Generation Interconnection Feasibility Study Report

For

PJM Generation Interconnection Request Queue Position AC2-075

Jacksonville – Renaker 138kV III

August 2017

Preface

The intent of the feasibility study is to determine a plan, with ballpark cost and construction time estimates, to connect the subject generation to the PJM network at a location specified by the Interconnection Customer. The Interconnection Customer may request the interconnection of generation as a capacity resource or as an energy-only resource. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: (1) Direct Connections, which are new facilities and/or facilities upgrades needed to connect the generator to the PJM network, and (2) Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system.

In some instances a generator interconnection may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection, may also contribute to the need for the same network reinforcement. The possibility of sharing the reinforcement costs with other projects may be identified in the feasibility study, but the actual allocation will be deferred until the impact study is performed.

The Feasibility Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

General

Great Blue Heron Solar LLC, the Interconnection Customer (IC), has proposed a solar generating facility located in Harrison County, Kentucky. The installed facilities for AC2-075 will have a total capability of 20 MW with 13.4 MW of this output being recognized by PJM as capacity. The proposed in-service date for this project is June 1, 2019. **This study does not imply a EKPC commitment to this in-service date**.

This project will be installed adjacent to the existing AC1-074 & AC2-069 solar generating facilities. The installed AC1-074 facilities will have a total capability of 80 MW with 56 MW of this output being recognized by PJM as capacity. The installed AC2-069 facilities will have a total capability of 60 MW with 40.2 MW of this output being recognized by PJM as capacity. The installed facilities (AC1-074, AC2-069, & AC2-075) will have a total capability of 160 MW with 109.6 MW of this output being recognized by PJM as capacity.

PJM evaluated the network impacts for both AC2-069 & AC2-075 (this project) as one facility.

Point of Interconnection

AC2-075 will interconnect with the EKPC Transmission system along the Jacksonville – Renaker 138kV line.

Cost Summary

The AC2-075 project will be responsible for the following costs:

Description	Total Cost
Attachment Facilities	\$ 0
Direct Connection Network Upgrades	\$ 0
Non Direct Connection Network Upgrades	\$ 100,000
Total Costs	\$ 100,000

In addition, the AC2-075 project may be responsible for a contribution to the following costs:

Description	Total Cost
New System Upgrades	\$ 0
Previously Identified Upgrades	\$ 29,550,000
Total Costs	\$ 29,550,000

Cost allocations for these upgrades will be provided in the System Impact Study Report.

Attachment Facilities

No Attachment Facilities are required to support this interconnection request.

Direct Connection Cost Estimate

No Direct Connection Facilities are required to support this interconnection request.

Non-Direct Connection Cost Estimate

The total preliminary cost estimate for the Non-Direct Connection work is given in the table below. These costs do not include CIAC Tax Gross-up.

Description	То	tal Cost
Adjust remote, relaying, and metering settings.	\$	100,000
Total Non-Direct Connection Facility Costs	\$	100,000

Transmission Owner Scope of Work

This study assumes that the scope of work required for the existing AC1-074 project is completed before the AC2-075 project can go in service: Build 138kv switching station at Jacksonville Tap including associated transmission line work. Estimated Time: 18 months

Interconnection Customer Requirements

- 1. An Interconnection Customer entering the New Services Queue on or after October 1, 2012 with a proposed new Customer Facility that has a Maximum Facility Output equal to or greater than 100 MW shall install and maintain, at its expense, phasor measurement units (PMUs). See Section 8.5.3 of Appendix 2 to the Interconnection Service Agreement as well as section 4.3 of PJM Manual 14D for additional information.
- 2. The Interconnection Customer may be required to install and/or pay for metering as necessary to properly track real time output of the facility as well as installing metering which shall be used for billing purposes. See Section 8 of Appendix 2 to the Interconnection Service Agreement as well as Section 4 of PJM Manual 14D for additional information.
- 3. The Interconnection Customer seeking to interconnect a wind generation facility shall maintain meteorological data facilities as well as provide that meteorological data which is required per item 5.iv. of Schedule H to the Interconnection Service Agreement.

Revenue Metering and SCADA Requirements

PJM Requirements

The Interconnection Customer will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Sections 24.1 and 24.2.

EKPC Requirements

The Interconnection Customer will be required to comply with all EKPC Revenue Metering Requirements for Generation Interconnection Customers. The Revenue Metering Requirements may be found within the "EKPC Facility Connection Requirements" document located at the following link:

http://www.pjm.com/planning/design-engineering/to-tech-standards/ekpc.aspx

Network Impacts

The Queue Project AC2-075 (AC2-069 & AC2-075 studied as 1 project) was evaluated as a 80.0 MW (Capacity 53.4 MW) injection tapping the Jacksonville – Renaker 138 kV line in the EKPC area. Project AC2-075 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AC2-075 was studied with a commercial probability of 53%. Potential network impacts were as follows:

Summer Peak Analysis - 2020

Contingency Descriptions

The following contingencies resulted in overloads:

Contingency Name	Description
363_B2_TOR1682	CONTINGENCY '363_B2_TOR1682' OPEN BRANCH FROM BUS 243208 TO BUS 243209 CKT 1 / 243208 05JEFRSO 765 243209 05ROCKPT 765 1 END
4812_B2_TOR8931	CONTINGENCY '4812_B2_TOR8931' OPEN BRANCH FROM BUS 242921 TO BUS 242924 CKT 1 / 242921 05CORNU 765 242924 05HANG R 765 1 END
P7-1C5 4541MELDAHLSPRLCKSTU ARTSPURLOCKDPLEK	CONTINGENCY 'P7-1C5 4541MELDAHLSPRLCKSTUARTSPURLOCKDPLEK' OPEN BRANCH FROM BUS 342838 TO BUS 249581 CKT 1 OPEN BRANCH FROM BUS 253077 TO BUS 342838 CKT 1 END

Generator Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None.

Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None.

Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

	Cor	ntingency	Affected		B	us		Power	Loadi	ing %	Rat	ting	MW	
#	Туре	Name	Area	Facility Description	From	То	Circuit	Flow	Initial	Final	Туре	MVA	Contribution	Ref
1	N-1	363_B2_TOR 1682	LGEE - OVEC	7TRIMBLE-06CLIFTY 345 kV line	324114	248000	1	DC	169.79	170.13	ER	1370	4.67	1
2	Non	Non	LGEE - OVEC	7TRIMBLE-06CLIFTY 345 kV line	324114	248000	1	DC	114.14	114.53	NR	1134	4.47	
3	N-1	4812_B2_TO R8931	LGEE - OVEC	7TRIMBLE-06CLIFTY 345 kV line	324114	248000	1	DC	101.22	101.55	ER	1370	4.44	
4	DCTL	P7-1C5 4541MELDAH LSPRLCKST UARTSPURL OCKDPLEK	AEP	AC1-089 TAP-05HILLSB 138 kV line	926100	243019	1	DC	155.93	157.12	ER	185	4.91	4

Note: Please see Attachment 3 for projects providing impacts to flowgate violations. The values in the Reference column correspond to the proper table in the Attachment.

© PJM Interconnection 2017. All rights reserved.

Short Circuit

(Summary of impacted circuit breakers)

None.

Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

	Cor	ntingency	Affected		B	us		Power	Loadi	ing %	Rat	ing	MW	
#	Туре	Name	Area	Facility Description	From	То	Circuit	Flow	Initial	Final	Туре	MVA	Contribution	Ref
5	N-1	363_B2_TOR 1682	OVEC - AEP	06CLIFTY-05JEFRSO 345 kV line	248000	242865	Z1	DC	99.79	100.05	NR	1756	10.47	
6	N-1	363_B2_TOR 1682	LGEE - OVEC	7TRIMBLE-06CLIFTY 345 kV line	324114	248000	1	DC	182.05	182.27	ER	1370	6.67	
7	Non	Non	LGEE - OVEC	7TRIMBLE-06CLIFTY 345 kV line	324114	248000	1	DC	114.23	114.48	NR	1134	6.38	

Light Load Analysis - 2020

Light Load Studies to be conducted during later study phases (as required by PJM Manual 14B).

Stability and Reactive Power Requirement

Stability and Reactive study to be completed during later study phases

Steady-State Voltage Requirements

© PJM Interconnection 2017. All rights reserved.

8

Steady-State Voltage study to be completed during later study phases

Affected System Analysis & Mitigation

LGEE Impacts:

LGEE Impacts to be determined during later study phases (as applicable).

MISO Impacts:

MISO Impacts to be determined during later study phases (as applicable).

Duke, Progress & TVA Impacts:

Duke Carolina, Progress, & TVA Impacts to be determined during later study phases (as applicable).

OVEC Impacts:

OVEC Impacts to be determined during later study phases (as applicable).

New System Reinforcements

(Upgrades required to mitigate reliability criteria violations, i.e. Network Impacts, initially caused by the addition of this project generation)

None.

Contribution to Previously Identified System Reinforcements

(Overloads initially caused by prior Queue positions with additional contribution to overloading by this project. This project may have a % allocation cost responsibility which will be calculated and reported for the Impact Study)

Violation #	Overloaded Facility	Upgrade Description	Network Upgrade Number	Upgrade Cost
#1, 2, 3		In order to mitigate the overloads of facilities above, the following reinforcements are required:		\$ 17,400,000
		• Re-conductor the line with a high temperature conductor and upgrade any necessary terminal equipment to achieve expected ratings of 2610/2610 MVA SN/SE. Estimated Cost: \$17.4 M; Estimated Time: 18 months		

© PJM Interconnection 2017. All rights reserved.

Violation #	Overloaded Facility	Upgrade Description	Network Upgrade Number	Upgrade Cost
#4		 In order to mitigate the overloads of facilities above, the following reinforcements are required: 8.1 miles of AEP owned conductor will need re-conductor/rebuild; expected cost of \$12.15 million. An approximate construction time would be 24 to 36 months after signing an interconnection agreement. 		\$ 12,150,000
		Total New Net	work Upgrades	\$ 29,550,000

Attachment 1. Single Line Diagram

Attachment 2. Flowgate Details

Appendices

The following appendices contain additional information about each flowgate presented in the body of the report. For each appendix, a description of the flowgate and its contingency was included for convenience. However, the intent of the appendix section is to provide more information on which projects/generators have contributions to the flowgate in question. Although this information is not used "as is" for cost allocation purposes, it can be used to gage other generators impact.

It should be noted the generator contributions presented in the appendices sections are full contributions, whereas in the body of the report, those contributions take into consideration the commercial probability of each project.

Note: PJM evaluated the network impacts for both AC2-069 & AC2-075 (this project) as one facility. In the appendix tables below, "AC2-075" represents "AC2-069/AC2-075".

Appendix 1

(LGEE - OVEC) The 7TRIMBLE-06CLIFTY 345 kV line (from bus 324114 to bus 248000 ckt 1) loads from 169.79% to 170.13% (**DC power flow**) of its emergency rating (1370 MVA) for the single line contingency outage of '363_B2_TOR1682'. This project contributes approximately 4.67 MW to the thermal violation.

Bus Number	Bus Name	Full Contribution
243442	05RKG1	35.48
243443	05RKG2	34.94
342900	1COOPER1 G	2.85
342903	1COOPER2 G	5.52
342918	1JKCT 1G	2.24
342921	1JKCT 2G	2.24
342924	1JKCT 3G	2.24
342927	1JKCT 4G	1.49
342930	1JKCT 5G	1.49
342933	1JKCT 6G	1.49
342936	1JKCT 7G	1.49
342939	1JKCT 9G	1.52
342942	1JKCT 10G	1.52

Bus		Full
Number	Bus Name	Contribution
274650	KINCAID ;1U	5.96
900405	X3-028 E	217.66
LTF	Y2-006	16.22
247629	Y3-038	5.5
LTF	Z1-046	18.6
LTF	AA1-001	6.07
LTF	AA1-004	15.4
	AB1-087 C	
922982	OP	59.86
922992	AB1-088 C OP	59.86
924261	AB2-070 C OP	1.33
LTF	AC1-002	42.42
927331	AC1-040 C	9.49
925771	AC1-053 C	1.33

Bus Number	Bus Name	Full Contribution
342945	1LAUREL 1G	1.61
931551	AC2-075 C	4.67

Bus Number	Bus Number Bus Name			
	AC1-074 C			
925981	OP	4.67		

Appendix 2

(EKPC - LGEE) The 4SPUR-KENT-R-4KENTON 138 kV line (from bus 342661 to bus 324267 ckt 1) loads from 101.38% to 102.12% (**DC power flow**) of its emergency rating (281 MVA) for the tower line contingency outage of 'P7-1..C5

4541MELDAHLSPRLCKSTUARTSPURLOCKDPLEK'. This project contributes approximately 4.61 MW to the thermal violation.

Bus Number	Bus Name	Full Contribution	Bus Number	Bus Name	Con
342957	1SPURLK1G	9.17	931551	AC2-075 C	
342960	1SPURLK2G	13.35	931552	AC2-075 E	
				AC1-074 C	
342963	1SPURLK3G	7.02	925981	OP	
				AC1-074 E	
342966	1SPURLK4G	7.02	925982	OP	

Appendix 3

(EKPC - EKPC) The 4SPURLOCK-4SPUR-KENT-R 138 kV line (from bus 342664 to bus 342661 ckt 1) loads from 101.66% to 102.4% (**DC power flow**) of its emergency rating (281 MVA) for the tower line contingency outage of 'P7-1..C5

4541MELDAHLSPRLCKSTUARTSPURLOCKDPLEK'. This project contributes approximately 4.61 MW to the thermal violation.

Bus Number	Bus Name	Full Contribution
342957	1SPURLK1G	9.17
342960	1SPURLK2G	13.35
342963	1SPURLK3G	7.02
342966	1SPURLK4G	7.02

Bus Number	Bus Name	Full Contribution
021551		2 22
931001	AC2-075 C	3.23
931552	AC2-075 E	1.38
	AC1-074 C	
925981	OP	3.23
	AC1-074 E	
925982	OP	1.38

Appendix 4

(AEP - AEP) The AC1-089 TAP-05HILLSB 138 kV line (from bus 926100 to bus 243019 ckt 1) loads from 155.93% to 157.12% (**DC power flow**) of its emergency rating (185 MVA) for the tower line contingency outage of 'P7-1..C5

4541MELDAHLSPRLCKSTUARTSPURLOCKDPLEK'. This project contributes approximately 4.91 MW to the thermal violation.

Bus Number	Bus Name	Full Contribution
342957	1SPURLK1G	5.32
931022	AC2-008 E	6.7
931441	AC2-062 C OP	16.49
931442	AC2-062 E OP	7.37
931551	AC2-075 C	3.44
931552	AC2-075 E	1.47

Bus Number	Bus Name	Full Contribution
916272	Z1-080 E	0.58
925981	AC1-074 C OP	3.44
925982	AC1-074 E OP	1.47
926101	AC1-089 C	42.72
926102	AC1-089 E	69.71

Revised Generation Interconnection System Impact Study Report

For

PJM Generation Interconnection Request Queue Position AC2-075

Jacksonville – Renaker 138kV

April 2021

Preface

The intent of the System Impact Study is to determine a plan, with approximate cost and construction time estimates, to connect the subject generation interconnection project to the PJM network at a location specified by the Interconnection Customer. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system. All facilities required for interconnection of a generation interconnection project must be designed to meet the technical specifications (on PJM web site) for the appropriate transmission owner.

In some instances an Interconnection Customer may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection or merchant transmission upgrade, may also contribute to the need for the same network reinforcement. The possibility of sharing the reinforcement costs with other projects may be identified in the Feasibility Study, but the actual allocation will be deferred until the System Impact Study is performed.

The System Impact Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

General

The Interconnection Customer (IC), has proposed a solar generating facility located in Harrison County, Kentucky. The installed facilities for AC2-075 will have a total capability of 20 MW with 13.4 MW of this output being recognized by PJM as capacity. The proposed in-service date for this project is June 1, 2019. This study does not imply a EKPC commitment to this inservice date.

This project will be installed adjacent to the existing AC1-074 solar generating facility. The installed AC1-074 facilities will have a total capability of 80 MW with 56 MW of this output being recognized by PJM as capacity. The installed facilities (AC1-074 & AC2-075) will have a total capability of 100 MW with 69.3 MW of this output being recognized by PJM as capacity.

Point of Interconnection

AC2-075 will interconnect with the EKPC Transmission system along the Jacksonville – Renaker 138kV line.

Cost Summary

The AC2-075 project will be responsible for the following costs:

Description	Cost			
Attachment Facilities	\$	0		
Direct Connection Network Upgrades	\$	0		
Non Direct Connection Network Upgrades	\$	100,000		
Allocation for New System Upgrades	\$	0		

Description	Cost
Contribution for Previously Identified Upgrades	\$ 0
Total Costs	\$ 100,000

Attachment Facilities

There are no Attachment Facilities are required to support this interconnection.

Direct Connection Cost Estimate

There are no Direct Connection Facilities are required to support this interconnection.

Non-Direct Connection Cost Estimate

The total preliminary cost estimate for the Non-Direct Connection work is given in the table below. These costs do not include CIAC Tax Gross-up.

Description	То	tal Cost
Adjust remote, relaying, and metering settings.	\$	100,000
Total Non-Direct Connection Facility Costs	\$	100,000

Transmission Owner Scope of Work

This study assumes that the scope of work required for the existing AC1-074 project is completed before the AC2-075 project can go in service: Build 138kv switching station at Jacksonville Tap including associated transmission line work. Estimated Time: 18 months

Interconnection Customer Requirements

- An Interconnection Customer entering the New Services Queue on or after October 1, 2012 with a proposed new Customer Facility that has a Maximum Facility Output equal to or greater than 100 MW shall install and maintain, at its expense, phasor measurement units (PMUs). See Section 8.5.3 of Appendix 2 to the Interconnection Service Agreement as well as section 4.3 of PJM Manual 14D for additional information.
- 2. The Interconnection Customer may be required to install and/or pay for metering as necessary to properly track real time output of the facility as well as installing metering which shall be used for billing purposes. See Section 8 of Appendix 2 to the Interconnection Service Agreement as well as Section 4 of PJM Manual 14D for additional information.
- 3. The Interconnection Customer seeking to interconnect a wind generation facility shall maintain meteorological data facilities as well as provide that meteorological data which is required per item 5.iv. of Schedule H to the Interconnection Service Agreement

Revenue Metering and SCADA Requirements

PJM Requirements

The Interconnection Customer will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Sections 24.1 and 24.2.

EKPC Requirements

The Interconnection Customer will be required to comply with all FE Revenue Metering Requirements for Generation Interconnection Customers. The Revenue Metering Requirements may be found within the "FirstEnergy Requirements for Transmission Connected Facilities" document located at the following links:

<u>http://www.firstenergycorp.com/feconnect</u> <u>http://www.pjm.com/planning/design-engineering/to-tech-standards.aspx</u>

Network Impacts

The Queue Project AC2-075 was evaluated as a 20.0 MW (Capacity 13.3 MW) injection into the AC1-074 Tap 138 kV substation (which is a tap of the Jacksonville Tap – Renaker 138 kV line) in the EKPC area. Project AC2-075 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AC2-075 was studied with a commercial probability of 100%. Potential network impacts were as follows:

Summer Peak Analysis - 2020

Contingency Descriptions

The following contingencies resulted in overloads:

<Τ1 /
(

Generator Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

Light Load Analysis

Light Load Studies to be conducted during later study phases (applicable to wind, coal, nuclear, and pumped storage projects).

None

Multiple Facility Contingency

(Double Circuit Tower Line contingencies were studied for the full energy output. The contingencies of Line with Failed Breaker and Bus Fault will be performed for the Impact Study.)

None

Short Circuit

(Summary of impacted circuit breakers)

None

7

Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

	Cor	ntingency	Affected		В	us		Power	Load	ing %	Ra	ting	MW	
#	Туре	Name	Area	Facility Description	From	То	Circuit	Flow	Initial	Final	Туре	MVA	Contribution	Ref
1	N-1	363_B2_T OR1682	LGEE - OVEC	7TRIMBLE-06CLIFTY 345 kV line	324114	248000	1	DC	155.4 8	155.5 7	ER	1370	1.16	1

Note: Please see Attachment 1 for projects providing impacts to flowgate violations. The values in the Reference column correspond to the proper table in the Attachment.

Steady-State Voltage Requirements

(Summary of the VAR requirements based upon the results of the steady-state voltage studies)

See Attachment 3

Stability and Reactive Power Requirement for Low Voltage Ride Through

(Summary of the VAR requirements based upon the results of the dynamic studies)

See Attachment 3

New System Reinforcements

(Upgrades required to mitigate reliability criteria violations, i.e. Network Impacts, initially caused by the addition of this project generation)

None

Contribution to Previously Identified System Reinforcements

(Overloads initially caused by prior Queue positions with additional contribution to overloading by this project. This project may have a % allocation cost responsibility which will be calculated and reported for the Impact Study)

© PJM Interconnection 2021. All rights reserved.

8

Violation #	Overloaded Facility	Upgrade Description	Network Upgrade Number	Upgrade Cost	AC2-075 Allocation			
#1	7TRIMBLE- 06CLIFTY 345 kV line	In order to mitigate the overloads of facilities above, the following reinforcements are required:	N5469	\$ 17,400,000	\$0			
		A potential constraint was identified by PJM on the Trimble – Clifty 345 kV line (LG&E/OVEC tie line). The upgrade (LG&E) on the Trimble – Clifty 345 kV line, if determined to be a constraint by LG&E, is to reconductor the line with a high temperature conductor and upgrade necessary terminal equipment to achieve ratings of 2610/2610 MVA SN/SE. Cost estimate is \$17.4M with a time estimate of 18 months. Initially an LG&E affected system study was required to determine if the AC2-075 queue project causes any impacts on the LG&E system, including the Trimble-Clifty LG&E-OVEC tie line. Final LG&E Impacts and necessary LG&E system upgrade(s) would be determined once the LG&E affected system study is completed by LG&E.						
		In November 2019, LG&E determined that an affected systems study is not required for the AC2-075 project. Therefore the AC2-075 project is not responsible for this upgrade.						
Total New Network Upgrades								

Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

Contingency		Contingency Affected			Bus			Power	Loading %		Rating		MW	
#	Туре	Name	Area	Facility Description	From	То	Circuit	Flow	Initial	Final	Туре	MVA	Contribution	Ref
2	N-1	363_B2_T OR1682	LGEE - OVEC	7TRIMBLE-06CLIFTY 345 kV line	324114	248000	1	AC	162.8 4	162.9 5	ER	1370	1.75	

© PJM Interconnection 2021. All rights reserved.

Contingency		Affected		Bus			Power	Loading %		Rating		MW		
#	Туре	Name	Area	Facility Description	From	То	Circuit	Flow	Initial	Final	Туре	MVA	Contribution	Ref
3	Non	Non	LGEE - OVEC	7TRIMBLE-06CLIFTY 345 kV line	324114	248000	1	AC	129.8	129.9 4	NR	1134	1.8	

Note: Please see Attachment 1 for projects providing impacts to flowgate violations. The values in the Reference column correspond to the proper table in the Attachment.

Affected System Analysis & Mitigation

LGEE Impacts:

None.

MISO Impacts:

None.

Duke, Progress & TVA Impacts:

None

OVEC Impacts:

None

Attachment 1. Single Line Diagram

Attachment 2. Flowgate Details

Appendices

The following appendices contain additional information about each flowgate presented in the body of the report. For each appendix, a description of the flowgate and its contingency was included for convenience. However, the intent of the appendix section is to provide more information on which projects/generators have contributions to the flowgate in question. Although this information is not used "as is" for cost allocation purposes, it can be used to gage other generators impact.

It should be noted the generator contributions presented in the appendices sections are full contributions, whereas in the body of the report, those contributions take into consideration the commercial probability of each project.

Appendix 1

(LGEE - OVEC) The 7TRIMBLE-06CLIFTY 345 kV line (from bus 324114 to bus 248000 ckt 1) loads from 155.48% to 155.57% (DC power flow) of its emergency rating (1370 MVA) for the single line contingency outage of '363_B2_TOR1682'. This project contributes approximately 1.16 MW to the thermal violation.

Bus Number	Bus Name	Full Contribution
247286	05AND G2	0.4
247287	05AND G3	0.83
243442	05RKG1	19.13
243443	05RKG2	18.84
342900	1COOPER1 G	3.2
342903	1COOPER2 G	6.21
342918	1JKCT 1G	2.53
342921	1JKCT 2G	2.53
342924	1JKCT 3G	2.53
342927	1JKCT 4G	1.68
342930	1JKCT 5G	1.68
342933	1JKCT 6G	1.68
342936	1JKCT 7G	1.68
342939	1JKCT 9G	1.72
342942	1JKCT 10G	1.72
342945	1LAUREL 1G	1.81

Bus Number	Rus Name	Full Contribution
932551	AC2-075 C	1.16
933441	AC2-157 C	5.71
971181	J708	48.36
971521	J759	11.22
971531	J762	35.01
971571	J783	11.24
900404	X3-028 C	112.68
LTF	Y2-006	16.63
247629	Y3-038	0.52
LTF	Z1-046	19.47
LTF	AA1-001	5.68
LTF	AA1-004	15.79
922982	AB1-087 C OP	41.32
922992	AB1-088 C OP	41.32
926391	AC1-040 C	4.28
926731	AC1-074 C OP	4.9

Attachment 3. Dynamic Simulation Analysis

Executive Summary

Generator Interconnection Request AC2-075 is for a 20 MW Maximum Facility Output (MFO) Solar PV Inverter plant. AC2-075 consists of 9 x TMEIC Solarware PHV L2700GR, 2.7 MVA Solar PV Inverters with a Point of Interconnection (POI) at the Harrison County Switchyard 138 kV substation, in the East Kentucky Power (EKPC) transmission system, Harrison County, Kentucky.

This study is based on the 2020_SP summer peak load case and modified to include applicable queue projects. PJM queue project AC2-075 was dispatched at a maximum power transfer of 20.0 MW and POI voltage of 138.4 kV, consistent with the default generator reference voltage specified in PJM Manual 03 *Transmission Operations* Section 3.3.3 for generator connections to the PJM 138.0 kV system.

AC2-075 was tested for compliance with NERC, PJM and other applicable criteria. 62 contingencies were studied, each with a 15 second simulation time period.

Based on the contingencies tested, AC2-075 meets for all criteria contingencies tested.

Description

This study evaluates the stability, low voltage ride-through (LVRT) and dynamics for PJM queue project AC2-075 which is 20.0 MW MFO Solar Farm. The proposed POI is a three breaker ring bus which taps in/out existing Renaker – Jacksonville 138 kV circuit in EKPC area. The AC2-075 project is a Solar Farm made up of 9 x TMEIC Solarware PHV L2700GR, 2.7 MVA Solar PV Inverters.

Criteria

The stability study for AC2-075 was performed on a <u>RTEP SP_2020 Summer Peak load</u> case for normal operating conditions, and modified to include applicable queue projects. The range of contingencies evaluated was limited to those necessary to assess compliance with NERC, PJM and other applicable criteria. Simulation time was 15 seconds for all faults.

Simulated NERC Standard TPL-001 faults include:

- 1. Three-phase (3ph) fault with normal clearing (Category P1)
- 2. Single-line-to-ground on bus (slg) with normal clearing (Category P2)
- 3. Single-line-to-ground (slg) with delayed clearing as a result of breaker failure (Category P4)
- 4. Single-line-to-ground (slg) with delayed clearing as a result of protection failure (Category P5) not performed for this study
- 5. Single-line-to-ground (slg) with normal clearing for common structure (Category P7)

Note: For generator interconnection studies, Category P2, P3 and P6 faults will be studied on an as needed basis.

Other applicable criteria tested include:

- 1. TO specific criteria
- 2. Other criteria

The system was tested for an all lines in service condition and the faults listed above. Specific fault descriptions and breaker clearing times used for this study are provided in Appendix A.

All generators were monitored to assess transient stability and satisfactory post-contingency conditions.

Case Setup

Generators within 5 to 8 buses from the generator(s) under study are dispatched at their maximum power output and set at unity power factor at the high side of the generator step up transformer. Alternatively, generators can be adjusted to hold scheduled voltages.

Specific dispatch conditions at the generator terminals for the AC2-075 generator, as obtained in the power flow solution, are illustrated below:

	9 TMEIC Solar War 2.3 MW Inverters
Gross power output (MW)	20.7
Reactive power output (MVARS)	0
Auxiliary Load (MW/MVARS)	0.6, 0.0
Station Service Load (MW/MVARS)	
Net real power injection (MW)	20.0
Voltage at the POI (P.U.)	1.00

Results

Simulation Initialization

The case was initialized successfully. No errors were reported.

20 second no fault test (Steady State evaluation)

The system successfully met the 20 second run test without any significant deviations in system states.

Simulation Results

Dynamics and stability was tested using Siemens/PTI PSS/E Version 33.7, the 2020 case with a Summer Peak Load condition and the data supplied by the developer.

<u>Transient Stability</u>: For all contingencies studied, transient stability is maintained, with all oscillations stabilized in less than 15 seconds. Also, the voltage levels returned to acceptable levels for all contingencies following the fault clearance. Hence, no transient stability issues were identified for contingencies tested.

<u>LVRT</u>: For the cases studied, the queue project rides through the faults shown in Appendix A thus meeting the LVRT test specified in FERC order 661 and 661A.

Small Signal (if applicable):

SPS:

Maintenance outage: No maintenance outage conditions were evaluated.

Conclusion

Transient stability is maintained for all contingencies tested.

Mitigations:

None

None

No.	Contingency ID	Type of Fault	Clearin (cyc	Results	
	5.		Normal	Delayed	
		Criteria = TPL 001-4_P1			
01	AC1-074-TAP-P1-01	3ph fault on AC1-074/AC2-075 Tap – Renaker 138 kV	6.0	N/A	ОК
02	AC1-074-TAP-P1-01	3ph fault on AC1-074 /AC2-075 Tap – Jacksonville – Avon 138 kV	6.0	N/A	OK
03	AC1-074-RENA-P1-01	3ph fault on Renaker – Spurlock 138 kV	6.0	N/A	ОК
04	AC1-074-RENA-P1-02	3ph fault on Renaker – Bavarian / Boone 138 kV	6.0	N/A	ОК
05	AC1-074-RENA-P1-03	3ph fault on Renaker 138/69 kV TF	6.0	N/A	ОК
06	AC1-074-RENA-P1-04	3ph fault on Renaker – Colemansville– Bracken Co 69 kV	8.0	N/A	ОК
07	AC1-074-RENA-P1-05	3ph fault on Renaker – KU Cynthiana – KU Millersburg 69 kV	8.0	N/A	OK
08	AC1-074-RENA-P1-06	3ph fault on Renaker – Three M - Headquarters69 kV	8.0	N/A	OK
09	AC1-074-RENA-P1-07	3ph fault on Renaker – Williamstown 69 kV	8.0	N/A	ОК
10	AC1-074-RENA-P1-08	3ph fault on Renaker – Lees Lick – KU Scott 69 kV	8.0	N/A	ОК
11	AC1-074-SPUR-P1-01	3ph fault on Spurlock – Stanley Parker 138 kV (N Bus)	6.0	N/A	ОК
12	AC1-074-SPUR-P1-02	3ph fault on Spurlock – Renaker 138 kV (S Bus)	6.0	N/A	ОК
13	AC1-074-SPUR-P1-03	3ph fault on Spurlock – Maysville – Plumville 138 kV (N Bus)	6.0	N/A	OK
14	AC1-074-SPUR-P1-04	3ph fault on Spurlock – Flemingsburg / Goddard 138 kV (S Bus)	6.0	N/A	ОК
15	AC1-074-SPUR-P1-05	3ph fault on Spurlock – Kenton 138 kV (N Bus)	6.0	N/A	ОК
16	AC1-074-SPUR-P1-06	3ph fault on Spurlock – Inland 138 kV (S Bus)	6.0	N/A	OK
17	AC1-074-SPUR-P1-07	3ph fault on Spurlock G1	6.0	N/A	ОК
18	AC1-074-SPUR-P1-08	3ph fault on Spurlock 138/345 kV TF 9	6.0	N/A	ОК
19	AC1-074-SPUR-P1-09	3ph fault on Spurlock 138/345 kV TF 10	6.0	N/A	OK
20	AC1-074-SPUR-P1-10	3ph fault on Spurlock 138/345 kV TF 12	6.0	N/A	ОК
21	AC1-074-AVON-P1-01	3ph fault on Avon – Jacksonville – AC2-075 Tap 138 kV	6.0	N/A	ОК
22	AC1-074-AVON-P1-02	3ph fault on Avon – Fayette 138 kV	6.0	N/A	OK
23	AC1-074-AVON-P1-03	3ph fault on Avon – Beck – Boonesboro N – Dale 138 kV	6.0	N/A	OK
24	AC1-074-AVON-P1-04	3ph fault on Avon 138/345 kV TF	6.0	N/A	ОК
25	AC1-074-AVON-P1-04	3ph fault on Avon – KU Loudon 138kV	6.0	N/A	OK
	1	Criteria = TPL 001-4_P2	1		•
26	AC1-074-TAP-P2-01	SLG fault on AC1-074 Tap, Loss of AC1-074 Tap 138 kV Bus	6.0	N/A N/A	OK OK
28	AC1-074-RENA-P2-02	SLG fault on Renaker 69 kV Bus, Loss of Renaker 69 kV Bus	8.0	N/A	OK
29	AC1-074-SPUR-P2-01	SLG fault on Spurlock 138 kV North Bus, Loss of Spurlock 138 kV	8.0	N/A	OK
30	AC1-074-SPUR-P2-02	SLG fault on Spurlock 138 kV South Bus, Loss of Spurlock 138 kV South Bus (12 14 16 and 19 20)	8.0	N/A	ОК
		Avon is Ring Bus. Bus fault will impact one element / circuit at a			

Appendix A: Fault Table

No.	Contingency ID	Type of Fault	Cleari (cy	Results	
1.00			Normal	Delayed	
		Criteria – TPL 001-4 P4			
31	AC1-074-TAP-P4-01	SLG fault on AC1-074 Tap – Renaker 138 kV, SB '824' at AC1- 074, Loss of AC1-074 138 kV Bus	6.0	14.0	ОК
32	AC1-074-TAP-P4-02	SLG fault on AC1-074 Tap – Jacksonville – Avon 138 kV, SB '844' at AC1-074, Loss of AC1-074 138 kV Bus	6.0	14.0	ОК
33	AC1-074-TAP-P4-03	SLG fault on AC1-074 Tap – unit 138 kV, SB '834' at AC1-074, Loss of AC1-074 138 kV Bus	6.0	14.0	ОК
34	AC1-074-RENA-P4-01	SLG fault on Renaker – Spurlock 138 kV, SB '844' at Renaker 138 kV, Loss of Renaker 138 kV Bus	6.0	15.0	ОК
35	AC1-074-RENA-P4-02	SLG fault on Renaker – Bavarian / Boone 138 kV, SB '824' at Renaker 138 kV, Loss of Renaker 138 kV Bus	6.0	15.0	ОК
36	AC1-074-RENA-P4-03	SLG fault on Renaker 138/69 kV TF, SB '808' at Renaker 138 kV, Loss of Renaker 138 kV Bus	6.0	15.0	ОК
37	AC1-074-RENA-P4-04	SLG fault on Renaker – AC2-075 Tap 138 kV, SB '814' at Renaker 138 kV, Loss of Renaker 138 kV Bus	6.0	15.0	ОК
38	AC1-074-RENA-P4-05	SLG fault on Renaker 69/138 kV TF, SB '648' at Renaker 69 kV, Loss of Renaker 69 kV Bus	8.0	19.0	ОК
39	AC1-074-RENA-P4-06	SLG fault on Renaker – Colemansville –Bracken Co69 kV, SB '624' at Renaker 69 kV, Loss of Renaker 69 kV Bus	8.0	19.0	ОК
40	AC1-074-RENA-P4-07	SLG fault on Renaker – KU Cynthiana 69 kV, SB '664' at Renaker 69 kV, Loss of Renaker 69 kV Bus	8.0	19.0	ОК
41	AC1-074-RENA-P4-08	SLG fault on Renaker – Three M - Headquarters69 kV, SB '604' at Renaker 69 kV, Loss of Renaker 69 kV Bus	8.0	19.0	ОК
42	AC1-074-RENA-P4-09	SLG fault on Renaker-Williamstown 69kV, SB '634' at Renaker 69kV, Loss of Renaker 69kV Bus	8.0	19.0	ОК
43	AC1-074-RENA-P4-10	SLG fault on Renaker – Lees Lick – KU Scott 69 kV, SB '614' at Renaker 69 kV, Loss of Renaker 69 kV Bus	8.0	19.0	ОК
44	AC1-074-SPUR-P4-01	SLG fault on Spurlock – Stanley Parker 138 kV (N Bus), SB '814' at Spurlock 138 kV North Bus, Loss of Spurlock 138 kV North Bus	6.0	14.0	ОК
46	AC1-074-SPUR-P4-02	SLG fault on Spurlock – Maysville – Plumville 138 kV (N Bus), SB '834' at Spurlock 138 kV North Bus, Loss of Spurlock 138 kV North Bus	6.0	14.0	ОК
47	AC1-074-SPUR-P4-03	SLG fault on Spurlock – Kenton 138 kV (N Bus), SB '854' at Spurlock 138 kV North Bus, Loss of Spurlock 138 kV North Bus	6.0	14.0	ОК
48	AC1-074-SPUR-P4-04	SLG fault on Spurlock G1, SB '18G' at Spurlock 138 kV South Bus, Loss of Spurlock 138 kV South Bus	6.0	14.0	ОК
49	AC1-074-SPUR-P4-05	SLG fault on Spurlock 138/345 kV TF 9, SB '878' at Spurlock 138 kV North Bus, Loss of Spurlock 138 kV North Bus	6.0	14.0	ОК
50	AC1-074-SPUR-P4-05	SLG fault on Spurlock – Renaker 138 kV (S Bus), SB '824' at Spurlock 138 kV South Bus, Loss of Spurlock 138 kV South Bus	6.0	15.0	ОК
50	AC1-074-SPUR-P4-05	SLG fault on Spurlock – Flemingsburg / Godard 138 kV (S Bus), SB '844' at Spurlock 138 kV South Bus, Loss of Spurlock 138 kV South Bus	6.0	15.0	ОК
51	AC1-074-SPUR-P4-05	SLG fault on Spurlock – Inland 138 kV (S Bus), SB '864' at Spurlock 138 kV South Bus, Loss of Spurlock 138 kV South Bus	6.0	15.0	ОК
52	AC1-074-SPUR-P4-05	SLG fault on Spurlock 138/345 kV TF 10, SB '888' at Spurlock 138 kV S Bus, Loss of Spurlock 138 kV South Bus	6.0	15.0	ОК
53	AC1-074-AVON-P4-01	SLG fault on Avon – Jacksonville – AC2-075 Tap 138 kV, SB '844' at Avon 138 kV, Loss of Avon-KU Loudon 138kV line	6.0	15.0	ОК
54	AC1-074-AVON-P4-02	SLG fault on Avon – Jacksonville – AC2-075 Tap 138 kV, SB '834' at Avon 138 kV, Loss of Avon 138/345 kV TF	6.0	15.0	ОК

No.	Contingency ID	Type of Fault	Cleari (cy	Results							
	· ·										
55	AC1-074-AVON-P4-03	SLG fault on Avon 138/345 kV TF, SB '834' at Avon 138 kV, Loss of Avon – Jacksonville – AC2-075 Tap 138 kV	6.0	15.0	ОК						
56	AC1-074-AVON-P4-04	SLG fault on Avon 138/345 kV TF, SB '814' at Avon 138 kV, Loss of Avon – Becknerville – Boonesboro – Dale 138 kV	6.0	15.0	ОК						
57	AC1-074-AVON-P4-05	SLG fault on Avon – Becknerville – Boonesboro – Dale 138 kV, SB '814' at Avon 138 kV, Loss of Avon 138/345 kV TF	6.0	15.0	ОК						
58	AC1-074-AVON-P4-06	SLG fault on Avon – Becknerville – Boonesboro – Dale 138 kV, SB '824' at Avon 138 kV, Loss of Avon – Fayette 138 kV	6.0	15.0	ОК						
59	AC1-074-AVON-P4-07	SLG fault on Avon – Fayette 138 kV, SB '824' at Avon 138 kV, Loss of Avon – Becknerville – Boonesboro – Dale 138 kV	6.0	15.0	ОК						
60	AC1-074-AVON-P4-08	SLG fault on Avon-Fayette 138kV, SB '864' at Avon 138kV, Loss of Avon – KU Loudon 138kV	6.0	15.0	ОК						
		Criteria = TPL 001-4_P5									
		Not required – Communication redundancy									
Criteria = TPL 001-4_P7											
61	AC1-074-SPUR-P7-01	SLG fault on Spurlock – Stanley Parker 138 kV (N Bus) + Spurlock – Renaker 138 kV (S Bus)	6.0	N/A	ОК						
62	AC1-074-SPUR-P7-02	SLG fault on Spurlock – Maysville – Plumville 138 kV (N Bus) + Spurlock – Flemingsburg / Goddard 138 kV (S Bus)	6.0	N/A	OK						

Appendix B: Project Model

Figure B-1: PJM AC2-075 modeling details

Appendix C: Power Flow and Dynamic Models

C.1) Power Flow Model Data

	Impact Study Data	Model
	Lumped equivalent representing 9 x 2.3 MW TMEIC Solarware PHV-L2700GR Solar PV Inverter	Lumped equivalent representing 9 x 2.3 MW TMEIC Solarware PHV-L2700GR Solar PV Inverters
Solar PV Inverter	MVA base = 2.7 MVA Vt = 0.6 kV	Pgen = 20.7 MW $Pmax = 20.7 MW$ $Pmin = 0 MW$
	Unsaturated sub-transient reactance = not provided	Qmax = 6.831 MVAr^{-1} Qmin = -6.831 MVAr Mbase = 24.3 MVA
	MVAr limits = +/- 12.7 MVAr	Zsorce = 999999 pu @ Mbase
	9 x 34.5/0.6 kV transformer	Lumped equivalent representing 9 x 34.5/0.6 kV
	Rating = 2.7 MVA	
	Transformer base = 2.7 MVA	Rating = 24.3 MVA
GSU Transformer	Impedance:	Transformer base – 24.5 MVA
	High to Low: 0.0045 +j 0.067 pu	Impedance:
		High to Low: 0.0045 +j 0.067 pu
	Number of taps = N/A	
	I ap step size = N/A	Number of taps = 5 Tap step size = 2.5 %
Auxiliary Load	0.02 MW + 0.005 MVAr	Auxiliary + Station service load
Station Load	0.02 MW + 0.008 MVAr	voltage side of GSU transformer
Lumped Collector	Impedance : 0.008426 + j 0.08569 pu	Impedance : 0.008426 + j 0.08569 pu
Equivalent Impedance	Charging Susceptance: 0.00012 j pu @ 100 MVA base	Charging Susceptance: 0.00012 j pu @ 100 MVA base

Table 1: AC2-075 Plant Model

¹ MVAr limits were obtained from file :-"AC2-075 Data Review.xlsx"

Dynamic Data

//************************************										
/*** Project: AC2-075 - MFO 20 MW										
/*** POT: Harrison county switchvard ky substation										
/*** Eugl: Solar										
/*** Toyontony TMETC Solanwano BW/12700CD										
(*** fire ter, met Solar ware Provez/Jougk										
/*** Size: 20 MW (9 × 2.3 MW Solar PV Inverter)										
//*** PSSE Version 33										
/										
932553 'USRMDL' '1' 'PVGU1' 101 1 0 9 3 3										
0.02 0.02 0.0 0.1 2.0										
2 1.0 2.0 0.02 /										
932553 'USRMDL' '1' 'PVEU1' 102 0 4 24 10 4										
925980 0 1 0										
0.1 13 2 0	0									
	•									
1.01 $27/7$										
93255301 VIGIPAT 923980 932333 1 - 1 1.200 0 0.0 /										
93255302 VIGTPAT 925980 932553 1 -1 1.175 0.2 0.0 /										
93255303 VIGIPAL 925980 932553 1 -1 1.15 0.5 0.0 /										
93255304 VTGTPAT 925980 932553 1 -1 1.10 1 0.0 /										
93255305 VTGTPAT 925980 932553 1 0.1 5 0.600 0.0 /										
93255306 'VTGTPAT' 925980 932553 1 0.35 5 1.4 0.0 /										
93255307 'VTGTPAT' 925980 932553 1 0.600 5 2.2 0.0 /										
93255308 'VTGTPAT' 925980 932553 1 0.85 5 3.0 0.0 /										
93255309 'FROTPAT' 925980 932553 1 -100 61.8 0 0.0 /										
93255310 'FROTPAT' 925980 932553 1 -100 60.5 600.66 0.0 /										
93255311 'FROTPAT' 925980 932553 1 57.8 100 0 0.0 /										
93255312 'EROTPAT' 925980 932553 1 59 5 100 1792 049 0 0 /										

C.2) <u>PSS/E Single Line Diagram</u>

Figure C-1: Single-line diagram for AC2-075 2020-SP case (Breaker information not shown)

C.3) <u>Area Generation</u>

Bus Number	Bus Name	Id	VSched (pu)	Remote Bus Number	In Service	PGen (MW)	PMax (MW)	PMin (MW)	QGen (Mvar)	QMax (Mvar)	QMin (Mvar)	Mbase (MVA)
248005	06KYGER 345.00	1	1.02	0	1	72.0	72.6	22.2	11.8	20.3	-22.6	100.0
248005	06KYGER 345.00	2	1.02	0	1	72.0	72.6	22.2	11.8	20.3	-22.6	95.0
248005	06KYGER 345.00	3	1.02	0	1	72.0	72.6	22.2	11.8	20.3	-22.6	95.0
248005	06KYGER 345.00	4	1.02	0	1	72.0	72.6	22.2	11.8	20.3	-22.6	95.0
248005	06KYGER 345.00	5	1.02	0	1	72.0	72.6	22.2	11.8	20.3	-22.6	95.0
248005	06KYGER 345.00	6	1.02	0	1	123.0	123.6	37.8	20.2	34.5	-38.6	117.7
248005	06KYGER 345.00	7	1.02	0	1	123.0	123.6	37.8	20.2	34.5	-38.6	123.4
248005	06KYGER 345.00	8	1.02	0	1	123.0	123.6	37.8	20.2	34.5	-38.6	123.4
248005	06KYGER 345.00	9	1.02	0	1	123.0	123.6	37.8	20.2	34.5	-38.6	123.4
248005	06KYGER 345.00	А	1.02	0	1	123.0	123.6	37.8	20.2	34.5	-38.6	123.4
251968	08ZIMRHP 26.000	1	1.0261	249577	1	870.0	872.0	420.0	205.0	205.0	-86.6	975.0
251969	08ZIMRLP 22.000	1	1.0261	249577	1	476.0	478.0	230.0	102.1	102.1	-43.1	780.0
253038	09KILLEN 345.00	2	1.0377	0	1	610.0	612.0	230.0	199.0	199.0	-63.0	734.0
253038	09KILLEN 345.00	3	1.0377	0	1	16.9	18.0	15.7	18.0	18.0	-10.2	33.7
253077	09STUART 345.00	1	1.0145	0	1	580.0	580.6	300.0	5.6	280.0	-17.0	678.0
253077	09STUART 345.00	2	1.0145	0	1	580.0	580.0	300.0	5.6	280.0	-30.0	678.0
253077	09STUART 345.00	3	1.0145	0	1	580.0	580.4	300.0	8.0	280.0	8.0	678.0
253077	09STUART 345.00	4	1.0145	0	1	577.0	577.0	300.0	5.6	280.0	-30.0	678.0
253077	09STUART 345.00	5	1.0145	0	1	7.7	9.2	0.0	0.1	8.8	-5.2	13.0
253110	09ADKINS 345.00	1	1.0022	0	1	82.0	82.0	38.0	24.0	24.0	-15.0	108.0
253110	09ADKINS 345.00	2	1.0022	0	1	82.0	82.0	38.0	22.0	22.0	-16.0	108.0
253110	09ADKINS 345.00	3	1.0022	0	1	81.0	81.0	38.0	22.0	22.0	-13.0	108.0

© PJM Interconnection 2021. All rights reserved.

Bus Number	Bus Name	Id	VSched (pu)	Remote Bus Number	In Service	PGen (MW)	PMax (MW)	PMin (MW)	QGen (Mvar)	QMax (Mvar)	QMin (Mvar)	Mbase (MVA)
253110	09ADKINS 345.00	4	1.0022	0	1	80.0	80.0	38.0	22.0	22.0	-14.0	108.0
253110	09ADKINS 345.00	5	1.0022	0	1	82.0	82.0	38.0	27.0	27.0	-13.0	108.0
253110	09ADKINS 345.00	6	1.0022	0	1	79.0	79.0	38.0	25.0	25.0	-14.0	108.0
324017	1GHNT 1 18.000	1	1.018	324253	1	519.0	519.0	180.0	115.4	226.0	-156.0	640.0
342018	1GHNT 2 22.000	2	1.0203	324105	1	528.0	528.0	168.0	96.5	255.0	-68.0	618.2
342019	1GHNT 3 22.000	3	1.0203	324105	1	528.0	528.0	168.0	96.5	255.0	-68.0	618.2
342020	1GHNT 24 22.000	4	1.0203	324105	1	512.0	512.0	181.0	96.5	268	-43.0	618.0
342918	1JKCT 1G 13.800	1	1	0	1	110.0	110.0	0.0	-2.3	78.0	-60.3	140.0
342921	1JKCT 2G 13.800	1	1	0	1	110.0	110.0	0.0	-2.4	78.0	-60.3	140.0
342924	1JKCT 3G 13.800	1	1	0	1	110.0	110.0	0.0	-2.4	78.0	-60.3	140.0
342927	1JKCT 4G 13.800	1	1	0	1	73.0	73.0	0.0	18.5	40.0	-34.5	103.0
342930	1JKCT 5G 13.800	1	1	0	1	73.0	73.0	0.0	18.5	40.0	-34.5	103.0
342933	1JKCT 6G 13.800	1	1	0	1	73.0	73.0	0.0	17.7	72.5	-42.7	103.0
342936	1JKCT 7G 13.800	1	1	0	1	73.0	73.0	0.0	17.7	72.5	-42.7	103.0
342939	1JKCT 9G 13.800	1	1	0	1	73.0	76.0	0.0	38.8	41.8	-76.0	127.3
342942	1JKCT 10G 13.800	1	1	0	1	76.0	76.0	0.0	39.3	41.8	-76.0	127.3
342957	1SPURLK1G 22.000	1	1	0	1	344.0	344.0	100.0	127.4	175.0	-142.0	360.0
342960	1SPURLK2G 22.000	1	1	0	1	554.0	555.0	210.0	208.0	290.0	-227.0	636.6
342963	1SPURLK3G 18.000	1	1	0	1	304.0	306.0	80.0	128.6	268.0	-138.2	387.5
342966	1SPURLK4G 18.000	1	1	0	1	304.0	306.0	80.0	128.6	268.0	-138.2	387.5
894753	V3-045 G1 13.800	1	1.0109	250154	1	37.3	37.3	0.0	1.4	16.0	-16.0	40.3
894754	V3-045 G2 13.800	1	1.0109	250154	1	37.3	37.3	0.0	1.4	16.0	-16.0	40.3
894755	V3-045 G3 13.800	1	1.0109	250154	1	37.3	37.3	0.0	1.4	16.0	-16.0	40.3
932553	AC2-075 GEN 0.6000	1	1	0	1	20.7	20.7	0.0	-1.0	6.831	-6.831	24.3
925984	AC1-074 GEN 0.6000	1	1	0	1	82.5	82.5	0.0	-1.0	33.7	-33.7	89.1
931183	AB1-169 CT1 25.000	1	1.0145	253077	1	341.0	341.0	0.0	99.7	165.6	-112.4	380.0
931184	AB1-169 ST1 25.000	1	1.0145	253077	1	243.6	243.6	0.0	99.7	300.0	-177.0	437.0
931185	AB1-169 CT2 25.000	1	1.0145	253077	1	341.0	341.0	0.0	99.7	165.6	-112.4	380.0
931186	AB1-169 ST2 25.000	1	1.0145	253077	1	243.6	243.6	0.0	99.7	300.0	-177.0	437.0

C.4) Area Plants

Bus Number	Bus Name	Code	PGen (MW)	QGen (Mvar)	QMax (Mvar)	QMin (Mvar)	VSched (pu)	Remote Bus Number	Remote Bus Name	Voltage (pu)	RMPCT
248005	06KYGER 345.00	2	975	160	274	-306	1.02	0		1.02	100
									08ZIMER		
251968	08ZIMRHP 26.000	-2	870	205	205	-86.6	1.0261	249577	345.00	1.0166	58
									08ZIMER		
251969	08ZIMRLP 22.000	-2	476	102.1	102.1	-43.1	1.0261	249577	345.00	1.0166	42
253038	09KILLEN 345.00	-2	626.9	217	217	-73.2	1.0377	0		1.025	100
253077	09STUART 345.00	2	2324.7	24.9	1128.8	-74.2	1.0145	0		1.0145	25

Bus Number	Bus Name	Code	PGen (MW)	QGen (Mvar)	QMax (Mvar)	QMin (Mvar)	VSched (pu)	Remote Bus Number	Remote Bus Name	Voltage (pu)	RMPCT
253110	09ADKINS 345.00	-2	486	142	142	-85	1.0022	0		0.9981	100
324017	1GHNT 1 18.000	2	519	115.4	226	-156	1.018	324253	4GHENT 138.00	1.018	100
342918	1JKCT 1G 13.800	2	110	-2.3	78	-60.3	1	0		1	100
342921	1JKCT 2G 13.800	2	110	-2.4	78	-60.3	1	0		1	100
342924	1JKCT 3G 13.800	2	110	-2.4	78	-60.3	1	0		1	100
342927	1JKCT 4G 13.800	2	73	18.5	40	-34.5	1	0		1	100
342930	1JKCT 5G 13.800	2	73	18.5	40	-34.5	1	0		1	100
342933	1JKCT 6G 13.800	2	73	17.7	72.5	-42.7	1	0		1	100
342936	1JKCT 7G 13.800	2	73	17.7	72.5	-42.7	1	0		1	100
342939	1JKCT 9G 13.800	2	73	38.8	41.8	-76	1	0		1	10
342942	1JKCT 10G 13.800	2	76	39.3	41.8	-76	1	0		1	10
342957	1SPURLK1G 22.000	2	344	127.4	175	-142	1	0		1	100
342960	1SPURLK2G 22.000	2	554	208	290	-227	1	0		1	100
342963	1SPURLK3G 18.000	2	304	128.6	268	-138.2	1	0		1	100
342966	1SPURLK4G 18.000	2	304	128.6	268	-138.2	1	0		1	100
894753	V3-045 G1 13.800	2	37.3	1.4	16	-16	1.0109	250154	08MELDLS 138.00	1.0109	100
894754	V3-045 G2 13.800	2	37.3	1.4	16	-16	1.0109	250154	08MELDLS 138.00	1.0109	100
894755	V3-045 G3 13.800	2	37.3	1.4	16	-16	1.0109	250154	08MELDLS 138.00	1.0109	100
932553	AC2-075	2	20.7	1	6.381	-6.381	1.01	0		1	100
925984	AC1-074 GEN 0.6000	2	82.5	-1	33.6	-33.6	1	0		1	100
931183	AB1-169 CT1 25.000	2	341	99.7	165.6	-112.4	1.0145	253077	09STUART 345.00	1.0145	100
931184	AB1-169 ST1 25.000	2	243.6	99.7	300	-177	1.0145	253077	09STUART 345.00	1.0145	100
931185	AB1-169 CT2 25.000	2	341	99.7	165.6	-112.4	1.0145	253077	09STUART 345.00	1.0145	100
931186	AB1-169 ST2 25.000	2	243.6	99.7	300	-177	1.0145	253077	09STUART 345.00	1.0145	100

C.5) <u>Switching Diagrams</u>

		SPURLOCK	STATION N39		TO TO TO INLAND RIVER INLAND PLANT INTAKE PLANT
Image: Wight of the second s	3 3 3 3 3 3 3 3 3 4 3 4 3 4 3 4 3 4 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	2140 (NORTH) 345KV 8US*1 1413 1418 (3)	4428 CFN 947 945-1 945-2 (3) 875 895 805 878 898 802 873 893 803	0.1 V SER. T4 905-1 905-2 907 (85 183	00 00 00 00 00 00 00 00 00 00
1535-1 1525-1 1537 1525-2 1537 1525-2 1535-7 1525-2 133 1475 1475 1474 1474 1474 1474 1474 1474	С 1515-1 1515-2 1515-2 1515-2 1515-2 1515-2 1515-2 1515-2 1515-2 1515-2 1515-2 1515-2 1515-2 1515-2 1515-1 1515-2 1515-1 1515-2 1515-1 1515-2 1515-1 1515-2 1515-1 1515-2 15	(3) 325KV 1138V 2 (3) 1138V 1138V 2 (3) 1138V 1138V 1138V (3) 1138V (3) 1138V	(NORTH) (SOUTH) 813 (3) 814 824 815 825 915-1915-2 917 915-2 917 915-2 917 915-2	138kv BUS •1 138kv BUS •2 833 843 834 844 855 925-1925- 921 931 (3) (-) (3) (-)	865 795.0 MJ-0.46

Generation Interconnection Facility Study Report

For

PJM Generation Interconnection Request Queue Position AC2-075

Jacksonville – Renaker 138kV

April 2021

General

The Interconnection Customer (IC), has proposed a solar generating facility located in Harrison County, Kentucky. The installed facilities for AC2-075 will have a total capability of 20 MW with 13.4 MW of this output being recognized by PJM as capacity. The proposed in-service date for this project is May 1, 2023. This study does not imply a EKPC commitment to this inservice date.

This project will be installed adjacent to the existing AC1-074 solar generating facility. The installed AC1-074 facilities will have a total capability of 80 MW with 56 MW of this output being recognized by PJM as capacity. The installed facilities (AC1-074 & AC2-075) will have a total capability of 100 MW with 69.3 MW of this output being recognized by PJM as capacity.

Point of Interconnection

AC2-075 will interconnect with the EKPC Transmission system along the Jacksonville – Renaker 138kV line.

Cost Summary

The AC2-075 project will be responsible for the following costs:

Description	Т	otal Cost
Attachment Facilities	\$	0
Direct Connection Network Upgrades	\$	0
Non Direct Connection Network Upgrades	\$	0
Allocation for New System Upgrades	\$	0
Contribution for Previously Identified Upgrades	\$	0
Total Costs	\$	0

A. Transmission Owner Facilities Study Summary

<u>1. Description of Project</u>

The Interconnection Customer (IC), has proposed a solar generating facility located in Harrison County, Kentucky. The installed facilities for AC2-075 will have a total capability of 20 MW with 13.4 MW of this output being recognized by PJM as capacity. The proposed in-service date for this project is May 1, 2023. This study does not imply a EKPC commitment to this inservice date.

This project will be installed adjacent to the existing AC1-074 solar generating facility. The installed AC1-074 facilities will have a total capability of 80 MW with 56 MW of this output being recognized by PJM as capacity. The installed facilities (AC1-074 & AC2-075) will have a total capability of 100 MW with 69.3 MW of this output being recognized by PJM as capacity.

2. Amendments to the System Impact Study data or System Impact Study Results

- In November 2019, LG&E determined that an affected systems study is not required for the AC2-075 project. Therefore the AC2-075 project is not responsible for the upgrade along the Trimble-Clifty 345kV line.
- It is assumed that the scope of work required for the existing AC1-074 project is completed before the AC2-075 project can go in service: Build 138kv switching station at Jacksonville Tap including associated transmission line work. Estimated Time: 18 months. Since the AC1-074 & AC2-075 projects are going in service at the same time, there is no additional work required for AC2-075

3. Interconnection Customer's Submitted Milestone Schedule

IC's requested Commercial Operation Date (COD) for the generation facility is **May 1, 2023**. Milestone details were not provided for the IC's schedule.

4. Scope of Customer's Work

Developer will construct facilities, including the Solar generation system and generation step-up (GSU) transformer, and connect to the new 138 kV switching station. The AC2-075 project is a 20MW increase over the AC1-074 project.

The Point of Interconnection ("POI") will be the IC side of a 138 kV disconnect switch. The location of this switch will be determined during project scoping, and EKPC may require that this switch be located in the IC's substation. The IC substation shall be constructed adjacent to the new EKPC switching station (referred to as "Harrison County" herein). The IC customer will install 138 kV bus work or conductor from this 138 kV disconnect switch to their associated equipment. The IC will be responsible for acquiring all right of way, easements, and environmental approvals and permits for both the IC required facilities and any facilities that are

to be constructed by EKPC. The IC will be responsible for constructing, owning, operating, and maintaining its facilities, and EKPC will have no responsibility for any of these activities.

5. Description of Facilities Included in the Facilities Study

Since the AC1-074 & AC2-075 projects are going in service at the same time, there is no additional work required for AC2-075

<u>6. Total Costs of Transmission Owner Facilities included in Facilities Study</u> None

7. Summary of Milestone Schedules for Completion of Work Included in Facilities Study:

Please refer to Schedule J of the AC1-174 Construction Service Agreement.

B. Transmission Owner Facilities Study Results

Since the AC1-074 & AC2-075 projects are going in service at the same time, there is no additional work required for AC2-075. Please refer to the AC1-074 Facilities Study for the following:

- Transmission Lines New
- Transmission Line Upgrades
- New Substation/Switchyard Facilities
- Upgrades to Substation / Switchyard Facilities
- Metering & Communications
- Environmental, Real Estate and Permitting Issues
- Summary of Results of Study

Attachment 1. Site Location

Attachment 2. Engineering Single Line Diagram

Attachment 3. Planning Single Line Diagram