate.

## Q. HOW DID YOU CALCULATE THE FLOTATION COST ALLOWANCE?

A. I modified the DCF calculation to provide a dividend yield that would reimburse investors for issuance costs in accordance with the method cited in literature by Brigham and Daves, as well as by Morin. The flotation cost adjustment recognizes the actual costs of issuing equity that were incurred by ATO in its last four equity issuances. Based on the issuance costs shown on page 1 of Schedule DWD-8, an adjustment of $0.04 \%$ is required to reflect the flotation costs applicable to the Utility Proxy Group.

## VIII. CONCLUSION

## Q. WHAT IS YOUR RECOMMENDED ROE FOR ATMOS ENERGY?

A. Given the indicated ROE range applicable to the Utility Proxy Group of $9.44 \%$ to $12.42 \%$ and the Company-specific ROE range of $9.58 \%$ to $12.42 \%$, I conclude that an appropriate ROE for the Company is $10.35 \%$.
Q. IN YOUR OPINION, IS YOUR PROPOSED ROE OF 10.35\% FAIR AND REASONABLE TO ATMOS ENERGY AND ITS CUSTOMERS?
A. Yes, it is.
Q. DOES THIS CONCLUDE YOUR DIRECT TESTIMONY?
A. Yes, it does.

## COMMONWEALTH OF KENTUCKY

## BEFORE THE PUBLIC SERVICE COMMISSION

| IN THE MATTER OF | ) |
| :--- | :--- | :--- |
| RATE APPLICATION OF | Case No. 2021-00214 |
| ATMOS ENERGY CORPORATION | ) |

## CERTIFICATE AND AFFIDAVIT

The Affiant, Dylan W. D'Ascendis, being duly sworn, deposes and states that the prepared testimony attached hereto and made a part hereof, constitutes the prepared direct testimony of this affiant in Case No. 2021-00214, in the Matter of the Rate Application of Atmos Energy Corporation, and that if asked the questions propounded therein, this affiant would make the answers set forth in the attached prepared direct pre-filed testimony.


STATE OF NEW JERSEY

## COUNTY OF BURLINGTON

SUBSCRIBED AND SWORN to before me by Dylan W. D'Ascendis on this the $14+n$ day of June, 2021.
margaret a clancy Notary Public

My Commission Expires: $6 / 9 / 20.24$

Dylan is an experienced consultant and a Certified Rate of Return Analyst (CRRA) and Certified Valuation Analyst (CVA). He has served as a consultant for investor-owned and municipal utilities and authorities for 12 years. Dylan has extensive experience in rate of return analyses, class cost of service, rate design, and valuation for regulated public utilities. He has testified as an expert witness in the subjects of rate of return, cost of service, rate design, and valuation before 30 regulatory commissions in the U.S., one Canadian province, and an American Arbitration Association panel.

He also maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured.

## Areas of Specialization

$\square$	Regulation and Rates	Financial Modeling	$\square$	Rate of Return
Utilities	Valuation	Cost of Service		
Mutual Fund Benchmarking	$\boxed{\text { Regulatory Strategy }}$	$\square$	Rate Design	
Capital Market Risk	$\square$	Rate Case Support		

## Recent Expert Testimony Submission/Appearances

## Jurisdiction

- Massachusetts Department of Public Utilities
- New Jersey Board of Public Utilities
- Hawaii Public Utilities Commission
- South Carolina Public Service Commission
- American Arbitration Association

Appendix A - Resume \& Testimony Listing of: Dylan W. D'Ascendis, CRRA, CVA Partner
  A
$\qquad$








## Recent Assignments

- Provided expert testimony on the cost of capital for ratemaking purposes before numerous state utility regulatory agencies
- Maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured
- Sponsored valuation testimony for a large municipal water company in front of an American Arbitration Association Board to justify the reasonability of their lease payments to the City
- Co-authored a valuation report on behalf of a large investor-owned utility company in response to a new state regulation which allowed the appraised value of acquired assets into rate base


## Recent Publications and Speeches

- Co-Author of: "Decoupling, Risk Impacts and the Cost of Capital", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. The Electricity Journal, March, 2020.
- Co-Author of: "Decoupling Impact and Public Utility Conservation Investment", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. Energy Policy Journal, 130 (2019), 311-319.
- "Establishing Alternative Proxy Groups", before the Society of Utility and Regulatory Financial Analysts: 51st Financial Forum, April 4, 2019, New Orleans, LA.
- "Past is Prologue: Future Test Year", Presentation before the National Association of Water Companies 2017 Southeast Water Infrastructure Summit, May 2, 2017, Savannah, GA.
- Co-author of: "Comparative Evaluation of the Predictive Risk Premium Model ${ }^{\mathrm{TM}}$, the Discounted Cash Flow Model and the Capital Asset Pricing Model", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University, Pauline M. Ahern, and Frank J. Hanley, The Electricity Journal, May, 2013.
- "Decoupling: Impact on the Risk and Cost of Common Equity of Public Utility Stocks", before the Society of Utility and Regulatory Financial Analysts: 45th Financial Forum, April 17-18, 2013, Indianapolis, IN.

KyPSC Case No. 2021-00190 STAFF-DR-03-010(b) Attachment

Page 56 of 86
Resume \& Testimony Listing of:
Dylan W. D'Ascendis, CRRA, CVA
Partner
MANAGEMENT CONSULTANTS

SPONSOR	Date	CASE/APPLICANT	Docket No.	Subject
Regulatory Commission of Alaska				
Alaska Power Company	09/20	Alaska Power Company; Goat Lake Hydro, Inc.; BBL Hydro, Inc.	Tariff Nos. TA886-2; TA6-521; TA4-573	Capital Structure
Alaska Power Company	07/16	Alaska Power Company	Docket No. TA857-2	Rate of Return
Alberta Utilities Commission				
AltaLink, L.P., and EPCOR Distribution \& Transmission, Inc.	01/20	AltaLink, L.P., and EPCOR   Distribution \& Transmission, Inc.	2021 Generic Cost of Capital, Proceeding ID. 24110	Rate of Return
Arizona Corporation Commission				
EPCOR Water Arizona, Inc.	06/20	EPCOR Water Arizona, Inc.	Docket No. WS-01303A-200177	Rate of Return
Arizona Water Company	12/19	Arizona Water Company - Western Group	Docket No. W-01445A-19- $0278$	Rate of Return
Arizona Water Company	08/18	Arizona Water Company - Northern Group	Docket No. W-01445A-18- $0164$	Rate of Return
Arkansas Public Service Commission				
CenterPoint Energy Resources Corp.	05/21	CenterPoint Arkansas Gas	Docket No. 21-004-U	Return on Equity
Colorado Public Utilities Commission				
Summit Utilities, Inc.	04/18	Colorado Natural Gas Company	Docket No. 18AL-0305G	Rate of Return
Atmos Energy Corporation	06/17	Atmos Energy Corporation	Docket No. 17AL-0429G	Rate of Return
Delaware Public Service Commission				
Delmarva Power \& Light Co.	11/20	Delmarva Power \& Light Co.	Docket No. 20-0149 (Electric)	Return on Equity
Delmarva Power \& Light Co.	10/20	Delmarva Power \& Light Co.	Docket No. 20-0150 (Gas)	Return on Equity
Tidewater Utilities, Inc.	11/13	Tidewater Utilities, Inc.	Docket No. 13-466	Capital Structure
Public Service Commission of the District of Columbia				
Washington Gas Light Company	09/20	Washington Gas Light Company	Formal Case No. 1162	Rate of Return
Federal Energy Regulatory Commission				
LS Power Grid California, LLC	10/20	LS Power Grid California, LLC	Docket No. ER21-195-000	Rate of Return
Florida Public Service Commission				
Tampa Electric Company	04/21	Tampa Electric Company	Docket No. 20210034-EI	Return on Equity
Peoples Gas System	09/20	Peoples Gas System	Docket No. 20200051-GU	Rate of Return
Utilities, Inc. of Florida	06/20	Utilities, Inc. of Florida	Docket No. 20200139-WS	Rate of Return
Hawaii Public Utilities Commission				
Launiupoko Irrigation Company, Inc.	12/20	Launiupoko Irrigation Company, Inc.	Docket No. 2020-0217 I   Transferred to 2020-0089	Capital Structure
Lanai Water Company, Inc.	12/19	Lanai Water Company, Inc.	Docket No. 2019-0386	Cost of Service / Rate Design
Manele Water Resources, LLC	08/19	Manele Water Resources, LLC	Docket No. 2019-0311	Cost of Service / Rate Design
Kaupulehu Water Company	02/18	Kaupulehu Water Company	Docket No. 2016-0363	Rate of Return
Aqua Engineers, LLC	05/17	Puhi Sewer \& Water Company	Docket No. 2017-0118	Cost of Service / Rate Design

KyPSC Case No. 2021-00190 STAFF-DR-03-010(b) Attachment

Page 57 of 86
Resume \& Testimony Listing of:
Dylan W. D'Ascendis, CRRA, CVA
scottmadden
Partner
MANAGEMENT CONSULTANTS

SPONSOR	Date	CASEIAPPLICANT	Docket No.	SUBJECT
Hawaii Resources, Inc.	09/16	Laie Water Company	Docket No. 2016-0229	Cost of Service / Rate Design
Illinois Commerce Commission				
Utility Services of Illinois, Inc.	02/21	Utility Services of Illinois, Inc.	Docket No. 21-0198	Rate of Return
Ameren Illinois Company d/b/a Ameren Illinois	07/20	Ameren Illinois Company d/b/a Ameren Illinois	Docket No. 20-0308	Return on Equity
Utility Services of Illinois, Inc.	11/17	Utility Services of Illinois, Inc.	Docket No. 17-1106	Cost of Service / Rate Design
Aqua Illinois, Inc.	04/17	Aqua Illinois, Inc.	Docket No. 17-0259	Rate of Return
Utility Services of Illinois, Inc.	04/15	Utility Services of Illinois, Inc.	Docket No. 14-0741	Rate of Return
Indiana Utility Regulatory Commission				
Aqua Indiana, Inc.	03/16	Aqua Indiana, Inc. Aboite Wastewater Division	Docket No. 44752	Rate of Return
Twin Lakes, Utilities, Inc.	08/13	Twin Lakes, Utilities, Inc.	Docket No. 44388	Rate of Return
Kansas Corporation Commission				
Atmos Energy	07/19	Atmos Energy	19-ATMG-525-RTS	Rate of Return
Kentucky Public Service Commission				
Duke Energy Kentucky, Inc.	06/21	Duke Energy Kentucky, Inc.	2021-00190	Return on Equity
Bluegrass Water Utility Operating Company	10/20	Bluegrass Water Utility Operating Company	2020-00290	Return on Equity
Louisiana Public Service Commission				
Southwestern Electric Power Company	12/20	Southwestern Electric Power Company	Docket No. U-35441	Return on Equity
Atmos Energy	04/20	Atmos Energy	Docket No. U-35535	Rate of Return
Louisiana Water Service, Inc.	06/13	Louisiana Water Service, Inc.	Docket No. U-32848	Rate of Return
Maryland Public Service Commission				
Washington Gas Light Company	08/20	Washington Gas Light Company	Case No. 9651	Rate of Return
FirstEnergy, Inc.	08/18	Potomac Edison Company	Case No. 9490	Rate of Return
Massachusetts Department of Public Utilities				
Unitil Corporation	12/19	Fitchburg Gas \& Electric Co. (Elec.)	D.P.U. 19-130	Rate of Return
Unitil Corporation	12/19	Fitchburg Gas \& Electric Co. (Gas)	D.P.U. 19-131	Rate of Return
Liberty Utilities	07/15	Liberty Utilities d/b/a New England Natural Gas Company	Docket No. 15-75	Rate of Return
Minnesota Public Utilities Commission				
Northern States Power Company	11/20	Northern States Power Company	Docket No. E002/GR-20-723	Rate of Return
Mississippi Public Service Commission				
Atmos Energy	03/19	Atmos Energy	Docket No. 2015-UN-049	Capital Structure
Atmos Energy	07/18	Atmos Energy	Docket No. 2015-UN-049	Capital Structure
Missouri Public Service Commission				
Spire Missouri, Inc.	12/20	Spire Missouri, Inc.	Case No. GR-2021-0108	Return on Equity
Indian Hills Utility Operating Company, Inc.	10/17	Indian Hills Utility Operating Company, Inc.	Case No. SR-2017-0259	Rate of Return

KyPSC Case No. 2021-00190 STAFF-DR-03-010(b) Attachment

Page 58 of 86
Resume \& Testimony Listing of:
Dylan W. D'Ascendis, CRRA, CVA
Partner
MANAGEMENT CONSULTANTS

SPONSOR	Date	CASE/APPLICANT	Docket No.	SUBJECT
Raccoon Creek Utility Operating Company, Inc.	09/16	Raccoon Creek Utility Operating Company, Inc.	Docket No. SR-2016-0202	Rate of Return
Public Utilities Commission of Nevada				
Southwest Gas Corporation	08/20	Southwest Gas Corporation	Docket No. 20-02023	Return on Equity
New Hampshire Public Utilities Commission				
Aquarion Water Company of New Hampshire, Inc.	12/20	Aquarion Water Company of New Hampshire, Inc.	Docket No. DW 20-184	Rate of Return
New Jersey Board of Public Utilities				
Middlesex Water Company	05/21	Middlesex Water Company	Docket No. WR21050813	Rate of Return
Atlantic City Electric Company	12/20	Atlantic City Electric Company	Docket No. ER20120746	Return on Equity
FirstEnergy	02/20	Jersey Central Power \& Light Co.	Docket No. ER20020146	Rate of Return
Aqua New Jersey, Inc.	12/18	Aqua New Jersey, Inc.	Docket No. WR18121351	Rate of Return
Middlesex Water Company	10/17	Middlesex Water Company	Docket No. WR17101049	Rate of Return
Middlesex Water Company	03/15	Middlesex Water Company	Docket No. WR15030391	Rate of Return
The Atlantic City Sewerage Company	10/14	The Atlantic City Sewerage Company	Docket No. WR14101263	Cost of Service / Rate Design
Middlesex Water Company	11/13	Middlesex Water Company	Docket No. WR1311059	Capital Structure
New Mexico Public Regulation Commission				
Southwestern Public Service Company	01/21	Southwestern Public Service Company	Case No. 20-00238-UT	Return on Equity
North Carolina Utilities Commission				
Piedmont Natural Gas Co.Inc.	03/21	Piedmont Natural Gas Co., Inc.	Docket No. G-9, Sub 781	Return on Equity
Duke Energy Carolinas, LLC	07/20	Duke Energy Carolinas, LLC	Docket No. E-7, Sub 1214	Return on Equity
Duke Energy Progress, LLC	07/20	Duke Energy Progress, LLC	Docket No. E-2, Sub 1219	Return on Equity
Aqua North Carolina, Inc.	12/19	Aqua North Carolina, Inc.	Docket No. W-218 Sub 526	Rate of Return
Carolina Water Service, Inc.	06/19	Carolina Water Service, Inc.	Docket No. W-354 Sub 364	Rate of Return
Carolina Water Service, Inc.	09/18	Carolina Water Service, Inc.	Docket No. W-354 Sub 360	Rate of Return
Aqua North Carolina, Inc.	07/18	Aqua North Carolina, Inc.	Docket No. W-218 Sub 497	Rate of Return
North Dakota Public Service Commission				
Northern States Power Company	11/20	Northern States Power Company	Case No. PU-20-441	Rate of Return
Public Utilities Commission of Ohio				
Aqua Ohio, Inc.	05/16	Aqua Ohio, Inc.	Docket No. 16-0907-WW-AIR	Rate of Return
Pennsylvania Public Utility Commission				
Vicinity Energy Philadelphia, Inc.	04/21	Vicinity Energy Philadelphia, Inc.	Docket No. R-2021-3024060	Rate of Return
Delaware County Regional Water Control Authority	02/20	Delaware County Regional Water Control Authority	Docket No. A-2019-3015173	Valuation
Valley Energy, Inc.	07/19	C\&T Enterprises	Docket No. R-2019-3008209	Rate of Return
Wellsboro Electric Company	07/19	C\&T Enterprises	Docket No. R-2019-3008208	Rate of Return
Citizens' Electric Company of Lewisburg	07/19	C\&T Enterprises	Docket No. R-2019-3008212	Rate of Return
Steelton Borough Authority	01/19	Steelton Borough Authority	Docket No. A-2019-3006880	Valuation
Mahoning Township, PA	08/18	Mahoning Township, PA	Docket No. A-2018-3003519	Valuation

KyPSC Case No. 2021-00190 STAFF-DR-03-010(b) Attachment

Page 59 of 86
Resume \& Testimony Listing of:
Dylan W. D'Ascendis, CRRA, CVA
Partner
MANAGEMENT CONSULTANTS

Sponsor	Date	CASE/APPLICANT	Docket No.	Subject
SUEZ Water Pennsylvania Inc.	04/18	SUEZ Water Pennsylvania Inc.	Docket No. R-2018-000834	Rate of Return
Columbia Water Company	09/17	Columbia Water Company	Docket No. R-2017-2598203	Rate of Return
Veolia Energy Philadelphia, Inc.	06/17	Veolia Energy Philadelphia, Inc.	Docket No. R-2017-2593142	Rate of Return
Emporium Water Company	07/14	Emporium Water Company	Docket No. R-2014-2402324	Rate of Return
Columbia Water Company	07/13	Columbia Water Company	Docket No. R-2013-2360798	Rate of Return
Penn Estates Utilities, Inc.	12/11	Penn Estates, Utilities, Inc.	Docket No. R-2011-2255159	Capital Structure /   Long-Term Debt Cost Rate
South Carolina Public Service Commission				
Blue Granite Water Co.	12/19	Blue Granite Water Company	Docket No. 2019-292-WS	Rate of Return
Carolina Water Service, Inc.	02/18	Carolina Water Service, Inc.	Docket No. 2017-292-WS	Rate of Return
Carolina Water Service, Inc.	06/15	Carolina Water Service, Inc.	Docket No. 2015-199-WS	Rate of Return
Carolina Water Service, Inc.	11/13	Carolina Water Service, Inc.	Docket No. 2013-275-WS	Rate of Return
United Utility Companies, Inc.	09/13	United Utility Companies, Inc.	Docket No. 2013-199-WS	Rate of Return
Utility Services of South Carolina, Inc.	09/13	Utility Services of South Carolina, Inc.	Docket No. 2013-201-WS	Rate of Return
Tega Cay Water Services, Inc.	11/12	Tega Cay Water Services, Inc.	Docket No. 2012-177-WS	Capital Structure
Tennessee Public Utility Commission				
Piedmont Natural Gas Company	07/20	Piedmont Natural Gas Company	Docket No. 20-00086	Return on Equity
Public Utility Commission of Texas				
Southwestern Public Service Company	02/21	Southwestern Public Service Company	Docket No. 51802	Return on Equity
Southwestern Electric Power Company	10/20	Southwestern Electric Power Company	Docket No. 51415	Rate of Return
Virginia State Corporation Commission				
Virginia Natural Gas, Inc.	04/21	Virginia Natural Gas, Inc.	PUR-2020-00095	Return on Equity
Massanutten Public Service Corporation	12/20	Massanutten Public Service Corporation	PUE-2020-00039	Return on Equity
Aqua Virginia, Inc.	07/20	Aqua Virginia, Inc.	PUR-2020-00106	Rate of Return
WGL Holdings, Inc.	07/18	Washington Gas Light Company	PUR-2018-00080	Rate of Return
Atmos Energy Corporation	05/18	Atmos Energy Corporation	PUR-2018-00014	Rate of Return
Aqua Virginia, Inc.	07/17	Aqua Virginia, Inc.	PUR-2017-00082	Rate of Return
Massanutten Public Service Corp.	08/14	Massanutten Public Service Corp.	PUE-2014-00035	Rate of Return / Rate Design

Atmos Energy Corporation<br>Recommended Capital Structure and Cost Rates<br>for Ratemaking Purposes

Type Of Capital	Ratios (1)	Cost Rate	Weighted Cost Rate
Long-Term Debt	42.77\%	4.00\% (1)	1.71\%
Short-Term Debt	0.18\%	25.17\% (1)	0.05\%
Common Equity	57.05\%	10.35\% (2)	5.90\%
Total	100.00\%		7.66\%

Notes:
(1) Company-provided.
(2) From page 2 of this Schedule.

Atmos Energy Corporation<br>Brief Summary of Common Equity Cost Rate

Line No.	Principal Methods	Proxy Group of Seven   Natural Gas   Distribution   Companies	
1.	Discounted Cash Flow Model (DCF) (1)		$9.44 \%$
2.	Risk Premium Model (RPM) (2)	$10.96 \%$	

Notes: (1) From page 1 of Schedule DWD-2.
(2) From page 1 of Schedule DWD-3.
(3) From page 1 of Schedule DWD-4.
(4) From page 1 of Schedule DWD-6.
(5) Adjustment to reflect the Company's greater business risk due to its smaller size relative to the Utility Proxy Group as detailed in Mr. D'Ascendis' direct testimony.
(6) Company-specific risk adjustment to reflect Atmos Energy's lower risk due to a higher long-term issuer rating relative to the proxy group as detailed in Mr. D'Ascendis' direct testimony.
(7) From page 1 of Schedule DWD-8.

Atmos Energy Corporation
Indicated Common Equity Cost Rate Using the Discounted Cash Flow Model for the Proxy Group of Seven Natural Gas Distribution Companies
Proxy Group of Seven Natural Gas
Distribution Companies
Atmos Energy Corporation
New Jersey Resources Corporation
Northwest Natural Holding Company
ONE Gas, Inc.
South Jersey Industries, Inc.
Southwest Gas Holdings, Inc.
Spire Inc.

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Average Dividend Yield (1)	Value Line   Projected   Five Year   Growth in   EPS (2)	Zack's Five Year Projected Growth Rate in EPS	Bloomberg's   Five Year   Projected   Growth Rate   in EPS	Yahoo!   Finance   Projected Five Year Growth in $\qquad$	Average   Projected   Five Year   Growth in EPS (3)	Adjusted   Dividend   Yield (4)	Indicated Common Equity Cost Rate (5)
2.54 \%	7.00 \%	7.30 \%	7.10 \%	7.17 \%	7.14 \%	2.63 \%	9.77 \%
3.19	2.00	7.10	7.33	6.00	5.61	3.28	8.89
3.57	5.50	3.90	4.42	3.80	4.41	3.65	8.06
3.02	6.50	5.00	5.67	5.00	5.54	3.10	8.64
4.84	11.50	5.40	4.93	4.80	6.66	5.00	11.66
3.45	9.00	5.50	4.50	4.00	5.75	3.55	9.30
3.49	10.00	5.50	5.33	7.31	7.04	3.61	10.65
						Average	9.57 \%
						Median	9.30 \%
					Average of Mean and Median		9.44 \%

NA= Not Available
NMF $=$ Not Meaningful Figure

Notes
(1) Indicated dividend at 05/28/2021 divided by the average closing price of the last 60 trading days ending 05/28/2021 for each company.
(2) From pages 2 through 8 of this Schedule.
(3) Average of columns 2 through 5 excluding negative growth rates.
(4) This reflects a growth rate component equal to one-half the conclusion of growth rate (from column 6) x column 1 to reflect the periodic payment of dividends (Gordon Model) as opposed to the continuous payment. Thus, for Atmos Energy Corporation, $2.54 \% \times(1+(1 / 2 \times 7.14 \%))=2.63 \%$.
(5) Column 6 + column 7.

# Atmos Energy Corporation <br> Summary of Risk Premium Models for the Proxy Group of Seven Natural Gas Distribution Companies 

Proxy Group of<br>Seven Natural Gas

Distribution
Companies

Predictive Risk Premium
Model (PRPM) (1)
11.43 \%

Risk Premium Using an
Adjusted Total Market
Approach (2) 10.49 \%
Average 10.96 \%

Notes:
(1) From page 2 of this Schedule.
(2) From page 3 of this Schedule.
$\frac{\text { Atmos Energy Corporation }}{\text { Indicated ROE }}$
Derived by the Predictive Risk Premium Model (1)
[1]
[2]
[3]
[4]
[5]
[6]
[7]
Proxy Group of Seven Natural Gas
Distribution Companies

New Jersey Resources Corporation
Northwest Natural Holding Company ONE Gas, Inc.
South Jersey Industries, Inc.
Southwest Gas Holdings, Inc
Spire Inc.

LT Average Predicted Variance	Spot   Predicted   Variance	Recommended   Variance (2)	GARCH   Coefficient	$\begin{gathered} \text { Predicted } \\ \text { Risk } \\ \text { Premium (3) } \\ \hline \end{gathered}$	Risk-Free   Rate (4)	Indicated   ROE (5)
0.33\%	0.48\%	0.41\%	2.2565	11.58\%	2.88\%	14.46\%
0.38\%	0.34\%	0.36\%	2.0814	9.43\%	2.88\%	12.31\%
0.32\%	0.38\%	0.35\%	1.5413	6.68\%	2.88\%	9.56\%
0.30\%	0.43\%	0.37\%	4.0633	19.39\%	2.88\%	NMF
0.39\%	0.69\%	0.54\%	1.6346	11.03\%	2.88\%	13.91\%
0.43\%	0.38\%	0.41\%	1.3628	6.84\%	2.88\%	9.72\%
0.71\%	0.52\%	0.61\%	0.9445	7.18\%	2.88\%	10.06\%
					Average	11.67\%
					Median	11.19\%
				Average of Mean and Median		11.43\%

Notes:
(1) The Predictive Risk Premium Model uses historical data to generate a predicted variance and a GARCH coefficient. The historical data used are the equity risk premiums for the first available trading month as reported by Bloomberg Professional Service.
(2) Given current market conditions, I recommend using average of the the long-term average predicted variance and the spot variance.
(3) $\left(1+(\text { Column }[3] * \text { Column }[4])^{12}\right)-1$.
(4) From note 2 on page 2 of Schedule DWD-4.
(5) Column [5] + Column [6].

Atmos Energy Corporation<br>Indicated Common Equity Cost Rate<br>Through Use of a Risk Premium Model<br>Using an Adjusted Total Market Approach

	Proxy Group of
Seven Natural Gas	
Distribution	
Line No.	Companies



Notes: (1) Consensus forecast of Moody's Aaa Rated Corporate bonds from Blue Chip Financial Forecasts (see pages 10 and 11 of this Schedule).
(2) The average yield spread of A2 rated public utility bonds over Aaa rated corporate bonds of $0.39 \%$ from page 4 of this Schedule.
(3) Adjustment to reflect the A2/A3 Moody's LT issuer rating of the Utility Proxy Group as shown on page 5 of this Schedule. The $0.04 \%$ upward adjustment is derived by taking $1 / 6$ of the spread between A2 and Baa2 Public Utility Bonds $(1 / 6 * 0.26 \%=0.04 \%)$ as derived from page 4 of this Schedule.
(4) From page 7 of this Schedule.

Atmos Energy Corporation
Interest Rates and Bond Spreads for
Moody's Corporate and Public Utility Bonds

Selected Bond Yields - Moody's
[1]
[2]
[3]
[4]

	Aaa Rated Corporate Bond	Aa2 Rated Public Utility Bond	A2 Rated Public Utility Bond	Baa2 Rated Public Utility Bond
May-2021	2.96 \%	3.17 \%	3.33 \%	3.58 \%
Apr-2021	2.90	3.13	3.30	3.57
Mar-2021	3.04	3.27	3.44	3.72
Average	2.97 \%	3.19 \%	3.36 \%	3.62 \%

## Selected Bond Spreads

A2 Rated Public Utility Bonds Over Aaa Rated Corporate Bonds:

Baa2 Rated Public Utility Bonds Over A2 Rated Public Utility Bonds:

A2 Rated Public Utility Bonds Over Aa2 Rated Public Utility Bonds:

$$
0.17 \%(3)
$$

## Notes:

(1) Column [3] - Column [1].
(2) Column [4] - Column [3].
(3) Column [3]-Column [2].

Source of Information:
Bloomberg Professional Service

Atmos Energy Corporation
Comparison of Long-Term Issuer Ratings for
Proxy Group of Seven Natural Gas Distribution Companies

	Moody's		Standard \& Poor's	
	Long-Term Issuer Rating		Long-Term Issuer Rating	
	May 2021		May 2021	
Proxy Group of Seven Natural Gas Distribution Companies	Long-Term Issuer Rating (1)	Numerical   Weighting (2)	Long-Term Issuer Rating (1)	Numerical   Weighting (2)
Atmos Energy Corporation	A1	5.0	A-	7.0
New Jersey Resources Corporation	A1	5.0	NR	--
Northwest Natural Holding Company	Baa1	8.0	A+	5.0
ONE Gas, Inc.	A3	7.0	BBB+	8.0
South Jersey Industries, Inc.	A3	7.0	BBB	9.0
Southwest Gas Holdings, Inc.	Baa1	8.0	A-	7.0
Spire Inc.	A1/A2	5.5	A-	7.0
Average	A2/A3	6.5	A-	7.2

Notes:
(1)

Ratings are that of the average of each company's utility operating subsidiaries.
(2) From page 6 of this Schedule.

Source Information: Moody's Investors Service
Standard \& Poor's Global Utilities Rating Service

> Numerical Assignment for
> Moody's and Standard \& Poor's Bond Ratings

Moody's Bond Rating	Numerical Bond Weighting	Standard \& Poor's Bond Rating
Aaa	1	AAA
Aa1	2	AA+
Aa2	3	AA
Aa3	4	AA-
A1	5	A+
A2	6	A
A3	7	A-
Baa1	8	BBB+
Baa2	9	BBB
Baa3	10	BBB-
Ba1	11	BB+
Ba2	12	BB
Ba3	13	BB-
B1	14	B+
B2	15	B
B3	16	B-

## Atmos Energy Corporation

Judgment of Equity Risk Premium for Proxy Group of Seven Natural Gas Distribution Companies

$\begin{gathered} \text { Line } \\ \text { No. } \end{gathered}$		Proxy Group of Seven Natural Gas Distribution Companies
1.	Calculated equity risk premium based on the total market using the beta approach (1)	8.03 \%
2.	Mean equity risk premium based on a study using the holding period returns of public utilities with A rated bonds (2)	5.84
3.	Predicted Equity Risk Premium Based on Regression Analysis of 800 Fully-Litigated Natural Gas Utility Rate Cases	5.64
4.	Average equity risk premium	6.50 \%

Notes: (1) From page 8 of this Schedule.
(2) From page 12 of this Schedule.
(3) From page 13 of this Schedule.

## Atmos Energy Corporation

Derivation of Equity Risk Premium Based on the Total Market Approach
Using the Beta for the
Proxy Group of Seven Natural Gas Distribution Companies

$\underline{\text { Line No. }}$	Equity Risk Premium Measure	Proxy Group of Seven Natural Gas Distribution Companies
Ibbotson-Based Equity Risk Premiums:		
1.	Ibbotson Equity Risk Premium (1)	5.92 \%
2.	Regression on Ibbotson Risk Premium Data (2)	8.69
3.	Ibbotson Equity Risk Premium based on PRPM (3)	9.02
4.	Equity Risk Premium Based on Value Line Summary and Index (4)	4.60
5.	Equity Risk Premium Based on Value Line S\&P 500 Companies (5)	10.76
6.	Equity Risk Premium Based on Bloomberg S\&P 500 Companies (6)	12.78
7.	Conclusion of Equity Risk Premium	8.63 \%
8.	Adjusted Beta (7)	0.93
9.	Forecasted Equity Risk Premium	8.03 \%

Notes provided on page 9 of this Schedule.

## Atmos Energy Corporation <br> Derivation of Equity Risk Premium Based on the Total Market Approach <br> Using the Beta for the <br> Proxy Group of Seven Natural Gas Distribution Companies

Notes:
(1) Based on the arithmetic mean historical monthly returns on large company common stocks from Duff \& Phelps 2021 SBBI® Yearbook minus the arithmetic mean monthly yield of Moody's average Aaa and Aa corporate bonds from 1928-2020.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of large company common stocks relative to Moody's average Aaa and Aa rated corporate bond yields from 1928-2020 referenced in Note 1 above.
(3) The Predictive Risk Premium Model (PRPM) is discussed in the accompanying direct testimony. The Ibbotson equity risk premium based on the PRPM is derived by applying the PRPM to the monthly risk premiums between Ibbotson large company common stock monthly returns and average Aaa and Aa corporate monthly bond yields, from January 1928 through March 2021.
(4) The equity risk premium based on the Value Line Summary and Index is derived by subtracting the average consensus forecast of Aaa corporate bonds of $3.56 \%$ (from page 3 of this Schedule) from the projected 3-5 year total annual market return of 8.16\% (described fully in note 1 on page 2 of Schedule DWD-4).
(5) Using data from Value Line for the S\&P 500, an expected total return of $14.32 \%$ was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of $3.56 \%$ results in an expected equity risk premium of $10.76 \%$.
(6) Using data from the Bloomberg Professional Service for the S\&P 500, an expected total return of $16.34 \%$ was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of $3.56 \%$ results in an expected equity risk premium of $12.78 \%$.
(7) Average of mean and median beta from Schedule DWD-4.

Sources of Information:
Stocks, Bonds, Bills, and Inflation - 2021 SBBI Yearbook, John Wiley \& Sons, Inc.
Industrial Manual and Mergent Bond Record Monthly Update.
Value Line Summary and Index
Blue Chip Financial Forecasts, June 1, 2021
Bloomberg Professional Service

# Atmos Energy Corporation <br> Derivation of Mean Equity Risk Premium Based Studies <br> Using Holding Period Returns and <br> Projected Market Appreciation of the S\&P Utility Index 

Line No.	Equity Risk Premium based on S\&P Utility Index Holding Period Returns (1):	Implied Equity Risk Premium
1.	Historical Equity Risk Premium	4.16 \%
2.	Regression of Historical Equity Risk Premium (2)	6.37
3.	Forecasted Equity Risk Premium Based on PRPM (3)	5.41
4.	Forecasted Equity Risk Premium based on Projected Total Return on the S\&P Utilities Index (Value Line Data) (4)	7.45
5.	Forecasted Equity Risk Premium based on Projected Total Return on the S\&P Utilities Index (Bloomberg Data) (5)	5.82
6.	Average Equity Risk Premium (6)	5.84 \%

Notes: (1) Based on S\&P Public Utility Index monthly total returns and Moody's Public Utility Bond average monthly yields from 1928-2020. Holding period returns are calculated based upon income received (dividends and interest) plus the relative change in the market value of a security over a one-year holding period.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of the S\&P Utility Index relative to Moody's A2 rated public utility bond yields from 1928-2020 referenced in note 1 above.
(3) The Predictive Risk Premium Model (PRPM) is applied to the risk premium of the monthly total returns of the S\&P Utility Index and the monthly yields on Moody's A2 rated public utility bonds from January 1928 - May 2021.
(4) Using data from Value Line for the S\&P Utilities Index, an expected return of $11.40 \%$ was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the expected A2 rated public utility bond yield of $3.95 \%$, calculated on line 3 of page 3 of this Schedule results in an equity risk premium of $7.45 \%$. $(11.40 \%-3.95 \%=7.45 \%)$
(5) Using data from Bloomberg Professional Service for the S\&P Utilities Index, an expected return of $9.77 \%$ was derived based on expected dividend yields and longterm growth estimates as a proxy for market appreciation. Subtracting the expected A2 rated public utility bond yield of $3.95 \%$, calculated on line 3 of page 3 of this Schedule results in an equity risk premium of $5.82 \%$. ( $9.77 \%-3.95 \%=$ 5.82\%)
(6) Average of lines 1 through 5.

Atmos Energy Corporation<br>Prediction of Equity Risk Premiums Relative to<br>Moody's A2 Rated Utility Bond Yields



| Constant | Prospective A2 <br> Rated Utility <br> Bond (1) | Prospective <br> Equity Risk <br> Premium |
| :--- | :---: | :---: | :---: |
| $7.564001 \%$ | $3.95 \%$ | $5.64 \%$ |

Notes:
(1) From line 3 of page 3 of this Schedule.

Source of Information:
Regulatory Research Associates
Bloomberg Professional Services

Exhibit DWD-1 Schedule DWD-4. 1

Atmos Energy Corporation
Indicated Common Equity Cost Rate Through Use of the Traditional Capital Asset Pricing Model (CAPM) and Empirical Capital Asset Pricing Model (ECAPM)

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Proxy Group of Seven Natural Gas Distribution Companies	Value Line   Adjusted Beta	Bloomberg Adjusted Beta	Average Beta	Market Risk   Premium (1)	Risk-Free   Rate (2)	Traditional CAPM Cost Rate	ECAPM Cost   Rate	Indicated   Common   Equity Cost   Rate (3)
Atmos Energy Corporation	0.80	0.91	0.86	9.46 \%	2.88 \%	11.02 \%	11.35 \%	11.18 \%
New Jersey Resources Corporation	1.00	0.97	0.98	9.46	2.88	12.15	12.20	12.17
Northwest Natural Holding Company	0.85	0.85	0.85	9.46	2.88	10.92	11.28	11.10
ONE Gas, Inc.	0.80	1.00	0.90	9.46	2.88	11.39	11.63	11.51
South Jersey Industries, Inc.	1.05	0.98	1.02	9.46	2.88	12.53	12.48	12.51
Southwest Gas Holdings, Inc.	0.95	1.09	1.02	9.46	2.88	12.53	12.48	12.51
Spire Inc.	0.85	1.00	0.92	9.46	2.88	11.58	11.77	11.68
Mean			0.94			11.73 \%	11.88 \%	11.81 \%
Median			0.92			11.58 \%	11.77 \%	11.68 \%
Average of Mean and Median			0.93			11.66 \%	11.83 \%	11.75 \%

Notes on page 2 of this Schedule.

# KyPSC Case No. 2021-00190 <br> STAFF-DR-03-010(b) Attachment <br> Page 75 of 86 

Exhibit DWD-1
Schedule DWD-4.2

## Atmos Energy Corporation <br> Notes to Accompany the Application of the CAPM and ECAPM

Notes:
(1) The market risk premium (MRP) is derived by using six different measures from three sources: Ibbotson, Value Line, and Bloomberg as illustrated below:

Historical Data MRP Estimates:
Measure 1: Ibbotson Arithmetic Mean MRP (1926-2020)

Arithmetic Mean Monthly Returns for Large Stocks 1926-2020:	$12.20 \%$
Arithmetic Mean Income Returns on Long-Term Government Bonds:	$5.05 \%$
MRP based on Ibbotson Historical Data:	$7.15 \%$

Measure 2: Application of a Regression Analysis to Ibbotson Historical Data
(1926-2020)
$9.39 \%$
Measure 3: Application of the PRPM to Ibbotson Historical Data:
(January 1926 - May 2021)
10.04 \%

Value Line MRP Estimates:
Measure 4: Value Line Projected MRP (Thirteen weeks ending May 28, 2021)
Total projected return on the market 3-5 years hence*: $8.16 \%$
Projected Risk-Free Rate (see note 2):
MRP based on Value Line Summary \& Index:
$5^{2.88}$ \%
*Forcasted 3-5 year capital appreciation plus expected dividend yield
Measure 5: Value Line Projected Return on the Market based on the S\&P 500
Total return on the Market based on the S\&P 500: $\quad 14.32 \%$
Projected Risk-Free Rate (see note 2):
MRP based on Value Line data
2.88

Measure 6: Bloomberg Projected MRP
Total return on the Market based on the S\&P 500:

	16.34   2.88
MRP based on Bloomberg data	13.46$\%$
Average of Value Line, Ibbotson, and Bloomberg MRP:	$=$9.46$\%$

(2) For reasons explained in the direct testimony, the appropriate risk-free rate for cost of capital purposes is the average forecast of 30 year Treasury Bonds per the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts. (See pages 10 and 11 of Schedule DWD-3.) The projection of the risk-free rate is illustrated below:

Second Quarter 2021	$2.40 \quad \%$
Third Quarter 2021	2.50
Fourth Quarter 2021	2.60
First Quarter 2022	2.60
Second Quarter 2022	2.70
Third Quarter 2022	2.80
2023-2027	3.50
2028-2032	3.90

(3) Average of Column 6 and Column 7.

Sources of Information:
Value Line Summary and Index
Blue Chip Financial Forecasts, June 1, 2021
Stocks, Bonds, Bills, and Inflation - 2021 SBBI Yearbook, John Wiley \& Sons, Inc.
Bloomberg Professional Services

Atmos Energy Corporation<br>Basis of Selection of Comparable Risk<br>Domestic Non-Price Regulated Companies

	[1]	[2]	[3]	[4]
Proxy Group of Seven Natural Gas Distribution Companies	Value Line   Adjusted Beta	Unadjusted $\qquad$	Residual   Standard   Error of the   Regression	Standard   Deviation of Beta
Atmos Energy Corporation	0.80	0.66	2.7453	0.0685
New Jersey Resources Corporation	0.95	0.92	3.0205	0.0754
Northwest Natural Holding Company	0.80	0.69	3.1454	0.0785
ONE Gas, Inc.	0.80	0.67	2.7077	0.0676
South Jersey Industries, Inc.	1.05	1.00	3.4767	0.0868
Southwest Gas Holdings, Inc.	0.95	0.88	3.0244	0.0755
Spire Inc.	0.85	0.71	2.8287	0.0706
Average	0.89	0.79	2.9927	0.0747
Beta Range ( $+/-2$ std. Devs. of Beta)	0.64	0.94		
2 std. Devs. of Beta	0.15			
Residual Std. Err. Range ( $+/-2$ std.				
	2.7297	3.2557		
Std. dev. of the Res. Std. Err.	0.1315			
2 std. devs. of the Res. Std. Err.	0.2630			

KyPSC Case No. 2021-00190

Proxy Group of Non-Price Regulated Companies Comparable in Total Risk to the Proxy Group of Seven Natural Gas Distribution Companies

	[1]	[2]	[3]	[4]
Proxy Group of Forty-Eight Non-Price Regulated Companies	$\begin{gathered} \text { VL Adjusted } \\ \text { Beta } \\ \hline \end{gathered}$	$\begin{gathered} \text { Unadjusted } \\ \text { Beta } \end{gathered}$	Residual   Standard   Error of the   Regression	Standard Deviation of Beta
Apple Inc.	0.90	0.81	3.1746	0.0792
Abbott Labs.	0.95	0.88	2.7401	0.0684
Assurant Inc.	0.90	0.84	2.9537	0.0737
ANSYS, Inc.	0.85	0.74	2.8841	0.0720
Booz Allen Hamilton	0.90	0.82	3.0468	0.0760
Becton, Dickinson	0.80	0.66	2.8952	0.0722
Brown-Forman 'B'	0.90	0.77	2.7453	0.0685
Broadridge Fin'l	0.85	0.70	2.7332	0.0682
Brady Corp.	1.00	0.93	3.0007	0.0749
CACI Int'l	0.95	0.86	3.1684	0.0791
Casey's Gen'l Stores	0.90	0.78	3.2522	0.0812
Cadence Design Sys.	0.90	0.79	3.0338	0.0757
Cerner Corp.	0.90	0.84	2.7309	0.0681
CSW Industrials	0.90	0.81	2.8884	0.0721
Quest Diagnostics	0.85	0.75	2.7411	0.0684
Lauder (Estee)	0.95	0.85	2.8216	0.0704
Exponent, Inc.	0.90	0.79	2.9131	0.0727
Fastenal Co.	0.90	0.85	3.2203	0.0804
Gentex Corp.	0.95	0.91	2.7546	0.0687
Int'l Flavors \& Frag	0.95	0.87	3.2238	0.0804
Ingredion Inc.	0.90	0.78	2.8793	0.0718
Iron Mountain	0.90	0.82	3.0897	0.0771
Hunt (J.B.)	0.95	0.86	2.8344	0.0707
J\&J Snack Foods	0.90	0.84	2.9208	0.0729
Henry (Jack) \& Assoc	0.85	0.71	2.7734	0.0692
ManTech Int'l 'A'	0.85	0.77	3.0653	0.0765
McCormick \& Co.	0.80	0.66	2.7887	0.0696
Altria Group	0.90	0.83	2.9215	0.0729
MSA Safety	1.00	0.94	3.0076	0.0750
MSCI Inc.	0.95	0.87	2.9662	0.0740
Motorola Solutions	0.90	0.80	2.7926	0.0697
Vail Resorts	0.95	0.88	3.1939	0.0797
Maxim Integrated	0.95	0.87	2.9404	0.0734
Northrop Grumman	0.85	0.71	2.9032	0.0724
Old Dominion Freight	0.90	0.83	3.0708	0.0766
PerkinElmer Inc.	0.95	0.86	2.8896	0.0721
Philip Morris Int'l	0.95	0.88	3.2481	0.0811
Pool Corp.	0.85	0.75	3.2001	0.0799
Post Holdings	0.95	0.86	3.0105	0.0751
RLI Corp.	0.80	0.64	2.9883	0.0746
Rollins, Inc.	0.85	0.73	2.9697	0.0741
Selective Ins. Group	0.85	0.77	3.0004	0.0749
Sirius XM Holdings	0.95	0.91	2.7995	0.0699
Bio-Techne Corp.	0.80	0.67	3.2475	0.0810
Tetra Tech	0.90	0.84	3.0245	0.0755
Waters Corp.	0.95	0.86	2.7531	0.0687
West Pharmac. Svcs.	0.85	0.70	3.1887	0.0796
Western Union	0.80	0.67	2.7346	0.0682
Average	0.90	0.80	2.9609	0.0739
Proxy Group of Seven Natural Gas				
Distribution Companies	0.89	0.79	2.9927	0.0747

Atmos Energy Corporation
Summary of Cost of Equity Models Applied to Proxy Group of Forty-Eight Non-Price Regulated Companies

Comparable in Total Risk to the
Proxy Group of Seven Natural Gas Distribution Companies

	Proxy Group of   Forty-Eight Non-   Price Regulated   Companies
Principal Methods	$12.83 \%$
Discounted Cash Flow Model (DCF) (1)	12.49
Risk Premium Model (RPM) (2)	11.69
Capital Asset Pricing Model (CAPM) (3)	12.34

Notes:
(1) From page 2 of this Schedule.
(2) From page 3 of this Schedule.
(3) From page 6 of this Schedule.

## Atmos Energy Corporation <br> DCF Results for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the Proxy Group of Seven Natural Gas Distribution Companies

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Proxy Group of Forty-Eight Non-Price Regulated Companies	Average   Dividend Yield	Value Line   Projected Five Year Growth in EPS	Zack's Five Year Projected Growth Rate in EPS	Bloomberg's   Five Year   Projected Growth Rate in EPS	Yahoo! Finance   Projected Five Year Growth in EPS	Average   Projected Five   Year Growth   Rate in EPS	Adjusted Dividend Yield	Indicated Common Equity Cost Rate (1)
Apple Inc.	0.69 \%	14.50 \%	12.50 \%	12.10 \%	17.93 \%	14.26 \%	0.74 \%	15.00 \%
Abbott Labs.	1.51	11.50	13.80	13.63	16.49	13.86	1.61	15.47
Assurant Inc.	1.76	11.50	17.50	17.50	17.50	16.00	1.90	17.90
ANSYS, Inc.	-	8.00	12.30	12.58	10.74	10.90	-	NA
Booz Allen Hamilton	1.80	10.50	10.60	13.00	9.67	10.94	1.90	12.84
Becton, Dickinson	1.35	7.50	8.90	8.30	11.85	9.14	1.41	10.55
Brown-Forman 'B'	0.97	11.00	NA	5.39	7.40	7.93	1.01	8.94
Broadridge Fin'l	1.48	8.50	NA	12.30	11.60	10.80	1.56	12.36
Brady Corp.	1.59	7.50	7.00	9.00	7.00	7.63	1.65	9.28
CACI Int'l	-	13.50	13.10	12.06	13.68	13.08	-	NA
Casey's Gen'l Stores	0.63	8.00	NA	15.81	7.85	10.55	0.66	11.21
Cadence Design Sys.	-	9.50	14.40	11.60	14.40	12.48	-	NA
Cerner Corp.	1.18	8.00	12.30	10.46	11.63	10.60	1.24	11.84
CSW Industrials	0.45	8.50	NA	12.00	12.00	10.83	0.47	11.30
Quest Diagnostics	1.91	10.00	26.50	(5.40)	3.26	13.25	2.04	15.29
Lauder (Estee)	0.71	11.00	10.70	18.20	27.18	16.77	0.77	17.54
Exponent, Inc.	0.83	12.50	NA	13.30	15.00	13.60	0.89	14.49
Fastenal Co.	2.21	8.00	9.00	8.70	7.95	8.41	2.30	10.71
Gentex Corp.	1.35	10.50	10.10	13.15	15.80	12.39	1.43	13.82
Int'l Flavors \& Frag	2.20	7.50	9.80	21.48	7.72	11.63	2.33	13.96
Ingredion Inc.	2.76	7.50	NA	11.00	1.90	6.80	2.85	9.65
Iron Mountain	6.32	11.50	1.70	0.66	1.70	3.89	6.44	10.33
Hunt (J.B.)	0.71	8.00	15.00	15.00	21.53	14.88	0.76	15.64
J\&J Snack Foods	1.55	10.00	NA	NA	6.00	8.00	1.61	9.61
Henry (Jack) \& Assoc	1.18	9.00	10.90	12.47	10.64	10.75	1.24	11.99
ManTech Int'l 'A'	1.79	9.00	5.10	5.53	3.87	5.88	1.84	7.72
McCormick \& Co.	1.53	5.50	6.70	5.87	6.00	6.02	1.58	7.60
Altria Group	6.94	6.00	4.00	4.35	4.35	4.68	7.10	11.78
MSA Safety	1.10	6.50	NA	9.00	18.00	11.17	1.16	12.33
MSCI Inc.	0.69	16.00	NA	15.00	15.31	15.44	0.74	16.18
Motorola Solutions	1.49	7.00	9.00	12.20	7.37	8.89	1.56	10.45
Vail Resorts	-	9.50	NA	87.08	72.95	56.51	-	NA
Maxim Integrated	-	8.00	10.00	11.95	21.91	12.97	-	NA
Northrop Grumman	1.84	7.00	NA	5.67	5.77	6.15	1.90	8.05
Old Dominion Freight	0.32	9.00	17.20	18.98	18.93	16.03	0.35	16.38
PerkinElmer Inc.	0.21	11.00	37.90	5.66	37.90	23.11	0.23	23.34
Philip Morris Int'l	5.19	6.50	8.70	10.75	12.75	9.67	5.44	15.11
Pool Corp.	0.83	15.00	NA	NA	17.00	16.00	0.90	16.90
Post Holdings	-	11.00	NA	20.30	31.20	20.83	-	NA
RLI Corp.	0.89	12.50	NA	NA	9.80	11.15	0.94	12.09
Rollins, Inc.	0.91	11.50	NA	NA	8.20	9.85	0.95	10.80
Selective Ins. Group	1.33	8.50	9.50	9.51	5.10	8.15	1.38	9.53
Sirius XM Holdings	0.96	35.50	12.70	40.32	10.10	24.66	1.08	25.74
Bio-Techne Corp.	0.32	12.50	14.00	19.03	15.00	15.13	0.34	15.47
Tetra Tech	0.62	13.50	15.00	13.85	15.00	14.34	0.66	15.00
Waters Corp.	-	6.00	7.10	8.19	7.77	7.26	-	NA
West Pharmac. Svcs.	0.22	17.00	25.80	18.55	25.80	21.79	0.24	22.03
Western Union	3.74	6.00	NA	4.57	9.19	6.59	3.86	10.45
							Mean	13.33 \%
							Median	12.33 \%
						Average of M	Median	12.83 \%

$\mathrm{NA}=$ Not Available
(1) The application of the DCF model to the domestic, non-price regluated comparable risk companies is identical to the application of the DCF to the Utility Proxy Group The dividend yield is derived by using the 60 day average price and the spot indicated dividend as of May 28,2021 . The dividend yield is then adjusted by $1 / 2$ the average projected growth rate in EPS, which is calculated by averaging the 5 year projected growth in EPS provided by Value Line, www.zacks.com, Bloomberg Professional Services, and www.yahoo.com (excluding any negative growth rates) and then adding that growth rate to the adjusted dividend yield.

Source of Information:
Value Line Investment Survey
www.zacks.com Downloaded on 05/28/2021 Bloomberg Professional Services

Atmos Energy Corporation<br>Indicated Common Equity Cost Rate<br>Through Use of a Risk Premium Model<br>Using an Adjusted Total Market Approach

Line No.
Proxy Group of Forty-
Eight Non-Price
$\underline{\text { Regulated Companies }}$

1. Prospective Yield on Baa2 Rated Corporate Bonds (1)
4.46 \%
2. Equity Risk Premium (2)
3. Risk Premium Derived Common Equity Cost Rate
8.03
$12.49 \%$

Notes: (1) Average forecast of Baa2 corporate bonds based upon the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts dated June 1, 2021 (see pages 10 and 11 of Schedule DWD-3). The estimates are detailed below.

Second Quarter 2021	$3.80 \%$
Third Quarter 2021	4.00
Fourth Quarter 2021	4.10
First Quarter 2022	4.20
Second Quarter 2022	4.20
Third Quarter 2022	4.30
2023-2027	5.30
2028-2032	5.80
Average	4.46

(2) From page 5 of this Schedule.

# Atmos Energy Corporation <br> Comparison of Long-Term Issuer Ratings for the <br> Proxy Group of Forty-Eight Non-Price Regulated Companies of Comparable risk to the Proxy Group of Seven Natural Gas Distribution Companies 

	Moody's   Long-Term Issuer Rating   May 2021		Standard \& Poor's Long-Term Issuer Rating May 2021	
Proxy Group of Forty-Eight Non-Price Regulated Companies	Long-Term Issuer Rating	Numerical Weighting (1)	Long-Term Issuer Rating	Numerical Weighting (1)
Apple Inc.	Aa1	2.0	AA+	2.0
Abbott Labs.	A2	6.0	A+	5.0
Assurant Inc.	Baa3	10.0	BBB	9.0
ANSYS, Inc.	NA	--	NA	--
Booz Allen Hamilton	NA	--	NA	--
Becton, Dickinson	Baa3	10.0	BBB	9.0
Brown-Forman 'B'	A1	5.0	A-	7.0
Broadridge Fin'l	Baa1	8.0	BBB+	8.0
Brady Corp.	NA	--	NA	--
CACI Int'l	NA	--	BB+	11.0
Casey's Gen'l Stores	NA	--	NA	--
Cadence Design Sys.	Baa2	9.0	BBB+	8.0
Cerner Corp.	NA	--	NA	--
CSW Industrials	NA	--	NA	--
Quest Diagnostics	Baa2	9.0	BBB+	8.0
Lauder (Estee)	A1	5.0	A+	5.0
Exponent, Inc.	NA	--	NA	--
Fastenal Co.	NA	--	NA	--
Gentex Corp.	NA	--	NA	--
Int'l Flavors \& Frag	Baa3	10.0	BBB	9.0
Ingredion Inc.	Baa1	8.0	BBB	9.0
Iron Mountain	Ba3	13.0	BB-	13.0
Hunt (J.B.)	Baa1	8.0	BBB+	8.0
J\&J Snack Foods	NA	--	NA	--
Henry (Jack) \& Assoc	NA	--	NA	--
ManTech Int'l 'A'	WR	--	BB+	11.0
McCormick \& Co.	Baa2	9.0	BBB	9.0
Altria Group	A3	7.0	BBB	9.0
MSA Safety	NA	--	NA	--
MSCI Inc.	Ba1	11.0	BB+	11.0
Motorola Solutions	Baa3	10.0	BBB-	10.0
Vail Resorts	B2	15.0	BB	12.0
Maxim Integrated	Baa1	8.0	BBB+	8.0
Northrop Grumman	Baa2	9.0	BBB+	8.0
Old Dominion Freight	NA	--	NA	--
PerkinElmer Inc.	Baa3	10.0	BBB	9.0
Philip Morris Int'l	A2	6.0	A	6.0
Pool Corp.	NA	--	NA	--
Post Holdings	B2	15.0	B+	14.0
RLI Corp.	Baa2	9.0	BBB	9.0
Rollins, Inc.	NA	--	NA	--
Selective Ins. Group	Baa2	9.0	BBB	9.0
Sirius XM Holdings	NA	--	BB	12.0
Bio-Techne Corp.	NA	--	NA	--
Tetra Tech	NA	--	NA	--
Waters Corp.	NA	--	NA	--
West Pharmac. Svcs.	NA	--	NA	--
Western Union	Baa2	9.0	BBB	9.0
Average	Baa2	8.8	BBB	8.9

Notes:
(1) From page 6 of Schedule DWD-3.

Source of Information:
Bloomberg Professional Services

## Atmos Energy Corporation

Derivation of Equity Risk Premium Based on the Total Market Approach
Using the Beta for
Proxy Group of Forty-Eight Non-Price Regulated Companies of Comparable risk to the Proxy Group of Seven Natural Gas Distribution Companies

Line No.
Equity Risk Premium Measure
Proxy Group of Forty-Eight NonPrice Regulated Companies

## Ibbotson-Based Equity Risk Premiums:

1. Ibbotson Equity Risk Premium (1)
$\begin{array}{lll}2 . & \text { Regression on Ibbotson Risk Premium Data (2) } & 8.69\end{array}$
2. Ibbotson Equity Risk Premium based on PRPM (3) 9.02
3. Equity Risk Premium Based on Value Line

Summary and Index (4)
4.60

5 Equity Risk Premium Based on Value Line
S\&P 500 Companies (5)
6. Equity Risk Premium Based on Bloomberg S\&P 500 Companies (6)
7. Conclusion of Equity Risk Premium 8.63 \%
8. Adjusted Beta (7)
9. Forecasted Equity Risk Premium

Notes:
(1) From note 1 of page 9 of Schedule DWD-3.
(2) From note 2 of page 9 of Schedule DWD-3.
(3) From note 3 of page 9 of Schedule DWD-3.
(4) From note 4 of page 9 of Schedule DWD-3.
(5) From note 5 of page 9 of Schedule DWD-3.
(6) From note 6 of page 9 of Schedule DWD-3.
(7) Average of mean and median beta from page 6 of this Schedule.

Sources of Information:
Stocks, Bonds, Bills, and Inflation - 2021 SBBI Yearbook, John Wiley \& Sons, Inc.
Value Line Summary and Index
Blue Chip Financial Forecasts, June 1, 2021
Bloomberg Professional Services

KyPSC Case No. 2021-00190 STAFF-DR-03-010(b) Attachment Page 83 of 86

Exhibit DWD-1
Schedule DWD-6.6

Traditional CAPM and ECAPM Results for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the Proxy Group of Seven Natural Gas Distribution Companies
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

Proxy Group of Forty-Eight Non-Price Regulated Companies	Value Line   Adjusted Beta	Bloomberg Beta	Average   Beta	Market Risk   Premium (1)	Risk-Free Rate   (2)	Traditional CAPM Cost Rate	ECAPM Cost Rate	Indicated Common Equity Cost Rate (3)
Apple Inc.	0.90	1.01	0.96	9.46 \%	2.88 \%	11.96 \%	12.06 \%	12.01 \%
Abbott Labs.	0.90	0.85	0.88	9.46	2.88	11.20	11.49	11.35
Assurant Inc.	0.90	1.00	0.95	9.46	2.88	11.87	11.99	11.93
ANSYS, Inc.	0.85	0.97	0.91	9.46	2.88	11.49	11.70	11.59
Booz Allen Hamilton	0.90	0.92	0.91	9.46	2.88	11.49	11.70	11.59
Becton, Dickinson	0.80	0.58	0.69	9.46	2.88	9.41	10.14	9.77
Brown-Forman 'B'	0.90	0.97	0.94	9.46	2.88	11.77	11.91	11.84
Broadridge Fin'l	0.80	0.84	0.82	9.46	2.88	10.64	11.06	10.85
Brady Corp.	1.00	1.05	1.02	9.46	2.88	12.53	12.48	12.51
CACI Int'l	0.95	1.01	0.98	9.46	2.88	12.15	12.20	12.17
Casey's Gen'l Stores	0.90	0.91	0.91	9.46	2.88	11.49	11.70	11.59
Cadence Design Sys.	0.90	0.98	0.94	9.46	2.88	11.77	11.91	11.84
Cerner Corp.	0.90	0.89	0.90	9.46	2.88	11.39	11.63	11.51
CSW Industrials	0.90	1.05	0.97	9.46	2.88	12.06	12.13	12.09
Quest Diagnostics	0.85	0.96	0.91	9.46	2.88	11.49	11.70	11.59
Lauder (Estee)	0.95	1.00	0.98	9.46	2.88	12.15	12.20	12.17
Exponent, Inc.	0.90	0.94	0.92	9.46	2.88	11.58	11.77	11.68
Fastenal Co.	0.90	0.95	0.92	9.46	2.88	11.58	11.77	11.68
Gentex Corp.	0.95	1.06	1.01	9.46	2.88	12.43	12.41	12.42
Int'l Flavors \& Frag	0.95	1.08	1.02	9.46	2.88	12.53	12.48	12.51
Ingredion Inc.	0.90	0.92	0.91	9.46	2.88	11.49	11.70	11.59
Iron Mountain	0.90	1.02	0.96	9.46	2.88	11.96	12.06	12.01
Hunt (J.B.)	0.95	0.91	0.93	9.46	2.88	11.68	11.84	11.76
J\&J Snack Foods	0.90	0.77	0.84	9.46	2.88	10.83	11.20	11.02
Henry (Jack) \& Assoc	0.85	0.89	0.87	9.46	2.88	11.11	11.42	11.26
ManTech Int'l 'A'	0.85	1.11	0.98	9.46	2.88	12.15	12.20	12.17
McCormick \& Co.	0.80	0.70	0.75	9.46	2.88	9.97	10.57	10.27
Altria Group	0.90	0.88	0.89	9.46	2.88	11.30	11.56	11.43
MSA Safety	1.00	0.99	1.00	9.46	2.88	12.34	12.34	12.34
MSCI Inc.	0.95	0.94	0.94	9.46	2.88	11.77	11.91	11.84
Motorola Solutions	0.90	0.96	0.93	9.46	2.88	11.68	11.84	11.76
Vail Resorts	0.95	1.14	1.05	9.46	2.88	12.81	12.69	12.75
Maxim Integrated	0.95	0.99	0.97	9.46	2.88	12.06	12.13	12.09
Northrop Grumman	0.85	0.80	0.83	9.46	2.88	10.73	11.13	10.93
Old Dominion Freight	0.95	0.97	0.96	9.46	2.88	11.96	12.06	12.01
PerkinElmer Inc.	0.90	0.84	0.87	9.46	2.88	11.11	11.42	11.26
Philip Morris Int'l	0.95	0.91	0.93	9.46	2.88	11.68	11.84	11.76
Pool Corp.	0.85	0.95	0.90	9.46	2.88	11.39	11.63	11.51
Post Holdings	0.95	0.90	0.93	9.46	2.88	11.68	11.84	11.76
RLI Corp.	0.80	0.90	0.85	9.46	2.88	10.92	11.28	11.10
Rollins, Inc.	0.85	0.69	0.77	9.46	2.88	10.16	10.71	10.44
Selective Ins. Group	0.85	0.97	0.91	9.46	2.88	11.49	11.70	11.59
Sirius XM Holdings	0.95	1.10	1.02	9.46	2.88	12.53	12.48	12.51
Bio-Techne Corp.	0.80	0.93	0.86	9.46	2.88	11.02	11.35	11.18
Tetra Tech	0.95	1.06	1.00	9.46	2.88	12.34	12.34	12.34
Waters Corp.	0.95	0.86	0.91	9.46	2.88	11.49	11.70	11.59
West Pharmac. Svcs.	0.80	0.75	0.78	9.46	2.88	10.26	10.78	10.52
Western Union	0.80	1.05	0.93	9.46	2.88	11.68	11.84	11.76
		Mean	0.92			11.55 \%	11.75 \%	11.65 \%
		Median	0.93			11.63 \%	11.81 \%	11.72 \%
	Average of	n and Median	0.93			11.59 \%	11.78 \%	11.69 \%

Notes:
(1) From note 1 of page 2 of Schedule DWD-4.
(2) From note 2 of page 2 of Schedule DWD-4.
(3) Average of CAPM and ECAPM cost rates.

Atmos Energy Corporation
Derivation of Investment Risk Adjustment Based upon
Ibbotson Associates' Size Premia for the Decile Portfolios of the NYSE/AMEX/NASDAQ


## Atmos Energy Corporation

Market Capitalization of Atmos Energy Corporation and the Proxy Group of Seven Natural Gas Distribution Companies

Company	Exchange	[1]		[2]		[3]		[4]	[5]	[6]		
		Common Stock Shares Outstanding at Fiscal Year End 2020		Book Value per Share at Fiscal Year End 2020   (1)		Total Common Equity at Fiscal Year End 2020		Closing Stock Market Price on May 28, 2021	Market-toBook Ratio on May 28, 2021 (2)	Market   Capitalization on May 28, 2021 (3)		
			ons )				lions )					millions)
Atmos Energy Corporation		NA		NA		340.035		NA				
Based upon Proxy Group of Seven Natural Gas Distribution Companies									175.6	(5)	\$	597.101
Proxy Group of Seven Natural Gas Distribution Companies												
Atmos Energy Corporation	NYSE	\$	125.882	\$	53.949	\$	6,791.203	99.170	183.8	\%	\$	12,483.765
New Jersey Resources Corporation	NYSE		95.949		19.226		1,844.692	42.720	222.2			4,098.949
Northwest Natural Holding Company	NYSE		30.589		29.054		888.733	52.880	182.0			1,617.546
ONE Gas, Inc.	NYSE		53.167		42.006		2,233.311	74.320	176.9			3,951.352
South Jersey Industries, Inc.	NYSE		100.592		16.571		1,666.876	26.660	160.9			2,681.781
Southwest Gas Holdings, Inc.	NYSE		57.193		46.771		2,674.953	66.010	141.1			3,775.305
Spire Inc.	NYSE		51.612		44.182		2,280.300	71.660	162.2			3,698.501
Average		\$	73.569	\$	35.966	\$	2,625.724	61.917	175.6	\%	\$	4,615.314

## NA= Not Available

Notes: (1) Column 3 / Column 1.
(2) Column 4 / Column 2.
(3) Column 1 * Column 4.
(4) Requested rate base multiplied by the initial requested common equity ratio
(5) The market-to-book ratio of Atmos Energy Corporation on May 28, 2021 is assumed to be equal to the market-to-book ratio of Proxy Group of Seven Natural Gas Distribution Companies on May 28, 2021 as appropriate.
(6) Column [3] multiplied by Column [5].

## Exhibit DWD-1 Schedule DWD-8.1

## Atmos Energy Corporation

Derivation of the Flotation Cost Adjustment to the Cost of Common Equity

Equity Issuances and Flotation Costs for FY 2019, 2018, 2017, and 2016

[Column 1]	[Column 2]		[Column 3]		[Column 4]		[Column 5]		[Column 6]		[Column 7]
Shares Issued	Average Offering Price per Share (2)		Net Proceeds per Share (3)		$\qquad$		$\underline{\text { Total Net Proceeds }}$		$\begin{gathered} \text { Total Flotation } \\ \text { Costs (4) } \\ \hline \end{gathered}$		Flotation Cost   Percentage (5)
5,390,836	\$	92.7500	\$	91.6555	\$	500,000,000	\$	494,100,000	\$	5,900,000	1.18\%
4,558,404	\$	87.7500	\$	86.6751	\$	400,000,000	\$	395,100,000	\$	4,900,000	1.23\%
1,303,494	\$	76.7169	\$	75.7963	\$	100,000,000	\$	98,800,000	\$	1,200,000	1.20\%
1,360,756	\$	73.4886	\$	72.4597	\$	100,000,000	\$	98,600,000	\$	1,400,000	1.40\%
						1,100,000,000	\$	1,086,600,000		13,400,000	1.22\%

Flotation Cost Adjustment


See page 2 of this Schedule for notes.
Source of Information: Company SEC filings











즈
[เ]



匹





$\pm$




41 Jo \& $3 \mathrm{z}_{\mathrm{d}} \mathrm{d}$



Ticker


$000000{ }^{\prime} 860^{\prime}$＇9て＇ เ
0000
000 ¢91＇z86＇zze＇レ
000 ¢9L＇6LL＇LES＇
¢¢¢ 001
606 ¢ $¢$
$000000{ }^{\prime}$ ¢G\＆＇sp
000＇000＇828＇62จ
000＇000＇9L9＇と¢－－
$000000^{\circ} 666^{\prime}$ LEO＇
000＇000＇\＆bt＇ 109
$000000{ }^{\circ}$ 加でZ8z
0000
00＇000＇EOt＇LO9
$00000^{\prime}$ ¢bt＇L09
00＇000＇bLD＇V8
00＇000＇6Z6＇LE
$008 \%$
$00{ }^{\circ} \mathrm{OB}$
OLS OZL
$068 \%$
0000
0000
$000000{ }^{\prime} \mathrm{COZ}$＇6L＇9
0000
$000 \cdot ¢ 916 L L ' L \varepsilon S^{\prime} \downarrow$
$\overline{020 z}$


		$\begin{aligned} & \circ \\ & \hline 8 \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { O} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{*}} \\ & \stackrel{\rightharpoonup}{\Phi} \end{aligned}$		N － － － － 0 0 8	O			$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{4} \\ & 0 \\ & \hline \mathbf{8} \\ & \mathbf{8} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & \stackrel{1}{2} \end{aligned}$		$\begin{aligned} & \text { \& } \\ & \text { i } \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$		$$

[^19]| $\begin{aligned} & \text { g } \\ & \text { en } \\ & \stackrel{0}{0} \\ & 0 \\ & 8 \\ & \hline 8 \end{aligned}$ | $\begin{aligned} & \text { N్心 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 8 \end{aligned}$ |  | $\begin{aligned} & \omega \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 8 \\ & \hline 8 \end{aligned}$ | $\begin{aligned} & 8 \\ & 0 \\ & 9 \\ & 0 \end{aligned}$ |  | $\stackrel{\underset{\sim}{\omega}}{\underset{\sim}{\omega}}$ |  | $\begin{aligned} & \vec{N} \\ & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{0}{\circ} \\ & \hline 8 \\ & 8 \\ & \hline 0 \end{aligned}$ | $8$ |  | $\begin{aligned} & \text { 炭 } \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{0}{8} \\ & .0 \\ & \hline 8 \end{aligned}$ | $\begin{aligned} & \overrightarrow{\vec{a}} \\ & \stackrel{0}{\circ} \\ & \stackrel{\circ}{\omega} \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{8}{8} \end{aligned}$ | $\begin{aligned} & \text { N } \\ & 0 . \\ & 8 \\ & 0 \\ & 8 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$ | $\stackrel{\rightharpoonup}{\otimes}$ |  | $\begin{aligned} & \text { 00 } \\ & 0.0 \\ & 0 . \\ & 0 . \\ & \hline 8 \\ & 8 \\ & 8 \\ & \hline 8 \end{aligned}$ |  | $\begin{array}{r} \text { N } \\ \text { 合 } \\ \text { I } \\ 0 \\ 08 \\ 08 \\ 888 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


$000000 ' 208 ' 106$
000＇000＇62¢＇918
0000
$000000 ' \mathrm{ZLI}$＇80L＇9
$000000 ' S L \varepsilon ' \varepsilon เ 6 ' 乙$
080＇¢
000＇000＇s8L＇oss＇s
287＇1E
000＇000＇069＇961
$0000^{\circ} 000^{\prime} 96 L^{\prime} \nabla L 2$
$000000 ' 0666^{\prime \prime}$
$000000 ' 6 \mathrm{LS}$＇9¢8
$000000 ' g \angle 0 ' s L E$
$000000 ' 810$＇091
0000
000000 S 20 G 1 ¢
$000000 ' \mathrm{SLO}$ ¢ 1 E
$000000 \cdot$ レロで9し
0000
09\％ 1
0se $\angle 0$
01889
060 \＆
$000000{ }^{\circ}$ LZ6＇ 296
0000
$000^{\circ} 000^{\circ} \angle 6 L^{\prime} \cdot 66$ L＇$^{\prime} \varepsilon$ $000^{\circ} 818^{\prime} 8 \angle L^{\prime} 101$
$000000 ' 88 \varepsilon^{\prime}$＇Sct＇z
$\overline{\text { stoz }}$


CAPITALIZATION STATISTICS
AMOUNT OF CAPITAL EMPLOYED
TOTAL PERMANENT CAPITAL
SHORT-TERM DEBT
TOTAL CAPITAL EMPLOYED














Net Income before Extra.
CE Income before Extra Total Interest DPS by payable date
AFUDC







$000000 ' 00868 \varepsilon$
0000
$000000 ' 680$ '8zo'z
000000'\&80' Lz6
Opl 62
$0000000^{\prime 689}$ '196'L
20621
$000000 \cdot \mathrm{TLL}$ '69
000 $000{ }^{\prime} 66 \varepsilon^{\prime} 19$
000000 '\&¢L'9
$0000000^{\prime} 026^{\prime} \angle 8 \varepsilon$   000000
0000
$000000 \cdot 096{ }^{\circ} \mathrm{O}$
$0000000^{\circ} 096{ }^{\prime} 081$
$000000{ }^{\circ} \mathrm{LZL} \mathrm{LZ}$
$000000{ }^{\prime 262 ' 9}$
9160
508 pz
$\begin{aligned} & \text { GLDE } \\ & 001 Z \end{aligned}$
0000
$000^{\prime} 000^{\prime} 956^{\prime} 90$ L'L  
0000






\％	－	¢	융		$\stackrel{8}{\square}$	\％	－			$\begin{aligned} & \text { 另 } \\ & \text { 号 } \end{aligned}$	$\sum$  	$\stackrel{\text { 耑 }}{2}$		$\begin{aligned} & \frac{5}{n} \\ & \text { 员 } \end{aligned}$	$\frac{8}{\mathbf{3}}$		$\begin{aligned} & \text { 号 } \\ & \text { 䍙 } \end{aligned}$		
		응			$\stackrel{\text { Bin }}{\stackrel{3}{\text { F}}}$		$\begin{aligned} & \text { \% } \\ & \text { O} \\ & \hline \end{aligned}$			응	$\begin{aligned} & \text { ö } \\ & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{0}{\circ} \\ & \stackrel{8}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{\circ} \\ & \stackrel{8}{\circ} \end{aligned}$		앙	$\stackrel{\rightharpoonup}{巳}$	合名皆			


000000＇89＇802
000000 O6L＇6p
0000
$000000{ }^{\prime} \mathrm{E}$＇ $9688^{\prime}$ เ
$000000{ }^{\prime \prime} \mathrm{rgl}$＇ OEO ＇
099＇99
$0000000^{\prime} 90^{\prime} \mathrm{LVL} L^{\prime}$＇
6レロ8て
$000000 \mathrm{Zqg} \mathrm{\%}$
000 000 ＇800＇s¢ ${ }^{\text {c／}}$
000000 ＇sદL＇ 9
000000 ＇ $88 \cdot 99$
0000
$000000 \cdot \mathrm{SEL}$＇ 19
000000 ＇¢89＇z
000000＇00
006 ＇
${ }^{090} 29$
$098 \varepsilon L$0202
0000
$000^{\circ} 000^{\prime} 666^{\prime} 998$ $000^{\circ} 000^{\prime}$ ZLDOE
ธโర



		$\circ$			$\begin{aligned} & \text { n } \\ & \text { No } \\ & \text { Non } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { oे } \end{aligned}$	AㅇN心N    $888^{\circ} 0^{\circ}$ $88_{0}^{\circ} 88^{\circ} 8^{\circ}$		응	W   ©   0   0   8   8		$\begin{aligned} & \overleftrightarrow{4} \\ & \stackrel{\rightharpoonup}{\mathbf{\omega}} \\ & \stackrel{0}{8} \\ & \hline 8 \end{aligned}$	\％		部客㤩			







Ticker
OGS
Capital Structure：
Long Term Debt
Preterred Stock
Common Shares Outst．
Common Equity
Sinking fund Requrements
Short Term Debt
EPS excluding extra
Price－High
Price－Low
DPS by payable date
AFUDC
Total Interest
Net Income betore Extra
CE Income betore Extra
Preferred Stock Oividends
Common Dividends
Income Bet Extra Items－S\＆U
Net Operating Cash Flow
Change in op＇g Assets＋Liabilities
Depreciation \＆Amortization
Income Tax Expense
Calculations
Com Eq／Shares Out
Total Permanent Capital
Average Price
Total Debt
Total Capital
Preferred Stk＋Sink Fund Req．
NETOPGFC＋CHGOPASLIAB－AFUDC
EBITDA




$000000 ' 209 ' 698$
$000000{ }^{\circ} \mathrm{\downarrow} 6^{\prime}$＇z®
0000
$000000{ }^{\prime} \angle 9 \varepsilon^{\prime} 550^{\prime} \varepsilon$
000000 てレ®＇としでし
09\％ 5
$6 \varepsilon 乙$ ¢ $¢$
$000000 \cdot 626{ }^{\prime} \mathrm{ZL}$
$000000 ' \varepsilon z 0^{\prime}$ ¢
$000000 ' \angle E E ้ L \square$
$000000 ' \angle 0 Z '$＇6E
$000000 \cdot 0$ ¢0＇6ь
$0000^{\circ 00}{ }^{\prime} 9$ Z8＇z9
0000
$000{ }^{\circ} 000^{\prime} 080^{\prime} 61$
$000000{ }^{\circ} 080 \cdot 611$
$000000{ }^{\circ} 02$＇t ${ }^{\circ}$
$000000009 '$＇
$00 Z^{\prime}$＇
$08 \varepsilon 6 \varepsilon$
Ore＇ts
Oちでて
000000＇00＇ 21
0000
$000000{ }^{\text {Scs }}$＇1P8＇
0000
¢¢0z







000
000 $000{ }^{\prime} \mathrm{E} 9 \mathrm{~s}^{\prime} \mathrm{E}$ \％
0000
000000＇LLレ＇Z8＇s
$000000 \cdot \mathrm{LOS'GL¢}$ ¢
¢08 ¢ ${ }^{\text {c }}$
000 000＇ $2100^{\prime \prime 989}$
$1<999$
$0^{000} 000{ }^{\prime \prime} 999^{\prime 2}$
$000000{ }^{\circ} \mathrm{LP9} 9^{\circ} \mathrm{L}$
000000 SLl ＇91－
$000000{ }^{6} 69^{\prime \prime}$ นย
$000000{ }^{\prime 2} 70^{\prime}$ LSL
$000000{ }^{\text {crag pul }}$
0000
$000000^{\prime} \mathrm{PB} 0^{\prime}$ LS
$0000^{\circ} 00{ }^{\prime} \mathrm{ZbO}$＇Ls
000000＇ $106^{\prime}$＇
06 L
08ヶ81
012 ¢
OZ9＇
000＇000＇000＇965
0000
000＇000＇928＇999＇
000＇006＇＇66＇ 00 L
0000
0000000＇ $100^{\prime} 6166^{\prime}$
0202




000 000＇ 80 ＇ 562	000 000＇967＇s¢
000000 をยて＇¢เร	000000＇6zع zzz
0000	0000
	000000＇く19＇szl＇z
	000000 ＇80Z＇EEs＇เ
59982	
$000000{ }^{\circ} \mathrm{DSL}$＇＇EEE＇Z	$000000{ }^{\circ}$ LL＇ 6 LE＇$冖$
l2z 91	0660
000000 Lsh lg	$000000{ }^{\circ} \mathrm{L6} 6^{\circ} \mathrm{Z}$－
$000000{ }^{\prime 2} \mathrm{zo}$＇16	000＇000＇8．8＇60
$0000000^{\prime}$ Z6＇09	$000000{ }^{\prime} \mathrm{zol}$＇se
$0000000{ }^{\prime 0} \mathbf{\prime 2}$＇29z	000＇000＇tze＇06
000000 ＇190＇64＇	$0000000 \cdot 100 t^{\prime \prime}$
$000000^{\prime} 08 \varepsilon^{\prime}$＇z	$000000{ }^{\prime} 80 \varepsilon^{\prime} / 8$
0000	0000
000 000＇190＇61	000000 ＇00＇ 8 －
$000000^{\prime} 190 \%$＇61	$000000 \cdot 008 \mathrm{E}$
0000006 br＇t	$000000660^{\prime \prime}$
$000000000{ }^{\circ} \mathrm{L}$	$000000{ }^{\prime}$ ヤ60＇$\varepsilon$
$020 \cdot 1$	00 L
о¢9\％z	OBLOE
${ }^{089} \downarrow \chi^{\text {¢ }}$	02188
09s＇	OVO $0 \cdot$
$000000{ }^{\prime} 001^{\prime} 962$	000000＇00\％ 9 ¢ $\underbrace{\prime}$
0000	0000
	$000000 \cdot 60{ }^{\prime} \mathrm{Z61}$＇
000 ¢590＇8LD＇62	000 080＇6bs＇ 6 L
0000	0000
	$000000{ }^{\prime} 808^{\prime} 981 / 2$
9102	$\overline{102}$



KyPSC Case No．2012－00190
STAFF－DR－03－010（c）ACtachment







苟
䎡离



000000 Z ZZ ＇8PL

 ～
 A
W．
 000000 ＇LL＇ 9 ＇l
0000 000000 ＇ Lg g ＇ Lz $000000^{\prime} \mathrm{LV9} 9 \mathrm{SLz}$
 $\stackrel{\stackrel{\rightharpoonup}{\mathrm{a}}}{0}$気芯
 0000

000 000＇98s＇rgs＇s
 01199
 $\stackrel{\stackrel{\circ}{\Xi}}{-}$
 응 000000 ＇ 586 ＇ $8 \varepsilon Z$

 N

 Common Equity
Sinking Fund Requirements
Snor Term Debt




$000000 \cdot 10 \varepsilon^{\prime} \mathrm{E} 69$	000000＇t89＇ 289	000000＇p88＇689
	000000＇808＇L L	$000000 \cdot \angle Z \nabla^{\prime}$＇S¢
0000	0000	0000
	$0000000^{\prime} \varepsilon \mathrm{L}^{\prime} 008 \mathrm{E}$ ¢	000000＇806＇Eを¢＇
$000000{ }^{\prime} 880^{\prime 009} \downarrow$	$0000000 L^{\prime} \angle 86^{\circ}$＇	
SpE 99	OSs 62	Scro $/$
$0000000^{\prime} \angle \subseteq \varepsilon^{\prime}$＇เร＇ $\mathcal{L}$		$000000{ }^{\prime \prime} 806$＇68＇จ
$\angle 86$ 吹	L89 18	196 て
$000000 \cdot 89 \mathrm{t}^{\prime 2}$	000000 ＇880＇s9	$000000 \cdot 1899^{\text {！} 9}$
$000000 \cdot 281682$	000000＇156 O9z	$000000{ }^{\prime}$＇Lz＇6bz
$000000 \cdot 866^{2} \mathrm{z6}$	$000000{ }^{\prime \prime} 889^{\prime}$＇zl－	$0000^{\circ} 000 \mathrm{Zgs}$＇$\varepsilon$ L
000＇000＇688＇865	$0000^{\circ 000}$＇956＇ 698	$0000000^{\prime 958} \cdot 8 \mathrm{zs}$
		000000＇ $2 \mathrm{Lz'R81}$
$000000{ }^{\circ} \mathrm{LE}$＇¢8	000000081 ＇z6	000＇000＇0rz＇001
0000	0000	0000
$000000{ }^{\prime}$ Loo＇zs	$000000{ }^{\prime} 18 \square^{\prime}$ E6	$000000 \cdot \mathrm{LLZ}$ Z8
$000000{ }^{\prime}$＇sco＇cs $\downarrow$	$000000 \cdot 266$ ¢61	000＇000＇299＇ $\mathrm{I8}$
000000099＇EL	$000000{ }^{\circ} 900^{\circ} \mathrm{L}$	$000000^{\prime} \mathrm{L} 296$
000＇000＇ $69 \mathrm{t}^{\prime} \mathrm{\varepsilon}$	$000000{ }^{\prime} 996$＇	$0000000^{\prime} 688^{\prime} 9$
$008 \cdot$	001＇z	080 て
098¢	0¢8 ZL	Oblto
0¢8 $8 \angle$	02 LC 98	$0<4$ 『8
$081 \varepsilon$	$070 \%$	$089 \varepsilon$
0000	$000000 \cdot 009^{\prime \prime} \mathrm{LL}$	$000000000{ }^{\circ} \mathrm{ZSt}$
0000	0000	0000
$000000{ }^{\circ} \mathrm{ELz'} 199^{\prime}$＇	$0000000^{\circ} \mathrm{EOR}$＇218＇	$000000006 S^{\prime}$＇SE＇Z
	$000020^{\circ} 060^{\prime} 88$	000 8v8＇9zo＇$\varsigma$
0000	0000	0000
$000 \cdot 000^{\prime \prime} 80^{\prime} 009^{\prime}$＇		$000000 \cdot 818.0$ L＇z
910て	$\overline{\angle 10 z}$	$\overline{8102}$
シทisniju ozoz－stoz  		



\％90＇Ls	\％ 9060	\％เモ て¢	\％Sb $0 ¢$	\％¢9 เ¢	\％ $\mathrm{D}_{\text {ch }}$	
\％80＇ b	\％66 ${ }^{\text {b }}$	\％ゆ で	\％ $9 \varepsilon$ ¢ $\varepsilon$	\％ 669	\％L6ロて	
	$\times 02 \mathrm{Z}$	$\times 8 \varepsilon \varepsilon$	$\times 68$ ¢	$\times 06$＇	$\times \mathrm{s}$ ¢ $\varepsilon$	（e） $\mathrm{CO193} 1183078101$
\％9s＇6	$\%$ ¢	\％かいい	\％ 268	\％い6	\％\＆\％ 6	ス1InO3 NOWWOO
LくてS	08 ps	2920	66 ¢	$09 \varepsilon 9$	Zs＇zs	Oİ甘Y InOAVd ON3OINIO
p8て	じて	ロ9＇2	6L2	£9＇乙	SVE	ดา31＾ON3O：＾10
86 98	1 1と6	26812	6L＇98	$\angle 9881$	しでとか	
\％919	\％6L＇	\％80¢	\％D6 D	$\%$ ¢ ${ }^{\text {c }}$	\％92＇9	
						STILSİVIS TVİNVNİ
$\begin{gathered} \% \overline{0060 \%} \\ \frac{66 \% 85}{00.0} \\ \% 9015 \end{gathered}$	$\begin{aligned} & \% \frac{00001}{\nabla 605} \\ & 000 \end{aligned}$	$\% \frac{00001}{69 \angle \square}$	$\frac{\% 0001}{996 b}$	$\frac{\% 000}{2 \varepsilon 80}$	$\% \frac{0000}{9 \downarrow-1 b}$	$\begin{gathered} \text { TVIO1 } \\ \text { AlINOヨ NOWWOS } \end{gathered}$
		000	000	000	000	    
	$\begin{gathered} 000 \\ \% 9060 \end{gathered}$	\％$\downarrow$ ¢ $2 ¢$	\％Stos	\％¢9＇เs	\％ b8＇$_{\text {LS }}$	
$\begin{aligned} & \% \frac{0006}{9009} \\ & 000 \end{aligned}$	$\begin{aligned} & \% \frac{00001}{D 60 G} \\ & 0000 \end{aligned}$	$\begin{aligned} & \% \frac{0000 T}{9509} \\ & 000 \end{aligned}$	$\begin{aligned} & \% \frac{80 \% \pi}{L Z 15} \\ & 000 \end{aligned}$		$\begin{aligned} & \% \frac{00001}{016 \square} \\ & 000 \end{aligned}$	7 7101   ALINOE NOWWOS หフO1S 0ヨyyヨuヨyd
\％DG 60	\％ 9060	\％St 6 b	\％ELC ${ }^{\text {b }}$		$\% 0609$	1830 W－31－9NO7
				\％85 6\％		ר $\forall 11 d \forall \supset$ IN3N甘Wとヨd $7 \forall 1 O 1$ NO OヨS
	\％29＇	\％¢ $\underbrace{\prime}$	$\%$ ¢ ${ }^{\prime}$	\％0b＇b	\％L0＇	YOOLS OJyyyyjud$18307 \forall 101$
	$\begin{aligned} & \frac{\angle S \varepsilon 19 Z \varepsilon s}{0000 s} \\ & \angle S \varepsilon เ 9 Z^{\prime} \varepsilon s \end{aligned}$			$\begin{aligned} & 80608 l^{8065} \\ & 0001125 \\ & 806696 \mathrm{bs} \end{aligned}$		1830 WY31－14OHS    ©ヨ人O7dW3 7VIld
	（\＄y母า700 Jo SNO｜าาiw）					STILSİ甘IS NOIIVZITVIId甘す
	9102	$\overline{\text { LLOZ }}$	8 BLOZ	$\overline{6102}$	$\overline{020 \%}$	


	$\begin{aligned} & \stackrel{n}{9} \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{\rightharpoonup}{8} \\ & 8 \\ & 0 \\ & 8 \end{aligned}$			N	ジ		$\begin{aligned} & \text { Aे } \\ & \text { 咢 } \end{aligned}$	贸吉哲各管 $88^{8} 8^{\circ} 0^{\circ} 8^{\circ}$ 8 80888	$\vec{N}$ $\vec{\circ}$ $\stackrel{\rightharpoonup}{8}$ 8 8 8			N A O B 8 8 8		\％	N		$\begin{aligned} & \text { O. } \\ & \text { o } \\ & 8 \\ & 0.8 \\ & 8 \\ & \hline 8 \end{aligned}$			需	$\begin{aligned} & \text { 易 } \\ & =0 \end{aligned}$
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{8} \\ & \stackrel{8}{8} \\ & \stackrel{8}{2} \end{aligned}$		응		$\begin{aligned} & \text { N } \\ & 0 \\ & \text { N } \\ & \text { U } \\ & 0 \\ & 0 \\ & 0 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{W}} \\ & \text { N } \end{aligned}$	   8\％8\％8\％ 888888	$\begin{aligned} & \% \\ & \stackrel{0}{0} \\ & .0 \\ & \hline 8 \\ & 8 \end{aligned}$	응	$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \stackrel{8}{8} \\ & \stackrel{8}{8} \\ & \stackrel{8}{8} \end{aligned}$		$\begin{aligned} & \ddot{0} \\ & \stackrel{\leftrightarrow}{\circ} \\ & \stackrel{8}{8} \\ & \stackrel{8}{8} \end{aligned}$	$\stackrel{\circ}{8}$	$\begin{aligned} & \stackrel{N}{8} \\ & \end{aligned}$					䓵	
		$8$			$\begin{gathered} \text { 刃 } \\ \underset{0}{0} \end{gathered}$		$\stackrel{\text { 世山心 }}{\underset{\sim}{心}}$	ه（    888888 888888	$\begin{aligned} & \text { on } \\ & \text { 世 } \\ & 0 \\ & 0 \\ & 0 \\ & 8 \\ & 8 \end{aligned}$	응		$\begin{aligned} & \vec{A} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{8}{8} \\ & 0 \\ & \hline 8 \end{aligned}$		응	$\stackrel{\rightharpoonup}{\text { ¢ }}$					咢	$\dot{\ddot{j}}$





Duke Energy Kentucky, Inc. Interest Rates and Bond Spreads for Moody's Corporate and Public Utility Bonds

## Selected Bond Yields - Moody's



A2 Rated Public Utility Bonds Over Aaa Rated Corporate Bonds:
$0.42 \%(1)$
Baa2 Rated Public Utility Bonds Over A2 Rated Public Utility Bonds: 0.27 \% (2)

A2 Rated Public Utility Bonds Over Aa2 Rated Public Utility Bonds:

$$
0.17 \%(3)
$$

Notes:
(1) Column [3] - Column [1].
(2) Column [4] - Column [3].
(3) Column [3] - Column [2].

Source of Information:
Bloomberg Professional Service

Duke Energy Kentucky, Inc.
Comparison of Long-Term Issuer Ratings for Proxy Group of Seven Natural Gas Distribution Companies

Moody's
$\frac{\text { Moody's }}{\frac{\text { Long-Term Issuer Rating }}{\text { March 2021 }}}$

Proxy Group of Seven Natural Gas Distribution Companies	Long-Term Issuer Rating (1)	Numerical   Weighting (2)	Credit Risk   Adjustment
Atmos Energy Corporation	A1	5.0	-0.10\%
New Jersey Resources Corporation	A1	5.0	-0.10\%
Northwest Natural Holding Company	Baa1	8.0	0.14\%
ONE Gas, Inc.	A3	7.0	0.05\%
South Jersey Industries, Inc.	A3	7.0	0.05\%
Southwest Gas Holdings, Inc.	Baa1	8.0	0.14\%
Spire Inc.	A1/A2	5.5	-0.07\%
Average	A2/A3	6.5	
Duke Energy Kentucky, Inc.	Baa1	8.0	0.14\%

Notes:
(1) Ratings are that of the average of each company's utility operating
(2) From page 6 of this Attachment.

Source Information: Moody's Investors Service Standard \& Poor's Global Utilities Rating Service

# Numerical Assignment for <br> Moody's and Standard \& Poor's Bond Ratings 

Moody's Bond Rating	Numerical Bond Weighting	Standard \& Poor's Bond Rating
Aaa	1	AAA
Aa1	2	AA+
Aa2	3	AA
Aa3	4	AA-
A1	5	A+
A2	6	A
A3	7	A-
Baal	8	BBB+
Baa2	9	BBB
Baa3	10	BBB-
Bal	11	BB+
Ba 2	12	BB
Ba3	13	BB-
B1	14	B+
B2	15	B
B3	16	B-

Duke Energy Kentucky
Case No. 2021-00190
STAFF Third Set Data Requests
Date Received: August 4, 2021
STAFF-DR-03-011

## REQUEST:

Refer to Duke Kentucky’s Response to Staff’s Second Request, Item 24. Provide the expert testimony and exhibits regarding return on equity for the cases in attachments 1,2 , and 3 in PDF format.

## RESPONSE:

Please see STAFF-DR-03-011 Attachments 1 through 3.

PERSON RESPONSIBLE: Dylan W. D'Ascendis

# STATE OF NORTH CAROLINA UTILITIES COMMISSION RALEIGH 

DOCKET NO. W-354, SUB 364

In the Matter of
Application of Carolina Water Service, Inc. ) of North Carolina for Adjustment of Rates ) and Charges, Approval of a Conservation ) Rate Pilot Program, and Modifications to ) Certain Terms and Conditions for the

DIRECT TESTIMONY OF DYLAN W. D'ASCENDIS ON BEHALF OF CAROLINA WATER SERVICE, INC. OF NORTH CAROLINA Provision of Water and Sewer Service.

## APPENDIX 12

SCHEDULE G-5

June 28, 2019
Appendix 12

## TABLE OF CONTENTS

## Page

I. INTRODUCTION ..... 1
A. Witness Identification ..... 1
B. Background and Qualifications. ..... 1
II. PURPOSE OF TESTIMONY ..... 2
III. SUMMARY ..... 3
IV. GENERAL PRINCIPLES ..... 4
A. Business Risk ..... 5
B. Financial Risk ..... 9
V. CAPITAL STRUCTURE ..... 10
VI. CWSNC AND THE UTILITY PROXY GROUP ..... 11
VII. COMMON EQUITY COST RATE MODELS ..... 13
A. Discounted Cash Flow Model ..... 14
B. The Risk Premium Model ..... 17
C. The Capital Asset Pricing Model ..... 29
D. Common Equity Cost Rates for a Proxy Group of Domestic, Non-Price Regulated Companies Based on the DCF, RPM, and CAPM ..... 36
VIII. CONCLUSION OF COMMON EQUITY COST RATE BEFORE ADJUSTMENT ..... 40
IX. ADJUSTMENTS TO THE COMMON EQUITY COST RATE ..... 41
A. Size Adjustment ..... 41
X. ECONOMIC CONDITIONS IN NORTH CAROLINA ..... 46
XI. CONCLUSION OF COMMON EQUITY COST RATE. ..... 52


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364

\section*{I. INTRODUCTION}

\section*{A. Witness Identification} Q. Please state your name and business address. A. My name is Dylan W. D'Ascendis. My business address is 3000 Atrium Way, Suite 241, Mount Laurel, NJ 08054. Q. By whom are you employed and in what capacity? A. I am a Director at ScottMadden, Inc.

\section*{B. Background and Qualifications} Q. Please summarize your professional experience and educational background. A. I offer expert testimony on behalf of investor-owned utilities on rate of return issues and class cost of service issues. I also assist in the preparation of rate filings, including but not limited to revenue requirements and original cost and lead/lag studies. I am a graduate of the University of Pennsylvania, where I received a Bachelor of Arts degree in Economic History. I also hold a Masters of Business Administration from Rutgers University with a concentration in Finance and International Business, which was conferred with high honors. I am a Certified Rate of Return Analyst ("CRRA") and a Certified Valuation Analyst ("CVA"). My full professional qualifications are provided in Appendix A.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364

\section*{II. PURPOSE OF TESTIMONY} Q. What is the purpose of your testimony in this proceeding? A. The purpose of my testimony is to present evidence on behalf of Carolina Water Service, Inc. of North Carolina. ("CWSNC" or the "Company") about the appropriate capital structure and corresponding cost rates the Company should be given the opportunity to earn on its jurisdictional rate base. Q. Have you prepared an exhibit in support of your recommendation? A. Yes. I have prepared D'Ascendis Exhibit No. 1, which consists of Schedules DWD-1 through DWD-8. Q. What is your recommended cost of capital for CWSNC? A. I recommend the North Carolina Utilities Commission (the "Commission") authorize the Company the opportunity to earn an overall rate of return of 8.07\% based on a test year ending March 31, 2019. The ratemaking capital structure consists of $52.04 \%$ long-term debt at an embedded debt cost rate of $5.59 \%$, and $47.96 \%$ common equity at my recommended common equity cost rate of $10.75 \%$. The overall rate of return is summarized on page 1 of Schedule DWD-1 and in Table 1 below:


Table 1: Summary of Overall Rate of Return

$\underline{\text { Type of Capital }}$	$\underline{\text { Ratios }}$		$\underline{\text { Cost Rate }}$	
Long-Term Debt	$52.04 \%$		$5.59 \%$	
Common Equity	$\underline{47.96 \%}$		$10.75 \%$	
Total	$\underline{\underline{100.00 \%}}$		$\underline{2.91 \%}$	
		$\underline{\underline{5.16 \%}}$		


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364

\section*{III. SUMMARY} Q. Please summarize your recommended common equity cost rate. A. My recommended common equity cost rate of $10.75 \%$ is summarized on page 2 of Schedule DWD-1. I have assessed the market-based common equity cost rates of companies of relatively similar, but not necessarily identical, risk to CWSNC. Using companies of relatively comparable risk as proxies is consistent with the principles of fair rate of return established in the Hope ${ }^{1}$ and Bluefield ${ }^{2}$ cases. No proxy group can be identical in risk to any single company, so there must be an evaluation of relative risk between the company and the proxy group to see if it is appropriate to make adjustments to the proxy group's indicated rate of return.

My recommendation results from the application of several cost of common equity models, specifically the Discounted Cash Flow ("DCF") model, the Risk Premium Model ("RPM"), and the Capital Asset Pricing Model ("CAPM"), to the market data of a proxy group of six water companies ("Utility Proxy Group") whose selection criteria will be discussed below. In addition, I also applied the DCF, RPM, and CAPM to a proxy group of domestic, non-price regulated companies comparable in total risk to the six water companies ("Non-Price Regulated Proxy Group").

The results derived from each are as follows:


[^20]


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 safe and reliable service at all times, requires a level of earnings sufficient to maintain the integrity of presently invested capital. Sufficient earnings also permit the attraction of needed new capital at a reasonable cost, for which the utility must compete with other firms of comparable risk, consistent with the fair rate of return standards established by the U.S. Supreme Court in the previously cited Hope and Bluefield decisions. Consequently, marketplace data must be relied on in assessing a common equity cost rate appropriate for ratemaking purposes. Just as the use of the market data for the proxy group adds reliability to the informed expert's judgment used in arriving at a recommended common equity cost rate, the use of multiple generally accepted common equity cost rate models also adds reliability and accuracy when arriving at a recommended common equity cost rate.


## A. Business Risk

Q. Please define business risk and explain why it is important to the determination of a fair rate of return.
A. Business risk is the riskiness of a company's common stock without the use of debt and/or preferred capital. Examples of such general business risks faced by all utilities (i.e., electric, natural gas distribution, and water) include size, the quality of management, the regulatory environment in which utilities operate, customer mix and concentration of customers, service territory growth, and capital intensity. All of these have a direct bearing on earnings.
 American Society of Civil Engineers ("ACSE"), most
pipes in America were laid early to mid－20 th century， with an average lifespan of between 75 and 100 years． Many of these assets are currently in great need of repair or replacement．Indeed，the ASCE estimates that almost six billion gallons of water are lost per day as a result of leaky pipes．In other terms，this is $14 \%-$ $18 \%$ of the amount of water treated daily．

State regulatory commissions are extremely important because they literally set the rate of return that a utility is allowed to earn on its investment．No matter how well run a company is，harsh treatment by authorities is nearly impossible to overcome．Fortunately， regulators have［sic］utilities have been successfully working together．They realize that many［sic］of the water infrastructure in the U．S．need to be upgraded and that the task will require a lot of money．Thus， states are permitting the utilities to make a decent return on their assets．${ }^{3}$（emphasis added）

The water and wastewater industry also experiences low depreciation rates．Depreciation rates are one of the principal sources of internal cash flows for all utilities（through a utility＇s depreciation expense）， and are vital for a company to fund ongoing replacements and repairs of water and wastewater systems．Water／wastewater utility assets have long lives，and therefore have long capital recovery periods．As such，they face greater risk due to inflation，which results in a higher replacement cost per dollar of net plant．

Substantial capital expenditures，as noted by Value Line，will require significant financing．The three sources of financing typically used are debt， equity（common and preferred），and cash flow．All three are intricately linked to the opportunity to earn a sufficient rate of return as well as the


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 ability to achieve that return. Consistent with Hope and Bluefield, the return must be sufficient to maintain credit quality as well as enable the attraction of necessary new capital, be it debt or equity capital. If unable to raise debt or equity capital, the utility must turn to either retained earnings or free cash flow, ${ }^{4}$ both of which are directly linked to earning a sufficient rate of return. The level of free cash flow represents a utility's ability to meet the needs of its debt and equity holders. If either retained earnings or free cash flow is inadequate, it will be nearly impossible for the utility to attract the needed capital for new infrastructure investment necessary to ensure quality service to its customers. An insufficient rate of return can be financially devastating for utilities as well as a public safety issue for their customers.

The water and wastewater utility industry's high degree of capital intensity and low depreciation rates, coupled with the need for substantial infrastructure capital spending, require regulatory support in the form of adequate and timely rate relief, particularly a sufficient authorized return on common equity, so that the industry can successfully meet the challenges it faces.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364

\section*{B. Financial Risk} Q. Please define financial risk and explain why it is important to the determination of a fair rate of return. A. Financial risk is the additional risk created by the introduction of debt and preferred stock into the capital structure. The higher the proportion of debt and preferred stock in the capital structure, the higher the financial risk (i.e. likelihood of default). Therefore, consistent with the basic financial principle of risk and return, investors demand a higher common equity return as compensation for bearing higher default risk. Q. Can bond and credit ratings be a proxy for the combined business and financial risk (i.e., investment risk of an enterprise)? A. Yes, similar bond ratings/issuer credit ratings reflect, and are representative of, similar combined business and financial risks (i.e., total risk) faced by bond investors. ${ }^{5}$ Although specific business or financial risks may differ between companies, the same bond/credit rating indicates that the combined risks are roughly similar, albeit not necessarily equal, as the purpose of the bond/credit rating process is to assess credit quality or credit risk and not common equity risk.


[^21]
#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 Q. That being said, do rating agencies reflect company size in their bond ratings? A. No. Neither S\&P nor Moody's have minimum company size requirements for any given rating level. This means, all else equal, a relative size analysis needs to be conducted for companies with similar bond ratings. v. CAPITAL STRUCTURE Q. What capital structure ratios do you recommend be employed in developing an overall fair rate of return appropriate for the Company? A. I recommend the use of a ratemaking capital structure consisting of 52.04\% long-term debt and $47.96 \%$ common equity as shown on page 1 of Schedule DWD-1. This capital structure is based on a test year capital structure for CWSNC, ending March 31, 2019. Q. How does your proposed ratemaking common equity ratio of 47.96\% for CWSNC compare with the total equity ratios maintained by the companies in your Utility Proxy Group? A. My proposed ratemaking common equity ratio of $47.96 \%$ for CWSNC is reasonable and consistent with the range of common equity ratios maintained, on average, by the companies in the Utility Proxy Group on which I base my recommended common equity cost rate. As shown on page 2 of Schedule DWD-2, the common equity ratios of the Utility Proxy Group range from $43.40 \%$ to $63.46 \%$, with a midpoint of $53.43 \%$ and an average of $54.75 \%$ in 2018 . The equity ratio, on average, maintained by


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 the Utility Proxy Group is higher than the equity ratio requested by the Company.

In my opinion, a capital structure consisting of 52.04\% long-term debt Group on whose market data I base my recommended common equity cost rate. Q. What cost rate for long-term debt is most appropriate for use in a cost of capital determination for CWSNC? A. A long-term debt cost rate of $5.59 \%$ is reasonable and appropriate as it is based on a test year of the Company's long-term debt outstanding ending March 31, 2019.

\section*{VI. CWSNC AND THE UTILITY PROXY GROUP} Q. Are you familiar with the operations of CWSNC? A. Yes. CWSNC is headquartered in Charlotte, North Carolina, and its operations span the state from Bear Paw to Corolla. CWSNC serves approximately 35,000 water customers and 15,000 sewer customers. CWSNC is not publicly-traded.


 projections．


#### Abstract

Appendix 12 Schedule G－5 Docket No．W－354，Sub 364

The following six companies met these criteria：American States Water Co．，American Water Works Co．，Inc．，Artesian Resources，Inc．， California Water Service Group，Middlesex Water Co．，and York Water Co．

\section*{Q．Please describe schedule DWD－2，page 1.}

A．Page 1 of Schedule DWD－2 contains comparative capitalization and financial statistics for the six water companies identified above for the years 2014 to 2018. average earnings rate on book common equity for the group averaged $10.17 \%$ ．The average common equity ratio based on total permanent capital（excluding short－term debt）was $55.57 \%$ ，and the average dividend payout ratio was $60.28 \%$ ．

Total debt to earnings before interest，taxes，depreciation，and amortization（＂EBITDA＂）for the years 2014 to 2018 ranges between 3.42 and 3.98 ，with an average of 3.56 ．Funds from operations to total debt range from $23.84 \%$ to $26.23 \%$ ，with an average of $25.11 \%$ ．


## VII．COMMON EQUITY COST RATE MODELS

Q．Are your cost of common equity models market－based models？
A．Yes．The DCF model is market－based because market prices are used in developing the dividend yield component of the model．The RPM is market－ based because the bond ratings and expected bond yields used in the application of the RPM reflect the market＇s assessment of bond／credit risk． In addition，the use of beta coefficients $(\beta)$ to determine the equity risk


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 premium reflects the market's assessment of market/systematic risk, since beta coefficients are derived from regression analyses of market prices. The Predictive Risk Premium Model ("PRPM") uses monthly market returns in addition to expectations of the risk-free rate. The CAPM is market-based for many of the same reasons that the RPM is market-based (i.e., the use of expected bond yields and beta coefficients). Selection of the comparable risk non-price regulated companies is market-based because it is based on statistics which result from regression analyses of market prices and reflect the market's assessment of total risk.


## A. Discounted Cash Flow Model

## Q. What is the theoretical basis of the DCF model?

A. The theory underlying the DCF model is that the present value of an expected future stream of net cash flows during the investment holding period can be determined by discounting those cash flows at the cost of capital, or the investors' capitalization rate. DCF theory indicates that an investor buys a stock for an expected total return rate, which is derived from cash flows received in the form of dividends plus appreciation in market price (the expected growth rate). Mathematically, the dividend yield on market price plus a growth rate equals the capitalization rate, i.e., the total common equity return rate expected by investors.

## Q. Which version of the DCF model do you use?

A. I use the single-stage constant growth DCF model.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364

\section*{Q. Please describe the dividend yield you used in your application of the DCF model.} A. The unadjusted dividend yields are based on the proxy companies' dividends as of April 30, 2019, divided by the average of closing market prices for the 60 trading days ending April 30, 2019. ${ }^{6}$ Q. Please explain your adjustment to the dividend yield. A. Because dividends are paid periodically (quarterly), as opposed to continuously (daily), an adjustment must be made to the dividend yield. This is often referred to as the discrete, or the Gordon Periodic, version of the DCF model.

DCF theory calls for the use of the full growth rate, or $D_{1}$, in calculating the dividend yield component of the model. Since the various companies in the Utility Proxy Group increase their quarterly dividend at various times during the year, a reasonable assumption is to reflect onehalf the annual dividend growth rate in the dividend yield component, or $D_{1 / 2}$. Because the dividend should be representative of the next twelvemonth period, my adjustment is a conservative approach that does not overstate the dividend yield. Therefore, the actual average dividend yields in Column 1 on page 1 of Schedule DWD-3 have been adjusted upward to reflect one-half the average projected growth rate shown in Column 6.


[^22]
#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 Q. Please explain the basis of the growth rates you apply to the Utility Proxy Group in your DCF model. A. Investors with more limited resources than institutional investors are likely to rely on widely available financial information services, such as Value Line, Reuters, Zacks, and Yahoo! Finance. Investors realize that analysts have significant insight into the dynamics of the industries and individual companies they analyze, as well as companies' abilities to effectively manage the effects of changing laws and regulations, and ever-changing economic and market conditions. For these reasons, I use analysts' fiveyear forecasts of EPS growth in my DCF analysis.

Over the long run, there can be no growth in DPS without growth in EPS. Security analysts' earnings expectations have a more significant influence on market prices than dividend expectations. Thus, the use of earnings growth rates in a DCF analysis provides a better match between investors' market price appreciation expectations and the growth rate component of the DCF.

\section*{Q. Please summarize the DCF model results.} A. As shown on page 1 of Schedule DWD-3, the mean result of the application of the single-stage DCF model is $8.68 \%$, the median result is $8.71 \%$, and the average of the two is $8.70 \%$ for the Utility Proxy Group. In arriving at a conclusion for the DCF-indicated common equity cost rate for the Utility Proxy Group, I have relied on an average of the mean and the median results of the DCF. This approach takes into consideration all the proxy


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 companies' results, while mitigating the high and low outliers of those individual results.

\section*{B. The Risk Premium Model}

\section*{Q. Please describe the theoretical basis of the RPM.} A. The RPM is based on the fundamental financial principle of risk and return, namely, that investors require greater returns for bearing greater risk. The RPM recognizes that common equity capital has greater investment risk than debt capital, as common equity shareholders are behind debt holders in any claim on a company's assets and earnings. As a result, investors require higher returns from common stocks than from investment in bonds, to compensate them for bearing the additional risk.

While it is possible to directly observe bond returns and yields, investors' required common equity return cannot be directly determined or observed. According to RPM theory, one can estimate a common equity risk premium over bonds (either historically or prospectively), and use that premium to derive a cost rate of common equity. The cost of common equity equals the expected cost rate for long-term debt capital plus a risk premium over that cost rate to compensate common shareholders for the added risk of being unsecured and last-in-line for any claim on the corporation's assets and earnings in the event of a liquidation.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364

\section*{Q. Please explain how you derived your indicated cost of common equity based on the RPM.} A. I relied on the results of the application of two risk premium methods. The first method is the PRPM, while the second method is a risk premium model using a total market approach. Q. Please explain the PRPM. A. The PRPM, published in the Journal of Regulatory Economics, ${ }^{7}$ was developed from the work of Robert F. Engle, who shared the Nobel Prize in Economics in 2003 "for methods of analyzing economic time series with time-varying volatility ("ARCH")". ${ }^{8}$ Engle found that volatility changes over time and is related from one period to the next, especially in financial markets. Engle discovered that the volatility in prices and returns clusters over time and is therefore highly predictable and can be used to predict future levels of risk and risk premiums.

The PRPM estimates the risk / return relationship directly, as the predicted equity risk premium is generated by the prediction of volatility or risk. The PRPM is not based on an estimate of investor behavior, but rather on the evaluation of the results of that behavior (i.e., the variance of historical equity risk premiums).


[^23]
#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 The inputs to the model are the historical returns on the common shares of each company in the Utility Proxy Group minus the historical monthly yield on long-term U.S. Treasury securities through April 2019. Using a generalized form of ARCH, known as GARCH, I calculated each Utility Proxy Group company’s projected equity risk premium using Eviews ${ }^{\odot}$ statistical software. When the GARCH Model is applied to the historical return data, it produces a predicted GARCH variance series ${ }^{9}$ and a GARCH coefficient ${ }^{10}$. Multiplying the predicted monthly variance by the GARCH coefficient, then annualizing it ${ }^{11}$ produces the predicted annual equity risk premium. I then added the forecasted 30-year U.S. Treasury Bond yield, $3.33 \%{ }^{12}$, to each company's PRPM-derived equity risk premium to arrive at an indicated cost of common equity. The 30 -year Treasury yield is a consensus forecast derived from the Blue Chip Financial Forecasts ("Blue Chip" ${ }^{13}$. The mean PRPM indicated common equity cost rate for the Utility Proxy Group is $11.15 \%$, the median is $11.25 \%$, and the average of the two is $11.20 \%$. Consistent with my reliance on the average of the median and mean results of the DCF, I will rely on the average of the mean and median results of the Utility Proxy Group PRPM to calculate a cost of common equity rate of $11.20 \%$.


$9 \quad$ Illustrated on Columns 1 and 2 of page 2 of Schedule DWD-4. In this instance, I have selected the lower predicted variance in order to be conservative.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 Q. Have you reviewed the Commission's Order ${ }^{14}$ regarding the PRPM in the Company's last rate case? A. I have. The Commission expressed a concern regarding the use of a specific statistical package to produce the results of the PRPM and were skeptical that investors would place significant weight on the model given that assumption. To clarify, the GARCH methodology, which has been in the public domain since the 1980's as discussed above, is available in various statistical packages such as EViews®, SAS, RATS, S-Plus and JMulti, which are not cost-prohibitive and provide instructions for using the various statistical methodologies in their software. The software that I used in this proceeding currently costs approximately $\$ 1,500$ for a single user commercial license. In fact, JMulti is a free downloadable software with GARCH estimation applications. In providing this additional information, it is my hope that the Commission will revisit this concern in its Order in this rate case.

\section*{Q. Please explain the total market approach RPM.} A. The total market approach RPM adds a prospective public utility bond yield to an average of 1 ) an equity risk premium that is derived from a betaadjusted total market equity risk premium, and 2) an equity risk premium based on the S\&P Utilities Index.


[^24]
#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 Q. Please explain the basis of the expected bond yield of $4.74 \%$ applicable to the Utility Proxy Group. A. The first step in the total market approach RPM analysis is to determine the expected bond yield. Because both ratemaking and the cost of capital, including common equity cost rate, are prospective in nature, a prospective yield on similarly-rated long-term debt is essential. I rely on a consensus forecast of about 50 economists of the expected yield on Aaa-rated corporate bonds for the six calendar quarters ending with the third calendar quarter of 2020 and the long-term projections for 2020 to 2024, and 2025 to 2029 from Blue Chip. As shown on Line No. 1 of page 3 of Schedule DWD-4, the average expected yield on Moody's Aaa-rated corporate bonds is $4.25 \%$. In order to derive an expected yield on A2 rated-public utility bonds, I make an upward adjustment of $0.41 \%$, which represents a recent spread between Aaa corporate bonds and A2-rated public utility bonds, in order to adjust the expected Aaa corporate bond yield to an equivalent Moody's A2-rated public utility bond. ${ }^{15}$ Adding that recent $0.41 \%$ spread to the expected Aaa corporate bond yield of $4.25 \%$ results in an expected A2 public utility bond of $4.66 \%$.

Since the Utility Proxy Group's average Moody's long-term issuer rating is $A 2 / A 3$, another adjustment to the expected $A 2$ public utility bond yield is needed to reflect the difference in bond ratings. An upward adjustment of $0.08 \%$, which represents one-sixth of a recent spread


15 As shown on Line No. 2 and explained in Note 2 of page 3 of Schedule DWD-4.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 between A2 and A3 public utility bond yields, is necessary to make the A2 prospective bond yield applicable to an A2/A3 public utility bond. ${ }^{16}$ Adding the $0.08 \%$ to the $4.66 \%$ prospective A2 public utility bond yield results in a 4.74\% expected bond yield for the Utility Proxy Group. Q. Please explain how the beta-derived equity risk premium is determined. A. The components of the beta-derived risk premium model are 1) an expected market equity risk premium over corporate bonds, and 2) the beta coefficient. The derivation of the beta-derived equity risk premium that I apply to the Utility Proxy Group is shown on lines 1 through 9 of page 8 of Schedule DWD-4. The total beta-derived equity risk premium I apply is based on an average of: 1) Ibbotson-based equity risk premiums; 2) Value Line-based equity risk premiums; and 3) Bloomberg-based equity risk premium. Each of these is described in turn. Q. How did you derive a market equity risk premium based on long-term historical data? A. To derive a historical market equity risk premium, I used the most recent holding period returns for the large company common stocks from the Stocks, Bonds, Bills, and Inflation ("SBBI") 2019 Yearbook ("SBBI 2019") ${ }^{17}$ less the average historical yield on Moody's Aaa/Aa-rated corporate bonds for the period 1928 to 2018 . The use of holding period


[^25]
#### Abstract

Schedule G-5 Docket No. W-354, Sub 364 returns over a very long period of time is appropriate because it is consistent with the long-term investment horizon presumed by investing in a going concern, i.e., a company expected to operate in perpetuity.

SBBI's long-term arithmetic mean monthly total return rate on large company common stocks was $11.62 \%$ and the long-term arithmetic mean monthly yield on Moody's Aaa/Aa-rated corporate bonds was $6.08 \% .^{18}$ As shown on line 1 of page 8 of Schedule DWD-4, subtracting the mean monthly bond yield from the total return on large company stocks results in a long-term historical equity risk premium of $5.54 \%$.

I used the arithmetic mean monthly total return rates for the large company stocks and yields (income returns) for the Moody's Aaa/Aa corporate bonds, because they are appropriate for the purpose of estimating the cost of capital as noted in SBBI - 2019. ${ }^{19}$ The use of the arithmetic mean return rates and yields is appropriate because historical total returns and equity risk premiums provide insight into the variance and standard deviation of returns needed by investors in estimating future risk when making a current investment. If investors relied on the geometric mean of historical equity risk premiums, they would have no insight into the potential variance of future returns because the geometric mean relates the change over many periods to a constant rate of change, thereby obviating the year-to-year fluctuations, or variance, which is critical to risk analysis.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 Q. Please explain the derivation of the regression-based market equity risk premium. A. To derive the regression analysis-derived market equity risk premium of $7.93 \%$, shown on line 2 of page 8 of Schedule DWD-4, I used the same monthly annualized total returns on large company common stocks relative to the monthly annualized yields on Moody's Aaa/Aa corporate bonds as mentioned above. The relationship between interest rates and the market equity risk premium was modeled using the observed monthly market equity risk premium as the dependent variable, and the monthly yield on Moody's Aaa/Aa corporate bonds as the independent variable. I used a linear Ordinary Least Squares ("OLS") regression, in which the market equity risk premium is expressed as a function of the Moody's Aaa/Aa corporate bonds yield: $$
R P=\alpha+\beta\left(R_{\text {Aaa/Aa }}\right)
$$

\section*{Q. Please explain the derivation of a PRPM equity risk premium.} A. I used the same PRPM approach described previously to develop another equity risk premium estimate. The inputs to the model are the historical monthly returns on large company common stocks minus the monthly yields on Aaa/Aa corporate bonds during the period from January 1928 through April 2019. ${ }^{20}$ Using the previously discussed generalized form of ARCH, known as GARCH, the projected equity risk premium is determined using


 2019 is from Bloomberg Professional Services.
#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364

Eviews ${ }^{\oplus}$ statistical software. The resulting PRPM predicted market equity risk premium is $8.32 \% .{ }^{21}$ Q. Please explain the derivation of a projected equity risk premium based on Value Line data for your RPM analysis. A. As noted previously, because both ratemaking and the cost of capital are prospective, a prospective market equity risk premium is needed. The derivation of the forecasted or prospective market equity risk premium can be found in Note 4 on page 8 of Schedule DWD-4. Consistent with my calculation of the dividend yield component in my DCF analysis, this prospective market equity risk premium is derived from an average of the three- to five-year median market price appreciation potential by Value Line for the thirteen weeks ending May 3, 2019, plus an average of the median estimated dividend yield for the common stocks of the 1,700 firms covered in Value Line's Standard Edition. ${ }^{22}$

The average median expected price appreciation is $55 \%$, which translates to an $11.58 \%$ annual appreciation, and, when added to the average of Value Line's median expected dividend yields of $2.24 \%$, equates to a forecasted annual total return rate on the market of $13.82 \%$. The forecasted Aaa bond yield of $4.25 \%$ is deducted from the total market return of $13.82 \%$, resulting in an equity risk premium of $9.57 \%$, shown on page 8 , line 4 of Schedule DWD-4.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 Q. Please explain the derivation of an equity risk premium based on the S\&P 500 companies. A. Using data from Value Line, I calculate an expected total return on the S\&P 500 using expected dividend yields and long-term growth estimates as a proxy for capital appreciation. The expected total return for the S\&P 500 is $16.03 \%$. Subtracting the prospective yield on Aaa Corporate bonds of 4.25\% results in an $11.78 \%$ projected equity risk premium. Q. Please explain the derivation of an equity risk premium based on Bloomberg data. A. Using data from Bloomberg Professional Services, I calculate an expected total return on the S\&P 500 using expected dividend yields and long-term growth estimates as a proxy for capital appreciation, identical to the method described above. The expected total return for the S\&P 500 is $13.35 \%$. Subtracting the prospective yield on Aaa Corporate bonds of $4.25 \%$ results in a $9.10 \%$ projected equity risk premium.

\section*{Q. What is your conclusion of a beta-derived equity risk premium for use in your RPM analysis?} A. I give equal weight to the six equity risk premiums in arriving at my conclusion of $8.71 \% .^{23}$

After calculating the average market equity risk premium of $8.71 \%$, I adjust it by beta to account for the risk of the Utility Proxy Group. As discussed below, the beta coefficient is a meaningful measure of ${ }^{23} \quad$ See Line No. 7 on page 8 of Schedule DWD-4.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 prospective relative risk to the market as a whole and is a logical means by which to allocate a company's, or proxy group's, share of the market's total equity risk premium relative to corporate bond yields. As shown on page 1 of Schedule DWD-5, the average of the mean and median beta coefficient for the Utility Proxy Group is 0.67 . Multiplying the beta coefficient of the Utility Proxy Group of 0.67 by the market equity risk premium of $8.71 \%$ results in a beta-adjusted equity risk premium of $5.84 \%$ for the Utility Proxy Group.


Q. How did you derive the equity risk premium based on the S\&P Utility Index and Moody's A-rated public utility bonds?
A. I estimated three equity risk premiums based on S\&P Utility Index holding returns, and two equity risk premiums based on the expected returns of the S\&P Utilities Index, using Value Line and Bloomberg data, respectively. Turning first to the S\&P Utility Index holding period returns, I derived a longterm monthly arithmetic mean equity risk premium between the S\&P Utility Index total returns of $10.56 \%$ and monthly A-rated public utility bond yields of $6.56 \%$ from 1928 to 2018 to arrive at an equity risk premium of $4.00 \% .^{24}$ I then used the same historical data to derive an equity risk premium of $5.72 \%$ based on a regression of the monthly equity risk premiums. The final S\&P Utility Index holding period equity risk premium involved applying the PRPM using the historical monthly equity risk premiums from January 1928


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 to April 2019 to arrive at a PRPM-derived equity risk premium of $3.93 \%$ for the S\&P Utility Index.

I then derived expected total returns on the S\&P Utilities Index of $10.33 \%$ and $9.01 \%$ using data from Value Line and Bloomberg Professional Services, respectively, and subtracted the prospective A2-rated public utility bond yield $\left(4.66 \%{ }^{25}\right)$, which results in risk premiums of $5.67 \%$ and $4.35 \%$, respectively. As with the market equity risk premiums, I averaged each risk premium to arrive at my utility-specific equity risk premium of $4.73 \%$.


Q. What is your conclusion of an equity risk premium for use in your total market approach RPM analysis?
A. The equity risk premium I applied to the Utility Proxy Group is $5.29 \%$, which is the average of the beta-derived and the S\&P utility equity risk premiums of $5.84 \%$ and $4.73 \%$, respectively. ${ }^{26}$
Q. What is the indicated RPM common equity cost rate based on the total market approach?
A. As shown on Line No. 7 of Schedule DWD-4, page 3, I calculate a common equity cost rate of $10.03 \%$ for the Utility Proxy Group based on the total market approach of the RPM.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 Q. What are the results of your application of the PRPM and the total market approach RPM? A. As shown on page 1 of Schedule DWD-4, the indicated RPM-derived common equity cost rate is $10.62 \%$, which gives equal weight to the PRPM (11.20\%) and the adjusted market approach results (10.03\%).

\section*{C. The Capital Asset Pricing Model} Q. Please explain the theoretical basis of the CAPM. A. CAPM theory defines risk as the co-variability of a security's returns with the market's returns as measured by the beta coefficient ( $\beta$ ). A beta coefficient less than 1.0 indicates lower variability than the market as a whole, while a beta coefficient greater than 1.0 indicates greater variability than the market.

The CAPM assumes that all other risk (i.e., all non-market or unsystematic risk) can be eliminated through diversification. The risk that cannot be eliminated through diversification is called market, or systematic, risk. In addition, the CAPM presumes that investors require compensation only for systematic risk, which is the result of macroeconomic and other events that affect the returns on all assets. The model is applied by adding a risk-free rate of return to a market risk premium, which is adjusted proportionately to reflect the systematic risk of the individual security relative to the total market as measured by the beta coefficient. The traditional CAPM model is expressed as:




[^26]Appendix 12
Schedule G-5
Docket No. W-354, Sub 364
Figure 2 http://pubs.aeaweb.org/doi/ddfplus/10.1257/0895330042162430
Average Annualized Monthly Return versus Beta for Value Weight Portfolios Formed on Prior Beta, 1928-2003


In addition, Morin observes that while the results of these tests support the notion that beta is related to security returns, the empirical SML described by the CAPM formula is not as steeply sloped as the predicted SML. Morin states:

With few exceptions, the empirical studies agree that ... lowbeta securities earn returns somewhat higher than the CAPM would predict, and high-beta securities earn less than predicted. ${ }^{29}$

Therefore, the empirical evidence suggests that the expected return on a security is related to its risk by the following approximation:

$$
K=R_{F}+x \beta\left(R_{M}-R_{F}\right)+(1-x) \beta\left(R_{M}-R_{F}\right)
$$

where x is a fraction to be determined empirically. The value of $x$ that best explains the observed relationship [is] Return =
 Group and averaged the results.

[^27]
#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 Q. Have you reviewed the Commission's Order ${ }^{33}$ regarding the ECAPM in the Company's last rate case? A. I have. The Commission's concern regarding the ECAPM was that I did not provide enough evidence why the ECAPM was superior to the CAPM in my testimony. The additional language provided above attempts to address the Commission's concerns. Q. What Beta coefficients did you use in your CAPM analysis? A. With respect to the Beta coefficient, I considered two methods of calculation: the average of the Beta coefficients of the Utility Proxy Group companies reported by Bloomberg Professional Services and the average of the Beta coefficients of the Utility Proxy Group companies as reported by Value Line. While both of those services adjust their calculated (or "raw") Beta coefficients to reflect the tendency of the Beta coefficient to regress to the market mean of 1.00, Value Line calculates the Beta coefficient over a five-year period, while Bloomberg's calculation is based on two years of data. Q. Please describe your selection of a risk-free rate of return. A. As shown in Column 5 on page 1 of Schedule DWD-5, the risk-free rate adopted for both applications of the CAPM is $3.33 \%$. This risk-free rate of $3.33 \%$ is based on the average of the Blue Chip consensus forecast of the


[^28]
#### Abstract

Appendix 12 Schedule G－5 Docket No．W－354，Sub 364


expected yields on 30－year U．S．Treasury bonds for the six quarters ending with the third calendar quarter of 2020 and long－term projections for the years 2020 to 2024 and 2025 to 2029.

## Q．Why is the yield on long－term U．S．Treasury Bonds appropriate for use as the risk－free rate？

A．The yield on long－term U．S．Treasury Bonds is almost risk－free and its term is consistent with the long－term cost of capital to public utilities measured by the yields on A－rated public utility bonds；the long－term investment horizon inherent in utilities＇common stocks；and the long－term life of the jurisdictional rate base to which the allowed fair rate of return（i．e．，cost of capital）will be applied．In contrast，short－term U．S．Treasury yields are more volatile and largely a function of Federal Reserve monetary policy．

Q．Please explain the estimation of the expected risk premium for the market used in your CAPM analyses．

A．The basis of the market risk premium is explained in detail in Note 1 on Schedule DWD－5．As discussed previously，the market risk premium is derived from an average of：
（i）Ibbotson－based market risk premiums；
（ii）Value Line data－based market risk premiums；and
（iii）Bloomberg data－based market risk premium．
The long－term income return on U．S．Government Securities of 5．12\％was deducted from the SBBI－ 2019 monthly historical total market return of $11.89 \%$ ，which results in an historical market equity risk premium


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 of $6.77 \% .^{34}$ I applied a linear OLS regression to the monthly annualized historical returns on the S\&P 500 relative to historical yields on long-term U.S. Government Securities from SBBI - 2019. That regression analysis yielded a market equity risk premium of $9.00 \%$. The PRPM market equity risk premium is $9.40 \%$, and is derived using the PRPM relative to the yields on long-term U.S. Treasury securities from January 1926 through April 2019.

The Value Line-derived forecasted total market equity risk premium is derived by deducting the forecasted risk-free rate of $3.33 \%$, discussed above, from the Value Line projected total annual market return of $13.82 \%$, resulting in a forecasted total market equity risk premium of 10.49\%. The S\&P 500 projected market equity risk premium using Value Line data is derived by subtracting the projected risk-free rate of $3.33 \%$ from the projected total return of the S\&P 500 of $16.03 \%$. The resulting market equity risk premium is $12.70 \%$.

The S\&P 500 projected market equity risk premium using Bloomberg data is derived by subtracting the projected risk-free rate of $3.33 \%$ from the projected total return of the S\&P 500 of $13.35 \%$. The resulting market equity risk premium is $10.02 \%$.

These six market risk premiums, when averaged, result in an average total market equity risk premium of $9.73 \%$.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 Q. What are the results of your application of the traditional and empirical CAPM to the Utility Proxy Group? A. As shown on page 1 of Schedule DWD-5, the mean result of my CAPM/ECAPM analyses is $10.25 \%$, the median is $10.17 \%$, and the average of the two is $10.21 \%$. Consistent with my reliance on the average of mean and median DCF results discussed above, the indicated common equity cost rate using the CAPM/ECAPM is $10.21 \%$.

\section*{D. Common Equity Cost Rates for a Proxy Group of Domestic, Non-Price Regulated Companies Based on the DCF, RPM, and CAPM} Q. Why do you also consider a proxy group of domestic, non-price regulated companies? A. In the Hope and Bluefield cases, the U.S. Supreme Court did not specify that comparable risk companies had to be utilities. Since the purpose of rate regulation is to be a substitute for the competition of the marketplace, non-price regulated firms operating in the competitive marketplace make an excellent proxy if they are comparable in total risk to the Utility Proxy Group being used to estimate the cost of common equity. The selection of such domestic, non-price-regulated competitive firms theoretically and empirically results in a proxy group which is comparable in total risk to the Utility Proxy Group.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 Q. How did you select unregulated companies that are comparable in total risk to the regulated public Utility Proxy Group? A. In order to select a proxy group of domestic, non-price regulated companies similar in total risk to the Utility Proxy Group, I relied on the beta coefficients and related statistics derived from Value Line regression analyses of weekly market prices over the most recent 260 weeks (i.e., five years). Using these selection criteria resulted in a proxy group of eleven domestic, non-price regulated firms comparable in total risk to the Utility Proxy Group. Total risk is the sum of non-diversifiable market risk and diversifiable companyspecific risks. The criteria used in the selection of the domestic, non-price regulated firms was: (i) They must be covered by Value Line Investment Survey (Standard Edition); (ii) They must be domestic, non-price regulated companies, i.e., nonutilities; (iii) Their beta coefficients must lie within plus or minus two standard deviations of the average unadjusted beta coefficient of the Utility Proxy Group; and (iv) The residual standard errors of the Value Line regressions which gave rise to the unadjusted beta coefficients must lie within plus or minus two standard deviations of the average residual standard error of the Utility Proxy Group.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364


Beta coefficients are a measure of market, or systematic, risk, which is not diversifiable. The residual standard errors of the regressions were used to measure each firm's company-specific, diversifiable risk. Companies that have similar beta coefficients and similar residual standard errors resulting from the same regression analyses have similar total investment risk.
Q. Have you prepared a schedule which shows the data from which you selected the eleven domestic, non-price regulated companies that are comparable in total risk to the Utility Proxy Group?
A. Yes, the basis of my selection and both proxy groups' regression statistics are shown in Schedule DWD-6.

## Q. Did you review the Commission's Order ${ }^{35}$ regarding the use of a NonPrice Regulated Proxy Group in the Company's last rate case?

A. I have. Regarding the use of a Non-Price Regulated Proxy Group, the Commission's conclusion that, since the market model results were different than the results of those same models applied to the Utility Proxy Group, the two groups could not be similar in risk. In order to provide more information to show similarity between the Utility and Non-Price Regulated Proxy Groups, I have analyzed the coefficients of variation ("CoV") ${ }^{36}$ of net profit for each group and the results of that study are shown on page 4 of

35 State of North Carolina Utilities Commission, Docket No. W-354, Sub 360, Order approving joint settlement agreement and stipulation, granting partial rate increase, and requiring customer notice, February 23, 2019, at 84-85.
The coefficient of variation is used by investors and economists to determine volatility.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364

Schedule DWD-6. As shown, the mean and median CoV of net profit for the Non-Price Regulated Proxy Group are within the range of CoVs of net profit set by the Utility Proxy Group companies. With this additional information, I would hope that the Commission revisit this argument in its Order in this case. Q. Did you calculate common equity cost rates using the DCF, RPM, and CAPM for the Non-Price Regulated Proxy Group? A. Yes. Because the DCF, RPM, and CAPM have been applied in an identical manner as described above, I will not repeat the details of the rationale and application of each model. One exception is in the application of the RPM, where I did not use public utility-specific equity risk premiums, nor did I apply the PRPM to the individual companies.

Page 2 of Schedule DWD-7 contains the derivation of the DCF cost rates. As shown, the indicated common equity cost rate using the DCF for the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group, is $11.88 \%$.

Pages 3 through 5 contain the data and calculations that support the $12.00 \%$ RPM cost rate. As shown on Line No. 1 of page 3 of Schedule DWD-7, the consensus prospective yield on Moody's Baa rated corporate bonds for the six quarters ending in the third quarter of 2020, and for the years 2020 to 2024 and 2025 to 2029 , is $5.21 \% .{ }^{37}$


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 When the beta-adjusted risk premium of $6.79 \%{ }^{38}$ relative to the NonPrice Regulated Proxy Group is added to the prospective Baa2 rated corporate bond yield of $5.21 \%$, the indicated RPM cost rate is $12.00 \%$. Page 6 contains the inputs and calculations that support my indicated CAPM/ECAPM cost rate of $11.17 \%$. Q. How is the cost rate of common equity based on the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group? A. As shown on page 1 of Schedule DWD-7, the results of the DCF, RPM, and CAPM applied to the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group are $11.88 \%, 12.00 \%$, and $11.19 \%$, respectively. The average of the mean and median of these models is $11.79 \%$, which I use as the indicated common equity cost rate for the NonPrice Regulated Proxy Group.


## VIII. CONCLUSION OF COMMON EQUITY COST RATE BEFORE ADJUSTMENT

Q. What is the indicated common equity cost rate before adjustment?
A. Based on the results of the application of multiple cost of common equity models to the Utility Proxy Group and the Non-Price Regulated Proxy Group, the indicated cost of equity before adjustment is $10.35 \%$. I use multiple cost of common equity models as primary tools in arriving at my recommended common equity cost rate, because no single model is so


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 inherently precise that it can be relied on solely to the exclusion of other theoretically sound models. The use of multiple models adds reliability to the estimation of the common equity cost rate, and the prudence of using multiple cost of common equity models is supported in both the financial literature and regulatory precedent.

Based on these common equity cost rate results, I conclude that a common equity cost rate of $10.35 \%$ is reasonable, appropriate and indicated for the Company before any adjustment for relative risk between the Company and the Utility Proxy Group is made. The $10.35 \%$ indicated ROE is the approximate average of the mean and median results produced by my application of the models as explained above.

\section*{IX. ADJUSTMENTS TO THE COMMON EQUITY COST RATE}

\section*{A. Size Adjustment} Q. Is there a way to quantify a relative risk adjustment due to CWSNC's small size relative to the proxy group? A. Yes. The Company has greater relative risk than the average company in the Utility Proxy Group because of its smaller size compared with the group, as measured by an estimated market capitalization of common equity for CWSNC (whose common stock is not publicly-traded).


Appendix 12
Schedule G-5
Docket No. W-354, Sub 364
Table 5: Size as Measured by Market Capitalization for the Company and the Utility Proxy Group
Times
Market Greater than
Capitalization*
(\$ Millions)
CWSNC
\$217.491
Utility Proxy Group
\$4,385.585
the Company
million as of April 30, 2019, compared with the market capitalization of the average water company in the Utility Proxy Group of $\$ 4.386$ billion as of April 30, 2019. The Utility Proxy Group's market capitalization is 20.2 times the size of CWSNC's estimated market capitalization.

## Q. Please explain why size has a bearing on business risk.

A. Company size is a significant element of business risk for which investors expect to be compensated through higher returns. Generally, smaller companies are less able to cope with significant events that affect sales, revenues, and earnings. For example, smaller companies face more risk exposure to business cycles and economic conditions, both nationally and locally. Additionally, the loss of revenues from a few larger customers would have a greater effect on a small company than on a much larger company with a larger, more diverse, customer base.
Further evidence of the risk effects of size include the fact that investors demand greater returns to compensate for the lack of

	Appendix 12 Schedule G-5 Docket No. W-354, Sub 364
1	marketability and liquidity of the securities of smaller firms. For these
2	reasons, the Commission should authorize a cost of common equity in this
3	proceeding that reflects CWSNC's relevant risk, including the impact of its
4	small size.
5	As a result, it is necessary to upwardly adjust the indicated common
6	equity cost rate of 10.35\% to reflect CWSNC's greater risk due to its smaller
7	relative size. The determination is based on the size premiums for portfolios
8	of New York Stock Exchange, American Stock Exchange, and NASDAQ
9	listed companies ranked by deciles for the 1926 to 2018 period. The
10	average size premium for the Utility Proxy Group with a market
11	capitalization of $\$ 4.386$ billion falls in the $5^{\text {th }}$ decile, while CWSNC's market
12	capitalization of $\$ 217.491$ million places the Company in the $10^{\text {th }}$ decile.
13	The size premium spread between the $5^{\text {th }}$ decile and the $10^{\text {th }}$ decile is
14	3.94\%. Even though a 3.94\% upward size adjustment is indicated, I apply
15	a size premium of $0.40 \%$ to CWSNC's indicated common equity cost rate.
16	What is the indicated cost of common equity after adjustment for size?
17	After applying the $0.40 \%$ size adjustment to the indicated cost of common
18	equity of $10.35 \%$, a size-adjusted cost of common equity of $10.75 \%$ results.

Q. What is the indicated cost of common equity after adjustment for size?
A. After applying the $0.40 \%$ size adjustment to the indicated cost of common equity of $10.35 \%$, a size-adjusted cost of common equity of $10.75 \%$ results.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 Q. Have you reviewed the Commission's Order ${ }^{39}$ regarding the size adjustment in the Company's last rate case? A. I have. The Commission's concerns regarding the size adjustment were that whether the size studies presented in the record were applicable to utilities, and that the selection of a 40 basis point adjustment from an indicated 461 basis point risk premium was rather arbitrary. In order to provide more information to the Commission in this case, I conducted a study on whether or not the size effect is in fact applicable to utilities. My study included the universe of water, gas, and electric companies included in Value Line Standard Edition. From each of the utilities' Value Line Ratings \& Reports, I calculated the 10-year CoV of net profit (a measure of risk) and current market capitalization (a measure of size) for each company. After ranking the companies by size (largest to smallest) and risk (least risky to most risky), I made a scatter plot of the data, as shown on Chart 1, below:


[^29]Appendix 12
Schedule G-5 Docket No. W-354, Sub 364
Chart 1: Relationship between Size and Risk for the Value Line Universe of Utility Companies
 size rank), the CoV increases, linking size and risk for utilities. The RSquared of 0.0962 means that approximately $10 \%$ of the change in risk rank is explained by the size rank. While a 0.0962 R-Squared does not appear to have strong explanatory power, the average R-Squared of the Utility Proxy Group's beta coefficient is $0.0794 .^{40}$ The selection of a 40 basis point upward adjustment based on its difference in size given an indicated risk premium of approximately 400 basis points is consistent with the approximate 0.10 R-Squared of the size study applicable to utilities. With

An R-Squared of 0.794 indicates that only approximately $8.0 \%$ of the change in risk is explained by beta.

1	
this additional information, I would hope that the Commission revisit this	

41 State of North Carolina Utilities Commission, Docket No. E-7, Sub 1026, Order Granting General Rate Increase, Sept. 24, 2013 at 24; see also DEC Remand Order at 40 ("the Commission in every case seeks to comply with the North Carolina Supreme Court's mandate that the Commission establish rates as low as possible within Constitutional limits.").

	Appendix 12 Schedule G-5 Docket No. W-354, Sub 364
	accord with the "end result" test of Hope. This the Commission has done. ${ }^{42}$
	The Supreme Court agreed, and upheld the Commission's Order on
	Remand. ${ }^{43}$ The NC Supreme Court also made clear, however, that "in retail
	electric service rate cases the Commission must make findings of fact
	regarding the impact of changing economic conditions on customers when
	determining the proper ROE for a public utility." 44 The Commission made
	such additional findings of fact in its Order on Remand. ${ }^{45}$ In light of the 2013
	Cooper I decision, I present measures of economic conditions in the state
	and in the nation for the Commission to consider.
Q.	What specific measures of economic conditions have you reviewed?
A.	I have reviewed the following:
	(i) Unemployment rates from the United States, North Carolina, and the
	counties comprising CWSNC's service territory;
	(ii) The growth in Gross National Product ("GDP") in both the United
	States and North Carolina;
	(iii) Median household income in the United States and in North Carolina;
	and
	(iv)National income and consumption trends.

(iv)National income and consumption trends.

[^30]
#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364

Turning first to the rate of unemployment, it has fallen substantially in North Carolina and the U.S. since late 2009 and early 2010, when the rates peaked at $10.00 \%$ and $12.00 \%$, respectively. Although the unemployment rate in North Carolina rather exceeded the national rate during and after the 2008/2009 financial crisis, by late 2013, the two were largely consistent. By April 2019, the unemployment rate had fallen to less than one-half of the 2008/2009 peak levels: $3.30 \%$ nationally; and $3.60 \%$ in North Carolina. (see Chart 2, below).


## Chart 2: Unemployment Rate: U.S. North Carolina, and CWSNC ${ }^{46}$



Since the conclusion of the Company's last rate filing in February 2019, the unemployment rate in North Carolina has decreased from 4.20\% to $3.60 \%$. That $0.60 \%$ decrease is slightly lower than the U.S.

Source of Information: Bureau of Labor Statistics.


#### Abstract

Appendix 12 Schedule G-5 Docket No. W-354, Sub 364 unemployment rate which has decreased $0.80 \%$ over that same period. Still, over the entire period of 2005 through 2018, the correlation between North Carolina's unemployment rate and the national rate was approximately $99 \%$.

I was also able to review unemployment rates (seasonally unadjusted) in the counties served by CWSNC. At its peak, which occurred in late 2009 into early 2010, the unemployment rate in those counties reached an average $12.86 \%$ ( 86 basis points higher than the state-wide average); by April 2019 it had fallen to $3.68 \%$ (only 8 basis points higher than the state-wide average). Since the conclusion of the Company's last rate filing in February 2019, the counties' unemployment has also fallen, from $4.49 \%$ to $3.68 \%$. From 2005 through 2018, the correlation in unemployment rates between the counties served by CWSNC, and the U.S. and North Carolina, were also approximately 99\%. In summary, although it remains slightly higher than national and state-wide averages, county-level unemployment has fallen considerably since its peak in early 2010.

Looking to real Gross Domestic Product ("GDP") growth, there also has been a relatively strong correlation between North Carolina and the national economy (approximately 69\%). Since the financial crisis, the national rate of growth at times (during portions of 2010 and 2012) outpaced North Carolina. Since the second quarter of 2015, however, growth in the state's real GDP has consistently exceeded the national growth rate.


Chart 3: Real Gross Domestic Product Growth Rate ${ }^{47}$


As to median household income, the correlation between North Carolina and the U.S. is relatively strong (approximately 87\% from 2005 through 2018). Since 2009 (the years subsequent to the financial crisis), median household income in North Carolina has grown at a similar annual rate as the national median income ( $2.32 \%$ vs. $2.65 \%$; see Chart 4, below). To put household income in perspective, the Missouri Economic Research and Information Center reports that in 2018, North Carolina had the 19th lowest cost of living index among the 50 states and the District of Columbia. ${ }^{48}$

[^31]Chart 4: Median Household Income ${ }^{49}$

Q. Please summarize your analyses and conclusions.
A. In its Order on Remand in Docket No. E-22, Sub 479, the Commission observed that economic conditions in North Carolina were highly correlated with national conditions, such that they were reflected in the analyses used to determine the cost of common equity. ${ }^{50}$ Those relationships still hold: economic conditions in North Carolina continue to improve from the recession following the 2008/2009 financial crisis, and they continue to be strongly correlated to conditions in the U.S., generally. In particular, unemployment, at both the state and county level, continues to fall and remains highly correlated with national rates of unemployment; real Gross Domestic Product recently has grown faster in North Carolina than the

[^32]Appendix 12
Schedule G-5 Docket No. W-354, Sub 364
national rate of growth, although the two remain fairly well correlated; and median household income also has grown faster in North Carolina than the rest of the Country, and remains strongly correlated with national levels. In sum, the correlations between state-wide measures of economic conditions noted by the Commission in Docket No. E-22, Sub 479 remain in place and, as such, they continue to be reflected in the models and data used to estimate the cost of common equity.

## XI. CONCLUSION OF COMMON EQUITY COST RATE

Q. What is your recommended cost of common equity for CWSNC?
A. Given the indicated cost of common equity of $10.35 \%$, and the size-adjusted cost of common equity of $10.75 \%$, I conclude that a cost of common equity cost rates for the Company of $10.75 \%$ is appropriate.
Q. In your opinion, is your proposed cost of common equity cost rate of 10.75\% fair and reasonable to CWSNC, its shareholders, and its customers, considering the above economic conditions?
A. Yes, it is.
Q. Does this conclude your direct testimony?
A. Yes, it does.

Appendix A
Professional Qualifications of Dylan W. D'Ascendis, CRRA, CVA

## Summary

Dylan is an experienced consultant and a Certified Rate of Return Analyst (CRRA) and Certified Valuation Analyst (CVA). He has served as a consultant for investor-owned and municipal utilities and authorities for 10 years. Dylan has extensive experience in rate of return analyses, class cost of service, rate design, and valuation for regulated public utilities. He has testified as an expert witness in the subjects of rate of return, cost of service, rate design, and valuation before 17 regulatory commissions in the U.S. and an American Arbitration Association panel.

He also maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured.

## Areas of Specialization

$\square$	Regulation and Rates	Capital Market Risk	$\square$	Rate of Return
Utilities	$\square$	Financial Modeling	Cost of Service	
Mutual Fund Benchmarking	$\square$	Valuation	$\square$	Rate Design
Capital Market Risk	$\square$	Regulatory Strategy and	$\square$	
		Rate Case Support		

## Recent Expert Testimony Submission/Appearances

## Jurisdiction

- Illinois Commerce Commission
- New Jersey Board of Public Utilities
- Hawaii Public Utilities Commission
- South Carolina Public Service Commission
- American Arbitration Association


## Topic

Cost of Service, Rate Design
Cost of Service, Rate Design
Cost of Service, Rate Design
Return on Common Equity
Valuation

## Recent Assignments

- Provided expert testimony on the cost of capital for ratemaking purposes before numerous state utility regulatory agencies
- Maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured
- Sponsored valuation testimony for a large municipal water company in front of an American Arbitration Association Board to justify the reasonability of their lease payments to the City
- Co-authored a valuation report on behalf of a large investor-owned utility company in response to a new state regulation which allowed the appraised value of acquired assets into rate base


## Recent Publications and Speeches

- Co-Author of: "The Impact of Decoupling on the Cost of Capital of Public Utilities", coauthored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. (Forthcoming)
- "Establishing Alternative Proxy Groups", before the Society of Utility and Regulatory Financial Analysts: 51st Financial Forum, April 4, 2019, New Orleans, LA.
- "Past is Prologue: Future Test Year", Presentation before the National Association of Water Companies 2017 Southeast Water Infrastructure Summit, May 2, 2017, Savannah, GA.
- Co-author of: "Comparative Evaluation of the Predictive Risk Premium ModeITM, the Discounted Cash Flow Model and the Capital Asset Pricing Model", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University, Pauline M. Ahern, and Frank J. Hanley, The Electricity Journal, May, 2013.
- "Decoupling: Impact on the Risk and Cost of Common Equity of Public Utility Stocks", before the Society of Utility and Regulatory Financial Analysts: 45th Financial Forum, April 17-18, 2013, Indianapolis, IN.


## Appendix A <br> Professional Qualifications of Dylan W. D'Ascendis, CRRA, CVA

Sponsor	Date	CASEIAPPLICANT	Docket No.	SUBJECT
Regulatory Commission of Alaska				
Alaska Power Company	07/16	Alaska Power Company	Docket No. TA857-2	Rate of Return
Arizona Corporation Commission				
Arizona Water Company	08/18	Arizona Water Company	Docket No. W01445A-18-0164	Rate of Return
Colorado Public Utilities Commission				
Summit Utilities, Inc.	04/18	Colorado Natural Gas Company	$\begin{aligned} & \text { Docket No. 18AL- } \\ & \text { 0305G } \end{aligned}$	Return on Equity
Atmos Energy Corporation	06/17	Atmos Energy Corporation	$\begin{aligned} & \text { Docket No. 17AL- } \\ & 0429 \mathrm{G} \end{aligned}$	Return on Equity
Delaware Public Service Commission				
Tidewater Utilities, Inc.	11/13	Tidewater Utilities, Inc.	Docket No. 13-466	Capital Structure
Hawaii Public Utilities Commission				
Kaupulehu Water Company	02/18	Kaupulehu Water Company	Docket No. 2016-0363	Rate of Return
Aqua Engineers, LLC	05/17	Puhi Sewer \& Water Company	Docket No. 2017-0118	Cost of Service / Rate Design
Hawaii   Resources, Inc.	09/16	Laie Water Company	Docket No. 2016-0229	Cost of Service / Rate Design
Illinois Commerce Commission				
Utility Services of Illinois, Inc.	11/17	Utility Services of Illinois, Inc.	Docket No. 17-1106	Cost of Service / Rate Design
Aqua Illinois, Inc.	04/17	Aqua Illinois, Inc.	Docket No. 17-0259	Rate of Return
Utility Services of Illinois, Inc.	04/15	Utility Services of Illinois, Inc.	Docket No. 14-0741	Rate of Return
Indiana Utility Regulatory Commission				
Aqua Indiana, Inc.	03/16	Aqua Indiana, Inc. Aboite Wastewater Division	Docket No. 44752	Rate of Return
Twin Lakes, Utilities, Inc.	08/13	Twin Lakes, Utilities, Inc.	Docket No. 44388	Rate of Return
Louisiana Public Service Commission				
Louisiana Water Service, Inc.	06/13	Louisiana Water Service, Inc.	Docket No. U-32848	Rate of Return
Maryland Public Service Commission				
FirstEnergy, Inc.	08/18	Potomac Edison Company	Case No. 9490	Rate of Return
Massachusetts Department of Public Utilities				
Liberty Utilities	07/15	Liberty Utilities d/b/a New England Natural Gas Company	Docket No. 15-75	Rate of Return
Mississippi Public Service Commission				
Atmos Energy	03/19	Atmos Energy	$\begin{aligned} & \text { Docket No. 2015-UN- } \\ & 049 \end{aligned}$	Capital Structure
Atmos Energy	07/18	Atmos Energy	$\begin{aligned} & \text { Docket No. 2015-UN- } \\ & 049 \end{aligned}$	Capital Structure

KyPSC Case No. 2021-00190

## Appendix A <br> Professional Qualifications of Dylan W. D'Ascendis, CRRA, CVA

SPONSOR	DATE	CASE/APPLICANT	DockET No.	SUBJECT
Missouri Public Service Commission				
Indian Hills Utility   Operating   Company, Inc.	$10 / 17$	Indian Hills Utility   Operating Company, Inc.	Case No. SR-2017-   0259	Rate of Return
Raccoon Creek   Utility Operating   Company, Inc.	$09 / 16$	Raccoon Creek Utility   Operating Company, Inc.	Docket No. SR-2016-   0202	Rate of Return

New Jersey Board of Public Utilities

Aqua New   Jersey, Inc.	$12 / 18$	Aqua New Jersey, Inc.	Docket No.   WR18121351	Rate of Return
Middlesex Water   Company	$10 / 17$	Middlesex Water   Company	Docket No.   WR17101049	Rate of Return
Middlesex Water   Company	$03 / 15$	Middlesex Water   Company	Docket No.   WR15030391	Rate of Return
The Atlantic City   Sewerage   Company	$10 / 14$	The Atlantic City   Sewerage Company	Docket No.   WR14101263	Cost of Service /   Rate Design
Middlesex Water   Company	$11 / 13$	Middlesex Water   Company	Docket No.   WR1311059	Capital Structure


North Carolina Utilities Commission								
Carolina Water   Service, Inc.	$09 / 18$	Carolina Water Service,   Inc.	Docket No. W-354 Sub   360	Rate of Return				
Aqua North   Carolina, Inc.	$07 / 18$	Aqua North Carolina, Inc.						Docket No. W-218 Sub
:---								
497	$\quad$ Rate of Return							
:---								

Public Utilities Commission of Ohio

Aqua Ohio, Inc.	05/16	Aqua Ohio, Inc.	Docket No. 16-0907-WW-AIR	Rate of Return
Pennsylvania Public Utility Commission				
SUEZ Water Pennsylvania Inc.	04/18	SUEZ Water Pennsylvania Inc.	Docket No. R-2018000834	Rate of Return
Columbia Water Company	09/17	Columbia Water Company	$\begin{aligned} & \text { Docket No. R-2017- } \\ & 2598203 \\ & \hline \end{aligned}$	Rate of Return
Veolia Energy Philadelphia, Inc.	06/17	Veolia Energy Philadelphia, Inc	Docket No. R-20172593142	Rate of Return
Emporium Water Company	07/14	Emporium Water Company	$\begin{aligned} & \text { Docket No. R-2014- } \\ & 2402324 \end{aligned}$	Rate of Return
Columbia Water Company	07/13	Columbia Water Company	Docket No. R-20132360798	Rate of Return
Penn Estates Utilities, Inc.	12/11	Penn Estates, Utilities, Inc.	Docket No. R-2011- $2255159$	Capital Structure / Long-Term Debt Cost Rate
South Carolina Public Service Commission				
Carolina Water Service, Inc.	02/18	Carolina Water Service, Inc.	Docket No. 2017-292WS	Rate of Return
Carolina Water Service, Inc.	06/15	Carolina Water Service, Inc.	Docket No. 2015-199WS	Rate of Return
Carolina Water Service, Inc.	11/13	Carolina Water Service, Inc.	Docket No. 2013-275WS	Rate of Return



SpONSOR	Date	CaselApplicant	Docket No.	SubJect
United Utility Companies, Inc.	09/13	United Utility Companies, Inc.	Docket No. 2013-199WS	Rate of Return
Utility Services of South Carolina, Inc.	09/13	Utility Services of South Carolina, Inc.	Docket No. 2013-201WS	Rate of Return
Tega Cay Water Services, Inc.	11/12	Tega Cay Water Services, Inc.	Docket No. 2012-177WS	Capital Structure
Virginia State Corporation Commission				
WGL Holdings, Inc.	7/18	Washington Gas Light Company	PUR-2018-00080	Rate of Return
Atmos Energy Corporation	5/18	Atmos Energy Corporation	PUR-2018-00014	Rate of Return
Aqua Virginia, Inc.	7/17	Aqua Virginia, Inc.	PUR-2017-00082	Rate of Return
Massanutten Public Service Corp.	08/14	Massanutten Public Service Corp.	PUE-2014-00035	Rate of Return / Rate Design

# Carolina Water Service, Inc. of North Carolina <br> Table of Contents <br> to D'Ascendis Direct Exhibit No. 1 

## Schedule

Summary of Cost of Capital and Fair Rate of Return DWD-1

Financial Profile of the Utility Proxy Group DWD-2
Indicated Common Equity Cost Rate Using the Discounted DWD-3
Cash Flow Model
Indicated Common Equity Cost Rate Using the Risk Premium Model DWD-4
Indicated Common Equity Cost Rate Using the Capital Asset DWD-5
Pricing Model
Basis of selection for the Non-Price Regulated Companies
Comparable in Total Risk to the Utility Proxy Group
DWD-6
Cost of Common Equity Models Applied to the Comparable Risk Non-Price Regulated Companies

DWD-7
Estimated Market Capitalization for Carolina Water Service, Inc. of North Carolina and the Utility Proxy Group

## Carolina Water Service, Inc. of North Carolina

Recommended Capital Structure and Cost Rates
for Ratemaking Purposes
at March 31, 2019

Type Of Capital	Ratios (1)	Cost Rate	Weighted Cost Rate
Long-Term Debt	52.04\%	5.59\% (1)	2.91\%
Common Equity	47.96\%	10.75\% (2)	5.16\%
Total	100.00\%		8.07\%

Notes:
(1) Company-Provided.
(2) From page 2 of this Schedule.

		D'Ascendis Exhibit No. 1 Schedule DWD-1 Page 2 of 2
	Carolina Water Service, Inc. of North Carolina Brief Summary of Common Equity Cost Rate	
Line No.	Principal Methods	Proxy Group of Six Water Companies
1.	Discounted Cash Flow Model (DCF) (1)	8.70\%
2.	Risk Premium Model (RPM) (2)	10.62\%
3.	Capital Asset Pricing Model (CAPM) (3)	10.21\%
4.	Market Models Applied to Comparable Risk, Non-Price Regulated Companies (4)	11.78\%
5.	Indicated Common Equity Cost Rate before Adjustment for Size Risk	10.35\%
6.	Size Risk Adjustment (5)	0.40\%
7.	Recommended Common Equity Cost Rate after Adjustment for Size Risk	10.75\%

Notes: (1) From Schedule DWD-3.
(2) From page 1 of Schedule DWD-4.
(3) From page 1 of Schedule DWD-5.
(4) From page 1 of Schedule DWD-7.
(5) From Schedule DWD-8.



$\Sigma$


$$
\begin{aligned}
& \text { Carolina Water Service, Inc. of North Carolina } \\
& \text { n Equity Cost Rate Using the Discounted Cash Flow Model for }
\end{aligned}
$$

$\xrightarrow{\text { Carolina Water Service, Inc. of North Carolina }}$



# Page 66 of 96 

D'Ascendis Exhibit No. 1
Schedule DWD-3
Page 3 of 7



# Page 68 of 96 

D'Ascendis Exhibit No. 1
Schedule DWD-3
Page 5 of 7


# Page 69 of 96 

D'Ascendis Exhibit No. 1
Schedule DWD-3
Page 6 of 7



# Carolina Water Service, Inc. of North Carolina <br> Summary of Risk Premium Models for the <br> Proxy Group of Six Water Companies 

Water Companies

Predictive Risk   Premium Model   (PRPM) (1)			
		11.20 \%	
Risk Premium Using an Adjusted Total Market Approach (2)			
		10.03	
Average		10.62	

Notes:
(1) From page 2 of this Schedule.
(2) From page 3 of this Schedule.

# Carolina Water Service, Inc. of North Carolina <br> Indicated Common Equity Cost Rate <br> Through Use of a Risk Premium Model <br> Using an Adjusted Total Market Approach 

Line No.		Proxy Group of Six Water Companies
1.	Prospective Yield on Aaa Rated Corporate Bonds (1)	4.25 \%
2.	Adjustment to Reflect Yield Spread Between Aaa Rated Corporate Bonds and A Rated Public Utility Bonds	0.41 (2)
3.	Adjusted Prospective Yield on A Rated Public Utility Bonds	4.66 \%
4.	Adjustment to Reflect Bond Rating Difference of Proxy Group	0.08 (3)
5.	Adjusted Prospective Bond Yield	4.74 \%
6.	Equity Risk Premium (4)	5.29
7.	Risk Premium Derived Common Equity Cost Rate	10.03 \%

Notes: (1) Consensus forecast of Moody's Aaa Rated Corporate bonds from Blue Chip Financial Forecasts (see pages 10-11 of this Schedule).
(2) The average yield spread of A rated public utility bonds over Aaa rated corporate bonds of $0.41 \%$ from page 4 of this Schedule.
(3) Adjustment to reflect the A2 / A3 Moody's LT issuer rating of the Proxy Group of Six Water Companies as shown on page 5 of this Schedule. The $0.08 \%$ upward adjustment is derived by taking $1 / 6$ of the spread between A2 and Baa2 Public Utility Bonds ( $1 / 6$ * $0.49 \%$ = $0.08 \%$ ) as derived from page 4 of this Schedule.
(4) From page 7 of this Schedule.

# Carolina Water Service, Inc. of North Carolina <br> Interest Rates and Bond Spreads for Moody's Corporate and Public Utility Bonds 

## Selected Bond Yields

[1] [2]
[3]

Apr-2019	3.69	\%	4.08	\%	4.55	\%
Mar-2019	3.77		4.16		4.65	
Feb-2019	3.79		4.25		4.76	
Average	3.75	\%	4.16	\%	4.65	\%

## Selected Bond Spreads

A Rated Public Utility Bonds Over Aaa Rated Corporate Bonds:

$$
0.41 \%(1)
$$

Baa Rated Public Utility Bonds Over A Rated Public Utility Bonds:
$0.49 \%(2)$

Notes:
(1) Column [2] - Column [1].
(2) Column [3] - Column [2].

Source of Information:
Bloomberg Professional Service

## Carolina Water Service, Inc. of North Carolina

Comparison of Long-Term Issuer Ratings for
Proxy Group of Six Water Companies

Moody's
Long-Term Issuer Rating
April 2019


Standard \& Poor's
Long-Term Issuer Rating
April 2019


Long-Term Issuer Rating	$\begin{gathered} \text { Numerical } \\ \text { Weighting (1) } \\ \hline \end{gathered}$	Long-Term   Issuer   Rating	$\begin{gathered} \text { Numerical } \\ \text { Weighting(1) } \\ \hline \end{gathered}$
A2	6.0	A+	5.0
A3	7.0	A	6.0
NR	--	NR	--
NR	--	A+	5.0
NR	--	A	6.0
NR	--	A-	7.0
A2 / A3	6.5	A	5.8

Notes:
(1) From page 6 of this Schedule.
(2) Ratings that of Golden State Water Company.
(3) Ratings that of New Jersey and Pennsylvania American Water Companies.
(4) Ratings that of California Water Service Company.

Numerical Assignment for Moody's and Standard \& Poor's Bond Ratings

Moody's Bond Rating	Numerical Bond Weighting	Standard \& Poor's Bond Rating	$\frac{\pi}{\frac{1}{4}}$
Aaa	1	AAA	
Aa1	2	AA+	O
Aa2	3	AA	5
Aa3	4	AA-	-
A1	5	A+	틀
A2	6	A	2
A3	7	A-	
Baa1	8	BBB+	
Baa2	9	BBB	
Baa3	10	BBB-	
Ba1	11	$\mathrm{BB}+$	
Ba2	12	BB	
Ba3	13	BB-	
B1	14	B+	
B2	15	B	
B3	16	B-	

## D'Ascendis Exhibit No. 1

Schedule DWD-4
Page 7 of 12

## Carolina Water Service, Inc. of North Carolina

Judgment of Equity Risk Premium for
Proxy Group of Six Water Companies

Line   No.		Proxy Group of Six   Water Companies
1.	Calculated equity risk premium based on the total market using the beta approach (1)	5.84 \%
2.	Mean equity risk premium based on a study using the holding period returns of public utilities with A rated bonds (2)	4.73
3.	Average equity risk premium	5.29 \%

Notes: (1) From page 8 of this Schedule.
(2) From page 12 of this Schedule.

		D'Ascendis Exhibit No. 1 Schedule DWD-4 Page 8 of 12
	Carolina Water Service, Inc. of North Derivation of Equity Risk Premium Based on the T Using the Beta for the Proxy Group of Six Water Compa	oach
Line No.	Equity Risk Premium Measure	Proxy Group of Six Water Companies
	son-Based Equity Risk Premiums:	
1.	Ibbotson Equity Risk Premium (1)	5.54 \%
2.	Regression on Ibbotson Risk Premium Data (2)	7.93
3.	Ibbotson Equity Risk Premium based on PRPM (3)	8.32
4.	Equity Risk Premium Based on Value Line Summary and Index (4)	9.57
5.	Equity Risk Premium Based on Value Line S\&P 500 Companies (5)	11.78
6.	Equity Risk Premium Based on Bloomberg S\&P 500 Companies (6)	9.10
7.	Conclusion of Equity Risk Premium	8.71 \%
8.	Adjusted Beta (7)	0.67
9.	Forecasted Equity Risk Premium	5.84 \%

Notes provided on page 9 of this Schedule.

# Carolina Water Service, Inc. of North Carolina <br> Derivation of Equity Risk Premium Based on the Total Market Approach <br> Using the Beta for the <br> Proxy Group of Six Water Companies 

Notes:
(1) Based on the arithmetic mean historical monthly returns on large company common stocks from Ibbotson® SBBI® 2019 Market Report minus the arithmetic mean monthly yield of Moody's average Aaa and Aa corporate bonds from 1926-2018.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of large company common stocks relative to Moody's average Aaa and Aa rated corporate bond yields from 1928-2018 referenced in Note 1 above.
(3) The Predictive Risk Premium Model (PRPM) is discussed in the accompanying direct testimony. The Ibbotson equity risk premium based on the PRPM is derived by applying the PRPM to the monthly risk premiums between Ibbotson large company common stock monthly returns and average Aaa and Aa corporate monthly bond yields, from January 1928 through April 2019.
(4) The equity risk premium based on the Value Line Summary and Index is derived by subtracting the average consensus forecast of Aaa corporate bonds of $4.25 \%$ (from page 3 of this Schedule) from the projected 3-5 year total annual market return of 13.82\% (described fully in note 1 on page 2 of Schedule DWD-5).
(5) Using data from Value Line for the S\&P 500, an expected total return of 16.03\% was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of $4.25 \%$ results in an expected equity risk premium of $11.78 \%$.
(6) Using data from the Bloomberg Professional Service for the S\&P 500, an expected total return of $13.35 \%$ was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of $4.25 \%$ results in an expected equity risk premium of $9.10 \%$.
(7) Average of mean and median beta from Schedule DWD-5.

Sources of Information:
Stocks, Bonds, Bills, and Inflation - 2019 SBBI Yearbook, John Wiley \& Sons, Inc.
Industrial Manual and Mergent Bond Record Monthly Update.
Value Line Summary and Index
Blue Chip Financial Forecasts, May 1, 2019 and December 1, 2018
Bloomberg Professional Service

Consensus Forecasts of U.S. Interest Rates and Key Assumptions

Interest Rates									Consensus Forecasts-Quarterly Avg.					
									2 Q	3Q	4 Q	1Q	2 Q	3Q
	Apr 19	Apr 12	Apr 5	Mar 29	Mar	Feb	Jan	Q1 2019	$\underline{2019}$	2019	2019	2020	2020	2020
Federal Funds Rate	2.41	2.41	2.42	2.41	2.41	2.40	2.40	2.40	2.4	2.4	2.4	2.4	2.4	2.4
Prime Rate	5.50	5.50	5.50	5.50	5.50	5.50	5.50	5.50	5.5	5.5	5.5	5.5	5.5	5.5
LIBOR, 3-mo.	2.59	2.59	2.60	2.60	2.61	2.68	2.77	2.69	2.6	2.7	2.7	2.7	2.7	2.7
Commercial Paper, 1-mo.	2.45	2.43	2.46	2.46	2.44	2.43	2.48	2.45	2.5	2.4	2.5	2.5	2.5	2.5
Treasury bill, 3-mo.	2.43	2.43	2.43	2.44	2.45	2.44	2.42	2.44	2.4	2.4	2.4	2.4	2.4	2.4
Treasury bill, 6-mo.	2.47	2.47	2.46	2.46	2.51	2.50	2.51	2.51	2.5	2.5	2.5	2.5	2.5	2.5
Treasury bill, 1 yr.	2.44	2.43	2.41	2.41	2.49	2.55	2.58	2.54	2.5	2.5	2.5	2.5	2.5	2.5
Treasury note, 2 yr .	2.40	2.35	2.33	2.24	2.41	2.50	2.54	2.48	2.4	2.5	2.5	2.5	2.5	2.5
Treasury note, 5 yr.	2.39	2.32	2.31	2.20	2.37	2.49	2.54	2.47	2.4	2.5	2.6	2.6	2.6	2.6
Treasury note, 10 yr .	2.58	2.52	2.50	2.41	2.57	2.68	2.71	2.65	2.6	2.7	2.7	2.8	2.8	2.8
Treasury note, 30 yr .	2.98	2.93	2.91	2.84	2.98	3.02	3.04	3.01	3.0	3.0	3.1	3.1	3.1	3.2
Corporate Aaa bond	3.88	3.86	3.86	3.79	3.95	3.98	4.12	4.01	3.8	3.9	4.0	4.0	4.1	4.1
Corporate Baa bond	4.60	4.61	4.65	4.60	4.76	4.84	5.02	4.87	4.8	4.9	4.9	5.0	5.1	5.1
State \& Local bonds	3.50	3.50	3.50	3.48	3.55	3.62	3.67	3.61	3.6	3.7	3.8	3.8	3.9	3.9
Home mortgage rate	4.17	4.12	4.08	4.06	4.27	4.37	4.46	4.37	4.3	4.4	4.4	4.5	4.5	4.6
				-Histor						nsensu	s Fore	casts-	Quarter	
	2Q	3Q	4Q	1Q	2Q	3Q	$4 Q$	$1 Q$	2Q	3Q	4Q	1 Q	2 Q	3Q
Key Assumptions	$\underline{2017}$	$\underline{2017}$	$\underline{2017}$	$\underline{2018}$	$\underline{2018}$	$\underline{2018}$	$\underline{2018}$	$\underline{2019}$	$\underline{2019}$	$\underline{2019}$	$\underline{2019}$	$\underline{2020}$	$\underline{2020}$	2020
Fed's AFE \$ Index	111.1	105.6	106.2	102.9	105.5	107.8	109.4	109.4	108.7	108.8	108.8	108.5	108.2	107.9
Real GDP	3.0	2.8	2.3	2.2	4.2	3.4	2.2	3.2	2.5	2.1	2.0	1.7	1.7	1.7
GDP Price Index	1.2	2.2	2.5	2.0	3.0	1.8	1.7	0.9	2.3	2.1	2.1	2.1	2.1	2.1
Consumer Price Index	0.4	2.2	3.1	3.2	2.1	2.0	1.5	0.9	2.9	2.3	2.1	2.1	2.1	2.1

Forecasts for interest rates and the Federal Reserve's Major Currency Index represent averages for the quarter. Forecasts for Real GDP, GDP Price Index and Consumer Price Index are seasonally-adjusted annual rates of change (saar). Individual panel members' forecasts are on pages 4 through 9 . Historical data: Treasury rates from the Federal Reserve Board's H.15; AAA-AA and A-BBB corporate bond yields from Bank of America-Merrill Lynch and are 15+ years, yield to maturity; State and local bond yields from serve Board's H.15; AAA-AA and A-BBB corporate bond yields from Bank of America-Merrill Lynch and are 15+ years, yield to maturity; State and local bond yields from
Bank of America-Merrill Lynch, A-rated, yield to maturity; Mortgage rates from Freddie Mac, 30-year, fixed; LIBOR quotes from Intercontinental Exchange. All interest rate Bank of America-Merrill Lynch, A-rated, yield to maturity; Mortgage rates from Freddie Mac, 30-year, fixed; LiBOR quotes from Intercontinental Exchange. All interest rate
data are sourced from Haver Analytics. Historical data for Fed's Major Currency Index are from FRSR H.10. Historical data for Real GDP and GDP Chained Price Index are data are sourced from Haver Analytics. Historical data for Fed's Major Currency Index are from FRSR H.10. Historical data for Real GDP and GDP
from the Bureau of Economic Analysis (BEA). Consumer Price Index (CPI) history is from the Department of Labor's Bureau of Labor Statistics (BLS).


## Long-Range Survey:

The table below contains the results of our twice-annual long-range CONSENSUS survey. There are also Top 10 and Bottom 10 averages for each variable. Shown are consensus estimates for the years 2020 through 2024 and averages for the five-year periods 2020-2024 and 2025-2029. Apply these projections cautiously. Few if any economic, demographic and political forces can be evaluated accurately over such long time spans.

Interest Rates							Five-Year Averages	
		2020	2021	2022	2023	2024	2020-2024	2025-2029
1. Federal Funds Rate	CONS ENS US	2.9	2.8	2.8	3.0	3.0	2.9	3.1
	Top 10 Average	3.5	3.6	3.6	3.6	3.6	3.6	3.6
	Bottom 10 Average	2.1	1.9	2.0	2.3	2.5	2.2	2.6
2. Prime Rate	CONS ENS US	5.9	5.8	5.9	6.0	6.1	5.9	6.1
	Top 10 Average	6.5	6.6	6.6	6.6	6.6	6.6	6.6
	Bottom 10 Average	5.2	4.9	5.1	5.4	5.6	5.2	5.7
3. LIBOR, 3-Mo.	CONS ENS US	3.3	3.2	3.2	3.5	3.5	3.3	3.5
	Top 10 Average	3.9	4.0	4.0	4.2	4.2	4.0	4.0
	Bottom 10 Average	2.7	2.5	2.5	2.8	2.9	2.7	3.1
4. Commercial Paper, 1-Mo.	CONS ENS US	3.0	2.9	3.0	3.1	3.1	3.0	3.1
	Top 10 Average	3.5	3.6	3.6	3.6	3.6	3.6	3.6
	Bottom 10 Average	2.5	2.3	2.3	2.6	2.6	2.4	2.6
5. Treasury Bill Yield, 3-Mo.	CONSENSUS	2.9	2.8	2.8	3.0	3.0	2.9	3.1
	Top 10 Average	3.5	3.6	3.6	3.6	3.6	3.6	3.6
	Bottom 10 Average	2.1	1.9	2.0	2.3	2.5	2.1	2.6
6. Treasury Bill Yield, 6-Mo.	CONS ENS US	3.0	2.9	3.0	3.1	3.2	3.1	3.2
	Top 10 Average	3.6	3.7	3.7	3.7	3.8	3.7	3.7
	Bottom 10 Average	2.4	2.1	2.2	2.5	2.7	2.4	2.8
7. Treasury Bill Yield, 1-Yr.	CONS ENS US	3.1	3.1	3.1	3.2	3.3	3.2	3.4
	Top 10 Average	3.7	3.8	3.8	3.8	3.8	3.8	3.9
	Bottom 10 Average	2.5	2.3	2.3	2.6	2.8	2.5	2.9
8. Treasury Note Yield, 2-Yr.	CONS ENS US	3.2	3.2	3.2	3.3	3.4	3.3	3.5
	Top 10 Average	3.8	3.9	3.9	3.9	4.0	3.9	4.0
	Bottom 10 Average	2.5	2.4	2.4	2.7	2.8	2.6	2.9
10. Treasury Note Yield, 5-Yr.	CONSENSUS	3.4	3.3	3.4	3.5	3.5	3.4	3.6
	Top 10 Average	4.0	4.0	4.1	4.1	4.1	4.1	4.2
	Bottom 10 Average	2.7	2.7	2.6	2.8	2.9	2.7	3.0
11. Treasury Note Yield, 10-Yr.	CONS ENS US	3.5	3.5	3.5	3.6	3.7	3.6	3.8
	Top 10 Average	4.2	4.2	4.3	4.3	4.3	4.3	4.4
	Bottom 10 Average	2.9	2.9	2.8	3.0	3.0	2.9	3.2
12. Treasury Bond Yield, 30-Yr.	CONS ENS US	3.8	3.8	3.9	4.0	4.0	3.9	4.2
	Top 10 Average	4.5	4.5	4.6	4.7	4.7	4.6	4.9
	Bottom 10 Average	3.2	3.2	3.2	3.3	3.4	3.2	3.5
13. Corporate Aaa Bond Yield	CONS ENS US	4.9	4.9	4.9	5.0	5.1	5.0	5.1
	Top 10 Average	5.6	5.7	5.8	5.8	5.8	5.7	5.9
	Bottom 10 Average	4.2	4.1	4.1	4.2	4.3	4.2	4.4
13. Corporate Baa Bond Yield	CONSENSUS	5.8	5.8	5.9	5.9	6.0	5.9	6.0
	Top 10 Average	6.5	6.6	6.8	6.8	6.8	6.7	6.9
	Bottom 10 Average	5.2	5.1	5.1	5.2	5.3	5.2	5.3
14. State \& Local Bonds Yield	CONS ENS US	4.6	4.5	4.5	4.5	4.6	4.5	4.7
	Top 10 Average	5.1	5.0	5.0	5.0	5.1	5.1	5.2
	Bottom 10 Average	4.2	4.0	3.9	4.0	4.0	4.0	4.1
15. Home M ortgage Rate	CONS ENS US	5.2	5.2	5.2	5.3	5.4	5.3	5.5
	Top 10 Average	5.8	5.8	5.9	6.0	6.0	5.9	6.1
	Bottom 10 Average	4.6	4.5	4.5	4.7	4.8	4.6	4.9
A. FRB - Major Currency Index	CONS ENS US	90.1	89.7	89.4	90.0	89.8	89.8	89.9
	Top 10 Average	94.6	94.6	94.4	94.2	94.0	94.3	93.9
	Bottom 10 Average	85.5	84.8	84.2	85.8	85.6	85.2	85.8
			- Year	Year,	ange		Five-Yea	Averages
		2020	2021	2022	2023	2024	2020-2024	2025-2029
B. Real GDP	CONS ENS US	1.8	1.8	2.1	2.2	2.1	2.0	2.1
	Top 10 Average	2.4	2.3	2.4	2.6	2.5	2.5	2.5
	Bottom 10 Average	1.3	1.3	1.7	1.8	1.7	1.6	1.8
C. GDP Chained Price Index	CONS ENS US	2.1	2.1	2.1	2.1	2.1	2.1	2.1
	Top 10 Average	2.4	2.4	2.3	2.4	2.3	2.3	2.3
	Bottom 10 Average	1.9	1.8	1.9	1.9	1.9	1.9	1.9
D. Consumer Price Index	CONS ENS US	2.1	2.1	2.2	2.2	2.2	2.2	2.2
	Top 10 Average	2.5	2.5	2.5	2.5	2.4	2.5	2.4
	Bottom 10 Average	1.7	1.8	1.9	2.0	1.9	1.9	2.0



Notes: (1) Based on S\&P Public Utility Index monthly total returns and Moody's Public Utility Bond average monthly yields from 1928-2018. Holding period returns are calculated based upon income received (dividends and interest) plus the relative change in the market value of a security over a one-year holding period.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of the S\&P Utility Index relative to Moody's A rated public utility bond yields from 1928-2018 referenced in note 1 above.
(3) The Predictive Risk Premium Model (PRPM) is applied to the risk premium of the monthly total returns of the S\&P Utility Index and the monthly yields on Moody's A rated public utility bonds from January 1928 - April 2019.
(4) Using data from Value Line for the S\&P Utilities Index, an expected return of $10.33 \%$ was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the expected A rated public utility bond yield of $4.66 \%$, calculated on line 3 of page 3 of this Schedule results in an equity risk premium of $5.67 \%$. $(10.33 \%-4.66 \%=5.67 \%)$
(5) Using data from Bloomberg Professional Service for the S\&P Utilities Index, an expected return of $9.01 \%$ was derived based on expected dividend yields and longterm growth estimates as a proxy for market appreciation. Subtracting the expected A rated public utility bond yield of $4.66 \%$, calculated on line 3 of page 3 of this Schedule results in an equity risk premium of 4.35\%. (9.01\%-4.66\% = 4.35\%)
(6) Average of lines 1 through 5.

ミ $\quad \sum_{\substack{0 \\ 0}}^{0}$


Carolina Water Service, Inc. of North Carolina
Indicated Common Equity Cost Rate Through Use
of the Traditional Capital Asset Pricing Model (CAPM) and Empirical Capital Asset Pricing Model (ECAPM) Market Risk
Premium
$\Psi$



$\stackrel{\sim}{\sim}$
\(\begin{array}{crr}\begin{array}{c}Line <br>
Adjusted <br>

Beta\end{array} \&\)|  Bloomber  |
| :---: |
|  Ben  |
|  |
|  |
|  Adjusted Be  | <br>

0.70 \& \& 0.5 <br>
0.60 \& \& 0.6 <br>
0.65 \& \& 0.5 <br>
0.70 \& \& 0.6 <br>
0.75 \& \& 0.7 <br>
0.75 \& \& 0.68\end{array}

Proxy Group of Six Water Companies
American States Water Co.
American Water Works Company Inc
Artesian Resources Corporation
California Water Service Group
Middlesex Water Co.
York Water Co.

Mean
Median
Average of Mean and Median
Notes on page 2 of this Schedule.

# KyPSC Case No. 2021-00190 <br> STAFF-DR-03-011 Attachment 1 <br> Page 84 of 96 

## D'Ascendis Exhibit No. 1 <br> Schedule DWD-5 <br> Page 2 of 2

Carolina Water Service, Inc. of North Carolina
Notes to Accompany the Application of the CAPM and ECAPM
Notes:
(1) The market risk premium (MRP) is derived by using six different measures from three sources: Ibbotson, Value Line, and Bloomberg as illustrated below:

Historical Data MRP Estimates:
Measure 1: Ibbotson Arithmetic Mean MRP (1926-2018)


Value Line MRP Estimates:
Measure 4: Value Line Projected MRP (Thirteen weeks ending May 03, 2019)
Total projected return on the market 3-5 years hence*: $13.82 \%$
Projected Risk-Free Rate (see note 2):
MRP based on Value Line Summary \& Index:

10.33

*Forcasted 3-5 year capital appreciation plus expected dividend yield

Measure 5: Value Line Projected Return on the Market based on the S\&P 500

Total return on the Market based on the S\&P 500:	$16.03 \%$
Projected Risk-Free Rate (see note 2):	3.33

MRP based on Value Line data
12.70 \%

Measure 6: Bloomberg Projected MRP
Total return on the Market based on the S\&P 500: $\quad 13.35 \%$
Projected Risk-Free Rate (see note 2):

MRP based on Bloomberg data	$\frac{3.33}{10.02}$$\%$
Average of Value Line, Ibbotson, and Bloomberg MRP:	$\underline{\underline{9.73}} \%$

(2) For reasons explained in the direct testimony, the appropriate risk-free rate for cost of capital purposes is the average forecast of 30 year Treasury Bonds per the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts. (See pages 1011 of Schedule DWD-4.) The projection of the risk-free rate is illustrated below:

Second Quarter 2019	$3.00 \%$		
Third Quarter 2019	3.00		
Fourth Quarter 2019	3.10		
First Quarter 2020	3.10		
Second Quarter 2020	3.10		
Third Quarter 2020	3.20		
2020-2024	3.90		
2025-2029	$\underline{4.20}$		
	$\%$		

(3) Average of Column 6 and Column 7.

Sources of Information:
Value Line Summary and Index
Blue Chip Financial Forecasts, May 1, 2019 and December 1, 2018
Stocks, Bonds, Bills, and Inflation - 2019 SBBI Yearbook, John Wiley \& Sons, Inc.
Bloomberg Professional Services

D'Ascendis Exhibit No. 1

# Carolina Water Service, Inc. of North Carolina <br> Basis of Selection of the Group of Non-Price Regulated Companies <br> Comparable in Total Risk to the Utility Proxy Group 

The criteria for selection of the Non-Price Regulated Proxy Group was that the nonprice regulated companies be domestic and reported in Value Line Investment Survey (Standard Edition).

The Non-Price Regulated Proxy Group was then selected based on the unadjusted beta range of $0.29-0.71$ and residual standard error of the regression range of 2.7224 - 3.2468 of the Utility Proxy Group.

These ranges are based upon plus or minus two standard deviations of the unadjusted beta and standard error of the regression. Plus or minus two standard deviations captures $95.50 \%$ of the distribution of unadjusted betas and residual standard errors of the regression.

The standard deviation of the Utility Proxy Group's residual standard error of the regression is 0.1070 . The standard deviation of the standard error of the regression is calculated as follows:

Standard Deviation of the Std. Err. of the Regr. = Standard Error of the Regression

$$
\sqrt{2 N}
$$

where: $\mathrm{N}=$ number of observations. Since Value Line betas are derived from weekly price change observations over a period of five years, $\mathrm{N}=259$

$$
\text { Thus, } 0.1070=\frac{2.9846}{\sqrt{518}}=\frac{2.9846}{22.7596}
$$

Source of Information: Value Line, Inc., March 2019
Value Line Investment Survey (Standard Edition)

	[1]	[2]	[3]	[4]
Proxy Group of Six Water Companies	Value Line Adjusted Beta	Unadjusted Beta	Residual   Standard   Error of the   Regression	Standard Deviation of Beta
American States Water Co.	0.70	0.51	2.7757	0.0995
American Water Works Company Inc	0.60	0.38	2.1299	0.0763
Artesian Resources Corporation	0.65	0.39	3.3738	0.1209
California Water Service Group	0.70	0.51	2.9311	0.1051
Middlesex Water Co.	0.75	0.60	3.2488	0.1164
York Water Co.	0.75	0.59	3.4482	0.1236
Average	0.69	0.50	2.9846	0.1070
Beta Range ( $+/-2$ std. Devs. of Beta)	0.29	0.71		
2 std. Devs. of Beta	0.21			
Residual Std. Err. Range ( $+/-2$ std.				
Devs. of the Residual Std. Err.)	2.7224	3.2468		
Std. dev. of the Res. Std. Err.	0.1311			
2 std. devs. of the Res. Std. Err.	0.2622			

## D'Ascendis Exhibit No. 1 Schedule DWD-6 Page 3 of 4

Carolina Water Service, Inc. of North Carolina
Proxy Group of Non-Price Regulated Companies
Comparable in Total Risk to the
Proxy Group of Six Water Companies

	[1]	[2]	[3]	[4]
Proxy Group of Eleven Non-Price Regulated Companies	$\begin{gathered} \text { VL Adjusted } \\ \text { Beta } \\ \hline \end{gathered}$	Unadjusted $\qquad$	Residual   Standard   Error of the   Regression	Standard Deviation of Beta
AutoZone Inc.	0.80	0.63	2.8677	0.1028
Cheesecake Factory	0.75	0.57	2.8706	0.1029
Casey's Gen'l Stores	0.75	0.56	3.0452	0.1091
Cboe Global Markets	0.75	0.58	2.8746	0.1030
Cracker Barrel	0.75	0.55	2.9858	0.1070
Dollar General	0.80	0.68	3.0342	0.1088
Dunkin' Brands Group	0.70	0.48	2.8579	0.1024
Darden Restaurants	0.80	0.66	2.9476	0.1057
Integra LifeSciences	0.80	0.67	3.1668	0.1135
Viad Corp.	0.80	0.62	3.1016	0.1112
Valvoline Inc.	0.80	0.66	2.9495	0.1832
Average	0.77	0.61	2.9700	0.1100
Proxy Group of Six Water Companies	0.69	0.50	2.9846	0.1070

D'Ascendis Exhibit No. 1 Schedule DWD-6

Page 4 of 4
Coefficients of Variation of the
Proxy Group of Six Water Companis
and the Proxy Group of Eleven Non-Price Regulated Companies


## D'Ascendis Exhibit No. 1 Schedule DWD-7 Page 1 of 6

Carolina Water Service, Inc. of North Carolina
Summary of Cost of Equity Models Applied to Proxy Group of Eleven Non-Price Regulated Companies

Comparable in Total Risk to the
Proxy Group of Six Water Companies

Principal Methods		Proxy Group of Eleven Non-Price Regulated Companies
Discounted Cash Flow Model (DCF) (1)		11.88 \%
Risk Premium Model (RPM) (2)		12.00
Capital Asset Pricing Model (CAPM) (3)		11.17
	Mean	11.68 \%
	Median	11.88 \%
	Average of Mean and Median	11.78 \%

Notes:
(1) From page 2 of this Schedule.
(2) From page 3 of this Schedule.
(3) From page 6 of this Schedule.

[^33]
$\sqrt{6}$
 иеәW Year Growth
o̊

[5]
$$
\bar{\square}
$$
 uе!рәW $\mathrm{NM}=\mathrm{Not}$ Meaningful Figure $\quad$ N
(1) The application of the DCF model to the domestic, non-price regluated comparable risk companies is identical to the application of the DCF to the utility proxy group. The
 www.yahoo.com (excluding any negative growth rates) and then adding that growth rate to the adjusted dividend yield.


Proxy Group of Eleven Non-
Price Regulated
Companies
AutoZone Inc.
Cheesecake Factory
Casey's Gen'l Stores
Cboe Global Markets
Cracker Barrel
Dollar General
Dunkin' Brands Group
Darden Restaurants
Integra LifeSciences
Viad Corp.
Valvoline Inc.

$\left.\begin{array}{cc} & \begin{array}{r}\text { D'Ascendis Exhibit No. } 1 \\ \text { Schedule DWD-7 } \\ \text { Page 3 of 6 }\end{array} \\ \text { Carolina Water Service, Inc. of North Carolina }\end{array}\right)$
(2) From page 5 of this Schedule.

		D'Ascendis Exhibit No. 1   Schedule DWD-7
Page 4 of 6		

Source of Information:
Bloomberg Professional Services

# Carolina Water Service, Inc. of North Carolina 

Derivation of Equity Risk Premium Based on the Total Market Approach
Using the Beta for
Proxy Group of Eleven Non-Price Regulated Companies of Comparable risk to the Proxy Group of Six Water Companies

Line No.	Equity Risk Premium Measure	Proxy Group of Eleven Non-Price Regulated Companies
Ibbotson-Based Equity Risk Premiums:		
1.	Ibbotson Equity Risk Premium (1)	5.54 \%
2.	Regression on Ibbotson Risk Premium Data (2)	7.93
3.	Ibbotson Equity Risk Premium based on PRPM (3)	8.32
5.	Equity Risk Premium Based on Value Line Summary and Index (4)	9.57
6.	Equity Risk Premium Based on Value Line S\&P 500 Companies (5)	11.78
8.	Equity Risk Premium Based on Bloomberg S\&P 500 Companies (6)	9.10
9.	Conclusion of Equity Risk Premium	8.71 \%
10.	Adjusted Beta (7)	0.78
11.	Forecasted Equity Risk Premium	6.79 \%

Notes:
(1) From note 1 of page 9 of Schedule DWD-4.
(2) From note 2 of page 9 of Schedule DWD-4.
(3) From note 3 of page 9 of Schedule DWD-4.
(4) From note 4 of page 9 of Schedule DWD-4.
(5) From note 5 of page 9 of Schedule DWD-4.
(6) From note 6 of page 9 of Schedule DWD-4.
(7) Average of mean and median beta from page 6 of this Schedule.

Sources of Information:
Stocks, Bonds, Bills, and Inflation - 2019 SBBI Yearbook, John Wiley \& Sons, Inc.
Value Line Summary and Index
Blue Chip Financial Forecasts, May 1, 2019 and December 1, 2018
Bloomberg Professional Services
Carolina Water Service, Inc. of North Carolina
$\Sigma$
 Proxy Group of Six Water Companies
$\stackrel{\square}{6}$


6loZ 8 Z unp

KyPSC Case No. 2021-00190
STAFF-DR-03-011 Attachment 1
D'Ascendis Exhibit No. 1 Schedule DWD-8 Page 1 of 2
D'Ascendis Exhibit No. 1
Schedule DWD-8
Page 2 of 2

BEFORE THE PUBLIC SERVICE COMMISSION OF SOUTH CAROLINA

DOCKET NO. 2017-292-WS

In the Matter of:
Application of Carolina Water Service, ) Inc. For Adjustment of Rates and Charges and Modification of Certain Terms and Conditions for the Provision of Water and Sewer Service

Prepared Direct Testimony
of
Dylan W. D'Ascendis, CRRA
Director
ScottMadden, Inc.

On Behalf of
Carolina Water Service, Inc.

February 26, 2018

## TABLE OF CONTENTS

I. INTRODUCTION ..... 1
A. Witness Identification ..... 1
B. Background and Qualifications ..... 1
II. PURPOSE OF TESTIMONY ..... 2
III. SUMMARY ..... 3
IV. GENERAL PRINCIPLES ..... 5
A. Business Risk ..... 5
B. Financial Risk ..... 8
V. CAPITAL STRUCTURE ..... 9
VI. CAROLINA WATER SERVICE, INC. AND UTILITY PROXY GROUP SELECTION ..... 10
VII. COMMON EQUITY COST RATE MODELS ..... 12
A. Discounted Cash Flow Model ..... 13
B. The Risk Premium Model ..... 15
C. The Capital Asset Pricing Model ..... 25
D. Common Equity Cost Rates for a Proxy Group of Domestic, Non-Price Regulated Companies Based on the DCF, RPM, and CAPM ..... 29
VIII. CONCLUSION OF COMMON EQUITY COST RATE BEFORE ADJUSTMENTS ..... 32
IX. ADJUSTMENT TO THE COMMON EQUITY COST RATE ..... 33
A. Size Adjustment ..... 33
X. CONCLUSION OF COMMON EQUITY COST RATE. ..... 37

## I. INTRODUCTION

## A. Witness Identification

Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
A. My name is Dylan W. D'Ascendis. My business address is 3000 Atrium Way, Suite 241, Mount Laurel, NJ 08054.
Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?
A. I am a Director at ScottMadden, Inc.

## B. Background and Qualifications

Q. PLEASE SUMMARIZE YOUR PROFESSIONAL EXPERIENCE AND EDUCATIONAL BACKGROUND.
A. I offer expert testimony on behalf of investor-owned utilities on rate of return issues and class cost of service issues. I also assist in the preparation of rate filings, including but not limited to revenue requirements and original cost and lead/lag studies. I am a graduate of the University of Pennsylvania, where I received a Bachelor of Arts degree in Economic History. I also hold a Master of Business Administration from Rutgers University with a concentration in Finance and International Business, which was conferred with high honors. I am a Certified Rate of Return Analyst ("CRRA") and a Certified Valuation Analyst ("CVA"). My full professional qualifications are provided in Appendix A.

## II. PURPOSE OF TESTIMONY

Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS PROCEEDING?
A. The purpose of my testimony is to testify on behalf of Carolina Water Service, Inc. ("CWS" or the "Company") about the appropriate capital structure and corresponding cost rates that the Company should be afforded the opportunity to earn on its jurisdictional rate base.
Q. HAVE YOU PREPARED AN EXHIBIT IN SUPPORT OF YOUR RECOMMENDATION?
A. Yes. I have prepared Exhibit No. __, which consists of Schedules DWD-1 through DWD8.
Q. WHAT IS YOUR RECOMMENDED COST OF CAPITAL FOR CWS?
A. I recommend that the South Carolina Public Service Commission ("SC PSC" or the "Commission") authorize the Company the opportunity to earn an overall rate of return within a range of $8.60 \%$ to $8.86 \%$ based on a test year ended December 31, 2017. The ratemaking capital structure consists of $48.11 \%$ long-term debt, at an embedded debt cost rate of $6.60 \%$, and $51.89 \%$ common equity at my recommended range of common equity cost rates between $10.45 \%$ and $10.95 \%$. The overall rate of return is summarized on page 1 of Schedule DWD-1 and in Table 1 below:

Table 1: Summary of Overall Rate of Return

Type of Capital	$\underline{\text { Ratios }}$	Cost Rate		Weighted Cost Rate
Long-Term Debt	$48.11 \%$	$6.60 \%$	$3.18 \%$	
Common Equity	$\underline{51.89 \%}$	$10.45 \%-10.95 \%$		$\underline{5.42 \%-5.68 \%}$
Total	$100.00 \%$		$8.60 \%-8.86 \%$	

## III. SUMMARY

Q. PLEASE SUMMARIZE YOUR RECOMMENDED RANGE OF COMMON EQUITY COST RATES.
A. My recommended range of common equity cost rates between $10.45 \%$ and $10.95 \%$ is summarized on page 2 of Schedule DWD-1. I have assessed the market-based common equity cost rates of companies of relatively similar, but not necessarily identical, risk to CWS. Using companies of relatively comparable risk as proxies is consistent with the principles of fair rate of return established in the Hope ${ }^{1}$ and Bluefield 2 cases. No proxy group can be identical in risk to any single company, so there must be an evaluation of relative risk between the company and the proxy group to see if it is appropriate to make adjustments to the proxy group's indicated rate of return.

My recommendation results from the application of several cost of common equity models, specifically the Discounted Cash Flow ("DCF") model, the Risk Premium Model ("RPM"), and the Capital Asset Pricing Model ("CAPM"), to the market data of a proxy group of eight water companies ("Utility Proxy Group") whose selection criteria will be discussed below. In addition, I also applied the DCF, RPM, and CAPM to a proxy group

[^34]of domestic, non-price regulated companies comparable in total risk to the eight water companies ("Non-Price Regulated Proxy Group").

The results derived from each are as follows:

Table 2: Summary of Common Equity Cost Rate
Discounted Cash Flow Model 8.64\%
Risk Premium Model 10.69

Capital Asset Pricing Model 10.51
Cost of Equity Models Applied to
Comparable Risk, Non-Price
Regulated Companies
12.06

Indicated Common Equity
Cost Rate Before Adjustment 10.45\%
Size Adjustment
$\underline{0.50}$
Indicated Common Equity Cost Rate
Cost Rate after Adjustment
10.95\%

Recommended Range of
Common Equity Cost Rates
$10.45 \%-10.95 \%$

After analyzing the indicated common equity cost rates derived by these models, I conclude that a common equity cost rate of $10.45 \%$ for the Company is indicated before any Company-specific adjustment. I then adjusted the indicated common equity cost rate upward by $0.50 \%$ to reflect CWS's smaller relative size as compared with the members of the Utility Proxy Group, resulting in a size-adjusted indicated common equity cost rate of $10.95 \%$. Based on these results, I recommend the Commission consider a range of common equity cost rates between $10.45 \%$ and $10.95 \%$ for use in setting rates for the Company.

## IV. GENERAL PRINCIPLES

Q. WHAT GENERAL PRINCIPLES HAVE YOU CONSIDERED IN ARRIVING AT YOUR RECOMMENDED RANGE OF COMMON EQUITY COST RATES?
A. In unregulated industries, the competition of the marketplace is the principal determinant of the price of products or services. For regulated public utilities, regulation must act as a substitute for marketplace competition. Assuring that the utility can fulfill its obligations to the public while providing safe and reliable service at all times requires a level of earnings sufficient to maintain the integrity of presently invested capital. Sufficient earnings also permit the attraction of needed new capital at a reasonable cost, for which the utility must compete with other firms of comparable risk, consistent with the fair rate of return standards established by the U.S. Supreme Court in the previously cited Hope and Bluefield cases. Consequently, marketplace data must be relied on in assessing a common equity cost rate appropriate for ratemaking purposes. Just as the use of the market data for the proxy group adds reliability to the informed expert judgment used in arriving at a recommended common equity cost rate, the use of multiple generally accepted common equity cost rate models also adds reliability and accuracy when arriving at a recommended common equity cost rate.

## A. Business Risk

Q. PLEASE DEFINE BUSINESS RISK AND EXPLAIN WHY IT IS IMPORTANT TO THE DETERMINATION OF A FAIR RATE OF RETURN.
A. Business risk is the riskiness of a company's common stock without the use of debt and/or preferred capital. Examples of such general business risks faced by all utilities (i.e., electric, natural gas distribution, and water) include size, the quality of management, the
regulatory environment in which they operate, customer mix, and concentration of customers, service territory growth, and capital intensity. All of these have a direct bearing on earnings.

Consistent with the basic financial principle of risk and return, business risk is important to the determination of a fair rate of return because the higher the level of risk, the higher the rate of return investors demand.

## Q. WHAT BUSINESS RISKS DO THE WATER AND WASTEWATER INDUSTRIES

## FACE IN GENERAL?

A. Water and wastewater utilities have an ever-increasing responsibility to be stewards of the environment from which supplies are drawn in order to preserve and protect essential natural resources of the United States. Compliance with the Safe Water Drinking Act and response to continuous monitoring by the Environmental Protection Agency ("EPA") and state and local governments of the water supply for potential contaminants and their resultant regulations directly result in increased environmental stewardship by water utilities. This, plus aging infrastructure, necessitate additional capital investment in the distribution and treatment of water, exacerbating the pressure on free cash flows arising from increased capital expenditures for infrastructure repair and replacement. The significant amount of capital investment and, hence, high capital intensity, is a major risk factor for the water and wastewater utility industry.

Value Line Investment Survey ("Value Line") observes the following about the water utility industry:

One of the most positive attributes of the water industry is that companies and regulatory authorities usually work together reasonably well. This isn't always the case in other domestic regulated markets, such as electricity. In general, regulators realize
that the U.S. went decades without plowing enough capital back into the pipelines and wastewater facilities. Now they realize that a huge amount of funds have to be directed toward fixing their systems.

We cannot underestimate the importance of a positive regulatory climate. Essentially, they determine a utility's allowed return on equity. Should there be a sea change in this area, it would greatly impact this group in our opinion. ${ }^{3}$

The water and wastewater industries also experience low depreciation rates. Depreciation rates are one of the principal sources of internal cash flows for all utilities (through a utility's depreciation expense), and are vital to a company to fund ongoing replacements and repairs of the system. Water / wastewater utilities' assets have long lives, and therefore have long capital recovery periods. As such, they face greater risk due to inflation, which results in a higher replacement cost per dollar of net plant.

Substantial capital expenditures, as noted by Value Line, will require significant financing. The three sources of financing typically used are debt, equity (common and preferred), and cash flow. All three are intricately linked to the opportunity to earn a sufficient rate of return as well as the ability to achieve that return. Consistent with Hope and Bluefield, the return must be sufficient to maintain credit quality as well as enable the attraction of necessary new capital, be it debt or equity capital. If unable to raise debt or equity capital, the utility must turn to either retained earnings or free cash flow, ${ }^{4}$ both of which are directly linked to earning a sufficient rate of return. The level of free cash flow represents a company's ability to meet the needs of its debt and equity holders. If either retained earnings or free cash flow is inadequate, it will be nearly impossible for the utility to attract the needed new capital to invest in new infrastructure to ensure quality service to

[^35]Free Cash Flow = Operating Cash Flow (funds from operations) minus Capital Expenditures.

KyPSC Case No. 2021-00190
its customers. An insufficient rate of return can be financially devastating for utilities and a public safety issue for their customers.

The water and wastewater utility industry's high degree of capital intensity and low depreciation rates, coupled with the need for substantial infrastructure capital spending, require regulatory support in the form of adequate and timely rate relief, particularly a sufficient authorized return on common equity, so that the industry can successfully meet the challenges it faces.

## B. Financial Risk

Q. PLEASE DEFINE FINANCIAL RISK AND EXPLAIN WHY IT IS IMPORTANT TO THE DETERMINATION OF A FAIR RATE OF RETURN.
A. Financial risk is the additional risk created by the introduction of debt and preferred stock into the capital structure. The higher the proportion of debt and preferred stock in the capital structure, the higher the financial risk (i.e. likelihood of default). Therefore, consistent with the basic financial principle of risk and return, investors demand a higher common equity return as compensation for bearing higher default risk.
Q. CAN BOND AND CREDIT RATINGS BE A PROXY FOR THE COMBINED BUSINESS AND FINANCIAL RISKS (I.E., INVESTMENT RISK OF AN ENTERPRISE)?
A. Yes, similar bond ratings/issuer credit ratings reflect, and are representative of, similar combined business and financial risks (i.e., total risk) faced by bond investors. ${ }^{5}$ Although

[^36] specific business or financial risks may differ between companies, the same bond/credit rating indicates that the combined risks are roughly similar, albeit not necessarily equal, as the purpose of the bond/credit rating process is to assess credit quality or credit risk and not common equity risk.

## Q. THAT BEING SAID, DO RATING AGENCIES REFLECT COMPANY SIZE IN THEIR BOND RATINGS?

A. No. Neither S\&P nor Moody's have minimum company size requirements for any given rating level. This means, all else equal, a relative size analysis needs to be conducted for companies with similar bond ratings.

## V. CAPITAL STRUCTURE

Q. WHAT CAPITAL STRUCTURE RATIOS DO YOU RECOMMEND BE EMPLOYED IN DEVELOPING AN OVERALL FAIR RATE OF RETURN APPROPRIATE FOR THE COMPANY?
A. I recommend the use of a ratemaking capital structure consisting of $48.11 \%$ long-term debt and $51.89 \%$ common equity as shown on page 1 of Schedule DWD-1. This capital structure is based on a test year capital structure for Utilities, Inc., CWS's parent company, ended December 31, 2017.
Q. HOW DOES YOUR PROPOSED RATEMAKING COMMON EQUITY RATIO OF 51.89\% FOR CWS COMPARE WITH THE TOTAL EQUITY RATIOS MAINTAINED BY THE COMPANIES IN YOUR UTILITY PROXY GROUP?
A. My proposed ratemaking common equity ratio of $51.89 \%$ for CWS is reasonable and consistent with the range of total equity ratios maintained, on average, by the companies
in the Utility Proxy Group on which I base my recommended common equity cost rate. As shown on page 2 of Schedule DWD-2, the common equity ratios of the Utility Proxy Group range from $45.17 \%$ to $60.60 \%$, with a midpoint of $52.89 \%$ and an average of $53.75 \%$ in 2016. The equity ratio, on average, maintained by the Utility Proxy Group is higher than the equity ratio requested by the Company.

In my opinion, a capital structure consisting of $48.11 \%$ long-term debt and $51.89 \%$ total equity is appropriate for ratemaking purposes for CWS in the current proceeding because it is comparable, but conservative to the average capital structure ratios (based on total permanent capital) maintained, on average, by the water companies in the Utility Proxy Group on whose market data I base my recommended common equity cost rate.

## Q. WHAT COST RATE FOR LONG-TERM DEBT IS MOST APPROPRIATE FOR USE IN A COST OF CAPITAL DETERMINATION FOR CWS? <br> A. A long-term debt cost rate of $6.60 \%$ is reasonable and appropriate as it is based on a test year of Utilities, Inc.'s ("UI") long-term debt outstanding ending December 31, 2017.

## VI. CAROLINA WATER SERVICE, INC. AND UTILITY PROXY GROUP SELECTION

## Q. HAVE YOU REVIEWED FINANCIAL DATA FOR CWS?

A. Yes. CWS is the surviving entity after the merger of the four UI operating subsidiaries in South Carolina. ${ }^{6}$ The merged company serves approximately 26,400 water and sewer customers throughout South Carolina. CWS is a wholly-owned subsidiary of UI, which is a wholly-owned subsidiary of Corix, Inc. CWS's common stock is not publicly traded.

[^37]Q. PLEASE EXPLAIN HOW YOU CHOSE YOUR PROXY GROUP OF EIGHT WATER COMPANIES.
A. The basis of selection for the Utility Proxy Group was to select those companies which meet the following criteria:
(i) They are included in the Water Utility Group of Value Line's Standard Edition (October 13, 2017);
(ii) They have $70 \%$ or greater of 2016 total operating income and $70 \%$ or greater of 2016 total assets attributable to regulated water operations;
(iii) At the time of the preparation of this testimony, they had not publicly announced that they were involved in any major merger or acquisition activity (i.e., one publicly-traded utility merging with or acquiring another);
(iv) They have not cut or omitted their common dividends during the five years ending 2016 or through the time of the preparation of this testimony;
(v) They have Value Line and Bloomberg adjusted betas;
(vi) They have a positive Value Line five-year dividends per share ("DPS") growth rate projection; and
(vii) They have Value Line, Reuters, Zacks, or Yahoo! Finance consensus five-year earnings per share ("EPS") growth rate projections.

The following eight companies met these criteria: American States Water Co., American Water Works Co., Inc., Aqua America, Inc., California Water Service Group, Connecticut Water Service, Inc., Middlesex Water Co., SJW Corp., and York Water Co.

## Q. PLEASE DESCRIBE SCHEDULE DWD-2, PAGE 1.

A. Page 1 of Schedule DWD-2 contains comparative capitalization and financial statistics for the eight water companies identified above for the years 2012 to 2016.

During the five-year period ending 2016, the historically achieved average earnings rate on book common equity for the group averaged $10.56 \%$. The average common equity ratio based on total permanent capital (excluding short-term debt) was $53.13 \%$, and the average dividend payout ratio was $56.73 \%$.

Total debt to earnings before interest, taxes, depreciation, and amortization ("EBITDA") for the years 2012 to 2016 ranges between 3.40 and 3.83 , with an average of 3.63. Funds from operations to total debt range from $20.86 \%$ to $25.95 \%$, with an average of $23.18 \%$.

## VII. COMMON EQUITY COST RATE MODELS

Q. ARE YOUR COST OF COMMON EQUITY MODELS MARKET-BASED MODELS?
A. Yes. The DCF model is market-based because market prices are used in developing the dividend yield component of the model. The RPM is market-based because the bond ratings and expected bond yields used in the application of the RPM reflect the market's assessment of bond/credit risk. In addition, the use of beta coefficients ( $\beta$ ) to determine the equity risk premium reflects the market's assessment of market/systematic risk since beta coefficients are derived from regression analyses of market prices. The Predictive Risk Premium Model ("PRPM") uses monthly market returns in addition to expectations of the risk-free rate. The CAPM is market-based for many of the same reasons that the RPM is market-based (i.e., the use of expected bond yields and betas). Selection of the comparable risk non-price regulated companies is market-based because it is based on statistics which result from regression analyses of market prices and reflect the market's assessment of total risk.

## A. Discounted Cash Flow Model

Q. WHAT IS THE THEORETICAL BASIS OF THE DCF MODEL?
A. The theory underlying the DCF model is that the present value of an expected future stream of net cash flows during the investment holding period can be determined by discounting those cash flows at the cost of capital, or the investors' capitalization rate. DCF theory indicates that an investor buys a stock for an expected total return rate, which is derived from cash flows received in the form of dividends plus appreciation in market price (the expected growth rate). Mathematically, the dividend yield on market price plus a growth rate equals the capitalization rate, i.e., the total common equity return rate expected by investors.

## Q. WHICH VERSION OF THE DCF MODEL DO YOU USE?

A. I use the single-stage constant growth DCF model.
Q. PLEASE DESCRIBE THE DIVIDEND YIELD YOU USED IN YOUR APPLICATION OF THE DCF MODEL.
A. The unadjusted dividend yields are based on the proxy companies' dividends as of October 13, 2017, divided by the average of closing market prices for the 60 trading days ending October 13, $2017 .{ }^{7}$

[^38]
## Q. PLEASE EXPLAIN YOUR ADJUSTMENT TO THE DIVIDEND YIELD.

A. Because dividends are paid periodically (quarterly), as opposed to continuously (daily), an adjustment must be made to the dividend yield. This is often referred to as the discrete, or the Gordon Periodic, version of the DCF model.

DCF theory calls for the use of the full growth rate, or $D_{1}$, in calculating the dividend yield component of the model. Since the various companies in the Utility Proxy Group increase their quarterly dividend at various times during the year, a reasonable assumption is to reflect one-half the annual dividend growth rate in the dividend yield component, or $\mathrm{D}_{1 / 2}$. Because the dividend should be representative of the next twelvemonth period, my adjustment is a conservative approach that does not overstate the dividend yield. Therefore, the actual average dividend yields in Column 1 on page 1 of Schedule DWD-3 have been adjusted upward to reflect one-half the average projected growth rate shown in Column 6.

## Q. PLEASE EXPLAIN THE BASIS OF THE GROWTH RATES YOU APPLY TO THE UTILITY PROXY GROUP IN YOUR DCF MODEL.

A. Investors with more limited resources than institutional investors are likely to rely on widely available financial information services, such as Value Line, Reuters, Zacks, and Yahoo! Finance. Investors realize that analysts have significant insight into the dynamics of the industries and individual companies they analyze, as well as companies' abilities to effectively manage the effects of changing laws and regulations and ever-changing economic and market conditions. For these reasons, I use analysts' five-year forecasts of earnings per share ("EPS") growth in my DCF analysis.

Over the long run, there can be no growth in dividends per share ("DPS") without growth in EPS. Security analysts' earnings expectations have a more significant influence on market prices than dividend expectations. Thus, the use of earnings growth rates in a DCF analysis provides a better match between investors' market price appreciation expectations and the growth rate component of the DCF.

## Q. PLEASE SUMMARIZE THE DCF MODEL RESULTS.

A. As shown on page 1 of Schedule DWD-3, the mean result of the application of the singlestage DCF model is $8.86 \%$, the median result is $8.42 \%$, and the average of the two is $8.64 \%$ for the Utility Proxy Group. In arriving at a conclusion for the DCF-indicated common equity cost rate for the Utility Proxy Group, I have relied on an average of the mean and the median results of the DCF. This approach takes into consideration all of the proxy companies' results while mitigating the high and low outliers of those individual results.

## B. The Risk Premium Model

## Q. PLEASE DESCRIBE THE THEORETICAL BASIS OF THE RPM.

A. The RPM is based on the fundamental financial principle of risk and return, namely, that investors require greater returns for bearing greater risk. The RPM recognizes that common equity capital has greater investment risk than debt capital, as common equity shareholders are behind debt holders in any claim on a company's assets and earnings. As a result, investors require higher returns from common stocks than from investment in bonds, to compensate them for bearing the additional risk.

While it is possible to directly observe bond returns and yields, investors' required common equity return cannot be directly determined or observed. According to RPM theory, one can estimate a common equity risk premium over bonds (either historically or
prospectively), and use that premium to derive a cost rate of common equity. The cost of common equity equals the expected cost rate for long-term debt capital, plus a risk premium over that cost rate, to compensate common shareholders for the added risk of being unsecured and last-in-line for any claim on the corporation's assets and earnings in the event of a liquidation.
Q. PLEASE EXPLAIN HOW YOU DERIVED YOUR INDICATED COST OF COMMON EQUITY BASED ON THE RPM.
A. I relied on the results of the application of two risk premium methods. The first method is the PRPM, while the second method is a risk premium model using a total market approach.
Q. PLEASE EXPLAIN THE PRPM.
A. The PRPM, published in the Journal of Regulatory Economics ("JRE"), ${ }^{8}$ was developed from the work of Robert F. Engle, who shared the Nobel Prize in Economics in 2003 "for methods of analyzing economic time series with time-varying volatility ("ARCH")". 9 Engle found that volatility changes over time and is related from one period to the next, especially in financial markets. Engle discovered that the volatility in prices and returns clusters over time and is therefore highly predictable and can be used to predict future levels of risk and risk premiums.

The PRPM estimates the risk / return relationship directly, as the predicted equity risk premium is generated by the prediction of volatility or risk. The PRPM is not based

[^39]on an estimate of investor behavior, but rather on the evaluation of the results of that behavior (i.e., the variance of historical equity risk premiums).

The inputs to the model are the historical returns on the common shares of each company in the Utility Proxy Group minus the historical monthly yield on long-term U.S. Treasury securities through September 2017. Using a generalized form of ARCH, known as GARCH, I calculate each Utility Proxy Group company's projected equity risk premium using Eviews ${ }^{(6)}$ statistical software. When the GARCH Model is applied to the historical return data, it produces a predicted GARCH variance series ${ }^{10}$ and a GARCH coefficient ${ }^{11}$. Multiplying the predicted monthly variance by the GARCH coefficient and annualizing it ${ }^{12}$ produces the predicted annual equity risk premium. I then add the forecasted 30-year U.S. Treasury Bond yield, $3.58 \%^{13}$, to each company's PRPM-derived equity risk premium to arrive at an indicated cost of common equity. The 30- year Treasury yield is a consensus forecast derived from the Blue Chip Financial Forecasts ("Blue Chip") ${ }^{14}$. The mean PRPM indicated common equity cost rate for the Utility Proxy Group is $11.48 \%$, the median is $11.41 \%$, and the average of the two is $11.45 \%$. Consistent with my reliance on the average of the median and mean results of the DCF, I will rely on the average of the mean and median results of the Utility Proxy Group PRPM to calculate a cost of common equity rate of $11.45 \%$.

[^40]KyPSC Case No. 2021-00190

## Q. PLEASE EXPLAIN THE TOTAL MARKET APPROACH RPM.

A. The total market approach RPM adds a prospective public utility bond yield to an average of: 1) an equity risk premium that is derived from a beta-adjusted total market equity risk premium, and 2) an equity risk premium based on the $S \& P$ Utilities Index.
Q. PLEASE EXPLAIN THE BASIS OF THE EXPECTED BOND YIELD OF $4.92 \%$ APPLICABLE TO THE UTILITY PROXY GROUP.
A. The first step in the total market approach RPM analysis is to determine the expected bond yield. Because both ratemaking and the cost of capital (including common equity cost rate) are prospective in nature, a prospective yield on similarly-rated long-term debt is essential. I rely on a consensus forecast of about 50 economists of the expected yield on Aaa-rated corporate bonds for the six calendar quarters ending with the first calendar quarter of 2019 and the long-term projections for 2019 to 2023 and 2024 to 2028 from Blue Chip. As shown on Line No. 1 of page 3 of Schedule DWD-4, the average expected yield on Moody's Aaa-rated corporate bonds is $4.61 \%$. In order to derive an expected yield on A2 rated-public utility bonds, I make an upward adjustment of $0.25 \%$, which represents a recent spread between Aaa corporate bonds and A2-rated public utility bonds, in order to adjust the expected Aaa corporate bond yield to an equivalent Moody's A2-rated public utility bond. ${ }^{15}$ Adding that recent $0.25 \%$ spread to the expected Aaa corporate bond yield of $4.61 \%$ results in an expected A2 public utility bond of $4.86 \%$.

Since the Utility Proxy Group's average Moody's long-term issuer rating is A2/A3, another adjustment to the expected $A 2$ public utility bond yield is needed to reflect the difference in bond ratings. An upward adjustment of $0.06 \%$, which represents one-sixth of

KyPSC Case No. 2021-00190
a recent spread between A2 and A3 public utility bond yields, is necessary to make the A2 prospective bond yield applicable to an A2/A3 public utility bond. ${ }^{16}$ Adding the $0.06 \%$ to the $4.86 \%$ prospective A2 public utility bond yield results in a $4.92 \%$ expected bond yield for the Utility Proxy Group.
Q. PLEASE EXPLAIN THE DERIVATION OF THE BETA-DERIVED EQUITY RISK PREMIUM.
A. The components of the beta derived risk premium model are: 1) An expected market equity risk premium over corporate bonds, and 2) the beta coefficient. The derivation of the betaderived equity risk premium that I apply to the Utility Proxy Group is shown on lines 1 through 11 of page 8 of Schedule DWD-4. The total beta-derived equity risk premium I apply is based on an average of: 1) Historical data-based equity risk premiums; 2) Value Line-based equity risk premiums; and 3) Bloomberg-based equity risk premium. Each of these is described in turn.
Q. HOW DID YOU DERIVE A MARKET EQUITY RISK PREMIUM BASED ON LONG-TERM HISTORICAL DATA?
A. To derive a historical market equity risk premium, I used the most recent holding period returns for the large company common stocks from the 2017 Stocks, Bonds, Bills, and Inflation ("SBBI") Yearbook ("SBBI - 2017") ${ }^{17}$ less the average historical yield on Moody's Aaa/Aa-rated corporate bonds for the period 1928 to 2016. The use of holding period returns over a very long period of time is appropriate because it is consistent with

KyPSC Case No. 2021-00190
the long-term investment horizon presumed by investing in a going concern, i.e., a company expected to operate in perpetuity.

SBBI's long-term arithmetic mean monthly total return rate on large company common stocks was $11.69 \%$ and the long-term arithmetic mean monthly yield on Moody's Aaa/Aa-rated corporate bonds was $6.13 \% .^{18}$ As shown on line 1 of page 8 of Schedule DWD-4, subtracting the mean monthly bond yield from the total return on large company stocks results in a long-term historical equity risk premium of $5.56 \%$.

I used the arithmetic mean monthly total return rates for the large company stocks and yields (income returns) for the Moody's Aaa/Aa corporate bonds, because they are appropriate for the purpose of estimating the cost of capital as noted in SBBI-2017. ${ }^{19}$ The use of the arithmetic mean return rates and yields is appropriate because historical total returns and equity risk premiums provide insight into the variance and standard deviation of returns needed by investors in estimating future risk when making a current investment. If investors relied on the geometric mean of historical equity risk premiums, they would have no insight into the potential variance of future returns because the geometric mean relates the change over many periods to a constant rate of change, thereby obviating the year-to-year fluctuations, or variance, which is critical to risk analysis.

## Q. PLEASE EXPLAIN THE DERIVATION OF THE REGRESSION-BASED MARKET EQUITY RISK PREMIUM.

A. To derive the regression analysis-derived market equity risk premium of $7.37 \%$, shown on line 2 of page 8 of Schedule DWD-4, I used the same monthly annualized total returns on

[^41]large company common stocks relative to the monthly annualized yields on Moody's $\mathrm{Aaa} / \mathrm{Aa}$ corporate bonds as mentioned above. The relationship between interest rates and the market equity risk premium was modeled using the observed monthly market equity risk premium as the dependent variable, and the monthly yield on Moody's Aaa/Aa corporate bonds as the independent variable. I used a linear Ordinary Least Squares ("OLS") regression, in which the market equity risk premium is expressed as a function of the Moody's Aaa/Aa corporate bonds yield:
$$
\mathrm{RP}=\alpha+\beta\left(\mathrm{R}_{\mathrm{Aaa} / \mathrm{Aa}}\right)
$$
Q. PLEASE EXPLAIN THE DERIVATION OF A PRPM EQUITY RISK PREMIUM.
A. I used the same PRPM approach described previously to develop another equity risk premium estimate. The inputs to the model are the historical monthly returns on large company common stocks minus the monthly yields on Aaa/Aa corporate bonds during the period from January 1928 through September 2017. ${ }^{20}$ Using the previously discussed generalized form of ARCH , known as GARCH, the projected equity risk premium is determined using Eviews ${ }^{\ominus}$ statistical software. The resulting PRPM predicted market equity risk premium is $5.91 \%{ }^{21}$

The average historical data-based equity risk premium is $6.28 \%$, which is shown on line 4 of page 8 of Schedule DWD-4.
Q.

## PLEASE EXPLAIN THE DERIVATION OF A PROJECTED EQUITY RISK PREMIUM BASED ON VALUE LINE DATA FOR YOUR RPM ANALYSIS.

A. As noted previously, because both ratemaking and the cost of capital, including the cost rate of common equity, are prospective, a prospective market equity risk premium is essential. The derivation of the forecasted or prospective market equity risk premium can be found in note 4 on page 8 of Schedule DWD-4. Consistent with my calculation of the dividend yield component in my DCF analysis, this prospective market equity risk premium is derived from an average of the three- to five-year median market price appreciation potential by Value Line for the thirteen weeks ending October 13, 2017, plus an average of the median estimated dividend yield for the common stocks of the 1,700 firms covered in Value Line's Standard Edition. ${ }^{22}$

The average median expected price appreciation is $33 \%$, which translates to a $7.39 \%$ annual appreciation, and, when added to the average of Value Line's median expected dividend yields of $2.06 \%$, equates to a forecasted annual total return rate on the market of $9.45 \%$. The forecasted Aaa bond yield of $4.61 \%$ is deducted from the total market return of $9.45 \%$, resulting in an equity risk premium of $4.84 \%$, shown on page 8 , line 5 of Schedule DWD-4.
Q. PLEASE EXPLAIN THE DERIVATION OF AN EQUITY RISK PREMIUM BASED ON THE S\&P 500 COMPANIES.
A. Using data from Value Line, I calculate an expected total return on the S\&P 500 using expected dividend yields and long-term growth estimates as a proxy for capital appreciation. The expected total return for the S\&P 500 is $14.30 \%$. Subtracting the
prospective yield on Aaa Corporate bonds of $4.61 \%$ results in an $9.69 \%$ projected equity risk premium.

The average Value Line-based Equity risk premium is $7.26 \%$, which is shown on Line No. 7 on page 8 of Schedule DWD-4.
Q. PLEASE EXPLAIN THE DERIVATION OF AN EQUITY RISK PREMIUM BASED ON BLOOMBERG DATA.
A. Using data from Bloomberg Professional Services, I calculate an expected total return on the S\&P 500 using expected dividend yields and long-term growth estimates as a proxy for capital appreciation, identical to the method described above. The expected total return for the S\&P 500 is $13.92 \%$. Subtracting the prospective yield on Aaa Corporate bonds of $4.61 \%$ results in a $9.31 \%$ projected equity risk premium.
Q. WHAT IS YOUR CONCLUSION OF A BETA-DERIVED EQUITY RISK PREMIUM FOR USE IN YOUR RPM ANALYSIS?
A. I give equal weight to equity risk premiums based on each source, historical, Value Line, and Bloomberg in arriving at my conclusion of $7.62 \%{ }^{23}$

After calculating the average market equity risk premium of $7.62 \%$, I adjust it by beta to account for the risk of the Utility Proxy Group. As discussed below, the beta coefficient is a meaningful measure of prospective relative risk to the market as a whole, and is a logical means by which to allocate a company's or proxy group's share of the market's total equity risk premium, relative to corporate bond yields. As shown on page 1 of Schedule DWD-5, the average of the mean and median beta coefficient for the Utility

Proxy Group is 0.77 . Multiplying the beta coefficient of the Utility Proxy Group of 0.77 by the market equity risk premium of $7.62 \%$ results in a beta-adjusted equity risk premium of $5.87 \%$ for the Utility Proxy Group.

## Q.

## HOW DID YOU DERIVE THE EQUITY RISK PREMIUM BASED ON THE S\&P UTILITY INDEX AND MOODY'S A-RATED PUBLIC UTILITY BONDS?

A. I estimate three equity risk premiums based $S \& P$ Utility Index holding returns, and two equity risk premiums based on the expected returns of the S\&P Utilities Index, using Value Line and Bloomberg data, respectively. Turning first to the S\&P Utility Index holding period returns, I derive a long-term monthly arithmetic mean equity risk premium between the S\&P Utility Index total returns of $10.57 \%$ and monthly A-rated public utility bond yields of $6.61 \%$ from 1928 to 2016 to arrive at an equity risk premium of $3.96 \%{ }^{24}$ I then use the same historical data to derive an equity risk premium of $5.59 \%$ based on a regression of the monthly equity risk premiums. The final $S \& P$ Utility Index holding period equity risk premium involves applying the PRPM using the historical monthly equity risk premiums from January 1928 to September 2017 to arrive at a PRPM-derived equity risk premium of $3.96 \%$ for the $S \& P$ Utility Index. The average of the three S\&P Utilities Index holding return equity risk premiums is $4.50 \%$.

I then derive expected total returns on the S\&P Utilities Index of 9.06\% and 8.60\% using data from Value Line and Bloomberg Professional Services, respectively, and subtract the prospective A2-rated public utility bond yield $\left(4.86 \%{ }^{25}\right)$, which results in risk premiums of $4.20 \%$ and $3.74 \%$, respectively. As with the market equity risk premiums, I

[^42]average the risk premium based on each source (i.e., Historical, Value Line, and Bloomberg) to arrive at my utility-specific equity risk premium of $4.15 \%{ }^{26}$
Q. WHAT IS YOUR CONCLUSION OF AN EQUITY RISK PREMIUM FOR USE IN YOUR TOTAL MARKET APPROACH RPM ANALYSIS?
A. The equity risk premium I apply to the Utility Proxy Group is $5: 01 \%$, which is the average of the beta-derived and the S\&P utility equity risk premiums of $5.87 \%$ and $4.15 \%$, respectively. ${ }^{27}$
Q. WHAT IS THE INDICATED RPM COMMON EQUITY COST RATE BASED ON THE TOTAL MARKET APPROACH?
A. As shown on Line No. 7 of Schedule DWD-4, page 3, I calculate a common equity cost rate of $9.93 \%$ for the Utility Proxy Group based on the total market approach of the RPM.
Q. WHAT ARE THE RESULTS OF YOUR APPLICATION OF THE PRPM AND THE TOTAL MARKET APPROACH RPM?
A. As shown on page 1 of Schedule DWD-4, the indicated RPM-derived common equity cost rate is $10.69 \%$, which gives equal weight to the PRPM (11.45\%) and the adjusted market approach results ( $9.93 \%$ ).

## C. The Capital Asset Pricing Model

Q. PLEASE EXPLAIN THE THEORETICAL BASIS OF THE CAPM.
A. CAPM theory defines risk as the co-variability of a security's returns with the market's returns as measured by the beta coefficient ( $\beta$ ). A beta coefficient less than 1.0 indicates
$26 \quad 4.15 \%=(4.50 \%+4.20 \%+3.74 \%) / 3$.
27 As shown on page 7 of Schedule DWD-4.
lower variability than the market as a whole, while a beta coefficient greater than 1.0 indicates greater variability than the market.

The CAPM assumes that all other risk (i.e., all non-market or unsystematic risk) can be eliminated through diversification. The risk that cannot be eliminated through diversification is called market, or systematic, risk. In addition, the CAPM presumes that investors require compensation only for systematic risk, which is the result of macroeconomic and other events that affect the returns on all assets. The model is applied by adding a risk-free rate of return to a market risk premium, which is adjusted proportionately to reflect the systematic risk of the individual security relative to the total market as measured by the beta coefficient. The traditional CAPM model is expressed as:

$$
\text { Where: } \left.\quad \begin{array}{ll}
\mathrm{R}_{\mathrm{s}} & =\mathrm{R}_{\mathrm{f}}+\beta\left(\mathrm{R}_{\mathrm{m}}-\mathrm{R}_{\mathrm{f}}\right) \\
\mathrm{R}_{\mathrm{s}} & =\quad \text { Return rate on the common stock } \\
\mathrm{R}_{\mathrm{f}} & =\quad \text { Risk-free rate of return } \\
\mathrm{R}_{\mathrm{m}} & =\quad \text { Return rate on the market as a whole }
\end{array}\right] \begin{aligned}
& \text { Adjusted beta coefficient (volatility of the } \\
& \text { security relative to the market as a whole) }
\end{aligned}
$$

Numerous tests of the CAPM have measured the extent to which security returns and beta coefficients are related as predicted by the CAPM, confirming its validity. The empirical CAPM ("ECAPM") reflects the reality that while the results of these tests support the notion that the beta coefficient is related to security returns, the empirical Security Market Line ("SML") described by the CAPM formula is not as steeply sloped as the predicted SML. ${ }^{28}$ In view of theory and practical research, I have applied both the traditional CAPM and the ECAPM to the companies in the Utility Proxy Group and averaged the results.

## Q. WHAT BETA COEFFICIENTS DID YOU USE IN YOUR CAPM ANALYSIS?

A. With respect to the beta coefficient, I considered two methods of calculation: the average of the Beta coefficients of the Utility Proxy Group companies reported by Bloomberg Professional Services, and the average of the Beta coefficients of the Utility Proxy Group companies as reported by Value Line. While both of those services adjust their calculated (or "raw") Beta coefficients to reflect the tendency of the Beta coefficient to regress to the market mean of 1.00, Value Line calculates the Beta coefficient over a five-year period, while Bloomberg's calculation is based on two years of data.
Q. PLEASE DESCRIBE YOUR SELECTION OF A RISK-FREE RATE OF RETURN.
A. As shown in column 5 on page 1 of Schedule DWD-5, the risk-free rate adopted for both applications of the CAPM is $3.58 \%$. This risk-free rate of $3.58 \%$ is based on the average of the Blue Chip consensus forecast of the expected yields on 30-year U.S. Treasury bonds for the six quarters ending with the first calendar quarter of 2019 and long-term projections for the years 2019 to 2023 and 2024 to 2028.
Q. WHY IS THE YIELD ON LONG-TERM U.S. TREASURY BONDS APPROPRIATE FOR USE AS THE RISK-FREE RATE?
A. The yield on long-term U.S. Treasury Bonds is almost risk-free and its term is consistent with the long-term cost of capital to public utilities measured by the yields on A-rated public utility bonds; the long-term investment horizon inherent in utilities' common stocks; and the long-term life of the jurisdictional rate base to which the allowed fair rate of return
(i.e., cost of capital) will be applied. In contrast, short-term U.S. Treasury yields are more volatile and largely a function of Federal Reserve monetary policy.
Q. PLEASE EXPLAIN THE ESTIMATION OF THE EXPECTED RISK PREMIUM FOR THE MARKET USED IN YOUR CAPM ANALYSES.
A. The basis of the market risk premium is explained in detail in Note 1 on Schedule DWD-5. As discussed previously, the market risk premium is derived from an average of:

1) Historical data-based market risk premiums;
2) Value Line data-based market risk premiums; and
3) Bloomberg data-based market risk premium.

The long-term income return on U.S. Government Securities of $5.17 \%$ was deducted from the SBBI-2017 monthly historical total market return of $11.97 \%$, which results in an historical market equity risk premium of $6.80 \% .{ }^{29}$ I applied a linear OLS regression to the monthly annualized historical returns on the S\&P 500 relative to historical yields on long-term U.S. Government Securities from SBBI-2017. That regression analysis yielded a market equity risk premium of $8.60 \%$. The PRPM market equity risk premium is $6.69 \%$, and is derived using the PRPM relative to the yields on long-term U.S. Treasury securities from January 1926 through September 2017. The average of the historical data-based market risk premiums is $7.36 \%{ }^{30}$

The Value Line-derived forecasted total market equity risk premium is derived by deducting the forecasted risk-free rate of $3.58 \%$, discussed above, from the Value Line projected total annual market return of $9.45 \%$, resulting in a forecasted total market equity

SBBI - 2017, at Appendix A-1 (1) through .A-1 (3) and Appendix A-7 (19) through A-7 (21). $7.36 \%=(6.80 \%+8.60 \%+6.69 \%) / 3$.
risk premium of $5.87 \%$. The S\&P 500 projected market equity risk premium using Value Line data is derived by subtracting the projected risk-free rate of $3.58 \%$ from the projected total return of the S\&P 500 of $14.30 \%$. The resulting market equity risk premium is $10.72 \%$. The average Value Line market risk premium is $8.29 \% .^{31}$

The S\&P 500 projected market equity risk premium using Bloomberg data is derived by subtracting the projected risk-free rate of $3.58 \%$ from the projected total return of the S\&P 500 of $13.92 \%$. The resulting market equity risk premium is $10.34 \%$.

These three sources (historical, Value Line, and Bloomberg), when averaged, result in an average total market equity risk premium of $8.67 \%$. ${ }^{32}$

## Q. WHAT ARE THE RESULTS OF YOUR APPLICATION OF THE TRADITIONAL

 AND EMPIRICAL CAPM TO THE UTILITY PROXY GROUP?A. As shown on page 1 of Schedule DWD-5, the mean result of my CAPM/ECAPM analyses is $10.43 \%$, the median is $10.58 \%$, and the average of the two is $10.51 \%$. Consistent with my reliance on the average of mean and median DCF results discussed above, the indicated common equity cost rate using the CAPM/ECAPM is $10.51 \%$.

## D. Common Equity Cost Rates for a Proxy Group of Domestic, Non-Price Regulated Companies Based on the DCF, RPM, and CAPM

Q. WHY DO YOU ALSO CONSIDER A PROXY GROUP OF DOMESTIC, NONPRICE REGULATED COMPANIES?
A. In the Hope and Bluefield cases, the U.S. Supreme Court did not specify that comparable risk companies had to be utilities. Since the purpose of rate regulation is to be a substitute

[^43]for the competition of the marketplace, non-price regulated firms operating in the competitive marketplace make an excellent proxy if they are comparable in total risk to the Utility Proxy Group being used to estimate the cost of common equity. The selection of such domestic, non-price-regulated competitive firms theoretically and empirically results in a proxy group which is comparable in total risk to the Utility Proxy Group.
Q. HOW DID YOU SELECT UNREGULATED COMPANIES THAT ARE COMPARABLE IN TOTAL RISK TO THE REGULATED PUBLIC UTILITY PROXY GROUP?
A. In order to select a proxy group of domestic, non-price regulated companies similar in total risk to the Utility Proxy Group, I relied on the beta coefficients and related statistics derived from Value Line regression analyses of weekly market prices over the most recent 260 weeks (i.e., five years). Using these selection criteria results in a proxy group of twentyeight domestic, non-price regulated firms comparable in total risk to the Utility Proxy Group. Total risk is the sum of non-diversifiable market risk and diversifiable companyspecific risks. The criteria used in the selection of the domestic, non-price regulated firms were:

1) They must be covered by Value Line Investment Survey (Standard Edition);
2) They must be domestic, non-price regulated companies, i.e., non-utilities;
3) Their beta coefficients must lie within plus or minus two standard deviations of the average unadjusted beta of the Utility Proxy Group; and
4) The residual standard errors of the Value Line regressions, which gave rise to the unadjusted beta coefficients, must lie within plus or minus two standard deviations of the average residual standard error of the Utility Proxy Group.

Beta coefficients are a measure of market, or systematic, risk, which is not diversifiable. The residual standard errors of the regressions were used to measure each firm's company-specific, diversifiable risk. Companies that have similar betas and similar residual standard errors resulting from the same regression analyses have similar total investment risk.
Q. HAVE YOU PREPARED A SCHEDULE WHICH SHOWS THE DATA FROM WHICH YOU SELECTED THE TWENTY-EIGHT DOMESTIC, NON-PRICE REGULATED COMPANIES THAT ARE COMPARABLE IN TOTAL RISK TO THE UTILITY PROXY GROUP?
A. Yes, the basis of my selection and both proxy groups' regression statistics are shown in Schedule DWD-6.
Q. DID YOU CALCULATE COMMON EQUITY COST RATES USING THE DCF, RPM, AND CAPM FOR THE NON-PRICE REGULATED PROXY GROUP?
A. Yes. Because the DCF, RPM, and CAPM have been applied in an identical manner as described above, I will not repeat the details of the rationale and application of each model. One exception is in the application of the RPM, where I did not use public utility-specific equity risk premiums, nor have I applied the PRPM to the individual companies.

Page 2 of Schedule DWD-7 contains the derivation of the DCF cost rates. As shown, the indicated common equity cost rate using the DCF for the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group, is $13.57 \%$.

Pages 3 through 5 contain the data and calculations that support the $11.91 \%$ RPM cost rate. As shown on Line No. 1 of page 3 of Schedule DWD-7, the consensus prospective yield on Moody's Baa rated corporate bonds for the six quarters ending in the
first quarter of 2019 , and for the years 2019 to 2023 and 2024 to 2028 , is $5.36 \%{ }^{33}$ When the beta-adjusted risk premium of $6.55 \%,{ }^{34}$ relative to the Non-Price Regulated Proxy Group, is added to the prospective Baa2 rated corporate bond yield of $5.36 \%$, the indicated RPM cost rate is $11.91 \%$.

Page 6 contains the inputs and calculations that support my indicated CAPM/ECAPM cost rate of $11.15 \%$.
Q. HOW IS THE COST RATE OF COMMON EQUITY BASED ON THE NONPRICE REGULATED PROXY GROUP COMPARABLE IN TOTAL RISK TO THE UTILITY PROXY GROUP?
A. As shown on page 1 of Schedule DWD-7, the results of the DCF, RPM, and CAPM, applied to the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group, are $13.57 \%, 11.91 \%$, and $11.15 \%$, respectively. The average of the mean and median of these models is $12.06 \%$, which I use as the indicated common equity cost rate for the Non-Price Regulated Proxy Group.
VIII. CONCLUSION OF COMMON EOUITY COST RATE BEFORE ADJUSTMENTS Q. WHAT IS THE INDICATED COMMON EQUITY COST RATE BEFORE ADJUSTMENTS?
A. Based on the results of the application of multiple cost of common equity models to the Utility Proxy Group and the Non-Price Regulated Proxy Group, the indicated cost of equity before adjustments is $10.45 \%$. I use multiple cost of common equity models as primary tools in arriving at my recommended common equity cost rate, because no single model is
so inherently precise that it can be relied on solely to the exclusion of other theoretically sound models. The use of multiple models adds reliability to the estimation of the common equity cost rate, and the prudence of using multiple cost of common equity models is supported in both the financial literature and regulatory precedent.

Based on these common equity cost rate results, I conclude that a common equity cost rate of $10.45 \%$ is reasonable and appropriate for the Company before any adjustment is made for relative risk between the Company and the Utility Proxy Group. The $10.45 \%$ indicated ROE is the approximate average of the results produced by my application of the models as explained above.

## IX. ADJUSTMENT TO THE COMMON EOUITY COST RATE

## A. Size Adiustment

Q. IS THERE A WAY TO QUANTIFY A RELATIVE RISK ADJUSTMENT DUE TO CWS'S SMALL SIZE RELATIVE TO THE PROXY GROUP?
A. Yes. The Company has greater relative risk than the average company in the Utility Proxy Group because of its smaller size compared with the group, as measured by an estimated market capitalization of common equity for CWS (whose common stock is not publiclytraded).

Table 5: Size as Measured by Market Capitalization for the Company and the Utility Proxy Group

Times
Market Greater than
Capitalization*
(\$ Millions)
CWS
$\$ 57.209$
Utility Proxy Group
\$3,543.646
the Company
*From page 1 of Schedule DWD-8.
The Company's estimated market capitalization was at $\$ 57.209$ million as of October 13, 2017, compared with the market capitalization of the average water company in the Utility Proxy Group of $\$ 3.544$ billion as of October 13 , 2017. The Utility Proxy Group's market capitalization is 61.9 times the size of CWS's estimated market capitalization.

## Q. PLEASE EXPLAIN WHY SIZE HAS A BEARING ON BUSINESS RISK.

A. Company size is a significant element of business risk for which investors expect to be compensated through higher returns. Generally, smaller companies are less able to cope with significant events that affect sales, revenues, and earnings. For example, smaller companies face more risk exposure to business cycles and economic conditions, both nationally and locally. Additionally, the loss of revenues from a few larger customers would have a greater effect on a small company than on a much larger company with a larger, more diverse, customer base.

Further evidence of the risk effects of size include the fact that investors demand greater returns to compensate for the lack of marketability and liquidity of the securities of smaller firms. For these reasons, the Commission should authorize a cost of common equity in this proceeding that reflects CWS's relevant risk, including the impact of its small size.

As a result, it is necessary to upwardly adjust the indicated common equity cost rate of $10.45 \%$ to reflect CWS's greater risk due to its smaller relative size. The determination is based on the size premiums for portfolios of New York Stock Exchange ("NYSE"), American Stock Exchange ("AMEX"), and NASDAQ listed companies ranked by deciles for the 1926 to 2016 period. The average size premium for the Utility Proxy Group with a market capitalization of $\$ 3.545$ billion falls in the $5^{\text {th }}$ decile, while CWS's market capitalization of $\$ 57.209$ million puts the Company in the $10^{\text {th }}$ decile. The size premium spread between the $5^{\text {th }}$ decile and the $10^{\text {th }}$ decile is $4.08 \%$. Even though a $4.08 \%$ upward size adjustment is indicated, I apply a size premium of $0.50 \%$ to CWS's indicated common equity cost rate.

## Q. DID YOU EVALUATE CWS'S PARENT, UTILITIES, INC.'S ESTIMATED MARKET CAPITALIZATION COMPARED TO THE PROXY GROUP?

A. Yes. Even though I do not think it is applicable ${ }^{35}$, I looked at Utilities, Inc.'s common equity balance at December 31, 2016. I then adjusted it by the proxy group market-tobook ratio and compared it with the proxy group. Utilities, Inc.'s estimated market capitalization, $\$ 699.722$ million ${ }^{36}$, would fall in between the $8^{\text {th }}$ and $9^{\text {th }}$ deciles, which would indicate a $0.87 \%$ size premium over the average proxy group company.

[^44]
## Q. DID YOU EVALUATE OTHER MEASURES OF RELATIVE SIZE BETWEEN CWS AND THE PROXY GROUP?

A. Yes. In order to present a more robust analysis, I compared CWS and the water proxy group using various measures of size as described by Duff and Phelps' 2017 Valuation Yearbook. The measures are listed below:

- Market Value of Common Equity
- Book Value of Common Equity
- Market Value of Invested Capital
- Total Assets
- Total Sales
- Number of Employees

As shown on page 3 of Schedule DWD-8, in all measures, CWS was determined to be smaller than the average water proxy group company with associated size premiums ranging from $1.34 \%$ to $3.94 \%$. In view of these results, in my opinion, an upward size adjustment of $0.50 \%$ to the indicated cost of common equity is both appropriate and conservative.

## Q. WHAT IS THE INDICATED COST OF COMMON EQUITY AFTER YOUR

 ADJUSTMENT FOR SIZE?A. After applying the $0.50 \%$ size adjustment to the indicated cost of common equity of $10.45 \%$, a size-adjusted cost of common equity of $10.95 \%$ results.

## X. CONCLUSION OF COMMON EOUITY COST RATE

Q. WHAT IS YOUR RECOMMENDED COST OF COMMON EQUITY FOR CWS?
A. Given the indicated cost of common equity of $10.45 \%$ and the size adjusted cost of common equity of $10.95 \%$, I conclude that an appropriate range of common equity cost rates for the Company is from $10.45 \%$ to $10.95 \%$.
Q. IS YOUR RECOMMENDED RANGE OF COMMON EQUITY COST RATES REASONABLE FOR CWS?
A. In my opinion, a range of common equity cost rates between $10.45 \%$ and $10.95 \%$ is both reasonable and conservative, providing CWS with sufficient earnings to enable it to attract necessary new capital.
Q. DOES THAT CONCLUDE YOUR DIRECT TESTIMONY?
A. Yes, it does

## Summary

Dylan is an experienced consultant and a Certified Rate of Return Analyst (CRRA) and Certified Valuation Analyst (CVA). He has served as a consultant for investor-owned and municipal utilities and authorities for 9 years. Dylan has extensive experience in rate of return analyses, class cost of service, rate design, and valuation for regulated public utilities. He has testified as an expert witness in the subjects of rate of return, cost of service, rate design, and valuation before 13 regulatory commissions in the U.S. and an American Arbitration Association panel.

He also maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured. He serves on the Rates and Regulatory Committee of the National Association of Water Companies (NAWC).

## Areas of Specialization

Regulation and Rates	Capital Market Risk	Rate of Return	
Utilities	Financial Modeling	Cost of Service	
Mutual Fund Benchmarking	Valuation	Reg	Rate Design
Capital Market Risk	$\quad$Regulatory Strategy and  	Rate Case Support	

## Recent Expert Testimony Submission/Appearances

## Jurisdiction

- Regulatory Commission of Alaska
- New Jersey Board of Public Utilities
- Pennsylvania Public Utility Commission
- South Carolina Public Service Commission
- American Arbitration Association


## Topic

Return on Common Equity \& Capital Structure
Cost of Service, Rate Design
Return on Common Equity
Return on Common Equity
Valuation

## Recent Assignments

- Provided expert testimony on the cost of capital for ratemaking purposes before numerous state utility regulatory agencies
- Maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured
- Sponsored valuation testimony for a large municipal water company in front of an American Arbitration Association Board to justify the reasonability of their lease payments to the City
- Co-authored a valuation report on behalf of a large investor-owned utility company in response to a new state regulation which allowed the appraised value of acquired assets into rate base


## Recent Publications and Speeches

- Co-Author of: "The Impact of Decoupling on the Cost of Capital of Public Utilities", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. (Forthcoming)
- "Past is Prologue: Future Test Year", Presentation before the National Association of Water Companies 2017 Southeast Water Infrastructure Summit, May 2, 2017, Savannah, GA.
- Co-author of: "Comparative Evaluation of the Predictive Risk Premium Model ${ }^{\text {TM }}$, the Discounted Cash Flow Model and the Capital Asset Pricing Model", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University, Pauline M. Ahern, and Frank J. Hanley, The Electricity Journal, May, 2013.
E- "Decoupling: Impact on the Risk and Cost of Common Equity of Public Utility Stocks", before the Society of Utility and Regulatory Financial Analysts: 45th Financial Forum, April 17-18, 2013, Indianapolis, $\operatorname{IN}$.

KyPSC Case No. 2021-00190
STAFF-DR-03-011 Attachment 2
Page 41 of 82
Appendix A
Professional Qualifications of
Dylan W. D'Ascendis, CRRA, CVA

SPONSOR	Date	CASEIAPPLICANT	Docket No.	SUBJECT
Regulatory Commission of Alaska				
Alaska Power Company	07/16	Alaska Power Company	Docket No. TA857-2	Rate of Return
Colorado Public Utilities Commission				
Atmos Energy Corporation	08/17	Atmos Energy Corporation	Docket No. 17AL-0429G	Return on Equity
Delaware Public Service Commission				
Tidewater Utilities, Inc.	11/13	Tidewater Utilities, Inc.	Docket No. 13-466	Capital Structure
Hawall Public Utilities Commission				
Kaupulehu Water Company	02/18	Kaupulehu Water Company	Docket No. -	Rate of Return
Aqua Engineers, LLC	05/17	Puhi Sewer \& Water Company	Docket No. 2017-0118	Cost of Service / Rate Design
Hawaii Resources, Inc.	09/16	Laie Water Company	Docket No. 2016-0229	Cost of Service / Rate Design
Illinois Commerce Commission				
Utility Services of Illinois, Inc.	11/17	Utility Services of Illinois, Inc.	Docket No. 17-1106	Cost of Service / Rate Design
Aqua Illinois, Inc.	$04 / 17$	Aqua Illinois, Inc.	Docket No. 17-0259	Rate of Return
Utility Services of Illinois, Inc.	04/15	Utility Services of Illinois, Inc.	Docket No. 14-0741	Rate of Return
Indiana Utility Regulatory Commission				
Aqua Indiana, Inc.	03/16	Aqua Indiana, Inc. Aboite Wastewater Division	Docket No. 44752	Rate of Return
Twin Lakes, Utilities, Inc.	08/13	Twin Lakes, Utilities, Inc.	Docket No. 44388	Rate of Return
Louisiana Public Service Commission				
Louisiana Water Service, Inc.	06/13	Louisiana Water Service, Inc.	Docket No. U-32848	Rate of Return
Massachusetts Department of Public Utilities				
Liberty Utilities	07/15	Liberty Utilities d/b/a New England Natural Gas Company	Docket No. 15-75	Rate of Return
Missouri Public Service Commission				
Indian Hills Utility Operating Company, Inc.	10/17	Indian Hills Utility Operating Company, Inc.	Case No. SR-2017-0259	Rate of Return
Raccoon Creek Utility Operating Company, Inc.	-09/16	Raccoon Creek Utility Operating Company, Inc.	Docket No. SR-2016-0202	Rate of Return
New Jersey Board of Public Utilities				

KyPSC Case No. 2021-00190
STAFF-DR-03-011 Attachment 2
Page 42 of 82
Appendix A
Professional Qualifications of
Dylan W. D'Ascendis, CRRA, CVA

SPONSOR	Date	CASEIAPPLICANT	Docket No.	Subject
Middlesex Water Company	10/17	Middlesex Water Company	Docket No. WR1710xxxx	Rate of Return
Middlesex Water Company	03/15	Middlesex Water Company	Docket No. WR15030391	Rate of Return
The Atlantic City Sewerage Company	10/14	The Atlantic City Sewerage Company	Docket No. WR14101263	Cost of Service / Rate Design
Middlesex Water Company	11/13	Middlesex Water Company	Docket No. WR1311059	Capital Structure
Public Utillties Commission of Ohio				
Aqua Ohio, Inc.	05/16	Aqua Ohio, Inc.	Docket No. 16-0907-WW-AIR	Rate of Return
Pennsylvania Public Utility Commission				
Columbia Water Company	09/17	Columbia Water Company	Docket No. R-2017-2598203	Rate of Return
Veolia Energy Philadelphia, Inc.	06/17	Veolia Energy Philadelphia, Inc.	Dockel No. R-2017-2593142	Rate of Return
Emporium Water Company	07/14	Emporium Water Company	Docket No. R-2014-2402324	Rate of Return
Columbia Water Company	07/13	Columbia Water Company	Docket No. R-2013-2360798	Rate of Return
Penn Estates Utilities, Inc.	12/11	Penn Estates, Utilities, Inc.	Docket No. R-2011-2255159	Capital Structure / Long-   Term Debt Cost Rate
South Carolina Public Service Commission				
Carolina Water Service, Inc.	06/15	Carolina Water Service, Inc.	Docket No. 2015-199-WS	Rate of Return
Carolina Water Service, Inc.	11/13	Carolina Water Service, Inc.	Docket No. 2013-275-WS	Rate of Return
United Utility Companies, Inc.	09/13	United Utility Companies, Inc.	Docket No. 2013-199-WS	Rate of Return
Utility Services of South Carolina, Inc.	09/13	Utility Services of South Carolina, Inc.	Docket No. 2013-201-WS	Rate of Return
Tega Cay Water Services, Inc.	11/12	Tega Cay Water Services, Inc.	Docket No. 2012-177-WS	Capital Structure
Virginia State Corporation Commission				
Aqua Virginia, Inc.	$7 / 17$	Aqua Virginia, Inc.	PUR-2017-00082	Rate of Return
Massanutten Public Service Corp.	08/14	Massanutten Public Service Corp.	PUE-2014-00035	Rate of Return / Rate Design

Carolina Water Service, Inc. of South Carolina Table of Contents<br>to Exhibit No.<br>of Dylan W. D'Ascendis, CRRA, CVA

Summary of Cost of Capital and Fair Rate of Return	Schedule
Financial Profile of the Proxy Group of Eight Water Companies	DWD-1
Indicated Common Equity Cost Rate Using the Discounted	
Cash Flow Model	DWD-2
Indicated Common Equity Cost Rate Using the Risk Premium Model	DWD-3
Indicated Common Equity Cost Rate Using the Capital Asset	
Pricing Model	DWD-4
Basis of selection for the Non-Price Regulated Companies	
Comparable in Total Risk to the Proxy Group of Eight	
Water Companies	DWD-5
Cost of Common Equity Models Applied to the	
Comparable Risk Non-Price Regulated Companies	DWD-6
Relative Measures of Size for Carolina Water Service, Inc.	
and the Proxy Group of Eight Water Companies	

Carolina Water Service, Inc. of South Carolina

Recommended Capital Structure and Cost Rates for Ratemaking Purposes
Estimated at December 31, 2017

Type Of Capital	Ratios (1)	Cost Rate	Weighted Cost Rate	
Long-Term Debt	48.11\%	6.60\% (1)		
Common Equity	51.89\%	10.45\% - 10.95\% (2)	5.42\%	5.68\%
Total	100.00\%		8.60\%	8.86\%

Notes:
(1) Company-Provided.
(2) From page 2 of this Schedule.


	2016	$\underline{2015}$	2014		2013	2012	
		(MILL	ONS OF DOLLA	ARS]			
CAPITALIZATION STATISTICS							
AMOUNT OF CAPITAL EMPLOYED							
TOTAL PERMANENT CAPITAL	\$2,399.854	\$2,269.476	\$2,156.407		\$2,058.747	\$1,998.358	
SHORT-TERM DEBT	\$137.724	\$95,003	\$72,459		\$95.589	\$60,594	
TOTAL CAPITAL EMPLOYED	\$2,537.578	\$2,364.479	\$2.228.866		\$2.154.336	\$2,058.952	
INDICATED AVERAGE CAPITAL COST RATES (2)							
TOTAL DEBT	$4.73 \%$	$4.89 \%$	$5.01 \%$	\%	5.19 \%	5.36 \%	
PREFERRED STOCK	5.42 \%	5.42 \%	5.30 \%	\%	5.51 \%	5.53 \%	
							5 YEAR
CAPITAL STRUCTURE RATIOS							AVERAGE
BASED ON TOTAL PERMANENT CAPITAL:							
LONG-TERM DEBT	46.13 \%	46.25 \%	45.71 \%		46.24 \%	49.32 \%	46.73 \%
PREFERRED STOCK	0.12	0.12	0.13		0.16	0.18	0.14
COMMON EQUITY	53.75	53.63	54.16		53.60	50.50	53.13
TOTAL	$100.00 \%$	$100.00 \%$	$100.00{ }^{0}$		100.00 \%	100.00 \%	$100.00 \%$
BASED ON TOTAL CAPITAL:							
TOTAL DEBT, INCLUDING SHORT-TERM	48.59 \%	47.63 \%	47.00 \%		47.77 \%	50.87 \%	48.37 \%
PREFERRED STOCK	0.11	0.12	0.13		0.15	0.17	0.14
COMMON EQUITY	51,30	$\underline{52.25}$	52.87		52.08	48.96	51.49
TOTAL	$100.00 \%$	100.00 \%	100.00 \%		100.00 \%	100.00 \%	100.00 \%
FINANCIALSTATISTICS							
FINANCIAL RATIOS - MARKET BASED							
EARNINGS / PRICE RATIO	4.01 \%	4.72 \%	5.44 \%	\%	4.84 \%	5.47 \%	4.90 \%
MARKET / AVERAGE BOOK RATIO	274.64	224.46	212.84		206.33	187.65	221.18
DIVIDEND YIELD	2.17	2.66	2.76		2.88	3.17	2.73
DIVIDEND PAYOUT RATIO	55.72	56.71	52.46		58.35	60.42	56.73
RATE OF RETURN ONAVERAGE BOOK COMMON EQUITY	$10.83 \%$	10.40 \%	11.38 \%	\%	$10.08 \%$	10.12 \%	10.56 \%
TOTAL DEBT / EBITDA (3)	3.63 X	3.64 X	3.40 X	X	3.65 X	3.83 X	3.63 X
FUNDS FROM OPERATIONS / TOTAL DEBT (4)	22.17 \%	24.05 \%	25.95 \%	\%	22.85 \%	20.86 \%	23.18 \%
TOTAL DEBT / TOTAL CAPITAL	48.59 \%	47.63 \%	$47.00 \%$		47.77 \%	$50.87 \%$	48.37 \%

Notes:
(1) All capitalization and financial statistics for the group are the arithmetic average of the achieved results for each individual company in the group, and are based upon financial statements as originally reported in each year.
(2) Computed by relating actual total debt interest or preferred stock dividends booked to average of beginning and ending total debt or preferred stock reported to be outstanding.
(3) Total debt relative to EBITDA (Earnings before Interest, Income Taxes, Depreciation and Amortization).
(4) Funds from operations (sum of net income, depreciation, amortization, net deferred income tax and investment tax credits, less total AFUDC) plus interest charges as a percentage of total debt.


Proxy Group of Eight Water Companies.
Long-Term Debt
Preferred Stock
Common Equity
Total Capital

Source of Information
Annual Forms $10-K$

46.13 \%	46.25 \%	45.71 \%	46.24 \%	49.32 \%	46.73 \%
0.12	0.12	0.13	0.16	0.18	0.14
53.75	53.63	54.16	53.60	50.50	53.13
100.00 \%	100.00 \%	$100.00 \%$	$100.00 \%$	100.00 \%	100.00 \%

[^45]

Cash Assets		. 4	
Cash Assers	18.4	20.4	25.3
Other	109.4	146.5	122.1
Current Assets	-132.7	166.9	149.5
Accts Payable	50.6	43.7	45.2
Debt Due	28.3	90.3	44.3
Other	44.6	43,9	51.0
Current Liab.	123.5	177.9	140,5


ANNUAL RATES   of change (per sh)   Revenues   "Cash Flow"   Earnings   Dividends   Book Value		Past $10 \mathrm{Yrs}$, 5.5 7.50 10.0 7.08 $5.5 \%$		$\begin{aligned} & \text { st Est } \\ & \text { 15. } \\ & \hline 0 \% \\ & \hline .5 \% \\ & .5 \% \\ & .5 \% \\ & \hline 0 \% \end{aligned}$	$\begin{aligned} & 144-16 \\ & 10-22 \\ & .5 \% \\ & .0 \% \\ & .5 \% \\ & .5 \% \\ & .0 \% \end{aligned}$
$\begin{gathered} \text { Cal- } \\ \text { endar } \end{gathered}$	QUARTERLY REVENUES ( $\$$ mill.) Mar. 31 Jun. 30 Sep. 30 Dec. 31				$\begin{aligned} & \text { Full } \\ & \text { Year } \\ & \hline \end{aligned}$
2014	102.0	115.6	138.3	109.9	465.8
2015	100.9	114.6	133.0	110.1	458.6
2016	93.5	112.0	123.8	106.8	436.1
2017	98.8	113.2	140	113	465
2018	102	118	135	115	470
$\begin{gathered} \text { CaF } \\ \text { endar } \end{gathered}$	EARNINGS PER SHARE AMar. 31 Jun. 30 Sep. 30 Dec. 31				Full Year
2014	. 28	. 39	. 54	. 36	1.57
2015	. 32	. 41	. 56	. 31	1.60
2016	. 28	. 45	. 59	. 30	1.62
2017	. 34	. 62	. 59	. 30	1.85
2018	. 39	. 48	. 60	. 38	185
	QUARTERLY DIMIENDS PAID ${ }^{\text {B }}$				Full
endar	Mar. 31	Jun. 30	Sep. 30	Dec. 31	Year
2013	. 1775	. 1775	2025	. 2025	76
2014	. 2025	. 2025	. 213	. 213	83
2015	. 213	. 213	. 224	. 224	. 87
2016	. 224	. 224	. 224	. 242	. 91
2017	. 242	. 242	. 255		

BUSINESS: American States Water Co. operates as a holding company. Through its principal subsidiary, Golden State Water Company, it supplies water to 261,002 customers in 75 cities and 10 counties. Service areas include the greater metropolitan areas of Los Angeles and Orange Counties. The company also provides electric utility services to 23,940 customers in the city of Big Bear
American States Water was forced to divest an operation for a profit. The water utility's California-based Golden States Water subsidiary sold its Ojai Water System this summer to the municipal district of Casitas for $\$ 34.3$ million. Ultimately, the company didn't have a choice, as Casitas was using eminent domain to acquire the assets. In any case, the sale resulted in a second-quarter pretax gain of $\$ 8.3$ million, or about $\$ 0.13$ a share.
The nonutility sector is performing well. Responsible for about $20 \%$ of the company's normalized profits, the ASUS subsidiary provides water services to U.S. military installations. The government is in the midst of privatizing the water systems on many domestic bases. Earlier this year, ASUS snagged a 50 -year contract with the Elgin Air Force Base that is expected to generate $\$ 510$ million in revenues. On October 2nd, the company announced that it was awarded another 50year contract worth $\$ 601$ million to service Ft. Riley in Kansas. We expect the company to continue to win a fair share of this

Lake and in areas of San Bernardino County. Sold Chaparral City Water of Arizona (6/11). Has 736 employees. BlackRock, Inc. owns $11.7 \%$ of out. shares; Vanguard, $9.5 \%$;; off. \& dir. $1.5 \%$. ( $4 / 17$ Proxy). Chairman: Lloyd Ross. President \& Chief Executive Officer: Robert J. Sprowls. Inc: CA. Address: 630 East Foothill Blvd., San Dimas, CA 91773, Tel: 909-394-3600. Internet: www, aswater.com.
regulated, ASUS's return on equity is not limited, however, the business also carries more risk.
Overall, earnings and dividend growth prospects are good. Due mostly to the aforementioned sale of assets, we have raised our 2017 share-earning's estimate for the company $\$ 0.15$, to $\$ 1.85$. This represents a hefty $14 \%$ ycar-overyear gain. In 2018, we think that the company will manage to post the same strong share earnings as the nonregulated sector contribution to the bottom line rises.
We think both short- and long-term investors can find better alternatives elsewhere. Shares of AWR have been on a nice run of late. Historically, water utility stocks have been defensive income plays because of their low volatility, high dividend yields, and good dividend growth prospects. At its recent price, AWR's 2.0\% yield is only on par with the Value Line median. In our opinion, most of the good news associated with the stock appears to be reflected in the recent price. Hence, this neutrally ranked equity has subpar total return prospects through 2020-2022.
James A. Flood
October 13, 2017


 continued operations: ' 06, , (\$0.04); '11, $\$ 0.03$;
'12, ( $\$ 0.10$ ); '13,(\$0.01). GAAP
used
02017 Value Line, Inc. All rights reserved. Faclual material is obtained from sources believed 10 be reliable and is provided without warranties of any kind, THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publicalinn is strictly for subscriber's own, non-commercial, internal use. No part of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product,

# KyPSC Case No. 2021-00190 STAFF-DR-63 ${ }^{2} 011$ ld <br> Page Rage 5 

ANNA AMERCA NYSE-WTR								$\begin{aligned} & \text { RECENT } \\ & \text { PRICE } \end{aligned}$	$33.1$	$\text { P/E } 24 \text { (Tralling: 25,8) }$				$\begin{aligned} & \text { RELATNE } \\ & \text { PIERATIO } \end{aligned}$		$1 \mathrm{ONDD}$	$2.5 \%$		VALUE LINE					
TIMELINESS 3 Lowered $8 / 26 / 16$   SAFETY 2 Raised $4 / 20 / 12$   TECHNICAL 1 Raised $10 / 3 / 17$   BETA $.70 \quad(1.00=$ Market)				High:	23.8 16.1	21.3 15.1	$\begin{array}{r}17.6 \\ 9.8 \\ \hline\end{array}$	17.2 12.3	$\begin{aligned} & 18.4 \\ & 13.2 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 15.4 \end{aligned}$	$\begin{aligned} & 21.5 \\ & 16.8 \end{aligned}$	$\begin{aligned} & 28.1 \\ & 20.6 \end{aligned}$	$\begin{aligned} & 28.2 \\ & 22.4 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 24.4 \end{aligned}$	$\begin{aligned} & 35.8 \\ & 28.0 \end{aligned}$	$\begin{aligned} & 144.7 \\ & 29.4 \end{aligned}$			Target Price Range $2020\|2021\| 2022$					
				LEGENDS$1.60 \times$ Dividends $p$ sh																				
																				80				
																				60				
202   High   Low	20-22 PROJECTIONS   Prite Gain   AnN Thetural    45 $(+35 \%)$   35 $(+5 \%)$   $10 \%$																							
																40								
											.	,				30								
Insider Decisions									I! 1 Il					1010										
	D JF	M A M	J A																					
	000	000	000																	-10				
Oppions	076	770	170																					
Institutional Decisions				Percent shares traded															RETURN 9/17					
	42096	12817	202017																					
to Buy	182	179	172																	1 yr .	$11.6 \quad 16.4$			
		180																3 yr .	$51.9 \quad 31.5$					
Hudsf00]	88568	103594	104564															5 yr .	89.6 88.9					
2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018		UUE LINE PIE. LLC	20-22				
2.16	2.28	2.38	2.78	3.08	3.23	3.61	3.71	3.93	4.21	4.10	4.32	4.32	4.37	4.61	4.62	4.65	4.95		es per sh	6.05				
. 69	. 76	. 77	. 87	. 97	1.01	1.10	1.14	1.29	1.42	1.45	1.51	1.82	1.89	1.87	2.07	2.15	2.25	"Cash	Flow" per sh	275				
. 41	. 43	. 46	. 51	. 57	. 56	. 57	. 58	. 62	. 72	. 83	. 87	1.16	1.20	1.14	1.32	1.36	1.45	Earm	gs per sh A	1.85				
. 24	. 26	. 28	. 29	32	. 35	. 38	. 41	44	. 47	. 50	. 54	. 58	63	. 69	74	. 80	. 85	Div'd	ecl'd per sh Bn	4.15				
. 87	.96	1.06	1.23	1.47	1.64	1.43	1.58	1.66	1.89	1.90	1.98	1.73	1.84	2.07	2.16	2.55	2.45	Cap	pending per sh	2.25				
3.32	3.49	4.27	4.71	5.04	5.57	5.85	6.26	6.50	6.81	7.21	7.90	8,63	9.27	9.78	10.43	11.10	11.75	Bool	alue per sh	14.85				
142.47	141.49	154.31	158.97	161.21	165.41	166.75	169.21	170.61	172.46	173.60	175.43	177.93	178.59	176.54	177.39	178.00	178.50	Com	I Shs Outst'g ${ }^{\text {c }}$	180.00				
23.6	23.6	24.5	25.1	31.8	34.7	32.0	24.9	23.1	21.1	21.3	21.9	21.2	20.8	23.5	23.9	Bold fig	3	Avg	n'I PIE Ratio	21.0				
1.21	1.29	1.40	1.33	1.69	1.87	1.70	1.50	1.54	1.34	1.34	1.39	1.19	1.09	1.18	1.26	Value		Rela	e PIE Ratio	1.30				
2.5\%	2.5\%	2.5\%	2.3\%	1.8\%	1.8\%	2.1\%	2.8\%	3.1\%	3.1\%	28\%	2.8\%	2.4\%	2.5\%	2.6\%	2,3\%			Avg	n'I Div'd Yield	2.9\%				
CAPITAL STRUCTURE as of 6/30/17   Total Debt $\$ 2093.6$ mill. Due in 5 Yrs $\$ 430.5$ mill. LT Debt $\$ 1882.6$ mill. LT Interest $\$ 76.3$ mill.   ( $51 \%$ of Cap'l)						602.5	627.0	670.5	726.1	712.0	757.8	768,6	779.9	814.2	819.9	830	880	Rev	les (\$milli)	1085				
						95.0	97.9	104.4	124.0	144.8	153.1	205.0	213.8	201.8	234.2	245	260	Net	fil (\$mill)	335				
						38.9\%	39.7\%	39.4\%	39.2\%	32.9\%	39.0\%	10.0\%	10.5\%	6.9\%	8.2\%	9.0\%	9.0\%	Incom	Tax Rate	10.0\%				
								.		-	.	1.1\%	2.4\%	3.1\%	3.8\%	3.5\%	3.0\%	AFU	\% to Net Profit	3.5\%				
Pension Assets-1 $2 / 16$ \$242.4 mill.						55.4\%	54.1\%	55.6\%	56.6\%	52.7\%	52.7\%	48.9\%	48.5\%	50.3\%	48.4\%	47.0\%	49.0\%	Long-	erm Debt Ratio	51.0\%				
				Slig. \$308	. 2 mill.	44.6\%	45.5\%	44.4\%	43.4\%	47.3\%	47.3\%	51.1\%	51.5\%	49.7\%	51.6\%	53.0\%	51.0\%	Com	on Equity Ratio	49.0\%				
Pfd Stock None Common Stock 177,651,543 shares as of $7 / 24 / 17$						2191.4	2306.6	2495.5	27062	2646.8	2929.7	3003.6	3216.0	3469.5	3587.7	3735	4100	Total	apital (\$mill)	5500				
						2792.8	2997.4	3227.3	3469.3	3612.9	3936.2	4167.3	4402.0	4688.9	5001.6	5080	5275	Net P	nt (\$mill)	5800				
						5.9\%	5.7\%	5.6\%	5.9\%	6.9\%	6.6\%	8.0\%	7.8\%	6.9\%	7.6\%	7.5\%	7.5\%	Retur	on Total Cap'l	7.5\%				
						9.7\%	9.3\%	9.4\%	10.6\%	11.6\%	11.0\%	13.4\%	12.9\%	11.7\%	12.7\%	12.5\%	12.5\%	Retur	on Shr. Equity	12.5\%				
MARKET CAP: $\$ 6.0$ billion (Large Cap)						9.7\%	8.3\%	9.4\%	10.6\%	11.6\%	11.\%\%	13.4\%	12.9\%	11.7\%	12.7\%	12.5\%	12.5\%	Retur	on Com Equity	12.5\%				
CURRENT POSITION (5M1LL)   Cash Assets			2015	2016	6/30/17	3.2\%	2.8\%	2.7\%	3.7\%	4.6\%	4.3\%	6.7\%	6.1\%	4.7\%	5.6\%	5.5\%	5.0\%	Reta	to Com Eq	4.5\%				
						67\%	70\%	72\%	65\%	60\%	61\%	50\%	52\%	60\%	56\%	58\%	59\%	All Di	ds to Net Prof	62\%				


Cash Assets	3.2	3.7	7.8
Receivables	99.1	97.4	98.9
Inventory (AvgCst)	12.4	13.0	16.8
Other	13.7	14.6	14.6
Current Assets	128.4	128.7	138.1
Accts Payable	56.5	59.9	46.4
Debt Due	52.3	157.2	221.0
Other	84.4	84.4	65.1
Current Liab.	193.2	301.5	332.5


ANNUAL RATES   of change (per sh)   Revenues   "Cash Flow"   Earnings   Dividends   Book Value		Past   $10 \mathrm{Yrs}$.   4.0   7.5   8.5   8.0   7.0	Past Esfld '14'16   5 Yrs. to 20.22   $2.0 \%$ $5.0 \%$   $7.0 \%$ $6.0 \%$   $11.0 \%$ $7.0 \%$   $8.0 \%$ $9.0 \%$   $7.5 \%$ $6.5 \%$		
$\begin{gathered} \text { Cal- } \\ \text { endar } \end{gathered}$	$\begin{gathered} \text { QUAF } \\ \text { Mar. } 31 \end{gathered}$	Jun. 30	$\text { Sep. } 30$	Dec	Full Year
2014	182.7	195.3	210.5	191.4	779.9
2015	190.3	205.8	221.0	197.1	814.2
2016	192.6	203.9	226.6	196.8	819.9
2017	187.8	203.4	233.8	205	830
2018	200	220	245	245	880
Cat endar	$\begin{array}{\|r\|r\|} \hline \text { EAR } \\ \text { Mar. } 31 \\ \hline \end{array}$	$\begin{aligned} & \text { RNNGS PI } \\ & \text { Jun. } 30 \end{aligned}$	ER SHARE Sep. 30	$\begin{aligned} & \text { EA } \\ & \text { Dec. } 31 \end{aligned}$	Full   Year
2014	. 24	31	. 38	. 27	1.20
2015	. 27	. 32	. 38	. 17	1.14
2016	. 29	. 34	. 41	. 28	1.32
2017	. 28	. 34	. 43	. 31	1.36
2018	. 31	. 36	. 47	. 31	1.45
$\begin{gathered} \text { Cal- } \\ \text { endar } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { QUARTE } \\ \text { Mar, } 31 \\ \hline \end{array}$	$\begin{aligned} & \text { ERLY DIV } \\ & \text { Jun. } 30 \\ & \hline \end{aligned}$	$\begin{gathered} \text { TDENDS PA } \\ \text { Sep. } 30 \end{gathered}$	$\text { Dec. } 31$	$\begin{aligned} & \text { Full } \\ & \text { Year } \end{aligned}$
2013	. 14	. 14	. 152	. 152	. 58
2014	. 152	. 152	. 165	. 165	. 63
2015	. 165	. 165	. 178	. 178	. 69
2016	. 178	. 178	. 1913	. 1913	. 74
2017	.1913	. 1913	. 205		

(A) Diluted egs. Excl. nonrec. gains: '01, $2 \phi$;
 operations: '12, 7c; '13, 9¢;' '14, 114. May not June, Sept. \& Dec. ■ Div'd. reinvestment plan sum due to rounding. Next earnings report due available ( $5 \%$ discount).
2017 Value Line, Inc. All rights reserved. Factual material is oblained from sources believed to be relable and is provided withoul warranties of any kinc. THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publicalion is strictly for subscriber's Own, non-commmercial, internal Usa. No part of it may be reproduced, resodd, slored or transmited in any prinied, electronic or other form, or used for gen⿱ataing or marketing any printed or electronic pubication, service or product
$16 \%$; industrial, wastewater \& other, 25\%. Off. \& dir. own less than $1 \%$ of the common stock; Vangurad Group, 8.9\%; Blackrock, Inc, $8.1 \%$; State Street Capital, $6.0 \%$ ( $3 / 17$ Proxy). President \& Chief Executive Officer. Christopher Franklin. Incorporated: Pennsylvania. Address: 762 West Lancaster Avenue, Bryn Mawr, Pennsylvania 19010. Tel.: 610-525-1400. Internet: ww.aquaamerica.com.
generation should enable its payouts to rise $8 \%-10 \%$ annually through 2020-2022. Capital outlays are large but manageable. Aqua increased this year's capital expenditure budget to approximately $\$ 450$ million. The majority of funds will be allocated to repair, maintain, and replace aged pipelines and equipment. We don't expect this figure to change much in 2018. In 2019, though, we think outlays should decline to the $\$ 300$ million- $\$ 325$ million range. Of the nine members included in the water group. Aqua is only one of two that rates a Financial Strength rating of at least an A. While the balance sheet may be more leveraged over the next couple of years, it should remain relatively healthy.
The stock has a high yield for a water utility. WTR is yielding $2.5 \%$, or about 50 basis points more than its peers. This is unusual considering the equity's strong projected dividend growth. As a result, even though we still think shares of water utilities are currently trading at too high a premium, WTR is probably the best selection for those investors who must own a stock in this industry.
James A. Flood


(SMILL.)				
Cash Assets	8.8	25.5	29.1	
Other	118.8		116.6	141.5
Current Assets	127.6	142.1	170.6	
Accts Payable	66.4	77.8	84.2	
Debt Due	40.2	123.3	226.2	
Other	$\frac{41.9}{}$	49.1	50.6	
Current Liab.	148.5		250.2	
			361.0	


ANNU of chan	L RATE (per sh)	Past 10 Yrs.	$\begin{aligned} & \text { Past } \\ & 5 \mathrm{Yy} \end{aligned}$	$\begin{aligned} & \text { Est'd '1 } \\ & \text { rs. } \end{aligned}$	$\begin{aligned} & 4.16 \\ & 40-22 \end{aligned}$
Reven	es	4.0\%		0\%	5\%
"Cash	Flow"	5.0\%		5\%	0\%
Eamin		4.0\%		0\%	.0\%
Divide		$1.5 \%$		0\%	. $\%$
Book	alue	5.0\%		0\%	. $0 \%$
Cal	QUAR	ERLY REV	ENUES	mill. ${ }^{\text {E }}$	Full
endar	Mar. 31	Jun. 30	Sep. 30	Dec. 31	Year
2014	110.5	158.4	191.2	137.4	597.5
2015	122.0	144.4	183.5	138.4	588.3
2016	121.7	152.4	184.3	151.0	609.4
2017	122.0	171.1	200	156.9	650
2018	140	170	205	160	675
al-		RNINGS PE	ER SHA		Full
endar	Mar. 31	Jun 30	Sep. 30	Dec. 31	Year
2014	d. 11	. 36	. 70	. 24	1.19
2015	. 03	. 21	. 52	. 18	. 94
2016	d. 02	. 24	. 48	. 31	1.01
2017	. 02	. 39	. 62	. 32	1.35
2018	. 07	. 38	. 67	. 33	1.45
	QUAR	ERLY DIMD	DENDS PA	$A^{\text {A }}{ }^{\text {B }}=$	Full
endar	Mar. 31	Jun. 30	Sep. 30	Dec. 31	Year
2013	. 16	. 16	. 16	. 16	. 64
2014	. 1625	. 1625	. 1625	. 1625	. 65
2015	. 1675	. 1675	. 1675	. 1675	. 67
2016	. 1725	. 1725	. 1725	. 1725	. 69
2017	. 18	. 18	. 18		

BUSINESS: Calfornia Water Service Group provides regulated and nonregulated water service to 482,400 customers in 100 communities in the state of California. Accounts for over $94 \%$ of total customers. Also operates in Washington, New Mexico, and Hawaii. Main service areas: San Francisco Bay area, Sacramento Valley, Salinas Valley, San Joaquin Valley \& parts of Los Angeles. Ac-
California Water Service Group benefited from favorable rate activity in the second quarter. The regulated water provider saw revenues surge to $\$ 171$ million, a $12 \%$ annual improvement, and a $40 \%$ increase on a sequential basis. The advance can largely be attributed to recent rate changes by the California regulatory authority (effective earlier this year). Specifically, rate increases alone added more than $\$ 17$ million to the top line in the Junc period, with unbilled revenue accounting for the remainder of gains.
Profits are on the right track. California Water earned $\$ 0.39$ a share in the second quarter, besting our $\$ 0.35$ call. Lower incremental drought costs were positive, but the real takeaway was the 280 -basispoint decline in operating expenses, notably slimmer maintenance and administrative costs. Our 2017 bottom-line estimate of $\$ 1.35$ a share remains intact, equating to year-over-year growth of $34 \%$.
We are tacking $\$ 10$ million onto our current-year revenue estimate, to $\$ 650$ million. This is partly owing to the strong second-quarter showing, but also
factors in the higher base rate going for-
quired Rio Grande Corp: West Hawaii Utilities (9/08). Revenue breakdown, '16: residential, $72 \%$; business, $20 \%$; industrial, $4 \%$; public authorities, $3 \%$; other $1 \%$. Off. and dir. own $1 \%$ of common stock (4/17 proxy). Has 1,163 employees, Pres, and CEO: Martin A. Kropelnicki Inc:: DE, Addr.: 1720 North First St., San Jose, CA 95112-4598. Tel.: 408-367-8200. Internet: www.calwatergroup.com.
ward. Meanwhile, our 2018 top-line forecast is unchanged, at $\$ 675$ million.
The long-term story hasn't changed much. Acquisitions and capital spending remain the main themes here. The company has ample funding to allocate to infrastructure upgrades and water system improvements. Year to date, CWT has spent just over $\$ 100$ million on investments, leaving approximately $\$ 450$ million- $\$ 500$ million at its disposal. Further, bolt-on acquisitions are a possible avenue to explore should management want to supplement organic growth. All this, along with continued inquiry into increased base rates, augurs well for business prospects into next decade.
These shares are trading near all-time highs. No doubt, the market has rewarded the company for returning to growth in 2016, as the stock price is up nearly $75 \%$ from last year's lows. This issue is timely (2), and is slated to outperform the yearahead broader market averages. However, due to the run-up in price, total return potential over the 3 - to 5 -year stretch is below average.
Nicholas P. Patrikis
October 13, 2017
A) Basic EPS. Excl. nonrecurring gain (loss): 01, 2市; '02, 4¢;' '11, 4¢. Next eamings report due late November
due late November.
(B) Dividends historically paid in late Feb.,

|  |  |
| :--- | :--- | :--- |

2017 Value Line, Inc. Al righls reserved, Factual malerial
THE PUBLISHER IS' NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is stricty for subscrias's pown, nor-commercial, internal use. No parl of it may bs reproduced, resold, slored or transmitied in any prinked, eleclronic cr other form, or used for generating or matkeing any printed or elecironic publication, sevice or prodal

Company's Financial Strength
Stock's Price Stability
Price Growth Persistence
Eamings Predictability


Cash Assets	7	1.6	7
Accounts Receivable	11.0	13.0	12.9
Other	15.3	14.8	16.6
Current Assets	27.0	29.4	32.2
Accts Payable	11.9	13.1	9.6
Debt Due	2.8	4.9	5.2
Other	22.2	37.1	47.8
Current Liab.	36.9	55.1	62.6


ANNUAL RATES   of change (per sh)   Revenues   "Cash Flow"   Earnings   Dividends   Book Value		Past 10 Yis. $4.0 \%$ $8.0 \%$ $2.5 \%$ $6.0 \%$	Past Est'd '14-'16    5Yrs. to $200-22$    $3.0 \%$ $7.0 \%$   $\%$ $9.5 \%$ $3.5 \%$   $\%$ $12.0 \%$ $4.5 \%$   $\%$ $3.0 \%$ $4.5 \%$   $\%$ $2.5 \%$   		
Car endar	QUARTERLY REVENUES (\$ mill.)   Mar. 31 Jun. 30 Sep. 30 Dec. 31				Full Year
2014	20.3	25.4	27.6	20.7	94.0
2015	20.0	26.6	28.4	21.0	96.0
2016	21.6	26.1	29.5	21.5	98.7
2017	22.5	27.9	32.0	23.6	106
2018	25.0	30.0	35.0	25.0	115
Calendar	EARNINGS PER SHARE A 31 Jun. 30 Sep. 30 Dec. 31				Full Year
2014	. 27	. 67	. 76	. 22	1.92
2015	. 28	. 77	. 79	. 20	2.04
2016	. 28	. 89	. 84	. 07	2.08
2017	. 36	. 73	. 88	. 23	2.20
2018	. 35	. 80	. 90	. 30	2.35
al-	QUARTERLY DMDENDS PAID ${ }^{\text {B }}$				Full
endar	Mar,31	Jun. 30	Sep. 30	Dec. 31	Year
2013	. 2425	. 2425	. 2475	. 2475	. 98
2014	. 2475	. 2475	. 2575	. 2575	1.01
2015	. 2575	. 2575	. 2675	. 2675	1.05
2018	. 2675	. 2825	. 2825	. 2825	1.12
2017	. 2825	. 2975	. 2975		

holding company, whose income is derived from eannings of its wholly-owned subsidiary companies (regulated water utilities). In 2016, $95 \%$ of net income was derived from these activities. Provides water services to 440,000 people in 79 municipalities throughout Connecticut and Maine. Acquired The Maine Water Company,
Connecticut Water Service delivered second-quarter results that fell short of our expectations. Revenues of $\$ 27.9$ million improved marginally, on a year-over-year basis, but missed our $\$ 28.5$ million call. The July period included a full quarter of I Ieritage Village operations, as well as incremental surcharges in both Connecticut and Maine. Not until the third quarter will the completed acquisition (July 1st) of the Avon Water Company be included in the financials. Similarly, timate, at $\$ 0.73$ a share. Net income was adversely impacted by several cents due to greater business development costs associated with the above-mentioned deals. Nonetheless, Connecticut Water should right the ship in the recently concluded third quarter, as we look for revenues of $\$ 32$ million and share net of $\$ 0.88$.
There has been some activity on the rate front. Earlier this summer, The Maine Water Company filed for a rate increase (pending approval from the Maine Public Utilities Commission) in its Biddeford and Saco division. This could potentially add about $\$ 2$ million to the top line.

January, 2012; Biddeford and Saco Water, December 2012: Heritage Village, February, 2017. Inc.: Conn.. Has 266 employees. Chairman/PresidenvChief Executive Officer: Eric W. Thomburg. Officers and directors own $2.5 \%$ of the common stock; BlackRock, Inc., 7.2\% (4/17 proxy). Address: 93 West Main Street, Clinton, CT 06413. Telephone: (860) 669-8636. Internet: www.ctwater.com.

Additionally, the company filed for a rate increase of $1.6 \%$ on WICA (recovered funds from infrastructure upgrades.)
Long term, acquisitions and higher capital spending are likely in the cards. Indeed, the strategy is starting to bear fruit, as CTWS lifted its customer base by nearly 9,500 via its Avon and Heritage purchases. Financials results should feel the effects beginning in the second halr of this year. Moreover, Connecticut plans to take full advantage of WICA and WISC benefits (increase to WICA surcharge pending), and ought to continue to replace aging water mains in the coming years.
This equity has slipped a notch in Timeliness to 3, Average. What's more, the current valuation $(28.0 \mathrm{x} \quad 12$-month earnings-per-share estimate) is a bit rich when compared to historical norms, and on a peer-to-peer basis. The stock is trading above our 3- to 5 -year Target Price Range, and total return potential is subpar. Thus, we recommend investors wait for a better entry point before committing funds here.
Nicholas P. Patrikis
October 13, 2017


CURRENT POSITION (\$MILL.)	2015	2016 39	6/30/17
Cash Assets	3.5	3.9	3.7
Other	20.9	22.8	26.0
Current Assets	24.4	26.7	29.7
Accts Payable	6.5	12.3	15.0
Debt Due	8.7	18.2	23.2
Other	13.1	16.6	17.2
Current Liab.	28.3	47.1	55.4


ANNUAL RATES	Past	Past	Est'd '14's'16
of change (per sh)	10 Yrs.	5 Yrs.	to '20.22
Revenues	$2.0 \%$	$3.0 \%$	$3.5 \%$
"Cash Flow'	$4.5 \%$	$6.5 \%$	$7.5 \%$
Earnings	$5.0 \%$	$8.0 \%$	$8.5 \%$
Dividends	$1.5 \%$	$1.5 \%$	$4.5 \%$
Book Value	$4.0 \%$	$3.0 \%$	$4.5 \%$


	QUARTERLY REVENUES ( $\$$ millu) Mar. 31 Jun. 30 Sep. 30 Dec. 31				
2014	27.1	29.2	32.7	28.1	177.1
2015	28.8	31.7	34.7	30.8	126.0
2016	30.6	32.7	37.8	31.8	132.9
2017	30.1	33.0	39.0	34.9	137
2018	33.0	37.0	40.0	35.0	145
Cal-	EARNINGS PER SHARE A Mar. 31 Jun. 30 Sep. 30 Dec. 31				Full   Year
2014	. 20	29	. 42	22	1.13
2015	. 22	. 31	. 41	. 28	1.22
2016	29	. 36	. 54	. 19	1.38
2017	. 27	. 33	. 55	. 33	1.48
2018	. 33	. 38	. 57	. 32	160
Calendar	QUARTERLY DMDENDS PAID ${ }^{\text {B/I }}$				Full
	Mar. 31 Jun. 30 Sep. 30 Dec. 31				Ye
2013	. 1875	. 1875	. 1875	. 19	75
2014	. 19	. 19	. 19	. 1925	. 76
2015	. 1925	. 1925	. 1925	. 19875	. 78
2016	. 19875	. 19875	. 19875	. 21125	. 81
2017	. 211125	. 21125	. 21125		

BUSINESS: Middlesex Water Company engages in the ownership and operation of regulated water utility systems in New Jersey, Delaware, and Pannsylvania. It also operates water and wastewater NJ and DE lis contraci on behali of municipal and private cilents in retail customers, primarily in Middlesex County, New Jersey. In
Middlesex Water Company reported soft results for the second quarter. Following a somewhat colder (longer) winter season, customer water usage picked up only moderately through the late spring into early summer months. Indeed, the volatile Northeast region of the U.S. (MSEX's main area of operation) leaves the company subject to weather disruptions. First-quarter revenues came in roughly flat, year over year, at $\$ 33.0$ million. Delaware operations registered a modest gain thanks to new customer additions, while its New Jersey segment slipped due to a continued trend of weak water consumption. Similar to the first quarter, net income took a step back, compared to the year-earlier figure. Share net
of $\$ 0.33$ missed our mark by $\$ 0.04$ with of $\$ 0.33$ missed our mark by $\$ 0.04$, with increased water production costs weighing on profits.
Our current-year top- and bottom-line estimates are being modestly reduced. We now expect Middlesex to earn $\$ 1.48$ a share ( $-\$ 0.02$ less than our previous call), on $\$ 137$ million in revenues ( $-\$ 1$ million).
Infrastructure upgrades are still man-
agement's main focus. Under its recent-

2016, the Middlesex System accounted for $60 \%$ of operating revenues. At 12/31/16, the company had 309 employees. Incomprated: NJ. President, CEO, and Chairman: Dennis W. Doll. Officers \& directors own 3.5\% of the common stock; BlackRock Institutional Trust Co., 7.2\% (4/17 proxy). Add.: 1500 Ronson Road, Iselin, NJ 08830. Tel.: 732-634-1500. Internet: www.middlesexwater.com.
ly established RENEW program and Water for Tomorrow initiative, the company aims to allocate nearly $\$ 12$ million in each of the next three years to bolster its water transmission capabilities by replacing old water mains, valves, and services lines throughout New Jersey. Total capital spending on its water distribution infrastructure (approximately $\$ 200$ million through next decade) ought to be closely monilored, with a portion of those corresponding investment costs being recovered by appropriate rate filings. Finally, a slow but sure pickup in consumption from New Jersey residents should provide an extra boost 10 the top line further out.
Our Timeliness Ranking System pegs shares of Middlesex Water Company as year-ahead market laggards (4, Below Average). In the same breath, the issue offers unattractive total return potential over the 3- to 5 -year pull, and its dividend yield, though average, pales in comparison to its historical norms. Therefore, we suggest investors stay on the sidelines, for now.
Nicholas P. Patrikis

SJW GROUP ${ }_{\text {WYSE．sw }}$	


TIMELII	NESS	Raised 61	3017	High： Low：	$\begin{array}{r} 45.3 \\ 21.2 \\ \hline \end{array}$	$\begin{array}{r} 43.0 \\ 27.7 \\ \hline \end{array}$	35.1 20.0	$\begin{aligned} & 30.4 \\ & 18.2 \end{aligned}$	$\begin{aligned} & 28.2 \\ & 21.6 \end{aligned}$	$\begin{aligned} & 26.8 \\ & 20.9 \end{aligned}$	$\begin{aligned} & 26.9 \\ & 22.6 \end{aligned}$	$\begin{aligned} & 30.1 \\ & 24.5 \end{aligned}$	$\begin{aligned} & 33.7 \\ & 25.5 \end{aligned}$	$\begin{aligned} & 35.7 \\ & 27.5 \end{aligned}$	$\begin{aligned} & 56.9 \\ & 28.6 \end{aligned}$	$\begin{aligned} & 57.8 \\ & 45.4 \end{aligned}$			Target P 2020	$\begin{aligned} & \text { Range } \\ & 12052 \end{aligned}$				
SAFET		New 4／22	$11$	LEGEM	S															120				
				$-$	D Divid	St Rate														100				
TECHN	CAL	Lowere			ed by Ini xive Pric：	rest Rat Strengith														80				
BETA	（1，00	Market）		3－for－1 sp	it 3／04															64				
	0－22 PR	OECTIO		$2 \text { for- } 1 \mathrm{sp}$ Optiens:	I 3／06															48				
			n＇l Total	Shade	rea indica	rece										1 －				48				
	Price	Gain	Return			$1{ }^{1+1}$									山｜					32				
High Low	$\begin{aligned} & 80 \\ & 55 \end{aligned}$	$40 \%)$	$\begin{gathered} 10 \% \\ 1 \% \end{gathered}$		川，	井	V＋14					$\left\\|_{1} \mid\right\\| \\|$	$\\|_{1,1,1}{ }^{\text {l }}$	Tioll						24				
Insider	r Decisi	ons		1	，	\％	－			Tin										$-20$				
－	D J F	M A M	J 」 A		－															－16				
10 Buy	000	000	000																	12				
Opplons	0 1 1 10	680 0	00																					
to Sell	111	000																	RETURN 9／17	－8				
Institut	tional D	ecision																	THIS ML ARTH．＂	－				
	402016	102017	2Q2017	Percen															$\begin{array}{rr} \text { STOCK } & \text { HOEX } \\ 31.8 & 16.4 \end{array}$					
	81 59	$\begin{aligned} & 83 \\ & 59 \end{aligned}$	$\begin{aligned} & 67 \\ & 73 \end{aligned}$	shares		t												19 yr 3 yr.	$\begin{array}{rr} 31.8 & 16.4 \\ 124.9 & 31.5 \end{array}$	－				
H｜d＇s（000）	9218	10726	10969	traded				\｜ll	山㞨	11	い	川	山ll	d 1 ل1111		1		5 yr ．	151.988 .9					
2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018		ELINE PUB，LLC	20－22				
7.45	7.97	8.20	8.14	9.86	10.35	11.25	12.12	11.68	11.62	12，85	14.01	13.73	15.76	14.97	16.61	17.15	16.80	Reve	es per sh	20.65				
1.49	1.55	1.75	1.89	2.21	2.38	2.30	2.44	2.21	2.38	2.80	2.97	2.90	4.42	3.86	4.76	4.60	4.65	＂Cas	low＂per sh	5.15				
． 77	． 78	． 91	． 87	1.12	1.19	1.04	1.08	． 81	． 14	1.11	1.18	1.12	2.54	1.85	2.57	2.45	2.60	Earn	$s$ per sh A	3.00				
． 43	． 46	． 49	． 51	． 53	． 57	． 61	． 65	． 66	． 68	． 69	． 71	． 73	． 75	． 78	． 81	． 87	． 93	Div＇d	cel＇d per sh Bm	1.12				
2.63	2.06	3.41	2.31	2.83	3.87	6.62	3.79	3.17	5.65	3.75	5.67	4.68	5.02	5.24	6.95	6.00	5.50	Cap	ending persh	5.00				
8.17	8.40	9.11	10.11	10.72	12.48	12，90	13.99	13.66	13.75	14.20	14.71	15.92	17.75	18.83	20.61	21.20	21.60	Bool	lue per sh	23.90				
18.27	18，27	18.27	18.27	18.27	18.28	18，36	18.18	18.50	18.55	18.59	18.67	20.17	20.29	20.38	20.46	21.00	22，00	Com	Shs Outst＇g ${ }^{\text {c }}$	23.00				
18.5	17.3	15.4	19.6	19.7	23.5	33.4	26.2	28.7	29.1	21.2	20.4	24.3	11.2	16.6	15.7	Bold fig	ures are	Avg	＇I PIE Ratio	22.0				
． 95	． 94	． 88	1.04	1.05	1.27	1.77	1.58	1.91	1.85	1.33	1.30	1.37	． 59	． 84	． 83	Value	Line	Relativ	PIE Ratio	1.40				
3．0\％	3．4\％	3．5\％	3．0\％	2．4\％	2．0\％	1．7\％	2．3\％	2．8\％	2．8\％	2．5\％	3．6\％	2．7\％	2．6\％	2．5\％	2．0\％	－stim	ates	Avg Ar	＇l Div＇d Yield	1．7\％				
CAPITAL STRUCTURE as of 6／30／17 Total Debt $\$ 430.9$ mill．Due in 5 Yrs $\$ 14.3$ mill． LT Debt $\$ 430.9$ mill．LT Interest $\$ 20.0$ mill． （ $50 \%$ of Cap＇l）						206.6	220.3	216.1	215.6	239.0	261.5	276.9	319.7	305.1	339.7	360	370	Reve	es（\＄mill）	475				
						19.3	20.2	15.2	15.8	20.9	22.3	23.5	51.8	37.9	52.8	51.0	57.0	Net P	住（\＄mill）	69.0				
						39．4\％	39．5\％	40．4\％	38．8\％	41．1\％	41．1\％	38，7\％	32．5\％	38，1\％	38，8\％	39，0\％	39．0\％	Incom	Tax Rate	39．0\％				
						2．7\％	2．3\％	2．0\％	－－	－－	－－	－－	－－	2．0\％	1．0\％	1．5\％	1．5\％	AFUDC	\％to Net Profit	1．5\％				
Leases，Uncapitalized：Annual rentals \＄6．6 mill．						47．7\％	46．0\％	49．4\％	53．7\％	56．6\％	55．0\％	51．1\％	51．6\％	49．8\％	50．7\％	49．0\％	48．5\％	Long	rm Debt Ratio	49．0\％				
						52．3\％	54．0\％	50．6\％	46．3\％	43．4\％	45．0\％	48．9\％	48．4\％	50．2\％	49．3\％	51．0\％	51．5\％	Comm	Equity Ratio	51．0\％				
$\begin{aligned} & \text { Pension Assets－12／16 } \\ & \\ & \text { Prd } \\ & \text { Oblig．}\end{aligned}$						453.2	470.9	499.6	550.7	607.9	610，2	656.2	744，5	764.6	855．0	870	925	Tota	pital（\＄mill）	1075				
						645.5	684.2	718.5	785.5	756.2	831.6	898.7	963.0	1036，8	1146.4	1200	1250	Net P	t（\＄mill）	1325				
Pfd Stock None．						5．7\％	5．8\％	4．4\％	4．3\％	4．9\％	5．8\％	5．0\％	8．3\％	6．3\％	7．4\％	7．0\％	7．5\％	Retur	on Total Cap＇l	7．5\％				
Common Stock 20，506，494 shs．						8．2\％	8．0\％	6．0\％	6．2\％	7．9\％	8．1\％	7．3\％	14．4\％	9．9\％	12．5\％	11．5\％	12．0\％	Retur	on Shr．Equity	12．5\％				
						8．2\％	8．0\％	6．0\％	6．2\％	7．9\％	8，1\％	7，3\％，	14．4\％	9．9\％	12．5\％	11．5\％	12．0\％	Return	on Com Equity	12．5\％				
MARKET CAP：$\$ 1.2$ billion（Mid Cap）						3．5\％	3．3\％	1．2\％	1．2\％	3．1\％	3．3\％	2．8\％	10．2\％	5．7\％	8．6\％	7．5\％	7．5\％	Retained to Com Eq All Div＇ds to Net Prof		8．0\％				
CURRENT POSITION （SMILL．）			$2015$	$20166 / 30 / 17$		57\％	59\％	80\％	80\％	61\％	59\％	62\％	29\％	42\％	31\％	36\％	36\％			37\％				


Cash Assets	5.2	25.3	9.2
Accts Receivable	16.4	16.4	20.6
Other	51.8	57.9	43.1
	73.4	99.6	72.9
Current Assets	16.2	18.7	27.1
Accts Payable	38.1	14.3	-5
Debt Due	25.3	30.6	43.3
Other	79.6	63.6	70.4


ANNUAL RATES   of change（per sh）   Revenues   ＂Cash Flow＂   Eamings   Dividends   Book Value		Past $10 \mathrm{Yrs}$. $5.0 \%$ $7.0 \%$ $8.0 \%$ $4.0 \%$ $5.5 \%$	Past Est＇d＇14＇－16   5 Yrs． to 20 －22   $5.5 \%$ $4.5 \%$   $12.0 \%$ $3.0 \%$   $20.5 \%$ $4.5 \%$   $3.0 \%$ $6.0 \%$   $6.5 \%$ $4.0 \%$		
Cal－ endar	$\text { Mar, } 31$	$\text { Jun. } 30$	Sep．	$\text { Dec. } 31$	Full Year
2014	54.6	70.4	125.4	69.3	．
2015	62.1	72.4	83.0	87.6	05.1
2016	61.1	86.9	112.3	79.4	339.7
2017	69.0	102.1	102	87.0	360
2018	70.0	105	105	90.0	70
Cal－ endar	$\text { Mar. } 31$	$\begin{aligned} & \text { RNINGS P } \\ & \text { Jun. } 30 \end{aligned}$		$\text { ec. } 31$	Full   Year
2014	． 04	． 34	1.88	． 28	2.54
2015	． 23	． 36	． 46	． 80	1.85
2016	． 16	． 82	． 92	． 67	2.57
2017	． 18	． 90	． 75	． 62	2.45
2018	． 27	． 88	． 80	． 65	280
Cal－ endar	$\begin{aligned} & \text { QUAR } \\ & \text { Mar. } 31 \end{aligned}$	TERLY DN   Jun． 30	DENDS Sep． 30	$\begin{aligned} & \text { ID } \mathbf{B}_{\mathrm{E}} \\ & \mathrm{Dec}_{3} .31 \end{aligned}$	Full Year
2013	． 1825	． 1825	． 1825	.1825	.73
2014	． 1875	． 1875	． 1875	． 1875	.75
2015	． 1950	． 1950	． 1950	.1950	． 78
2016	． 2025	． 2025	． 2025	． 2025	． 81
2017	． 2175	． 2175	． 2175		

BUSINESS：SJW Group engages in the production，purchase，
storage，purification，distribution，and retail sale of water，It provides water service to approximately 229,000 connections with a total population of roughly one million people in the San Jose area and 13,000 connections that reaches about 39,000 residents in the re－ gion between San Antonio and Austin，Texas．The company also
SJW Group is making a change at the helm．Current President and Chief Execu－ tive Officer Richard Roth announced his retirement effective November 5th．The hoard of directors has appointed Eric W． Thornburg as a replacement for both posi－ tions，as well as a new board member．Mr． Roth will also step down as Chairman，but will serve until the next annual stock－ holder＇s meeting．
The second－quarter performance was better than expected．SJW dclivered im－ pressive financial results during the June period，underpinned by cumulative rate in－ creases and higher recordings in its water conservation memorandum account．Cus－ tomer water usage also ramped up in the period．All told，revenues of $\$ 102$ million rose $17 \%$ from the previous－year tally． Meanwhile，water production and operat－ ing costs edged higher，but the company managed to report earnings of $\$ 0.90$ a share．Note，there was a one－time gain on the sale of real estate assets．Still，the bot－ tom line would have exceeded our expecta－ tions．
Our financial projections are being raised across the board．We have added
offers nonregulated water－related services and owns and operates commercial real estate investments．Has about 406 employees．Of－ ficers and directors（including Nancy O．Moss）own 26．9\％of out－ standing shares（3117 proxy）．Chaiman \＆C．E．O．：Richard Roth． Inc．：Califomia．Address： 110 West Taylor Street，San Jose，CA 95110．Telephone：（409）279－7800．Internet：www．sjwater．com．
$\$ 0.25$ to our current－year earnings es－ timate，to $\$ 2.45$ a share mainly owing to the recent quarter＇s beat．For 2018，we now look for share net of $\$ 2.60(+\$ 0.25)$ ． Revenues for this year and next are being ratcheded up by $\$ 15$ million and $\$ 20$ mil－ lion，to $\$ 360$ million and $\$ 370$ million， respectively．
Capital spending ought to be a key growth driver further out．Year to date， SJW has invested $\$ 62$ million，and will likely allocate more funds to its Montevina project this year．On balance，only a small dent has been made in its $\$ 300$ million spending budget．Lastly，the company ought to get a better handle on its operat－ ing costs，which should provide a modest boost to margins down the road．
SJW Group stock does not jump out at us at the current quotation．Shares of the San Jose utility have surged almost 15\％in value since our July review．Even after raising our 2020－2022 Target Price Range，the issue presents lackluster total return potential over the long haul．More－ over，the dividend yield is below the Value line median
Nicholas P．Patrikis
October 13， 2017
（A）Diluted eamings．Excludes nonrecurring November．Quarterly eamings may not add $^{\text {vestment plan available．}}$
losses：＇03，\＄1．97；＇04，\＄3．78；＇05，\＄1．09；＇06，
\＄16．36；＇08，\＄1．22；＇＇10，\＄0．46．GAAP account－
due to rounding
（B）Dividends historically paid in early March，
（C）In millions，adjusted for stock splits． ing as of 2013．Next eamings report due late June，September，and December．a Div＇d reir－
－ 2017 Value Line，Inc．All rights reserved，Factual material is oblained from soluces believed to be reliable and is provided wilhout warranties of any kind． THE PUBLISHER IS NOT RESPONSIELE FOR ANY ERRORS OR OMISSIONS HEREIN．This publication is stricty for subscriber＇s own，non－commercial，inlernal use No part of it may be reproduced，resodd，stored or transmitted in any printed，electronic or other form，or used for generating or marketing any prinled or electronic pubication，sevice or product

## Company＇s Financial Strength <br> Stock＇s Price Stability <br> Price Growth Persisttince <br> Eamings Predictablilty

YORK WATER NDQ-YORW								$\begin{aligned} & \text { RECENT } \\ & \text { PRICE } \end{aligned}$	$35 .$	$\left.\begin{array}{l} \text { PFE } \\ \text { RATIO 3A, } 4 \text { (Trailing: } 37,7 \\ \text { Median: } 24,0 \end{array}\right)$				$\begin{aligned} & \text { RELATIVE } \\ & \text { PPIE RATIO } \end{aligned} 1.72$		$\text { ONND } 1.8 \%$			VALUE LINE	
TIMELINESS $\mathbf{4}$ Lowered 8/25/17    SAFETY 3 Lowered 717/15   TECHNICAL 2 Raised 10/13117    BETA $.80 \quad(1.00$ = Market)				High: Low;	21.0 15.3	18.5   15.5	16.5 6.2	18.0 9.7	$\begin{aligned} & 18.0 \\ & 12.8 \end{aligned}$	$\begin{aligned} & 18.1 \\ & 15.8 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 16.8 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 17.6 \end{aligned}$	$\begin{aligned} & 24.3 \\ & 18.8 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 19.7 \end{aligned}$	$\begin{aligned} & 39.8 \\ & 23.8 \end{aligned}$	$\begin{aligned} & 19.9 \\ & 31.7 \end{aligned}$			$\begin{aligned} & \text { Target Pri } \\ & 2020 \mid 20 \end{aligned}$	Range \|2022
																				2022
																64 48 40				
2020-22 PROJECTIOMS       Price Galn    AnN ITotal      Heturn      High 40 $(+15 \%)$    Low 25 $(-30 \%)$																阶110				32
																				24
												, 1 相	+4	11						20
											!									16
																				12
				Percent shares traded															RETURN 9/17	
Institutlonal Decisions																			THS VLARTH	
to Bry	$\begin{array}{r} 422216 \\ 46 \end{array}$	102017 38																	$\begin{array}{cc}\text { stock } \\ 16.3 & \text { Moex } \\ 16.4\end{array}$	
to sall	34	33																3 yr .	80.9318 .5	
	4284	5127	5206					dil				-11101111				Illl		5 yr .	107.488 .9	
2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	@ VAL	UE LINE PUB, LLC	20-22
2.05	2.05	2.17	2.18	2.58	2.56	2.79	2.89	2.95	3.07	3.18	3.21	3.27	3.58	3.68	3.70	3.90	4.10	Reve	es per sh	5.65
. 59	. 57	. 65	. 65	. 79	. 77	. 86	. 88	. 95	1.07	1.08	1.12	1.19	1.36	1.45	1.42	7.60	1.65	"Cash F	low ${ }^{\text {p }}$ per sh	2.05
. 43	. 40	. 47	. 49	. 56	. 58	. 57	. 57	. 64	. 71	. 71	. 72	. 75	. 89	. 97	. 92	4.00	1.05	Earning	persh ${ }^{\text {A }}$	1.40
. 34	. 35	. 37	. 39	. 42	. 45	. 48	. 49	. 51	. 52	. 53	. 54	. 55	. 57	. 60	. 63	. 66	. 70	Div'd	cl'd per sh B	. 80
. 75	. 66	1.07	250	1.69	1.85	1.59	2.17	1.18	. 83	. 74	. 94	. 76	1.10	1.11	1.03	1.50	1.25	Cap'IS	ending per sh	. 85
3.79	3.90	4.06	4.65	4.85	5.84	5.97	6.14	6.92	7.19	7.45	7.73	7.98	8.15	8.51	8.88	2.15	9.55	Book	lue per sh	11.00
9.46	9.55	9.63	10.33	10.40	11.20	11.27	11.37	12.56	12.69	12.79	12.92	12.98	12.83	12.81	12.85	12.90	12.75	Commo	Shs Outst'g ${ }^{\text {c }}$	12.00
17.8	26.9	24.5	25.7	26.3	31.2	30.3	24.6	21.9	20.7	23,9	24.4	26.3	23.1	23.5	32.8	Bold fil	\%	Avg A	1 PIE Ratio	22.5
. 91	1.47	1.40	1.36	1.40	1.68	1.61	1.48	1.46	1.32	1.50	1.55	1.48	1.22	1.18	1.72			Relative	PIE Ratio	1.40
4.4\%	3.3\%	3.2\%	3.1\%	2.9\%	2.5\%	2.8\%	3.5\%	3.6\%	3.5\%	3.1\%	3.1\%	2.8\%	2.8\%	2.6\%	2.1\%	estim		Avg Ann	'l Div'd Yield	2.8\%
CAPITAL STRUCTURE as of B/30/17   Total Debt $\$ 88.2$ mill. Due in 5 Yrs $\$ 30.5$ mill.   LT Debt $\$ 88.2$ mill. LT Interest $\$ 5.4$ mill.						31.4	32.8	37.0	39.0	40.6	41.4	42.4	45.9	47.1	47.6	50.0	52.0	Reven	es (\$mill)	68.0
						6.4	6.4	7.5	8.9	9.1	9.3	9.7	11.5	12.5	11.8	13.0	13.5	Net Pr	it (\$mill)	17.0
						36.5\%	36.1\%	37.9\%	38.5\%	35.3\%	37.6\%	37.6\%	29.8\%	27.5\%	31.3\%	29.0\%	30.0\%	Income	Tax Rate	34.5\%
(43\% of Cap'l)						3.6\%	10.1\%		1.2\%	1.1\%	1.1\%	.8\%	1.8\%	1.6\%	1.9\%	1.5\%	1.5\%	AFUDC	\% to Net Profit	1.0\%
Pension Assets $12 / 16 \$ 35,5$ mill. Oblig. $\$ 40.8$ mill.						46.5\%	54.5\%	45.7\%	48.3\%	47.1\%	46.0\%	45.1\%	44.8\%	44.4\%	42.6\%	43.5\%	44.0\%	Long-Te	mm Debt Ratio	45,0\%
						53.5\%	45.5\%	54.3\%	51.7\%	52.9\%	54.0\%	54.9\%	55.2\%	55.6\%	57.4\%	56.5\%	56.0\%	Comm	n Equity Ratio	55.0\%
Pfd Stock None						125.7	153.4	160.1	176.4	180.2	184.8	188.4	189.4	196.3	198.7	210	215	Total Ca	pital (\$mill)	240
						191.6	211.4	222.0	228.4	233.0	240.3	244.2	253.2	261.4	270.9	275	280	Net Plan	(\$mill)	295
Common Stock 12,845,000 shs.						6.7\%	5.7\%	6.2\%	6.5\%	6.4\%	6.4\%	6.5\%	7.4\%	7.6\%	7.2\%	7.5\%	7.5\%	Retum	on Total Cap'l	8.0\%
						9.5\%	9.2\%	8.6\%	9.8\%	9.5\%	9.3\%	9.3\%	11.0\%	11.5\%	10.4\%	11.0\%	11.0\%	Return	on Shr. Equity	12.5\%
MARKET CAP: \$450 million (Small Cap)						9.5\%	9.2\%	8.6\%	8.8\%	9.5\%	9,3\%	9.3\%	11.0\%	11.5\%	10.4\%	11.0\%	11.0\%	Return	on Com Equity	12.5\%
CURRENT POSTTION 2015 2016 5/30/17   (SMILL) 2.9 4.2 --						1.7\%	1.4\%	1.9\%	2.7\%	2.5\%	2.4\%	2.4\%	3.9\%	4.4\%	3.4\%	4.0\%	3.5\%	Retain	Com Eq	4.5\%
						82\%	85\%	78\%	72\%	73\%	74\%	74\%	64\%	62\%	67\%	66\%	67\%	All Div	to Net Prof	84\%

Cash Assets
Accounts Receivable
Inventory (Avg. Cost) Other
Current Assets
Accts Payable
Debt Due
Other
Other
Current Liab.

ANNUAL RATES of change (per sh)   Revenues "Cash Flow" Earnings Dividends Book Value		Past $10 Y$ Yrs. 4.0 6.5 $5.5 \%$ $3.5 \%$ $5.0 \%$		$\begin{aligned} & \text { 1st Est' } \\ & \text { Ist } \\ & .5 \% \\ & .5 \% \\ & \hline .0 \% \\ & .0 \% \\ & .5 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 144^{216} \\ & 10-22 \\ & .5 \% \\ & .0 \% \\ & .0 \% \\ & .5 \% \end{aligned}$
Cal-endar	QUARTERLY REVENUES (\$ milli)				Full Year
	Mar. 31	Jun. 30	Sep. 30	Dec. 31	
2014	10.6	11.8	12.0	11.5	45.9
2015	11.2	11.9	12.4	11.6	47.1
2016	11.3	11.8	12.6	11.9	47.6
2017	11.3	12.3	13.4	13.0	50.0
2018	12.2	12.7	13.8	13.3	52.0
Cal-	EARNINGS PER SHARE A Mar. 31 Jun. 30 Sep. 30 Dec. 31				$\begin{aligned} & \text { Full } \\ & \text { Year } \end{aligned}$
2014	. 16	. 22	. 23	. 28	89
2015	. 20	. 22	. 28	. 27	97
2016	. 19	. 23	. 27	. 23	. 92
2017	. 20	. 23	. 29	. 28	1.00
2018	. 22	. 24	. 30	. 29	1.05
-	QUARTERLY DMIDENDS PAID ${ }^{\text {a }}$				
endar	Mar.31	Jun. 30	Sep. 30	Dec. 31	Year
2013	. 138	. 138	. 138	. 138	. 552
2014	. 1431	. 1431	. 1431	. 1431	. 572
2015	. 1495	1495	. 1495	. 1555	. 604
2016	. 1555	. 1555	. 1555	. 1602	. 627
2017	. 6602	. 1602	. 1602		

## 0 change (per sh) 10 Yrs.

Revenues
"Cash Flow Earnings Book Value

2.9	4.2	$-=$
3.5	4.3	4.2
.8	3.7	3.8
4.6	3.4	3.4
	11.8	8.4
1.8	3.7	5.1
.7	-7	.-
4.4	4.5	4.7
	8.2	9.8

regulated water utility in the United States. It has operated continuously since 1816. As of December 31, 2016, the company's average daily availability was 35.4 million gallons and its service territory had an estimated population of 196,000. Has more than 67,000 customers. Residential customers accounted for $63 \%$ of 2016 reve-
Shares of York Water are trading at levels seen three months prior. It has been a relatively quiet summer for the Pennsylvania-based regulated water utility, as the stock price has been somewhat rangebound.
Second-quarter financial results were a mixed bag. Revenues of $\$ 12.3$ million were in line with our expectations, with help from recent acquisitions and higher surcharges. But the annual jump in revenues did not directly translate to an in crease in earnings. Operating expenses, namely maintenance and administrative, rose substantially to almost $39 \%$ of total revenues $(+240$ basis points year over year). Consequently, share net of $\$ 0.23$ was flat compared to the like-2016 figure. We are scaling back our 2017 and 2018 share-net estimates accordingly. Due to the rise in operating costs, we are lowering our current-year profit forecast by $\$ 0.03$, to $\$ 1.00$ a share. Meanwhile, our 2018 earnings estimate is being reduced by $\$ 0.05$, to $\$ 1.05$ a share.
Ensuing benefits from capital ex-
penditures should help offset the uptick in operating costs (lower effec-
nues; commercial and industrial ( $29 \%$ ); other ( $8 \%$ ). It also provides sewer billing services. Incorporated: PA. York had 105 full-time employees at 12/31116. President/CED: Jeffey R. Hines. Officers/directors own $1.1 \%$ of the common stock (3117 proxy). Aodress: 130 East Markel Street, York, Pennsylvania 17401. Telephone: (717) 845-3601. Internet: www.yorkwater.com.
tive tax rate). York ought to continue to benefit on the tax front thanks to higher maintenance and repair deductions. Year-to-date spending is already $180 \%$ above last year's tally. For the remainder of 2017, York estimates an additional $\$ 9$ million in capital investment on water mains and various infrastructure upgrades. Overall, our model projects top- and bottom-line advances of $5 \%$ and $9 \%$ this year, and $4 \%$ and $5 \%$ in the next, respectively.

## This issue holds limited investment

 appeal, at the moment. The stock is an unfavorable selection for relative yearahead price performance (Timeliness: 4). And from a price-to-earnings perspective, the recent valuation is a bit lofty, in our view. Although York's track record of dividend payout increases is second to none, the current yield is nothing to write home about. Indeed, the recent price surge has pushed the yield below $2.0 \%$, fractionally below the broader market average. All told, those looking to gain exposure to the regulated water utility space will probably find more attractive options elsewhere.Nicholas P. Patrikis
October 13, 2017

## Carolina Water Service, Inc, of South Carolina

Summary of Risk Premium Models for the Proxy Group of Eight Water Companies

Proxy Group of<br>Eight Water<br>Companies

Notes:
(1) From page 2 of this Schedule.
(2) From page 3 of this Schedule.


Carolina Water Service, Inc. of South Carolina Interest Rates and Bond Spreads for Moody's Corporate and Public Utility Bonds

Selected Bond Yields
[1] [2]
[3]
$\left.\begin{array}{ccccc} & \begin{array}{c}\text { Aaa Rated } \\ \text { Corporate Bond }\end{array} & & \begin{array}{c}\text { A Rated Public } \\ \text { Utility Bond }\end{array} & \end{array} \begin{array}{c}\text { Baa Rated Public } \\ \text { Utility Bond }\end{array}\right]$

Selected Bond Spreads

A Rated Public Utility Bonds Over Aaa Rated Corporate Bonds:

$$
0.25 \%(1)
$$

Baa Rated Public Utility Bonds Over A Rated Public Utility Bonds:

$$
0.37 \%(2)
$$

Notes:
(1) Column [2] - Column [1].
(2) Column [3] - Column [2].

Source of Information:
Bloomberg Professional Service

## Carolina Water Service, Inc. of South Carolina <br> Comparison of Long-Term Issuer Ratings for Proxy Group of Eight Water Companies



Notes:
(1) From page 6 of this Schedule.
(2) Ratings that of Golden State Water Company.
(3) Ratings that of New Jersey and Pennsylvania American Water Companies.
(4) Ratings that of Aqua Pennsylvania, Inc.
(5) Ratings that of California Water Service Company.
(6) Ratings that of Connecticut Water Company.
(7) Ratings that of San Jose Water Company.

Source Information: Moody's Investors Service
Standard \& Poor's Global Utilities Rating Service

Carolina Water Service, Inc. of South Carolina Judgment of Equity Risk Premium for Proxy Group of Eight Water Companies

Line
No.

1. Calculated equity risk premium based on the total market using the beta approach (1)
$5.87 \%$
2. Mean equity risk premium based on a study using the holding period returns of public utilities with A rated bonds (2)
3. Average equity risk premium


# Carolina Water Service. Inc. of South Carolina 

Derivation of Equity Risk Premium Based on the Total Market Approach Using the Beta for the
Proxy Group of Eight Water Companies

Notes:
(1) Based on the arithmetic mean historical monthly returns on large company common stocks from Ibbotson $®$ SBBI $® 2017$ Market Report minus the arithmetic mean monthly yield of Moody's average Aaa and Aa corporate bonds from 1926-2016.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of large company common stocks relative to Moody's average Aaa and Aa rated corporate bond yields from 1928-2016 referenced in Note 1 above.
(3) The Predictive Risk Premium Model (PRPM) is discussed in the accompanying direct testimony. The Ibbotson equity risk premium based on the PRPM is derived by applying the PRPM to the monthly risk premiums between Ibbotson large company common stock monthly returns and average Aaa and Aa corporate monthly bond yields, from January 1928 through September 2017.
(4) The equity risk premium based on the Value Line Summary and Index is derived by subtracting the average consensus forecast of Aaa corporate bonds of $4.61 \%$ (from page 3 of this Schedule) from the projected 3-5 year total annual market return of $9.45 \%$ (described fully in note 1 on page 2 of Schedule DWD-5).
(5) Using data from Value Line for the S\&P 500, an expected total return of $14.30 \%$ was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of $4.61 \%$ results in an expected equity risk premium of $9.69 \%$.
(6) Using data from the Bloomberg Professional Service for the S\&P 500, an expected total return of $13.92 \%$ was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of $4.61 \%$ results in an expected equity risk premium of $9.31 \%$.
(7) Average of lines 4, 7, and 8.
(8) Average of mean and median beta from Schedule DWD-5.

Sources of Information:
Stocks, Bonds, Bills, and Inflation - 2017 SBBI Yearbook, John Wiley \& Sons, Inc.
Industrial Manual and Mergent Bond Record Monthly Update.
Value Line Summary and Index
Blue Chip Financial Forecasts, October 1, 2017 and June 1, 2017
Bloomberg Professional Service

Consensus Forecasts Of U.S. Interest Rates And Key Assumptions ${ }^{1}$


Forecasts for interest rates and the Federal Reserve's Major Currency Index represent averages for the quarter. Forecasts for Real GDP, GDP Price Index and Consumer Price Index are seasonally-adjusted annual rates of change (saar). Individual panel members' forecasts are on pages 4 through 9. Historical data: Treasury rates from the Federal Reserve Board's H.15; AAA-AA and A-BBB corporate bond yields from Bank of America-Merrill Lynch and are 15+ years, yield to maturity: State and local bond yields from Bank of America-Merrill Lynch, A-rated, yield to maturity; Mortgage rates from Freddie Mac, 30-year, fixed; LIBOR quotes from Intercontinental Exchange. All interest rate data is sourced from Haver Analytics. Historical data for Fed's Major Currency Index is from FRSR H.10. Historical data for Real GDP and GDP Chained Price Index are from the Bureau of Economic Analysis (BEA). Consumer Price Index (CPI) history is from the Department of Labor's Bureau of Labor Statistics (BLS). Intercst rate data for $3 Q$ 2017 based on historical data through the week ended September 22 ${ }^{\text {nd }}$. Data for 322017 Major Currency Index is based on data through week ended September $22^{\text {nit }}$. Figures for $3 Q 2017$ Real GDP, GDP Chained Price Index and Consumer Price Index are consensus forecasts based on a special question asked of the panelists' this month.


## Long-Range Survey:

The table below contains the results of our twice-annual long-range CONSENSUS survey. There are also Top 10 and Bottom 10 averages for each variable. Shown are consensus estimates for the years 2019 through 2023 and averages for the five-year periods 2019-2023 and 2024-2028. Apply these projections cautiously. Few if any economic, demographic and political forces can be evaluated accurately over such long time spans.

Interest Rates		-Average For The Year					Five-Year Averages	
		2019	2020	2021	2022	2023	2019-2023	2024-2028
1. Federal Funds Rate	CONSENSUS	2.6	2.9	2.9	2.9	2.9	2.8	3.0
	Top 10 Average	3.1	3.5	3.4	3.5	3.5	3.4	3.5
	Bottom 10 Average	2.0	2.3	2.3	2.3	2.4	2.3	2.4
2. Prime Rate	CONSENSUS	5.6	5.9	5.9	5.9	5.9	5.8	6.0
	Top 10 Average	6.1	6.5	6.5	6.5	6.5	6.4	6.5
	Bottom 10 Average	5.0	5.3	5.3	5.2	5.3	5.2	5.4
3. LIBOR, 3-Mo.	CONSENSUS	2.9	3.1	3.2	3.1	3.2	3.1	3.2
	Top 10 Average	3.4	3.7	3.7	3.7	3.8	3.7	3.8
	Bottom 10 Average	2.4	2.6	2.6	2.5	2.6	2.5	2.6
4. Commercial Paper, 1-Mo.	CONSENSUS	2.7	3.0	3.0	3.0	3.1	3.0	3.1
	Top 10 Average	3.2	3.5	3.5	3.6	3.6	3.5	3.6
	Bottom 10 A verage	2.2	2.5	2.5	2.4	2.5	2.4	2.6
5. Treasury Bill Yield, 3-Mo.	CONSENSUS	2.5	2.8	2.8	2.8	2.9	2.8	2.9
	Top 10 Average	3.1	3.4	3.4	3.4	3.5	3.3	3.5
	Bottom 10 Average	1.9	2.2	2.3	2.2	2.3	2.2	2.3
6. Treasury Bill Yield, 6-Mo.	CONSENSUS	2.6	2.9	3.0	3.0	3.0	2.9	3.0
	Top 10 Average	3.2	3.6	3.5	3.6	3.6	3.5	3.6
	Bottom 10 Average	2.0	2.4	2.4	2.4	2.4	2.3	2.4
7. Treasury Bill Yield, 1-Yr.	CONSENSUS	2.8	3.1	3.1	3.1	3.1	3.0	3.2
	Top 10 Average	3.4	3.7	3.7	3.7	3.7	3.6	3.7
	Bottom 10 Average	2.1	2.5	2.5	2.5	2.5	2.4	2.5
8. Treasury Note Yield, 2-Yr.	CONSENSUS	2.9	3.2	3.3	3.3	3.3	3.2	3.3
	Top 10 Average	3.5	3.9	3.9	3.9	3.9	3.8	4.0
	Bottom 10 Average	2.3	2.6	2.7	2.6	2.6	2.6	2.7
10. Treasury Note Yield, 5-Yr.	CONSENSUS	3.3	3.5	3.5	3.6	3.6	3.5	3.6
	Top 10 Average	3.9	4.2	4.2	4.2	4.2	4.1	4.3
	Bottom 10 Average	2.7	2.9	2.9	3.0	3.0	2.9	3.0
11. Treasury Note Yield, 10-Yr.	CONSENSUS	3.6	3.8	3.8	3.9	3.9	3.8	3.9
	Top 10 Average	4.2	4.5	4.4	4.5	4.5	4.4	4.6
	Bottom 10 Average	2.9	3.1	3.1	3.2	3.3	3.1	3.3
12. Treasury Bond Yield, 30-Yr.	CONSENSUS	4.2	4.3	4.4	4.4	4.4	4.3	4.5
	Top 10 Average	4.9	5.0	5.0	5.0	5.0	5.0	5.1
	Bottom 10 Average	3.5	3.7	3.7	3.8	3.8	3.7	3.8
13. Corporate A a Bond Yield	CONSENSUS	5.2	5.4	5.4	5.4	5.5	5.4	5.5
	Top 10 Average	5.7	5.9	5.9	6.0	5.9	5.9	6.0
	Bottom 10 Average	4.7	4.9	4.9	4.9	5.0	4.9	5.1
13. Corporate Baa Bond Yield	CONSENSUS	6.1	6.3	6.3	6.3	6.3	6.3	6.4
	Top 10 Average	6.8	7.0	6.9	7.0	6.9	6.9	7.0
	Bottom 10 Average	5.5	5.6	5.7	5.6	5.8	5.6	5.7
14. State \& Local Bonds Yield	CONSENSUS	4.6	4.7	4.7	4.7	4.7	4.7	4.8
	Top 10 Average	5.1	5.3	5.2	5.3	5.3	5.2	5.3
	Bottom 10 Average	4.2	4.2	4.2	4.1	4.1	4.2	4.2
15. Home Mortgage Rate	CONSENSUS	5.3	5.5	5.5	5.5	5.5	5.4	5.6
	Top 10 Average	5.9	6.2	6.1	6.2	6.1	6.1	6.2
	Bottom 10 Average	4.6	4.8	4.8	4.7	4.9	4.8	4.9
A. FRB - Major Currency Index	CONSENSUS	93.8	93.2	93.1	93.0	92.7	93.2	92.5
	Top 10 Average	96.5	96.6	96.9	97.1	97.2	96.9	97.1
	Bottom 10 Average	91.0	89.7	89.2	88.7	88.1	89.3	88.1
			Year-0	r-Year,	Chang		Five-Ye	verages
		2019	2020	2021	2022	2023	2019-2023	2024-2028
B. Real GDP	CONSENSUS	2.2	2.0	2.0	2.0	2.0	2.0	2.1
	Top 10 Average	2.6	2.4	2.4	2.4	2.3	2.4	2.3
	Bottom 10 Average	1.7	1.6	1.6	1.6	1.6	1.6	1.8
C. GDP Chained Price Index	CONSENSUS	2.2	2.1	2.1	2.0	2.0	2.1	2.0
	Top 10 Average	2.5	2.3	2.3	2.2	2.2	2.3	2.3
	Bottom 10 Average	1.9	1.9	1.9	1.9	1.7	1.8	1.9
D. Consumer Price Index	CONSENSUS	2.3	2.3	2.3	2.3	2.2	2.2	2.2
	Top 10 Average	2.6	2.6	2.5	2.5	2.4	2.5	2.4
	Bottom 10 Average	1.9	2.0	2.0	2.1	1.8	2.0	2.0

# KyPSC Case No. 2021-00190 <br> STAFF-DR 6 cheald <br> Page 12Page 68 of 82 

Carolina Water Service. Inc. of South Carolina<br>Derivation of Mean Equity Risk Premium Based Studies<br>Using Holding Period Returns and<br>Projected Market Appreciation of the S\&P Utility Index



1. Historical Equity Risk Premium
2. 

Regression of Historical Equity Risk Premium (2)

Implied Equity Risk   Premium
$3.96 \%$
5.59
3.96
$4.50 \%$

Equity Risk Premium based on Projected Market Appreciation of the S\&P Utility Index

Forecasted Equity Risk Premium based on Projected Total Return on the S\&P Utilities Index (Value Line Data) (4)

Forecasted Equity Risk Premium based on
6. Projected Total Return on the S\&P Utilities Index (Bloomberg Data) (5)

Average Equity Risk Premium (6)
$4.15 \%$

Notes: (1) Based on S\&P Public Utility Index monthly total returns and Moody's Public Utility Bond average monthly yields from 1928-2016. Holding period returns are calculated based upon income received (dividends and interest) plus the relative change in the market value of a security over a one-year holding period.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of the S\&P Utility Index relative to Moody's A rated public utility bond yields from 1928-2016 referenced in note 1 above.
(3) The Predictive Risk Premium Model (PRPM) is applied to the risk premium of the monthly total returns of the S\&P Utility Index and the monthly yields on Moody's A rated public utility bonds from January 1928 - September 2017.
(4) Using data from Value Line for the S\&P Utilities Index, an expected return of $9.06 \%$ was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the expected A rated public utility bond yield of $4.86 \%$, calculated on line 3 of page 3 of this Schedule results in an equity risk premium of $4.20 \%$. $(9.06 \%-4.86 \%=4.20 \%)$
(5) Using data from Bloomberg Professional Service for the S\&P Utilities Index, an expected return of $8.60 \%$ was derived based on expected dividend yields and longterm growth estimates as a proxy for market appreciation. Subtracting the expected A rated public utility bond yield of $4.86 \%$, calculated on line 3 of page 3 of this Schedule results in an equity risk premium of $3.74 \%$. $(8.60 \%-4.86 \%=3.74 \%)$
(6) Average of lines 4 through 6.

Notes on page 2 of this Schedule.

# KyPSC Case No. 2021-00190 <br>  <br> Page Eage 70 of 82 

## Carolina Water Service. Inc. of South Carolina <br> Notes to Accompany the Application of the CAPM and ECAPM

Notes:
(1) The market risk premium (MRP) is derived by using six different measures from three sources: lbbotson, Value Line, and Bloomberg as illustrated below:

Historical Data MRP Estimates:
Measure 1: Ibbotson Arithmetic Mean MRP (1926-2016)
Arithmetic Mean Monthly Returns for Large Stocks 1926-2016: Arithmetic Mean Income Returns on Long-Term Government Bonds:
MRP based on Ibbotson Historical Data:
$11.97 \%$
5.17
$6.80 \%$

Measure 2: Application of a Regression Analysis to Ibbotson Historical Data (1926-2016)

Fourth Quarter 2017	2.90 \%
First Quarter 2018	3.10
Second Quarter 2018	3.30
Third Quarter 2018	3.40
Fourth Quarter 2018	3.50
First Quarter 2019	3.60
2019-2023	4.30
2024-2028	4.50
	$3.58 \%$

(3) Average of Column 6 and Column 7.

## Sources of Information:

Value Line Summary and Index
Blue Chip Financial Forecasts, October 1, 2017 and June 1, 2017
Stocks, Bonds, Bills, and Inflation - 2017 SBBI Yearbook, John Wiley \& Sons, Inc.
Bloomberg Professional Services

Carolina Water Service, Inc. of South Carolina<br>Basis of Selection of the Group of Non-Price Regulated Companies<br>Comparable in Total Risk to the Utility Proxy Group

The criteria for selection of the proxy group of twenty-eight non-price regulated companies was that the non-price regulated companies be domestic and reported in Value Line Investment Survey (Standard Edition).

The proxy group of twenty-eight non-price regulated companies were then selected based on the unadjusted beta range of $0.37-0.77$ and residual standard error of the regression range of $2.4240-2.8912$ of the water proxy group.

These ranges are based upon plus or minus two standard deviations of the unadjusted beta and standard error of the regression. Plus or minus two standard deviations captures $95.50 \%$ of the distribution of unadjusted betas and residual standard errors of the regression.

The standard deviation of the water industry's residual standard error of the regression is 0.0860. The standard deviation of the standard error of the regression is calculated as follows:

Standard Deviation of the Std. Err. of the Regr. = Standard Error of the Regression $\sqrt{2 N}$
where: $N=$ number of observations. Since Value Line betas are derived from weekly price change observations over a period of five years, $\mathrm{N}=259$

$$
\text { Thus, } 0.1168=\frac{2.6576}{\sqrt{518}}=\frac{2.6576}{22.7596}
$$

Carolina Water Service, Inc. of South Carolina<br>Basis of Selection of Comparable Risk<br>Domestic Non-Price Regulated Companies

	[1]	[2]	[3]	[4]
Proxy Group of Eight Water Companies	Value Line Adjusted Beta	Unadjusted Beta	Residual   Standard   Error of the   Regression	Standard   Deviation of Beta
American States Water Co.	0.80	0.62	2.7883	0.1032
American Water Works Company Inc	0.65	0.41	1.9968	0.0739
Aqua America Inc	0.70	0.54	2.1879	0.0810
California Water Service Group	0.80	0.63	2.6120	0.0967
Connecticut Water Service Inc	0.65	0.46	2.4195	0.0895
Middlesex Water Co.	0.80	0.64	2.9923	0.1107
SJW Corp	0.75	0.56	3.0548	0.1131
York Water Co.	0.80	0.68	3.2092	0.1188
Average	0.74	0.57	2.6576	0.0984
Beta Range ( $+/-2$ std. Devs. of Beta)	0.37	0.77		
2 std. Devs. of Beta	0.20			
Residual Std. Err. Range [ $+/-2$ std.				
Devs. of the Residual Std. Err.)	2.4240	2.8912		
Std. dev. of the Res. Std. Err.	0.1168			
2 std. devs. of the Res. Std. Err.	0.2336			

# KyPSC Case No. 2021-00190 <br> STAFF-DRe feadielpattachment 2 <br> Page Bage 73 of 82 

## Carolina Water Service, Inc. of South Carolina <br> Proxy Group of Non-Price Regulated Companies <br> Comparable in Total Risk to the <br> Proxy Group of Eight Water Companies

	[1]	[2]	[3]	[4]
Proxy Group of Twenty-Eight NonPrice Regulated Companies	VL Adjusted Beta	Unadjusted $\qquad$	Residual   Standard   Error of the   Regression	Standard Deviation of Beta
AmerisourceBergen	0.85	0.75	2.5531	0.0945
ARAMARK Holdings	0.85	0.77	2.4453	0.1022
AutoZone Inc.	0.80	0.64	2.4990	0.0925
Bright Horizons Fami	0.85	0.70	2.4558	0.0942
Cheesecake Factory	0.75	0.58	2.6263	0.0972
CBOE Holdings	0.70	0.50	2.5399	0.0940
Chemed Corp.	0.80	0.68	2.8556	0.1057
C.H. Robinson	0.85	0.70	2.6811	0.0992
CME Group	0.80	0.62	2.4557	0.0909
DineEquity Inc.	0.80	0.67	2.7737	0.1026
Dunkin' Brands Group	0.65	0.45	2.7843	0.1030
Darden Restaurants	0.85	0.76	2.7543	0.1019
Forrester Research	0.70	0.47	2.6503	0.0981
Hormel Foods	0.75	0.57	2.4428	0.0904
Lilly (Eli)	0.75	0.59	2.5230	0.0934
Mercury General	0.80	0.64	2.4716	0.0915
Vail Resorts	0.85	0.72	2.6041	0.0964
NVR, Inc.	0.85	0.70	2.4253	0.0898
Pinnacle Foods	0.80	0.68	2.5721	0.0998
Quintiles IMS Hldgs.	0.85	0.77	2.6073	0.1016
Regal Entertainment	0.85	0.75	2.7024	0.1000
Six Flags Entertainm	0.85	0.74	2.8322	0.1048
Spectrum Brands	0.85	0.72	2.8725	0.1063
Target Corp.	0.85	0.74	2.6959	0.0998
VeriSign Inc.	0.85	0.73	2.8219	0.1044
VWR Corp.	0.85	0.75	2.8069	0.1261
WD-40 Co.	0.85	0.70	2.4499	0.0907
West Pharmac. Svcs.	0.85	0.74	2.5450	0.0942
Average	0.81	0.67	2.6200	0.1000
Proxy Group of Eight Water				
Companies	0.74	0.57	2.6576	0.0984

Carolina Water Service, Inc. of South Carolina
Summary of Cost of Equity Models Applied to
Proxy Group of Twenty-Eight Non-Price Regulated Companies
Comparable in Total Risk to the
Proxy Group of Eight Water Companies

Principal Methods
I vay uivup ui
Twenty-Eight
Non-Price
Regulated
Companies

Discounted Cash Flow Model (DCF) (1) 13.57 \%

Risk Premium Model (RPM) (2)
11.91

Capital Asset Pricing Model (CAPM) (3)
11.15

Mean	12.21
Median	11.91
Average of Mean and Median	12.06

Notes:
(1) From page 2 of this Schedule.
(2) From page 3 of this Schedule.
(3) From page 6 of this Schedule.

# Carolina Water Service, Inc, of South Carolina <br> Indicated Common Equity Cost Rate <br> Through Use of a Risk Premium Model <br> Using an Adjusted Total Market Approach 

Line No.
Proxy Group of
Twenty-Eight Non-
Price Regulated
Companies

1.	Prospective Yield on Baa Rated   Corporate Bonds (1)	$5.36 \%$
2.	Equity Risk Premium (2)	6.55
3.	Risk Premium Derived Common   Equity Cost Rate	

Notes: (1) Average forecast of Baa corporate bonds based upon the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts dated October 1, 2017 and June 1, 2017 (see pages 10 and 11 of Schedule DWD4). The estimates are detailed below.

Fourth Quarter 2017	$4.50 \%$
First Quarter 2018	4.80
Second Quarter 2018	5.00
Third Quarter 2018	5.10
Fourth Quarter 2018	5.30
First Quarter 2019	5.50
2019-2023	6.30
2024-2028	
Average	

(2) From page 5 of this Schedule.

# KyPSC Case No. 2021-00190 <br> STAFF-DR $c$ cheall <br> Page Page 77 of 82 

Carolina Water Service, Inc. of South Carolina Comparison of Long-Term Issuer Ratings for the
Proxy Group of Twenty-Eight Non-Price Regulated Companies of Comparable risk to the Proxy Group of Eight Water Companies

	Moody's   Long-Term Issuer Rating October 2017		Standard \& Poor's Long-Term Issuer Rating October 2017	
	Long-	Numerical	Long-	
Non-Price Regulated	Issuer	Weighting	Issuer	Weighting
Companies	Rating	(1)	Rating	(1)
AmerisourceBergen	Baa2	9.0	A-	7.0
ARAMARK Holdings	NR	--	BB+	11.0
AutoZone Inc.	Baa1	8.0	BBB	9.0
Bright Horizons Fami	NR	--	NR	--
Cheesecake Factory	NR	--	NR	--
CBOE Holdings	Baa1	8.0	BBB+	8.0
Chemed Corp.	NR	--	NR	--
C.H. Robinson	NR	--	NR	--
CME Group	Aa3	4.0	AA-	4.0
DineEquity Inc.	NR	--	NR	--
Dunkin' Brands Group	NR	--	NR	--
Darden Restaurants	Baa3	10.0	BBB	9.0
Forrester Research	NR	--	NR	--
Hormel Foods	A1	5.0	A	6.0
Lilly (Eli)	A2	6.0	AA-	4.0
Mercury General	Baa2	9.0	NR	--
Vail Resorts	NR	--	NR	--
NVR, Inc.	Baa2	9.0	BBB+	8.0
Pinnacle Foods	NR	--	BB-	13.0
Quintiles IMS Hldgs.	NR	--	BBB-	10.0
Regal Entertainment	B3	16.0	BB-	13.0
Six Flags Entertainm	B2	15.0	BB	12.0
Spectrum Brands	NR	--	NR	--
Target Corp.	A2	6.0	A	6.0
VeriSign Inc.	Ba1	11.0	BB+	11.0
VWR Corp.	NR	--	BB-	13.0
WD-40 Co.	NR	--	NR	--
West Pharmac. Svcs.	NR	--	NR	--
Average	Baa2	8.9	BBB	9.0

Notes:
(1) From page 6 of Schedule DWD-4.

Source of Information:
Bloomberg Professional Services





$\stackrel{r}{1}$



$\pm$

N

品 Portfolio Rank
by Size

$$
\begin{gathered}
\text { Total Assets } \\
\text { (in } \\
\text { \$millions) } \\
\hline
\end{gathered}
$$

$$
\begin{gathered}
\text { MVIC (In } \\
\text { \$millions) }
\end{gathered}
$$





$$
\begin{aligned}
& \text { Average } \\
& \text { Book Val. (in } \\
& \text { \$millions) } \\
& \hline
\end{aligned}
$$

 $*$







$$
\begin{aligned}
& \text { B-1 Value }
\end{aligned} \begin{aligned}
& \text { Portfolio } \\
& \text { Ranking }
\end{aligned}
$$

## BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Application for an increase in water and wastewater rates in Charlotte, Highlands, Lake, Lee, Marion, Orange, Pasco, Pinellas, Polk,

Docket No. 20200139-WS and Seminole Counties by Utilities, Inc. of Florida

## DIRECT TESTIMONY

OF
DYLAN W. D'ASCENDIS, CRRA, CVA
on behalf of

Utilities, Inc. of Florida

TABLE OF CONTENTS
I. INTRODUCTION ..... 3
II. SUMMARY ..... 6
III. GENERAL PRINCIPLES ..... 7
A. Business Risk ..... 10
B. Financial Risk ..... 16
IV. UTILITIES, INC. OF FLORIDA AND THE UTILITY PROXY GROUP ..... 17
V. CAPITAL STRUCTURE AND DEBT COST RATES ..... 19
VI. COMMON EQUITY COST RATE MODELS ..... 20
A. Discounted Cash Flow Model. ..... 20
B. The Risk Premium Model ..... 23
C. The Capital Asset Pricing Model ..... 31
D. Common Equity Cost Rates for a Proxy Group of Domestic, Non-Price Regulated
Companies Based on the DCF, RPM, and CAPM. ..... 35
VII. INDICATED COMMON EQUITY COST RATE BEFORE ADJUSTMENT FOR COMPANY-SPECIFIC RISK ..... 38
A. Company-Specific Risk Adjustments ..... 38

1. Business Risk Adjustment ..... 38
VIII. CONCLUSION ..... 42

## I. INTRODUCTION

## Q. Please state your name, profession and address.

A. My name is Dylan W. D’Ascendis. I am a Director at ScottMadden, Inc. My business address is 3000 Atrium Way, Suite 241, Mount Laurel, NJ 08054.

## Q. State briefly your educational background and experience.

A. I have offered expert testimony on behalf of investor-owned utilities before 19 state regulatory commissions in the United States, one Canadian province, and one American Arbitration Association panel on rate of return issues including, but not limited to, common equity cost rate, rate of return, valuation, capital structure issues, relative investment risk, and credit quality issues.

On behalf of the American Gas Association ("AGA"), I calculate the AGA Gas Index, which serves as the benchmark against which the performance of the American Gas Index Fund ("AGIF") is measured on a monthly basis. The AGA Gas Index and AGIF are a market capitalization weighted index and mutual fund, respectively, comprised of the common stocks of the publicly traded corporate members of the AGA.

I am a member of the Society of Utility and Regulatory Financial Analysts ("SURFA"). In 2011, I was awarded the professional designation "Certified Rate of Return Analyst" ("CRRA") by SURFA, which is based on education, experience, and the successful completion of a comprehensive written examination.

I am also a member of the National Association of Certified Valuation Analysts ("NACVA") and was awarded the professional designation Certified Valuation Analyst ("CVA") in 2015.

I am a graduate of the University of Pennsylvania, where I received a Bachelor of Arts degree in Economic History. I have also received a Master of Business Administration with high honors and concentrations in Finance and International Business from Rutgers University. The details of my educational background and expert witness appearances are shown in Exhibit DWD-1.

## Q. On whose behalf are you presenting this testimony?

A. I am presenting this testimony and appearing on behalf of Utilities, Inc. of Florida. ("UIF" or the "Company"), the applicant for rate increase in the present docket.
Q. What is the purpose of your direct testimony?
A. The purpose is to provide testimony related to the return on investor-supplied capital, including the appropriate return on common equity ("ROE") which the Company should be afforded in order to have the opportunity to earn a fair return on its property used and useful in the public service. I am presenting testimony regarding the appropriate return on investor-supplied capital associated with UIF's operations because the Company does not believe that in this case the use of the Florida Leverage Formula (the "FL ROE Formula") accurately reflects the return on equity necessary to afford it an opportunity to earn a fair return.
Q. Are you aware of the FL ROE Formula?
A. Yes. Our firm participated in Docket No. 20190006-WS and Ms. Pauline M. Ahern, CRRA sponsored comments on behalf of UIF.
Q. What would UIF's indicated ROE be using the FL ROE Formula as specified in Order No. PSC-2019-0267-PAA-WS?
A. Given UIF's 13 -month common equity ratio of $49.39 \%^{1}$ in this proceeding, the indicated ROE using the FL ROE Formula would be $9.69 \%{ }^{2}{ }^{2}$

1 Excluding customer deposits and deferred tax liabilities.
ROE $=6.05 \%+(1.80 /$ Equity Ratio $) \rightarrow 9.69 \%=6.05 \%+(1.80 / 49.39 \%)$.
Q. Does the $9.69 \%$ ROE produced by the FL ROE Formula reflect the cost of common equity of water utilities, specifically, UIF, at this time?
A. No. As I will demonstrate throughout this testimony, an ROE of $9.69 \%$ understates the current investor-required return for both water and wastewater utilities generally and UIF specifically.
Q. What is your recommended common equity cost rate?
A. I recommend that the FL PSC authorize the Company the opportunity to earn an overall rate of return on common equity of $11.75 \%$. My recommended ROE applied to the 13 -month average balances of investor-supplied capital ${ }^{3}$ based on UIF's parent, CORIX Regulated Utilities, Inc.'s ("CRU-US" or the "Parent"), consisting of $45.58 \%$ long-term debt at an embedded cost rate of $5.78 \%, 5.03 \%$ short-term debt at an embedded cost rate of $4.04 \%$, and $49.39 \%$ common equity results in a return on investor-supplied capital of $8.63 \%$, shown on page 1 of Schedule 1 and Table 1 below:

Table 1: Summary of the Return on Investor-Supplied Capital

| Type of Capital |  | Ratio |  | Cost Rate |
| :--- | :---: | :---: | :---: | :---: | | Weighted Cost Rate |
| :--- |
| Long-Term Debt |

Q. Have you prepared an exhibit that supports your recommended return on investorsupplied capital?
A. Yes, I am sponsoring Exhibit DWD-2 which summarizes my analysis supporting the reasonable rate of return, which in my opinion applies to UIF in this rate case. Exhibit DWD2, containing Schedules 1 through 8, was prepared by me or my staff under my supervision and control.

## II. SUMMARY

## Q. Please summarize your recommended common equity cost rate.

A. My recommended common equity cost rate of $11.75 \%$ is summarized on page 2 of Schedule 1. Because UIF's common stock is not publicly traded, a market-based common equity cost rate cannot be directly observed for the Company. Consequently, I have assessed the marketbased common equity cost rates of companies with relatively similar, but not necessarily identical risk, i.e., a proxy group, for insight into a recommended common equity cost rate applicable to UIF. Using companies of relatively similar risk as proxies is consistent with the principle of fair and reasonable rates of return required by the Hope ${ }^{4}$ and Bluefield ${ }^{5}$ decisions, adding reliability to the informed expert judgment necessary to arrive at a recommended common equity cost rate.

However, no proxy is completely identical in risk to any single entity. Accordingly, a comparison of relative risk between UIF and a proxy group of publicly traded water utilities ("Utility Proxy Group"), discussed in further detail later in this testimony, must be made to determine whether any adjustments to the Utility Proxy Group's indicated common equity cost rate are justified or necessary.

In determining my recommended common equity cost rate, I applied several wellrecognized cost of common equity models (i.e., Discounted Cash Flow ("DCF") Risk Premium Model ("RPM"), and Capital Asset Pricing Model ("CAPM")) to the market data of a Utility Proxy Group whose selection will also be discussed below. In addition, I applied the DCF model, RPM, and CAPM to a proxy group of non-price regulated companies comparable in total risk to the Utility Proxy Group ("Non-Price Regulated Proxy Group"). The results derived from each model are summarized as follows:

Discounted Cash Flow Model
Risk Premium Model
Capital Asset Pricing Model
Cost of Equity Models Applied to Non-
Price Regulated Proxy Group
Indicated Common Equity Cost Rate before Adjustment

Business Risk Adjustment
Recommended Common Equity Cost Rate
9.07\%
10.91\%
10.90\%
11.48\%
10.75\%
1.00\%
11.75\%

After reviewing the cost rates based on these models, I conclude that the indicated common equity cost rate is $10.75 \%$ before any adjustment for business risks arising from UIF's greater unique business risks relative to the Utility Proxy Group as discussed in more detail below. Thus, the indicated common equity cost rate of $10.75 \%$ based solely on the Utility Proxy Group must be adjusted upward by $1.00 \%$ to reflect UIF's increased unique business risk, as noted above. The details of this adjustment will be discussed below. After adjustment, my recommended Company-specific risk-adjusted common equity cost rate applicable to UIF is $11.75 \%$.

## III. GENERAL PRINCIPLES

Q. What general principles have you considered in arriving at your recommended common equity cost rate?
A. The cost of common equity is the return investors require to make an equity investment in a given firm. From the firm's perspective, that required return, whether it is provided to debt or equity investors, has a cost. Collectively, the "cost of debt" and the "cost of equity" are referred to as the "cost of capital."

The cost of capital is based on the economic principle of "opportunity cost," meaning that investing in any asset or security implies a forgone opportunity to invest in alternative
assets or securities. The opportunity cost of an investment should equal the return available on investments of comparable risk.

Although both debt and equity have costs, those costs differ fundamentally. The cost of debt is often contractually defined and can be directly observed in the market as the interest rate or yield on debt securities. In contrast, the cost of equity is not normally contractually defined nor can it be directly observed in the market. Rather, because common equity investors have a claim on a firm's cash flows only after debt holders are paid, it is the uncertainty (or risk) associated with the equity investors' lower priority or junior position to receive those residual cash flows compared to debt holders that determines the cost of equity. In other words, because common equity investors bear this "residual risk," they require higher returns than debt holders. In that sense, common equity and debt investors are distinct: they invest in different securities, face different risks, and require different returns. That is not to say that the risks facing debt and equity investors are completely separate and distinct; the two may share common risks, but only to a point. Therefore, commentary from both debt and equity analysts is instructive and helps inform the determination of the required return.

According to the basic financial principle of risk and return, the investor-required return on investment is a function of the level of investor-perceived risk as reflected in the market prices paid by investors. The higher/lower the investor-perceived risk, the higher/lower the investor-required return. The investor-required return is forward-looking, or expectational, as it is the return which investors expect to receive in the future for investing capital today and is based on expected economic and capital market conditions.

In unregulated industries, the competition of the marketplace is the principal determinant of the price of products or services. For regulated public utilities, like UIF, regulation acts as a substitute for marketplace competition. A sufficient level of earnings is required to assure that the utility can: (1) fulfill its obligation to provide safe and reliable service
at all times; (2) maintain the integrity of presently invested capital through future reinvestment and (3) attract needed new capital at a reasonable cost and on reasonable terms in competition with other firms of comparable risk. This is consistent with the previously noted rate of return standard established by the Supreme Court in the Hope and Bluefield cases.

In rate base/rate of return regulation, the authorized return on common equity is defined as the investor-required return. In turn, the investor-required return is defined as the return required by the investor on the funds invested in the publicly traded common stocks of firms. As stated previously, the cost of common equity is not directly observable in the capital markets since there is no contractual basis or obligation on the part of a firm to provide a return to its common shareholders, unlike the contractual coupon or interest rate on its debt obligations. Therefore, the cost of common equity must be estimated from market (economic and financial) data, using financial models developed for that purpose, such as the CAPM, DCF, and RPM. Therefore, my recommended common equity cost rate is based on the marketplace data of a proxy group of utilities that are as similar in risk as possible to UIF based on selection criteria discussed below.

Because empirical financial models for determining the cost of common equity are subject to limiting assumptions or other constraints, most finance texts recommend using multiple approaches to estimate the cost of common equity. Because of this, generally, regulatory commissions rely on multiple financial models in determining the allowed ROE for regulated utilities. As a practical matter, no individual model is more reliable than all others under all market conditions. The use of multiple common equity cost rate models adds reliability to the estimation of the investor-required return.

Using both the market data of proxy groups of similar risk and multiple common equity cost rate models adds reliability to the informed expert judgment used in estimating the common equity cost rate. Therefore, it is prudent and appropriate to use multiple methodologies to mitigate the effects of limiting assumptions and inputs associated with any single approach.

## A. Business Risk

## Q. Please define business risk and explain why it is important to the determination of a reasonable rate of return.

A. The investor-required return on common equity reflects investors' assessment of the total investment risk of an individual firm. Total investment risk is often discussed in the context of business risk and financial risk.

Business risk refers to the basic viability of a business, the question of whether a company will be able to generate sufficient revenue to cover its operational expenses and cost of capital. Financial risk is related to the company's ability to generate sufficient cash flow to be able to make interest payments on financing or to meet other debt-related obligations.

Examples of the business risks generally faced by water utilities include, but are not limited to, the legal and regulatory environment, mandatory environmental compliance requirements, customer mix and concentration of customers, service territory economic growth, declining per customer water use, risks and uncertainties of water supply limitations, operations, capital intensity, size, the degree of operating leverage, and the like, all of which have a direct bearing on earnings.

Although analysts, including rating agencies, may categorize business risks according to individual categories, as a practical matter they are inter-related and are not wholly distinct from one another. For determining an appropriate return on equity, the relevant issue is where investors see the subject company as falling within a spectrum of risk. To the extent investors view a company as being exposed to additional risk, the required return will increase.

For regulated water utilities, business risks are both long- and near-term in nature. Whereas near-term business risks are reflected in the year-to-year variability in earnings and
cash flow brought about by economic or regulatory factors, long-term business risks reflect the prospect of an impaired ability of investors to earn a return on and of their invested capital. Moreover, because water utilities accept the obligation to provide safe, adequate, and reliable water service at all times (in exchange for the opportunity to earn a fair and reasonable return on their investment), they generally do not have the option to delay, defer, or reject required long-term capital investments in order to comply with Safe Drinking Water Act ("SDWA") standards. Those investments are generally capital-intensive, and water utilities therefore cannot choose to avoid raising external funds during periods of capital market distress.

Because water utilities invest in long-lived assets, long-term business risks are of considerable concern to equity investors. That is, the risk of not recovering the return on and of their investment extends far into the future. But, the timing and nature of events that may lead to losses are also uncertain. Consequently, those risks and their implications for the required return on equity tend to be difficult to quantify. That does not mean, however, that the risk is of no consequence to investors. Analysts may apply, for example, simulation-based methods to assess the potential risk, but in the final analysis (like the investors that commit their capital) regulatory commissions, like the FL PSC, must review a variety of quantitative and qualitative data, applying their reasoned judgment to determine how long-term risks weigh in their assessment of the market-required return on equity.

## Q. What business risks does the water utility industry in general face today?

A. Water is necessary for life and is the only utility product intended for customers to ingest. Consequently, water quality is of paramount importance to the public health and well-being of customers. As a result, water utilities are subject to additional and increasingly stringent public health and safety regulations. Beyond health and safety concerns, customers also have significant aesthetic (e.g. taste and odor) concerns regarding the water delivered to them, with regulators paying close attention to these concerns because of the strong reactions they evoke
in consumers.
Increasingly stringent environmental standards necessitate additional capital investment in the treatment and distribution of water, thereby increasing the pressure on water utilities' free cash flow through increased capital expenditure for infrastructure, repair, and replacement. In addition, the United States Environmental Protection Agency and individual state and local environmental agencies continually monitor potential contaminants in the water supply and promulgate or expand regulations when necessary. In the course of procuring water supplies and treating water so that it complies with SDWA standards, water utilities have an ever-increasing responsibility to be stewards of the environment from which supplies are drawn in order to preserve and protect essential natural resources.

Water utilities are typically vertically engaged in the entire process of acquiring supply, producing, treating, and distributing water, serving both a production function and a delivery function. Accordingly, water utilities require significant capital investment, not only in transmission and distribution systems, but also in sources of supply (surface and groundwater), production (wells), treatment, and storage. Significant capital investment is necessary to serve additional customers and to replace aging systems, creating a major risk factor for the water utility industry.

Value Line Investment Survey ("Value Line") observes the following about the water utility industry:

Until the past decade, or so, both municipal and investor-owned utilities didn't sufficiently invest in keeping pipelines and other assets in proper condition. As a result, the average age of pipelines in the U.S. is estimated to be between 50 and 75 years. Utilities and regulators have realized that more funds would have to be allocated to replacing and modernizing large portions of the nation's water infrastructure. That's why this group's construction budget is large, though manageable. Authorities also realize that water bills were kept artificially low for years, especially in relation to other vital utility services, and have to be gradually raised.

Probably the prime reason for water utility stocks performing so well over the past five years has been due to constructive regulation. Unlike, electric utilities, for example, both sides are basically in agreement that upgrades are required and ratepayers['] bills will have to [be] raised. Investors should be aware of what can happen when authorities and utilities do not work as partners (i.e. the Electric Utility Industry). As of now, we see no signs of rifts between the water group and regulators. ${ }^{6}$

## Q. Please discuss the capital intensity of the water utility industry relative to other utility industries.

A. As a capital-intensive industry, water utilities require significantly greater capital investment in the infrastructure required to produce a dollar of revenue than do other industries, including electric and natural gas utilities. For example, as shown on Chart 1, below, it took $\$ 4.70$ of net utility plant on average to produce $\$ 1.00$ in operating revenues in 2019 for the water utility industry. In contrast, for the natural gas and electric utility industries, on average it took just $\$ 2.33$ and $\$ 2.93$, respectively, to produce $\$ 1.00$ in operating revenues in 2019. As financing needs have increased and will continue to increase, the competition for capital from traditional sources has increased and continues to increase, making the need to maintain financial integrity and the ability to attract needed new capital increasingly important.

[^46] Value Line Investment Survey, April 10, 2020. [clarification added]

Chart 1:
Capital Intensity of the Water, Gas, and Electric Utility Industries ${ }^{7}$

Q. How will water utilities raise the capital required to fund necessary infrastructure replacements?
A. The water utility industry's high degree of capital intensity, coupled with the need for substantial infrastructure capital spending, requires regulatory support in the form of adequate and timely rate relief, including the allowance of a sufficient rate of return on investment.

Substantial water utility investment and expenditures require significant financing. The three sources typically used for financing are debt, equity (common and preferred), and cash flow from operations. All three are intricately linked to the opportunity to earn a sufficient rate of return on investment and the ability to actually achieve that return. The return must be sufficient to maintain credit quality and enable the water utility to attract necessary new capital, be it debt or equity capital. If unable to raise debt or equity capital, the water utility must turn to either retained earnings or free cash flow ${ }^{8}$, both of which are directly linked to earning a

Operating cash flow (funds from operations) minus capital expenditures.
sufficient rate of return. The level of free cash flow represents the financial flexibility of a firm, i.e., its ability to meet the needs of its debt and equity holders. If either retained earnings or free cash flows are inadequate, it will be nearly impossible for the water utility to attract the new capital, at a reasonable cost and on reasonable terms, needed to invest in critical new utility infrastructure. An insufficient rate of return can be financially devastating for water utilities given their obligation to protect the public health by providing safe, adequate, and reliable water service to their customers at all times.

## Q. Please continue your discussion of business risks.

A. In addition to its capital-intensive nature, the water utility industry also experiences low depreciation rates. Given that depreciation is one of the principal sources of internallygenerated cash flows for all utilities, low depreciation rates mean that utilities cannot rely on depreciation as a source of cash like other industries do. Because utility assets have long lives and, hence, long capital recovery periods, utilities face increased risk due to inflation, which results in a significantly higher cost to replace a decades-old utility plant where original cost was a small fraction of the cost of the plant to replace it. As shown on Chart 2, below, water utilities experienced a depreciation rate of $2.59 \%$ for 2019. In contrast, in 2019, the natural gas and electric utilities experienced average depreciation rates of $3.35 \%$ and $3.64 \%$, respectively. Low depreciation rates signify that the pressure on cash flow remains significantly greater for water utilities than for other gas and electricity utilities, on average.

Chart 2:
Depreciation Rates of the Water, Gas, and Electric Utility Industries ${ }^{9}$


In view of the foregoing, the water utility industry's high degree of capital intensity and low depreciation rates, coupled with the need for capital spending to replace aging and failing water infrastructure, makes the need to maintain financial integrity and the ability to attract needed new capital, through the allowance of a sufficient rate of return, increasingly important in order for water utilities to be able to successfully meet the challenges and investment needs they face.

## B. Financial Risk

Q. Please define financial risk and explain why it is important to the determination of a fair rate of return.
A. Financial risk is created by the introduction of senior capital, i.e., debt and preferred stock, into the capital structure. As noted above, it is the additional risk that a company may not have sufficient cash flow to meet its financial obligations. The higher the proportion of debt in the

[^47]capital structure, the higher the financial risk which must be factored into the common equity cost rate, consistent with the previously mentioned basic financial principle of risk and return, i.e., investors demand a higher common equity return as compensation for bearing higher investment risk.
Q. Can the combined business and financial risks (i.e., investment risk) of an enterprise be proxied by bond and credit ratings?
A. Yes, but not entirely. Similar bond/issuer credit ratings reflect and are representative of similar combined business and financial risks, i.e., the total risk faced by bond investors. Although specific business or financial risks may differ between companies, the same bond/credit rating indicates that the combined risks are similar, albeit not necessarily equal (as the purpose of the bond/credit rating process is to assess credit quality or credit risk and not common equity risk).

However, one must keep in mind that a long-term credit or bond issue rating is an opinion regarding the particular company's overall financial capacity to pay its financial obligations as they become due and payable. It is not an assessment of the risk faced by equity investors. The claims of equity holders are subordinate to the claims of debt holders, including bond holders, and are perpetual in life. As noted above, whereas bondholders can be assured of the probability that a particular company will be able to meet its financial obligations (and thus have higher credit/bond ratings), common equity holders bear the residual risk of insufficient or volatile cash flows in perpetuity. For that fundamental reason, the risks of owning common equity do not directly correspond to the risks of owning bonds.

## IV. UTILITIES, INC. OF FLORIDA AND THE UTILITY PROXY GROUP

Q. Have you reviewed financial data for UIF?
A. Yes. UIF provides service to approximately 64,000 water and wastewater customers in ten counties throughout Florida. UIF is an operating subsidiary of CRU-US. Neither entity is publicly-traded.

## Q. Please explain how you chose the Utility Proxy Group.

A. I chose the Utility Proxy Group by selecting those water companies that met the following criteria:

1) They are included in the Water Utility Group of Value Line's Standard Edition (April 10, 2020);
2) They have $70 \%$ or greater of 2019 total operating income derived from, and $70 \%$ or greater of 2019 total assets devoted to, regulated water operations;
3) They had not publicly announced involvement in any major merger or acquisition activity (i.e., one publicly-traded utility merging with or acquiring another) at the time of the preparation of this testimony;
4) They have not cut or omitted their common dividends during the past five years or through the time of the preparation of this testimony;
5) They have Value Line and Bloomberg adjusted Beta coefficients;
6) They have a positive Value Line five-year dividends per share ("DPS") growth rate projection and,
7) They have Value Line, Bloomberg, Zacks or Yahoo! Finance, consensus five-year earnings per share ("EPS") growth rate projections.

The following seven companies meet these criteria:

- American States Water Co. ("AWR");
- American Water Works Co. Inc. ("AWK");
- California Water Service Corp. ("CWT");
- Essential Utilities, Inc. ("WTRG");
- Middlesex Water Co. ("MSEX");
- SJW Corporation ("SJW"); and
- York Water Co. ("YORW").


## Q. Have you reviewed financial data for the utility proxy group?

A. Yes. Page 1 of Schedule 2 contains comparative capitalization and financial statistics for the Utility Proxy Group for the years 2015-2019. As shown on page 1, during the five-year period ending 2019, the historically achieved average earnings rate on book common equity for the
group was $10.45 \%$. The Utility Proxy Group had an average common equity ratio (including short-term debt) during the years 2015-2019 of 51.09\%. Total debt to earnings before interest, taxes, depreciation, and amortization ("EBITDA") for the years 2015-2019 ranged between 3.41 and 5.54 times, averaging 4.00 times. Funds from operations to total debt ranged from $14.49 \%$ to $25.81 \%$, averaging $21.64 \%$.

## V. CAPITAL STRUCTURE AND DEBT COST RATES

Q. What are the balances of investor-provided capital that you recommend be employed in developing a return on investor-supplied capital applicable to UIF?
A. In this instance, I recommend the use of UIF's Parent's 13-month average capital structure ending December 31, 2019, which consists of $45.58 \%$ long-term debt, $5.03 \%$ short-term debt, and $49.39 \%$ common equity.
Q. How does UIF's common equity ratio of $49.39 \%$ compare with the equity ratios maintained by the Utility Proxy Group?
A. UIF's common equity ratio of $49.39 \%$ is reasonable and consistent with the range of common equity ratios maintained, on average, by the utilities used for the derivation of ROE. As shown on page 2 of Schedule 2, the range of equity ratios maintained by the Utility Proxy Group is between $38.48 \%$ and $57.05 \%$, with an average of $49.34 \%$.

In my opinion, a capital structure consisting of $45.58 \%$ long-term debt, $5.03 \%$ shortterm debt, and $49.39 \%$ common equity is appropriate for ratemaking purposes for UIF in the current proceeding because it is comparable to the average capital structure ratios (based on total capital) maintained by the Utility Proxy Group on whose market data I base my recommended common equity cost rate.

## Q. What cost rates for long-term and short-term debt are most appropriate for use in a cost of capital determination for UIF?

A. A long-term debt cost rate of $5.78 \%$ and a short-term debt cost rate of $4.04 \%$ are the most
appropriate for use in a cost of capital determination for UIF, as they are the actual average debt cost rates incurred by UIF's Parent for the 13-months ended December 31, 2019.

## VI. COMMON EQUITY COST RATE MODELS

## Q. Is it important that cost of common equity models be market-based?

A. Yes. Public utilities, like UIF, must compete for equity in capital markets along with all other companies with commensurate risk, which includes non-utilities. The cost of common equity is thus determined based on equity market expectations for the returns of those companies. If an individual investor is choosing to invest their capital among companies with comparable risk, they will choose the company providing a higher return over a company providing a lower return.

## Q. Are the cost of common equity models you use market-based models?

A. Yes. The DCF model is market-based in that market prices are used in developing the dividend yield component of the model. The RPM and CAPM are also market-based in that the bond/issuer ratings and expected bond yields/risk-free rate used in the application of the RPM and CAPM reflect the market's assessment of bond/credit risk. In addition, the use of the Beta coefficient to determine the equity risk premium also reflects the market's assessment of market/systematic risk, as Beta coefficients are derived from regression analyses of market prices. Moreover, market prices are used in the development of the monthly returns and equity risk premiums used in the Predictive Risk Premium Model ("PRPM"). Selection criteria for the Non-Price Regulated Proxy Group are based on regression analyses of market prices and reflect the market's assessment of total risk.

## A. Discounted Cash Flow Model

## Q. What is the theoretical basis of the DCF model?

A. The theory underlying the DCF model is that the present value of an expected future stream of net cash flows during the investment holding period can be determined by discounting those
cash flows at the cost of capital, or the investors' capitalization rate. DCF theory assumes that an investor buys a stock for an expected total return rate which is derived from cash flows received in the form of dividends plus appreciation in market price (the expected growth rate). Mathematically, the dividend yield on market price plus a growth rate equals the capitalization rate (i.e., the total common equity return rate expected by investors).

## Q. Which version of the DCF model do you use?

A. I use the single-stage constant growth DCF model. The single-stage DCF model is expressed as:

$$
K=\left(D_{1} / P_{0}\right)+g
$$

Where:
K $=$ Cost of Equity Capital
$\mathrm{D}_{1} \quad=\quad$ Expected Dividend Per Share in one year
$\mathrm{P}_{0}=$ Current Market Price
G $\quad=\quad$ Expected Dividend Per Share Growth
Q. Please describe the dividend yield used in your application of the DCF model.
A. The unadjusted dividend yields are based on a recent (April 30, 2020) indicated dividend, divided by the average of closing market prices for the 60 days ending April 30, 2020, as shown in Column [1] on page 1 of Schedule 3.
Q. Please explain the adjusted dividend yield shown in column [7] on page 1 of Schedule 3.
A. Because dividends are paid quarterly, or periodically, as opposed to continuously (daily), an adjustment must be made to the dividend yield. This is often referred to as the discrete, or the Gordon Periodic, version of the DCF model.

DCF theory calls for the use of the full expectational growth rate, referred to as $\mathrm{D}_{1}$, in calculating the dividend yield component of the model. However, since the various companies in the Utility Proxy Group increase their quarterly dividend at various times during the year, a reasonable assumption is to reflect one-half the annual dividend growth rate in the dividend
yield component, referred to as $\mathrm{D}_{1 / 2}$. This is a conservative approach because it does not overstate the dividend yield, which should be representative of the next 12-month period. Therefore, the actual average dividend yields in Column [1] on page 1 of Schedule 3, have been adjusted upward to reflect one-half the average projected growth rate shown in Column [6].
Q. Please explain the basis of the growth rates of the Utility Proxy Group used in your application of the DCF model.
A. Investors with more limited resources than institutional investors are likely to rely on widely available financial information services, such as Value Line, Bloomberg, Zacks, and Yahoo! Finance. Investors recognize that such analysts have significant insight into the dynamics of the industries and individual companies they analyze, as well as an entity's historical and future ability to effectively manage the effects of changing laws and regulations and ever-changing economic and market conditions.

Over the long run, there can be no growth in DPS without growth in EPS. Thus, the use of earnings growth rate forecasts in a DCF analysis provides a better matching between investors' market price appreciation expectations and the growth rate component of the DCF. Therefore, I have relied on security analysts' five-year forecasts of EPS growth in my application of the DCF model.

## Q. Please summarize the DCF model results.

A. As shown on page 1 of Schedule 3, the average result of the single-stage DCF model is $8.70 \%$, while the median result is $9.44 \%$. I have averaged these two results in arriving at a conclusion of a DCF-indicated common equity cost rate of $9.07 \%$ for the Utility Proxy Group. By doing so, I have considered the DCF results for each company without giving undue weight to outliers on either the high or the low side.

## B. The Risk Premium Model

## Q. Please describe the theoretical basis of the RPM.

A. The RPM is based on the basic financial principle of risk and return, namely, that investors require greater returns for bearing greater risk. The RPM recognizes that common equity capital has greater investment risk than debt capital, as common equity shareholders are last in line in any claim on an entity's assets and earnings, as previously discussed. Therefore, investors require higher returns from investment in common stocks than from investment in bonds to compensate them for bearing the additional risk.

While it is possible to directly observe bond returns and yields, the investor-required common equity return cannot be directly determined or observed. According to RPM theory, one can estimate a common equity risk premium over bonds, either historically or prospectively, and then use that premium to derive a cost rate of common equity. In summary, according to the RPM, the cost of common equity equals the expected cost rate for long-term debt capital plus a risk premium over that cost rate to compensate common shareholders for the added risk of being unsecured and last-in-line for any claim on a corporation's assets and earnings.
Q. Please explain how you derived your indicated cost of common equity based on the RPM.
A. I relied on the results of the application of two risk premium methods, as shown in Schedule 4. The first method is the PRPM. The second method is a risk premium model using an adjusted total market approach.

## Q. Please explain the PRPM.

A. The PRPM, published in the Journal of Regulatory Economics ("JRE") ${ }^{10}$ and The Electricity

[^48]Journal ("TEJ"), ${ }^{11}$ was developed from the work of Robert F. Engle, who shared the Nobel Prize in Economics in 2003, "for methods of analyzing economic time series with time-varying volatility ("ARCH")"12 (with "ARCH" standing for autoregressive conditional heteroskedasticity). Engle found that the volatility in market prices, returns, and equity risk premiums cluster over time, making them highly predictable and available to predict future levels of risk and risk premiums.

The PRPM estimates the risk/return relationship directly as the predicted equity risk premium is generated by the predictability of volatility, or risk. Thus, the PRPM is not based on an estimate of investor behavior, but rather on the evaluation of the actual results of that behavior, i.e., the variance of historical equity risk premiums.

The inputs to the model are the historical returns on the common shares of each publicly traded utility in the Utility Proxy Group, minus the historical monthly yield on long-term U.S. Treasury securities, through April 2020. Using a generalized form of ARCH, known as GARCH, each water utility's projected equity risk premium was determined using Eviews ${ }^{\odot}$ statistical software. When the GARCH model is applied to the historical return data, it produces a predicted GARCH variance series ${ }^{13}$ and a GARCH coefficient. ${ }^{14}$ The forecasted 30-year U.S. Treasury Bond yield of $2.03 \%$ is based on consensus forecasts for the six quarters ending with the third quarter 2021, derived from the May 1, 2020 Blue Chip Financial Forecasts ("Blue Chip"), averaged with the long-range forecasts for 2021-2025 and 2026 2030, from the December 1, 2019 Blue Chip. The average PRPM indicated common equity cost rate is $11.66 \%$, while the median is $10.96 \%$ for the Utility Proxy Group, as shown in

[^49]Column [7] on page 2 of Schedule 4. Consistent with my use of the average of the mean and median DCF results, I rely on the average of the mean and median PRPM results of $11.31 \%$ as my conclusion of the PRPM equity cost rate, also shown in Column [7] on page 2 of Schedule 4.

## Q. Please explain the adjusted total market approach RPM.

A. The adjusted total market approach RPM adds a prospective public utility bond yield to the average of: (1) an equity risk premium derived from a beta-adjusted total market equity risk premium and (2) an equity risk premium based on the S\&P Utilities Index.
Q. Please explain the basis of the adjusted prospective bond yield of $3.82 \%$ applicable to the Utility Proxy Group, shown on line 5 on page 3 of Schedule 4.
A. The first step in the adjusted total market approach RPM analysis is to determine the expected bond yield. Because both ratemaking and the cost of capital, including the common equity cost rate, are prospective in nature, a prospective yield on long-term debt, similarly rated to the Utility Proxy Group, is essential. Since Blue Chip does not publish consensus yield forecasts for the Moody's A-rated public utility bonds, I began with the May 1, 2020 Blue Chip consensus forecast of about 50 economists of the expected yield on Aaa-rated corporate bonds for the six calendar quarters ending with the third calendar quarter of 2021, averaged with the long-range forecasts for 2021 - 2025, and 2026 - 2030, from the December 1, 2019 Blue Chip. ${ }^{15}$ As shown on line 1 on page 3, the average expected yield on Moody's Aaa-rated corporate bonds is $3.21 \%$. In order to derive a prospective Moody's A-rated public utility bond yield, an adjustment of $0.53 \%$, or the average spread between Moody's Aaa-rated corporate bond yields and Moody's A-rated public utility bond yields for the three months ending April $2020^{16}$ must be made to the average Aaa corporate bond yield, which results in a bond yield of
3.74\% applicable to a Moody's A-rated public utility bond.

Because the Utility Proxy Group average Moody's issuer rating is A2/A3, as shown on page 5 of Schedule 4, an $0.08 \%$ upward adjustment to the prospective Moody's A-rated public utility bond yield of $3.74 \%$ is necessary. The $0.08 \%$ represents one-sixth ( $1 / 6$ ) of the average spread of $0.46 \%$ between Moody's A-rated and Baa-rated public utility bonds for the three months ending April 2020. This is necessary so that the prospective bond yield is consistent with the Utility Proxy Group's average A2/A3 long-term issuer rating. Adding the $0.08 \%$ to the $3.74 \%$ prospective Moody's A-rated public utility bond yield results in a $3.82 \%$ expected bond yield for the Utility Proxy Group, as shown on line 5 on page 3 of Schedule 4.

## Q. Please explain the derivation of the beta-derived equity risk premium.

A. The components of the beta-derived risk premium model are: (1) An expected market equity risk premium over corporate bonds, and (2) the Beta coefficient. The derivation of the betaderived equity risk premium applied to the Utility Proxy Group is shown on lines 1 through 9 on page 8 of Schedule 4. The total beta-derived equity risk premium applied is based on an average of three historical data-based equity risk premiums, two Value Line-based equity risk premiums, and one Bloomberg-based equity risk premium. Each of these is described in turn.

## Q. How did you derive a market risk premium based on long-term historical data?

A. To derive a historical market equity risk premium, I used the most recent holding period returns for the large company common stocks from the 2020 SBBI® Yearbook: Stocks, Bonds, Bills, and Inflation ("SBBI - 2020") ${ }^{17}$ less the average historical yield on Moody's Aaa/Aa-rated corporate bonds for the period 1928 to 2019. The use of holding period returns over a very long period of time is appropriate because it is consistent with the long-term investment horizon presumed by investing in a going concern, i.e., a company expected to operate in perpetuity.

SBBI's long-term arithmetic mean monthly total return rate on large company common stocks was $11.83 \%$ and the long-term arithmetic mean monthly yield on Moody’s Aaa/Aarated corporate bonds was $6.05 \% .^{18}$ As shown on line 1 on page 8 of Schedule 4, subtracting the mean monthly bond yield from the total return on large company stocks results in a longterm historical equity risk premium of 5.78\%.

I used the arithmetic mean monthly total return rates for the large company stocks and yields (income returns) for the Moody's Aaa/Aa corporate bonds, because they are appropriate for the purpose of estimating the cost of capital as noted in SBBI - 2020. ${ }^{19}$ The use of the arithmetic mean return rates and yields is appropriate because historical total returns and equity risk premiums provide insight into the variance and standard deviation of returns needed by investors in estimating future risk when making a current investment. If investors relied on the geometric mean of historical equity risk premiums, they would have no insight into the potential variance of future returns because the geometric mean relates the change over many time periods to a constant rate of change, thereby obviating the year-to-year fluctuations, or variance, which is critical to risk analysis.

## Q. Please explain the derivation of the regression-based equity risk premium.

A. To derive the regression analysis-derived market equity risk premium of $9.12 \%$, shown on line 2 on page 8 of Schedule 4, I used the same monthly annualized total returns on large company common stocks relative to the monthly annualized yields on Moody's Aaa/Aa corporate bonds as mentioned above. The relationship between interest rates and the market equity risk premium was modeled using the observed monthly market equity risk premium as the dependent variable, and the monthly yield on Moody's Aaa/Aa corporate bonds as the independent variable. I used a linear Ordinary Least Squares ("OLS") regression, in which the
market equity risk premium is expressed as a function of the Moody's Aaa/Aa corporate bonds yield:

$$
\mathrm{RP}=\alpha+\beta\left(\mathrm{R}_{\mathrm{Aaa}} / \mathrm{Aa}\right)
$$

## Q. Please explain the derivation of the PRPM equity risk premium.

A. I used the same PRPM approach described previously to develop another equity risk premium estimate. The inputs to the model are the historical monthly returns on large company common stocks minus the monthly yields on Aaa/Aa corporate bonds during the period from January 1928 through April 2020. ${ }^{20}$ Using the previously discussed generalized form of ARCH, known as GARCH, the projected equity risk premium is determined using Eviews ${ }^{\ominus}$ statistical software. The resulting PRPM predicted market equity risk premium is $11.95 \%{ }^{21}$
Q. Please explain the derivation of a projected equity risk premium based on Value Line data for your RPM analysis.
A. As noted previously, because both ratemaking and the cost of capital, including the cost rate of common equity, are prospective, a prospective market equity risk premium is essential. The derivation of the forecasted or prospective market equity risk premium can be found in note 4 on page 8 of Schedule 4. Consistent with my calculation of the dividend yield component in my DCF analysis, this prospective market equity risk premium is derived from an average of the three- to five-year median market price appreciation potential by Value Line for the 13 weeks ending May 1, 2020, plus an average of the median estimated dividend yield for the common stocks of the 1,700 firms covered in Value Line's Standard Edition. ${ }^{22}$

The average median expected price appreciation is $81 \%$, which translates to a $15.99 \%$ annual appreciation, and, when added to the average of Value Line's median expected dividend
yields of $2.72 \%$, equates to a forecasted annual total return rate on the market of $18.71 \%$. The forecasted Aaa bond yield of $3.21 \%$ is deducted from the total market return of $18.71 \%$, resulting in an equity risk premium of $15.50 \%$, shown on page 8 , line 4 of Schedule 4.
Q. Please explain the derivation of an equity risk premium based on the $S \& P 500$ composite index companies using Value Line data.
A. Using data from Value Line, I calculate an expected total return on the S\&P 500 using expected dividend yields and long-term growth estimates as a proxy for capital appreciation. The expected total return for the S\&P 500 is $14.79 \%$. Subtracting the prospective yield on Aaa Corporate bonds of $3.21 \%$ results in an $11.58 \%$ projected equity risk premium.
Q. Please explain the derivation of an equity risk premium based on the $\mathbf{S} \& P \mathbf{5 0 0}$ composite index companies using Bloomberg data.
A. Using data from Bloomberg Professional Services, I calculate an expected total return on the S\&P 500 using expected dividend yields and long-term growth estimates as a proxy for capital appreciation, identical to the method described above relative to Value Line data. The expected total return for the S\&P 500 is $13.53 \%$. Subtracting the prospective yield on Aaa Corporate bonds of $3.21 \%$ results in a $10.32 \%$ projected equity risk premium.
Q. What is your conclusion of the market equity risk premium for your total market approach RPM?
A. I give equal weight to all these market equity risk premiums in arriving at my conclusion of market equity risk premium of $10.71 \%$. After calculating the average market equity risk premium of $10.71 \%$, I adjust it by the Beta coefficient of the Utility Proxy Group to account for the risk of the Group. As discussed below, the Beta coefficient is a meaningful measure of prospective relative risk to the market as a whole and is a logical means by which to allocate a company's or proxy group's share of the market's total equity risk premium, relative to corporate bond yields. As shown on page 1 of Schedule 5, the average of the mean and median

Beta coefficients for the Utility Proxy Group is 0.71 . Multiplying the Beta coefficient of the Utility Proxy Group of 0.71 by the market equity risk premium of $10.71 \%$ results in a betaadjusted equity risk premium of $7.60 \%$ for the Utility Proxy Group.

## Q. How did you derive the equity risk premium based on the S\&P utility index and Moody's

## A-rated public utility bonds?

A. I estimate three equity risk premiums based on the S\&P Utility Index holding returns, and two equity risk premiums based on the expected returns of the S\&P Utilities Index, using Value Line and Bloomberg data, respectively. Turning first to the S\&P Utility Index holding period returns, I derive a long-term monthly arithmetic mean equity risk premium between the S\&P Utility Index total returns of $10.74 \%$ and monthly A-rated public utility bond yields of $6.53 \%$ from 1928 to 2019 to arrive at an equity risk premium of $4.21 \% .{ }^{23}$ I then use the same historical data to derive an equity risk premium of $6.68 \%$ based on a regression of the monthly equity risk premiums. The final S\&P Utility Index holding period equity risk premium involves applying the PRPM using the historical monthly equity risk premiums from January 1928 to April 2020 to arrive at a PRPM-derived equity risk premium of $5.95 \%$ for the S\&P Utility Index.

I then derive expected total returns on the S\&P Utilities Index of $10.50 \%$ and $8.97 \%$ using data from Value Line and Bloomberg Professional Services, respectively, and subtract the prospective A2-rated public utility bond yield (3.74\%) $)^{24}$, which results in risk premiums of $6.76 \%$ and $5.23 \%$, respectively. As with the market equity risk premiums, I average all the risk premiums to arrive at my utility-specific equity risk premium of 5.76\%.

[^50]Q. What is your conclusion regarding the appropriate equity risk premium for use in your adjusted total market approach RPM analysis?
A. The equity risk premium applicable to the Utility Proxy Group is $6.68 \%$, derived by averaging the beta-derived premium of $7.60 \%$ (line 9 on page 8 of Schedule 4) with the equity risk premium of $5.76 \%$ based on the holding period returns of public utilities with Moody's A-rated bonds (line 6 on page 12 of Schedule 4).
Q. What is the RPM-based common equity cost rate based on the adjusted total market approach?
A. It is $10.50 \%$ for the Utility Proxy Group as shown on line 7 on page 3 of Schedule 4.
Q. What are the results of your application of the PRPM and the adjusted total market approach RPM?
A. As shown on page 1 of Schedule 4, the indicated RPM-derived common equity cost rate is $10.91 \%$, derived by averaging the PRPM results (11.31\%) with those based on the adjusted total market approach (10.50\%).

## C. The Capital Asset Pricing Model

Q. Please explain the theoretical basis of the CAPM.
A. CAPM theory defines risk as the co-variability of a security's returns with the market's returns as measured by the Beta coefficient ( $\beta$ ). A Beta coefficient of less than 1.0 indicates lower variability while a Beta coefficient greater than 1.0 indicates greater variability than the market.

The CAPM assumes that all other risk, i.e., all non-market or unsystematic risk, can be eliminated through diversification. The risk that cannot be eliminated through diversification is called market or systematic risk. In addition, the CAPM presumes that investors require compensation only for those systematic risks that are the result of macroeconomic and other events that affect the returns on all assets. The model is applied by adding a risk-free rate of return to a market risk premium, which is adjusted proportionately to reflect the systematic risk
of the individual security relative to the total market, as measured by Beta coefficient. The traditional CAPM model is expressed as:

Numerous tests of the CAPM have measured the extent to which security returns and Beta coefficients are related, as predicted by the CAPM, confirming the CAPM's validity. The empirical CAPM ("ECAPM") reflects the reality that, while the results of these tests support the notion that the Beta coefficient is related to security returns, the empirical Security Market Line ("SML") described by the CAPM formula is not as steeply sloped as the predicted SML. Morin ${ }^{25}$ states:

With few exceptions, the empirical studies agree that ... low-beta securities earn returns somewhat higher than the CAPM would predict, and high-beta securities earn less than predicted.

Therefore, the empirical evidence suggests that the expected return on a security is related to its risk by the following approximation:

$$
K \quad=\quad R_{F}+x \beta\left(R_{M}-R_{F}\right)+(1-x) \beta\left(R_{M}-R_{F}\right)
$$

where x is a fraction to be determined empirically. The value of x that best explains the observed relationship Return $=0.0829+0.0520 \beta$ is between 0.25 and 0.30 . If $x=0.25$, the equation becomes:

$$
K=\quad R_{F}+0.25\left(R_{M}-R_{F}\right)+0.75 \beta\left(R_{M}-R_{F}\right)
$$

In view of theory and practical research, I have applied both the traditional CAPM and the ECAPM to the companies in the Utility Proxy Group and averaged the results.

## Q. Please describe your selection of the Beta coefficient for your CAPM analysis?

A. I relied on an average of the adjusted Beta coefficients published by Value Line and provided by Bloomberg Professional Services. While both of those services adjust their calculated (or "raw") Beta coefficients to reflect the tendency of the Beta coefficient to regress to the market mean of 1.00 , Value Line calculates its Beta coefficients over a five-year period, while Bloomberg's calculation is based on two years of data.
Q. Please describe your selection of a risk-free rate of return for your CAPM analysis.
A. As shown in Column [5] on Schedule 5, the risk-free rate adopted for both applications of the CAPM is $2.03 \%$. The risk-free rate of $2.03 \%$ is based on the average of the consensus forecast for the six quarters ending with the third quarter 2021, from the May 1, 2020 Blue Chip, averaged with the long-range forecasts for 2021-2025 and 2026-2030, from the December 1, 2019 Blue Chip, ${ }^{26}$ as detailed in note 2 on page 2 of Schedule 5.
Q. Why is the yield on long-term U.S. treasury bonds appropriate for use as the risk-free rate?
A. The yield on long-term U.S. Treasury Bonds is almost risk-free and its term is consistent with: (1) the long-term cost of capital to public utilities measured by the yields on A-rated public utility bonds; (2) the long-term investment horizon inherent in utilities' common stock and (3) the long-term life of the jurisdictional rate base to which the allowed reasonable rate of return (i.e., cost of capital) will be applied. In contrast, short-term U.S. Treasury yields are more volatile, and reflect a short-term investment horizon that is not consistent with the long-term investment horizon, and life of the rate base to which the allowed rate of return is applied.

## Q. Please explain the estimation of the expected equity risk premium for the market.

A. The basis of the market risk premium is explained in detail in note 1 on page 2 of Schedule 5.

As discussed previously, the market risk premium is derived from an average of three historical data-based market risk premiums, two Value Line data-based market risk premiums, and one Bloomberg data-based market risk premium.

The long-term income return on U.S. Government Securities of $5.09 \%$ was deducted from the SBBI - 2020 monthly historical total market return of $12.10 \%$, which resulted in a historical market equity risk premium of $7.01 \%{ }^{27}$ I applied a linear OLS regression to the monthly annualized historical returns on the S\&P 500 relative to historical yields on long-term U.S. Government Securities from SBBI - 2020. That regression analysis yielded a market equity risk premium of $10.26 \%$. The PRPM market equity risk premium is $13.44 \%$ and is derived using the PRPM relative to the yields on long-term U.S. Treasury securities from January 1926 through April 2020.

The Value Line-derived forecasted total market equity risk premium is derived by deducting the forecasted risk-free rate of $2.03 \%$, discussed above, from the Value Line projected total annual market return of $18.71 \%$, resulting in a forecasted total market equity risk premium of $16.68 \%$. The S\&P 500 projected market equity risk premium using Value Line data is derived by subtracting the projected risk-free rate of $2.03 \%$ from the projected total return of the $\mathrm{S} \& \mathrm{P} 500$ of $14.79 \%$. The resulting market equity risk premium is $12.76 \%$.

The S\&P 500 projected market equity risk premium using Bloomberg data is derived by subtracting the projected risk-free rate of $2.03 \%$ from the projected total return of the $\mathrm{S} \& \mathrm{P}$ 500 of $13.53 \%$. The resulting market equity risk premium is $11.50 \%$.

These six measures, when averaged, result in an average total market equity risk premium of $11.94 \%$.
Q. What are the results of applying the traditional and empirical CAPM to the Utility Proxy Group?
A. As shown in Column [8] on page 1 of Schedule 5, the average and median CAPM/ECAPM equity cost rate is $10.90 \%$.
D. Common Equity Cost Rates for a Proxy Group of Domestic, Non-Price Regulated

## Companies Based on the DCF, RPM, and CAPM

Q. Why do you also consider a proxy group of domestic, non-price regulated companies?
A. In the Hope and Bluefield cases, the U.S. Supreme Court did not specify that comparable risk companies had to be utilities. Since the purpose of rate regulation is to be a substitute for marketplace competition, non-price regulated firms operating in the competitive marketplace make an excellent proxy if they are comparable in total risk to the Utility Proxy Group being used to estimate the cost of common equity. The selection of such domestic, non-price regulated competitive firms theoretically and empirically results in a proxy group which is comparable in total risk to the Utility Proxy Group, since all of these companies compete for capital in the exact same markets.
Q. How did you select non-price regulated companies that are comparable in total risk to the Utility Proxy Group?
A. In order to select a proxy group of domestic, non-price regulated companies similar in total risk to the Utility Proxy Group, I relied on the Beta coefficients and related statistics derived from Value Line regression analyses of weekly market prices over the most recent 260 weeks (i.e., five years). These selection criteria resulted in a proxy group of 12 domestic, non-price regulated firms comparable in total risk to the Utility Proxy Group. Total risk is the sum of non-diversifiable market risk and diversifiable company-specific risks. The criteria used in selecting the domestic, non-price regulated firms was:

1) They must be covered by Value Line Investment Survey (Standard Edition);
2) They must be domestic, non-price regulated companies, i.e., not utilities;
3) Their Beta coefficients must lie within plus or minus two standard deviations of the average unadjusted Beta coefficients of the Utility Proxy Group; and
4) The residual standard errors of the Value Line regressions which gave rise to the unadjusted Beta coefficients must lie within plus or minus two standard deviations of the average residual standard error of the Utility Proxy Group.

Beta coefficients measure market, or systematic, risk, which is not diversifiable. The residual standard errors of the regressions measure each firm's company-specific, diversifiable risk. This is demonstrated clearly by Jack C. Francis on page 273 of Investments: Analysis and Management, where he states "Total risk can be measured by the variance of returns, denoted $\operatorname{Var}(r)$. This measure of total risk is partitioned into its systematic and unsystematic components." ${ }^{28}$ Essentially, companies that have similar betas and standard errors of regression have similar total investment risk.
Q. Have you prepared a schedule which shows the data from which you selected the $\mathbf{1 2}$ domestic, non-price regulated companies that are comparable in total risk to the Utility Proxy Group?
A. Yes, the basis of my selection and both proxy groups' regression statistics are shown in Schedule 6.
Q. Did you calculate common equity cost rates using the DCF model, RPM, and CAPM for the Non-Price Regulated Proxy Group?
A. Yes. Because the DCF model, RPM, and CAPM have been applied in an identical manner as described above, I will not repeat the details of the rationale and application of each model. One exception is in the application of the RPM, where I did not use public utility-specific equity risk premiums, nor did I apply the PRPM to the individual non-price regulated
companies.
Page 2 of Schedule 7 derives the constant growth DCF model common equity cost rate. As shown, the indicated common equity cost rate, using the constant growth DCF for the NonPrice Regulated Proxy Group comparable in total risk to the Utility Proxy Group, is $8.41 \%$.

Pages 3 through 5 of Schedule 7 contain the data and calculations that support the $13.12 \%$ RPM common equity cost rate. As shown on line 1 , page 3 of Schedule 7 , the consensus prospective yield on Moody's Baa-rated corporate bonds for the six quarters ending in the third quarter of 2021, and for the years 2021-2025 and 2026-2030, is $4.55 \%{ }^{29}$ When the beta-adjusted risk premium of $8.57 \%{ }^{30}$ relative to the Non-Price Regulated Proxy Group is added to the prospective Baa2-rated corporate bond yield of $4.55 \%$, the indicated RPM common equity cost rate is $13.12 \%$.

Page 6 of Schedule 7 contains the inputs and calculations that support my indicated CAPM/ECAPM common equity cost rate of $11.83 \%$.

## Q. What is the cost rate of common equity based on the Non-Price Regulated Proxy Group?

A. As shown on page 1 of Schedule 7, the results of the common equity models applied to the Non-Price Regulated Proxy Group -- which group is comparable in total risk to the Utility Proxy Group -- are as follows: 8.41\% (DCF), 13.12\% (RPM), and 11.83\% (CAPM). The average of the mean and median of these models is $11.48 \%$, which I used as the indicated common equity cost rate for the Non-Price Regulated Proxy Group.

[^51]
## VII. INDICATED COMMON EQUITY COST RATE BEFORE ADJUSTMENT FOR COMPANY-SPECIFIC RISK

## Q. What is the indicated common equity cost rate based on the cost of common equity model results?

A. It is $10.75 \%$, based on the common equity cost rates resulting from the application of cost of common equity models to the Utility Proxy Group and the Non-Price Regulated Proxy Group summarized in Table 2 above and on page 2 of Schedule 1. As discussed above, I employ multiple cost of common equity models as primary tools in arriving at my recommended common equity cost rate because:

1) No single model is so inherently precise that it can be relied on solely to the exclusion of other theoretically sound models;
2) All of the models are market-based;
3) The use of multiple models adds reliability to the estimation of the common equity cost rate; and
4) The prudence of using multiple cost of common equity models is supported in both the financial literature and regulatory precedent.

Based on these common equity cost rate results, I conclude that a common equity cost rate of $10.75 \%$ is indicated for the Utility Proxy Group before determining if there need to be any Company-specific adjustments.

## A. Company-Specific Risk Adjustments

## 1. Business Risk Adjustment

Q. Does UIF's smaller size compared with the Utility Proxy Group increase its business risk?
A. Yes. UIF's smaller size relative to the Utility Proxy Group companies indicates greater relative business risk for the Company because, all else being equal, size has a material bearing on risk.

Size affects business risk because smaller companies generally are less able to cope with significant events that affect sales, revenues and earnings. For example, smaller companies face more risk exposure to business cycles and economic conditions, both nationally and locally. Additionally, the loss of revenues from a few larger customers would have a greater effect on a small company than on a bigger company with a larger, more diverse, customer base.

As further evidence illustrates that smaller firms are riskier, investors generally demand greater returns from smaller firms to compensate for less marketability and liquidity of their securities. Duff \& Phelps 2019 Valuation Handbook Guide to Cost of Capital - Market Results through 2018 ("D\&P - 2019") discusses the nature of the small-size phenomenon, providing an indication of the magnitude of the size premium based on several measures of size. In discussing "Size as a Predictor of Equity Premiums," D\&P - 2019 states:

The size effect is based on the empirical observation that companies of smaller size are associated with greater risk and, therefore, have greater cost of capital [sic]. The "size" of a company is one of the most important risk elements to consider when developing cost of equity capital estimates for use in valuing a business simply because size has been shown to be a predictor of equity returns. In other words, there is a significant (negative) relationship between size and historical equity returns - as size decreases, returns tend to increase, and vice versa. (footnote omitted) (emphasis in original) ${ }^{31}$

Furthermore, in "The Capital Asset Pricing Model: Theory and Evidence," Fama and French note size is indeed a risk factor which must be reflected when estimating the cost of common equity. On page 14, they note:
. . . the higher average returns on small stocks and high book-to-market stocks reflect unidentified state variables that produce undiversifiable risks (covariances) in returns not captured in the market return and are priced separately from market betas. ${ }^{32}$

Based on this evidence, Fama and French proposed their three-factor model which includes a size variable in recognition of the effect size has on the cost of common equity.

[^52]Also, it is a basic financial principle that the use of funds invested, and not the source of funds, is what gives rise to the risk of any investment. ${ }^{33}$ Eugene Brigham, a well-known authority, states:

A number of researchers have observed that portfolios of small-firms (sic) have earned consistently higher average returns than those of large-firm stocks; this is called the "small-firm effect." On the surface, it would seem to be advantageous to the small firms to provide average returns in a stock market that are higher than those of larger firms. In reality, it is bad news for the small firm; what the small-firm effect means is that the capital market demands higher returns on stocks of small firms than on otherwise similar stocks of the large firms. (emphasis added) ${ }^{34}$

Consistent with the financial principle of risk and return discussed above, increased relative risk due to small size must be considered in the allowed rate of return on common equity. Therefore, the Commission's authorization of a cost rate of common equity in this proceeding must appropriately reflect the unique risks of UIF's, including its small size, which is justified and supported above by evidence in the financial literature.
Q. Is there a way to quantify an adjustment to compensate UIF for greater business risk due to its smaller size relative to the Utility Proxy Group?
A. Yes. UIF has greater relative risk than the average utility in the Utility Proxy Group because of its smaller size compared with the Utility Proxy Group, as measured by an estimated market capitalization of common equity for UIF.

Table 3: Size as Measured by Market Capitalization for UIF and the Utility Proxy Group

Market	Times Greater   Than
Capitalization*	The Company
(\$ Millions)	
$\$ 196.004$	
$\$ 5,657.608$	28.9 x

UIF's estimated market capitalization was $\$ 196.004$ million as of April 30, 2020, ${ }^{35}$ compared with the market capitalization of the average company in the Utility Proxy Group of $\$ 5.657$ billion as of April 30, 2020. The average company in the Utility Proxy Group has a market capitalization 28.9 times the size of UIF's estimated market capitalization.

As a result, it is necessary to upwardly adjust the indicated common equity cost rate of $10.75 \%$ to reflect UIF's greater risk due to their smaller relative size. The determination is based on the size premiums for portfolios of the New York Stock Exchange, American Stock Exchange, and NASDAQ listed companies ranked by deciles for the 1926 to 2019 period as shown on the bottom half of page 1 of Schedule 8 . The average size premium for the Utility Proxy Group with a market capitalization of $\$ 5.7$ billion falls in the $4^{\text {th }}$ decile, while the Company's estimated market capitalization of $\$ 196.004$ million places it in the $10^{\text {th }}$ decile. The size premium spread between the $4^{\text {th }}$ decile and the $10^{\text {th }}$ decile is $4.20 \%$ as shown on the top half of page 1 of Schedule 8. Even though a 4.20\% upward size adjustment is indicated, I applied a size premium of $1.00 \%$ to the Company's indicated common equity cost rate.

[^53]Q. Did you evaluate UIF's parent, CRU-US's estimated market capitalization compared to the proxy group?
A. Yes. Even though I do not think it is applicable, ${ }^{36}$ I looked at CRU's common equity balance at December 31, 2019. I then adjusted it by the proxy group market-to-book ratio and compared it with the proxy group. CRU-US's estimated market capitalization, \$944.372 million, ${ }^{37}$ would fall in the $8^{\text {th }}$ decile, which would indicate a $0.80 \%$ size premium over the average proxy group company.
Q. Does the FL ROE Formula allow for adjustments for increased risks of small utilities?
A. Yes, it does. Order No. PSC-2019-0267-PAA-WS states the following:

A private placement premium of 50 basis points is added to reflect the difference in yields on publicly-traded debt and privately placed debt, which is illiquid. Investors require a premium for the lack of liquidity of privately placed debt.

A small utility risk premium of 50 basis points is added because the average Florida WAW [water and wastewater] utility is too small to qualify for privately placed debt and smaller companies are considered by investors to be more risky than larger companies. [clarification added]

In view of the all of the above, and especially given CRU-US's debt was privately placed, my 1.00\% upward adjustment to reflect the increased risk of UIF relative to the Utility Proxy Group is both reasonable and conservative.

## VIII. CONCLUSION

Q. What is your recommended return on investor-supplied capital for UIF?
A. Given the Company's 13-month average balances of investor-supplied capital ending December 31, 2019 which consists of $45.58 \%$ long-term debt at an embedded debt cost rate of $5.78 \%, 5.03 \%$ short-term debt at an embedded debt cost rate of $4.04 \%$, and $49.39 \%$ common equity at my recommended ROE of $11.75 \%$, I conclude that an appropriate return on investor-

[^54]supplied capital for the Company is $8.63 \%$. A common equity cost rate of $11.75 \%$ is consistent with the Hope and Bluefield standard of a just and reasonable return which ensures the integrity of presently invested capital and enables the attraction of needed new capital on reasonable terms. It also ensures that UIF will be able to continue providing safe, adequate and reliable water service to the benefit of customers. Thus, it balances the interests of both customers and the Company.
Q. Does that conclude your direct testimony?
A. Yes

## BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Application for increase in water and	)
wastewater rates in Charlotte, Highlands,	)
Lake, Lee, Marion, Orange, Pasco, Pinellas,	)
Polk, and Seminole Counties by Utilities, Inc. )   of Florida. ) (	

## EXHIBIT (DWD-1)

## OF

## DYLAN D. D'ASCENDIS

on behalf of
Utilities, Inc. of Florida

Docket No. 20200139-WS Summary of Experience

Exhibit DWD-1
Page 1 of 4

## Summary

Dylan is an experienced consultant and a Certified Rate of Return Analyst (CRRA) and Certified Valuation Analyst (CVA). He has served as a consultant for investor-owned and municipal utilities and authorities for 11 years. Dylan has extensive experience in rate of return analyses, class cost of service, rate design, and valuation for regulated public utilities. He has testified as an expert witness in the subjects of rate of return, cost of service, rate design, and valuation before 19 regulatory commissions in the U.S. and an American Arbitration Association panel.

He also maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured.

## Areas of Specialization

$\square$	Regulation and Rates	Financial Modeling	$\square$
Rate of Return			
Utilities	$\square$	Valuation	$\square$
Cost of Service			
Mutual Fund Benchmarking	$\square$	Regulatory Strategy	$\square$
Rate Design			
Capital Market Risk	$\square$	Rate Case Support	

## Recent Expert Testimony Submission/Appearances

## Jurisdiction

- Massachusetts Department of Public Utilities
- New Jersey Board of Public Utilities
- Hawaii Public Utilities Commission
- South Carolina Public Service Commission
- American Arbitration Association


## Topic

Rate of Return
Rate of Return
Cost of Service, Rate Design
Return on Common Equity
Valuation

## Recent Assignments

- Provided expert testimony on the cost of capital for ratemaking purposes before numerous state utility regulatory agencies
- Maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured
- Sponsored valuation testimony for a large municipal water company in front of an American Arbitration Association Board to justify the reasonability of their lease payments to the City
- Co-authored a valuation report on behalf of a large investor-owned utility company in response to a new state regulation which allowed the appraised value of acquired assets into rate base


## Recent Publications and Speeches

- Co-Author of: "Decoupling, Risk Impacts and the Cost of Capital", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. The Electricity Journal, March, 2020.
- Co-Author of: "Decoupling Impact and Public Utility Conservation Investment", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. Energy Policy Journal, 130 (2019), 311-319.
- "Establishing Alternative Proxy Groups", before the Society of Utility and Regulatory Financial Analysts: 51st Financial Forum, April 4, 2019, New Orleans, LA.
- "Past is Prologue: Future Test Year", Presentation before the National Association of Water Companies 2017 Southeast Water Infrastructure Summit, May 2, 2017, Savannah, GA.
- Co-author of: "Comparative Evaluation of the Predictive Risk Premium Model ${ }^{\top \mathrm{TM}}$, the Discounted Cash Flow Model and the Capital Asset Pricing Model", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University, Pauline M. Ahern, and Frank J. Hanley, The Electricity Journal, May, 2013.
- "Decoupling: Impact on the Risk and Cost of Common Equity of Public Utility Stocks", before the Society of Utility and Regulatory Financial Analysts: 45th Financial Forum, April 17-18, 2013, Indianapolis, IN.

KyPSC Case No. 2021-00190 STAFF-DR-03-011 Attachment 3 Page 46 of 88
Docket No. 20200139-WS
Summary of Experience
Exhibit DWD-1
Page 2 of 4

SPONSOR	Date	Case/Applicant	Docket No.	Subject
Regulatory Commission of Alaska				
Alaska Power Company	07/16	Alaska Power Company	Docket No. TA857-2	Rate of Return
Arizona Corporation Commission				
Arizona Water Company	12/19	Arizona Water Company - Western Group	Docket No. W01445A-19- $0278$	Rate of Return
Arizona Water Company	08/18	Arizona Water Company - Northern Group	Docket No. W01445A-18- $0164$	Rate of Return
Colorado Public Utilities Commission				
Summit Utilities, Inc.	04/18	Colorado Natural Gas Company	Docket No. 18AL-0305G	Return on Equity
Atmos Energy Corporation	06/17	Atmos Energy Corporation	Docket No. 17AL-0429G	Return on Equity
Delaware Public Service Commission				
Tidewater Utilities, Inc.	11/13	Tidewater Utilities, Inc.	Docket No. 13-466	Capital Structure
Hawaii Public Utilities Commission				
Lanai Water Company, Inc.	12/19	Lanai Water Company, Inc.	Docket No. 2019-0386	Cost of Service / Rate Design
Manele Water Resources, LLC	8/19	Manele Water Resources, LLC	Docket No. 2019-0311	Cost of Service / Rate Design
Kaupulehu Water Company	02/18	Kaupulehu Water Company	Docket No. 2016-0363	Rate of Return
Aqua Engineers, LLC	05/17	Puhi Sewer \& Water Company	Docket No. 2017-0118	Cost of Service / Rate Design
Hawaii Resources, Inc.	09/16	Laie Water Company	Docket No. 2016-0229	Cost of Service / Rate Design
Illinois Commerce Commission				
Utility Services of Illinois, Inc.	11/17	Utility Services of Illinois, Inc.	Docket No. 17-1106	Cost of Service / Rate Design
Aqua Illinois, Inc.	04/17	Aqua Illinois, Inc.	Docket No. 17-0259	Rate of Return
Utility Services of Illinois, Inc.	04/15	Utility Services of Illinois, Inc.	Docket No. 14-0741	Rate of Return
Indiana Utility Regulatory Commission				
Aqua Indiana, Inc.	03/16	Aqua Indiana, Inc. Aboite Wastewater Division	Docket No. 44752	Rate of Return
Twin Lakes, Utilities, Inc.	08/13	Twin Lakes, Utilities, Inc.	Docket No. 44388	Rate of Return
Kansas Corporation Commission				
Atmos Energy	07/19	Atmos Energy	19-ATMG-525-RTS	Rate of Return
Louisiana Public Service Commission				
Louisiana Water Service, Inc.	06/13	Louisiana Water Service, Inc.	Docket No. U-32848	Rate of Return
Maryland Public Service Commission				
FirstEnergy, Inc.	08/18	Potomac Edison Company	Case No. 9490	Rate of Return
Massachusetts Department of Public Utilities				
Unitil Corporation	12/19	Fitchburg Gas \& Electric Co. (Elec.)	D.P.U. 19-130	Rate of Return
Unitil Corporation	12/19	Fitchburg Gas \& Electric Co. (Gas)	D.P.U. 19-131	Rate of Return

KyPSC Case No. 2021-00190 STAFF-DR-03-011 Attachment 3 Page 47 of 88

Docket No. 20200139-WS
Summary of Experience
Exhibit DWD-1
Page 3 of 4

SPONSOR	DATE	CASE/APPLICANT	Docket No.	Subject
Liberty Utilities	07/15	Liberty Utilities d/b/a New England Natural Gas Company	Docket No. 15-75	Rate of Return
Mississippi Public Service Commission				
Atmos Energy	03/19	Atmos Energy	Docket No. 2015-UN-049	Capital Structure
Atmos Energy	07/18	Atmos Energy	Docket No. 2015-UN-049	Capital Structure
Missouri Public Service Commission				
Indian Hills Utility Operating Company, Inc.	10/17	Indian Hills Utility Operating Company, Inc.	Case No. SR-2017-0259	Rate of Return
Raccoon Creek Utility Operating Company, Inc.	09/16	Raccoon Creek Utility Operating Company, Inc.	Docket No. SR-2016-0202	Rate of Return
New Jersey Board of Public Utilities				
Aqua New Jersey, Inc.	12/18	Aqua New Jersey, Inc.	Docket No. WR18121351	Rate of Return
Middlesex Water Company	10/17	Middlesex Water Company	Docket No. WR17101049	Rate of Return
Middlesex Water Company	03/15	Middlesex Water Company	Docket No. WR15030391	Rate of Return
The Atlantic City Sewerage Company	10/14	The Atlantic City Sewerage Company	Docket No. WR14101263	Cost of Service / Rate Design
Middlesex Water Company	11/13	Middlesex Water Company	Docket No. WR1311059	Capital Structure
North Carolina Utilities Commission				
Aqua North Carolina, Inc.	12/19	Aqua North Carolina, Inc.	Docket No. W-218 Sub 526	Rate of Return
Carolina Water Service, Inc.	06/19	Carolina Water Service, Inc.	Docket No. W-354 Sub 364	Rate of Return
Carolina Water Service, Inc.	09/18	Carolina Water Service, Inc.	Docket No. W-354 Sub 360	Rate of Return
Aqua North Carolina, Inc.	07/18	Aqua North Carolina, Inc.	Docket No. W-218 Sub 497	Rate of Return
Public Utilities Commission of Ohio				
Aqua Ohio, Inc.	05/16	Aqua Ohio, Inc.	Docket No. 16-0907-WWAIR	Rate of Return
Pennsylvania Public Utility Commission				
Valley Energy, Inc.	07/19	C\&T Enterprises	Docket No. R-20193008209	Rate of Return
Wellsboro Electric Company	07/19	C\&T Enterprises	Docket No. R-2019- $3008208$	Rate of Return
Citizens' Electric Company of Lewisburg	07/19	C\&T Enterprises	Docket No. R-20193008212	Rate of Return
Steelton Borough Authority	01/19	Steelton Borough Authority	Docket No. A-20193006880	Valuation
Mahoning Township, PA	08/18	Mahoning Township, PA	$\begin{aligned} & \text { Docket No. A-2018- } \\ & 3003519 \end{aligned}$	Valuation
SUEZ Water Pennsylvania Inc.	04/18	SUEZ Water Pennsylvania Inc.	Docket No. R-2018-000834	Rate of Return
Columbia Water Company	09/17	Columbia Water Company	Docket No. R-20172598203	Rate of Return

Docket No. 20200139-WS
Summary of Experience
Page 4 of 4

SpoNSOR	DATE	CASE/APPLICANT	DocKET No.	SUBJECT
Veolia Energy   Philadelphia, Inc.	$06 / 17$	Veolia Energy Philadelphia, Inc.	Docket No. R-2017-   2593142	Rate of Return
Emporium Water   Company	$07 / 14$	Emporium Water Company	Docket No. R-2014-   2402324	Rate of Return
Columbia Water Company	$07 / 13$	Columbia Water Company	Docket No. R-2013-   2360798	Rate of Return

## BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Application for increase in water and	)
wastewater rates in Charlotte, Highlands,	)
Lake, Lee, Marion, Orange, Pasco, Pinellas,	)
Polk, and Seminole Counties by Utilities, Inc. )   of Florida. ) (	

## EXHIBIT (DWD-2)

## OF

## DYLAN D. D’ASCENDIS

on behalf of
Utilities, Inc. of Florida

# Utilities, Inc. of Florida <br> Table of Contents to Exhibit DWD-2 

Schedule
Summary of Cost of Capital and Fair Rate of Return ..... 1
Financial Profile of the Utility Proxy Group ..... 2
Indicated Common Equity Cost Rate Using the Discounted Cash Flow Model ..... 3
Indicated Common Equity Cost Rate Using the Risk Premium Model ..... 4
Indicated Common Equity Cost Rate Using the Capital Asset Pricing Model ..... 5
Basis of selection for the Non-Price Regulated Companies Comparable in Total Risk to the Utility Proxy Group ..... 6
Cost of Common Equity Models Applied to the Comparable Risk Non-Price Regulated Companies ..... 7
Estimated Market Capitalization for Utilities, Inc. of Florida and the Utility Proxy Group ..... 8

Type Of Capital	Ratios (1)	Cost Rate		Weighted Cost Rate
Long-Term Debt	45.58\%	5.78\%	(1)	2.63\%
Short-Term Debt	5.03\%	4.04\%	(1)	0.20\%
Common Equity	49.39\%	11.75\%	(2)	5.80\%
Total	100.00\%			8.63\%

Notes:
(1) Company-provided.
(2) From page 2 of this Schedule.

Utilities, Inc of Florida
Page 2 of 2
Brief Summary of Common Equity Cost Rate

Line No.	Principal Methods	Proxy Group of Seven Water Companies
1.	Discounted Cash Flow Model (DCF) (1)	9.07\%
2.	Risk Premium Model (RPM) (2)	10.91\%
3.	Capital Asset Pricing Model (CAPM) (3)	10.90\%
4.	Market Models Applied to Comparable Risk, Non-Price Regulated Companies (4)	11.48\%
5.	Indicated Common Equity Cost Rate before Adjustment for Risk	10.75\%
6.	Size Risk Adjustment (5)	1.00\%
7.	Recommended Common Equity Cost Rate after Adjustment for Risk	11.75\%

Notes: (1) From Schedule 3.
(2) From page 1 of Schedule 4.
(3) From page 1 of Schedule 5.
(4) From page 1 of Schedule 7.
(5) Business risk adjustment to reflect UIF's smaller relative size to the Utility Proxy Group as detailed in the accompanying direct testimony.

	(MILLIONS OF DOLLARS)					$\underline{2015}$						
CAPITALIZATION STATISTICS												
AMOUNT OF CAPITAL EMPLOYED												
TOTAL PERMANENT CAPITAL						\$3,888.223		\$3,208.636	\$2,837.657	\$2,680.018	\$2,535.795	
SHORT-TERM DEBT	\$189.862		\$184.221	\$185.250	\$152.691	\$106.277						
TOTAL CAPITAL EMPLOYED	\$4,078.085		\$3,392.857	\$3,022.907	\$2,832.709	\$2,642.072						
INDICATED AVERAGE CAPITAL COST RATES (2)												
TOTAL DEBT	4.30	\%	4.75 \%	4.829 \%	4.943 \%	5.079 \%						
PREFERRED STOCK	5.84	\%	5.92 \%	5.91 \%	5.91 \%	5.91 \%						
							5 YEAR					
CAPITAL STRUCTURE RATIOS							AVERAGE					
BASED ON TOTAL PERMANENT CAPITAL:												
LONG-TERM DEBT	47.17	\%	45.15 \%	45.58 \%	46.14 \%	46.49 \%	46.11 \%					
PREFERRED STOCK	0.06		0.09	0.10	0.11	0.11	0.09					
COMMON EQUITY	52.77		54.76	54.32	53.75	53.40	53.80					
TOTAL	100.00	\%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%					
BASED ON TOTAL CAPITAL:												
TOTAL DEBT, INCLUDING SHORT-TERM	50.61	\%	48.37 \%	48.93 \%	48.42 \%	47.77 \%	48.82 \%					
PREFERRED STOCK	0.06		0.08	0.09	0.10	0.11	0.09					
COMMON EQUITY	49.34		51.54	50.98	51.47	52.12	51.09					
TOTAL	100.00	\%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%					

FINANCIAL STATISTICS

FINANCIAL RATIOS - MARKET BASED												
EARNINGS / PRICE RATIO	2.67	\%	6.31	\%	7.91	\%	3.97	\%	4.59	\%	5.09	\%
MARKET / AVERAGE BOOK RATIO	340.26		289.89		288.75		280.21		229.70		285.76	
DIVIDEND YIELD	1.77		3.74		3.69		2.15		2.62		2.79	
DIVIDEND PAYOUT RATIO	72.32		60.08		55.80		56.03		57.45		60.34	
RATE OF RETURN ON AVERAGE BOOK COMMON EQUITY	9.49	\%	10.12	\%	11.31	\%	10.93	\%	10.39	\%	10.45	\%
TOTAL DEBT / EBITDA (3)	5.54	x	4.22	x	3.42	x	3.41	x	3.42	x	4.00	x
FUNDS FROM OPERATIONS / TOTAL DEBT (4)	14.49	\%	21.37	\%	22.87	\%	23.65	\%	25.81	\%	21.64	\%
TOTAL DEBT / TOTAL CAPITAL	50.61	\%	48.37	\%	48.93	\%	48.42	\%	47.77	\%	48.82	\%

Notes:
(1) All capitalization and financial statistics for the group are the arithmetic average of the achieved results for each individual company in the group, and are based upon financial statements as originally reported in each year.
(2) Computed by relating actual total debt interest or preferred stock dividends booked to average of beginning and ending total debt or preferred stock reported to be outstanding.
(3) Total debt relative to EBITDA (Earnings before Interest, Income Taxes, Depreciation and Amortization).
(4) Funds from operations (sum of net income, depreciation, amortization, net deferred income tax and investment tax credits, less total AFUDC) plus interest charges as a percentage of total debt.

Docket No. 20200139-WS
Financial Schedules
Exhibit DWD-2
Page 5 of 38 Schedule 2

## Capital Structure Based upon Total Permanent Capital for the

Page 2 of 2
Proxy Group of Seven Water Companies
2014-2018, Inclusive


Source of Information
Annual Forms 10-K

# KyPSC Case No. 2021-00190 

STAFF-DR-03-011 Attachment 3
Page 55 of 88
Docket No. 20200139-WS Financial Schedules Exhibit DWD-2 Page 6 of 38 Schedule 3 Page 1 of 8
$\underset{\sim}{\infty}$

$\stackrel{\square}{\square}$

$$
\begin{aligned}
& \text { oㅇ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Average of Mean and Median }
\end{aligned}
$$



$\sqrt{2}$ | Bloomberg |
| :---: |
| Projected |
| Five Year |
| Growth in |
| EPS |

$\circ$
$\circ$
$\circ$
$\circ$

[4]
Yahoo!
FinanceFive Year
Growth in
$\substack{\text { Growth } \\ \text { EPS }}$
$\circ$
8
8






Proxy Group of Seven Water
Companies

American States Water Co. American Water Works Company Inc California Water Service Group
Essential Utilities, Inc. Middlesex Water Co.

SJW Group
York Water Co.

Notes: (1) Indicated dividend at 04/30/2020 divided by the average closing price of the last 60 trading days ending 04/30/2020 for each company.


[^55]$\square$
:иоп̣еш.ıојиі јо ә..nnos

# KyPSC Case No. 2021-00190 <br> STAFF-DR-03-011 Attachment 3 <br> Page 56 of 88 

Docket No. 20200139-WS
Financial Schedules
Exhibit DWD-2
Page 7 of 38
Schedule 3
Page 2 of 8

AMER, STATES WATER NYSE-AWR								$\begin{array}{\|l\|} \text { RECENT } \\ \text { PRICE } \end{array}$	$84 .$	$\begin{array}{\|l\|l\|} \hline \text { P/E } \\ \text { RATIO } 37.6\binom{\text { Trailing: }}{\text { Median: } 27.0} \\ \hline \end{array}$				RELATIVE 2,85		$\underset{Y L D}{ } \quad 1.5 \%$			$\begin{aligned} & \text { VALUE } \\ & \text { LINE } \end{aligned}$					
TIMELINESS $\mathbf{2}$ Lowered 3/20/20    SAFETY $\mathbf{2}$ Raised 7/20/12    TECHNICAL 3 Raised $3 / 6 / 20$   BETA $.60 \quad(1.00=$ Market)				High:	19.4 14.9	$\begin{aligned} & 19.8 \\ & 15.6 \\ & \hline \end{aligned}$	18.2 15.3	$\begin{aligned} & 24.1 \\ & 17.0 \end{aligned}$	$\begin{aligned} & \hline 33.1 \\ & 24.0 \end{aligned}$	$\begin{aligned} & 38.7 \\ & 27.0 \end{aligned}$	$\begin{aligned} & 44.1 \\ & 35.8 \end{aligned}$	$\begin{aligned} & 47.2 \\ & 37.3 \end{aligned}$	$\begin{aligned} & 58.4 \\ & 41.1 \end{aligned}$	$\begin{aligned} & 69.6 \\ & 50.1 \end{aligned}$	$\begin{aligned} & 96.0 \\ & 63.3 \end{aligned}$	$\begin{aligned} & 96.6 \\ & 65.1 \end{aligned}$			Target Price 2023 2024	ange 2025				
				LEGENDS   $1.35 \times$ Dividends $p$ sh   divided by Interest Rate   2-for-1 split $9 / 13$   Options: Yes   Shaded area indicates recession																-128				
											II					128 96 80								
18-Month Target Price Range   Low-High Midpoint (\% to Mid) $\$ 68-\$ 116 \$ 92(10 \%)$																				64				
																				48				
																				-32				
									, י1,	,										24				
												, , 1 $1^{1}$							.***					-16
																				-12				
Institutional Decisions																			E					
	202019	302019	402019	Percen shares traded															$\begin{array}{rr}\text { STOCK } & \text { INDEX } \\ 8.9 & -6.8\end{array}$					
to Buy to Sell	139 109	149	137 145															1 yr. 3 yr.	$\begin{array}{rr} 8.9 & -6.8 \\ 79.8 & 6.6 \end{array}$					
Hld's (000)	26893	27173	26734							U1	$1 \mathrm{ll\mid ld}$	$1{ }^{1}$	\| $\mid$ \|ل	$\mid$					5 yr .	109.420 .3				
2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	$\bigcirc$	LINE PUB. LLC	23-25				
6.81	7.03	7.88	8.75	9.21	9.74	10.71	11.12	12.12	12.19	12.17	12.56	11.92	12.01	11.88	12.86	12.95	13.30	Reven	ser sh	16.40				
1.11	1.32	1.45	1.65	1.69	1.70	2.11	2.13	2.48	2.65	2.67	2.81	2.70	2.96	2.84	3.26	3.25	3.55	"Cash F	low" per sh	4.50				
. 53	. 66	. 67	. 81	. 78	. 81	1.11	1.12	1.41	1.61	1.57	1.61	1.62	1.88	1.72	2.28	2.25	2.40	Earning	per sh ${ }^{\text {A }}$	2.90				
. 44	. 45	. 46	. 48	. 50	. 51	. 52	. 55	. 64	. 76	. 83	. 87	. 91	. 99	1.06	1.16	1.25	1.35	Div'd D	cl'd per sh ${ }^{\text {Bm }}$	1.85				
2.51	2.12	1.95	1.45	2.23	2.09	2.12	2.13	1.77	2.52	1.89	2.39	3.55	3.08	3.44	4.12	3.50	3.50	Cap'I	ending per sh	3.75				
7.51	7.86	8.32	8.77	8.97	9.70	10.13	10.84	11.80	12.72	13.24	12.77	13.52	14.45	15.19	16.33	17.15	18.10	Book V	lue per sh D	21.35				
33.50	33.60	34.10	34.46	34.60	37.06	37.26	37.70	38.53	38.72	38.29	36.50	36.57	36.68	36.76	36.85	37.00	37.25	Comm	Shs Outst'g ${ }^{\text {C }}$	37.50				
23.2	21.9	27.7	24.0	22.6	21.2	15.7	15.4	14.3	17.2	20.1	24.6	25.6	25.7	34.0	34.4	Bold fig	res are	Avg	'IP/E Ratio	23.5				
1.23	1.17	1.50	1.27	1.36	1.41	1.00	. 97	. 91	. 97	1.06	1.24	1.34	1.29	1.84	1.87	Value	Line	Relative	P/E Ratio	1.30				
3.6\%	3.1\%	2.5\%	2.5\%	2.9\%	2.9\%	3.0\%	3.2\%	3.1\%	2.7\%	2.6\%	2.2\%	2.2\%	2.0\%	1.8\%	1.5\%			Avg An	'I Div'd Yield	2.6\%				
CAPITAL STRUCTURE as of 12/31/19   Total Debt $\$ 286.3$ mill. Due in 5 Yrs $\$ 6.9$ mill. LT Debt $\$ 281.0$ mill. LT Interest $\$ 24.5$ mill. (32\% of Cap'l)						398.9	419.3	466.9	472.1	465.8	458.6	436.1	440.6	436.8	473.9	480	495	Reve	(\$mill)	615				
						41.4	42.0	54.1	62.7	61.1	60.5	59.7	69.4	63.9	84.3	83.0	90.0	Net Pro	it (\$mill)	110				
						43.2\%	41.7\%	39.9\%	36.3\%	38.4\%	38.4\%	36.8\%	36.0\%	22.0\%	22.6\%	23.0\%	23.0\%	Incom	Tax Rate	23.0\%				
						5.8\%	2.0\%	2.5\%				.-		2.5\%	.-	1.0\%	1.0\%	AFUDC	\% to Net Profit	1.0\%				
Leases, Uncapitalized: Annual rentals $\$ 2.7$ mill. Pension Assets-12/19 \$192 5 mill						44.3\%	45.4\%	42.2\%	39.8\%	39.1\%	41.1\%	39.4\%	38.0\%	40.5\%	44.4\%	46.0\%	47.0\%	Long-Ter	rm Debt Ratio	49.5\%				
						55.7\%	54.6\%	57.8\%	60.2\%	60.9\%	58.9\%	60.6\%	62.0\%	59.5\%	55.6\%	54.0\%	53.0\%	Comm	Equity Ratio	51.5\%				
Oblig. \$231.9 mill.   Pfd Stock None						677.4	749.1	787.0	818.4	832.6	791.5	815.3	854.9	938.4	1082.5	1180	1275	Total	pital (\$mill)	1565				
						855.0	896.5	917.8	981.5	1003.5	1060.8	1150.9	1205.0	1296.3	1415.7	1485	1590	Net Pla	(\$mill)	1780				
Common Stock $36,859,505$ shs. as of $2 / 20 / 20$						7.6\%	7.1\%	8.3\%	8.9\%	8.6\%	9.0\%	8.6\%	9.3\%	7.9\%	8.9\%	8.0\%	8.0\%	Return	n Total Cap'l	8.5\%				
						11.0\%	10.3\%	11.9\%	12.7\%	12.0\%	13.0\%	12.1\%	13.1\%	11.4\%	14.0\%	13.0\%	13.5\%	Return	n Shr. Equity	14.0\%				
						11.0\%	10.3\%	11.9\%	12.7\%	12.0\%	13.0\%	12.1\%	13.1\%	11.4\%	14.0\%	13.0\%	13.5\%	Return	$n$ Com Equity	14.0\%				
MARKET CAP: $\$ 3.1$ billion (Mid Cap)						5.8\%	5.3\%	6.6\%	6.8\%	5.7\%	6.0\%	5.3\%	6.2\%	4.5\%	6.9\%	6.0\%	6.0\%	Retaine	to Com Eq	5.0\%				
CURRENT POSITION   (\$MILL.) 2017 2018 $12 / 31 / 19$						47\%	49\%	45\%	47\%	53\%	54\%	56\%	52\%	61\%	51\%	56\%	56\%	All Div'	sto Net Prof	64\%				


water \& wastewater services to U.S. military bases through its
ASUS subsidiary. Sold Chaparral City Wtr. of AZ. (6/11). Employs 841. BlackRock, Inc. owns 15.1\% of out. shares; Vanguard, 11.5\%; off. \& dir. 1.2\%. (4/19 Proxy). Chairman: Lloyd Ross. Pres. \& CEO: Robert Sprowls. Inc: CA. Address: 630 East Foothill Blvd., San Dimas, CA 91773. Tel: 909-394-3600. Internet: www.aswater.com.
The nonregulated business should remain a key growth driver. Through its ASUS subsidiary, American States provides water services to U.S. Army bases. As more water services at military installations are privatized, we expect ASUS to continue to increase, or at least maintain, its market share. The typical contract is for 50 years, and unlike its other operations, income is not regulated by state authorities. In 2019 , profits increased here by $12 \%$, and represented $\$ 0.47$ of the company's total share net.
Dividend growth prospects are bright. The board usually announces a new annual increase in the payout in mid-August. While we do not think that 2019's $11 \%$ hike will be equaled, the new dividend per share should be somewhere between $\$ 0.325$ and $\$ 0.33$. This would still represent a percentage increase that is higher than the group norm. Moreover, the trend should continue to mid-decade.
These shares are timely. Investors may want to note that like most members of this group, the stock's total return potential to 2023-2025 is well below average. James A. Flood

April 10, 2020

# KyPSC Case No. 2021-00190 STAFF-DR-03-011 Attachment 3 <br> Page 57 of 88 

Docket No. 20200139-WS
Financial Schedules
Exhibit DWD-2
Page 8 of 38
Schedule 3
Page 3 of 8


# KyPSC Case No. 2021-00190 <br> STAFF-DR-03-011 Attachment 3 <br> Page 58 of 88 

Docket No. 20200139-WS
Financial Schedules
Exhibit DWD-2
Page 9 of 38
Schedule 3
Page 4 of 8

								RECENT PRICE	$43.05$	$\begin{array}{ll} \hline \text { P/E } & 32.4\left(\begin{array}{l} \text { Trailing: } 43.1 \\ \text { RATIO } \\ \text { Median: } 23.0 \end{array}\right) \end{array}$				RELATIVE $9 \boldsymbol{\square}$ P/E RATIO 2.4		$6 \text { VIV'D }$	$2.3 \%$		VALUE LINE													
TIMELINESS $\mathbf{1}$ Raised 12/20/19   SAFETY $\mathbf{2}$ Raised 4/20/12   TECHNICAL $\mathbf{3}$ Raised 3/6/20   BETA $.60 \quad$ (1.00 $=$ Market)				High:	$\begin{aligned} & \hline 17.2 \\ & 12.3 \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline 18.4 \\ 13.2 \\ \hline \end{array}$	19.0 15.4	$\begin{array}{l\|} \hline 21.5 \\ 16.8 \end{array}$	$\begin{aligned} & 28.1 \\ & 20.6 \end{aligned}$	$\begin{aligned} & 28.2 \\ & 22.4 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 24.4 \end{aligned}$	$\begin{aligned} & 35.8 \\ & 28.0 \end{aligned}$	$\begin{aligned} & 39.6 \\ & 29.4 \end{aligned}$	$\begin{aligned} & 39.4 \\ & 32.1 \end{aligned}$	$\begin{aligned} & 47.3 \\ & 32.7 \end{aligned}$	$\begin{aligned} & 54.5 \\ & 30.4 \end{aligned}$			Target Pric $2023 \mid 202$	$\begin{aligned} & \text { lange } \\ & 2025 \end{aligned}$												
				LEGENDS   $1.60 \times$ Dividends $p$ sh divided by Interest Rate .... Relative Price Strength 5-for-4 split 9/13 Options: Yes   Shaded area indicates recession																												
18-Month Target Price Range Low-High Midpoint (\% to Mid) \$35-\$68 \$52 (20\%)																				40												
	3-25 PRO	,																														
	e																															
																		   \% TOT. RETURN $2 / 20$     THIS. VLARITH.*    STOCK INDEX   1 yr. 21.6   3 yr. -64.8    5 yr. 44.6 6.6    82.3 20.3														
Institutional Decision				Percen shares traded																												
		302019 248	402019																													
	167	210																														
Id's $0^{\text {(000) }}$	0358	792	836																													
2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021		E LINE PUB. LLC	23-25												
2.78	3.08	3.23	3.61	3.71	3.93	4.21	4.10	4.32	4.32	4.37	4.61	4.62	4.56	4.71	4.03	6.50	7.70		per sh	8.70												
. 87	. 97	1.01	1.10	1.14	1.29	1.42	1.45	1.51	1.82	1.89	1.87	2.07	2.12	1.90	1.73	2.4	2.65	"Cash	w" per sh	3.50												
. 51	. 57	. 56	. 57	. 58	62	. 72	. 83	. 87	1.16	1.20	1.14	1.32	1.35	1.08	1.04	1.45	1.55	Earnin	per sh A	2.05												
. 29	. 32	. 35	. 38	41	44	47	. 50	. 54	. 58	. 63	. 69	74	. 79	. 85	91	. 97	1.05	Div'd	l'd per sh Bm	1.30												
1.23	1.47	1.64	1.43	1.58	1.66	1.89	1.90	1.98	1.73	1.8	2.07	2.16	2.69	2.78	2.4	3.7	4.45	Cap'I	nding per sh	4.75												
4.71	5.04	5.57	5.85	6.26	6.50	6.81	7.21	7.90	8.63	9.27	9.78	10.43	11.02	11.28	17.58	17.35	17.60	Book	ue per sh	19.55												
158.97	161.21	165.41	166.75	169.21	170.61	172.46	173.60	175.43	177.93	178.59	176.54	177.39	177.7	178.09	220.76	225.00	227.00	Comm	Shs Outst'g	230.00												
25.1	31.8	34.7	32.0	24.9	23.1	21.1	21.3	21.9	21.2	20.8	23.5	23.9	24.7	32.6	39.1				P/E Ratio	24.0												
33	1.69	1.87	1.70	1.50	1.54	1.34	1.34	1.39	1.19	1.09	1.18	1.25	1.2	1.76	2.1			Rela	Ratio	5												
2.3\%	1.8\%	1.8\%	2.1\%	2.8\%	3.1\%	3.1\%	2.8\%	2.8\%	2.4\%	2.5\%	2.6\%	2.3\%	2.4\%	2.4\%	2.2\%			Avg	Div'd Yie	2.6\%												
CAPITAL STRUCTURE as of $12 / 31 / 19$ Total Debt $\$ 3074.1$ mill. Due in $5 \mathrm{Yrs} \$ 252.0$ mill. LT Debt $\$ 2943.3$ mill. LT Interest $\$ 123.5$ mill. ( $43 \%$ of Cap'l)						,	712.0	757.8	8.6	779.9	814.2	19.9	809.5	838.1	889.7	1460	1750		(	2000												
						124.0	144.8	153.1	205.0	213.9	201.8	234.2	239.7	192.0	224.5	325	350	Net P	(\$mill)	470												
						39.2\%	32.9\%	39.0\%	10.0\%	10.5	6.9\%	.2\%	6.6\%	6.6	6.6\%	7.0	7.5	Incom	ax Rate	\%												
									1.1\%	2.4\%	3.1\%	3.8\%	6.3\%	6.8\%	7.2\%	7.0\%	7.0\%	AFUD	to Net Pro	8.0\%												
Pension Assets-12/19 \$266.4 mill. Oblig. \$310.5 mill.						56.6\%	\%	7\%	48.9\%	48.5\%	50.3\%	48.4\%	50.6\%	54.4\%	43.18	49.0\%	51.0		Debt Ratio	55.0\%												
				lig. \$310.	5 mill.	43.4\%	47.3\%	47.3\%	51.1\%	51.5\%	49.7\%	51.6\%	49.4\%	45.6\%	56.9\%	51.0\%	49.0\%	Comm	Equity Ratio	45.0\%												
Pfd Stock None Common Stock 222,781,536 shares as of $2 / 19 / 20$						2706.2	2646.8	2929.7	3003.6	3216.0	3469.5	3587.7	3965.	4407.8	6824.	760	800	Total	ital (\$mill)	9800												
						3469.3	3612.9	3936.2	4167.3	4402.0	4688.9	5001.6	5399.9	5930.3	6345.8	8200	8350	Net Pla	(\$mill)	10900												
						9\%	6.9\%	6.6\%	8.0\%	7.8\%	6.9\%	7.6\%	7.1\%	5.5\%	$4.2 \%$	$6.5 \%$	5.5\%	Retur	Total Cap'l	7.0\%												
MARKET CAP: $\$ 9.6$ billion (Large Cap)						10.6\%	11.6\%	11.0\%	13.4\%	12.9\%	11.7\%	12.7\%	12.2\%	9.6\%	5.8	8.5	9.0\%	Return	Shr. Equity	10.5\%												
						10.6\%	11.6\%	11.0\%	13.4\%	12.9\%	11.7\%	12.7\%	12.2	9.6\%	5.8\%	8.5	9.0	Retu	Com Equity	10.5\%												
CURRENT POS   (\$MILL.)   Cash Assets   Receivables   Inventory (AvgC   Other   Current Assets   Accts Payable   Debt Due   Other   Current Liab.			2017	201812		3.7\%	\%	4.3	$6.7 \%$	6.1	4.7\%	5.6	5.1	2.18	.9\%	2.5	3.0\%	Reta	to Com Eq	4.0\%												
						65\%	60\%	61\%	50\%	52\%	60\%	56\%	59\%	79\%	84\%	67\%	68\%	All D	Net Prof	3\%												
				101.2	1868.9 67.118.4 58.3	BUSINESS: Essential Utilities, Inc. became the new name for Aqua America on Feb. 3, 2020, to reflect the acquisition of Peoples, a natural gas utility, which occurred in $3 / 20$. In 2019, Aqua Amer. provided water and wastewater services to about three million people in PA, OH, TX, IL, NC, NJ, IN, and VA. Employed 1,583. Acquired AquaSource, 7/13; North Maine Utilities, 7/15; and others.								Water supply revenues 2019: residential, $58 \%$; commercial, $16 \%$; industrial, wastewater \& other, $26 \%$. Off. \& dir. own less than $1 \%$ of the common stock; BlackRock, Inc. 10.5\%; Vanguard Grp., 10.4\%; State St. Capital, 5.0\% (3/20 Pre 14A). Pres. \& CEO: Christopher H. Franklin. Inc.: PA Address: 762 West Lancaster Ave., Bryn Mawr, PA 19010. Tel.: 610-525-1400. Internet: www.essential.co.																		
				15.8   26.6																												
			31.2	147.2	2012.7																											
					$\begin{array}{r} 74.9 \\ 130.8 \end{array}$																											
			07.9	161.7	113.1																											
			84.5	399.0	318.8									ny's customer base is now in the Keystone state. Since Aqua had done business there																		
ANNUAL RATES Past Past Est'd '17.'19   of change (per sh) 10 Yrs. 5 Yrs. to '23.25   Revenues $1.5 \%$ $.5 \%$ $12.0 \%$   "Cash Flow" $5.0 \%$ $2.0 \%$ $10.5 \%$   Earnings $7.0 \%$ $1.5 \%$ $10.0 \%$   Dividends $7.5 \%$ $8.0 \%$ $7.5 \%$   Book Value $8.0 \%$ $9.0 \%$ $6.5 \%$						Aqua America. The water company officially made the change in February, six weeks before the completion of the acquisition of Peoples, a Pittsburgh-based natural gas utility. The cost of the transaction was																										
						state. Since Aqua had done business there for a long time, we assume that management was very aware of what the expecta-																										
						tions	are	from	the s	tate'	regulators	. (It																				
						has promised to replace 3,000 miles of old gas lines over the next 15-year period.)																										
						$\$ 4.275$ billion in cash, including the assumption of $\$ 1.1$ billion of debt. In connec-																										
Calendar	QUARTERLY REVENUES (\$ mill.)				Full Year									Our initial estimates for the new entity are tentative. Not much guidance																		
2017	187.8	203.4	215.0	203.3	$\begin{array}{\|c\|} \hline 809.5 \\ 838.1 \\ 889.7 \\ 1460 \\ 1750 \end{array}$	sumption of $\$ 1.1$ billion of debt. In connection with the deal, Essential closed on the																										
2018	194.3	211.9	226.2	205.7		previously announced $\$ 750$ million investment from the Canadian Pension Plan,								look has been made public. The utility's																		
2019	201.1	218.9	243.6	226.1		ment from the Canadian Pension Plan, which received 21.7 million shares of new-								rate base will be $\$ 2.3$ billion larger, but as far as the amount of the capital budget																		
2020	215	385	410	450		ly issued stock. The equity is also trading																										
20	390	41	450	500											what	reven		may	otal, have													
$\begin{array}{\|l} \text { Cal- } \\ \text { endar } \\ \hline \end{array}$	EARNINGS PER SHARE A				Full Year	coronavirus will most likely								been discussed. As for the bottom line, much will depend on acquisition costs.																		
2017	. 28	. 34	. 43	30	1.35	only a minor impact on the company. People are going to be using water and gas																										
2018	. 29	. 37	. 44	d. 02	1.08	no matter what the economic conditions.								don't look for much overlap, except in deal-																		
2019	. 09	. 25	. 38	28	1.04	Should unemployment rise or a recession ing with regulators. Moreover, since the occurs, customers will obviously try to cut purchase was only just approved, we won't																										
2020	. 25	. 35	. 45	. 40	1.45																											
2021	. 28	. 40	. 45	42	1.55																											
Calendar	QUARTERLY DIVIDENDS PAID ${ }^{\text {® }}$				Year	usage of these vital resources is required. Hence, demand for Essential's services will not take as large a hit as the typical								until after the June period, though the March interim balance sheet should pro-																		
	Mar. 31 Jun. 30 Sep. 30 Dec. 31																															
2016	. 178	. 178	. 1913	1913	. 74																											
2017	. 1913	. 1913	. 2047	. 2047	. 79	will not take as large a hit as the typical								This stock is timely. However, like most members of this industry, long-term total return potential is unappealing.   James A Flood   April 10, 2020																		
2018	. 2047	. 2047	. 219	. 219	. 85		regu]		y clim	mate	in Pe	nnsy																				
2019	. 219		. 2343	. 2343	. 91		will	lave		or	ipac																					
2020	. 2343					ings.	. Near	ly tw	a maj	ds of	the ne	$\begin{gathered} \text { on } \\ e w n c \end{gathered}$																				
(A) Diluted egs. Excl. nonrec. gains: '12, 18c. Excl. gain from disc. operations: '12, 74; '13, 94 ; '14, 11c. Quarterly EPS do not add in '19 due to a large change in the number of shares					outstanding in the Dec. period. Next earnings report due mid-May. (B) Dividends historically paid in early March, June, Sept. \& Dec. - Div'd. reinvestment plan available ( $5 \%$ discount).						(C) In millions, adjusted for stock splits.   (D) Includes intangibles: 12/31/19, \$63.8   mill./\$0.29 a share.   able and is provided without warranties of any kind r subscriber's own, non-commercial, internal use. No par eting any printed or electronic pubbication, service or produc							Stab   hers   edicta	Strength ence ty	A 95 75 55												
© 2020 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind. THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, non-commercial, internal use. No part   To subscribe call 1-800-VALUELINE of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product.																																

# KyPSC Case No. 2021-00190 <br> STAFF-DR-03-011 Attachment 3 <br> Page 59 of 88 

Docket No. 20200139-WS
Financial Schedules
Exhibit DWD-2
Page 10 of 38
Schedule 3
Page 5 of 8


# KyPSC Case No. 2021-00190 <br> STAFF-DR-03-011 Attachment 3 <br> Page 60 of 88 

Docket No. 20200139-WS
Financial Schedules
Exhibit DWD-2
Page 11 of 38
Schedule 3
Page 6 of 8


# KyPSC Case No. 2021-00190 <br> STAFF-DR-03-011 Attachment 3 <br> Page 61 of 88 

Docket No. 20200139-WS
Financial Schedules
Exhibit DWD-2
Page 12 of 38
Schedule 3
Page 7 of 8


[^56]
# KyPSC Case No. 2021-00190 STAFF-DR-03-011 Attachment 3 <br> Page 62 of 88 

Docket No. 20200139-WS
Financial Schedules
Exhibit DWD-2
Page 13 of 38
Schedule 3
Page 8 of 8

YORK WATER NDQ-YORW								$\begin{array}{ll} \hline \text { RECENT } \\ \text { PRICE } \end{array} \quad 46.77$		$\begin{array}{\|l\|l\|l} \hline \text { P/E } \\ \text { RATIO } 42,1\binom{\text { Trailing: }}{\text { Median: } 25.0} \end{array}$				$\begin{aligned} & \text { RELATIVE } 3,19 \\ & \text { P/E RATIO } \end{aligned}$		$\text { DIV'D } \quad 1.5 \%$			VALUE LINE									
TIMELINESS $\mathbf{2}$ Lowered 3/20/20   SAFETY $\mathbf{3}$ Lowered 7/17/15   TECHNICAL $\mathbf{3}$ Lowered 3/20/20   BETA $.65 \quad$ ( 1.00 = Market)				High:	$\begin{array}{r} 18.0 \\ 9.7 \\ \hline \end{array}$	$\begin{array}{l\|} \hline 18.0 \\ 12.8 \\ \hline \end{array}$	18.1 15.8	$\begin{array}{l\|} \hline 18.5 \\ 16.8 \end{array}$	$\begin{array}{l\|} \hline 22.0 \\ 17.6 \end{array}$	$\begin{aligned} & 24.3 \\ & 18.8 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 19.7 \end{aligned}$	$\begin{aligned} & 39.8 \\ & 23.8 \end{aligned}$	$\begin{aligned} & 39.9 \\ & 31.7 \end{aligned}$	$\begin{aligned} & 36.1 \\ & 27.5 \end{aligned}$	$\begin{aligned} & 47.3 \\ & 30.3 \end{aligned}$	$\begin{aligned} & 49.8 \\ & 34.6 \end{aligned}$			Target Pr $2023 \mid 20$	ange 2025								
				```LEGENDS \(1.10 \times\) Dividends \(p\) sh divided by Interest Rate \(\ldots\)... Relative Price Strength Options: Yes Shaded area indicates recession```																								
																48												
18-Month Target Price Range Low-High Midpoint (\% to Mid) $\$ 31-\$ 53 \quad \$ 42(-10 \%)$																												
																				24								
											II, 1									20								
																				16								
	\$	OJECTIO																		12								
	Price	Gain																		8								
High Low		$\%$																										
Institutional Decisions																			RETURN 2									
	202019	302019																	STOCK									
	31	30	39	shares traded															24.4 6.6									
Hld's (000)	4866	5111	5387															5 yr .	$97.7 \quad 20.3$									
2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021		E LINE PUB.L	-25								
2.18	2.58	2.56	2.79	2.89	2.95	3.07	3.18	3.21	3.27	3.58	3.68	3.70	3.7	3.74	3.96	4.05	4.20	Reve	per	. 10								
. 65	. 79	. 77	. 86	. 88	. 95	1.07	1.09	1.12	1.19	1.36	1.45	1.42	1.53	1.58	1.71	1.75	1.8	"Cash	w" per sh	2.40								
. 49	. 56	. 58	. 57	. 57	. 64	. 71	. 71	. 72	. 75	. 89	. 97	. 92	1.01	1.04	1.11	1.15	1.20	Earnin	per sh A	1.60								
. 39	. 42	. 45	. 48	. 49	. 51	. 52	. 53	. 54	. 55	. 57	. 60	. 63	. 65	. 67	. 70	. 73	. 78	Div'd	l'd per sh B	. 95								
2.50	1.69	1.85	. 69	2.17	1.18	. 83	. 74	94	. 76	1.10	1.11	1.03	1.95	1.95	2.00	2.00	1.95	Cap'	nding per sh	1.85								
4.65	4.85	5.84	5.97	6.14	6.92	7.19	7.45	7.73	7.98	8.15	8.51	8.88	9.28	9.75	10.32	11.20	11.65	Book	le per sh	12.50								
10.33	10.40	11.20	11.27	11.37	12.56	12.69	12.79	12.92	12.98	12.83	12.81	12.85	12.87	12.94	13.01	12.95	12.9	Comm	Shs Outst'g	12.80								
25.7	26.3	31.2	30.3	24.6	21.9	20.7	23.9	24.4	26.3	23.	23.5	32.8	34.	30.3	33.7	Bold	res are	Avg	P/E Ratio	22.5								
1.36	1.40	1.68	1.61	1.48	1.46	1.32	1.50	1.55	1.48	1.22	1.18	1.72	1.7	1.64	1.83			Relati	P/E Ratio	1.25								
3.1\%	2.9\%	2.5\%	2.8\%	3.5\%	3.6\%	3.5\%	3.1\%	3.1\%	2.8\%	2.8\%	2.6\%	2.1\%	1.9\%	2.1\%	1.9\%			Avg	Div'd Yield	2.5\%								
CAPITAL STRUCTURE as of $12 / 31 / 19$ Total Debt $\$ 101.0$ mill. Due in 5 Yrs $\$ 42.5$ mill. LT Debt $\$ 94.5$ mill. LT Interest $\$ 5.5$ mill.						39.0	40.6	41.4	42.4	45.9		47.6	48.6	48.4	51.5			Reve	(\$mill)	65.0								
						8.9	9.1	9.3	9.7	11.5	12.5	11.8	13.0	13.4	14.5	15.0	15.	Net Pr	(\$mill)	20.5								
						38.5\%	35.3\%	37.6\%	37.6\%	29.8\%	27.5\%	31.3\%	25.9\%	15.7\%	21.0\%	21.0\%	21.0\%	Income	ax Rate	21.0\%								
(41\% of Cap')						1.2\%	1.1\%	1.1\%	.8\%	1.8\%	1.6\%	1.9\%	6.7\%	1.7\%	2.0\%	1.5\%	1.5\%	AFUDC	to Net Profit	1.5\%								
Pension Assets $12 / 19 \$ 49.3$ mill. Oblig. $\$ 47.3$ mill.						48.3\%	47.1\%	46.0\%	45.1\%	44.8\%	44.4\%	42.6\%	43.0\%	42.5\%	41.3\%	38.5\%	37.5\%	Long.	m Debt Ratio	36.0\%								
						51.7\%	52.9\%	54.0\%	54.9\%	55.2\%	55.6\%	57.4\%	57.0\%	57.5\%	58.7\%	61.5\%	62.5\%	Comm	Equity Ratio	64.0\%								
Pfd Stock None						176.4	180.2	184.8	188.4	189.4	196.3	198.7	209.5	219.5	228.7	235	24	Total	ital (\$mill)	250								
						228.4	233.0	240.3	244.2	253.2	261.4	270.9	288.8	299.2	313.2	315	320	Net Pla	(\$mill)	335								
Common Stock 13,014,898 shs.						6.5\%	6.4\%	6.4\%	6.5\%	7.4\%	7.6\%	7.2\%	7.5\%	7.3\%	7.4\%	7.5\%	7.5\%	Return	Total Cap'I	9.0\%								
						\%	9.5\%	9.3\%	.3\%	11.0\%	11.5\%	10.4\%	10.9\%	10.6\%	10.8\%	10.5\%	10.5\%	Retur	Shr. Equity	13.0\%								
MARKET CAP: \$600 million (Small Cap)						9.8\%	9.5\%	9.3\%	9.3\%	11.0\%	11.5\%	10.4\%	10.9\%	10.6\%	10.8\%	10.5\%	10.5\%	Return	Com Equity	13.0\%								
CURRE (\$MILL	NT POSIT	TION	017	201812	/31/19		2.5%			3.9\%	4.4\%	3.4\%	4.0\% 63%		4.0%		3.5% 65%	Retai	to Com Eq	$\begin{gathered} 5.0 \% \\ 59 \% \end{gathered}$								
Cash A	Assets					72\%	73\%			64\%	62\%	67\%	63	64\%	63\%		65\%											
Accoun	nts Receiv		4.5	4.8		BUSINESS: The York Water Company is the oldest investor-owned regulated water utility in the United States. It has operated continuously since 1816. As of December 31, 2019, the company's average daily availability was 35.4 million gallons and its service territory had an estimated population of 201,000 . Has more than 71,400 customers. Residential customers accounted for 65% of 2019 reve-									merc	.	ustrial	\%);	(7\%). It	vides								
	ry (Avg.													sewe	ling s	ices.	orpora	: PA.	k had 106 fu	em-								
Current	Assets		8.6	9.0	9.4									ploye	t 1	1/19.	Peside	CEO:	effrey R.	Of-								
Accts P	Payable		3.1	3.0	3.4												of the	commo York, P	stock (3/19 nsylvania 1									
Debt D Other				1.0 6.8	$\begin{aligned} & 6.5 \\ & 5.3 \\ & \hline \end{aligned}$													ork,	Ivania r.com.									
Current Liab.			9.1	$10.8 \quad 15.2$		York Water Company is apt to								prospects. Investment spending over the pull to														
		Past Prsm		Est'd	'16.'18	modest top- and bottom-line gains this																						
		10 Yrs.		$\begin{array}{lr}\text { Yrs. } & \text { to '23'25 } \\ 3.0 \% & 4.5 \%\end{array}$		year	and	next.	Altho	ugh t	the cu	rrent	eco-	Investment spending over the pull to mid-decade ought to continue as														
of change (per sh) Revenues				.0\%		nom	clim	nate	far	from	deal,	York		plan	ned.	Leade	rship'	's rece	t comme									
Earnings			6.5\%			erat	ns		ly to	move			n a	sug	ts	pita	inv	tme	of ab									
Book Value						relatively normal basis. In fact, given an								millio	n are	on t	he ta	de th	is year,	hich								
						abundance of hand washing spurred by the recent health crisis, coupled with a								will likely be followed up by an additional $\$ 27$ million worth of spending in 2021. Funds will probably be allocated to dam														
$\begin{aligned} & \text { Cal- } \\ & \text { endar } \end{aligned}$	Mar. 31	Jun. 30	$\text { ep. } 30$	$\text { Dec. } 31$	Full																							
2017	11.3	12.3	12.7	12.3	48.6	growing number of residents urged to stay at home by government officials, the com								construction and repair; waste water														
2018	11.6	12.0	12.7	12.1	48.4	pany may experience a near-term uptick								treatment plant expansion; and pipe, serv-														
2019	11.8	13.0	13.7	13.0	51.5	in water consumption. All things consider- ice line, and facility improvements. In our ed, we continue to envision low single-digit view, factoring in the company's aging in-																						
2020	12.2	13.0	14.0	13.3	52.5																							
2021	12.5	13.3	14.5	13.7	54.0	revenue and share-net growth for 2020 and 2021.								frastructure, as well as its expanding cus-														
Calendar	EARNINGS PER SHARE AMar. 31 Jun. 30 Sep. 30 Dec. 31				Full Year									fome	base	, Yas b	k is	not lik	in torms	its								
2017	. 20	. 23	. 31	. 27	1.01	The stock is a favorable selection for the coming six- to 12 -month stretch.								vestm	ent sp	pendi												
2018	. 20	. 26	. 29	. 29	1.04	Based on our Timeliness Ranking scale, York is ranked 2 (Above Average) for relative year-ahead price performance. What's																						
2019	. 22	. 28	. 35	. 26	1.11									At the recent quotation, long-term investment appeal is lacking. York shares														
2020	. 22	. 28	. 35	. 30	1.15									tive year-ahead price performance. What's have been on a steady ascent for the better more, in comparison to the beaten-up part of the last decade. And even with the														
2021	. 23	. 30	. 36	. 31	1.20																							
Calendar	QUARTERLY DIVIDENDS PAID B				Full	broader market indices, shares of the regulated water utility have fared markedly								moderate pullback of late, total return potential three to five years hence is well														
	Mar. 31	Jun. 30	Sep. 30	Dec. 31	Year																							
2016	. 1555	. 1555	. 1555	. 1602	. 627	better over the past six weeks of trading. Indeed, conservative investors may well continue to rebalance their portfolios, specifically by increasing exposure to companies with more stable year-ahead business below average. All told, despite the stock's defensive qualities, we think buy-and-hold accounts can find more-attractive options elsewhere at this juncture. Nicholas P. Patrikis April 10, 2020																						
2017	. 1602	. 1602	. 1602	. 1666	. 647																							
2018	. 1666	. 1666	. 1666	. 1733	. 673																							
2019	. 1733	. 1733	. 1733		. 70																							
2020	. 1802																											

[^57]
Utilities, Inc of Florida

Page 1 of 12 Summary of Risk Premium Models for the Proxy Group of Seven Water Companies

	Proxy Group of Seven Water Companies	
Predictive Risk Premium Model (PRPM) (1)		
Risk Premium Using an Adjusted Total Market Approach (2)	Average	
$\%$		

Notes:
(1) From page 2 of this Schedule.
(2) From page 3 of this Schedule.

KyPSC Case No. 2021-00190
Indicated ROE
Derived by the Predictive Risk Pr
\pm

ϖ

๒

Average of Mean and Median
NMF = Not Meaningful Figure
(1) The Predictive Risk Premium Model uses historical data to generate a predicted variance and a GARCH
coefficient. The historical data used are the equity risk premiums for the first available trading month as
reported by Bloomberg Professional Service.
(2) $\left(1+(\text { Column }[3] * \text { Column }[4])^{\wedge 12}\right)-1$.
(3) $\begin{aligned} & \text { From note } 2 \text { on page } 2 \text { of Schedule } 5 \text {. } \\ & \text { (4) } \text { Column [5] + Column [6]. }\end{aligned}$. \quad.

$$
5+2
$$

O

Utilities, Inc of Florida

1.	Prospective Yield on Aaa Rated Corporate Bonds (1)	3.21 \%
2.	Adjustment to Reflect Yield Spread Between Aaa Rated Corporate Bonds and A Rated Public Utility Bonds	0.53 (2)
3.	Adjusted Prospective Yield on A Rated Public Utility Bonds	3.74 \%
4.	Adjustment to Reflect Bond Rating Difference of Proxy Group	0.08 (3)
5.	Adjusted Prospective Bond Yield	3.82 \%
6.	Equity Risk Premium (4)	6.68
7.	Risk Premium Derived Common Equity Cost Rate	10.50 \%

Notes: (1) Consensus forecast of Moody's Aaa Rated Corporate bonds from Blue Chip Financial Forecasts (see pages 10-11 of this Schedule).
(2) The average yield spread of A rated public utility bonds over Aaa rated corporate bonds of 0.53% from page 4 of this Schedule.
(3) Adjustment to reflect the A2/A3 Moody's LT issuer rating of the Utility Proxy Group as shown on page 5 of this Schedule. The 0.08% upward adjustment is derived by taking $1 / 6$ of the spread between A2 and Baa2 Public Utility Bonds $(1 / 6 * 0.46 \%=0.08 \%)$ as derived from page 4 of this Schedule.
(4) From page 7 of this Schedule.

Utilities, Inc of Florida

Page 4 of 12
Interest Rates and Bond Spreads for Moody's Corporate and Public Utility Bonds

Selected Bond Yields
[1]
[2]
[3]
$\left.\begin{array}{lcccc} & \begin{array}{c}\text { Aaa Rated } \\ \text { Corporate Bond }\end{array} & & \begin{array}{c}\text { A Rated Public } \\ \text { Utility Bond }\end{array} & \end{array} \begin{array}{c}\text { Baa Rated Public } \\ \text { Utility Bond }\end{array}\right]$

Selected Bond Spreads

A Rated Public Utility Bonds Over Aaa Rated Corporate Bonds:
$0.53 \%(1)$
Baa Rated Public Utility Bonds Over A Rated Public Utility Bonds:

$$
\begin{aligned}
& 0.46
\end{aligned} \%(2)
$$

Notes:
(1) Column [2] - Column [1].
(2) Column [3] - Column [2].

Source of Information:
Bloomberg Professional Service

Moody's
Long-Term Issuer Rating
April 2020

Standard \& Poor's
Long-Term Issuer Rating
April 2020

Proxy Group of Seven Water Companies	Long-Term Issuer Rating	Numerical Weighting (1)	Long-Term Issuer Rating	Numerical Weighting(1)
American States Water Co. (2)	A2	6.0	A+	5.0
American Water Works Company Inc (3)	A3	7.0	A	6.0
California Water Service Group (4)	NR	--	A+	5.0
Essential Utilities, Inc. (5)	NR	--	A	6.0
Middlesex Water Co.	NR	--	A	6.0
SJW Corp. (6)	NR	--	A/A-	6.5
York Water Co.	NR	--	A-	7.0
Average	A2/A3	6.5	A	5.9

Notes:
(1) From page 6 of this Schedule.
(2) Ratings that of Golden State Water Company.
(3) Ratings that of New Jersey and Pennsylvania American Water Companies.
(4) Ratings that of California Water Service Company.
(5) Ratings that of Aqua Pennsylvania, Inc.
(6) Ratings that of San Jose Water Company and The Connecticut Water Company

Numerical Assignment for

Moody's Bond Rating	Numerical Bond Weighting	Standard \& Poor's Bond Rating
Ааа	1	AAA
Aa1	2	AA+
Aa2	3	AA
Aa3	4	AA-
A1	5	A+
A2	6	A
A3	7	A-
Baa1	8	BBB+
Baa2	9	BBB
Baa3	10	BBB-
Ba1	11	BB+
Ba2	12	BB
Ba3	13	BB-
B1	14	B+
B2	15	B
B3	16	B-

Docket No. 20200139-WS
 Financial Schedules
 Exhibit DWD-2
 Page 20 of 38
 Utilities, Inc of Florida
 Page 7 of 12
 Judgment of Equity Risk Premium for
 Proxy Group of Seven Water Companies

Line
No.

1. Calculated equity risk premium based on the total market using the beta approach (1)
2. Mean equity risk premium based on a study using the holding period returns of public utilities with A rated bonds (2)

Average equity risk premium

Proxy Group of
Seven Water
Companies
7.60 \%
5.76
6.68 \%

Notes: (1) From page 8 of this Schedule.
(2) From page 12 of this Schedule.

Utilities, Inc of Florida

Line No. Equity Risk Premium Measure

Proxy Group of
Seven Water
Companies
Ibbotson-Based Equity Risk Premiums:

1. Ibbotson Equity Risk Premium (1) $5.78 \quad \%$
2. Regression on Ibbotson Risk Premium Data (2) 9.12
3. Ibbotson Equity Risk Premium based on PRPM (3) 11.95
4. Equity Risk Premium Based on Value Line
$\begin{array}{ll}\text { Summary and Index (4) } & 15.50\end{array}$
5. Equity Risk Premium Based on Value Line S\&P 500 Companies (5)

Equity Risk Premium Based on Bloomberg
6. \quad Equity Risk Premium Ba
10.32
.
7. Conclusion of Equity Risk Premium
10.71 \%
8. Adjusted Beta (7)
0.71
9. Forecasted Equity Risk Premium
7.60 \%

Notes provided on page 9 of this Schedule.

KyPSC Case No. 2021-00190 STAFF-DR-03-011 Attachment 3 Page 71 of 88

Docket No. 20200139-WS
Financial Schedules Exhibit DWD-2 Page 22 of 38 Schedule 4
Utilities, Inc of Florida
Page 9 of 12

Derivation of Equity Risk Premium Based on the Total Market Approach Using the Beta for the Proxy Group of Seven Water Companies

Notes:
(1) Based on the arithmetic mean historical monthly returns on large company common stocks from Ibbotson® SBBI® 2020 Market Report minus the arithmetic mean monthly yield of Moody's average Aaa and Aa corporate bonds from 1926-2019.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of large company common stocks relative to Moody's average Aaa and Aa rated corporate bond yields from 1928-2019 referenced in Note 1 above.
(3) The Predictive Risk Premium Model (PRPM) is discussed in the accompanying direct testimony. The Ibbotson equity risk premium based on the PRPM is derived by applying the PRPM to the monthly risk premiums between Ibbotson large company common stock monthly returns and average Aaa and Aa corporate monthly bond yields, from January 1928 through April 2020.
(4) The equity risk premium based on the Value Line Summary and Index is derived by subtracting the average consensus forecast of Aaa corporate bonds of 3.21% (from page 3 of this Schedule) from the projected 3-5 year total annual market return of 18.71\% (described fully in note 1 on page 2 of Schedule 5).
(5) Using data from Value Line for the S\&P 500, an expected total return of 14.79% was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of 3.21% results in an expected equity risk premium of 11.58%.
(6) Using data from the Bloomberg Professional Service for the S\&P 500, an expected total return of 13.53% was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of 3.21% results in an expected equity risk premium of 10.32%.
(7) Average of mean and median beta from Schedule 5.

Sources of Information:
Stocks, Bonds, Bills, and Inflation - 2020 SBBI Yearbook, John Wiley \& Sons, Inc.
Industrial Manual and Mergent Bond Record Monthly Update.
Value Line Summary and Index
Blue Chip Financial Forecasts, May 1, 2020 and December 1, 2019
Bloomberg Professional Service

KyPSC Case No. 2021-00190 STAFF-DR-03-011 Attachment 3
 Page 72 of 88

Docket No. 20200139-WS
Financial Schedules

2 ■ BLUE CHIP FINANCIAL FORECASTS ■ MAY 1, 2020
Exhibit DWD-2
Page 23 of 38
Schedule 4
Page 10 of 12
Consensus Forecasts of U.S. Interest Rates and Key Assumptions

Interest Rates									Consensus Forecasts-Quarterly Avg.					
	-------Average For Week Ending------				----Average For Month--- Latest Qtr				2Q	3Q	4 Q	1Q	2Q	3Q
	Apr 24	Apr 17	Apr 10	Apr 3	Mar	Feb	Jan	1Q 2020	2020	2020	2020	2021	$\underline{2021}$	$\underline{2021}$
Federal Funds Rate	0.05	0.05	0.05	0.09	0.65	1.58	1.55	1.26	0.1	0.1	0.1	0.1	0.2	0.2
Prime Rate	3.25	3.25	3.25	3.25	3.81	4.75	4.75	4.44	3.3	3.3	3.3	3.3	3.3	3.4
LIBOR, 3-mo.	1.01	1.14	1.30	1.42	1.10	1.68	1.82	1.53	0.9	0.7	0.6	0.6	0.6	0.7
Commercial Paper, 1-mo.	0.38	0.37	0.37	1.42	1.36	1.55	1.56	1.49	0.4	0.4	0.4	0.4	0.5	0.6
Treasury bill, 3-mo.	0.12	0.17	0.19	0.10	0.30	1.54	1.55	1.13	0.1	0.1	0.1	0.2	0.2	0.3
Treasury bill, 6-mo.	0.14	0.21	0.21	0.14	0.30	1.51	1.56	1.12	0.1	0.2	0.2	0.2	0.3	0.3
Treasury bill, 1 yr.	0.17	0.21	0.22	0.15	0.33	1.41	1.53	1.09	0.2	0.2	0.3	0.3	0.4	0.4
Treasury note, 2 yr .	0.21	0.22	0.26	0.23	0.45	1.33	1.52	1.10	0.2	0.3	0.4	0.4	0.5	0.6
Treasury note, 5 yr.	0.36	0.38	0.45	0.38	0.59	1.32	1.56	1.16	0.4	0.5	0.6	0.7	0.7	0.8
Treasury note, 10 yr .	0.61	0.68	0.73	0.65	0.87	1.50	1.76	1.38	0.7	0.8	0.9	1.0	1.1	1.2
Treasury note, 30 yr .	1.19	1.31	1.33	1.29	1.46	1.97	2.22	1.88	1.3	1.4	1.5	1.6	1.7	1.8
Corporate Aaa bond	2.75	2.81	3.03	3.05	3.11	2.85	3.04	3.00	2.6	2.7	2.8	2.8	2.9	3.0
Corporate Baa bond	3.70	3.75	4.13	4.23	4.11	3.50	3.66	3.76	4.3	4.3	4.2	4.3	4.2	4.3
State \& Local bonds	3.37	3.29	3.42	3.45	3.29	2.93	3.00	3.07	2.6	2.6	2.6	2.6	2.6	2.6
Home mortgage rate	3.33	3.31	3.33	3.33	3.45	3.47	3.62	3.51	3.3	3.3	3.2	3.2	3.3	3.3
				---Histo						nsensu	Fore	casts-	uarter	
	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3 Q	4 Q	1 Q	2 Q	3 Q
Key Assumptions	2018	$\underline{2018}$	2018	$\underline{2019}$	$\underline{2019}$	$\underline{2019}$	$\underline{2019}$	$\underline{2020}$	2020	2020	2020	2021	2021	$\underline{2021}$
Fed's AFE \$ Index	105.5	107.8	109.4	109.4	110.3	110.5	110.3	111.2	113.5	113.5	113.2	112.9	112.5	112.2
Real GDP	3.5	2.9	1.1	3.1	2.0	2.1	2.1	-4.8	-27.8	7.4	9.2	6.6	4.8	3.6
GDP Price Index	3.2	2.0	1.6	1.1	2.4	1.8	1.3	1.3	0.1	1.1	1.3	1.7	1.9	1.8
Consumer Price Index	2.2	2.1	1.3	0.9	3.0	1.8	2.4	1.2	-2.4	1.1	1.7	2.1	2.1	2.1

Forecasts for interest rates and the Federal Reserve's Major Currency Index represent averages for the quarter. Forecasts for Real GDP, GDP Price Index and Consumer Price Index are seasonally-adjusted annual rates of change (saar). Individual panel members' forecasts are on pages 4 through 9 . Historical data: Treasury rates from the Federal Reserve Board's H.15; AAA-AA and A-BBB corporate bond yields from Bank of America-Merrill Lynch and are 15+ years, yield to maturity; State and local bond yields from Bank of America-Merrill Lynch, A-rated, yield to maturity; Mortgage rates from Freddie Mac, 30-year, fixed; LIBOR quotes from Intercontinental Exchange. All interest rate data are sourced from Haver Analytics. Historical data for Fed's Major Currency Index are from FRSR H.10. Historical data for Real GDP and GDP Chained Price Index are from the Bureau of Economic Analysis (BEA). Consumer Price Index (CPI) history is from the Department of Labor's Bureau of Labor Statistics (BLS).
U.S. Treasury Yield Curve

Week ended April 24, 2020 \& Year Ago vs.

Corporate Bond Spreads
As of week ended April 24, 2020

U.S. 3-Mo. T-Bills \& 10-Yr. T-Note Yield
(Quarterly Av erage)
Forecast

U.S. Treasury Yield Curve

KyPSC Case No. 2021-00190 STAFF-DR-03-011 Attachment 3
 Page 73 of 88

Docket No. 20200139-WS
Financial Schedules
Exhibit DWD-2
Page 24 of 38
Schedule 4
Page 11 of 12

Long-Range Survey:

The table below contains the results of our twice-annual long-range CONSENSUS survey. There are also Top 10 and Bottom 10 averages for each variable. Shown are consensus estimates for the years 2021 through 2025 and averages for the five-year periods 2021-2025 and 2026-2030. Apply these projections cautiously. Few if any economic, demographic and political forces can be evaluated accurately over such long time spans.

KyPSC Case No. 2021-00190 STAFF-DR-03-011 Attachment 3
 Page 74 of 88

Docket No. 20200139-WS
Financial Schedules
Exhibit DWD-2
Page 25 of 38 Schedule 4
Utilities, Inc of Florida
Page 12 of 12

> Derivation of Mean Equity Risk Premium Based Studies
> Using Holding Period Returns and
> Projected Market Appreciation of the S\&P Utility Index

Notes: (1) Based on S\&P Public Utility Index monthly total returns and Moody's Public Utility Bond average monthly yields from 1928-2019. Holding period returns are calculated based upon income received (dividends and interest) plus the relative change in the market value of a security over a one-year holding period.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of the S\&P Utility Index relative to Moody's A rated public utility bond yields from 1928-2019 referenced in note 1 above.
(3) The Predictive Risk Premium Model (PRPM) is applied to the risk premium of the monthly total returns of the S\&P Utility Index and the monthly yields on Moody's A rated public utility bonds from January 1928 - April 2020.
(4) Using data from Value Line for the S\&P Utilities Index, an expected return of 10.50% was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the expected A rated public utility bond yield of 3.74%, calculated on line 3 of page 3 of this Schedule results in an equity risk premium of 7.47%. $(10.50 \%-3.74 \%=6.76 \%)$
(5) Using data from Bloomberg Professional Service for the S\&P Utilities Index, an expected return of 8.97% was derived based on expected dividend yields and longterm growth estimates as a proxy for market appreciation. Subtracting the expected A rated public utility bond yield of 3.74%, calculated on line 3 of page 3 of this Schedule results in an equity risk premium of 5.23%. $(8.97 \%-3.74 \%=5.23 \%)$
(6) Average of lines 1 through 5.

KyPSC Case No. 2021-00190
 STAFF-DR-03-011 Attachment 3
 Page 76 of 88

Docket No. 20200139-WS
Financial Schedules
Exhibit DWD-2
Page 27 of 38
Schedule 5
Utilities, Inc of Florida
Page 2 of 2

Notes to Accompany the Application of the CAPM and ECAPM

Notes:
(1) The market risk premium (MRP) is derived by using six different measures from three sources: Ibbotson, Value Line, and Bloomberg as illustrated below:

Historical Data MRP Estimates:
Measure 1: Ibbotson Arithmetic Mean MRP (1926-2019)

Arithmetic Mean Monthly Returns for Large Stocks 1926-2019:	12.10	\%
Arithmetic Mean Income Returns on Long-Term Government Bonds:	5.09	
MRP based on Ibbotson Historical Data:	7.01	\%
Measure 2: Application of a Regression Analysis to Ibbotson Historical Data (1926-2019)	10.26	\%
Measure 3: Application of the PRPM to Ibbotson Historical Data: (January 1926-April 2020)	13.44	\%
Value Line MRP Estimates:		
Measure 4: Value Line Projected MRP (Thirteen weeks ending May 01, 2020)		
Total projected return on the market 3-5 years hence*:	18.71	\%
Projected Risk-Free Rate (see note 2):	2.03	
MRP based on Value Line Summary \& Index:	16.68	\%

MRP based on Value Line Summary \& Index:
16.68%
*Forcasted 3-5 year capital appreciation plus expected dividend yield
Measure 5: Value Line Projected Return on the Market based on the S\&P 500
Total return on the Market based on the S\&P 500: $\quad 14.79 \%$ Projected Risk-Free Rate (see note 2): MRP based on Value Line data \qquad
Measure 6: Bloomberg Projected MRP
Total return on the Market based on the S\&P 500:
13.53 \% Projected Risk-Free Rate (see note 2):

MRP based on Bloomberg data

Average of Value Line, Ibbotson, and Bloomberg MRP:
11.94 \%
(2) For reasons explained in the direct testimony, the appropriate risk-free rate for cost of capital purposes is the average forecast of 30 year Treasury Bonds per the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts. (See pages 10-11 of Schedule 4.) The projection of the risk-free rate is illustrated below:

Second Quarter 2020	1.30%
Third Quarter 2020	1.40
Fourth Quarter 2020	1.50
First Quarter 2021	1.60
Second Quarter 2021	1.70
Third Quarter 2021	1.80
2021-2025	3.20
2026-2030	3.70
${\underline{2.03} \%}$	

(3) Average of Column 6 and Column 7.

Sources of Information:
Value Line Summary and Index
Blue Chip Financial Forecasts, May 1, 2020 and December 1, 2019
Stocks, Bonds, Bills, and Inflation - 2020 SBBI Yearbook, John Wiley \& Sons, Inc.
Bloomberg Professional Services

Utilities, Inc. of Florida
Basis of Selection of the Group of Non-Price Regulated Companies
Comparable in Total Risk to the Utility Proxy Group

The criteria for selection of the Non-Price Regulated Proxy Group was that the non-price regulated companies be domestic and reported in Value Line Investment Survey (Standard Edition).

The Non-Price Regulated Proxy Group was then selected based on the unadjusted beta range of $0.17-0.61$ and residual standard error of the regression range of 2.6429-3.1521 of the Utility Proxy Group.

These ranges are based upon plus or minus two standard deviations of the unadjusted beta and standard error of the regression. Plus or minus two standard deviations captures 95.50% of the distribution of unadjusted betas and residual standard errors of the regression.

The standard deviation of the Utility Proxy Group's residual standard error of the regression is 0.1273 . The standard deviation of the standard error of the regression is calculated as follows:

Standard Deviation of the Std. Err. of the Regr. = Standard Error of the Regression $\sqrt{2 N}$
where: $\mathrm{N}=$ number of observations. Since Value Line betas are derived from weekly price change observations over a period of five years, $\mathrm{N}=259$

$$
\text { Thus, } 0.1273=\frac{2.8975}{\sqrt{518}}=\frac{2.8975}{22.7596}
$$

Proxy Group of Seven Water Companies	Value Line Adjusted Beta	Unadjusted Beta	Residual Standard Error of the Regression	Standard Deviation of Beta
American States Water Co.	0.60	0.36	2.6563	0.0986
American Water Works Company Inc	0.50	0.23	2.2596	0.0839
California Water Service Group	0.60	0.38	2.3220	0.0862
Essential Utilities, Inc.	0.60	0.39	2.9281	0.1087
Middlesex Water Co.	0.70	0.54	3.4080	0.1265
SJW Group	0.60	0.38	3.2407	0.1203
York Water Co.	0.65	0.46	3.4676	0.1287
Average	0.61	0.39	2.8975	0.1076
Beta Range (+/- 2 std. Devs. of Beta) 2 std. Devs. of Beta	$\begin{aligned} & 0.17 \\ & 0.22 \end{aligned}$	0.61		
Residual Std. Err. Range ($+/-2$ std. Devs. of the Residual Std. Err.)	2.6429	3.1521		
Std. dev. of the Res. Std. Err.	0.1273			
2 std. devs. of the Res. Std. Err.	0.2546			

Utilities, Inc of Florida
Proxy Group of Non-Price Regulated Companies
Comparable in Total Risk to the
Proxy Group of Seven Water Companies

	[1]	[2]	[3]	[4]
Proxy Group of Twelve Non-Price Regulated Companies	VL Adjusted Beta	Unadjusted Beta	Residual Standard Error of the Regression	Standard Deviation of Beta
Casey's Gen'l Stores	0.70	0.53	2.9602	0.1099
Cboe Global Markets	0.65	0.46	2.7206	0.1010
Cracker Barrel	0.70	0.54	3.0507	0.1132
Campbell Soup	0.65	0.40	2.9785	0.1105
Dunkin' Brands Group	0.70	0.51	2.7046	0.1004
Darden Restaurants	0.75	0.60	2.9890	0.1109
Hormel Foods	0.60	0.34	2.6862	0.0997
Lancaster Colony	0.70	0.48	2.6628	0.0988
Lilly (Eli)	0.75	0.54	2.6484	0.0983
Lamb Weston Holdings	0.65	0.43	2.8592	0.1543
Altria Group	0.70	0.50	2.6455	0.0982
Valvoline Inc.	0.75	0.57	3.1081	0.1659
Average	0.69	0.49	2.8300	0.1100
Proxy Group of Seven Water				
Companies	0.61	0.39	2.8975	0.1076

Utilities, Inc of Florida

Page 1 of 6
Summary of Cost of Equity Models Applied to
Proxy Group of Twelve Non-Price Regulated Companies
Comparable in Total Risk to the
Proxy Group of Seven Water Companies

Principal Methods		Proxy Group of Twelve Non-Price Regulated Companies
Discounted Cash Flow Model (DCF) (1)		8.41 \%
Risk Premium Model (RPM) (2)		13.12
Capital Asset Pricing Model (CAPM) (3)		11.83
	Mean	11.12 \%
	Median	11.83 \%
	Median	11.48 \%

Notes:
(1) From page 2 of this Schedule.
(2) From page 3 of this Schedule.
(3) From page 6 of this Schedule.

Line No.	Proxy Group of Twelve Non-Price Regulated Companies	
1.	Prospective Yield on Baa Rated Corporate Bonds (1)	
2.	Equity Risk Premium (2)	4.55%
3.	Risk Premium Derived Common Equity Cost Rate	8.57

Notes: (1) Average forecast of Baa corporate bonds based upon the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts dated May 1, 2020 and December 1, 2019 (see pages 10 and 11 of Schedule 4). The estimates are detailed below.

Second Quarter 2020	4.30%
Third Quarter 2020	4.30
Fourth Quarter 2020	4.20
First Quarter 2021	4.30
Second Quarter 2021	4.20
Third Quarter 2021	4.30
2021-2025	5.20
2026-2030	5.60
Average	

(2) From page 5 of this Schedule.

Docket No. 20200139-WS

Financial Schedules

Proxy Group of Twelve Non-Price Regulated Companies of Comparable risk to the Proxy Group of Seven Water Companies

Moody's
Long-Term Issuer Rating
April 2020

Standard \& Poor's
Long-Term Issuer Rating
April 2020

Proxy Group of Twelve Non- Price Regulated Companies	Long- Term Issuer Rating	Numerical Weighting (1)	Long-Term Issuer Rating	Numerical Weighting (1)
Casey's Gen'l Stores	NA	--	NA	--
Cboe Global Markets	A3	7.0	A-	7.0
Cracker Barrel	WR	--	NR	--
Campbell Soup	Baa2	9.0	BBB-	10.0
Dunkin' Brands Group	NA	--	NA	--
Darden Restaurants	Baa3	10.0	BBB-	10.0
Hormel Foods	A1	5.0	A	6.0
Lancaster Colony	NA	--	NA	--
Lilly (Eli)	A2	6.0	A+	5.0
Lamb Weston Holdings	Ba2	12.0	BB+	11.0
Altria Group	A3	7.0	BBB	9.0
Valvoline Inc.	Ba3	13.0	BB	12.0
Average	Baa2	8.6	BBB+	8.8

Notes:
(1) From page 6 of Schedule 4.

Source of Information:
Bloomberg Professional Services

Utilities, Inc of Florida
Derivation of Equity Risk Premium Based on the Total Market Approach
Using the Beta for
Proxy Group of Twelve Non-Price Regulated Companies of Comparable risk to the
Proxy Group of Seven Water Companies

$\underline{\text { Line No. }}$	Equity Risk Premium Measure	Proxy Group of Twelve Non-Price Regulated Companies
Ibbotson-Based Equity Risk Premiums:		
1.	Ibbotson Equity Risk Premium (1)	5.78 \%
2.	Regression on Ibbotson Risk Premium Data (2)	9.12
3.	Ibbotson Equity Risk Premium based on PRPM (3)	11.95
4.	Equity Risk Premium Based on Value Line Summary and Index (4)	15.50
5	Equity Risk Premium Based on Value Line S\&P 500 Companies (5)	11.58
6.	Equity Risk Premium Based on Bloomberg S\&P 500 Companies (6)	10.32
7.	Conclusion of Equity Risk Premium	10.71 \%
8.	Adjusted Beta (7)	0.80
9.	Forecasted Equity Risk Premium	8.57 \%

Notes:
(1) From note 1 of page 9 of Schedule 4.
(2) From note 2 of page 9 of Schedule 4.
(3) From note 3 of page 9 of Schedule 4.
(4) From note 4 of page 9 of Schedule 4.
(5) From note 5 of page 9 of Schedule 4.
(6) From note 6 of page 9 of Schedule 4.
(7) Average of mean and median beta from page 6 of this Schedule.

Sources of Information:
Stocks, Bonds, Bills, and Inflation - 2020 SBBI Yearbook, John Wiley \& Sons, Inc.
Value Line Summary and Index
Blue Chip Financial Forecasts, May 1, 2020 and December 1, 2019
Bloomberg Professional Services

Page 85 of 88

Docket No. 20200139-WS
Financial Schedules
Exhibit DWD-2
Page 36 of 38 Schedule 7 Page 6 of 6
Traditional CAPM and ECAPM Results for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the
∞

	$)^{\circ}$	-	χ°	δ°
		$\begin{gathered} \underset{\sim}{\dot{~}} \\ \underset{\sim}{\prime} \end{gathered}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{7} \end{aligned}$	\cdots

Docket No. 20200139-WS Financial Schedules Exhibit DWD-2
Page 37 of 38 Schedule 8 Page 1 of 2
ер!়oly jo วuI 'sə!!!!!

[1]					[2]		[3]	[4]
Market Capitalization on April 30,$2020(1)$					pplicable Decile of he NYSE/AMEX/ NASDAQ (2)		Applicable Size Premium (3)	Spread from Applicable Size Premium (4)
(millions)		(times larger)						
\$	196.004				10		4.99\%	
\$	5,657.608	28.9	x		4		0.79\%	4.20\%
		[A]			[B]		[C]	[D]
		Decile			Market Capitalization of mallest Company		Market Capitalization of Largest Company	Size Premium (Return in Excess of CAPM)*
					(millions)		(millions)	
	Largest	1		\$	31,090.379	\$	1,061,355.011	-0.28\%
		2			13,142.606		30,542.936	0.50\%
		3			6,618.604		13,100.225	0.73\%
		4			4,312.546		6,614.962	0.79\%
		5			2,688.889		4,311.252	1.10\%
		6			1,669.856		2,685.865	1.34\%
		7			993.855		1,668.282	1.47\%
		8			515.621		993.847	1.59\%
		9			230.024		515.602	2.22\%
	Smallest	10			1.973		299.748	4.99\%
				m	2020 Duff \& Phelp		of Capital Navigato	

Derivation of Investment Risk Adjustment Based upon
Des (1) From page 2 of this Schedule.
(2) Gleaned from Columns [B] and [C] on the bottom of this page. The appropriate decile (Column [A])
corresponds to the market capitalization of the proxy group, which is found in Column [1].
(3) Corresponding risk premium to the decile is provided in Column [D] on the bottom of this page.
(4) Line No. 1 Column [3] - Line No. 2 Column [3]. For example, the 4.20% in Column [4], Line No. 2 is derived as
follows $4.20 \%=2.22 \%-0.79 \%$.

KyPSC Case No. 2021-00190
STAFF-DR-03-011 Attachment 3
Page 87 of 88
Docket No. 20200139-WS
Financial Schedules
Exhibit DWD-2
Page 38 of 38
Schedule 8
Page 2 of 2
Utilities, Inc of Florida
Market Capitalization of Utilities, Inc of Florida and the
Proxy Group of Seven Water Companies

NA= Not Available Notes: (1) Column 3 / Column 1.
(2) Column 4 / Column 2 .
(3) Column 1^{*} Column 4 .
(4) Book common equity UIF's 2019 Annual Report to the FL PSC multiplied by the requested common equity ratio.
(5) The market-to-book ratio of Utilities, Inc of Florida on April 30,2020 is assumed to be equal to the market-to-book ratio of
Proxy Group of Seven Water Companies on April 30, 2020 as appropriate.
(6) Column [3] multiplied by Column [5]. Notes: (1) Column 3 / Column 1.
(2) Column 4 / Column 2 .
(3) Column 1^{*} Column 4 .
(4) Book common equity UIF's 2019 Annual Report to the FL PSC multiplied by the requested common equity ratio.
(5) The market-to-book ratio of Utilities, Inc of Florida on April 30, 2020 is assumed to be equal to the market-to-book ratio of
Proxy Group of Seven Water Companies on April 30, 2020 as appropriate.
(6) Column [3] multiplied by Column [5].
2019 Annual Forms 10K
yahoo.finance.com
NA $=$ Not Available
Notes: (1) Column 3 / Column 1.
(2) Column 4 / Column 2 .
(3) Column 1^{*} Column 4 .
(4) Book common equity UIF's 2019 Annual Report to the FL PSC multiplied by the requested common equity ratio.
(5) The market-to-book ratio of Utilities, Inc of Florida on April 30, 2020 is assumed to be equal to the market-to-book ratio of
Proxy Group of Seven Water Companies on April 30, 2020 as appropriate.
(6) Column [3] multiplied by Column [5].
:ио!̣ешиıоји јо әэ.ınos

CERTIFICATE OF SERVICE

HEREBY CERTIFY that on the 30th day of June 2020, a true and correct copy of the foregoing Prefiled Direct Testimony has been served via email to:

Walter Trierweiler, Esquire
Office of General Counsel
wtrierwe@psc.state.fl.us

Stephanie Morse, Esquire
Office of Public Counsel
morse.stephanie@leg.state.fl.us

/s/ Martin S. Friedman

MARTIN S. FRIEDMAN

REQUEST:

Refer to Duke Kentucky's Response to Staff's Second Request, Item 29, and to D'Ascendis Testimony, page 37, lines 8-12.
a. Explain whether Mr. D'Ascendis has utilized the two-year Bloomberg Betas in any other regulatory proceedings.
b. Explain whether the two-year Bloomberg Betas are reflective of the temporary risks associated with the COVID-19 pandemic, or if they are reflective of a more permanent shift in utility stock performance in relation to the market.

RESPONSE:

a. Mr. D'Ascendis has relied on beta coefficients from Bloomberg since he first obtained access to them, which was in early 2015. Those testimonies are documented in Appendix A to Mr. D’Ascendis' Direct Testimony.
b. Any beta coefficient is reflective of the prevailing market conditions during the calculation period. As discussed on page 34, lines 8-10 of Mr. D’Ascendis’ Direct Testimony, the beta coefficient measures a security's systematic risk, or variability, relative to the market. Any changes in the co-variance between a utility stock and the market index would be reflected in the beta coefficient.

PERSON RESPONSIBLE: Dylan W. D'Ascendis

Duke Energy Kentucky
Case No. 2021-00190
STAFF Third Set Data Requests
Date Received: August 4, 2021
STAFF-DR-03-013

REQUEST:

Refer to Duke Kentucky’s Response to Staff’s Second Request, Attachment STAFF-DR-02-016 Attachment.xlsm, tabs "PRPM WP 3" - "PRPM WP 12". Explain the meaning of negative closing prices under column E.

RESPONSE:

The data presented in tabs "PRPM WP3" through "PRPM WP12" are presented in the original format from the Center for Research in Securities Prices ("CRSP"). As one can see in the "total return" column, the prices are understood to be positive.

PERSON RESPONSIBLE: Dylan W. D'Ascendis

Duke Energy Kentucky
Case No. 2021-00190
STAFF Third Set Data Requests
Date Received: August 4, 2021
STAFF-DR-03-014

REQUEST:

Refer to Duke Kentucky's Response to Staff's Second Request, Item 31. If a landlord has a property not enrolled in the Revert-to-Owner program and also has a deposit on file for that property, explain whether the deposit is returned to the landlord when service is transferred out of their name into their tenant's name.

RESPONSE:

Yes, the deposit is returned to the landlord. In the above scenario when service in the landlord's name is transferred out of their name into the tenant's name, the deposit is applied to the final bill in the landlord's name.

PERSON RESPONSIBLE: Retha Hunsicker

Duke Energy Kentucky
Case No. 2021-00190
STAFF Third Set Data Requests
Date Received: August 4, 2021
STAFF-DR-03-015

REQUEST:

Refer to Duke Kentucky’s Response to Staff’s Second Request, Item 37. For 2017 through present, indicate, by year, what percentage of reconnections were handled by Duke Kentucky employees and what percentage were handled by third-party contractors.

RESPONSE:

Please see table below. 2021 YTD is January 1, 2021 through August 4, 2021.

	Total	Contractor		Employee	
	Reconnections	Reconnections	$\%$	Reconnections	$\%$
2017	4,940	2,550	52%	2,390	48%
2018	4,753	3,581	75%	1,172	25%
2019	4,189	3,632	87%	557	13%
2020	982	923	94%	59	6%
2021 YTD	438	321	73%	97	27%

PERSON RESPONSIBLE: Jeff L. Kern

Duke Energy Kentucky
Case No. 2021-00190
STAFF Third Set Data Requests
Date Received: August 4, 2021
STAFF-DR-03-016

REQUEST:

Refer to Duke Kentucky's Response to Staff's Second Request, Item 38, Attachment STAFF-DR-02-038(a), page 3 of 3 . Explain why the proposed amounts of $\$ 1,000$ and $\$ 700$ were not adjusted given the lower cost justification amounts.

RESPONSE:

Although the revised calculations resulted in lower estimated costs than what was originally filed in this case, these are estimated costs and subject to numerous assumptions. The proposed amounts remain reasonable based on these estimates if the amounts are rounded to the nearest $\$ 100$. However, the Company is willing to base the proposed amounts on rounding to the nearest $\$ 10$, such that the fees would be $\$ 970$ for Meter Pulse Equipment and $\$ 680$ for Meter Index.

PERSON RESPONSIBLE: Jeff L. Kern

Duke Energy Kentucky

Case No. 2021-00190
STAFF Third Set Data Requests
Date Received: August 4, 2021
STAFF-DR-03-017

REQUEST:

Refer to Duke Kentucky’s Response to Staff's Second Request, Item 50. The response provided does not answer the request for information. Provide a full response to the previous request of Staff's Second Request, Item 50.

RESPONSE:

Staff's Second Request, Item 50 requested detailed cost support for Duke Energy Kentucky's late payment charge. As provided in the Company's response to that request, the Company did not perform a cost analysis for the late payment charge for this case. The charge has been present and unchanged for decades. Any cost analysis performed at the time the charge was first established is no longer available. The Company established the late-payment fee policy many years ago to encourage timely customer payments and to assist in managing the overall financial burden on all customers that occurs from bad debt and collection costs. The charge serves an important role in the bill collection strategy and it is imposed to counteract the cost of collecting the liability. The company is not proposing a change to its fee.

As stated in Quick testimony (page 10, lines 3-7), late fees are common business practices. The Company's late-payment fee is in-line with or below the rates established by the Kentucky Department of Revenue related to liabilities. It is also much lower than the "cost-of-collection fee" imposed of 25\% on taxes unpaid by the original Notice Date.

Uniform civil penalties, provided by KRS 131.440 Cost of Collection

(1) (a) For purposes of the program described in KRS 131.400(4)(a), in addition to all other penalties provided under KRS 131.180, 131.410 to 131.445 , and 131.990 and any other law, there is hereby imposed after the expiration of the tax amnesty period the following cost-of-collection fees:

1. A cost-of-collection fee of twenty-five percent (25\%) on all taxes which are or become due and owing to the department for any reporting period, regardless of when due. This fee shall be in addition to any other applicable fee provided in this paragraph.

PERSON RESPONSIBLE: Lesley G. Quick

REQUEST:

Refer to Duke Kentucky's Response to Staff's Second Request, Item 52.
a. Provide a narrative description of how the amount of $\$ 369,396$ was derived.
b. Provide the amount of the $\$ 369,396$ that is attributable to residential customers.

RESPONSE:

a. The $(\$ 369,396)$ was derived by multiplying total revenue subject to the uncollectible expense factor, \$70,644,406, times the late charges component of the total discount factor (-0.5229%). The $(\$ 369,396)$ represents the amount of the annualized uncollectible expense that is related to late payment charges.
b. In the Company's filed cost of service study, uncollectible expense was allocated to customer classes using an allocation factor based on the number of customers. Allocation factor K406 allocates 92.333957\% to residential customers. Therefore $(\$ 341,078)$ of the amount would be applicable to residential customers.

PERSON RESPONSIBLE: Jay P. Brown
James Ziolkowski

Duke Energy Kentucky
Case No. 2021-00190
STAFF Third Set Data Requests
Date Received: August 4, 2021
STAFF-DR-03-019

REQUEST:

Refer to Duke Kentucky's Response to Staff's Second Request, Item 59. Confirm that the $\$ 34,642$ of the Executive Long Term Incentive (LTI) plan is included in the revenue requirement.

RESPONSE:

Confirmed. This amount relates to Safety measures only. It is calculated by taking \$138,569 (Line 7 of WPD-2.26b) times 25\% (Line 5). In other words, WPD-2.26 shows that Total LTI expense of $\$ 138,569$ has been reduced by $\$ 103,927$ (75\% relating to EPS and Total Shareholder Return), leaving only \$34,642 related to safety measures in the test period.

PERSON RESPONSIBLE: Jay P. Brown

Duke Energy Kentucky
Case No. 2021-00190
STAFF Third Set Data Requests
Date Received: August 4, 2021
STAFF-DR-03-020

REQUEST:

Confirm that Duke Energy must achieve predetermined Earnings per Share (EPS) "Circuit Breaker" in order for the LTI to be granted.
a. If included, state what the EPS Circuit Breaker level is.
b. State in detail how the payout will be reduced if Duke Energy's EPS is less than or equal to the EPS circuit Breaker.

RESPONSE:

The EPS circuit breaker is only applicable to the STI plan. Refer to the response to STAFF-DR-02-058 for how the EPS circuit breaker applies to the STI plan.

PERSON RESPONSIBLE: Jake J. Stewart

REQUEST:

Refer to the Direct Testimony of Jake J. Stewart, page 28, Table 2. Provide the metrics used to determine the Non-EPS components of the Short Term Incentive (STI).
a. Provide the conditions and levels used to determine the 5 percent weight for the Reliability portion of STI.
b. Provide the conditions and levels used to determine the 5 percent weight for the Safety/Environmental portion of STI.
c. Provide the conditions and levels used to determine the 5 percent weight for the O\&M portion of STI.
d. Provide the conditions and levels used to determine the 10 percent weight for the Customer Satisfaction portion of STI.

RESPONSE:

The weights of the non-EPS components are distributed amongst measures that reflect the top priorities for the company. O\&M, weighted at 5%, emphasizes the importance of disciplined cost management. Achieving Operational Excellence is important for our employees, customers, and communities. This section of the scorecard is weighted at 10% and is split between an index measuring the Reliability of our operations and Safety/Environmental. Safety is a core value of the company and Environmental Events emphasizes the importance of the communities we serve. Finally, Customer Satisfaction
is weighted at 10% to increase line of sight to how our customers are experiencing the company.

PERSON RESPONSIBLE: Jake J. Stewart

REQUEST:

Provide the conditions and levels used to determine the 25 percent weight for the Teams portion of STI.

RESPONSE:

Team goals vary by team and are typically more specific operational goals that provide direction for employees. This section of the scorecard is weighted at 25% to emphasize the importance of how each team contributes to the overall experience of our customers and communities while aligning the work of each team to the company's overall priorities. As a result, part of the incentive payout for most employees is dependent on achieving team goals.

The team goals directly benefit customers by tying employee compensation to reliability, outage frequency, time required to restore service, lost-time accidents, customer satisfaction scores, O\&M expense levels and capital expenditures. Superior performance relating to these goals directly benefits customers through safe and reliable service, customer service quality, and low energy costs.

PERSON RESPONSIBLE: Jake J. Stewart

Duke Energy Kentucky

Case No. 2021-00190
STAFF Third Set Data Requests
Date Received: August 4, 2021
STAFF-DR-03-023

REQUEST:

Refer to Duke Kentucky's Response to Staff's Second Request, Item 67a.
a. Provide a Revised Schedule M and N based upon the revised cost of service study (COSS).
b. Refer to the final Order in Case No. 2018-00261, ${ }^{1}$ page 15. The Commission stated it did not support the residential class subsidizing another rate classes. In both COSSs, the residential class is over contributing to the propose rate of return and thus is subsidizing other rate classes.

1) Provide a revised revenue allocation that will remove the residential subsidy based upon the filed COSS with the minimum system methodology applied to the mains.
2) Provide a revised revenue allocation that will remove the residential subsidy based upon the revised COSS with the zero-intercept method applied to the mains.

RESPONSE:

a. Please see STAFF-DR-03-023a DEK Gas Sch M and N.xlsm.
b. Please see STAFF-DR-03-023b1 Attachment.
c. Please see STAFF-DR-03-023b2 Attachment.

[^58]PERSON RESPONSIBLE: a. Jeff L. Kern
b. James E. Ziolkowski
c. James E. Ziolkowski

DUKE ENERGY KENTUCKY
CASE NO. 2021-00190
REVENUES AT PRESENT AND PROPOSED RATES FOR THE TWELVE MONTHS ENDED DECEMBER 31, 2022
(GAS SERVICE)
DATA: BASE PERIOD X FORECASTED PERIOC
SCHEDULE M
TYPE OFFIING X ORIGINAL UPDATED \qquad REVISED WORK PAPER REFERENCE NO(S).: 12 MONTHS FORECASTED

INCLUDES ALL RIDERS

PAGE 1 OF 1
WITNESS:
J.L. Kern

LINE NO.	RATE CLASSIFICATION (A)	REVENUE AT PRESENT RATES (B)	REVENUE AT PROPOSED RATES (C)	REVENUE CHANGE (AMOUNT) ($D=C-B$)	\% OF REVENUE CHANGE ($E=D / B$)
1	SALES SERVICE:	(\$)	(\$)	(\$)	
2	RS RESIDENTIAL	78,691,507	86,967,381	8,275,874	10.52\%
3	TOTAL RS	78,691,507	86,967,381	8,275,874	10.52\%
4	GS COMMERCIAL	23,890,508	28,206,657	4,316,149	18.07\%
5	GS INDUSTRIAL	2,459,804	2,910,650	450,846	18.33\%
6	GS OTHER PUB AUTH	2,147,642	2,541,240	393,598	18.33\%
7	TOTAL GS	28,497,954	33,658,547	5,160,593	18.11\%
8	total sales Service	107,189,461	120,625,928	13,436,467	12.54\%
9	TRANSPORTATION:				
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	FT LARGE IT	$\begin{aligned} & \mathbf{5 , 4 4 4 , 2 1 2} \\ & 1,782,710 \end{aligned}$	$\begin{array}{r} 6,898,220 \\ \mathbf{2 , 2 2 5 , 0 0 7} \end{array}$	$\begin{array}{r} 1,454,008 \\ 442,297 \end{array}$	$\begin{aligned} & 26.71 \% \\ & 24.81 \% \end{aligned}$
12	TOTAL TRANSPORTATION	7,226,922	9,123,227	1,896,305	26.24\%
13	TOTAL THROUGHPUT	114,416,383	129,749,155	15,332,772	13.40\%
14	MISCELLANEOUS REVENUES:				
15	LATE PAYMENT CHARGES	0	0	0	0.00\%
16	BAD CHECK CHARGES	27,420	27,420	0	0.00\%
17	RECONNECTION CHARGES	23,364	28,037	4,673	20.00\%
18	FIELD COLLECTION CHARGES	684	684	0	0.00\%
19	INTERDEPARTMENTAL	27,765	32,825	5,060	18.22\%
20	MINIMUM USE CONTRACT	258,228	143,554	$(114,674)$	-44.41\%
21	REVENUE TRANSP OF GAS-INTERCO	0	0	0	0.00\%
22	PROVISION FOR RATE REFUNDS	0	0	0	0.00\%
23	OTHER MISC	528	528	0	0.00\%
24	TOTAL MISCELLANEOUS	337,989	233,048	(104,941)	-31.05\%
25	TOTAL COMPANY REVENUE	114,754,372	129,982,203	15,227,831	13.27\%

DUKE ENERGY KENTUCKY
TEST PERIOD REVENUES AT CURRENT AVERAGE RATES
FOR THE TWELVE MONTHS ENDED DECEMBER 31, 2022 (GAS SERVICE)
DATA: BASE PERIOD X_FORECASTED PERIOD
TYPE OF FILING:_X_ORIGINAL _UPDATED _ REVISED
INCLUDES ALL RIDERS
TEST PERIOD

LINE NO.	RATE CODE (A)	CLASS I DESCRIPTION (B)	CUSTOMER BILLS (C)	SALES (D)	TEST PERIOD REVENUE LESS GAS COST REVENUE (E)	CURRENT AVERAGE RATE ($F=E / D$)	\% OF REV TO TOTAL EXCLUSIVE OF GAS COST (G)	GAS COST REVENUE (H)	TEST PERIOD REVENUE TOTAL (I)	\% OF REV TO TOTAL (J)
				(MCF)	(\$)	(\$/MCF)	(\%)	(\$)	(\$)	(\%)
1	RS	RESIDENTIAL SERVICE	1,130,041	6,481,298	52,364,475	8.0793	70.47	26,327,032	78,691,507	68.57
2	GS	GENERAL SERVICE COMMERCIAL	78,612	2,857,007	12,285,346	4.3001	16.54	11,605,162	23,890,508	20.82
3	GS	GENERAL SERVICE INDUSTRIAL	2,879	331,485	1,113,312	3.3586	1.50	1,346,492	2,459,804	2.14
4	GS	GENERAL SERVICE OTHER PUB AUTH	2,541	289,222	972,822	3.3636	1.31	1,174,820	2,147,642	1.87
5	FT-L	FIRM TRANSPORTATION-LARGE	1,092	2,736,182	5,452,147	1.9926	7.34	$(7,935)$	5,444,212	4.74
6	IT	INTERRUPTIBLE TRANSPORTATION	264	1,672,200	1,782,710	1.0661	2.40	0	1,782,710	1.55
7		LATE PAYMENT CHARGES	0	0	0	-	-	0	0	
8		BAD CHECK CHARGES	0	0	27,420	-	0.04	0	27,420	0.02
9		RECONNECTION CHARGES	0	0	23,364	-	0.03	0	23,364	0.02
10		FIELD COLLECTION CHARGES	0	0	684	${ }^{\circ}$.	0	684	
11		INTERDEPARTMENTAL	0	4,158	10,875	2.6154	0.01	16,890	27,765	0.02
12		MINIMUM USE CONTRACT	0	0	258,228	.	0.35	0	258,228	0.23
13		REVENUE TRANSP OF GAS-INTERCO	0	0	0	-	-	0	0	
14		PROVISION FOR RATE REFUNDS	0	0	0	-	-	0	0	
15		OTHER MISCELLANEOUS	0	0	528	\checkmark	-	0	528	
16	TOTAL		1,215,429	14,371,552	74,291,911	5.1694	99.99	40,462,461	114,754,372	99.98

DUKE ENERGY KENTUCKY
CASE NO. 2021.00190
ANNUALIZED REVENUES AT PROPOSED VS. MOST CURRENT RATE
(GAS SERVICE)
Current annualized
FOR THE TWELVE MONTHS ENDED DECEMBER 31, 2022
(GAS SERVICE)

DUKE ENERGY KENTUCKY
ANNUALIZED REVENUES AT PROPOSED VS. MOST CURRENT RATES
FOR THE TWEEVE MONTHS ENDED DECEMBER 31,2022
 WORK PAPER REFERENCE NO(S)::
12 MONTHS FORECASTED
PROPOSED ANNUALIZED
SCHEDULE M-2.3
PAGE 1 OF 7 WITNESS:
J.L. Kern

[^59]

(1) BILLS THAT TERMINATE IN RESPECTIVE RATE STEPS.
(3) REFLECTS AVERAGE EXPECTED GAS COST OF \$4.062/MCF.

dUKE ENERGY KENTUCKY CASE NO. 2021-00190 annualized revenues at proposed vs. most current rates FOR THE TWELVE MONTHS ENDED DECEMBER 31, 2022 (GAS SERVICE)									
DATA:\qquad BASE PERIOD X_FORECASTED PERIOC TYPE OF FILING: \mathbf{X} _ ORIGİAL _ UPDATED __ REVISED WORK PAPER REFERENCE NO(S).: 12 MONTHS FORECASTED				PROPOSED A	nualized				HEDULE M-2.3 GE 4 OF 7 TNESS: Kern
$\begin{aligned} & \text { LINE } \\ & \text { NO. } \end{aligned}$	RATE CODE (A)	CLASS I DESCRIPTION (B)	$\begin{aligned} & \text { CUSTOMER } \\ & \text { BILLS(1) } \\ & \text { (C) } \end{aligned}$	$\begin{aligned} & \text { SALES(2) } \\ & \text { (D) } \end{aligned}$	PROPOSED RATES (E)	PROPOSED REVENUE LESS GAS COST REVENUE (F)	\% OF REV TO TOTAL LESS GAS COST REVENUE (G)	$\begin{aligned} & \text { GAS COST } \\ & \text { REVENUE(3) } \\ & (H) \end{aligned}$	PROPOSED TOTAL REVENUE ($F+H$) (I)
1 GS INDUSTRIAL				(MCF)	(\$/MCF)	(\$)	(\%)	(5)	(\$)
	custo NON-RE cus	LLS x E PER MONTH	2,879		\$58.00	166,982	10.7		166,982
	$\underset{\text { ALL }}{\text { COMMO }}$			331,485	4.2149	1,397,176	89.3	1,346,492	2,743,668
	RAT	Ial excluding riders	2,879	331,485		1,564,158	100.0	1,346,492	2,910,650
10	RIDERS DEN WEA	NAGEMENT RATE (DSMR) LIZATION ADJUSTMENT (WNA			0.000000 0.000000	0	0.0 0.0		0
12	тот					0	0.0		0
13	total	STRIAL INCLUDING RIDERS	2,879	331,485		1,564,158	100.0	1,346,492	2,910,650

[^60]| | | | LIZED REVEN OR THE TWE | KE ENERG CASE NO. SAT PROP E MONTHS
 (GAS S | KENTUCKY
 21-00190
 SED VS. MOS
 NDED DECEM VICE) | T CURRENT RAT
 BER 31, 2022 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DATA
 TYPE
 WOR
 12 M | | \qquad | | | | | | | HEDULE M-2.3 GE 5 OF 7 NESS:
 Kern |
| | | | | ROPOSED | NNUALIZED | | | | |
| $\begin{gathered} \text { LINE } \\ \text { NO. } \end{gathered}$ | RATE CODE
 (A) | CLASS 1 DESCRIPTION (B) | $\begin{aligned} & \text { CUSTOMER } \\ & \text { BILLS(1) } \\ & \text { (C) } \end{aligned}$ | SALES(2)
 (D) | $\begin{aligned} & \text { PROPOSED } \\ & \text { RATES } \\ & \text { (E) } \end{aligned}$ | PROPOSED REVENUE LESS GAS COST REVENUE (F) | \% OF REV TO TOTAL LESS GAS COST REVENUE
 (G) | $\begin{aligned} & \text { GAS COST } \\ & \text { REVENUE(3) } \\ & \text { (H) } \end{aligned}$ | PROPOSED TOTAL REVENUE ($\mathrm{F}+\mathrm{H}$)
 (I) |
| 1 | GS | AUTHORITIES | | (MCF) | (\$/MCF) | (\$) | (\%) | (\$) | (\$) |

1 GS OTHER PUBLIC AUTHORITIES

147,378	10.8		147,378
		89.2	$1,174,820$
$1,219,042$		$2,393,862$	
$1,366,420$		100.0	$1,174,820$
0	0.0		$2,541,240$
0	0.0		0
0	0.0		0
$1,366,420$	100.0	$1,174,820$	0

DATA: _ BASE PERIOD - X_FORECASTED PERIOL TYPE OF FILING: X_ ORIGINAL WORK PAPER REFERENCE NO(S).: 12 MONTHS FORECASTEC\qquad UPDATED\qquad REVISEC	DUKE ENERGY KENTUCKY CASE NO. 2021-00190 annualized test year revenues at proposed vs. most current rates FOR THE TWELVE MONTHS ENDED DECEMBER 31, 2022 (GAS SERVICE)							SCHEDULE M-2. 2 PAGE 6 OF 7 WITNESS: J.L. Kern		
	Current annualized									
LINE RATE CLASS I NO. CODE (A) DESCRIPTION	CUSTOMER BILLS (C)	SALES(1) (D)	$\begin{aligned} & \text { MOST } \\ & \text { CURRENT } \\ & \text { RATES } \\ & (J) \end{aligned}$	CURRENT REVENUE LESS GAS COST REVENUE (K)	\%OFREVTO TOTAL LESS GAS COST REVENUE (L)	REVENUE INCR LESS GAS COST REV (F.K) (M)	\% INCRIN REV LESS GAS COST REV (M / K) (N)	GAS COST REVENUE (H)	CURRENT TOTAL REVENUE ($K+H$) (K1)	TOTAL REVENUE \% INCREASE (M/K1) (0)
1 FT-L 2 FIRM TRANSPORTATION-LARGE		(MCF)	(SMCF)	(s)	(\%)	(s)	(\%)	(5)	(3)	(\%)
3 Administrative charge	1,092		\$430.00	469,560	8.6	0	0.0		469,560	0.0
4 TRANSPORTATION CHARGE 5 ALL CONSUMPTION		2,736,182	1.8210	4,982,587	91.4	1,454,008	29.2		4,982,587	29.2
6 Rate ft-large excluding riders	1,092	2,736,182		5,452,147	100.0	1,454,008	26.7		5,452,147	26.7
7 RIDERS: 8 GAS COST ADJUSTMENT TRANSITION (GCAT)(2:			(0.0580)		0.0	0	0.0	$(7,935)$	(7,935)	0.0
9 TOTAL RIDERS				0	0.0	0	0.0	$(7,935)$	(7,935)	0.0
10 TOTAL RATE FT-LARGE INCLUDING RIDERS	1,092	2,736,182		5,452,147	100.0	1,454,008	26.7	$(7,935)$	5,444,212	26.7

(1) REFLECTS NORMALIZED VOLUMES.
(2) GCAT only applies to FT-L customers during the first 12 months after they switch from sales service. Usage for this rider estimated at 5%
DATA: BASE PERIOD X_FORECASTED PERIOD
TYPE OF FILING: X ORIGINAL UPDATED _ REVISED
WORK PAPER REEERENCE NO(S)::
12 MONTHS FORECASTED

988888888888

 8웅웅ㅇㅇㅇ88888
 98080808888880806
 988888888888

(1) INCLUDES CURRENT RIDER GCAT OF (50.058)MMCF

Not
Applicable (IT)
INTERRUPTBLE
TRANSPORTATION

PROPOSED RATE CALCULATIONS
DUKE ENERGY KENTUCKY
CASE NO. 2021-00190
PROPOSED RATE CALCULATION
Rate: RS
Test Period

Customer Bills	$1,130,041$	
COSS - RS Customer Component	$\$$	$28,611,566$
COSS Customer Charge	$\$$	25.32
Current Customer Charge	$\$$	16.50
Gap	$\$$	8.82
Migration @ \% of Justified	$\$$	3.53
		20.03
Customer Charge at \% Migration to COSS	$\$$	19.00
Proposed Customer Charge	$\$$	$21,470,779$
Proposed Customer Charge Revenues	$\$$	$83,658,696$
COSS - RS Revenue Requirement	$\$$	$35,860,885$
Less Proposed Customer Charge Revenues		$6,481,298$
Less GCA	$\$$	5.5330
Test Period MCF		137
Proposed Delivery Charge	$\$$	
Check to Revenue Requirements	$\$$	

DUKE ENERGY KENTUCKY
CASE NO. 2021-00190
PROPOSED RATE CALCULATION

Rate: GS	Test Period	
Customer Bills		84,032
COSS - GS Customer Component	\$	4,095,886
COSS Customer Charge	\$	48.74
Current Customer Charge	\$	50.00
Gap	\$	(1.26)
Migration @ \% of Justified	\$	(0.50)
Customer Charge at \% Migration to COSS	\$	49.50
Proposed Customer Charge	\$	58.00
Proposed Customer Charge Revenues	\$	4,873,856
COSS - GS Revenue Requirement Less Proposed Customer Charge Revenues	\$	33,691,438
Less GCA	\$	14,691,108
Less Interdeptartmental	\$	32,824.91
GS Rev Requirement	\$	14,658,283
Test Period MCF		3,477,714
Proposed Energy Charge		4.2149
Check to Revenue Requirements	\$	(66)

Current Interdept Rev	$\$$	27,765
GS Increase \%		18.2%
Interdept Increase	$\$$	5,060
Proposed Intdept Rev	$\$$	32,825

DUKE ENERGY KENTUCKY
CASE NO. 2021-00190
PROPOSED RATE CALCULATION
Rate: FT-Large
Test Period

Customer Bills		1,092
COSS - FT-L Customer Component	$\$$	132,688
COSS Customer Charge	$\$$	121.51
Current Customer Charge	$\$$	430.00
Gap	$\$$	(308.49)
Migration @ \% of Justified	$\$$	(123.40)
Customer Charge at \% Migration to COSS	$\$$	
Proposed Customer Charge	$\$$	4306.60
Proposed Customer Charge Revenues	$\$$	469,560
COSS - FT-L Revenue Requirement	$\$$	$6,791,839$
Less Proposed Customer Charge Revenues Less		
GCA/GCAT	$\$$	$6,322,279$
Change in Min Amazon	$\$$	$(114,674)$
FT-L Rev Requirement	$\$$	$6,436,953$
Test Period MCF		$2,736,182$
Proposed Energy Charge	$\$$	2.3524
Check to Revenue Requirements	(358)	

Amazon Annual Delivery Component	$\$ 655,877$
Annual Usage Required	276,618
Estimated Annual Usage	215,594
Projected Shortfall	61,024
New Minumum Usage Revenue	$\$ 143,554$
Original Min Usage Revenue	$\$ 258,228$
Change in Min Usage Revenue	$\mathbf{(\$ 1 1 4 , 6 7 4)}$

DUKE ENERGY KENTUCKY
CASE NO. 2021-00190
PROPOSED RATE CALCULATION
Rate: IT

Customer Bills		264
COSS - IT Customer Component	$\$$	85,499
COSS Customer Charge	$\$$	323.86
Current Customer Charge	$\$$	430.00
Gap	$\$$	(106.14)
Migration @ \% of Justified	$\$$	(42.46)
Customer Charge at \% Migration to COSS	$\$$	387.54
Proposed Customer Charge	$\$$	430.00
Proposed Customer Charge Revenues	$\$$	113,520
	$\$$	$2,225,050$
COSS - IT Revenue Requirement	$\$$	
Less Proposed Customer Charge Revenues	$\$$	$2,111,530$
Less GCA	$\$$	$1,672,200$
Test Period MCF		1.2627
Proposed Energy Charge	$\$$	(43)


```
Nown
mysign N
```



```
#W%%8% %
尔年OO。
```

ジロのが

ging

（a）Source：FERC Form 2－p．354－355．
（b）Source：Schedule B－3．2
（c）Source：Schedule C－2．1

$669^{\prime} \mathrm{pg}$ g＇L	LZo＇SOZ＇L	6L1＇z6z＇01	986＇EgL＇S1	£92＇100＇zع		
						008＇ $69{ }^{\prime}$＇
$665^{\prime} 798$＇L	Lzo＇soz＇L	$6 \angle L^{\prime}$＇6z＇OL	S86＇EsL＇SL	ع9\％＇L00＇ż	\％000000	عャ8＇60ヵ＇s
					\％000 0	
861＇991	L69＇291	99z＇žて	£ ¢＇¢¢c¢	621＇zzL	\％Lsて＇Z	S80＇zz1
でぐ9しく！	9ヶ¢＇6L9＇เ	281＇66と＇z	698＇ 219 ＇ε	62L＇65がく	\％レレとを	ャ20＇t9て＇レ
ャ98＇$\angle \varepsilon \varepsilon^{\prime} \downarrow$	ع＜8＇モャて＇ャ	ャ马Z＇z90＇9		カtて＇688＇81	\％20689	z8＇＇98L＇${ }^{\text {c }}$
				－	\％000＇	
ゆZZ＇S8＞	HL2＇p 2 D	い＇889	$\angle 96^{\prime}$ LEO＇\downarrow	9et＇801＇z	\％689＇9	
LLS＇899	L0¢＇to 9	998.026	E84＇80か＇L	s29＇198＇て	\％ 1 ¢6． 8	694＇$¢ 8$ ¢
6ey ssof sesuedxy ○ร 8 leuolpouns	（q）fueld nommos uolje！ 3 aded резе！ишпоэу	（q）子ueld nowmos TSOJ	（q）jueld leneues uolje！ 20 dided pesejnumos	（q）Jueld leseneo 1SOO Ieu！bu：	olpey doqe7 ןeuo！pjuns	（e） suenog soqe7

perepdn

GENERAL \＆COMMON PLANT，ACCUMULATED DEPRECIATION，A \＆G EXPENSES CASE NO：2021－00190
ALLOCATION FACTORS FOR COST OF SERVICE STUDY
TWELVE MONTHS ENDING DECEMBER 31， 2020

DUKE ENERGY KENTUCKY，INC．
GAS COST OF SERVICE STUDY

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 0 \& \& （2ヤく＇298） \& （802＇090＇1） \& （ZLZ＇LEs＇s） \& （Ez8＇Lくさ＇v） \& （Sps＇zet＇u） \& \& \& 17

\hline 0 \& （0z9＇s6L＇${ }^{\text {c }}$ \& （เど） \& （2sL＇zs\＆） \& （28E＇8E8＇${ }^{\text {）}}$ \& （0s9＇p8r＇L） \& （029＇s6L＇E） \& \& X甘1 Ss 30x ${ }^{\text {a }}$ \& $0{ }^{\circ}$

\hline SZ6ロでO \& SZ6でo \& SZ6ロで0 \& sz6\％でO \& sz6\％で0 \& sz6tてio \& sz6tでo \& \& ヨıVy $X \forall 1$ 3ılsodwos \& 6ε

\hline 0 \& （S91＇8zて＇st） \& （عLl＇¢8¢） \& （c98＇でがし） \& （DS9＇sLE＇L） \& （ $\varepsilon<\downarrow$＇gcc＇s） \& （s9ı＇8zz＇sı） \& \& \& 8ε

\hline 0 \& （00L＇LEE＇9ZL） \& （ع88＇s9\％＇z） \& （210＇s98＇9） \& （ $\varepsilon 1 \varepsilon^{\prime} 106^{\prime} \mathrm{S}$ ） \& （てEも＇6E¢＇18） \& （002＇しくと＇9z1） \& \& \& L ε

\hline 0 \& รยร＇£ヤ＇いし \& 01ぐz8L＇ \& Lot＇zsts \& 6L2＇szs＇sz \& 656＇z8E＇9L \& ses＇Eかt＇Lu \& \& SヨПN3＾ヨy casodoyd \& 9ε

\hline \& \& \& \& \& \& \& \& \& 5ε

\hline \& \& \& \& \& \& \& \& \& ャ

\hline 0 \& 8SLE1＇0 \& －26010 \& EOLS ${ }^{\circ}$ \& 092do \& OLZE 0 \& 8SLEL＇O \& \& $\wedge \exists$ ¢ s sud linn y d \& £

\hline 0 \& S $50 \cdot 16 z^{\prime} \mathrm{Sl}$ \& L00＇992 \& 2st＇9s8 \& 8\＆゙olです \& 81v＇8S6＇6 \& Sco＇ 68 ＇S \& \& \& て¢

\hline 0 \& COLELO \& EOLLCO \& －16S20 \& $9585{ }^{\circ}$ \& 206L0＇O \& 102E1O \& \& $\wedge \exists$ ¢ S3yd 1 INก y ${ }^{\text {¢ }}$ d \& 1ε

\hline （0） \& 991＇8zz＇sı \& £くし＇¢8 \& 598＇でが \& ャ¢9＇SLE＇L \& $\varepsilon \angle \nabla^{\prime} 95 s^{\prime} \mathrm{S}$ \& ¢91＇8zz＇s！ \& \& \& －ε

\hline 0 \& sce＇¢blut \& OLL＇z8L＇ \& Lot＇zst＇s \& 6L2＇szS＇8z \& 696＇ $28 \mathrm{E}^{\prime} \mathrm{S} / 2$ \& \& \& \& 62

\hline \& \& \& \& \& \& \& \& \& 82

\hline 10 EOL \& \& 10801\％ \& LOEOLO \& LOEOLO \& LoEOLO \& LOEOLO \& \& ALILOE NOWWOO NO N甘ก \& $\angle 2$

\hline 2ZL9101 \& $98 \mathrm{SO} 0^{\circ}$ \& 82 LOO \& OSOSO 0 \& 28600\％ \& DOELOO \& $98 \mathrm{sO} 0^{\circ}$ \& \& \& 92

\hline 009020° \& \& 0090200 \& 0090200 \& 009020 \& 0090200 \& 0090200 \& \& \& 92

\hline LsEll＇s \& 61900\％ \& sezvoo \& 86\＆＊0＇0 \& ＜ยદzo＇0 \& 19550 \& 619000 \& \& \& ャ2

\hline 0 \& て¢6＇0¢9＇ᄂて \& zLL＇Eから \& 266＇ ＇SL＇$^{\prime}$ \& OEZ＇OTL＇z \& 8E6＇ $\mathrm{t6} \mathrm{\%}$＇9 \& г¢6＇0¢9＇1乙 \& เャ จu！+ 9 9 ®u！ \& \& $\varepsilon \tau$

\hline 0 \& \& \& \& \& \& \& \& \& ¿z

\hline \multirow[t]{2}{*}{0} \& 06829 \& （9zi2lz） \& （ElL 9 gs） \& （912＇991E） \& Sv6＇ 100° \& 068＇29 \& \& \& 12

\hline \& 06s＇ャ¢さ＇9Z！ \& LSL＇880＇ス \& 662＇80ع＇9 \& LS1＇9EL＇zE \& LLE＇ 1 ER＇s8 \& \& \& \& 02

\hline （0） \& 00L＇レとと＇9z \& ع88＇s9z＇z \& 210＇s98＇9 \& $\varepsilon \angle \varepsilon^{\prime} 106^{\prime} \mathrm{s}$ \& z¢ $\boldsymbol{r}^{\prime} 6 \varepsilon \varepsilon^{\prime}$＇в \& 002＇LLE＇9zし \& \& ヨว1ny \& 81

\hline 0 \& （かてて＇0เを） \& （ 260 ＇s） \& （عยE＇91） \& （410＇99） \& （LLL＇zzz） \& （ャで＇01¢） \& \& \& \angle

\hline \multirow[t]{2}{*}{0} \& L८ヤ＇£90＇¢ \& DIS＇906 \& 00ぐてเ8＇z \& 20s＇LLZ＇8 \& 192＇990＇レ2 \& $\angle\llcorner$＇$¢ 90$＇ε ¢ \& \& \& 91

\hline \& \& \& \& \& \& \& \& \& Sı

\hline （0） \& LDt＇819＇E6 \& \& St9＇890＇t \& 888＇689＇LZ \& $8 \nabla 巾 ' 56 \mathrm{r}^{\prime} 09$ \& Lヵカ＇819＇と6 \& \& \& カ

\hline 0 \& Zss＇tos＇l \& 686 O¢ \& 181＇z21 \& LE8＇£8E \& S68＇LS6 \& 2s8＇ros＇i \& \& Xヤ1 ヨกN3＾3y \& $\varepsilon \downarrow$

\hline 0 \& Ors＇96s＇s \& sıg＇tel \& 9860 ¢ \& てLL＇LZS＇し \& L91＇99s＇$\%$ \& ObS＇96s＇s \& \& \& 2

\hline （0） \& S50＇Lls＇98 \& 216＇61＇1 \& 8LP＇SLS＇ \& 6LZ＇8LL＇sz \& 988＇126＇ss \& 990＇LLS＇98 \& \& \& 11

\hline 0 \& 961＇9L＇b \& عยz＇šし \& 88L＇68E \& 1と80く1＇ \& \& 961＇91＇ь \& \& \& 01

\hline （0） \& \& H1＇p6 \& 68E＇z¢9＇ \& SがSLぐゆ \& 0マと＇z91＇zı \& ระて＇000＇6L \& \& \& 6

\hline \multirow[t]{3}{*}{0} \& －20＇96L＇z9 \& 89S＇zLs \& 108＇$¢ ¢ s^{\prime}$＇ \& عと0＇268＇61 \& で1 ${ }^{\text {¢ }}$ LL＇0巾 \& ャマо＇96L＇z9 \& \& ヨSNヨdX W80 7 7101 \& 8

\hline \& \& \& \& \& \& \& \& S3SNヨdx ${ }^{\text {SNILV43dO }}$ \& \llcorner

\hline \& \& \& \& \& \& \& \& \& 9

\hline 0 \& 902＇LZE＇89¢ \& Ltioda＇zt \& Lع6＇688＇6ะ \& ELO＇spて＇Lu \& 600＇968＇862 \& 902＇ 12 ＇89¢ \& \& 3S＊9 3ivy 7r101 \& s

\hline 0 \& （GL9＇E89＇96） \& （Sเけ＇LLL＇z） \& （829＇ャ19＇8） \& （2St＇629＇とz） \& （0¢1＇てLs＇19） \& （\＄L9＇E8s＇96） \& \& \& －

\hline 0 \& （182＇E06＇90z） \& （989＇ 868 ＇s） \& （LséLDL＇8L） \& \& \& \& \& \& ε

\hline \multirow[t]{3}{*}{0} \& 291＇808＇LLL \& \& 996＇10て＇＜9 \& 081＇999＇681 \& 898＇8E¢＇E6 \& 291＇808＇LLL \& \& כวiny is nilivid Sys ssoys \& г

\hline \& \& \& \& \& \& \& \& NOIL＊INAWOS 3 WOONI 1 I \& 1

\hline \& \& \& \& \& \& \& \& 1 ompoyss \&

\hline \multirow[t]{9}{*}{บ3H10
77%

｜ 4 ¢} \& эnssilv \& SNVII \& SNVYi Wyla \& 183s N30 \& 74injoaissy \& Svo \& \& \& ON

\hline \& 18101 \& Idnyaini \& 7－14 \& So \& Sy \& 78101 \& \& \& aulf

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{| 06100－LZOZ ：ON 3SVO |
| :--- |
| |}}

\hline \& 120218 \& \& \& \& \& \& \& \&

\hline \& ᄂ30 เ 3 ¢ \& \& \& \& \& \& \& \&

\hline \& 10x7012 3 S3V \& \& \& \& \& \& \& \multicolumn{2}{|l|}{}

\hline \& \multicolumn{2}{|l|}{：37alsNOdS3y Ssanlim} \& \& \& \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| danis 3ગ1＾yヨs so iso sbo |
| :--- |
| |}}

\hline \& \multicolumn{2}{|l|}{（ $)($（L） $91-\mathrm{y} \boldsymbol{d} \mathrm{dM}$} \& \& \& \& \& \& \&

\hline
\end{tabular}

DUKE ENERGY KENTUCKY, INC,
GAS COST OF SERVICE STUDY
CASE NO: 2021-00190
CALCULATION PROPOSED REVE
REFLECTING A PROPOSED REV

66S＇t9E＇L	LZO＇SOZ＇L	6Ll＇Z6Z＇01	S86＇EGL＇GL	ع92＇100＇z¢		عャレ＇EOL＇L	W\％O1enol
66S＇t9e＇L	LZO＇GOZ＇L	6L1＇Z6て＇01	S86＇\＆GL＇G1	ع9z＇100＇z8	\％000\％001		98\％
		62	G86をGL	と9て 100 てと	\％000001	عヤ860ヵ＇s	98も 10xe W8O IEło
			－		\％000＇0	－	soles
861「991	L6S＇291	$992 ' Z \varepsilon Z$		6LL＇zZL	\％LGでて	S80＇zZ1	Ojul 8 ejinas isn
てヤく＇9LL＇し	StS＇6L9＇	Z81＇66と＇z	698＇ZL9＇ε	6てL＇6SがL	\％レどとて	カ＜O＇เ9でし	6ıככ૪ jemotsn
ャ98＇LEと＇${ }^{\text {d }}$	عL8＇とヤでゅ	ゅらでZ90＇9	をセを＇6Lで6	ヤヤで6ャ8＇8レ	\％ 206 89	28ヶ＇981＇	Jueid 1s！o
－	－	－	－		\％000 0	－	zueid suesı
ヤCZ＇S8ヤ	いしぐゅぐ	Hじ829	＜96＇ $280{ }^{\prime}$＇	9とか＇801＇z	\％689 9	ع¢ャ＇9¢¢	pejepey mos jueld podd
LLS＇899	10と＇ゅヤ9	998＇0Z6	ع8L＇80t＇	¢ $\angle 9{ }^{\prime} 198^{\prime} \mathrm{Z}$	\％ L $^{6} 8$	69L＇E8ャ	zueld podd
6ey sse7 sesuedx 0 \％\forall leuolljun」	（q）Jueld nowmos uо！peperdea рөлеןпипээォ	（q）zueld uowmos ＿	（q）zueld leseues uolze！jeddea резеןишпээy	（q）łueld lenenes 2505 ן	olpey loge7 peuolpouns	$\begin{gathered} \text { (e) } \\ \text { suenoo soqe] } \end{gathered}$	uo！pound

perepdn
Functionalized based on Functional Payroll Costs for the Twelve Months ended December 2020
GENERAL \＆COMMON PLANT，ACCUMULATED DEPRECIATION，A \＆G EXPENSES
ALLOCATION FACTORS FOR COST OF SERVICE STUDY
DUKE ENERGY KENTUCKY，INC．
GAS COST OF SERVICE STUDY
CASE NO：2021－00xxx
DUKE ENERGY KENTUCKY，INC．

REQUEST:

Refer to Duke Kentucky's Response to Staff's Second Request, Item 70b.
a. Explain why a customer would request electronic gas meter information.
b. Indicate the amount charge to a customer when they request electronic gas meter information.
c. Identify the tariff provision that allows for the assessment of a fee when a customer requests electronic gas meter information.

RESPONSE:

a. The Company does not require customers to provide their rationale for requesting electronic gas meter information. However, it is likely that the customer desires precise monitoring of their energy usage for cost analysis and so that they can see how their usage is affected while specific equipment is on or off.
b. Currently, the amount charged to customers when they request electronic gas meter information is a one-time fee of $\$ 860.00$ for installation of the pulse meter equipment, with an additional charge of $\$ 635.00$ if replacement of the Meter Index is necessary. The $\$ 15$ per month that was included in Miscellaneous Revenue and referenced in the response to STAFF-DR-02-70 was for a single customer and predates the current tariff. This charge has been discontinued.
c. Rate MPS, Meter Pulse Service (Sheet No. 84) contains the current charges for Meter Pulse Service.

PERSON RESPONSIBLE: Jeff L. Kern

Duke Energy Kentucky

Case No. 2021-00190
STAFF Third Set Data Requests
Date Received: August 4, 2021
STAFF-DR-03-025

REQUEST:

Refer to Duke Kentucky's response to Staff's Second Request, Item 71.
a. The response to part b. does not answer the request for information. Provide a full response to the previous request of Staff's Second Request, Item 71b.
b. Confirm that Duke Kentucky has been charging the $\$ 15$ field collection fee since at least 2009 without having the fee in the tariff.
c. Provide the amount Duke Kentucky has collected for the field collection fee by year since 2009.
d. Indicate whether Duke Kentucky is proposing to include the field collection fee in its tariff.

RESPONSE:

a. Page 3 of STAFF-DR-02-037(b) Attachment shows the calculation of the $\$ 90$ hourly cost to perform a gas reconnection. Field collections are performed by employees who travel to the site to disconnect service. Assuming that a field collection is based on one-half hour of labor, the calculation on page 3 supports a $\$ 45$ charge. The field collection charge that appears in Sheet No. 91 of the electric tariff is based on one-half hour of labor.
b. Duke Kentucky has been charging the $\$ 15$ gas field collection fee since at least 2009 without having the fee in the tariff.
c. The following table shows the gas field collection fees by year since 2009:

YEAR	FIELD COLLECTION FEE
2009	$\$ 3,960$
2010	$\$ 3,435$
2011	$\$ 3,060$
2012	$\$ 1,860$
2013	$\$ 1,860$
2014	$\$ 1,050$
2015	$\$ 960$
2016	$\$ 555$
2017	$\$ 1,125$
2018	$\$ 390$
2019	$\$ 345$
2020	$\$ 75$
2021	$\$ 60$
Total	$\$ 18,735$

d. Duke Energy Kentucky proposes to add the field collection fee to Sheet No. 81 (Charge for Reconnection of Service) in the gas tariff. The charge would be set at \$15. The response to question a. provides cost support for the hourly rate. The Company proposes to add the following language as paragraph D in the CHARGE section of Sheet No. 81: "If a Company employee, whose original purpose was to disconnect the service, has provided the customer a means to avoid disconnection, service which otherwise would have been disconnected shall remain intact, and no reconnection charge shall be assessed. However, a collection charge of fifteen dollars (\$15.00) may be assessed, but only if a Company employee actually makes a field visit to the customer's premises."

PERSON RESPONSIBLE: James E. Ziolkowski

REQUEST:

Refer the response to the Attorney General's First Request, Item 15(k).
a. For the projects listed in the response, provide a list of the projects that were included in the base period.
b. For the difference in capital spend between the base period and the list of additions by work order noted in the response above, state which amounts are attributable to projects less than one million dollars, and, any amounts that would be included in the forecasted portion of the base period.

RESPONSE:

a. Every project listed in the response to Attorney General's First Request, Item 15(k) is in the base period.
b. Please note that the amounts provided in response to AG-DR-01-15(k) were assets placed in-service, not capital spend, as the request specified. Actual plant placed in-service for December 2018 through June 2021 (the same period provided in response to AG-DR-01-15(k) for projects totaling less than $\$ 1$ million was $\$ 33,536,229$. The actuals provided in response to AG-DR-01-15(k) plus the actuals placed in-service for projects less than $\$ 1$ million for the months March, April, May and June (which were forecasted months in the base period) total $\$ 9,118,607$. This compares to $\$ 5,170,956$ of forecasted plant in-service for those same four months in the base period.

PERSON RESPONSIBLE: David Raiford
Abby Motsinger

[^0]: $1 \quad$ Federal Power Comm’n v. Hope Natural Gas Co., 320 U.S. 591 (1944).
 Bluefield Water Works Improvement Co. v. Public Serv. Comm'n, 262 U.S. 679 (1922).
 To derive my indicated cost of common equity under the RPM, I used two risk premium methods. The first method was the Predictive Risk Premium Model ("PRPM"), and the second method was a risk premium model using a total market approach.

[^1]: $5 \quad$ Hope, 320 U.S. 591 (1944), at 603.

[^2]: 6 Risk distinctions within S\&P's bond rating categories are recognized by a plus or minus, e.g., within the A category, an S\&P rating can by at A+, A, or A-. Similarly, risk distinction for Moody's ratings are distinguished by numerical rating gradations, e.g., within the A category, a Moody's rating can be A1, A2 and A3.

[^3]: 7 Duke Energy Corporation, SEC Form 8-K, February 13, 2020, at 40. Company provided.
 Source: S\&P Global Market Intelligence.

[^4]: Autoregressive conditional heteroscedasticity. See "A New Approach for Estimating the Equity Risk Premium for Public Utilities", Pauline M. Ahern, Frank J. Hanley and Richard A. Michelfelder, Ph.D. The Journal of Regulatory Economics (December 2011), 40:261-278.

[^5]: 13 www.nobelprize.org.
 Illustrated on Columns 1 and 2, page 2 of Schedule DWD-3.
 Illustrated on Column 4, page 2 of Schedule DWD-3.
 Annualized Return $=(1+$ Monthly Return $) \wedge 12-1$

[^6]: As shown on line 5 and explained in note 4, page 3 of Schedule DWD-3. Moody's does not provide public utility bond yields for A3-rated bonds. As such, it was necessary to estimate the difference between A2-rated and A3-rated public utility bonds. Because there are three steps between Baa2 and A2 (Baa2 to Baa1, Baa1 to A3, and A3 to A2) I assumed an adjustment of onethird of the difference between the A2-rated and Baa2-rated public utility bond yield was appropriate.
 22 As shown on page 3 of Schedule DWD-3.

[^7]: 23
 24

[^8]: 31
 32

[^9]: 33 See, e.g., Robert S. Harris and Felicia C. Marston, The Market Risk Premium: Expectational Estimates Using Analysts' Forecasts, Journal of Applied Finance, Vol. 11, No. 1, 2001, at 11 to 12; Eugene F. Brigham, Dilip K. Shome, and Steve R. Vinson, The Risk Premium Approach to Measuring a Utility's Cost of Equity, Financial Management, Spring 1985, at 33 to 45. As shown on page 7 of Schedule DWD-3.

[^10]: $44 \quad$ Blue Chip Financial Forecasts, December 1, 2020, at 14 and January 1, 2021, at 2. Derived on page 5 of Schedule DWD-6.

[^11]: $47 \quad \$ 4,004.929 \mathrm{M}=\$ 4,822.659 \mathrm{M}$ (requested rate base) * 52.00% (requested equity ratio) * 159.7% (market-to-book ratio of the Utility Proxy Group) as demonstrated on page 2 of Schedule DWD-7.

[^12]: 51 State of North Carolina Utilities Commission, Docket No. E-7, Sub 1026, Order Granting General Rate Increase, Sept. 24, 2013 at 25; see also, North Carolina Utilities Commission, Docket No. E7, Sub 989, Order on Remand, at 31 ("the Commission in every case seeks to comply with the N.C. Supreme Court mandate that the Commission establish rates as low as reasonably possible within Constitutional limits.").
 52 State of North Carolina Utilities Commission, Docket No. E-7, Sub 989, Order on Remand, October 23, 2013, at 34-35; see also, Dominion Remand Order, Docket No. E-22, Sub 479 at 26 (stating that the Commission is not required to "isolate and quantify the effect of changing economic conditions on consumers in order to determine the appropriate rate of return on equity").

[^13]: State of North Carolina ex rel. Utilities Commission v. Cooper, 758 S.E.2d 635, 642 (2014) ("Cooper II").
 Cooper II, 758 S.E.2d at 643.
 DNCP Remand Order, at 4-10.
 Cooper I, 366 N.C. 484, 739 S.E.2d 541 (2013).
 See, State of North Carolina Utilities Commission, Docket No. E-22, Sub 479, Order on Remand, July 23, 2015, at 39.

[^14]: A) Fiscal year ends Sept. 30th.
 B) Diluted earnings. Qtly. sales and egs. may $\begin{aligned} & \text { early Feb. } \\ & \text { (C) Dividends historically paid in early Jan., }\end{aligned}$ not sum to total due to rounding and change in April, July, and October. ■ Dividend reinvest-
 (D) Includes regulate
 million, $\$ 5.56 /$ share. shares outstanding. Next earnings report due $\quad \begin{aligned} & \text { April, July, and } \\ & \text { ment plan available. }\end{aligned}$
 © 2020 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind.
 THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, non-commercial, internal use. No part
 of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product

 To subscribe call 1-800-VALUELNE

[^15]: 4
 Hope, 320 U.S. 591 (1944), at 603.

[^16]: Risk distinctions within S\&P's bond rating categories are recognized by a plus or minus, e.g., within the A category, an S\&P rating can by at A+, A, or A-. Similarly, risk distinction for

[^17]: Moody's ratings are distinguished by numerical rating gradations, e.g., within the A category, a Moody's rating can be A1, A2 and A3.
 Atmos Energy Corporation, 2020 SEC Form 10-K, at 4.
 Ibid., In addition to Kentucky, ATO also serves customers in Texas, Louisiana, Mississippi, Virginia, Colorado, Kansas, and Tennessee. Ibid.

[^18]: 49 Source of Information: S\&P Global Market Intelligence.
 $50 \quad$ As shown on page 5 of Schedule DWD-3.
 51

[^19]:

[^20]: 1 Federal Power Commission v. Hope Natural Gas Co., 320 U.S. 591 (1944). Bluefield Water Works Improvement Co. v. Public Serv. Comm'n, 262 U.S. 679 (1922).

[^21]: 5 Risk distinctions within S\&P's bond rating categories are recognized by a plus or minus, i.e., within the A category, an S\&P rating can be at A+, A, or A-. Similarly, risk distinctions for Moody's ratings are distinguished by numerical rating gradations, i.e., within the A category, a Moody's rating can be A1, A2 and A3.

[^22]: $6 \quad$ See Schedule DWD-3, page 1, Column 1.

[^23]: $7 \quad$ Autoregressive conditional heteroscedasticity. See "A New Approach for Estimating the Equity Risk Premium for Public Utilities", Pauline M. Ahern, Frank J. Hanley and Richard A. Michelfelder, Ph.D. The Journal of Regulatory Economics (December 2011), 40:261278.

 8 www.nobelprize.org.

[^24]: 14 State of North Carolina Utilities Commission, Docket No. W-354, Sub 360, Order approving joint settlement agreement and stipulation, granting partial rate increase, and requiring customer notice, February 23, 2019, at 84-85.

[^25]: 16 As shown on Line No. 4 and explained in Note 3 on page 3 of Schedule DWD-4.
 17 SBBI Appendix A Tables: Morningstar Stocks, Bonds, Bills, \& Inflation 1926-2018.

[^26]: $27 \quad$ Roger A. Morin, New Regulatory Finance (Public Utility Reports, Inc., 2006), at p. 175. Evidence", Journal of Economic Perspectives, Vol. 18, No. 3, Summer 2004 at 33 "Fama \& French".

[^27]: $30 \quad$ Morin, at 190.
 31 Fama \& French, at 32.
 32 Ibid., at 33.

[^28]: 33
 State of North Carolina Utilities Commission, Docket No. W-354, Sub 360, Order approving joint settlement agreement and stipulation, granting partial rate increase, and requiring customer notice, February 23, 2019, at 84-85.

[^29]: 39
 State of North Carolina Utilities Commission, Docket No. W-354, Sub 360, Order approving joint settlement agreement and stipulation, granting partial rate increase, and requiring customer notice, February 23, 2019, at 84-85.

[^30]: 42
 State of North Carolina Utilities Commission, Docket No. E-7, Sub 989, Order on Remand, October 23, 2013, at $34-35$; see also DEC Remand Order at 26 (stating that the Commission is not required to "isolate and quantify the effect of changing economic conditions on consumers in order to determine the appropriate rate of return on equity"). State ex rel. Utils. Comm'n v. Cooper, 366 N.C. 484, 739 S.E.2d 541 (2013) (Cooper I)). State of North Carolina ex rel. Utilities Commission v. Cooper, 758 S.E.2d 635, 642 (2014) ("Cooper II").
 State of North Carolina Utilities Commission, Docket No. E-22, Sub 479, Order on Remand, July 23, 2015, at 4-10.

[^31]: 47 Source: Bureau of Economic Analysis.
 48 Source: https://www.missourieconomy.org/indicators/cost_of_living/ Accessed 6/4/2019.

[^32]: 49
 Source of Information: U.S. Census data.
 50 State of North Carolina Utilities Commission, Docket No. E-22, Sub 479, Order on Remand, July 23, 2015, at 39.

[^33]: www.reuters.com Downloaded on 04/30/2019 www.zacks.com Downloaded on 04/30/2019
 www.yahoo.com Downloaded on 04/30/2019
 Value Line Investment Survey

[^34]: 1 Federal Power Commission v. Hope Natural Gas Co., 320 U.S. 591 (1944). Bluefield Water Works Improvement Co. v. Public Serv. Comm'n, 262 U.S. 679 (1922).

[^35]: Value Line Investment Survey, October 13, 2017.

[^36]: 5
 Risk distinctions within S\&P's bond rating categories are recognized by a plus or minus, i.e., within the A category, an S\&P rating can be at A+, A, or A-. Similarly, risk distinctions for Moody's ratings are distinguished by numerical rating gradations, i.e., within the A category, a Moody's rating can be A1, A2 and A3.

[^37]: 6 The four merged companies are as follows: Carolina Water Service, Inc., United Utility Companies, Inc., Utility Services of South Carolina, and Southland Utilities, Inc.

[^38]: 7 See Schedule DWD-3, page 1, column 1.

[^39]: 8
 Autoregressive conditional heteroscedasticity. See "A New Approach for Estimating the Equity Risk Premium for Public Utilities", Pauline M. Ahern, Frank J. Hanley and Richard A. Michelfelder, Ph.D. The Journal of Regulatory Economics (December 2011), 40:261-278.
 www.nobelprize.org.

[^40]: Illustrated on Columns 1 and 2 of page 2 of Schedule DWD-4.
 Illustrated on Column 4 of page 2 of Schedule DWD-4.
 Annualized Return $=(1+\text { Monthly Return })^{\wedge} 12-1$
 See column 6 of page 2 of Schedule DWD-4.
 Blue Chip Financial Forecasts, October 1, 2017 at p. 2 and June 1, 2017 at p. 14.

[^41]: 18
 19

[^42]: 24 As shown on Line No. 1 of page 12 of Schedule DWD-4. Derived on Line No. 3 of page 3 of Schedule DWD-4.

[^43]: 31

 $$
 \begin{aligned}
 & 8.29 \%=(5.87 \%+10.72 \%) / 2 \\
 & 8.67 \%=(7.36 \%+8.29 \%+10.34 \%) / 3
 \end{aligned}
 $$

[^44]: It is Mr. D'Ascendis' opinion that the parent company's size is irrelevant in setting rates for one of its jurisdictional subsidiaries. Regulation is required to look at each operating utility as a stand-alone company since they can only set rates for that particular utility and no other operating subsidiary outside of their jurisdiction.
 $\$ 212.230 \mathrm{M} \times 329.7 \%=\$ 699.722 \mathrm{M}$

[^45]: Annual Forms 10-K

[^46]: 6

[^47]: 9 SNL Financial, Company SEC Form 10-Ks.

[^48]: 10
 "A New Approach for Estimating the Equity Risk Premium for Public Utilities", Pauline M. Ahern, Frank J. Hanley and Richard A. Michelfelder, Ph.D. The Journal of Regulatory Economics (December 2011), 40:261-278.

[^49]: 11 "Comparative Evaluation of the Predictive Risk Premium Model ${ }^{\mathrm{TM}}$, the Discounted Cash Flow Model and the Capital Asset Pricing Model", Pauline M. Ahern, Richard A. Michelfelder, Ph.D., Rutgers University, Dylan W. D’Ascendis, and Frank J. Hanley, The Electricity Journal (May, 2013).
 www.nobelprize.org
 Illustrated in Columns [1] and [2] on page 2 of Schedule 4. Illustrated in Column [4] on page 2 of Schedule 4.

[^50]: 23
 24

[^51]: 29
 30
 Blue Chip Financial Forecasts, December 1, 2019, at page 14 and May 1, 2020, at page 2. Derived on page 4 of Schedule 7.

[^52]: 31
 Duff \& Phelps 2019 Valuation Handbook Guide to Cost of Capital - Market Results through 2018, Wiley 2018, at 4-1.
 Eugene F. Fama and Kenneth R. French, "The Capital Asset Pricing Model: Theory and Evidence," Journal of Economic Perspectives, Volume 18, Number 3, Summer 2004, at 25-43.

[^53]: 35
 $\$ 196.004 \mathrm{M}=\$ 122.446 \mathrm{M}$ (book equity from UIF 2019 Annual Report to the FL PSC) $* 49.39 \%$ (requested common equity ratio from page 1 of Schedule 1) 324.1% (market-to-book ratio of the Utility Proxy Group) as demonstrated on page 2 of Schedule 8.

[^54]: It is Mr. D’Ascendis' opinion that the parent company’s size is irrelevant in setting rates for one of its jurisdictional subsidiaries. Regulation is required to look at each operating utility as a stand-alone company since they can only set rates for that particular utility and no other operating subsidiary outside of their jurisdiction.
 \$291.383M (CRU-US book equity) * 324.1\% (market-to-book ratio of the Utility Proxy Group) = \$944.372M

[^55]: Value Line Investment Survey www.zacks.com Downloaded on 04/30/2020 www.yahoo.com Downloaded on 04/30/2020
 Bloomberg Professional Services

[^56]: 2013. Next earnings report due early May. vestment plan available.
 2013. Next earnings report due early May. vestment plan available

[^57]: | A) Diluted earnings. Next earnings report due | (C) In millions, adjusted for split. |
 | :--- | :--- | :--- |

 ate April.
 B) Dividends historically paid in late February,

 June, September, and December.
 © 2020 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind.
 THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, non-commercial, internal use. No part
 of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, sevvice or produc:

[^58]: ${ }^{1}$ Case No. 2018-00261, Electronic Application of Duke Energy Kentucky, Inc., for Authority to 1) Adjust Natural Gas Rates 2) Approval of a Decoupling Mechanism 3) Approval of New Tariffs 4) and for All Other Required Approvals, Waivers, and Relief (Ky. PSC Mar. 27, 2019).

[^59]: (1) DETAIL CONTAINED ON SCHEDULES M-2.3, PAGES 2 THROUGH 7.
 (2) REFLECTS NORMALIZED VOLUMES.
 (3) REL
 (3) REFLECTS AVERAGE EXPECTED GAS COST OF $\$ 4.062 / \mathrm{MCF}$.

[^60]: (1) BILLS THAT TERMINATE IN RESPECTIVE RATE STEPS
 (3) REFLECTS AVERAGE EXPECTED GAS COST OF $\$ 4.062 / \mathrm{MCF}$.

