Attachment 14

Final Geotechnical Study

ibV energypartners

Geotechnical Report

ibV Energy – Rhudes Creek Solar Project

Eric Pauli, PE KY PE No. 36372

Table of Contents

1	Intro	duction	3
2	Meth	nodology	3
	2.1	Soil Borings	3
	2.2	Electrical Resistivity Testing	4
	2.3	Pile Load Testing	4
	2.3.1	Test Pile Installation	4
	2.3.2	Uplift Load Testing	4
	2.3.3	Lateral Load Testing	4
	2.3.4	Pile Extraction	4
	2.4	Karst Investigation	4
3	Geo	logy and Subsurface Conditions	5
4	Labo	pratory Results	6
	4.1	Soil Index Testing	6
	4.2	Compressive Strength of Rock	6
	4.3	Thermal Resistivity Testing	6
	4.4	Corrosivity Testing	7
	4.5	California Bearing Ratio	7
5	Pile	Load Testing Results	8
6	Seis	mic Site Classification	9
	6.1	Preliminary Seismic Evaluation	9
7	Kars	t Investigation	9
	7.1	Investigation Findings	9
	7.2	Recommendations	.10
8	Fou	ndation Considerations	.11
	8.1	Corrosion Considerations	.12
	8.2	Frost & Adfreeze Considerations	.12
	8.3	Recommended Soil Parameters for Pile Design	.12
	8.4	Recommended Soil Parameters for General Foundation Design	.13
9	Con	struction Recommendations	.13
	9.1	Excavation	.13
	9.2	Dewatering	.13
	9.3	Subgrade Preparation	.14
	9.4	Backfilling and Re-use of Native Soils	.14
	9.5	Access Roads	.15
	9.6	Flooding and Erosion	.15
	9.7	Pile Drivability	.15
1	0 Limi	ations	.16

1 Introduction

ANS Geo, Inc. is pleased to provide this Geotechnical Report (Report) to ibV Energy (ibV) to summarize the results of our geotechnical field investigations in support of the proposed Rhudes Creek Solar project located in Hardin County, Kentucky. At the time of this Report, it is our understanding that the solar facility is planned to include a substation, access roadways, and solar panel arrays. In addition, the purpose of this Geotechnical Report is to provide preliminary information for schematic design, as well as Information for Bidders to inform them of expected subsurface conditions for the proposed photovoltaic development, as well as support their respective designs.

ANS Geo notes that our geotechnical program was conducted to supplement Terracon's preliminary investigation completed in 2020. The factual results of their investigation, summarized in their *Preliminary Geotechnical Engineering Report* dated December 30, 2020 (**Attachment H**), were reviewed and incorporated as factual data points, to the extent practical, into our report and evaluations to provide a singular comprehensive report. Our design-level geotechnical program encompassed a desktop study of local geologic conditions and available reports, soil borings, field electrical resistivity testing, pile load testing, geophysical testing as part of a karst investigation, laboratory thermal resistivity and corrosion testing, California Bearing Ratio (CBR) and laboratory soil material testing.

In addition to a traditional geotechnical investigation to support the proposed solar facility, it is known from publicly-available geologic records and Terracon's preliminary investigation that the site is underlain by a geologic formation exhibits signs and dissolution features typical of a karstic environment. As part of our investigation, a geophysics investigation, consisting of Electrical Resistivity Imaging (ERI) and 1-D multichannel analysis of surface wave (MASW) testing, was also conducted to perform a high-level evaluation as to the extent and type of karst features across the project site.

2 Methodology

2.1 Soil Borings

ANS Geo retained Tri-State Drilling, (TSD) of Chattanooga, Tennessee to advance 29 soil borings (B-12 through B-38, B-SS-1, and B-SS-2) completed at select locations across the project site between February 22 and 27, 2021. ANS Geo notes that our soil boring nomenclature intentionally begins at "B-12" as borings B-1 through B-11 were completed at the project site within Terracon's preliminary investigation program. The soil boring locations are depicted in the Investigation Location Plan, provided as **Attachment A**. Soil borings B-12 through 34 were completed within the planned array area(s), borings B-35 through 38 were positioned along the planned utility right-of-way, and borings B-SS-1 and B-SS-2 were situated within the substation footprint.

Each soil boring was generally advanced to approximately 20 feet below ground surface (BGS) or until practical refusal, whichever was encountered first. Select soil borings (B-27, 29, SS-1, and SS-2) were extended to practical refusal to collect additional, deeper information. A CME-55 ATV track rig was used to collect soil samples using the Standard Penetration Test (SPT) Method through hollow-stem augers in accordance with ASTM Standard D1586. Soil samples were generally collected continuously within the upper 10 feet in each boring, then in five-foot intervals thereafter to the termination depth. Within boring B-36, rock coring was conducting using a wireline retrieval method in accordance with ASTM D2113 to confirm the presence and type of bedrock. Soil borings, proposed by ANS Geo and confirmed by ibV review, were located at relatively evenly spread locations throughout the project footprint. All soil borings were overseen and logged by an ANS Geo representative under the direction of a Professional Engineer licensed in the State of Kentucky.

At select soil boring locations, auger cuttings were collected within four (4) feet of grade with the purpose of obtaining bulk soil samples for laboratory California Bearing Ratio (CBR), thermal resistivity testing (TRT), and corrosivity testing. Upon completion, each borehole was backfilled to its existing grade with soil cuttings and bentonite holeplug.

2.2 Electrical Resistivity Testing

As part of our field investigation program, ANS Geo performed field Electrical Resistivity Tomography (ERT) testing at six (6) locations within the proposed array area(s), and one (1) additional location within the proposed substation footprint. In-situ soil resistivity measurements were obtained by utilizing the Wenner 4-Pin Method in accordance with ASTM G57 and IEEE Standard 80. Two (2) mutually perpendicular traverses were collected at each location utilizing "a"-spacings of 2, 5, 10, 25, and 50 feet, with additional 100 and 150-foot spacings at the substation location. Test results are presented as **Attachment C**.

2.3 Pile Load Testing

2.3.1 Test Pile Installation

As part of our scope of work, ANS Geo conducted pile load testing at 19 locations across the proposed solar array area(s) between February 27 and March 6, 2021. Each test location included a pair of test piles, totaling 38 piles tested for both uplift and lateral capacities. At each test location, W6x9 steel sections ("piles") were installed to between 7 and 11 feet BGS through the overburden via direct push to significant resistance, then driven to their targeted depths using a GAYK HRE 4000 Pile Driver. Installation rates varied between 16.7 and 50.1 seconds per foot (average around 30 seconds per foot). The installation and load testing program was overseen and logged by an ANS Geo geotechnical representative under the direction of a Professional Engineer licensed in the State of Kentucky.

2.3.2 Uplift Load Testing

Once driven to the targeted embedment depth (varying between 6.0 and 9.9 feet BGS), an uplift load test was performed on each test pile in accordance with the ASTM D3689 (uplift) test method. The tension load was generally applied through a load cylinder fastened to a tripod apparatus which was mounted to the pile driver. Uplift loads were generally applied in one-minute, 500-pound increments up to 2,000 pounds. Once achieved, the load was then unloaded in similar increments and timing. After the tension was fully released, the piles were reloaded up to a maximum uplift load of roughly 10,000 pounds.

2.3.3 Lateral Load Testing

A lateral load test was also performed at each test location, following each uplift load test, in accordance with ASTM D3966 (lateral) test method. Horizontal loads were applied at approximately three (3) feet above grade on each pile using a "twin-pile" setup. The pair of piles were strapped together and loaded, in tension, using the pulling force of the interior load cylinder. Each test load was applied cyclically in one-minute, 500-pound increments up to 4,000 pounds, where feasible. Once achieved, the load was immediately released and reloaded up to a maximum deflection of approximately one-inch, if not already achieved.

The location of each pile load test is depicted in the Investigation Location Plan, provided as **Attachment A**. Results of the pile load testing program are summarized within **Section 5**.

2.3.4 Pile Extraction

Upon completion of the testing program, each test pile was excavated in its entirety with a backhoe and stockpiled on site per the landowner's approval.

2.4 Karst Investigation

As common within central Kentucky, the project site is mapped as an "area underlain by bedrock with high potential for karst development" as depicted within the Kentucky Geological Survey's *Karst Occurrence in Kentucky* map. Karst terrains include regions where the topography is formed and altered by the dissolution of bedrock (commonly limestone or dolomite). Karst landscapes are commonly characterized by features such as surficial depressions, sinkholes, sinking streams, subsurface drainage, springs, and caves. This karst

classification is defined by thick-bedded, typically fine-grained and pure limestone units with little or no insoluble content. Units in this class will exhibit mature karst, including caves, sinkholes, and springs where they crop out. In addition, this unit is commonly covered by as much as 30 feet of soil, which is fairly consistent with the completed geotechnical investigations (Terracon and ANS Geo) which revealed auger refusal depths of 6.5 to 34.5 feet below grade across the site. As several surficial depressions and karst-associated features were evident at the project site, ANS Geo designed and implemented a high-level karst investigation program.

To conduct the work, ANS Geo retained THG Geophysics to support a limited geophysical investigation at the project site to evaluate the potential for karst features. The survey activities completed by THG included the use of electrical resistivity imaging (EI) and multichannel analysis of surface wave (MASW) testing to characterize subsurface soils and bedrock in an area expected to exhibit signs of karst. THG utilized a GF Instruments' ARES II electrical resistivity meter and a Geometrics Geode seismograph to image the subsurface. Given the size of the project site, testing locations were selected to be distributed across the property while also targeting potential karst features in the field such as visible topographic depressions, low-lying areas collecting and holding surface water, and waterbody features such as creeks.

It should be noted that purpose of the geophysical program was not intended to be an exhaustive evaluation of the entirety of the site, as that intent would require extensive and comprehensive canvassing and investigation across each parcel of the proposed solar farm. However, the investigation was intended to gain a general understanding of the subsurface conditions and gauge the preliminary impact which karst geohazards may or may not contribute to the design, siting, and construction of the proposed solar farm.

3 Geology and Subsurface Conditions

ANS Geo conducted a brief, desktop review of surficial and bedrock geology maps and reports made available by the United States Geological Survey (USGS) and the USDA Natural Resources Conservation Service (NRCS) prior to conducting our field investigation. We also consulted Terracon's *Preliminary Geotechnical Engineering Report* within our review. The available mapping and reports indicate that the native surficial soils are classified as predominantly clays and silts underlain by limestone bedrock which, on average, exists between 20 and 40 feet below grade. Localized areas of elevated/shallow bedrock are also expected to be present throughout the project extents. The mapped soil formations identified within our desktop study are consistent with the findings of our field investigations.

ANS Geo has provided the generalized subsurface conditions within Table 1 below based upon the observations made during our geotechnical investigation for the solar project. ANS Geo notes that this profile is highly generalized and that soil boring logs, been provided as **Attachment B**, should be reviewed for location-specific subsurface conditions.

Avg. Depth (ft)	Avg. Depth (ft) Material Consistency		Description		
0' – 0.5'	Topsoil	-	Two (2) to 10 inches of topsoil existed at surface across most of the project.		
0.5 – 20'	Clay / Silt	Stiff	Clays and/or medium to high plasticity silts were encountered as the primary soil type across the project site. Soil consistency typically ranged between medium and very stiff, and maintained average pocket penetrometer measurements of 1.0 to 2.5 tons per square foot. Occasional sand inclusions were observed at depths of 6 feet or greater, within a few boring locations.		
20' +	Boulders / Weathered Rock	Very dense	Refusal on dense material, likely including cobbles, boulders, or limestone bedrock, was encountered in four (14 percent) of the drilled boring locations within 20 feet of grade. The shallowest drilled refusal was recorded at 14.8 feet below grade; hand auger refusal was encountered at 4.2 feet within Boring B-38, likely due to cobble, boulder, or stiff soil.		

Table 1 – Generalized	Subsurface Profile
-----------------------	--------------------

Based on observations recorded at the time of our investigation program, seasonal high groundwater is expected to exist at six (6) feet below grade or deeper. Wet soils recovered at shallower depths within our explorations are, in our opinion, indicative of perched water conditions in localized areas.

4 Laboratory Results

4.1 Soil Index Testing

Representative soil samples were collected during our investigation and submitted to ANS's accredited materials testing laboratory. A summary of the index laboratory test results is provided within Table 2. As-received laboratory test results are included within **Attachment D**.

Boring ID	Sample ID	Depth (feet)	% Gravel	% Sand	% Fines	% Moisture				
B-15	S-4	6 - 8	0	70.2	29.8	11.1				
B-21	S-5	8 - 10	0	80.4	19.6	11.9				
Boring ID	Sample ID	Depth (feet)	Liquid Limit	Plastic Limit	Plasticity Index	USCS Soil Type				
B-12	S-4	6 - 8	29.8	20.3	9.5	CL				
B-16	S-1	0 - 2	30.8	19.6	11.2	CL				
B-17	S-5	8 - 10	27.4	18.9	8.5	CL				
B-18	S-2	2 - 4	30.5	20.6	9.9	CL				
B-19	S-3	4 - 6	26.7	19.2	7.5	CL				
B-20	S-4	6 - 8	29.5	18.3	11.2	CL				
B-24	S-3	4 - 6	29.7	19.7	10.0	CL				
B-26	S-1	0 - 2	28.9	18.2	10.7	CL				
B-27	S-4	6 - 8	29.6	18.8	10.8	CL				
B-29	S-2	2 - 4	28.7	18.7	10.0	CL				
B-31	S-3	4 - 6	31.8	19.2	12.6	CL				
B-33	S-5	8 - 10	28.6	19.7	8.9	CL				
B-35	S-5	8 - 10	26.4	19.2	7.4	CL				
B-37	S-2	2 - 4	29.8	18.7	11.1	CL				
B-38	G-3	4 - 5	29.2	18.5	10.7	CL				
B-SS-1	S-3	4 - 6	27.4	18.4	9.0	CL				
B-SS-2	S-S	2 - 4	28.0	19.1	8.9	CL				

Table 2 – Soil Index Testing Summary

4.2 Compressive Strength of Rock

A rock sample was cored within one soil boring locations (B-36) which was submitted to ANS's laboratory for Unconfined Compressive Strength testing in accordance with ASTM D2938. In summary, the tested limestone exhibited a corrected compressive strength of 8,660 pounds per square inch. Full test results are included within **Attachment D**.

4.3 Thermal Resistivity Testing

ANS Geo collected bulk samples from three (3) locations throughout the project area from two (2) to four (4) feet below grade for laboratory testing of Thermal Resistivity. Soils were collected in a five-gallon bucket and delivered to ANS Consultants' accredited laboratory for testing. The soil was compacted to 85 percent of its Standard Proctor Density in accordance with ASTM D698, and Thermal Resistivity Testing was conducted in accordance with IEEE Standard 442-2017. Results of the thermal testing are summarized within Table 3. Complete, as-received results have been provided within **Attachment D**.

	Material Type	Thermal Resistivity Values at Various Moisture Contents					Received	
Location ID		% water	% water	% water	% water	% water	Moisture	Re-Molded Dry Density (lb/ft ³)
		(°C-cm/W)	(°C-cm/W)	(°C-cm/W)	(°C-cm/W)	(°C-cm/W)	Content (%)	
D 15	Clay	0.0	2.5	5.0	7.5	10.1	20.8	98.0
D-15		462	232	136	114	107		
D 21	Clay	0.0	3.8	7.5	11.3	14.6	20.9	02.7
D-31		647	248	112	85	77	20.0	93.7
D SS 2	Clay	0.0	3.8	7.5	11.3	14.2	23.5	87.9
D-33-2	Clay	669	301	204	182	170		

Table 3 – Thermal Resistivity Testing Summary

4.4 Corrosivity Testing

ANS Geo collected additional samples from zero (0) to three (3) feet below grade at five (5) locations for corrosivity testing. The results of the testing, completed by ANS Consultants, have been summarized within Table 4 and are detailed within **Attachment D**.

Location ID	рН	Sulfate (mg/kg)	Chloride (mg/kg)	Soil Box (Calculated Resistivity) (Ω/cm)	Redox Potential (average) (mV)				
B-14	6.94	17	40	7,000	121				
B-20	6.88	25	50	9,000	129				
B-23	7.07	14	35	8,000	117				
B-32	6.88	27	50	9,500	135				
B-SS-1	6.74	21	45	10,000	125				

Table 4 – Corrosivity Testing Summary

4.5 California Bearing Ratio

ANS Geo collected an additional sample within two (2) feet of grade, stripped of any topsoil or organics, at three (3) locations for testing of California Bearing Ratio (CBR) in accordance with ASTM D1883 at approximately 90 percent of its Standard Proctor Density (ASTM D698). The results of the testing, completed by ANS Consultants, have been summarized within Table 5 and are detailed within **Attachment D**.

Table 5 – Gamorina Dearing Ratio Gummary						
Location ID	CBR Ratio (%)					
B-21	4.9					
B-38	1.5					
B-SS-1	0.9					

5 Pile Load Testing Results

Table 6 presents the summarized results of the pile load testing program at each test location. Complete Load Testing Logs are provided as **Attachment E** and should be referenced for detailed information.

Load Test ID	Embedment Depth (ft.)	Average Pile Installation Rate (sec/ft)	Approx. Uplift Load at 0.75-inch Deflection (lbs)	Approx. Lateral Load at 1-inch Deflection (lbs)
PLT-01 A	9	17.5	> 10,000	5,500
PLT-01 B	9	25.1	> 10,000	5,100
PLT-02 A	9	30.3	> 10,000	4,400
PLT-02 B	9	38.6	> 10,000	4,500
PLT-03 A	7	22.6	> 10,000	5,700
PLT-03 B	7	22.4	> 10,000	5,600
PLT-04 A	8	37.4	> 10,000	5,600
PLT-04 B	8	40.7	> 10,000	5,800
PLT-05 A	8	35.8	> 10,000	5,400
PLT-05 B	8	36.7	> 10,000	5,100
PLT-06 A	11	28.4	> 10,000	3,800
PLT-06 B	11	34.4	> 10,000	4,000
PLT-07 A	10	26.3	> 10,000	4,100
PLT-07 B	10	26.1	> 10,000	4,200
PLT-08 A	11	30.2	> 10,000	5,100
PLT-08 B	11	29.6	> 10,000	5,500
PLT-09 A	8	22.2	> 10,000	5,000
PLT-09 B	8	25.3	> 10,000	5,600
PLT-10 A	9	27.9	> 10,000	4,900
PLT-10 B	9	29.2	> 10,000	4,900
PLT-11 A	9	27.9	> 10,000	4,800
PLT-11 B	9	29.1	> 10,000	4,700
PLT-12 A	9	34.2	> 10,000	5,100
PLT-12 B	9	42.6	> 10,000	5,100
PLT-13 A	8	16.2	> 10,000	3,700
PLT-13 B	8	26.7	> 10,000	4,100
PLT-14 A	9	27.9	> 10,000	3,300
PLT-14 B	9	25.5	> 10,000	3,300
PLT-15 A	10	22.1	> 10,000	3,400
PLT-15 B	10	21.4	> 10,000	3,400
PLT-16 A	7	26.2	> 10,000	5,300
PLT-16 B	7	31.1	> 10,000	5,300
PLT-17 A	10	26.1	> 10,000	4,300
PLT-17 B	10	23.4	> 10,000	3,900
PLT-18 A	8	23.4	> 10,000	4,100
PLT-18 B	8	24.0	> 10,000	4,500
PLT-19 A	10	29.3	> 10,000	4,600
PLT-19 B	10	50.1	> 10,000	6,000

Table 6 – Pile Load Testing Summary

ANS Geo notes that the depicted lateral loading conditions represent deflections measured at approximately four (4) inches above ground surface as a result of horizontal loads applied perpendicular to the pile's strong axis at three (3) feet above grade.

6 Seismic Site Classification

ANS Geo utilized the average shear wave velocity method as prescribed in Chapter 20 of ASCE 7-16 to determine the Seismic Site Classification. Multichannel Analysis of Surface Waves (MASW) testing was conducted as part of the geophysical karst investigation program which obtained shear wave velocity data at 11 locations throughout the project site. Based on the average shear wave velocities collected within 100 feet of grade, Site Class C can be assumed as the average condition across the project site.

The following Site Class C seismic ground motion values were obtained from the USGS Seismic Hazard Maps, referenced in ASCE 7-16 Standard, for this site:

- 0.2 second spectral response acceleration, Ss= 0.208 g
- 1 second spectral response acceleration, S1= 0.110 g
- Maximum spectral acceleration for short periods, S_{MS} = 0.271 g
- Maximum spectral acceleration for a 1-second period, S_{M1} = 0.165 g
- 5% damped design spectral acceleration at short periods, S_{DS}= 0.180 g
- 5% damped design spectral acceleration at 1-second period, S_{D1}= 0.110 g

6.1 Preliminary Seismic Evaluation

The designated seismic site class is anticipated based on results from our investigation program and using select areas of the site which have been investigated by ANS Geo. Seismic support data is provided as **Attachment F**. Based on our observation of subsurface conditions, estimated Site Class ratings, and review of USGS's 2018 National Seismic Hazard Map, ANS Geo concludes that there is a low risk of significant seismic activity which may impact the proposed solar facility.

7 Karst Investigation

7.1 Investigation Findings

Within the karst investigation, a total of 29 EI profiles and 11 MASW tests were completed. THG's full geophysical report has been provided as **Attachment G**; however, the conclusions are summarized below:

- The project site is located in a geological setting with a high potential for karst development.
- Electrical imaging acquired from February 9 to 11, 2021, confirms the presence of karst features at this site.
 - The project site was divided into nine (9) discrete "Areas", each denoting an array area from a conceptual site plan provided to us by ibV Energy in January 2021.
 - A number of "lines", or an alignment where the geophysical sensors were placed in a linear fashion, were taken in each of the Areas.
 - Each line provided a two-dimensional cross section profile of the subsurface resistivity measured beneath and along the survey line. The length of the line, measured in feet, begins at 0-feet (start of line) to the maximum extent of the line.
 - Depressions or features are noted and identified by their location along the line, denoted by the range [feet] the feature exists along the line.
- Depth to bedrock is variable, but is commonly greater than 20 feet below grade within the solar project footprint.
- Topographically-derived sinkhole features developed by KGS located with Areas 6 and 8 (A key map of areas is defined and illustrated as Figure 2 of the THG report). Other areas not geophysically surveyed, either because they were not observed in the field or conditions were too wet to access.

- Shallow (within 30 ft below grade) karst features, which may impact the siting of array areas, inverter pads, substation, and other ancillary features, may exist at the following locations:
 - Line 12: 45-58 ft and 155-226 ft
 - Line 15: 20-120 ft (potential air-filled void)
- Deeper (greater than 45 ft) karst conditions may exist at the following locations:
 - Line 4: 155-226 ft
 - Line 21: 110-160 ft
 - Line 22: 160-200 ft
 - Line 23: 20-115 ft
 - Line 24: 140-180 ft

7.2 Recommendations

ANS Geo recommends additional geotechnical drilling and investigation be conducted at specific areas identified in the geophysical study as having karst potential and risk. However, notwithstanding additional site investigations, we recommend that solar areas and critical structures avoid "higher-risk" locations, or locations where surface depressions are readily apparent, or geophysics has observed shallow karst features. While smaller surface depressions do currently and have formerly existed across the site, these particular areas of "higher-risk" have generally show signs of continual subsidence over time, indicating that they will continue to develop into the future. Results of the geophysics investigation pinpoints areas along the survey line where karstic subsurface anomalies may occur.

The "higher-risk" designated areas were adjusted based on the results from the geophysics investigation. It is our professional opinion that critical structures (ie. substation elements) should avoid these "higher-risk" locations, wherever possible, with a minimum 100-foot buffer from the nearest extent of such "higher-risk" area or topographic depression. If required to be sited in "higher-risk" areas, foundations for these structures should consist of deep foundations that are bearing on a competent, intact subsurface layer. Bedrock-supported foundations will aid in minimizing future deflection or displacement of critical structures which may be otherwise adversely impacted by continued overburden subsidence. These "higher-risk" karst areas are depicted in the Karst Hazard Map, provided within **Attachment G**.

In areas where geophysics has identified relic karst features (previously-mapped KGS features), or deeper karst conditions, it is possible that loose, raveled soils are likely to exist in these "moderate-risk" areas. These areas may need longer or stiffer pile sections to achieve necessary loading capacities. A "moderate-risk" designation denotes areas where loose soils, likely those which "raveled" (soils that filled into depressions or below-grade cavities) may exist.

It should be noted that the term "high" risk is relative, and these terms do not preclude the potential for detrimental karst activity and subsidence elsewhere at non-delineated and named locations across the site. In addition, our relative risk classification is limited by our investigation program, specifically the alignments and locations which our investigations were conducted. We are unable to extrapolate, deduce, or evaluate the subsurface conditions outside of these investigated areas, and as such, other depressions, remnant, or active karst features may exist within uninvestigated locations. It should also be noted that the southeastern project parcel, located east of the existing railroad tracks, was not investigated as part of our investigation programs. The prepared Karst Hazard Map (**Attachment G**) was extended to include this area solely based on KGS-documented features, and not field observations.

Karst is frequently a complex system which are impacted by groundwater flow direction, infiltration and precipitation, changes in landform and topography, as well as man-made development. A change in any of these conditions, such as re-grading and re-direction of quantity, drainage, and infiltration of stormwater, can result in a change in the risk profile for areas across the site. Off-site impacts, such as groundwater pumping

or increased infiltration caused by storm events can also alter the groundwater flow direction which can modify subsurface conditions. It is suggested that the developer and site/civil engineer review available resources prepared by the Kentucky Geological Society (KGS) related to best management practices for site development, including, but not limited to the *Ordinance for the Control of Urban Development in Sinkhole Areas in the Blue Grass Karst Region* (Dinger and Rebmann, 1991).

7.3 Monitoring

Sinkholes (and associated ground movement) generally occur in two ways: the first, as a sudden collapse caused by exceeding the capacity of bridging support which exists above an air-filled void; and, the second, a longer-duration and gradual ground surface movement as surface soils and subsurface soils are washed into cavities and karst features by groundwater movement. Based on our experience with the project area, review of geophysical and soil boring data, as well as the nature of karst formations in the local area, it is expected that the method of sinkhole formation and movement at this site will be more gradual in nature than sudden cover-collapse. Review of geophysical data did not show prominent air-filled voids; however, the presence of soil-filled voids, throats, and relic karst features appear to show that groundwater action is creating karst but is simultaneously filling voids by carrying in clay, silt, and sand sediment. In addition, no "rod drops" or signs of open voids were identified by any of the soil borings advanced at the project site.

Therefore, in addition to an offset buffer from potential karst risk zones as identified in Section 7.2, it is recommended that a monitoring program is implemented to identify, understand, and mitigate/remediate during long-term operation of the development. The intent of the monitoring program is to evaluate larger-scale, ground-level movement attributable to karst, such as the gradual "bowl-like" movement which gradually occurs as a sinkhole feature develops over time. The monitoring program is intended to determine topographic variations over time, which would result in bending, tilting, and added stress to racking, modules, and structural components. This type of monitoring can be accomplished by installing survey monuments on fixed points, such as rigid steel markers at the end of panel rows/strings and installing a fixed survey marker/nail on top of concrete inverter and substation slabs. A separate survey monument, such as a sole steel post driven specifically for the purpose of monitoring each "area", may also be installed to allow for rapid evaluation. It is recommended that, at minimum, one monument be installed for each one-half acre of developed area.

Following installation of monitoring points, the owner/operator should conduct at least annual surveys of the monitoring points and compare the year-over-year movement between points. If individual monitoring points are not possible, annual LiDAR or drone surveying may be possible to rapidly evaluate the entire project area. If monitoring points show a change in individual elevation, or differential movement compared to nearby reference points, a detailed evaluation should be undertaken. This should include engaging a geotechnical engineer to conduct geophysical investigations (electrical resistivity tomography or other recognized method) to evaluate the potential development of detrimental karst activity. In addition, re-setting of panels, racking, or other structural elements may become necessary if movement is shown from monitoring to prevent flexure of sensitive PV modules, cracking of glass, or added stress and/or shearing of connection pins, bolts, and other hardware.

8 Foundation Considerations

ANS Geo anticipates that, as typical with solar farm construction, embedded posts, such as W6x9 or W8x10 H-piles, will be used to support the proposed solar panels. Conventional shallow foundations such as sonotubes, spread footings, or similar systems may also be utilized for equipment pads and associated support structures.

8.1 Corrosion Considerations

Given the soil's measured acidity, sulfate and chloride concentrations, resistivity, and redox potential summarized in **Section 4.4** (Table 4), in consideration with the soil and moisture conditions observed, the influence of corrosion attack on embedded steel piles is considered to be generally low (Corrosion Category C2).

8.2 Frost & Adfreeze Considerations

Within Hardin County, Kentucky, frost depth is mapped to exist at approximately 24 inches below grade. As such, ANS Geo recommends that all structural foundations be founded at 24 inches (2 feet) below grade or deeper to ensure adequate protection from frost conditions which may jeopardize the integrity of subgrade soils and associated substructure.

Given the location of the project and soils encountered, the potential for frost heave against post foundations should be considered. Fine-grained soils, or granular soils with greater than 10 percent fine-grained content are frost-susceptible due to the inability of entrapped moisture from infiltrating or evaporating prior to freezing. Trapped moisture will begin to create ice lenses, which will grip the steel posts or embedded structures, followed by ice-jacking due to frost heave. The phenomenon is more commonly referred to as "adfreeze stress", which can be considered as an external, upward force applied to the post. The magnitude of the upward force will depend on the depth/thickness of the frost zone, the interface bond stress between embedded structure/material and the surrounding area, and the surface area of the structure/material in contact with this bond stress. As predominantly silty and clayey soils were observed near grade, ANS Geo recommends that an unfactored adfreeze (uplift) stress of 1,500 pounds per square foot (10.4 psi) be considered for the upper 12 inches (1 foot) of overburden soil during panel foundation sizing and design.

8.3 Recommended Soil Parameters for Pile Design

Based on our interpretation of the subsurface conditions observed within our investigation programs and results of pile load testings, ANS Geo recommends that the soil parameters, as depicted within Table 7, be considered for foundation post design purposes.

Depth	Material	Effective Unit Weight	Internal Friction Angle	Cohesion	Soil Modulus (k)	Soil Strain (E₅₀)	Allowable Bearing Capacity	Allowable Side Resistance
0' – 1'	Topsoil (Soft Clay)	105 lb/ft ³		750 lb/ft ²		0.010		
1' – 2'	Silt (Soft Clay)	105 lb/ft ³		750 lb/ft ²		0.010		300 lb/ft ²
2' – 6'	Clay (Mod. Stiff Clay w/o Free Water)	115 lb/ft ³		1,800 lb/ft ²	200 lb/in ³	0.007	2,000 lb/ft ²	600 lb/ft ²
6' – 8'	Clay (Mod. Stiff Clay w/o Free Water)	120 lb/ft ³		2,500 lb/ft ²	350 lb/in ³	0.005	3,000 lb/ft ²	700 lb/ft ²
8' +	Clay (Mod. Stiff Clay w/o Free Water)	115 lb/ft ³		1,800 lb/ft ²	200 lb/in ³	0.007	3,500 lb/ft ²	700 lb/ft ²

Table 7 – Recommended	LPILE Soil	Parameters
-----------------------	------------	------------

Note: Italicized material types represent our recommended LPILE soil models.

ANS Geo recommends that allowable side resistance within the upper foot be neglected due to anticipated surficial disturbance, and adfreeze stresses as noted in **Section 8.2** should be considered. Pile load testing

results and subsurface observations were evaluated by ANS Geo using LPILE software to provide these refined soil parameters. ANS Geo notes that the soil parameters depicted within Table 7 represent values calibrated to curve-fit our lateral load test data; these parameters (effective unit weight and internal friction angle) should not be relied upon for axial design or other site foundation designs. It is our recommendation that verification load testing and detailed structural calculations be performed prior to construction to confirm these recommendations.

8.4 Recommended Soil Parameters for General Foundation Design

For foundations other than posts for solar panels (ie. substation elements, inverter slabs, transformers, etc.), ANS Geo recommends the design parameters depicted in Table 8.

Depth	Material	Effective Unit Weight	Internal Friction Angle	Cohesion	Allowable Bearing Capacity
0' – 1'	Topsoil	95 lb/ft ³		300 lb/ft ²	300 lb/ft ²
1' – 2'	Silt	100 lb/ft ³		500 lb/ft ²	500 lb/ft ²
2' – 6'	Clay	110 lb/ft ³		1,000 lb/ft ²	1,000 lb/ft ²
6' – 8'	Clay	115 lb/ft ³		1,500 lb/ft ²	2,000 lb/ft ²
8' +	Clay	110 lb/ft ³		1,000 lb/ft ²	2,500 lb/ft ²

 Table 8 – Recommended Soil Parameters (non-post foundations)

9 Construction Recommendations

9.1 Excavation

Depending on the depths of basins, drainage features, and foundation elements, some excavations may extend deeper than four feet below grade. As such, excavations deeper than four feet should be shored or sloped and benched, in accordance with OSHA regulations, to ensure safe working conditions within the excavations. For benching purposes, overburden clays and silts may be considered as "Type A" material and should be sloped no steeper than ³/₄H:1V (horizontal to vertical). OSHA soil classifications should be field-determined by the contractor's "competent person" prior to excavation. Any proposed shoring systems should be designed by the contractor's "competent person", be certified by a Professional Engineer licensed in the State of Kentucky, and should be submitted to the engineer for review.

Permanent excavations for drainage swales, ditches, or similar features should be limited to a maximum slope of 3H:1V and should be protected from erosion via stone, riprap, jute-mat, or similar method.

9.2 Dewatering

ANS Geo observed perched water at or near grade at the time of our investigation program. As such, the contractor should be prepared to manage shallow groundwater, perched water, and/or infiltrated stormwater as needed using localized pump-and-sump or similar techniques to allow for subgrade preparation and concrete foundation construction in-the-dry. Water discharge should be managed in compliance with applicable state and local regulations. The contractor should be sure to grade the surface as necessary to divert stormwater away from open excavation to the extent possible.

9.3 Subgrade Preparation

Prior to the installation of shallow concrete foundations, ANS Geo recommends overexcavating the subgrade by at least six (6) inches, lining the exposed material with a geotextile separation fabric, and bringing the subgrade back up to the design foundation elevation with compacted structural fill as specified within Table 9. Native material beneath the separation fabric should be inspected for unsatisfactory conditions such as standing water, frozen soil, organics, or deleterious materials. Should any unsatisfactory conditions exist within the native subgrade, the excavation should be undercut an additional six inches (12 total inches beneath proposed foundation depth) prior to placement of the geotextile separation fabric.

Sieve Size	Percent Passing
3-inch	100
1 ½-inch	60 – 100
No. 4	30 – 60
No. 200	0 – 10

Table 9 – Recommended Gradation of Structural Fill

Structural fill material should be placed in loose lifts not exceeding eight (8) inches in height and be compacted to at least 95 percent of its Modified Proctor Density in accordance with ASTM D1557.

9.4 Backfilling and Re-use of Native Soils

ANS Geo notes that native fine-grained soils (clays and silts) on site will likely be difficult to handle, place, and compact without proper moisture conditioning and protection. ANS Geo recommends the following measures be considered to reduce the adverse impacts of moisture-sensitive soils:

- Positive measure should be implemented and maintained to intercept and direct surface water away from moisture-sensitive subgrade surfaces.
- Subgrade surfaces should be sloped and, as appropriate, seal-rolled to facilitate proper drainage. Surfaces should be properly prepared in anticipation of inclement weather. Moisture should not be allowed to collect on subgrade surfaces.
- To the extent practical, the limits of exposed subgrade soils should be minimized.
- Construction traffic should be limited to properly constructed haul roads.
- Disturbed soils should be removed and replaced with compacted controlled fill material.
- In place moisture contents should be maintained with two percent wet/dry of the optimum moisture content as determined by the Modified Proctor Test (ASTM D1557).

These soils may be re-used across the project area for fill in landscaped areas; however, it should not be used under or above foundations or load-bearing structures where typically imported structural fill is used. Native material used as backfill for cable trenches should be handled and placed at a moisture content at or above its optimum value to ensure representative thermal properties are maintained.

In areas around and above installed foundations, large utilities, and other buried site features, ANS Geo recommends importing a clean granular material with less than 15 percent fine-grained content for use as general backfill. General backfill material should be screened of cobbles, boulders, and any particles larger than 3 inches in diameter, and should not be used beneath any load-bearing structures. General backfill should be placed in loose lift thicknesses not exceeding 12 inches and be compacted to at least 95 percent of its Modified Proctor Density (ASTM D1557). Soil used as backfill should not be handled when frozen and should be free of excessive moisture, organics, and deleterious material.

In fill areas beneath foundations, access roads, and load-bearing structures, ANS Geo recommends structural fill as described in **Section 9.3** and Table 9.

9.5 Access Roads

ANS Geo understands that an access road will likely be required for post-construction use to enter and exit the project site as well as provide access to the equipment pad locations. It is also our understanding that this access road will likely be unpaved, to accommodate occasional light vehicular traffic such as utility pickup truck or similar vehicle. As such, ANS Geo recommends that access roads be constructed with at least 10 inches of crushed stone as specified within Table 10.

Sieve Size	Percent Passing
1 ½-inch	100
³ ⁄4-inch	55 – 90
No. 4	25 – 50
No. 50	5 – 20
No. 200	3 – 10

If a biaxial geogrid is placed atop the proof-rolled and prepared subgrade, access road thickness may be reduced by two inches. A biaxial geogrid such as Tensar BX1200 or equal is recommended.

Prior to roadway construction, the subgrade should be stripped of vegetation and topsoil, and be proof-rolled with at least four (4) roundtrip passes of a smooth-drum roller with a minimum operating weight of eight (8) tons. The prepared subgrade should be confirmed to maintain a minimum CBR value of 10. If required, additional stabilization may be obtained through chemical treatment of the subgrade including introduction of lime or cement. Crushed stone should be placed in loose lifts not exceeding eight (8) inches in height and be compacted to at least 95 percent of its Modified Proctor Density (ASTM D1557).

9.6 Flooding and Erosion

Using the US Department of Agriculture National Resources Soil Conservation (USDA NRCS) Web Soil Survey, the site geology consists of soils predominately of the Crider, Otwood, and Bedford silt loam units which indicates the frequency of flooding as "rare". However, given presence of fine-grained soils and observed wet conditions at the time of our investigations, it is possible that ponding of water may occur during following significant storm events. ANS Geo understands that the proposed site plan will maintain drainage swales, berms, and/or ditches to intercept and divert such stormwater thus reducing the likelihood of appreciate flooding.

From our review of the site conditions, the project area maintains a "hummocky" topography, however, slopes across the site are generally less than 10 percent. Therefore, we believe the risk of erosion to be low. Based on the site's topography and soil composition, the NRCS Web Soil Survey has listed the predominant soil types as maintaining a generally "moderate" concern for erosion. Notwithstanding, we anticipate that proper housekeeping will be maintained during construction such as limiting the amount of disturbance and earth moving, and compaction and wetting of soils which are exposed for structural and foundation purposes. Therefore, we believe the overall risk of erosion will be minor and will be mostly managed during construction with proper soil erosion and sediment control measures.

9.7 Pile Drivability

ANS Geo anticipates that, as typical with solar farm construction, solar panels will be supported by steel H-Piles (wide-flanged sections) driven to approximately 8 to 10 feet below grade. It is ANS Geo's professional opinion that the parameters provided in **Section 8.3** may be used to preliminarily size the proposed piles, however, we recommend verification load testing prior to construction. These steel piles are typically installed via direct-push, vibration, and/or percussive hammer methods.

10 Limitations

ANS Geo notes that the findings and recommendations presented within this Geotechnical Report are based on our investigation program conducted in February and March, 2021 and our engineering judgment. Should the scope of the project or proposed site layout change, ANS Geo should be given the opportunity to review the applicability of the collected information and modify our recommendations, as needed.

We sincerely appreciate the opportunity to support this project, and please feel free to contact us should you have any questions regarding the findings of this Report.

Attachments

Attachment A – Investigation Location Plan

- Attachment B Soil Boring Logs
- Attachment C Electrical Resistivity Testing Results
- Attachment D Laboratory Results
- Attachment E Pile Load Testing Logs
- Attachment F Seismic Support Data
- Attachment G Geophysical Report (Karst Investigation)
- Attachment H Terracon's Preliminary Geotechnical Engineering Report

Attachment A

Investigation Location Plan

Client:

ibV energypartners

INVESTIGATION LOCATION PLAN

ibV ENERGY RHUDES CREEK SOLAR PROJECT HARDIN COUNTY, KENTUCKY

Legend

- Project Boundary
 Proposed ROW
- Soil Boring Location
- ERT Location
- Pile Load Testing Location
- → Karst Study ERI Location
- Karst Study MASW Location
- Preliminary Soil Boring Location (2020)
- Preliminary ERT Location (2020)

0 1,500 3,000 ft

Absolute Scale: 1 inch = 1,500 feet Scale at 11" x 17" AS SHOWN

Prepared by: Kyle Hansen Date: March 31, 2021 Drawing Number: ILP-1 Rev.0 Attachment B

Soil Boring Logs

4		J	5 6	GEC	C			So	il Boring	Lo	bg							B-12
Clie Proj Loc Insi	nt: ject: ation: pector	ibV E Rhu Harc : Dieg	Energy des Cr lin Cou lo Melç	, eek So unty, K gar	olar P čentuc	roject ky		Drilling Firm: 7 Drill Crew: 8 Boring Start: 2 Boring End: 2	Fri-State Drilling, LL Shannon / Brandon 2/22/2021 2/22/2021	С				Coo Hoi Ele Ver	ordi riz. [vati t. Da	nates Datur on: atum	s: n: :	-85.97211027 N, 37.65092558 E NAD 83 0 Grade
Rig Rig Dril Han Dril	Mode Type: I Meth nmer ⁻ ling Fl	l: od: Type: luid:	CME Track Hollo Autor None	-55 « w Ster matic	m Auç	ger		Sampler Type: Sampler Length: Sampler I.D.: Hammer Wt.: Hammer Fall:	Split Spoon 24 inches 2 inches 140 pounds 30 inches					Cas Cas Cas Har Har	sing sing sing mme	Type Leng I.D.: er Wt er Fa	e: gth: .: II:	N/A 4 feet 4 inches 140 pounds 30 feet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classificat	ion	Toughness	Plasticity	PP (tsf)	TV (tsf)	10	N-V	alue	40	Drilling & Strata Notes
	- S-1	17	1 3 7 12	10			Stiff, br moist (own, CLAY, some fine S CL)	Sand, some Silt,	L	м	3.5	.5					4 inches of topsoil
	- S-2	20	6 7 10 13	17	CL		Very st some S	iff, reddish brown, CLAY Silt, moist (CL)	′, some Sand,	м	м	3.5	1.5					-
5-	- S-3	24	3 5 7 15	12	ML		Stiff, re some (ddish brown, SILT, som ≿lay, moist (ML)	e fine Sand,	М	L	2.5	1.5					-5
	- S-4	24	3 7 12 11	19	CL		Very st Sand, i	iff, reddish brown Silty C noist (CL)	LAY, some fine	L	L	2.5	1					-
10-	S-5	24	3 4 5 6	9	ML		Stiff, re Clay, n	ddish brown, SILT, som loist (ML)	e fine Sand, little	L	L	2	1		/		• • • • •	- - —10
	-				 _ SM		- <u> </u>											-
15-	- S-6	15	3 7 8	15			some S	Silt, little Clay, moist (SM)						•			- —15
	-																	-
	S-7	16	3 3 5	8			Loose, Clay, n	brown yellow, fine SANI noist (SM)	D, some Silt, little									
20							End of Boreho	Boring at 20 feet BGS le backfilled with cutting	s									-
																		-
		In-E	Boreho	ble Wa	ater L	evels	Weter	.	General Notes					-	<u> </u>			
	Date	e / Time	e 		o (ft)	Hole (ft)	vvater Lvl (ft)	✓ = Water Level (if o BGS = Below Ground	oserved) Surface					Plas PP = TV =	ghne sticit = Poo = Tor	ess:Lo /:Nor ket P /ane	ow (L n-Plas enetro (Shea), ιweduum (Μ), High (Η) tito (NP), Low (L), Medium (M), High (Η) ometer, measured in tons per square ft. r Vane), measured in tons per square ft.

[J	5 <mark>6</mark>	EE	0			Soil Bo	ring l	Lo	g				B-13
Clie Proj Loc Insp	nt: ject: ation: pector	ibV I Rhu Harc : Dieg	Energy des Cr lin Cou lo Melg	eek So inty, K jar	olar Pi (entuc	roject ky		Drilling Firm:Tri-State DDrill Crew:Shannon /Boring Start:2/23/2021Boring End:2/23/2021	rilling, LLC Brandon					Coordinates: Horiz. Datum: Elevation: Vert. Datum:	-85.97657701 N, 37.64959167 E NAD 83 0 Grade
Rig Rig Dril Han Dril	Mode Type: Meth nmer ⁻	l: od: Type: luid:	CME Track Hollo Autor None	-55 « w Ster matic	m Aug	ger		Sampler Type:Split SpotSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundHammer Fall:30 inches	on ds					Casing Type: Casing Length: Casing I.D.: Hammer Wt.: Hammer Fall:	N/A 4 feet 4 inches 140 pounds 30 feet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classification		Toughness	Plasticity	PP (tsf)	TV (tsf)	N-Value	Drilling & Strata Notes
	S-1	24	1 1 2 3	3	ML		Soft, br moist (l	own, SILT, some Clay, little fine Sa ML)	and,	L	М	1	1		-
	S-2	24	2 3 6 7	9			Stiff, gr Silt, mo	ayish brown, CLAY, little fine Sand ist (CH)	l, trace	Н	Н	4.5	8.5		-
5-	S-3	24	3 4 6 11	10	CH		Stiff, br moist (own, CLAY, trace fine Sand, trace CH)	Silt,	Н	Н	4.5	8.5	••••	
	S-4	24	3 4 6 7	10	мн		Stiff, lig moist (l	ht gray, SILT, some Clay, little fine MH)	e Sand,	Н	Н	4	2.5		-
- 10-	S-5	24	3 3 9 5	12			Stiff, re moist (ddish brown, CLAY, little fine Sanc CH)	1,	н	Н	2.5	1.5	•	-
-	-														-
	S-6	24	3 4 5 8	9	сн		Stiff, re moist (ddish brown, CLAY, trace fine San CH)	ıd,	н	Н	3.5	8		-
15—	-		0		_										15
			3				Mediun	n stiff, reddish brown, CLAY, trace							-
- 20-	- S-7	24	3 4 4	7			coarse	to fine Sand, moist (CH)		Н	Н	4	8.5	L	
.	-						End of Boreho	Boring at 20 feet BGS le backfilled with cuttings							-
. .	-														-
<u> </u>		L				<u> </u>		_	la fa c						
⊢		In-E	Soreho	Die Wa	ater Le	Bot of	Water	General N	lotes) Medium (M) High (H)
	Date	e / Time	e 		o (ft)	Hole (ft)		BGS = Below Ground Surface						Plasticity: Non-Pla PP = Pocket Penetr TV = Torvane (She	-, measured (w), rugh (r) stic (NP), Low (L), Medium (M), High (H) rometer, measured in tons per square ft. ar Vane), measured in tons per square ft.

4		1	5 <mark>6</mark>	GEO	C			Soil Borin	g Lo	og								B-14
Clie Pro Loc Insi	nt: ject: ation: pector	ibV I Rhu Haro Dieg	Energy des Cr lin Cou lo Melg	, eek So unty, K gar	olar P čentuc	roject ky		Drilling Firm: Tri-State Drilling, Drill Crew: Shannon / Brand Boring Start: 2/23/2021 Boring End: 2/23/2021	LLC on				Co Ho Ele Ve	oord oriz. evat ert. D	inato Dato ion: Datu	es: um: m:	-85 NA 0 Gra	5.9762638 N, 37.64554847 E AD 83 rade
Rig Rig Dril Han Dril	Mode Type: Meth nmer ⁻ ling Fl	l: iod: Type: luid:	CME Track Hollo Autor None	-55 < w Ster matic	m Auç	ger		Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches					Ca Ca Ca Ha	asing asing asing amm amm	g Ty g Le g I.D ler V ler F	pe: ngtl .: /t.: all:	N 14 14 30	I/A feet inches 40 pounds 10 feet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classification	Toughness	Plasticity	PP (tsf)	TV (tsf)		N-	Valu 0 30	e 40		Drilling & Strata Notes
	- S-1	24	2 3 4 4	7			Mediun Clay, m	n stiff, light brown to brown, SILT, some noist (MH)	м	н	.75	1.5	1				-	7 inches of topsoil
	S-2	24	2 3 7 9	10	- MH		Stiff, lig Sand, r	ht brown to gray, SILT, some Clay, trace moist (MH)	н	н	3.75	2					-	
5-	S-3	24	3 4 6 2	10	сн		Stiff, br fine Sa	rown, CLAY, some Silt, trace coarse to nd, moist (CH)	н	н	1.25	3.25					5	5
	S-4	24	4 6 9 12	15	CL		Very st trace fi	iff, light grayish brown, CLAY, some Silt, ne Sand, moist (CL)	М	м	3.5	4.25					-	
10-	S-5	24	4 6 5 5	11			Stiff, lig trace co	ht brown, CLAY, little fine Sand, little Silt oarse Gravel, moist (CH)	, L	н	2.25	3					- -	10
	-		2		СН		Mediun	n stiff brownish red CLAY little fine									-	
15-	S-6	24	3 3 4	6	_		Sand, t	trace Silt, moist (CH)	н	н	2.5	3.25						15
																	-	
20-	S-7	24	2 3 3 4	6			Mediun Sand, t	n stiff, brownish red, CLAY, trace fine trace Silt, moist (CH)	н	н	2	3.5	•				-	20
	-						End of Boreho	Boring at 20 feet BGS le backfilled with cuttings									-	
	-																-	
		In-E	Boreho	ble Wa	ater L	evels	W/oto-	General Notes										4. Store (84) 11 1. (1.1)
	Date	e / Tim	e 		o (ft)	Hole (ft)	vvater Lvl (ft)	Water Level (if observed) BGS = Below Ground Surface					To Pla PP TV	ughn astici = Po ' = To	ity:Nocket rvane	Low on-P Pene e (Sh	(L), M lastic (etrome near Va	redium (M), High (H) (NP), Low (L), Medium (M), High (H) eter, measured in tons per square ft. 'ane), measured in tons per square ft.

4		J	50	GEC	C			S	oil Boring	Lo	og									B-15
Clie Pro Loc Insi	ent: ject: ation: pector	ibV E Rhu Harc : Dieg	Energy des Cr lin Cou lo Melç	reek So unty, K gar	olar Pi čentuc	roject ky		Drilling Firm: Drill Crew: Boring Start: Boring End:	Tri-State Drilling, Ll Shannon / Brandon 2/23/2021 2/23/2021	-C				Co Ho Ele Ve	oordi oriz. evati rt. D	inate Datu ion: atur	es: im: n:	-85. NAE 0 Grae	9815247 N, 3 0 83 de	37.64269295 E
Rig Rig Dril Han Dril	Mode Type: I Meth nmer ⁻ ling Fl	l: od: Type: luid:	CME Track Hollo Autor None	-55 k w Ster matic	m Aug	ger		Sampler Type: Sampler Lengt Sampler I.D.: Hammer Wt.: Hammer Fall:	Split Spoon h: 24 inches 2 inches 140 pounds 30 inches					Ca Ca Ca Ha Ha	ising ising ising imm imm	j Tyj j Lei j I.D. er W er Fa	oe: ngth .: /t.: all:	N// : 4 fr 4 in 140 30	A eet nches D pounds feet	
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classific	cation	Toughness	Plasticity	PP (tsf)	TV (tsf)	1	N-'	Value	9 40		Drilling	& Strata Notes
	- S-1	24	2 2 2 3	4	мн		Mediur trace fi	n stiff, light brown, SIL ne Sand, moist (MH)	T, some Clay,	L	н	1	2		0 20	/ 00	40	-		
	- S-2	20	2 3 8 12	11			Stiff, lig fine Sa	ht brownish gray, CLA nd, moist (CL)	AY, some Silt, trace	н	м	1.5	2					_		
5-	- S-3	18	3 3 10 23	13	CL		Stiff, gr Sand, i	ayish brown, CLAY, s noist (CL)	ome Silt, little fine	н	м	1.5	2.5					5		
	- S-4	24	8 13 9 9	22	sc		Mediur SAND,	n dense, light brown n some Clay, trace Silt,	nedium to fine , moist (SC)							•		-		
10-	- S-5	18	3 3 4 4	7			Mediur little fin	n stiff, grayish brown, e Sand, moist (CH)	CLAY, some Silt,	н	н	1.75	2					-		
- 10 - -	-		3 4		сн		Stiff, re	ddish brown, CLAY, tr	race fine Sand,									-	Dark brown s	spotting through sample
15-	- S-6	18	7	11	-		moist (н	Н	4	5.5					- 15 -	i	
	- S-7	18	2 3 7	10	-		Stiff, re Sand, i	ddish brown, CLAY, s noist (CH)	some Silt, trace fine	н	н	3	5					-		
20-	-						End of Boreho	Boring at 20 feet BGS le backfilled with cutti	S ngs											
	1																			
		In-E	Boreho	ole Wa	ater Le	evels	10/04		General Notes											
	Date	e / Time	e 		o (ft)	Hole (ft)	vvater Lvl (ft)	Water Level (i BGS = Below Ground BGS = BE BGS = B	т observed) nd Surface					Pla PP TV	ughn Istici Po = To	ess: ty:No cket rvane	Low on-Pl Pene (Sh	∟), Me astic (N tromete ear Var	aum (M), High IP), Low (L), M er, measured ir ie), measured i	(Ħ) edium (M), High (H) i tons per square ft. n tons per square ft.

4		1	5 6	GEO	С				S	oil Boring	g Lo	bg								B-16
Clie Pro Loc Insi	nt: ject: ation: pector	ibV f Rhu Harc : Dieg	Energy des Cr lin Cou o Melg	, eek So unty, K gar	olar P čentuc	Proje cky	ect		Drilling Firm: Drill Crew: Boring Start: Boring End:	Tri-State Drilling, L Shannon / Brando 2/24/2021 2/24/2021	LC n				Co Ho Ele Ve	oord oriz. evat ert. C	inat Dat ion Datu	tes: tum : im:	: .	-85.98543302 N, 37.64536359 E NAD 83 0 Grade
Rig Rig Dril Han Dril	Mode Type: I Meth nmer ⁻ ling Fl	l: od: Type: luid:	CME Track Hollo Autor None	-55 « w Ster matic	m Au	ger			Sampler Type: Sampler Lengt Sampler I.D.: Hammer Wt.: Hammer Fall:	Split Spoon h: 24 inches 2 inches 140 pounds 30 inches					Ca Ca Ha Ha	asing asing asing amm	g Ty g Le g I.C ier \ ier F	/pe eng D.: Wt.: Fall	th:	N/A 4 feet 4 inches 140 pounds 30 feet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Granhic	Log		Visual Classific	cation	Toughness	Plasticity	PP (tsf)	TV (tsf)	1	N -	Valu	је 04	0	Drilling & Strata Notes
	- S-1	24	1 2 3 4	5				Mediur moist (n stiff, light brown, CL CL)	AY, some Silt,	L	м	2	4						6 inches of topsoil
	- S-2	24	5 7 10 11	17	CL			Very st fine Sa	iff, reddish brown, CL nd, moist (CL)	AY, little Silt, trace	н	м	R	4.5						-
5-	- S-3	24	5 8 10 17	18				Very st fine Sa	iff, reddish brown, CL nd, moist (CL)	AY, some Silt, trace	н	м	R	4.5						5
	- S-4	24	12 12 13 15	25	ML			Very st little Cl	iff, reddish brown, SIL ay, moist (ML)	T, some fine Sand,	L	L	3	2						-
10-	S-5	24	6 10 12 14	22	мн			Very st some f	iff, reddish brown, SIL ne Sand, moist (MH)	T, some Clay,	н	н	R	4			 			- - 10 -
	- S-6	24	4 5 7	12	ML			Stiff, re Clay, n	ddish brown, SILT, sc noist (ML)	— — — — — — — — — — — — — — — — — — —			35	3.5						-
15-			9		_															
			2 4		SM			Mediur Silt. mo	n dense, light brown, t	fine SAND, some										-
20-	- S-7	24	7 7	11				End of	Boring at 20 feet BGS	3	_									
	-							Dorent		ngo										-
·	1																			F
	·	In-E	Boreho	ole Wa	ater L	.eve	els			General Notes			1							
	Date	e / Time	2	Ca Tip	o (ft)	B	ole (ft)	Water Lvl (ft)	▼ = Water Level (i BGS = Below Ground BGS = Bel	f observed) nd Surface				_	To Pla PP TV	eughr astici = Po = To	ness ity:N ocket orvan	:Lov Ion- t Per ne (S	w (L) Plast netro Shear), Medium (M), High (H) tic (NP), Low (L), Medium (M), High (H) ometer, measured in tons per square ft. r Vane), measured in tons per square ft.

ľ		15	S G	EE(С			Soil Boring	j Lo	og					B-17
Clie Proj Loca Insp	nt: ect: ation: ector	ibV E Rhuo Hard : Dieg	Energy des Cro lin Cou o Melg	eek So inty, K jar	olar P čentuc	Project Sky		Drilling Firm: Tri-State Drilling, L Drill Crew: Shannon / Brandor Boring Start: 2/23/2021 Boring End: 2/23/2021	LC 1				Coordin Horiz. Da Elevatio Vert. Dat	ates: atum: n: tum:	-85.97506302 N, 37.65364036 E NAD 83 0 Grade
Rig Rig Drill Han Drill	Mode Type: Meth Imer T ing Fl	l: od: Гуре: uid:	CME Track Hollo Autor None	-55 w Ster matic	m Auç	ger		Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches					Casing T Casing I Casing I Hammer Hammer	Type: Length: I.D.: r Wt.: r Fall:	N/A 4 feet 4 inches 140 pounds 30 feet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classification	Toughness	Plasticity	PP (tsf)	TV (tsf)	N-Va	alue 30 40	Drilling & Strata Notes
-	S-1	22	2 2 4 8	6			Mediun Sand, r	n stiff, brown, SILT, some Clay, little fine moist (MH)	Н	н	1.75	5	•		-
-	S-2	24	9 9 10 12	19	- MH		Very st fine Sa	iff, light brown, SILT, some Clay, little nd, moist (MH)	н	н	2.75	3			-
5-	S-3	24	3 7 9 4	16	CL		Very st Sand, t	iff, brown, CLAY, little coarse to fine race Silt, moist (CL)	н	м	4.5	4.5			- 5
-	S-4	24	8 9 10 13	19	мн		Very st fine Sa	iff, light brown, SILT, some Clay, some nd, moist (MH)	н	м	4	5.25			-
	S-5	24	3 6 8 9	14			Stiff, re some fi	ddish brown, Silty CLAY, some Clay, ine Sand, moist (CL)	н	н	3.5	3.5			
-					CI										-
- 15-	S-6	16	3 3 5 5	8			Stiff, re little Sil	ddish brown, CLAY, some fine Sand, t, moist (CL)	н	м	2	5	•		
-															-
-	S-7	6	2 3 5 6	8			Stiff, re little Sil	ddish brown, CLAY, some fine Sand, t, moist (CL)	н	м	2.5	4	•		-
- 20							End of Boreho	Boring at 20 feet BGS le backfilled with cuttings							-
-															-
1]					1									ſ
	I	In-E	Boreho	ole Wa	ater L	evels		General Notes		L					I
	Date	e / Time	>	Ca Tip	o (ft)	Bot. of Hole (ft)	Water Lvl (ft)	E = Water Level (if observed) BGS = Below Ground Surface					Toughnes Plasticity PP = Pock TV = Torva	ss:Low (L :Non-Plas at Penetrane (Shea), Medium (M), High (H) tic (NP), Low (L), Medium (M), High (H) ometer, measured in tons per square ft. Ir Vane), measured in tons per square ft.

4		1	5 6	GEO	С				S	oil Boring	g Lo	og								B-18
Clie Proj Loc Insp	nt: ject: ation: pector	ibV f Rhu Harc : Dieg	Energy des Cr lin Cou o Melo	, eek So unty, K gar	olar P Centuc	Proje Sky	ect		Drilling Firm: Drill Crew: Boring Start: Boring End:	Tri-State Drilling, L Shannon / Brando 2/25/2021 2/25/2021	.LC n				Co Ho Ele Ve	oord oriz. evat ert. E	inat Dat ion: Datu	es: um: m:	- N ()	-85.98215629 N, 37.65246975 E NAD 83 D Grade
Rig Rig Dril Han Dril	Mode Type: Meth nmer ⁻	l: od: Type: luid:	CME Track Hollo Autor None	-55 < w Ster matic	m Au	ger			Sampler Type: Sampler Lengt Sampler I.D.: Hammer Wt.: Hammer Fall:	Split Spoon h: 24 inches 2 inches 140 pounds 30 inches					Ca Ca Ca Ha	asing asing asing amm amm	g Ty g Le g I.D uer V uer F	pe: ngt).: Vt.: all:	h:	N/A 4 feet 4 inches 140 pounds 30 feet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic	Log		Visual Classific	cation	Toughness	Plasticity	PP (tsf)	TV (tsf)		N-	Valu	e) 40)	Drilling & Strata Notes
	- S-1	22	2 3 5 7	8	ML			Mediun Sand, r	n stiff, brown, SILT, so noist (ML)	ome Clay, little fine	н	м	1.5	2	1				-	6 inches of topsoil
-	S-2	22	5 5 9 9	14	CL			Stiff, lig moist (ht brown, Silty CLAY, CL)	some fine Sand,	L	L	1.5	2.25					-	-
5-	S-3	24	4 4 6 9	10				Stiff, lig Clay, m	ht brown, SILT, some loist (ML)	e fine Sand, little	L	L	2.75	3						5
	S-4	24	9 11 12 15	23	ML			Very st little Cla	iff, reddish brown, SIL ay, moist (ML)	T, little fine Sand,	н	L	4	3.75					-	-
10-	S-5	24	3 4 4 7	8	мн			Stiff, re Clay, m	ddish brown, SILT, sc loist (MH)	ome fine Sand, little	L	н	3	2.5						- - 10
	S-6	24	2 4 4 9	8	 CL			Stiff, re Sand, r	ddish brown, CLAY, s noist (CL)	some Silt, trace fine	н	м	R	4					-	-
15— - -	-				-															
-	S-7	24	2 3 8 4	11				Stiff, re Sand, r	ddish brown, CLAY, s noist (CL)	ome Silt, trace, fine	н	м	2	4					-	-
	-							End of Boreho	Boring at 20 feet BGS le backfilled with cutti	S ngs									-	20 - - -
┣—	Date	In-E	Boreho	Ca	sing	B	els ot. of	Water	👤 = Water Level (i	General Notes if observed)					То	ughr	ness	Low	(L),	, Medium (M), High (H)
				Tip	<u>o (ft)</u>	Ha	ble (ft)	Lvl (ft)	BGS = Below Grou	nd Surface					Pla PP TV	estici P = Pc P = To	i ty: N ocket orvan	on-F Pen e (Sł	Plasti etroi near	ic (NP), Low (L), Medium (M), High (H) meter, measured in tons per square ft. Vane), measured in tons per square ft.

4		1	S G	EC	C			S	oil Boring	Lc	bg			B-19
Clie Pro Loc Ins	ent: ject: ation: pector	ibV I Rhu Harc Dieg	Energy des Cro lin Cou o Melg	eek So inty, K jar	olar P čentuc	roject ky		Drilling Firm: Drill Crew: Boring Start: Boring End:	Tri-State Drilling, Ll Shannon / Brandon 2/23/2021 2/23/2021	_C				Coordinates: -85.97888642 N, 37.655591 E Horiz. Datum: NAD 83 Elevation: 0 Vert. Datum: Grade
Rig Rig Dril Har Dril	Mode Type I Meth nmer ling F	l: iod: Type: luid:	CME Track Hollo Autor None	-55 w Ster natic	m Aug	ger		Sampler Type: Sampler Lengt Sampler I.D.: Hammer Wt.: Hammer Fall:	Split Spoon h: 24 inches 2 inches 140 pounds 30 inches					Casing Type:N/ACasing Length:4 feetCasing I.D.:4 inchesHammer Wt.:140 poundsHammer Fall:30 feet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classific	cation	Toughness	Plasticity	PP (tsf)	TV (tsf)	N-Value Drilling & Strata Notes
	- S-1	24	3 3 6 9	9	мн		Stiff, re fine Sa	ddish brown, SILT, so nd, moist (MH)	ome Clay, some	н	н	4.5	6	8 inches of topsoil
	- S-2	21	6 10 11 11	21			Very st little Sil	iff, light brown, CLAY, t (CL)	little fine Sand,	н	м	4.5	7	
5-	- S-3	20	3 4 5 8	9	CL		Stiff, lig Sand, r	ht reddish brown, CL/ noist (CL)	AY, some fine	н	м	3.5	5	5
	- S-4	16	7 8 8 11	16			Very st trace S	iff, reddish brown, CL/ ilt, moist (CH)	AY, little fine Sand,	н	н	3	6.5	5 -
10-	- S-5	24	3 5 8 11	13	- CH		Stiff red trace S	ldish brown, CLAY, tra ilt, wet, (CH)	ace fine Sand,	н	н	R	6.5	5 Black spotting, red Sand intrusion
	- 5-6	24	3 4 6	10	-		Stiff, re Silt, mo	ddish brown, CLAY, li ist (CH)	ttle fine Sand, trace		н	3	4	
15-			7				Auger	efusal at 17.5'		_				
20-	-						End of Boreho	le backfilled with cuttin	3S ngs					-20
	-													
		In-E	Boreho	le Wa	ater L	evels	1.141.1	_	General Notes	-				
	Dat	e / Tim	•		o (ft)	Hole (ft)	Lvl (ft)	Water Level (i BGS = Below Ground BGS = BE BGS = BE	r observed) nd Surface					 rougnness:Low (L), Medium (M), High (H) Plasticity:Non-Plastic (NP), Low (L), Medium (M), High (H) PP = Pocket Penetrometer, measured in tons per square ft. TV = Torvane (Shear Vane), measured in tons per square ft.

4		15	5 6	GEO	C				S	oil Borin	g Lo	bg								B-2	0
Clie Proj Loc Insp	nt: ect: ation: ector	ibV E Rhuo Hard : Dieg	Energy des Cr lin Cou o Melç	, eek So unty, K gar	olar Pi Centuc	roje ky	ct		Drilling Firm: Drill Crew: Boring Start: Boring End:	Tri-State Drilling, Shannon / Brand 2/23/2021 2/23/2021	LLC on				Co Ho Ele Vei	ordi riz. I vati rt. D	nate Datu on: atur	es: um: m:	-85 NA 0 Gr	5.9771686 N, 37.65866381 AD 83 ade	E
Rig Rig Dril Han Dril	Mode Type: Meth mer	l: od: Type: luid:	CME Track Hollo Autor None	-55 « w Ster matic	m Aug	ger			Sampler Type: Sampler Lengt Sampler I.D.: Hammer Wt.: Hammer Fall:	Split Spoon h: 24 inches 2 inches 140 pounds 30 inches					Ca Ca Ca Ha Ha	sing sing sing mme mme	Tyj Lei I.D. er W er Fa	pe: ngtl .: /t.: all:	N 1: 4 4 14 3	/A feet inches 40 pounds 0 feet	
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic	Log		Visual Classifi	cation	Toughness	Plasticity	PP (tsf)	TV (tsf)	10	N-V	/alu e 30	e 40		Drilling & Strata Note	es
-	S-1	24	1 2 2 2	4				Mediun Sand, r	n stiff, brown, SILT, so noist (ML)	ome Clay, little fine	L	М	1.25	2.5	•				-	10 inches of topsoil	
	S-2	12	2 4 3 4	7	ML			Mediun fine Sa	n stiff, brown, SILT, so nd, moist (ML)	ome Clay, some	L	м	1.75	2					-		
5-	S-3	24	2 3 3 5	6	мн			Mediun fine Sa	n stiff, brown, SILT, so nd, moist (MH)	ome Clay, some	м	м	1.75	3.5	. • .				- 	5	
-	S-4	11	4 6 8 10	14	CL			Stiff, re Sand, r	ddish brown, CLAY, s noist (CL)	some Silt, little fine	н	м	R	4							
10-	S-5	24	3 4 5 8	9	-			Stiff, re Sand, r	ddish brown, CLAY, s noist (CH)	some Silt, little fine	н	н	4.5	7					-	10	
	-				сн														-		
-	S-6	24	2 3 8 4	11				Stiff, re some S	ddish brown, CLAY, s Silt, trace coarse to fin	some fine Sand, e Gravel, wet (CH)	н	н	4.5	5					-	Gravel recovered at the bott spoon, possible boulders	om of
	-							Auger I End of Boreho	efusal at 15.25 feet Boring at 15.25 feet E le backfilled with cutti	3GS ngs									-	5	
-	-																		-		
20-	-																			20	
.																			-		
•																			ł		
		In-E	Boreho	ole Wa	ater Lo	evel	ls			General Notes											
	Date	e / Time)	Ca Tip	sing o (ft)	Bo Hol	ot. of le (ft)	Water Lvl (ft)	▼ = Water Level (if observed)					Tou Pla	ughno sticit	ess: y:No	Low on-P	(L), M lastic	ledium (M), High (H) (NP), Low (L), Medium (M). Hiat	n (H)
	2/2	3/2021		\square				13	BGG - Delow Grou						PP TV	= Poo = Tor	ket vane	Pene e (Sh	etrome ear Va	eter, measured in tons per squar ane), measured in tons per squa	e ft. ire ft.
<u> </u>																					

ľ	1	1	5 0	GEC	C			S	oil Boring	Lc	bg								B-21			
Clie Pro Loc Ins	ent: ject: ation: pector	ibV f Rhu Harc : Dieg	Energy des Cr lin Cou lo Melç	/ reek So unty, K gar	olar P čentuc	roject ky		Drilling Firm: Drill Crew: Boring Start: Boring End:	Tri-State Drilling, Ll Shannon / Brandon 2/24/2021 2/24/2021	_C				Co Ho Ele Ve	oord oriz. evat rt. C	inat Dat ion: Datu	es: um: m:	 N 0 0	-85.98268066 N, 37.65773548 E NAD 83 0 Grade			
Rig Rig Dril Har Dril	Mode Type: I Meth nmer ⁻¹ ling F	el: : nod: Type: luid:	CME Track Hollo Autor None	-55 k ow Ster matic e	m Aug	ger		Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches								g Ty g Le g I.D er V er F	pe: ngt .: Vt.: all:	h:	N/A 4 feet 4 inches 140 pounds 30 feet			
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classification			Plasticity	PP (tsf)	TV (tsf)	1	N- 0 20	Valu	e	,	Drilling & Strata Notes			
	- S-1	20	1 2 3 4	5	CL		Mediur trace S	n stiff, brown, CLAY, li ilt, moist (CL)	ittle fine Sand,	н	м	2	4	•				-	2 inches of topsoil			
	- S-2	19	6 7 10 8	17			Very st to fine	iff, brown, SILT, some Sand, moist (MH)	e Clay, little coarse	н	н	3	3.5					-				
5-	- S-3	22	4 6 8 10	14	- MH		Stiff, br Sand, i	rownish red, SILT, son moist (MH)	ne Clay, some fine	м	н	2	2						-5			
	- S-4	22	4 8 9 9	17	CL		Very st fine Sa	iff, brownish red, CLA nd, moist (CL)	Y, some Silt, trace	н	м	4.5	6.5					-				
10-	- S-5	9	9 12 11 11	23	sc		Mediur SAND,	n dense, light brown c little Clay, trace Silt, c	oarse to fine Iry (SC)							•		-	-10			
	- - - S-6	24	8 9 9	18	 _ ML		Very st	iff, reddish brown, SIL ND, some Clay, mois	T, some coarse to (ML)	_	L	2	2		•			-	· · ·			
15-	-		11																-15			
			4		мн		Stiff, bi fine Sa	own, SILT, some Clay	/, some coarse to									-				
20-	- S-7	24	8 10	13			End of	H H 4.5 6							•				-20			
	-						Boreho	ie backfilled with cutti	ngs									-				
																		ŀ				
		In-E	Boreho	ole Wa	ater L	evels		General Notes									_					
	Date / Time Casing Bot. of Tip (ft) Hole (ft)							vvater ↓ = Water Level (if observed) Lvl (ft) BGS = Below Ground Surface								ty: Nocket	Low on-F Pen e (Sl	(L), Plasti etror near	Medium (M), High (H) c (NP), Low (L), Medium (M), High (H) meter, measured in tons per square ft. Vane), measured in tons per square ft.			

4	۱	1	5 6	FE	C			Soil Borin	g Lo					B-22							
Clie Pro Loc Insi	nt: ject: ation: pector	ibV I Rhu Harc : Dieg	Energy des Cr lin Cou o Melg	eek So inty, K jar	olar P čentuc	roject ky		Drilling Firm: Tri-State Drilling, Drill Crew: Shannon / Brand Boring Start: 2/24/2021 Boring End: 2/24/2021	LLC on				Coo Hor Elev Vert	ordin iz. D vatio t. Da	ates atur n: tum	s: n:	-85.98519194 N, 37.65248758 E NAD 83 0 Grade				
Rig Rig Dril Han Dril	Mode Type: I Meth nmer ⁻ ling Fl	l: od: Type: luid:	CME Track Hollo Autor None	-55 « w Ster matic	m Auç	ger		Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches		Cas Cas Cas Han Han	sing sing sing nme nme	Type Leng I.D.: r Wt r Fal	e: gth: .: II:	N/A 4 feet 4 inches 140 pounds 30 feet							
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classification				Toughness Plasticity PP (tsf) TV (tsf)				40	Drilling & Strata Notes				
	- S-1	24	1 2 4 4	6			Medium little coa	n stiff, brownish yellow, CLAY, some Silt arse to fine Sand, moist (CL)	н	м	2	4	ţ			10	6 inches of topsoil				
	- S-2	24	2 4 4 6	8	CL		Stiff, bro Sand, n	ownish yellow, CLAY, some Silt, little fine noist (CL)	e H	м	2	4.5					-				
5-	- S-3	24	3 5 8 11	13	-		Stiff, bro Sand, n	ownish yellow, CLAY, little Silt, little fine noist (CL)	н	м	2.25	3.5									
	- S-4	24	4 8 9 8	17	мн		Very sti fine Sar	ff, reddish brown, SILT, some Clay, little id, moist (MH)	н	н	3.75	6.5					-				
10-	S-5	24	3 3 3 4	6			Medium fine Sar	a stiff, light grayish brown, SILT, some nd, little Clay, moist (ML)	L	L	1	2									
	-				ML												-				
15-	S-6	24	8 3 3 5	6			Medium little Cla (ML)	n stiff, light brown, SILT, some fine Sand ay, trace coarse to fine Gravel, moist	, L	м	2.5	5	•								
	-						Stiff, da fine Sar	rk reddish brown, CLAY, some Silt, little nd, moist (CL)									-				
20-	- S-7	24	3 4 4 6	8	CL				н	м	4	6.5	•								
	-						End of B Borehol	Boring at 20 feet BGS e backfilled with cuttings									-				
																	-				
\vdash		In-E	Boreho	ble Wa	ater L	evels	Water	General Notes			.	au ha			Madium (M) Link (L)						
	Date	e / Time			5 (ft)	Hole (ft	Lvl (ft)	 Evaluation (If observed) BGS = Below Ground Surface 				Plas PP = TV =	enne ticity Pock Torv	ss:Lo Nor ket Po ane (ow (L n-Plas enetr (Shea	ין, היפמומית (מין, דוומה (דו) stic (NP), Low (L), Medium (M), High (H) ometer, measured in tons per square ft. ar Vane), measured in tons per square ft.					

P		1	S G	EC	С			Soil Boring	j Lo	bg							B-23			
Clie Proj Loc Insp	nt: ect: ation: pector	ibV I Rhu Harc : Dieg	Energy des Cro lin Cou o Melg	eek So inty, K jar	olar P čentuc	roject cky		Drilling Firm: Tri-State Drilling, L Drill Crew: Shannon / Brandor Boring Start: 2/24/2021 Boring End: 2/24/2021	LC 1	oordi oriz. levati ert. D	nate Datu on: atur	es: um: n:	-85.99060213 N, 37.64990067 E NAD 83 0 Grade							
Rig Rig Drill Han Drill	Mode Type: Meth nmer T	l: od: Type: luid:	CME Track Hollo Autor None	-55 w Ster matic	m Aug	ger		Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches							Ty Ler I.D. er W er Fa	oe: ngth .: /t.: all:	N/A 4 feet 4 inches 140 pounds 30 feet			
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classification	Visual Classification					N- 10 20	/alue	e 40	Drilling & Strata Notes			
-	S-1	20	1 2 2 5	4	CL		Mediur Sand, ı	n stiff, brown, CLAY, some SIIt, trace fine moist (CL)	stiff, brown, CLAY, some SIIt, trace fine sist (CL)								5 inches of topsoil			
-	S-2	24	6 7 8 8	15			Very st fine Sa	iff, reddish brown, SILT, some Clay, little nd, moist (MH)	н	н	3.75	3.5					-			
5-	S-3	20	2 5 7 9	12	- MH		Stiff, re coarse	ddish brown, SILT, some Clay, some to fine Sand, moist (MH)	н	н	2	3								
-	S-4	12	10 13 11 14	24	-		Very st coarse	iff, reddish brown SILT, some Clay, some to fine Sand, moist (MH)	н	н	3.5	4			>		-			
- 10-	S-5	24	3 4 5 6	9			Stiff, re Sand, i	ddish brown, SILT, some Clay, little fine moist (MH)												
- - - 15—	- S-6	24	2 2 4 4	6	_		Mediur little co	n stiff, brownish yellow, SILT, some Clay, arse to fine Sand, moist (MH)	м	н	2	4	•				- - - - - - - - - - - - - - - - - - -			
-	S-7	24	2 2 2	4	CL		Mediur coarse	n stiff, brownish yellow, CLAY, some to finr Sand, little Silt, moist (CL)	н	м	2.25	4.5					-			
20	-		2				End of Borehc	Boring at 20 feet BGS le backfilled with cuttings												
-																	-			
L		In-E	Boreho	ble Wa	ater L	evels	f Mater	General Notes				<u> </u> _	<u> </u>							
	Date	e / Time	•		o (ft)	Hole (ft) Lvl (ft)	 Water Level (if observed) BGS = Below Ground Surface 		To Pli PF TV	asticit asticit P = Po I = Tor	ess: cy:No cket l vane	Low (on-Pla Pene (She	(L), Medium (M), High (H) lastic (NP), Low (L), Medium (M), High (H) strometer, measured in tons per square ft. lear Vane), measured in tons per square ft.						

4	۱	1	S G	EC	C			S	oil Boring	j Lo	B-24										
Clie Pro Loc Ins	ent: ject: ation: pector	ibV I Rhu Harc Dieg	Energy des Cro lin Cou lo Melg	eek So inty, K jar	olar P čentuc	roject ky		Drilling Firm: Drill Crew: Boring Start: Boring End:	Drilling Firm: Tri-State Drilling, LLC Drill Crew: Shannon / Brandon Boring Start: 2/24/2021 Boring End: 2/24/2021								s: m: 1:	-85.98929083 N, 37.6548771 E NAD 83 0 Grade			
Rig Rig Dril Har Dril	Mode Type: I Meth nmer ⁻ ling Fl	l: iod: Type: luid:	CME Track Hollo Autor	-55 w Ster natic	m Auç	ger		Sampler Type: Sampler Lengtl Sampler I.D.: Hammer Wt.: Hammer Fall:	Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches							Typ Len I.D.: er Wi er Fa	e: gth: : t.: III:	N/A 4 feet 4 inches 140 pounds 30 feet			
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classific	Visual Classification				10	N-\	/alue	40	Drilling & Strata Notes				
	- S-1	18	1 1 1 2	2	МН		Soft, bro moist (M	wn, SILT, some Clay H)	r, little fine Sand,	L	н	1.5	2.5					4 inches of topsoil			
	- S-2	13	2 3 4 5	7	CI		Medium trace fine	stiff, brown, Silty CL/ e Gravel, moist (CL)	AY, little fine Sand,	М	м	1	2					-			
5-	- S-3	18	2 3 4 6	7			Medium some co	stiff, dark reddish bro arse to fine Sand, mo	own, Silty CLAY, bist (CL)	н	м	4.5	3					-5			
	- S-4	18	5 7 8 12	15			Very stifl Sand, m	f, light brown, Silty Cl oist (CL)	LAY, little fine	н	м	2	3								
10-	- S-5	24	4 6 8 10	14			Stiff, red coarse to	dish brown, SILT, so o fine Sand, moist (M	me Clay, some H)	н	н	4	5.5		•						
	-		3		мн		Stiff, red	dish brown, SILT, so	me Clay, some									-			
15-	- S-6	24	6 8 11	14	_		coarse to	o fine Sand, moist (M	Sand, moist (MH)		н	3.5	3		-						
	_				— — 					_								-			
20-	- S-7	16	3 4 4	7			some Sil	It, little Clay, moist (S	M)												
	-						End of B Borehole	oring at 20 feet BGS backfilled with cuttir	ngs									-			
																		-			
		In-E	Boreho	le Wa	ater L	evels	Wata-	General Notes) M - B (M) 112 - 1 (0.1)			
	Date	e / Time	2		o (ft)	Hole (ft)	vvater Lvl (ft)	▼ = Water Level (if observed) BGS = Below Ground Surface							ughno sticit = Poo = Tor	ess:L y:No ket F vane	.ow (L n-Pla Peneti (She	.), Medium (M), High (H) stic (NP), Low (L), Medium (M), High (H) ometer, measured in tons per square ft. ar Vane), measured in tons per square ft.			

4		1	5 <mark>6</mark>	GE(C			Soil Boring	g Lo	og	B-25		
Clie Pro Loc Ins	nt: ject: ation: pector	ibV I Rhu Harc : Dieg	Energy des Cr lin Cou lo Melg	, eek So unty, K gar	olar Pi entuc	roject ky		Drilling Firm: Tri-State Drilling, Drill Crew: Shannon / Brande Boring Start: 2/24/2021 Boring End: 2/24/2021	LLC on				Coordinates: -85.98695358 N, 37.6589022 E Horiz. Datum: NAD 83 Elevation: 0 Vert. Datum: Grade
Rig Rig Dril Han Dril	Mode Type: Meth nmer ⁻ ling Fl	l: od: Type: luid:	CME Track Hollo Autor None	-55 < w Ster matic	n Auç	ger		Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches			Casing Type:N/ACasing Length:4 feetCasing I.D.:4 inchesHammer Wt.:140 poundsHammer Fall:30 feet		
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classification	Visual Classification				N-Value Drilling & Strata Notes
	- S-1	24	1 1 2 3	3	CL		Soft, br moist (0	own, CLAY, little fine Sand, little Silt, CL)	М	м	2	3.75	5 • 5 inches of topsoil
	S-2	12	5 10 12 14	22	мн		Very sti Sand, r	iff, brown, SILT, some Clay, little fine noist (MH)	н	н	3.5	5 2.5	
5-	S-3	24	5 10 12 15	22			Very sti Sand, r	iff, brown, CLAY, some Silt, little fine noist (CL)	н	м	2.5	5 1.5	
	S-4	24	15 15 15 11	30			Hard, re some S	eddish brown, CLAY, some fine Sand, silt, moist (CL)	н	м	3.5	6 4	
10-	S-5	24	2 4 3 10	7			Mediun fine Sa	n Stiff, light reddish brown, CLAY, some nd, trace Silt, moist (CL)	м	м	2	4	
- - - - - - - - - - - - - -	- S-6	24	2 3 6 5	9			Stiff, re Sand, r	ddish brown, CLAY, some Silt, little fine noist (CL)	н	М	2	4.5	
	- S-7	24	2 3 3 5	6	сн		Mediun Silt, littl	n stiff, light reddish brown, CLAY, little e fine Sand, moist (CH)	н	н	2	4	
20-	-						End of Boreho	Boring at 20 feet BGS le backfilled with cuttings					
	•	In-E	Boreho	ble Wa	ter Lo	evels	10/-+	General Notes					
	Date	e / Tim	•		sing (ft)	ыот. of Hole (ft)	vvater Lvl (ft)	 Water Level (if observed) BGS = Below Ground Surface 			Toughness:Low (L), Medium (M), High (H) Plasticity: Non-Plastic (NP), Low (L), Medium (M), High (H) PP = Pocket Penetrometer, measured in tons per square ft. TV = Torvane (Shear Vane), measured in tons per square ft.		

4		JS	5 6	GE(C			Soil Boring					B-26				
Clie Proj Loc Insp	nt: ject: ation: pector	ibV E Rhu Harc : Dieg	Energy des Cr lin Cou o Melç	, eek So unty, K gar	olar P Centuc	roject ky		Drilling Firm: Tri-State Drilling, L Drill Crew: Shannon / Brando Boring Start: 2/24/2021 Boring End: 2/24/2021	.LC n	Co Ho Ele Ve	oord oriz. evat rt. E	inat Dat ion: Datu	es: um: m:	-85.99127222 N, 37.6585 E : NAD 83 0 Grade			
Rig Rig Drill Han Drill	Mode Type: Meth nmer 1	l: od: Type: luid:	CME Track Hollo Autor None	-55 < w Ster matic	m Auç	ger		Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches								vpe: engt).: Vt.: Fall:	 N/A th: 4 feet 4 inches 140 pounds 30 feet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classification	Toughness	Plasticity	PP (tsf)	TV (tsf)	1	N -	• Valu 0 30	ie 0 40	Drilling & Strata Notes
-	- S-1	19	1 2 3 3	5	CL		Mediun Sand, r	n stiff, brown, CLAY, some Silt, little fine noist (CL)	L	м	1.25	3	I				6 inches of topsoil -
-	S-2	24	3 4 4 5	8			Stiff, da some c	ark grayish brown, SILT, some Clay, coarse to fine Sand, moist (MH)	Н	н	2.5	3					-
5-	S-3	24	3 5 6 9	11	- MH		Stiff, gr Sand, r	ayish brown, SILT, some Clay, some fine noist (MH)	н	н	3.5	3					
-	- S-4	24	6 8 9 9	17			Very st some fi	iff, brownish gray, SILT, some Clay, ine Sand, moist (CL)	н	м	4.25	3					-
- 10-	S-5	24	2 4 5 7	9	CL		Stiff, br (CL)	ownish gray, CLAY, some Silt, moist	н	м	4	3.5	4	/			
-									_								-
-	S-6	24	3 3 3	6	MH		Mediun little co	n stiff, reddish brown, SILT, some Clay, arse to fine Sand, moist (MH)	н	н	1.5	3.5					-
15—			4		-												15
-																	-
- 20-	S-7	24	3 3 4	6			little fin	n stiff, reddisn brown, SIL I, some Clay, e Sand, moist (MH)	н	н	3	6	•				
-							End of Boreho	Boring at 20 feet BGS le backfilled with cuttings									-
-																	-
1																	
	·	In-E	Boreho	ole Wa	ater L	evels		General Notes									
	Date / Time Casing Bot. of Tip (ft) Hole (ft)							Water Lvi (ft) BGS = Below Ground Surface								:Low lon-F Pen e (Sł	w (L), Medium (M), High (H) Plastic (NP), Low (L), Medium (M), High (H) netrometer, measured in tons per square ft. shear Vane), measured in tons per square ft.
L													1				

4		1	5 <mark>6</mark>	GE(C			S	oil Boring	j Lo	og										В	-27	
Clie Proj Loc Insp	nt: ject: ation: pector	ibV I Rhu Harc : Dieg	Energy des Cr lin Cou lo Melg	eek So inty, K jar	olar Pi čentuc	roject ky		Drilling Firm: Tri-State Drilling, LLC Drill Crew: Shannon / Brandon Boring Start: 2/25/2021 Boring End: 2/25/2021										:	-85.99372222 N, 37.656346 E NAD 83 0 Grade				
Rig Rig Dril Han Dril	Mode Type: Meth nmer T	l: od: Type: luid:	CME Track Hollo Autor None	-55 « w Ster matic	m Auç	ger	Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches								asin asin asin amn amn	g Ty g Le g I.C ner V ner I	/pe: eng D.: Wt.: Fall	th:	N/A 4 feet 4 inches 140 pounds 30 feet				
Depth (ff) (ff) (ff) Sample Carbon (ff) (ff) (ff) (ff) No. Sample Carbon (in) (in) Der 6" Voluce Carbon Car								Visual Classific	Toughness	Plasticity	PP (tsf)	TV (tsf)	1	N	-Valu	ue 0 4	0		Drilling	& Strata	Notes		
- S-1 18 2 3 ML							Soft, dark Sand, mo	Soft, dark brown, SILT, some Clay, little fine Sand, moist (ML)						•					-	4 inches of	top soil		
	S-2	17	4 5 6 6	11			Stiff, dark Sand, mo	gray, CLAY, some ist (CL)	Silt, trace fine	н	м	3.75	5.5						-				
5-	S-3	24	2 2 3 4	5	CL		Medium s Sand, mo	tiff, gray, CLAY, soi ist (CL)	me Silt, trace fine	н	н	2	3.5						- 5				
	S-4	14	3 6 9	12			Stiff, gray moist (CL	Stiff, gray, CLAY, some Silt, some fine Sand, moist (CL)											-				
10-	S-5	24	2 3 5 5	8	-		Stiff, gray Sand, mo	ish brown, CLAY, s ist (CL)	ome Silt, little fine	н	н	1.75	5 3		•				- 10				
- - - 15	- S-6	24	3 4 6 7	10			Stiff, gray Sand, mo	ish brown, CLAY, s ist (CL)	ome Silt, trace fine	н	м	1.5	4		•				- - - 15				
- S-7 24 $\frac{2}{5}$ 8 CH							Stiff, redd Sand, mo	ish brown, CLAY, c ist (CH)	ome Silt, trace fine	Н	н	3.5	6	•					- - 20				
	- S-8 24 2 4 ML						Brown, SILT, some Clay, some coarse to fine Sand, wet (MH) Light gray, SILT, some fine Sand, trace Clay, wet (ML)												Recovered material was saturated, possible weathered limestone				
\vdash		In-E	Boreho	ble Wa	iter Le	evels	Water	General Notes Water T = Water Level (if observed)										<u>, () \</u>	L) Medium (M) High (H)				
	2/2:	e / Tim 5/2021	9	Tip	(ft)	Hole (ft)	Lvi (ft) BGS = Below Ground Surface								astic P = P I = To	ity:Nocke	t Per	™ (∟) Plasi netro iheai	-,, meaning (m), right (n) stic (NP), Low (L), Medium (M), High (H) rometer, measured in tons per square ft. ar Vane), measured in tons per square ft.				
ł	4	N	15	50	GEO	0				S	oil Boring	Lc	g					B-27 (Continued)					
---------------------------	---	--------------------------	-------------------------------	---------------------------------------	-------------------------------	------------------	------------------	-----------------------------	---	-------------------------------	--	-----------	------------	----------	----------	-----------------------------	---	---					
Clic Pro Loc Ins	ent: ojec cati pec	: :t: on: :tor:	ibV E Rhuo Hard Dieg	Energy des Cr lin Col o Melo	/ reek S unty, k gar	olar P Kentuc	roject ky		Drilling I Drill Cre Boring S Boring E	Firm: w: Start: End:	Tri-State Drilling, LLC Shannon / Brandon 2/25/2021 2/25/2021	2				Coo Hori Elev Vert	rdinates: z. Datum: ation: . Datum:	-85.99372222 N, 37.656346 E NAD 83 0 Grade					
Depth	Cample Sample	No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual C	lassific	cation	Toughness	Plasticity	PP (tsf)	TV (tsf)	10	N-Value 20 30 40	Drilling & Strata Notes					
	-							Auger I End of Boreho	refusal at 25 fe Boring at 25 fe Ie backfilled wi	et et BGS th cutti) ngs							-					
30-																							
35-																		- 					
40-	-																	- 					
45-	-																	- 					
50-																		- 					
\vdash		Date	In-E	Boreh	ole Wa	ater L	evels Bot. of	Water	🕎 = Water I	Level (i	General Notes f observed)					Toug	hness:Low	/ (L), Medium (M), High (H)					
	Date / Time Tip (ft) Hole 2/25/2021							23	BGS = Below	v Groui	nd Surface					Plast PP = TV =	icity: Non-F Pocket Pen Torvane (S	Plastic (NP), Low (L), Medium (M), High (H) letrometer, measured in tons per square ft. hear Vane), measured in tons per square ft.					

ŀ	۱/	1	5 6	GE(C			Soil Boring	g Lo	og				B-28
Clic Pro Loc Ins	ent: ject: cation: pector	ibV I Rhu Harc : Dieg	Energy des Cr lin Cou o Melç	, eek So unty, K gar	olar Pr čentuc	roject ky		Drilling Firm: Tri-State Drilling, I Drill Crew: Shannon / Brando Boring Start: 2/26/2021 Boring End: 2/26/2021	.LC n				Coordinates: Horiz. Datum: Elevation: Vert. Datum:	-85.99815867 N, 37.66278382 E NAD 83 0 Grade
Rig Rig Dri Hai Dri	Mode Type II Meth nmer Iling F	el: : nod: Type: luid:	CME Track Hollo Autor None	-55 < w Ster matic	m Aug	ler		Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches					Casing Type: Casing Length: Casing I.D.: Hammer Wt.: Hammer Fall:	N/A 4 feet 4 inches 140 pounds 30 feet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classification	Toughness	Plasticity	PP (tsf)	TV (tsf)	N-Value	Drilling & Strata Notes
	- S-1	24	1 3 3 6	6			Mediur trace fi	n stiff, reddish brown, SILT, some Clay, ine Sand, moist (ML)	н	м	2.5	3.75		7 inches of topsoil
	- S-2	21	8 10 10 4	20	ML		Very st coarse	tiff, reddish brown, SILT, some CLay, little to fine Sand, moist (ML)	н	м	R	6		-
5-	- S-3	22	3 5 7 4	12			Stiff, re Sand, i	eddish brown, CLAY, some Silt, little fine moist (CL)	н	м	4.25	7.5		
	- S-4	24	3 5 6 9	11			Stiff, re fine Sa	eddish brown, Silty CLAY, little coarse to and, moist (CL)	н	м	3	4.5		-
10-	- S-5	24	3 5 5 5	10	-		Stiff, re fine Sa	eddish brown, Silty CLAY, little coarse to and, moist (CL)	н	м	3	5.5	•	
	-								_					-
15-	- S-6	24	3 3 6 5	9	мн		Stiff, re coarse (MH)	eddish brown, CLAY, some Silt, little to fine Sand, trace fine Gravel, moist	н	н	2.25	4	•	-
	-													-
20-	- S-7	24	3 3 8 6	11	_		Stiff, re coarse	eddish brown, CLAY, some Silt, little to fine Sand, moist (MH)	н	н	2.75	5		-
20-	-						End of Boreho	Boring at 20 feet BGS ble backfilled with cuttings						
	-													-
\vdash	1	In-E	Boreho	ole Wa	ater Le	evels		General Notes	- 1	1	1	I		1
	Dat	e / Time	2	Ca: Tip	o (ft)	Bot. Hole	of Water (ft) Lvl (ft)	¥ = Water Level (if observed) BGS = Below Ground Surface					Toughness:Low (Plasticity:Non-Pla PP = Pocket Penet TV = Torvane (She	L), Medium (M), High (H) istic (NP), Low (L), Medium (M), High (H) rometer, measured in tons per square ft. ar Vane), measured in tons per square ft.

4		J	S G	FE	C			So	il Boring	Lo	og								B-29
Clie Proj Loc Insp	nt: ject: ation: pector	ibV E Rhu Harc : Dieg	Energy des Cr lin Cou o Melg	eek So Inty, K jar	olar P čentuc	roject ky		Drilling Firm: T Drill Crew: S Boring Start: 2 Boring End: 2	ri-State Drilling, LLC hannon / Brandon /26/2021 /26/2021	C				Co Ho Ele Ve	oord oriz. evat ert. E	inat Dat ion Datu	tes: tum: : im:	- : N (86.00381111 N, 37.657351 E NAD 83) Grade
Rig Rig Dril Han Dril	Model Type: Meth nmer 1 ling Fl	l: od: Type: luid:	CME Track Hollo Autor None	-55 « w Ster matic	m Auç	ger		Sampler Type: Sampler Length: Sampler I.D.: Hammer Wt.: Hammer Fall:	Split Spoon 24 inches 2 inches 140 pounds 30 inches					Ca Ca Ca Ha Ha	asing asing asing amm amm	g Ty g Le g I.C ver \ ver F	/pe: engt D.: Wt.: Fall:	h:	N/A 4 feet 4 inches 140 pounds 30 feet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classificati	on	Toughness	Plasticity	PP (tsf)	TV (tsf)	1	N -	• Valı 0 3∣	Je 0 40)	Drilling & Strata Notes
	S-1	14	1 2 3 3	5	ML		Mediur Sand,	n stiff, brown, SILT, some moist (ML)	e Clay, trace fine	L	м	1	2.25	1					8 inches of topsoil
	S-2	14	0 0 4 5	4			Soft, li moist (ght brown, Silty CLAY, so CL)	me fine Sand,	L	NP	.25	.5					-	Slurry material
5-	- S-3	22	0 0 2 3	2	CL		Soft, li moist (ght brown, SILTY Clay, so CL)	ome fine Sand,	L	н	1.5	1.5						- Slurry material 5
	- S-4	17	3 4 5 7	9	-		Stiff, b Sand,	rownish gray, CLAY, som moist (CL)	e Silt, trace fine	н	м	1.75	3.25					-	-
- - 10	S-5	18	2 3 4 5	7	МН		Mediur little fir	n stiff, brownish gray, SIL e Sand, moist (MH)	T, some Clay,	L	н	.75	2	•				-	- - 10 -
-	S-6	24	2 4 5 5	9			Stiff, re coarse	ddish brown, SILT, some to fine Sand, moist (ML)	e Clay, little	н	М	2.5	2.5		•			-	-
- 15	-																		
- - 20-	- S-7	24	2 3 6 5	9	СН		Stiff, re Sand,	ddish brown, CLAY, som moist (CH)	e Silt, trace fine	н	н	2.5	5		•			-	- - 20
	S-8	24	1 2 2 3	4	-		Mediur trace fi	n stiff, reddish brown, CL ne Sand, moist (CH)	AY, some Silt,	н	н	1.5	5					-	-
⊢	Data	In-E	soreho	Ca	sing	evels Bot. of	Water	(▼ = Water Level (if of	Jeneral Notes					То	ughr	ness	:Low	/ (L).	Medium (M), High (H)
			, 	Tip	o (ft)	Hole (fi) Lvl (ft)	BGS = Below Ground	Surface					Pla PP TV	astici P = Po V = To	i ty: N ocket orvan	lon-F t Pen ne (Sl	Plasti etroi hear	ic (NP), Low (L), Medium (M), High (H) meter, measured in tons per square ft. Vane), measured in tons per square ft.

4		1	5 <mark>(</mark>	GEO	C				S	oil Borin	ng L	og						B-29 (Continued)
Clie Proj Loc Insp	nt: ect: ation: ector	ibV I Rhu Harc : Dieg	Energy des Cr lin Cou o Melo	reek So unty, K gar	olar Pi čentuc	roject ky		Drillin Drill (Borin Borin	ng Firm: Crew: ng Start: ng End:	Tri-State Drilling Shannon / Branc 2/26/2021 2/26/2021	, LLC don		1		Coor Horiz Eleva Vert.	rdinates: z. Datum: ation: Datum:	-86.003 NAD 83 0 Grade	381111 N, 37.657351 E 3
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visua	I Classific	cation	Toughness	Plasticity	PP (tsf)	TV (tsf)	10	N-Value 20 30 40		Drilling & Strata Notes
-	-							()) () () () () () () () () (-	
30-	-						Auger End of Borehc	rerusal at 2 Boring at 2 ole backfilled	7.5 feet 7.5 feet BC d with cutti	GS ngs								
-	-																-	
35																		
- - 40 -																	- - -40 -	
- 45— -																	- - -45 -	
- - 50 -																	- - 	
	1	I In-E	Boreho	ole Wa	ter L	evels	141.1			General Notes	1	1					L	
	Date / Time Casing Bot Tip (ft) Hole						VVater Lvl (ft)	⊻ = Wa BGS = B	ter Level (i elow Grou	f observed) nd Surface					Toug Plasti PP = TV =	hness:Low icity:Non-P Pocket Pene Torvane (Sh	(L), Mediur astic (NP), trometer, r ear Vane),	m (M), High (H) Low (L), Medium (M), High (H) measured in tons per square ft. measured in tons per square ft.

4		J	5 6	GE(C			S	oil Boring	g Lo	og					B-30
Clie Pro Loc Insi	nt: ject: ation: pector	ibV I Rhu Harc : Dieg	Energy des Cr lin Cou o Melo	, eek So unty, K gar	olar P čentuc	roject ky		Drilling Firm: Drill Crew: Boring Start: Boring End:	Tri-State Drilling, I Shannon / Brando 2/25/2021 2/25/2021	LC m				Coordinat Horiz. Dat Elevation: Vert. Datu	ies: ium: im:	-86.00479839 N, 37.65445873 E NAD 83 0 Grade
Rig Rig Dril Han Dril	Mode Type: I Meth nmer ⁻ ling Fl	l: od: Type: luid:	CME Track Hollo Autor None	-55 « w Ster matic	m Auç	ger		Sampler Type: Sampler Lengt Sampler I.D.: Hammer Wt.: Hammer Fall:	Split Spoon h: 24 inches 2 inches 140 pounds 30 inches					Casing Ty Casing Le Casing I.E Hammer V Hammer F	vpe: ength:).: Vt.: Fall:	N/A 4 feet 4 inches 140 pounds 30 feet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classific	cation	Toughness	Plasticity	PP (tsf)	TV (tsf)	N-Valu	ie 0 40	Drilling & Strata Notes
	- S-1	24	1 1 2 3	3	ML		Soft, bi moist (own, SILT, little Clay, ML)	little fine Sand,	L	м	2	1	1		-
	- S-2	24	3 4 6 9	10	CI		Stiff, gr moist (ayish brown, Silty CL/ CL)	AY, little fine Sand,	м	м	R	4.5			-
5-	- S-3	24	4 9 12 14	21			Very st moist (iff, brown, Silty CLAY, CL)	little fine Sand,	L	м	1	1.5			-5
	- S-4	24	8 10 12 14	22			Very st Sand, ı	iff, brown, Silty CLAY, noist (MH)	little coarse to fine	н	м	3	3.5			-
10-	- S-5	9	3 5 7 7	12	-		Stiff, re Sand, ı	ddish brown, CLAY, s noist (CL)	ome Silt, trace fine	н	м	3.25	3.75			- - -10
	-		2		сн		— — — — - Hard. r	eddish brown, CLAY,	some Silt. some	_						-
	S-6	12	3 50/1"	> 50			coarse	to fine Sand, moist (C	CH)	н	н	2	4.25		>>	-15
	-						Auger I End of Borehc	efusal at 14.8 feet Boring at 14.8 feet BC le backfilled with cutti	GS ngs							-
20-	-															20
E	<u> </u>	In-E	Boreho	ole Wa	l ater L	evels			General Notes			<u> </u>				<u> </u>
	Date	e / Time	2	Ca: Tip	o (ft)	Bot. (Hole (of Water ft) Lvl (ft)	▼ = Water Level (i BGS = Below Grou	f observed) nd Surface					Toughness Plasticity:N PP = Pocket TV = Torvan	:Low (L lon-Plas Penetr e (Shea), Medium (M), High (H) stic (NP), Low (L), Medium (M), High (H) ometer, measured in tons per square ft. ar Vane), measured in tons per square ft.

ľ	4	N	S G	FE	C				S	oil Boring	g Lo	og								B-31
Cliv Pro Loc Ins	ent: oject: cation pecto	ibV I Rhu : Harc r: Dieg	Energy des Cro lin Cou o Melg	eek So inty, K jar	olar P čentuc	roje ky	ect		Drilling Firm: Drill Crew: Boring Start: Boring End:	Tri-State Drilling, L Shannon / Brando 2/25/2021 2/25/2021	LC n				Co Ho Ele Ve	oord oriz. evat ert. [inat Dat ion: Datu	es: um: m:	:	-86.00798758 N, 37.65315247 E NAD 83 0 Grade
Rig Rig Dri Ha Dri	l Mode I Type II Met mmer Iling F	el: :: hod: Type: fluid:	CME Track Hollo Autor None	-55 w Ster matic	m Auç	ger			Sampler Type: Sampler Lengt Sampler I.D.: Hammer Wt.: Hammer Fall:	Split Spoon h: 24 inches 2 inches 140 pounds 30 inches					Ca Ca Ca Ha Ha	asing asing asing amm amm	g Ty g Le g I.D ner V ner F	pe: ngt).: Vt.: all:	h:	N/A 4 feet 4 inches 140 pounds 30 feet
Depth	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic	Log		Visual Classific	cation	Toughness	Plasticity	PP (tsf)	TV (tsf)	1	N -	- Valu 0 30	e) 4()	Drilling & Strata Notes
	- S-1	20	1 1 2 2	3	ML			Soft, br moist (l	own, SILT, little Clay, ML)	little fine Sand,	L	L	1	1.5	•					7 inches of topsoil
	- S-2	24	2 2 2 2	4				Mediun moist (n stiff, brown Silty CLA CL)	AY, little fine Sand,	L	н	1	.5						-
5-	- S-3	16	3 4 6 2	10	CL			Stiff, br little Sil	ownish yellow, CLAY, t, moist (CL)	, some fine Sand,	н	L	2.25	3.25		•				5
	- S-4	24	6 9 9 12	18	ML			Very st little fin	iff, brownish yellow, S e Sand, moist (ML)	ILT, some Clay,	н	м	3.75	3.5						-
10	- S-5	24	3 4 5 6	9				Stiff, re Sand, r	ddish brown, SILT, sc noist (MH)	ome Clay, little fine	н	н	3.25	4.5						-
10-			3		мн			Stiff re	ddish brown SII T so	nme Clay, little fine										10 - -
15-	- S-6	24	2 4 6 7	10				Sand, r	noist (MH)		н	н	2.5	3.5		•				- —15
	-							Mediun trace fi	n stiff, reddish brown, ne Sand, moist (CL)	CLAY, some Silt,	_									-
	- S-7	24	2 2 4 4	6	CL						н	м	1.5	3.5						-
20-	-							End of Boreho	Boring at 20 feet BGS le backfilled with cutti	S ngs										
				10.141	<u> </u>					Concertible										
\vdash	Da	In-E	orenc	Ca	sing	BC	ot. of	Water	= Water Level (i	if observed)					То	ughr	ness	Low	/ (L)	, Medium (M), High (H)
					ο (π)		pie (π)	LVI (ft)	BGS = Below Grou	nd Surface					Pla PP TV	astici P = Po V = To	ity:N ocket orvan	on-F Pen e (S	Plast letro hear	tic (NP+), Low (L), Medium (M), High (H) meter, measured in tons per square ft. r Vane), measured in tons per square ft.

4		1	S G	EC	C			S	oil Boring	g Lo	bg									B-32
Clie Pro Loc Insi	nt: ject: ation: pector	ibV E Rhu Harc : Dieg	Energy des Cro lin Cou o Melg	eek So inty, K jar	olar Pi čentuc	roject ky		Drilling Firm: Drill Crew: Boring Start: Boring End:	Tri-State Drilling, I Shannon / Brando 2/25/2021 2/25/2021	_LC in				Co Ho El Ve	oord oriz. evat ert. [lina Dat tion Datu	tes: tum : ım:	:	-86.01147618 N, 3 NAD 83 0 Grade	37.64970661 E
Rig Rig Dril Han Dril	Mode Type: I Meth nmer ⁻¹ ling F	l: od: Type: luid:	CME Track Hollo Autor None	-55 w Ster matic	m Aug	ger		Sampler Type: Sampler Lengt Sampler I.D.: Hammer Wt.: Hammer Fall:	Split Spoon h: 24 inches 2 inches 140 pounds 30 inches					Ca Ca Ca Ha Ha	asin asin asin amm amm	g Ty g Le g I.C ner V ner I	/pe: engi D.: Wt.: Fall	th:	N/A 4 feet 4 inches 140 pounds 30 feet	
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classific	cation	Toughness	Plasticity	PP (tsf)	TV (tsf)		N - 10 2	-Valu	ue 0 4	0	Drilling 8	Strata Notes
	- S-1	24	2 3 2 3	5	ML		Mediun Sand, r	n stiff, brown, SILT, so noist (ML)	ome Clay, little fine	L	м	1.5	1.5	1				0	7 inches of to	osoil
	- S-2	24	WH 3 3 3	6	CL		Mediun Sand, r	n stiff, brown, CLAY, s noist (CL)	some Silt, trace fine	н	м	1.5	2						-	
5-	- S-3	24	2 2 2 4	4			Mediun trace fi	n stiff, light brown, CL ne Sand, moist (CH)	AY, some Silt,	н	н	1	2.5						- 5	
	- S-4	24	3 5 7 9	12	СН		Stiff, gr Sand, r	ayish brown, CLAY, s noist (CH)	ome Silt, trace fine	н	н	4	4						-	
10-	S-5	24	6 6 7 9	13	-		Stiff, gr	ay, CLAY, some Silt, ⊧	moist (CH)	н	н	R	4.5		•				- - —10	
	- S-6	24	2 4 3 3	7	-		Mediun coarse moist (i	n stiff, gray, CLAY, so to fine Sand, trace co CH)	me Silt, trace arse to fine Gravel,	н	н	1	3						- - Mottling on th	e inside of sample
15—	-									_									15 	
20-	- S-7	24	2 3 3 4	6			Mediun Clay, lit	n stiff, dark grayish bru tle fine Sand, moist (N	own, SILT, some MH)	L	н	2	3.25						- 	
-	-						End of Boreho	Boring at 20 feet BGS le backfilled with cutti) ngs										-	
	Dat	In-E e / Time	Boreho	Ca:	sing	Bot. of	Water	工 = Water Level (i	General Notes f observed)					To	ughi	ness	:Lov	v (L)	, Medium (M), High (H)
					o (tt)	HOIE (ft)		BGS = Below Groun	nd Surface					Pli PF TV	astic P = Po / = To	ity:N ocke orvar	Non- t Per ne (S	Plasi netro ihea	ıc (NP), Low (L), Me meter, measured in · Vane), measured ir	dium (M), High (H) tons per square ft. I tons per square ft.

ľ		1	5 6	FE	C			Soil Boring	Lo	bg						B-33
Clie Proj Loc Insp	nt: ject: ation: pector	ibV I Rhu Haro Dieg	Energy des Cr lin Cou lo Melç	eek So inty, K jar	olar Pi entuc	roject ky		Drilling Firm: Tri-State Drilling, Ll Drill Crew: Shannon / Brandor Boring Start: 2/27/2021 Boring End: 2/27/2021	_C				Coo Hor Elev Ver	ordina iz. Da vatior t. Dat	ites: tum: i: um:	-86.00555134 N, 37.65939348 E NAD 83 0 Grade
Rig Rig Dril Han Dril	Mode Type: Meth nmer ⁻ ling Fl	l: iod: Type: luid:	CME Track Hollo Autor None	-55 « w Ster matic	n Aug	jer		Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches					Cas Cas Cas Har Har	sing T sing L sing I. nmer nmer	ype: ength: D.: Wt.: Fall:	N/A 4 feet 4 inches 140 pounds 30 feet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classification	Toughness	Plasticity	PP (tsf)	TV (tsf)	10	N-Val	ue	Drilling & Strata Notes
	S-1	15	2 2 2 4	4	мн		Mediun Sand, r	n stiff, brown, SILT, some Clay, little fine moist (MH)	L	н	1	2	•	20 0	<u>,,,,,</u>	7 inches of topsoil
	S-2	24	4 5 8 10	13			Stiff, re Sand, r	eddish brown, CLAY, some Silt, trace fine moist (CL)	н	м	3	4.5				-
5-	- S-3	24	4 8 9 10	17	CL		Very st fine Sa	iff, reddish brown, CLAY, some Silt, trace ind, wet (CL)	н	м	R	7.5				Likely perched water
	S-4	24	8 8 11 10	19			Very st fine Sa	iff, reddish brown, CLAY, some Silt, trace ind, wet (CL)	н	м	R	5		}		Likely perched water
-	- S-5	24	3 5 6 8	11			Stiff, re coarse	eddish brown, CLAY, some Silt, little to fine Sand, moist (CL)	н	м	R	5.5				-
- 10	-								_							-
	S-6	24	7 6 7 8	13	сн		Stiff, re Sand, r	eddish brown, CLAY, some Silt, little fine moist (CH)	н	н	1.5	3.5				-
- 15	-															15 -
- 20-	S-7	24	2 4 4 5	8	-		Stiff, re Sand, r	eddish brown, CLAY, some Silt, trace fine moist (CH)	н	н	2.5	6	•			Black spots
-	-						End of Boreho	Boring at 20 feet BGS le backfilled with cuttings								-
Ŀ																-
		In-	Boreho	ble Wa	ter Lo	evels	Michai	General Notes								
	Date	e / Tim	e 		o (ft)	Hole (ft)	vvater Lvl (ft)	 Water Level (if observed) BGS = Below Ground Surface 					Fou Plas PP = TV =	gnnes: ticity: Pocke Torva	s:∟ow (Non-Pla et Penel ne (She	L,), weatum (W), High (H) Istic (NP), Low (L), Medium (M), High (H) rometer, measured in tons per square ft. Par Vane), measured in tons per square ft.

4		1	5 6	GE(C				Soil Boring	j Lo	bg								B-34
Clie Pro Loc Ins	nt: ject: ation: pector	ibV I Rhu Harc : Dieg	Energy des Cr lin Cou lo Melç	eek So inty, K jar	olar Pi entuc	roje ky	ect		Drilling Firm: Tri-State Drilling, L Drill Crew: Shannon / Brandor Boring Start: 2/27/2021 Boring End: 2/27/2021	LC n				Co Ho Ele Ve	ooro oriz eva ert.	lina Dat tion Datu	tes: tum : .um:	- : N (86.00864622 N, 37.66094789 E NAD 83) Grade
Rig Rig Dril Han Dril	Mode Type: I Meth nmer ⁻ ling Fl	l: od: Type: luid:	CME Track Hollo Autor None	-55 « w Ster matic	n Aug	ger			Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches					Ca Ca Ca Ha	asin asin asin amn amn	g Ty g Le g I.I ner I ner I	/pe: engt D.: Wt.: Fall:	h:	N/A 4 feet 4 inches 140 pounds 30 feet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic	Log		Visual Classification	Toughness	Plasticity	PP (tsf)	TV (tsf)		N 10 2	- Valı 20 3	ue 0 40	5	Drilling & Strata Notes
	- S-1	24	1 1 1 2	2	ML			Soft, lig Sand, v	ht brown, SILT, some Clay, some fine wet (ML)	L	м	.5	1	\cdot				-	7 inches of topsoil Likely perched water
	- S-2	24	3 6 6 7	12	мн			Stiff, br (MH)	own, SILT, some Clay, little Sand, wet	Н	н	3	3.5					-	Likely perched water
5-	- S-3	24	3 4 6 6	10	0			Stiff, br Sand, r	ownish gray, CLAY, some Silt, trace fine noist (CL)	н	м	3.5	4.5						5
	- S-4	24	6 9 9 9	18				Very st fine Sa	iff, reddish brown, CLAY, some Silt, trace nd, moist (CL)	н	м	4.5	3.25	j				-	Black streaks and spots
10-	S-5	24	3 5 5 6	10	-			Stiff, re coarse	ddish brown, CLAY, some Silt, trace to fine Sand, moist (CL)	н	м	2.5	4.5		/			-	- - 10
	- S-6	24	2 2 4 3	6	сн			Mediun moist (n stiff, light brown, CLAY, some Silt, CH)	-	н	1.5	4					-	-
15-	-																		15 - -
20-	- S-7	24	0 0 1 2	1				Very so	ft, brown, CLAY, some Silt, moist (CH)	L	н	.5	2						Wet slurry top possible void encountered
	-							End of Boreho	Boring at 20 feet BGS le backfilled with cuttings									-	 - - -
\vdash		In-E	Boreho	Ca	iter Le	eve Br	els ot. of	Water	General Notes						uab	neer	1 04	(1)	Medium (M) High (H)
	Date	e / fim	2	Tip) (ft)	Ho	ole (ft)	Lvl (ft)	BGS = Below Ground Surface					Pla PP TV	astic P = P V = To	i ty: Nocke	Non-F t Per ne (S	Plasti ietroi hear	(NP), Low (L), Medium (M), High (H) meter, measured in tons per square ft. Vane), measured in tons per square ft.

4		1	5 <mark>6</mark>	FE	0				S	oil Boring	g Lo	bg								B-35
Clie Pro Loc Ins	nt: ject: ation: pector	ibV I Rhu Harc Dieg	Energy des Cr lin Cou lo Melg	eek So inty, K jar	olar P (entuc	'roje cky	ect		Drilling Firm: Drill Crew: Boring Start: Boring End:	Tri-State Drilling, I Shannon / Brando 2/27/2021 2/27/2021	_LC m				Co Ho El Ve	oord oriz. eva ert. l	dina . Da tion Dati	tes tum : um:	: 1:	-86.00345065 N, 37.66226533 E NAD 83 0 Grade
Rig Rig Dril Har Dril	Mode Type: I Meth nmer ⁻ ling Fl	l: iod: Type: luid:	CME Track Hollo Autor None	-55 « w Ster matic	m Auç	ger			Sampler Type: Sampler Lengt Sampler I.D.: Hammer Wt.: Hammer Fall:	Split Spoon h: 24 inches 2 inches 140 pounds 30 inches					Ca Ca Ca Ha Ha	asin asin asin amn amn	ig T ig L ig I.I ner ner	ype eng D.: Wt. Fall	: th: :	N/A 4 feet 4 inches 140 pounds 30 feet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic	Log		Visual Classific	cation	Toughness	Plasticity	PP (tsf)	TV (tsf)		N	- Val	ue	10	Drilling & Strata Notes
	- S-1	17	0 1 1 2	2				Soft, gr moist (I	ay, SILT, some Clay, /IL)	some fine Sand,	L	м	1	3	•					7 inches of topsoil
	- S-2	20	1 2 2 2	4	- ML			Mediun Clay, w	n stiff, gray, SILT, little et (ML)	e fine Sand, little	L	NP	.25	1						Likely perched water
5-	- S-3	24	2 4 5 6	9	мн			Stiff, br	ownish gray, SILT, so	ome Clay, wet (MH)	н	н	4.5	5						 Likely perched water 5
	- S-4	24	6 6 8 7	14	CL			Stiff, gr (CL)	ayish brown, CLAY, s	ome Silt, moist	н	м	3	4.5						-
10-	- S-5	12	3 3 4 5	7	ML			Gray, S Reddis Sand, r	ILT, some fine Sand, brown, CLAY, some noist (CL)	moist (ML)	— L H	NP M	1 4	2.5 5						
15-	- S-6	24	2 3 4 6	7	CL			Mediun trace fi	n stiff, brownish gray, ne Sand, moist (CL)	CLAY, some Silt,	н	м	2	5	•					
20-	- S-7	24	0 2 2 3	4				Mediun trace fi	n stiff, reddish brown, ne Sand, moist (CH)	CLAY, some Silt,	- н	н	2	5.5						
	-							End of Boreho	Boring at 20 feet BGS le backfilled with cutti	S ngs										-
		In-E	Boreho	ble Wa	ater L	eve	ls	Woto-	.	General Notes		•			-					
	Date	e / Time	e 		o (ft)	Hol	le (ft)	Lvl (ft)	Yater Level (i BGS = Below Ground BGS = Below Gr	n observed) nd Surface					Pla Pla PF TV	astic P = P I = To	ocke orva	s:Lo Non- et Pe ne (\$	w (L) Plas netro Shea	-,, weatum (w), High (H) stic (NP), Low (L), Medium (M), High (H) ometer, measured in tons per square ft. ar Vane), measured in tons per square ft.

4		J	50	GEC	C			S	oil Boring	g Lo	og									B-36
Clie Proj Loc Insp	nt: ject: ation: pector	ibV E Rhu Harc : Dieg	Energy des Cr lin Cou o Melę	r eek So unty, K gar	olar Pi Centuc	rojec ky	1	Drilling Firm: Drill Crew: Boring Start: Boring End:	Tri-State Drilling, L Shannon / Brando 2/27/2021 2/27/2021	LC n				Co Ho Ele Ve	oord oriz. evat ert. E	inat Dat ion Datu	tes: tum : im:	:	-86.00 NAD 8 0 Grade	0394647 N, 37.66466711 E 83 e
Rig Rig Dril Han Dril	Mode Type: Meth nmer	l: od: Type: luid:	CME Track Hollo Autor None	-55 k w Ster matic	m Aug	ger		Sampler Type: Sampler Lengt Sampler I.D.: Hammer Wt.: Hammer Fall:	Split Spoon h: 24 inches 2 inches 140 pounds 30 inches					Ca Ca Ca Ha	asing asing asing amm amm	g Ty g Le g I.C ner N ner F	/pe: eng D.: Wt.: Fall	th:	N/A 4 fee 4 inc 140 30 fe	et ches pounds eet
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic		Visual Classific	cation	Toughness	Plasticity	PP (tsf)	TV (tsf)	1	N-	- Valu 0 3	ле 0 4	0		Drilling & Strata Notes
	S-1	18	2 1 1 2	2	мн		Soft, bi moist (rown, SILT, some Clay MH)	y, trace fine Sand,	L	м	1	2		0			0	_	6 inches of topsoil
	S-2	12	2 5 5 6	10			Stiff, da Sand, †	ark brown, SILT, some trace Clay, moist (ML)	e coarse to fine	н	NP	4	3						-	
5-	S-3	24	2 5 6 8	11	ML		Stiff, re some (ddish brown, SILT, so Clay, moist (ML)	ome fine Sand,	н	м	4	4		• · · ·				- 5	
-	S-4	14	5 9 9 10	18	мн		Very st Clay, s	iff, brown to reddish b ome coarse to fine Sa	rown, SILT, some nd, moist (ML)	н	н	2.75	5						-	
-	S-5	24	3 4 5 6	9			Stiff, re Sand (eddish brown, CLAY, s CL)	ome Silt, trace fine	н	м	4	3						-	Black material intrusion
10	-				CL											·····	·····	·····	—10 - -	
	S-6	24	2 3 5 50/3"	> 50			Stiff, re (CL)	ddish brown, CLAY, s	ome Silt, moist	н	м	3.5	4					>>	-	Apparent cobble or boulder at 14.5
- 15 - - -	-						Split sp See ro	ooon and auger refusa ck core log.	I at 14.8 feet											feet BGS. Cored through soil to 20.5 feet BGS.
20	-																		20 	
\vdash	D-1	In-E	Boreho	ole Wa	sing I	evels Bot.	of Water	▼ = Water Level (i	General Notes					To	uahr	1855	:10	v (I)	. Medi	um (M). Hiah (H)
					o (ft)	Hole	(ft) Lvl (ft)	BGS = Below Groun	nd Surface					Pla PP TV	= Po	ity:N ocket orvan	lon-l t Per ne (S	Plasi netro ihea	tic (NP ometer r Vane	 Low (L), Medium (M), High (H) , measured in tons per square ft. measured in tons per square ft.

Α	Ν	S	G]	EC)			Co	ore Bo	oring Log	l							B-36
Client Projec Locati Inspec	: ib ct: R ion: H ctor: D	V Ene hudes ardin iego N	ergy s Cree Count /lelgar	ek Sola ty, Ker	ar Pro ntucky	oject y		Drilling Firm: Drill Crew: Boring Start: Boring End:	Tri-State E Shannon / 2/27/2021 2/27/2021	Drilling, LLC Brandon			Coor Horiz Eleva Vert.	dina z. Da ation Datu	tes: tum : um:	-8 N 0 G	6.00 AD 8 rade	394647 N, 37.66466711 E 33
Rig M Rig Ty Drill N	odel: /pe: lethod:	С Т : Н	ME-5 rack ollow	5 Stem	Auge	er	Casing Casing Casing	Type: Length: 4 feet I.D.: 4 inches		Core Barrel Type Core Barrel Leng Core Barrel I.D.:): j th: 5	feet				Core Core Core	e Bit e Bit e Bit	Type: Imp. Diamond Length: 6 inches I.D.:
Depth (ft)	vg Core te (min/ft)	Run No.	ecovery in. / %)	RQD in. / %)	ardness	athering	Braphic Log	Visual	Classificati	on	epth (ft.)	ype	Dis Pugle	ghness	tinui ^g uing	ties entre	filling	Drilling & Strata Notes
	2 Ra	_	<u>∝</u> -		т	Š		LIMESTONE, gray, f	fine grained	, slightly	<u>م</u> 21		10	Rou	Ň	¥ VW	= N	
	2.0							discontinuities		vicely spaced	21	J	10	F,IX		•••	IN .	Apparent dissolution or cavity from
	2.0	R-1	60	46	P 2	9												21.0 10 22 1001 000.
_	2.0	1	100%	77%	112						23.4	J	10	P,Sm	DG	vw	CL	
25	3.4																	
								End of boring at 25.5 Borehole backfilled v	5 feet BGS. with bentoni	te holeplug and								
_								soil cuttings.		1 3								
_																		
_																		
30—																		
-																		
_																		
-																		
-																		
35—																		
-																		
-																		
-																		
-																		
40-																		
	l	l n-Bor	l ehole	Wate	er Lev	vels	1 14/-1				Gen	l eral	Note	es				
<u> </u>	Date / T	īme		Casir Tip (f	ig it) F	воt. of lole (ft)	VVater Lvl (ft)	又 = Water Level (if	f observed)	BGS = Bel	ow Gro	und \$	Surfa	ace				
					+		1	1										
					+			-										

[1	5 <mark>6</mark>	FE	C			Soil Boring	j Lo	og							B-37		
Clie Pro Loc Ins	nt: ject: ation: pector	ibV B Rhu Harc : Dieg	Energy des Cr lin Cou lo Melg	eek So inty, K jar	olar Pi entuc	roject ky		Drilling Firm: Tri-State Drilling, L Drill Crew: Shannon / Brandor Boring Start: 2/27/2021 Boring End: 2/27/2021	Drilling Firm:Tri-State Drilling, LLCCoordDrill Crew:Shannon / BrandonHoriz.Boring Start:2/27/2021ElevatBoring End:2/27/2021Vert. [-85.99683333 N, 37.67377778 E NAD 83 0 Grade		
Rig Model:CME-55Rig Type:TrackDrill Method:Hollow Stem AugerHammer Type:AutomaticDrilling Fluid:None								Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches						asing asing asing ammo ammo	Tyj Ler I.D. er W er Fa	oe: ngth: .: /t.: all:	N/A 4 feet 4 inches 140 pounds 30 feet		
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classification	Toughness	Plasticity	PP (tsf)	TV (tsf)	N-Value				Drilling & Strata Notes		
-	S-1	18	2 2 1 2	3	ML		Soft, bi moist (rown, SILT, some Clay, little fine Sand, ML)	L	м	1.5	2	1				5 inches of topsoil		
	S-2	24	3 5 5 7	10	CL		Stiff, br trace c	rown, CLAY, some Silt, trace fine Sand, oarse to fine Gravel, moist (CL)	н	нм	нм	2	3					-	
5-	S-3	24	2 2 5 3	7			Mediur trace fi moist (n stiff, reddish brown, SILT, some Clay, ne Sand, trace coarse to fine Gravel, ML)	н	м	2.5	3.5					5		
	S-4	24	5 5 7 6	12	мн		Stiff, re trace fi	eddish brown and gray, SILT, some CLay, ne Gravel, trace fine Sand, moist (MH)	н	н	3	3.5		•			-		
	S-5	24	4 6 5 11	11			Stiff, re coarse (MH)	eddish brown, SILT, some Clay, little to fine Sand, trace fine Gravel, moist	н	н	4.5	5		-			- 10		
	-								_								-		
	S-6	24	3 4 6 7	10	сн		Stiff, re Sand, i	eddish brown, CLAY, some Silt, trace fine moist (CH)	н	Н Н 3 4.5							-		
15-			/																
	-		2				Mediur	n stiff. reddish brown. CLAY. some Silt.									-		
20-	S-7	24	3 4 3	7			trace fi	ne Sand, moist (CH)	н	н	1.5	3.5							
							End of Boreho	Boring at 20 feet BGS le backfilled with cuttings									-		
	-																-		
┣		In-E	soreho	Die Wa	iter Lo sina T	Bot. of	Water	General Notes					То	uahr		014/) Medium (M) High (H)		
Date / Time Tip (ft) Hole (ft) Lvi (ft)					o (ft)	Hole (ft)	Lvl (ft)	BGS = Below Ground Surface	selow Ground Surface					Plasticity: Non-Plastic (NP), Low (L), Medium (M), High (H) PP = Pocket Penetrometer, measured in tons per square ft. TV = Torvane (Shear Vane), measured in tons per square ft.					

ľ		1	50	GEO	C			Soil	Soil Boring Log									B-38
Clie Proj Loca Insp	nt: ect: ation: ector	ibV I Rhu Harc : Dieg	Energy des Cr lin Cou o Melo	/ reek So unty, K gar	olar P čentuc	roject ky		Drilling Firm: Tri-S Drill Crew: Sha Boring Start: 2/27 Boring End: 2/27	Drilling Firm:Tri-State Drilling, LLCDrill Crew:Shannon / BrandonBoring Start:2/27/2021Boring End:2/27/2021							tes: tum : um:	-8 : N/ 0 Gi	35.99567894 N, 37.67764463 E AD 83 rade
Rig Model: Rig Type: Drill Method: Hand Auger Hammer Type: Drilling Fluid: None								Sampler Type: Ha Sampler Length: Sampler I.D.: Hammer Wt.: Hammer Fall:	Sampler Type: Hand Auger Sampler Length: Sampler I.D.: Hammer Wt.: Hammer Fall:							ype: engt D.: Wt.: Fall:	א h: א א א	N/A N/A N/A N/A
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classification		Toughness	Plasticity	PP (tsf)	TV (tsf)	N-Value			5	Drilling & Strata Notes
-	G-1	24			ML		Dark b moist (rown, SILT, some Clay, som ML)	ne fine Sand,	н	м						-	
-	G-2 G-3	12 12			CL		Light b (CL) Light b (CL)	rown, Silty CLAY, some fine rown, Silty CLAY, some fine	e Sand, moist e Sand, wet	H	н м						-	Likely perched water
5-							Hand a End of Boreho	uger refusal at 4.2 feet Boring at 4.2 feet BGS le backfilled with cuttings										Likely cobble or boulder present 5
-															-			
- 10-																		-10
-																	-	
-																	-	
15—																		-15
-																	-	
20-																		20
-																		
									noval No.4								-	
In-Borehole Water Levels								Gei	erved)					Тоц	ghness	:Low	/ (L). N	Medium (M), High (H)
Date / Time Tip (ft) Hole (ft) Lvl (ft) B						Hole (ft)	BGS = Below Ground Sur	S = Below Ground Surface						Plasticity: Non-Plastic (NP), Low (L), Medium (M), High (H) PP = Pocket Penetrometer, measured in tons per square ft. TV = Torvane (Shear Vane), measured in tons per square ft.				

A N S GEO								Soil Boring Log										B-SS-1			
Clie Proj Loca Insp	Client: ibV Energy Project: Rhudes Creek Solar Project Location: Hardin County, Kentucky Inspector: Diego Melgar							Drilling Firm:Tri-State Drilling, LLCCoorDrill Crew:Shannon / BrandonHorBoring Start:2/26/2021ElevBoring End:2/26/2021Ver							Coordinates: -86.00473638 N, 37.66145425 E Horiz. Datum: NAD 83 Elevation: 0 Vert. Datum: Grade				6145425 E		
Rig Model: CME-55 Rig Type: Track Drill Method: Hollow Stem Auger Hammer Type: Automatic Drilling Fluid: None						ger		Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches						Casing Type: Casing Length: Casing I.D.: Hammer Wt.: Hammer Fall:				h:	N/A 4 feet 4 inches 140 pounds 30 feet		
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classification	Visual Classification				TV (tsf)	N-Value					Drilling & Strata Notes		
-	S-1	18	2 1 1 2	2			Very so Sand, i	oft, grayish brown, Silty CLAY, li noist (CL)	ttle fine	L	н	1	.5			0 0	0 -		-	4 inches of topsoil	
-	S-2	24	4 5 5 6	10	CL		Stiff, gr moist (ayish brown, Silty CLAY, little fii CL)	ne Sand,	н	н	3	3		ł				_		
5-	S-3	24	5 6 3 7	9			Stiff, gr moist (ayish brown, Silty CLAY, little fi CL)	ne Sand,	М	н	3	2.75						- 5		
-	S-4	20	2 3 3 5	6			Mediur fine Sa	n stiff, grayish brown, Silty CLA` nd, moist (CL)	Y, trace	н	м	1.25	4						- c	Organic material n	ecovered
- 10-	S-5	24	1 3 3 4	6			Mediur trace fi	n stiff, grayish brown, CLAY, soi ne Sand, moist (CL)	me Sillt,	н	м	1.75	4	•					- - 10		
-										a.									_		
-	S-6	14	2 3 5 5	8	ML		Stiff, br Sand, ı	ownish gray, SILT, some Clay, noist (ML)	little fine	Н	NP	1	3						-		
15—																			—15 -		
-			2		CL		Mediur	n stiff, greenish gray, CLAY, little	e Silt,										_		
- 20—	S-7	24	4 4	6	-			ie danu, moist (CL)		Н	М	1.5	3.5						- 20		
-					 SM														_		
S-8 50/2" 50 Very dense Silt, some of (SM) End of Bori							ense, gray, coarse to fine SAND me coarse to fine Gravel, little C Boring at 23.2 feet BGS), some Clay, wet									>>	- - 8	Split spoon refusa Likely cobble or bo	at 23.2 feet BGS. oulder present.	
<u> </u>		In-E	Boreho	le Wa	ter L	evels	Borenc	Genera	I Notes		I	I	l	⊢							
Date / Time Casing Tip (ft) Bot. of Hole (ft) Wate Lvl (ft) 2/26/2021 20					sing o (ft)	Bot. of Hole (ft)	Water Lvl (ft) 20	= Water Level (if observed BGS = Below Ground Surface	[/] = Water Level (if observed) GS = Below Ground Surface						Toughness:Low (L), Medium (M), High (H) Plasticity: Non-Plastic (NP), Low (L), Medium (M), High (H) PP = Pocket Penetrometer, measured in tons per square ft. TV = Torvane (Shear Vane), measured in tons per square ft.					(M), High (H) per square ft. s per square ft.	

A N S GEO								Soil Boring	Soil Boring Log								B-SS-2			
Clie Proj Loca Insp	nt: ect: ation: ector	ibV I Rhu Harc : Dieg	Energy des Cr lin Cou lo Melç	eek So inty, K jar	olar P entuc	roject ky		Drilling Firm: Tri-State Drilling, Drill Crew: Shannon / Brando Boring Start: 2/27/2021 Boring End: 2/27/2021	Drilling Firm: Tri-State Drilling, LLC Drill Crew: Shannon / Brandon Boring Start: 2/27/2021 Boring End: 2/27/2021							:	-86.00446277 N, 37.66147358 E NAD 83 0 Grade			
Rig Model:CME-55Rig Type:TrackDrill Method:Hollow Stem AugerHammer Type:AutomaticDrilling Fluid:None						ger		Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches	Sampler Type:Split SpoonSampler Length:24 inchesSampler I.D.:2 inchesHammer Wt.:140 poundsHammer Fall:30 inches						Type: _eng .D.: · Wt.: · Fall	: th: :	N/A 4 feet 4 inches 140 pounds 30 feet			
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Symbol	Graphic Log		Visual Classification	Toughness	Plasticity	PP (tsf)	TV (tsf)		N-Va	1 ue	0	Drilling & Strata Notes			
-	S-1	20	1 1 2 3	3	мн		Soft, b moist (rown, SILT, some Clay, trace fine Sand, (MH)	н	н	2.5	3.5	1		00 4	0	_			
-	S-2	24	3 4 4 4	8			Stiff, b (CL)	rown, Silty CLAY, trace fine Sand, moist	н	м	2.25	4					-			
5-	S-3	24	2 3 5 5	8	CL		Stiff, g Sand,	rayish brown, CLAY, some Silt, trace fine moist (CL)	н	м	3.25	5		• • • • • • • •			5			
-	S-4	24	3 3 4 5	7			Mediui moist (m stiff, grayish brown, CLAY, some Silt, (CL)	н	м	1.5	5					-			
-	S-5	24	3 3 5 4	8			Stiff, b (CL)	rownish gray, CLAY, some Silt, moist	н	м	2	5		•			-			
- 10					 				_								-			
-	S-6	24	2 3 5	8	ML		Stiff, b some	rown, SILT, some coarse to fine Sand, Clay, wet (ML)	н	L	1.5	2		•			-			
15—			0		-												—15 -			
-			0		SM		– – – – –										-			
- 20—	S-7	24	2 2 3	4	-		some	Silt, little Clay, wet (SM)									- 20			
-									_								-			
-	S-8	24	0 0 0 0		СН		Very s	oft, brown, CLAY, some Silt, wet (CH)	L	н							-			
┣─		 n_5	Boreha	ole Wa	ter L	evels		General Notes		1	1	[┞└							
Date / Time Casing Bot. of Water Y								■ Seneral Notes					т	oughnes	s:Lov	N (L)), Medium (M), High (H)			
Tip (ft) Hole (ft) Lvl (ft) 2/27/2021 13					o (ft)	Hole (ft) Lvl (ft) 13	BGS = Below Ground Surface	GS = Below Ground Surface						Plasticity: Non-Plastic (NP), Low (L), Medium (M), High (H PP = Pocket Penetrometer, measured in tons per square ft TV = Tonyane (Shear Vione) measured in tons per square ft					
							1	-					[``							

A		1	5 G	E	0			S	oil Boring	Lo	bg							B-SS-2 (Continued)	
Clie Proj Loca Insp	nt: ect: ation: ector:	ibV E Rhu Harc Dieg	Energy des Cr lin Cou lo Melg	eek S inty, I jar	Solar P Kentuo	Project Sky	Drilling Firm:Tri-State Drilling, LLCDrill Crew:Shannon / BrandonBoring Start:2/27/2021Boring End:2/27/2021							Coordinates: Horiz. Datum: Elevation: Vert. Datum:			-86.004 NAD 83 0 Grade	446277 N, 37.66147358 E 3	
Depth (ft)	Sample No.	Rec. (in)	Blows per 6"	N-Value	USCS Svmbol	Graphic Log		Visual Classifie	cation	Toughness	Plasticity	PP (tsf)	TV (tsf)	10	N-Val 20 3	ue 60 40	Drilling & Strata Notes		
-			0 2		_		Soft, bi	rown, CLAY, some Sil	t, wet (CH)								-		
- 30 - -	S-9	24	2 2	4	_					L	М	.5	1.9	•			- 		
- 35— - -							Auger End of Boreho	refusal at 34.5 feet Boring at 34.5 feet B0 le backfilled with cutti	3S ngs	_							- 		
- 40 -																	- 40 -		
- 45— -																	- 45 -		
- 50 -																	- - 50 -		
		In-E	Boreho	ble W	ater L	evels	Meter		General Notes	·				_			-		
Date / Time Casing Tip (ft) Bot. of Hole (ft) 2/27/2021					asii iy ip (ft)	Hole (ft)	13	¥ = Water Level (i BGS = Below Grou	ιτ observed) nd Surface					Plasti PP = TV =	city: Pocke Forvar	s:Low (Non-Pla t Pene ne (She	(L), Mediur astic (NP), trometer, r ear Vane),	n (m), High (H) Low (L), Medium (M), High (H) measured in tons per square ft. measured in tons per square ft.	

Attachment C

Electrical Resistivity Testing Results

Soil Resistivity Results

Client:	ibV Energy	Date:	2/9/2021 - 2/10/2021							
Project Name:	Rhudes Creek Solar Project	Weather:	Sunny							
Project Location:	Hardin County, Kentucky	Temperature:	55° F							
Equipment:	AGI MiniSting									
Test Method:	est Method: Wenner 4 Electrode Array									

Array		Data	Array spacing (ft)										
AI	Tay	Data	2	5	10	25	50	100	150				
	NI-S	Measured Resistance (Ω)	38.22	16.26	8.67	2.08	0.82	-	-				
FP_07	N-5	Apparent Resistivity (Ω-ft)	480	511	545	327	256	-	-				
LIV-07	E_\\/	Measured Resistance (Ω)	36.89	16.97	8.12	2.25	1.00	-	-				
	L-VV	Apparent Resistivity (Ω-ft)	464	533	510	354	314	-	-				
	N-S	Measured Resistance (Ω)	55.58	22.15	9.30	4.03	1.01	-	-				
	N-5	Apparent Resistivity (Ω-ft)	698	696	584	632	316	-	-				
LIV-00	E \//	Measured Resistance (Ω)	52.34	21.34	8.57	4.91	0.98	-	-				
	L-VV	Apparent Resistivity (Ω-ft)	658	670	538	771	308	-	-				
	NS	Measured Resistance (Ω)	52.34	22.76	12.50	2.70	1.01	-	-				
ED 00	N-3	Apparent Resistivity (Ω-ft)	658	715	785	425	318	-	-				
EK-09	E \\/	Measured Resistance (Ω)	51.73	31.89	10.02	2.52	1.02	-	-				
	E-VV	Apparent Resistivity (Ω-ft)	650	1,002	630	396	319	-	-				
	NC	Measured Resistance (Ω)	32.36	12.09	7.18	2.28	1.19	-	-				
FD 10	IN-5	Apparent Resistivity (Ω-ft)	407	380	451	358	374	-	-				
EK-10	E 14/	Measured Resistance (Ω)	33.58	12.50	7.07	2.07	0.93	-	-				
	E-VV	Apparent Resistivity (Ω-ft)	422	393	444	326	293	-	-				
	NC	Measured Resistance (Ω)	41.98	29.54	10.12	3.29	1.61	-	-				
FD 11	IN-3	Apparent Resistivity (Ω-ft)	528	928	636	517	505	-	-				
EK-11	E 14/	Measured Resistance (Ω)	40.66	18.39	10.15	3.46	1.44	-	-				
	E-VV	Apparent Resistivity (Ω-ft)	511	578	638	543	453	-	-				
	NC	Measured Resistance (Ω)	58.24	21.24	6.71	1.27	0.67	-	-				
FD 12	IN-5	Apparent Resistivity (Ω-ft)	732	667	421	199	210	-	-				
ER-12	E 14/	Measured Resistance (Ω)	57.53	20.63	7.39	1.81	0.99	-	-				
	E-VV	Apparent Resistivity (Ω-ft)	723	648	464	284	311	-	-				
	NC	Measured Resistance (Ω)	21.75	4.94	4.48	0.69	0.66	0.84	1.40				
	IN-5	Apparent Resistivity (Ω-ft)	273	155	282	108	208	526	1,321				
EK-55-1		Measured Resistance (Ω)	24.84	5.81	3.51	2.97	1.89	1.88	1.38				
	E-VV	Apparent Resistivity (Ω-ft)	312	182	220	466	593	1,180	1,299				
		Site Average (Ω)	42.72	18.32	8.13	2.59	1.09	1.36	1.39				
		Site Average (Ω-ft)	537	576	511	407	341	853	1,310				

Attachment D

Laboratory Results

SIEVE ANALYSIS

RESULTS

ATTERBERG LIMITS

RESULTS

COMPRESSIVE ROCK STRENGTH

NJ EDA Approved Testing Laboratory • MBE/DBE Certified • NJ DEP Certified

www.ANSConsultants.net

Soil, Concrete, Masonry, Rebar, Asphalt, Structural Steel, Precast, Piles, Caissons, Fire-proofing, Roofing, Soil Boring, Concrete/Rock Coring, UST Removal, Environmental Testing & Reports

CLIENT : ANS GEO, Inc.

DATE: 03/13/2021

FILE NO. : AOS-5632

DATE TESTED : 03/13/2021

PROJECT :	ibv Energy - Rhudes Creek
	Cecilia, KY

REPORT No.: 27

TEST REQUIRED : Unconfined Compression Strength of intact Rock Core AS PER ASTM D 2938

DATE RECEIVED: 03/07/2021

IDENTIFICATION R-36 Depth (feet) Length of Core Drilled (in) : 10.000 Length of Core Prepared (in) : 3.8220 Diameter (in) : 1.9245 Area (sq. in.) : 2.0930 Ratio H to D : 2.0000 **Correction Factor:** 1.0000 Crushing Load (lbs) : 25,190 P. S. L .: 8.658 Corrected P. S. I. : 8,660 Density pcf 156.33

REMARKS :

- 1. Average compressive strength of one (1) core was 8,660 psi.
- 2. Rock core was conventional weight with density (unit weight) of ± 156.3 lb./ft³.
- 3. Compression testing machine of 500,000 lb. Capacity, manufactured by Test Mark Industries, Sr. No. 10897, Model # CM-5000 EBS (Extended Frame) was utilized for testing core.

THERMAL RESISTIVITY

NJ EDA Approved Testing Laboratory • MBE/DBE Certified • NJ DEP Certified

www.ANSConsultants.net

Soil, Concrete, Masonry, Rebar, Asphalt, Structural Steel, Precast, Piles, Caissons, Fire-proofing, Roofing, Soil Boring, Concrete/Rock Coring, UST Removal, Environmental Testing & Reports

THERMAL CONDUCTIVITY OF SOIL & SOFT ROCK BY THERMAL NEEDLE PROBE -IEEE 442

CLIENT: ANS Geo, Inc. 4405 South Clinton Avenue, Suite#A South Plainfield, NJ 07080

DATE: 03/19/2021

FILE NO: AOS-5632

PROJECT: <u>ibV Energy – Rhudes Creek, KY</u> Cecilia, KY

REPORT NO: S-20

Test Data- Sample No. S-20 (B-15, Thermal-15, 2'- 4')

Standard Proctor Value: 115.3 Remolded Dry Density: 98.005 (85%) Optimum Moisture Content: 10.1% In-Situ Moisture Content: 20.83%

Moisture Content (%)	Initial Soil Temperature (°C)	Thermal Resistivity (°C-cm/W)
0	26.5	462
2.5	26.2	232
5	25.9	136
7.5	25.7	114
10.1	25.5	107

NJ EDA Approved Testing Laboratory • MBE/DBE Certified • NJ DEP Certified www.ANSConsultants.net

Soil, Concrete, Masonry, Rebar, Asphalt, Structural Steel, Precast, Piles, Caissons, Fire-proofing, Roofing, Soil Boring, Concrete/Rock Coring, UST Removal, Environmental Testing & Reports

THERMAL CONDUCTIVITY OF SOIL & SOFT ROCK BY THERMAL NEEDLE PROBE -IEEE 442

CLIENT: ANS Geo, Inc. 4405 South Clinton Avenue, Suite#A South Plainfield, NJ 07080 DATE: 03-19-2021

FILE NO: AOS-5632

PROJECT: <u>ibV Energy – Rhudes Creek, KY</u> Cecilia, KY **REPORT NO: S-21**

Test Data- Sample No. S-21 (B-31, Thermal-31, 2'- 4')

Standard Proctor Value: 110.2 Remolded Dry Density: 93.67 (85%) Optimum Moisture Content: 14.6% In-Situ Moisture Content: 20.83%

Moisture Content (%)	Initial Soil Temperature (°C)	Thermal Resistivity (°C-cm/W)
0	26.4	647
3.75	26	248
7.5	25.7	112
11.25	25.6	85
14.6	25.5	77

NJ EDA Approved Testing Laboratory • MBE/DBE Certified • NJ DEP Certified www.ANSConsultants.net

Soil, Concrete, Masonry, Rebar, Asphalt, Structural Steel, Precast, Piles, Caissons, Fire-proofing, Roofing, Soil Boring, Concrete/Rock Coring, UST Removal, Environmental Testing & Reports

<u>THERMAL CONDUCTIVITY OF SOIL & SOFT ROCK</u> <u>BY THERMAL NEEDLE PROBE -IEEE 442</u>

CLIENT: ANS Geo, Inc. 4405 South Clinton Avenue, Suite#A South Plainfield, NJ 07080 DATE: 03-19-2021

FILE NO: AOS-5632

PROJECT: <u>ibV Energy – Rhudes Creek, KY</u> Cecilia, KY **REPORT NO: S-22**

Test Data - Sample No. S-22 (B-SS-2, Thermal-SS-2, 2'- 4')

Standard Proctor Value: 103.4 Remolded Dry Density: 87.89 (85%) Optimum Moisture Content: 14.2% In-Situ Moisture Content: 23.5 %

Moisture Content (%)	Initial Soil Temperature (°C)	Thermal Resistivity (°C-cm/W)
0	26.7	669
3.75	26.3	301
7.5	26	204
11.25	25.8	182
14.2	25.6	170

CORROSIVITY SUITE

Tel: (800) 545-ATUL (908) 754-8383 Fax: (908) 754-8633

NJ EDA Approved Testing Laboratory • MBE/DBE Certified • NJ DEP Certified www.ANSConsultants.net

Soil, Concrete, Masonry, Rebar, Asphalt, Structural Steel, Precast, Piles, Caissons, Fire-proofing, Roofing, Soil Boring, Concrete/Rock Coring, UST Removal, Environmental Testing & Reports

CERTIFICATE OF TEST - CORROSION ANALYSIS

CLIENT: ANS Geo, Inc. 4405 South Clinton Avenue South Plainfield, NJ 07080 DATE: 03/23/2021

FILE NO: AOS-5632

PROJECT: <u>ibV Energy – Rhudes Creek, KY</u> Cecilia, KY

REPORT NO: S-26

TEST PERFORMED: 1) Standard Test Method for Water Soluble Sulfate in Soil AS PER ASTM C-1580

- 2) Standard Test Method for measuring pH of Soil for use in Corrosion Testing AS PER ASTM G51-18
- 3) Standard Test Method for Measurement of Oxidation-Reduction Potential (ORP) of Soil AS PER ASTM G-200
- 4) Standard Method for Test for Determining Water Soluble Chloride Ion AS PER AASHTO T-291
- 5) Standard Test Method for Measuring Soil Resistivity using two-Electrode AS PER ASTM G187-18

Sample No.	Sample ID	Sulfate (mg/Kg)	рН	ORP (mV)	Chloride (mg/Kg)	Resistivity (Ohm-cm)
S-26	CRT-SS, CRT-SS, 0'- 3'	21	6.74	+125	45	10,000
S-28	CRT-14, CRT-14, 0'- 3'	17	6.94	+121	40	7,000
S-29	CRT-20, CRT-20, 0'- 3'	25	6.88	+129	50	9,000
S-30	CRT-23, CRT-23, 0'- 3'	14	7.01	+117	35	8,000
S-31	CRT-32, CRT-32, 0'- 3'	27	6.88	+135	50	9,500

CALIFORNIA BEARING RATIO

Attachment E

Pile Load Testing Logs

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-1 A
Date/Time Installed:	3/1/2021 15:50	Date/Time Tested:	7:40AM 3/6/21
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	9
Avg. Installation Rate (sec/ft.):	17.5	Pile Section	W6x9x15

Embedment Data				
Depth (ft.)	Time (s)			
0	0			
1	0			
2	0			
3	5.17			
4	12.34			
5	19.54			
6	29.32			
7	28.08			
8	33.43			
9	34.43			
Total Time (s) =	157.14			

17	.5	Plies	section	VV D	X9X15			
		Tens	ile Testing		-			
Hold Time	Target Load	Load (lbs)	Deflection 1	Deflection 2	Average			
(min)	(lbs)		(in.)	(in.)	Deflection (in.)			
1	0	0	0.0000	0.0000	0.0000			
1	250	240	0.0025	0.0020	0.0023			
1	500	500	0.0055	0.0040	0.0048			
1	1000	1100	0.0140	0.0095	0.0118			
1	1500	1520	0.0185	0.0120	0.0153			
1	2000	2000	0.0235	0.0140	0.0188			
1	1500	1520	0.0205	0.0120	0.0163			
1	1000	1020	0.0145	0.0095	0.0120			
1	500	500	0.0080	0.0050	0.0065			
1	250	280	0.0045	0.0030	0.0038			
1	0	0	0.0020	0.0010	0.0015			
	-	Target D	Deflection (in.)					
1	0.5	-	-	-	-			
1	0.75	-	-	-	-			
1	1	-	-	-	-			
Target Load								
1	10000	10000	0.1095	0.1155	0.1125			
1	0	0	0.0735	0.078	0.0758			
		Late	ral Testing					
Lateral L	oad Height	3	Deflection G	auge Height	4			
Above C	Grade (ft):	5	(in	ı):	4			
Hold Time	Target Load	Load (lbs)	Deflection 1	Deflection 2	Average			
(min)	(lbs)	Eodd (183)	(in.)	(in.)	Deflection (in.)			
1	0	0	0.0000	0.0000	0.0000			
1	500	500	0.0805	0.0575	0.0690			
1	1000	1000	0.1555	0.1175	0.1365			
1	1500	1500	0.2270	0.1780	0.2025			
1	0	0	0.0165	0.0295	0.0230			
1	500	500	0.0950	0.0920	0.0935			
1	1000	1000	0.1685	0.1410	0.1548			
1	1500	1500	0.2350	0.1940	0.2145			
1	2000	2000	0.3105	0.2580	0.2843			
1	2500	2500	0.3950	0.3285	0.3618			
1	0	0	0.0275	0.0460	0.0368			
1	2500	2500	0.4120	0.3550	0.3835			
1	3000	3000	0.4930	0.4135	0.4533			
1	3500	3500	0.5885	0.5020	0.5453			
1	4000	4000	0.6885	0.6085	0.6485			
		Target I	Deflection (in.)					
1	0.25	1900	0.2855	0.221	0.2533			
1	0.5	3150	0.5345	0.4695	0.5020			
1	1	5560	1.0355	0.9820	1.0088			
Target Load								
		14	8					
1	6000	-	-	-	-			

Project:	Project: ibV Energy-Rhudes Creek Pile ID:		PLT-1 B
Date/Time Installed:	3/1/2021 16:00	Date/Time Tested:	7:55AM 3/6/21
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	9
Avg. Installation Rate (sec/ft.):	25.1	Pile Section	W6x9x15

	Embedmen	t Data			Т	ensile Testing		
De	epth (ft.) 0	Time (s) 0	Hold Time (min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)
	1	0	1	0	0	0.0000	0.0000	0.0000
	2	0	1	250	280	0.0010	0.0005	0.0008
	3	7.05	1	500	500	0.0020	0.0010	0.0015
	4	15.82	1	1000	1000	0.0035	0.0010	0.0023
	5	26.24	1	1500	1500	0.0050	0.0015	0.0033
	6	32.87	1	2000	2000	0.0065	0.0020	0.0043
	7	42.93	1	1500	1540	0.0055	0.0025	0.0040
	8	50.18	1	1000	1040	0.0035	0.0020	0.0028
	9	58.18	1	500	500	0.0025	0.0010	0.0018
			1	250	260	0.0020	0.0010	0.0015
			1	0	0	0.0010	0.0010	0.0010
					Targ	et Deflection (in.)		
			1	0.5	-	-	-	-
			1	0.75	-	-	-	-
			1	1	-	-	-	-
						Target Load		
			1	10000	10000	0.0575	0.0675	0.0625
Tota	l Time (s) =	226.22	1	0	0	0.012	0.01	0.0110
					L	ateral Testing		
			Lateral L	oad Height	2	Deflection Cour		4
(0 IIme (se	50	Above 0	Grade (ft):	2	Defiection Gaug	ge Height (iii):	4
0			Hold Time (min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)
1			1	0	0	0.0000	0.0000	0.0000
			1	500	500	0.0425	0.1175	0.0800
2			1	1000	1000	0.1250	0.2010	0.1630
	\backslash		1	1500	1500	0.1885	0.2780	0.2333
з	$\langle \rangle$		1	0	0	0.0285	0.0150	0.0218
5			1	500	500	0.0995	0.1295	0.1145
4			1	1000	1000	0.1490	0.2120	0.1805
• ⁴			1	1500	1500	0.1935	0.2845	0.2390
[£			1	2000	2000	0.2750	0.3405	0.3078
d b			1	2500	2500	0.3450	0.4260	0.3855
ŏ			1	0	0	0.0565	0.0155	0.0360
6	\\		1	2500	2500	0.3470	0.4695	0.4083
		\mathbf{n}	1	3000	3000	0.4590	0.5395	0.4993
7		\rightarrow	1	3500	3500	0.5560	0.6360	0.5960
		$\langle \rangle$	1	4000	4000	0.6670	0.7590	0.7130

	1		
	2		
	3		
	4		
Depth (ft.)	5		
	6		
	7		
	8	<u></u>	
	9	\	

10

1

1

1

1

1

0.25

0.5

1

6000

0

1720

3000

5180

0

0.6670 Target Deflection (in.)

0.2085

0.4590

0.9015

0.2035

Target Load

0.2568

0.4993

1.0125

0.159

0.305 0.5395

1.1235

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-2 A
Date/Time Installed:	3/1/2021 16:10	Date/Time Tested:	12:15AM 3/6/2021
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	9
Avg. Installation Rate (sec/ft.):	30.3	Pile Section	W6x9x15

Embedm	ent Data	1		Ten	sile Testing		
Denth (ft)	Time (s)		Target Load				Average
0	0	Hold Time (min)	(lbs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Deflection (in.
1	0	1	0	0	0.0000	0.0000	0.0000
2	0	1	250	300	0.0030	0.0040	0.0035
3	6.25	1	500	520	0.0055	0.0065	0.0060
4	9.77	1	1000	1000	0.0100	0.0100	0.0100
5	18.36	1	1500	1500	0.0135	0.0125	0.0130
6	29.53	1	2000	2000	0.0160	0.0155	0.0158
7	36.69	1	1500	1480	0.0140	0.0135	0.0138
8	52.01	1	1000	980	0.0110	0.0110	0.0110
9	59.59	1	500	480	0.0060	0.0070	0.0065
		1	250	240	0.0030	0.0045	0.0038
		1	0	0	0.0000	0.0100	0.0050
				Target	Deflection (in.)	•	
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
				Та	arget Load		
		1	10000	10000	0.0515	0.0515	0.0515
otal Time (s) =	205.95	1	0	0	0.0195	0.023	0.0213
				Late	eral Testing		
Time (seconds)	Lateral Load H	leight Above	3	Deflection Gau	ge Height (in):	А
0 20 40	0 60 80	Grade	e (ft):	5	Denection dat	ge neight (iii).	-
0		Hold Time (min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.
1		1	0	0	0.0000	0.0000	0.0000
		1	500	500	0.0780	0.0800	0.0790
2		1	1000	1000	0.1530	0.1830	0.1680
		1	1500	1500	0.2325	0.2810	0.2568
3		1	0	0	0.0340	0.0420	0.0380
		1	500	500	0.1185	0.1380	0.1283
		1	1000	1000	0.1815	0.2225	0.2020
		1	1500	1500	0.2360	0.2925	0.2643
		1	2000	2000	0.3170	0.3825	0.3498
°		1	2500	2500	0.4000	0.4835	0.4418
		1	0	0	0.0490	0.0640	0.0565
6		1	2500	2500	0.4340	0.5120	0.4730
		1	3000	3000	0.5225	0.6165	0.5695
7		1	3500	3500	0.6220	0.7340	0.6780
	\setminus	1	4000	4000	0.7455	0.8825	0.8140
8				Target	Deflection (in.)		
	λ	1	0.25	1500	0.2325	0.2810	0.2568
9	<u> </u>	1	0.5	2750	0.4755	0.5585	0.5170
		1	1	4500	0.9280	1.0890	1.0085
				Ta	arget Load		
		1	6000	-	-	-	
		1	0	0	0.0825	0.109	0.09575

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-2 B
Date/Time Installed:	3/1/2021 16:10	Date/Time Tested:	3/6/2021 12:30
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	9
Avg. Installation Rate (sec/ft.):	38.6	Pile Section	W6x9x15

Embedmen	t Data			Te	nsile Testing		
Depth (ft.) 0	Time (s) 0	Hold Time (min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)
1	0	1	0	0	0.0000	0.0000	0.0000
2	0	1	250	280	0.0030	0.0055	0.0043
3	8.5	1	500	500	0.0070	0.0120	0.0095
4	13.97	1	1000	1000	0.0135	0.0235	0.0185
5	24.53	1	1500	1520	0.0180	0.0305	0.0243
6	34.88	1	2000	2040	0.0235	0.0385	0.0310
7	47.44	1	1500	1480	0.0195	0.0345	0.0270
8	66.08	1	1000	1020	0.0140	0.0270	0.0205
9	75.01	1	500	600	0.0085	0.0190	0.0138
		1	250	280	0.0040	0.0100	0.0070
		1	0	0	0.0010	0.0045	0.0028
				Targe	t Deflection (in.)		
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
					Target Load		
		1	10000	10000	0.048	0.118	0.0830
Total Time (s) =	261.91	1	0	0	0.012	0.018	0.0150

Time (seconds)	Lateral Load Gra	l Height Above de (ft):	3
	Hold Time (min)	Target Load (Ibs)	Load
	1	0	0
	1	500	50
	1	1000	100
	1	1500	150
	1	0	0
	1	500	50
	1	1000	100
	1	1500	150
	1	2000	200
	1	2500	250
	1	0	0
	1	2500	250
	1	3000	300
	1	3500	350
	1	4000	400
	1	0.25	135
\	1	0.5	252
	1	1	450
	1	6000	-
	1	0	0

0

4 Depth (ft.) 6

8

9 10

		Lat	eral Testing		
Lateral Load H Grade	leight Above e (ft):	3	Deflection Gaug	e Height (in):	4
Hold Time (min)	Target Load (lbs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)
1	0	0	0.0000	0.0000	0.0000
1	500	500	0.0910	0.1005	0.0958
1	1000	1000	0.1985	0.1820	0.1903
1	1500	1500	0.3085	0.2740	0.2913
1	0	0	0.0250	0.0310	0.0280
1	500	500	0.1410	0.1320	0.1365
1	1000	1000	0.2355	0.2185	0.2270
1	1500	1500	0.3145	0.2780	0.2963
1	2000	2000	0.4170	0.3690	0.3930
1	2500	2500	0.5250	0.4560	0.4905
1	0	0	0.0480	0.0415	0.0448
1	2500	2500	0.5475	0.4770	0.5123
1	3000	3000	0.6490	0.5635	0.6063
1	3500	3500	0.7500	0.6580	0.7040
1	4000	4000	0.8850	0.7745	0.8298
		Targe	t Deflection (in.)		
1	0.25	1350	0.2745	0.238	0.2563
1	0.5	2520	0.538	0.4695	0.5038
1	1	4500	1.0540	0.9560	1.0050

0.086

0.064

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-3 A
Date/Time Installed:	3/1/2021 13:30	Date/Time Tested:	11:20AM 3/6/21
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	7
Avg. Installation Rate (sec/ft.):	22.6	Pile Section	W6x9x15

Embedme	ent Data			Tensile	Testing		
Depth (ft.)	Time (s)	Hold Time	Target Load		Deflection 1	Deflection 2	Average
0	0	(min)	(lbs)	Load (lbs)	(in.)	(in.)	Deflection (in.
1	0	1	0	0	0.0000	0.0000	0.0000
2	0	1	250	260	0.0000	0.0005	0.0003
3	10.08	1	500	500	0.0005	0.0015	0.0010
4	13 32	1	1000	1000	0.0010	0.0025	0.0018
5	22.54	1	1500	1500	0.0020	0.0040	0.0030
6	31 35	1	2000	2000	0.0050	0.0050	0.0050
7	35.71	1	1500	1500	0.0030	0.0035	0.0033
,	55.71	1	1000	980	0.0025	0.0025	0.0025
		1	500	500	0.0020	0.0020	0.0020
		1	250	260	0.0020	0.0020	0.0020
		1	0	0	0.0015	0.0015	0.0015
			Ū	Target Def	lection (in)	0.0015	0.0015
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1		-	-	-
-			1	Targe	tload		
		1	10000	10000	0.175	0.145	0.1600
al Timo (c) –	102.02	1	10000	10000	0.1095	0.145	0.1000
1 mme (s) =	102.92		0	Latora	Tocting	0.0585	0.1035
		Lateralle	ad Llaight	Latera	Deflectio	n Course	1
Time (se	econds)	Lateral Los	au neight	3	Deflection	+ (in)	4
0 10 20	30 40	Hold Time	Target Load		Deflection 1	Dofloction 2	Average
		(min)	(lbs)	Load (lbs)	(in)	(in)	Deflection (in
		1	(0	0.0000	0.0000	0.0000
		1	500	500	0.0000	0.0000	0.0000
		1	500	500	0.1165	0.0525	0.0845
		1	1000	1000	0.1843	0.1490	0.1008
		1	1500	1500	0.2530	0.2225	0.2378
$\langle \rangle$		1	E00	500	0.0200	0.0100	0.0220
\mathbf{N}		1	1000	1000	0.1155	0.1015	0.1085
		1	1000	1000	0.2005	0.1025	0.1845
		1	1500	1500	0.2765	0.2220	0.2493
-1		1	2000	2000	0.3390	0.2925	0.3158
$ \rangle$		1	2500	2500	0.4050	0.3780	0.3915
		1	0	0	0.0560	0.0260	0.0410
		1	2500	2500	0.4350	0.3810	0.4080
	$\langle $	1	3000	3000	0.5050	0.4530	0.4790
	X	1	3500	3500	0.6125	0.5140	0.5633
	\mathbf{h}	1	4000	4000	0.6975	0.5970	0.6473
			0.25	Target Del	iection (in.)	0.2226	0.2402
		1	0.25	1500	0.2765	0.2220	0.2493
		1	0.5	3200	0.5365	0.4895	0.5130
		1	1	5/80	1.1075	0.9365	1.0220
			6000	Targe	et 10a0		1
		1	6000	-	-	-	-
		1	1 0	0	0 1495	0.098	012375

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-3 B
Date/Time Installed:	3/1/2021 13:40	Date/Time Tested:	11AM 3/6/21
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	7
Avg. Installation Rate (sec/ft.):	22.4	Pile Section	W6x9x15

Embedmen	it Data			Te	nsile Testing		
Depth (ft.) 0	Time (s) 0	Hold Time (min)	Target Load (lbs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)
1	0	1	0	0	0.0000	0.0000	0.0000
2	0	1	250	240	0.0000	0.0015	0.0008
3	6.32	1	500	500	0.0010	0.0030	0.0020
4	9.99	1	1000	1000	0.0025	0.0060	0.0043
5	20.42	1	1500	1460	0.0040	0.0090	0.0065
6	32.42	1	2000	2000	0.0050	0.0110	0.0080
7	42.86	1	1500	1440	0.0040	0.0100	0.0070
		1	1000	960	0.0030	0.0080	0.0055
		1	500	500	0.0010	0.0050	0.0030
		1	250	260	0.0005	0.0035	0.0020
		1	0	0	0.0000	0.0010	0.0005
				Targe	t Deflection (in.)		
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
					Target Load		
		1	10000	10000	0.3085	0.351	0.3298
Total Time (s) =	105.69	1	0	0	0.299	0.3045	0.3018
				La	teral Testing		

Depth (ft.)

Time (seconds) 50	Lateral Load Gra	d Height Above de (ft):	3	Deflection Gaug	e Height (in):	4
	Hold Time (min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)
	1	0	0	0.0000	0.0000	0.0000
	1	500	500	0.0825	0.0580	0.0703
	1	1000	1000	0.1610	0.1340	0.1475
	1	1500	1500	0.2325	0.1925	0.2125
	1	0	0	0.0125	0.0310	0.0218
	1	500	500	0.1010	0.0925	0.0968
	1	1000	1000	0.1805	0.1470	0.1638
	1	1500	1500	0.2450	0.1980	0.2215
	1	2000	2000	0.3150	0.2565	0.2858
	1	2500	2500	0.3930	0.3250	0.3590
	1	0	0	0.0285	0.0530	0.0408
	1	2500	2500	0.4105	0.3555	0.3830
	1	3000	3000	0.4880	0.4310	0.4595
	1	3500	3500	0.5850	0.4985	0.5418
	1	4000	4000	0.6750	0.5695	0.6223
			Targe	t Deflection (in.)		
	1	0.25	1850	0.2755	0.2285	0.2520
``	1	0.5	3200	0.5365	0.4585	0.4975
	1	1	5700	1.0520	0.9555	1.0038
			1	arget Load		
	1	6000	-	-	-	-
	1	0	0	0.1435	0.0825	0.113

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-4 A
Date/Time Installed:	3/1/2021 14:00	Date/Time Tested:	10AM 3/6/21
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	8
Avg. Installation Rate (sec/ft.):	37.4	Pile Section	W6x9x15

Empeume	ent Data		Tensile Testing						
Depth (ft.)	Time (s)	Hold Time	Tanaat Laad (lba)	Lend (lbs)	Deflection 1	Deflection 2	Average		
0	0	(min)	Target Load (IDS)	LOAD (IDS)	(in.)	(in.)	Deflection		
1	0	1	0	0	0.0000	0.0000	0.000		
2	0	1	250	260	0.0015	0.0030	0.0023		
3	8.32	1	500	500	0.0045	0.0065	0.0055		
4	19.16	1	1000	1000	0.0100	0.0140	0.0120		
5	33.88	1	1500	1500	0.0160	0.0220	0.0190		
6	50.12	1	2000	2100	0.0215	0.0300	0.0258		
7	53.33	1	1500	1440	0.0165	0.0245	0.0205		
8	59.72	1	1000	1040	0.0125	0.0185	0.0155		
		1	500	520	0.0065	0.0105	0.0085		
		1	250	200	0.0020	0.0045	0.0033		
		1	0	0	0.0000	0.0015	0.0008		
				Target Defle	ection (in.)				
		1	0.5	-	-	-	-		
		1	0.75	-	-	-	-		
		1	1	-	-	-	-		
				Target	Load				
		1	10000	10000	0.0555	0.084	0.0698		
al Time (s) =	216.21	1	0	0	0.0155	0.0195	0.0175		
				Lateral	Testing				
		Lateral Loa	ad Height Above	2	Deflectio	n Gauge			
0 20 40	econds)	Gr	ade (ft):	3	Heigh	t (in):	4		
°		Hold Time	Tanaat Laad (lba)	L = = = (==)	Deflection 1	Deflection 2	Averag		
		(min)	Target Load (IDS)	LOAD (IDS)	(in.)	(in.)	Deflection		
1		1	0	0	0.0000	0.0000	0.0000		
		1	500	500	0.0570	0.0670	0.0620		
		1	1000				0.0020		
2		÷ .		1000	0.1165	0.1515	0.1340		
		1	1500	1000 1500	0.1165	0.1515 0.2040	0.1340		
1		1	1500 0	1000 1500 0	0.1165 0.1830 0.0075	0.1515 0.2040 0.0265	0.1340		
3		1 1 1 1	1500 0 500	1000 1500 0 500	0.1165 0.1830 0.0075 0.0340	0.1515 0.2040 0.0265 0.1290	0.1340 0.1935 0.0170 0.0815		
3		1 1 1 1 1	1500 0 500 1000	1000 1500 0 500 1000	0.1165 0.1830 0.0075 0.0340 0.1355	0.1515 0.2040 0.0265 0.1290 0.1580	0.1340 0.1935 0.0170 0.0815 0.1468		
3		1 1 1 1 1 1	1500 0 500 1000 1500	1000 1500 0 500 1000 1500	0.1165 0.1830 0.0075 0.0340 0.1355 0.1670	0.1515 0.2040 0.0265 0.1290 0.1580 0.2460	0.1340 0.1935 0.0170 0.0815 0.1468 0.2065		
3		1 1 1 1 1 1 1	1500 0 500 1000 1500 2000	1000 1500 0 500 1000 1500 2000	0.1165 0.1830 0.0075 0.0340 0.1355 0.1670 0.2455	0.1515 0.2040 0.0265 0.1290 0.1580 0.2460 0.3025	0.1340 0.1340 0.1935 0.0170 0.0815 0.1468 0.2065 0.2740		
3 4		1 1 1 1 1 1 1 1	1500 0 500 1000 1500 2000 2500	1000 1500 500 1000 1500 2000 2500	0.1165 0.1830 0.0075 0.0340 0.1355 0.1670 0.2455 0.3040	0.1515 0.2040 0.0265 0.1290 0.1580 0.2460 0.3025 0.4035	0.0020 0.1340 0.1935 0.0170 0.0815 0.1468 0.2065 0.2740 0.3538		
3 4 5		1 1 1 1 1 1 1 1 1	1500 0 500 1000 1500 2000 2500 0	1000 1500 0 500 1000 1500 2000 2500 0	0.1165 0.1830 0.0075 0.0340 0.1355 0.1670 0.2455 0.3040 0.0215	0.1515 0.2040 0.0265 0.1290 0.1580 0.2460 0.3025 0.4035 0.0455	0.0020 0.1340 0.1935 0.0170 0.0815 0.1468 0.2065 0.2740 0.3538 0.0335		
3 4 5		$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	1500 0 500 1000 1500 2000 2500 0 2500	1000 1500 0 500 1000 1500 2000 2500 0 2500	0.1165 0.1830 0.0075 0.0340 0.1355 0.1670 0.2455 0.3040 0.0215 0.3250	0.1515 0.2040 0.0265 0.1290 0.1580 0.2460 0.3025 0.4035 0.0455 0.4060	0.0020 0.1340 0.1935 0.0170 0.0815 0.2065 0.2740 0.3538 0.0335 0.3655		
3 4 5 6		1 1 1 1 1 1 1 1 1 1 1 1 1	1500 0 500 1000 1500 2500 0 2500 0 2500 3000	1000 1500 500 1000 1500 2500 0 2500 0 2500 3000	0.1165 0.1830 0.0075 0.0340 0.1355 0.1670 0.2455 0.3040 0.0215 0.3250 0.3940	0.1515 0.2040 0.0265 0.1290 0.1580 0.2460 0.3025 0.4035 0.0455 0.4060 0.4900	0.0020 0.1340 0.1935 0.0170 0.0815 0.1468 0.2065 0.2740 0.3538 0.0355 0.3655 0.4420		
3 4 5 6 6		1 1 1 1 1 1 1 1 1 1 1 1	1500 0 500 1000 2500 2500 2500 3000 3500	1000 1500 500 1000 1500 2500 0 2500 0 2500 3000 3500	0.1165 0.1830 0.0075 0.0340 0.1355 0.1670 0.2455 0.3040 0.0215 0.3250 0.3940 0.4875	0.1515 0.2040 0.0265 0.1290 0.1580 0.2460 0.3025 0.4035 0.0455 0.4050 0.4900 0.5515	0.0024 0.1340 0.1935 0.0170 0.0815 0.2065 0.2740 0.3538 0.0355 0.4420 0.5195		
3 4 5 6 6		1 1 1 1 1 1 1 1 1 1 1 1 1	1500 0 500 1000 2200 2500 0 2500 0 2500 3000 3500 4000	1000 1500 0 500 1000 2500 2500 0 2500 3000 3500 4000	0.1165 0.1830 0.0075 0.0340 0.1355 0.1670 0.2455 0.3040 0.0215 0.3250 0.3940 0.4875 0.5675	0.1515 0.2040 0.0265 0.1290 0.1580 0.2460 0.3025 0.4035 0.4035 0.4055 0.4060 0.4900 0.5515 0.6480	0.0070 0.1340 0.1935 0.0170 0.0815 0.1468 0.2065 0.2740 0.3533 0.0355 0.4420 0.5195 0.6078		
3 4 4 5 6 7 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1	1500 0 500 1000 2500 0 2500 3000 3500 4000	1000 1500 0 500 1000 2500 2500 0 2500 250	0.1165 0.1830 0.0075 0.0340 0.1355 0.1670 0.2455 0.3040 0.0215 0.3250 0.3940 0.4875 0.5675 section (in.)	0.1515 0.2040 0.0265 0.1290 0.1580 0.2460 0.3025 0.4035 0.4035 0.4055 0.4060 0.4900 0.5515 0.6480	0.1340 0.1340 0.093 0.0170 0.0815 0.1468 0.2065 0.2740 0.3538 0.3655 0.4420 0.5195 0.6078		
3 4 5 6 7 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1500 0 500 1000 2500 2500 2500 2500 3000 3500 4000	1000 1500 0 500 1000 2500 2500 0 2500 3000 3500 4000 Target Defld 1850	0.1165 0.1830 0.0075 0.0340 0.1355 0.1670 0.2455 0.3040 0.0215 0.3250 0.3940 0.4875 0.3675 0.5675 ection (in.) 0.2155	0.1515 0.2040 0.0265 0.1290 0.1580 0.2460 0.3025 0.4035 0.0455 0.4060 0.4900 0.5515 0.6480	0.0011 0.1340 0.1340 0.0170 0.0811 0.1468 0.2065 0.2740 0.3533 0.0333 0.0333 0.0335 0.4420 0.5195 0.6078		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1500 0 500 1000 2500 2500 3000 3500 4000 0.25 0.5	1000 1500 0 500 1000 2000 2500 0 2500 0 2500 3000 3500 4000 Target Defl 1850 3400	0.1165 0.1830 0.075 0.0340 0.1355 0.1670 0.2455 0.3040 0.0215 0.3250 0.3250 0.3250 0.3250 0.3255 ction (n.) 0.2155	0.1515 0.2040 0.0265 0.1290 0.1280 0.3025 0.4035 0.4035 0.4060 0.4060 0.4060 0.4090 0.5515 0.6480 0.2855 0.2855 0.5395	0.0021 0.1340 0.1932 0.0170 0.0815 0.2460 0.2065 0.2740 0.3533 0.3655 0.4420 0.5195 0.6078		
3 4 5 6 7 8 8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1500 0 500 1500 2500 0 2500 3000 3500 4000 0.25 0.25 0.5 1	1000 1500 500 1000 1500 2500 0 2500 0 2500 3500 4000 Target Defl 1850 3400 5700	0.1165 0.1830 0.0075 0.1355 0.1670 0.2455 0.3240 0.3250 0.3250 0.3250 0.3475 0.4875 0.5675 ection (in.) 0.2155 0.4655 0.4575	0.1515 0.2040 0.0263 0.1290 0.1580 0.2460 0.3025 0.4035 0.4035 0.4055 0.4060 0.4055 0.6480 0.25515 0.6480	0.0374 0.1344 0.1935 0.0170 0.0815 0.2065 0.2740 0.3538 0.3555 0.4420 0.5195 0.6078 0.2505 0.5025 1.0078		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1500 0 500 1000 2500 2500 2500 3000 3500 4000 0.25 0.5 1	1000 1500 0 500 1000 1500 2500 2500 3000 2500 3000 Target Defl 1850 3400 5700 Target	0.1165 0.1330 0.0075 0.0340 0.1355 0.1670 0.2455 0.3040 0.0215 0.3250 0.3940 0.4875 0.5675 ection (in.) 0.2155 0.4655 0.9705 Load	0.1515 0.2040 0.0265 0.1290 0.3580 0.2460 0.3025 0.4035 0.4035 0.4060 0.4900 0.5515 0.6480 0.2855 0.5395 1.0450	0.0344 0.1344 0.0815 0.0170 0.0815 0.2645 0.2744 0.3538 0.0335 0.3655 0.4420 0.5195 0.6078 0.2505 0.5025 1.0078		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1500 0 500 1000 2500 2500 0 2500 3000 3500 4000 0.25 0.5 1 6000	1000 1500 0 500 1000 2500 2500 0 2500 3000 3500 3000 3500 4000 Target Defin 1850 3400 5700 Target	0.1165 0.1830 0.0075 0.0340 0.1355 0.1670 0.2455 0.3040 0.0215 0.3250 0.3250 0.3940 0.4875 0.3940 0.4875 0.4875 0.2155 0.4655 0.9705 Load	0.1515 0.2040 0.0265 0.1290 0.3025 0.4060 0.4900 0.45515 0.6405 0.4060 0.45515 0.6480 0.25515 0.6480 0.2855 0.5395 1.0450	0.0324 0.1344 0.1935 0.0177 0.0815 0.2740 0.3538 0.0355 0.2740 0.3538 0.0355 0.4420 0.5195 0.6078 0.2505 0.5025 1.0078		

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-4 B
Date/Time Installed:	3/1/2021 14:35	Date/Time Tested:	10:15AM 3/6/21
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	8
Avg. Installation Rate (sec/ft.):	40.7	Pile Section	W6x9x15

Embedme	nt Data	Tensile Testing					
Depth (ft.)	Time (s)	Hold Time	Tanaat Laad (lba)	1 (()	Deflection 1 (in)	Deflection 2	Average
0	0	(min)	Target Load (IDS)	Load (IDS)	Deflection 1 (In.)	(in.)	Deflection (in.)
1	0	1	0	0	0.0000	0.0000	0.0000
2	0	1	250	300	0.0005	0.0005	0.0005
3	8.94	1	500	500	0.0010	0.0040	0.0025
4	32.29	1	1000	1000	0.0030	0.0050	0.0040
5	39.74	1	1500	1500	0.0070	0.0100	0.0085
6	51.06	1	2000	2000	0.0105	0.0150	0.0128
7	58.93	1	1500	1520	0.0095	0.0095	0.0095
8	53.08	1	1000	1000	0.0060	0.0065	0.0063
		1	500	540	0.0035	0.0030	0.0033
		1	250	240	0.0015	0.0015	0.0015
		1	0	0	0.0010	0.0010	0.0010
				Targe	t Deflection (in.)		
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
			-	1	Farget Load		-
		1	10000	10000	0.092	0.056	0.0740
Total Time (s) =	235.1	1	0	0	0.012	0.0105	0.0113
				La	teral Testing		
Time (s	econds)	Lateral Loa	ad Height Above	3	Deflection Gaus	e Height (in):	4
0 50	100	Gr	ade (ft):	5	Demettion daug	,e	•
0		Hold Time	Target Load (lbs)	Load (lbs)	Deflection 1 (in.)	Deflection 2	Average
		(min)				(in.)	Deflection (in.)
1		1	0	0	0.0000	0.0000	0.0000
		1	500	500	0.0685	0.0590	0.0638
2		1	1000	1000	0.1590	0.1145	0.1368
-		1	1500	1500	0.2035	0.1895	0.1965
		1	0	0	0.0150	0.0105	0.0128
3		1	500	500	0.1235	0.0405	0.0820
		1	1000	1000	0.1/20	0.1215	0.1468
2 4		1	1500	1500	0.2405	0.1650	0.2028
th (f		1	2000	2000	0.3075	0.2505	0.2790
a s		1	2300	2300	0.4045	0.3240	0.3045
		1	2500	2500	0.0360	0.0205	0.0285
		1	2000	2000	0.4090	0.3355	0.3723
6		1	3000	2500	0.5195	0.3300	0.4378
		1	4000	4000	0.3310	0.5320	0.5110
7				Targe	t Deflection (in.)	0.5520	0.0150
		1	0.25	1750	0.2795	0.228	0.2538
8		1	0.5	3400	0.5405	0.4585	0.4995
		1	1	5820	1.1095	0.8950	1.0023
		<u> </u>	· -	1 3020	Target Load	0.0000	1.0020
9		1	6000	-	-	-	-
		1	0	0	0.2165	0.119	0.16775

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-5 A
Date/Time Installed:	3/1/2021 12:30	Date/Time Tested:	3/4/2021 11:00
Pre-Auger (Y/N)?:	Ν	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	8
Avg. Installation Rate (sec/ft.):	35.8	Pile Section	W6x9x15

Average Deflection (in.) 0 0.0005 0.0008 0.0015 0.0023 0.0025 -0.0015 -0.0005 0 --0.0303 0.0090

> 4 Average

Deflection (in.) 0.0000

0.0660 0.1375 0.2103

0.0225 0.1205

0.1665 0.2293

0.2950 0.3805 0.0358 0.3993 0.4785

0.5795 0.6850

0.2588 0.5083

1.0143

Embedm	ient Data	Tensile Testing				
Depth (ft.)	Time (s)	Hold Time	Target Load		Deflection 1	Deflection 2
0	0	(min)	(lbs)	Load (lbs)	(in.)	(in.)
1	0	1	0	0	0	0
2	1.32	1	250	340	0	0.001
3	5.67	1	500	500	0.0005	0.001
4	17.23	1	1000	1000	0.0015	0.0015
5	28.84	1	1500	1540	0.0025	0.002
6	43.28	1	2000	2000	0.0025	0.0025
7	58.6	1	1500	-	-	-
8	61.05	1	1000	1140	0.0015	0.0015
		1	500	-	-	-
		1	250	240	0	0.001
		1	0	0	0	0
				Target D	eflection (in.)	
		1	0.5	-	-	-
		1	0.75	-	-	-
		1	1	-	-	-
				Tar	get Load	
		1	10000	10000	0.0305	0.03
Total Time (s) =	209	1	0	0	0.011	0.007
				Later	al Testing	
Time (seconds)	Lateral Lo	oad Height	3	Deflectio	on Gauge
0 20 41	D 60 80	Above G	rade (ft):	-	Heigh	it (in):
0		Hold Time	Target Load	Load (lbs)	Deflection 1	Deflection 2
		(min)	(lbs)		(in.)	(in.)
1		1	0	0	0	0
		1	500	500	0.086	0.046
2		1	1000	1000	0.1715	0.1035
		1	1500	1500	0.2566	0.164
		1	0	0	0.019	0.026
3		1	500	540	0.1465	0.0945
$ \rangle$		1	1000	1000	0.204	0.129
£ 4		1	1500	1580	0.277	0.1815
th (f		1	2000	2000	0.3515	0.2385
s Dep		1	2500	2500	0.4445	0.3165
		1	2500	2500	0.031	0.0403
		1	3000	2000	0.404	0.3343
6		1	3500	3500	0.540	0.411
	λ	1	4000	4000	0.7505	0.511
7		-	4000	Target D	eflection (in.)	0.0133
		1	0.25	1800	0 311	0 2065
8		1	0.5	3240	0.578	0.4385
		1	1	5440	1.046	0.9825
		-		Tar	get Load	0.0020
9		1	6000	-	-	-
		1	0	0	0.065	0.1255
			-			

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-5 B
Date/Time Installed:	3/1/2021 13:20	Date/Time Tested:	3/4/2021 11:00
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	1.75
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	8
Avg. Installation Rate (sec/ft.):	36.7	Pile Section	W6x9x15

Embeamen	t Data	Tensile Testing					
Depth (ft.)	Time (s)	Hold Time	Target Load	L = = = (11+ =)	Deflection 4 (in)		Average
0	0	(min)	(lbs)	Load (Ibs)	Deflection 1 (In.)	Deflection 2 (In.)	Deflection (in.)
1	0	1	0	0	0	0	0.0000
2	0	1	250	260	0.001	0.002	0.0015
3	9.02	1	500	520	0.001	0.003	0.0020
4	18.22	1	1000	1040	0.0015	0.005	0.0033
5	31.29	1	1500	1500	0.002	0.007	0.0045
6	45.25	1	2000	2020	0.003	0.009	0.0060
7	53.78	1	1500	-	-	-	-
8	62.68	1	1000	1120	0.002	0.0065	0.0043
		1	500	600	0.0015	0.0045	0.0030
		1	250	260	0.001	0.0045	0.0028
		1	0	0	0.0005	0.0025	0.0015
				Та	rget Deflection (in.)		
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
					Target Load		
		1	10000	10000	0.0325	0.02	0.0263
Total Time (s) =	211.22	1	0	0	0.0115	0.0105	0.0110
					Lateral Testing		
Time (se	conds)	Lateral Lo Above G	ad Height rade (ft):	3	Deflection Gaug	ge Height (in):	4
0 30	100	Hold Time	Target Load	Load (lbs)	Deflection 1 (in)	Deflection 2 (in)	Average
		(min)	(lbs)	LOAU (IDS)	Deflection 1 (in.)	Defiection 2 (III.)	Deflection (in.)
		(min) 1	(lbs) 0	0	0	0	Deflection (in.) 0.0000
1		(min) 1 1	(lbs) 0 500	0 500	0 0.067	0 0.069	Deflection (in.) 0.0000 0.0680
1		(min) 1 1 1	(lbs) 0 500 1000	0 500 1000	0 0.067 0.1405	0 0.069 0.136	Deflection (in.) 0.0000 0.0680 0.1383
2		(min) 1 1 1 1	(lbs) 0 500 1000 1500	0 500 1000 1500	0 0.067 0.1405 0.219	0 0.069 0.136 0.2085	Deflection (in.) 0.0000 0.0680 0.1383 0.2138
2		(min) 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0	0 500 1000 1500 0	0 0.067 0.1405 0.219 0.0106	0 0.069 0.136 0.2085 0.023	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.0168
2		(min) 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500	0 500 1000 1500 0 540	0 0.067 0.1405 0.219 0.0106 0.1205	0 0.069 0.136 0.2085 0.023 0.119	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.0168 0.1198
3		(min) 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500 1000	0 500 1000 1500 0 540 1000	0 0.067 0.1405 0.219 0.0106 0.1205 0.172	0 0.069 0.136 0.2085 0.023 0.119 0.164	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.2138 0.0168 0.1198 0.1680
1		(min) 1 1 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500 1000 1500	0 500 1000 1500 0 540 1000 1500	0 0.067 0.1405 0.219 0.0106 0.1205 0.172 0.242	0 0.069 0.136 0.2085 0.023 0.119 0.164 0.227	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.2138 0.0168 0.1198 0.1680 0.2345
		(min) 1 1 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500 1000 1500 2000	0 500 1000 1500 0 540 1000 1500 2000	0 0.067 0.1405 0.219 0.0106 0.1205 0.172 0.242 0.316	0 0.069 0.136 0.2085 0.023 0.119 0.164 0.227 0.297	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.0168 0.1198 0.1680 0.2345 0.3065
1 2 3 (1) 4 4 4 10 8		(min) 1 1 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500 1000 1500 2000 2500	0 500 1000 1500 0 540 1000 1500 2000 2500	0 0.067 0.1405 0.219 0.0106 0.1205 0.172 0.242 0.316 0.414	0 0.069 0.136 0.2085 0.023 0.119 0.164 0.227 0.297 0.3885	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.0168 0.1198 0.1680 0.2345 0.3065 0.4013
1 2 3 (1) 4 4 4 4 4 9 0 5		(min) 1 1 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500 1000 1500 2000 2500 0	0 500 1000 1500 0 540 1000 1500 2000 2500 0	0 0.067 0.1405 0.219 0.0106 0.1205 0.172 0.242 0.316 0.414 0.03	0 0.069 0.136 0.2085 0.023 0.119 0.164 0.227 0.297 0.3885 0.0305	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.0168 0.1198 0.1680 0.2345 0.3065 0.4013 0.0303
1 2 3 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(min) 1 1 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500 1000 1500 2000 2500 0 2500	0 500 1000 1500 0 540 1000 1500 2500 0 2500 0 2500	0 0.067 0.1405 0.219 0.0106 0.1205 0.172 0.242 0.316 0.414 0.03 0.438	0 0.069 0.136 0.2085 0.023 0.119 0.164 0.227 0.297 0.3885 0.0305 0.408	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.0168 0.1198 0.1680 0.2345 0.3065 0.4013 0.0303 0.4230
1 2 3 (ij) ij		(min) 1 1 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500 1000 1500 2500 0 2500 0 2500 3000	0 500 1000 1500 0 540 1000 1500 2000 2000 2500 0 2500 3000	0 0.067 0.1405 0.219 0.0106 0.1205 0.172 0.242 0.316 0.414 0.03 0.438 0.525	0 0.069 0.136 0.2085 0.023 0.119 0.164 0.227 0.297 0.3885 0.0305 0.408 0.4095	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.0168 0.1198 0.1680 0.2345 0.3065 0.4013 0.0303 0.4230 0.5123
1 2 3 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(min) 1 1 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1500 0 500 1500 1000 1500 2000 2500 0 2500 3000 3500	0 500 1000 1500 0 540 1000 1500 2500 2500 2500 0 2500 3000 3500	0 0.067 0.1405 0.219 0.0106 0.1205 0.172 0.242 0.316 0.414 0.03 0.438 0.525 0.631	0 0.069 0.136 0.2085 0.023 0.119 0.164 0.227 0.297 0.3885 0.0305 0.408 0.4095 0.6045	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.0168 0.1198 0.1680 0.2345 0.3065 0.4013 0.0303 0.4230 0.5123 0.6178
1 2 3 (1) 4 5 6		(min) 1 1 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500 1500 2000 2500 0 2500 0 3000 3500 4000	0 500 1000 1500 0 540 1000 1500 2000 2500 0 2500 3000 3500 4000	0 0.067 0.1405 0.219 0.0106 0.1205 0.172 0.242 0.316 0.414 0.03 0.438 0.525 0.631 0.75	0 0.069 0.136 0.2085 0.023 0.119 0.164 0.227 0.297 0.3885 0.0305 0.408 0.4095 0.6045 0.7195	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.0168 0.1198 0.1680 0.2345 0.3065 0.4013 0.3035 0.4013 0.4230 0.5123 0.6178 0.7348
1 2 3 (t) 4 5 6 7		(min) 1 1 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500 1500 1500 2500 2500 0 2500 3000 3500 4000	0 500 1000 1500 0 540 1500 2500 2500 2500 2500 3500 4000 Ta	0 0.067 0.1405 0.219 0.0106 0.1205 0.172 0.242 0.316 0.414 0.03 0.438 0.525 0.631 0.75 rget Deflection (in.)	0 0.069 0.136 0.2085 0.023 0.119 0.164 0.227 0.297 0.3885 0.0305 0.408 0.4095 0.6045 0.7195	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.0168 0.1198 0.1680 0.2345 0.3065 0.4013 0.3033 0.4230 0.5123 0.6178 0.7348
1 2 3 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(min) 1 1 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500 1000 2000 2500 0 2500 0 2500 3000 3500 0 2500 250	0 500 1000 1500 0 540 1000 1500 2000 2500 0 2500 0 2500 3000 3500 4000 Tai 1800	0 0.067 0.1405 0.219 0.0106 0.1205 0.172 0.242 0.316 0.414 0.03 0.438 0.438 0.525 0.631 0.75 rget Deflection (in.)	0 0.069 0.136 0.2085 0.023 0.119 0.164 0.227 0.297 0.3885 0.0305 0.408 0.4095 0.6045 0.7195	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.0168 0.1198 0.1680 0.2345 0.3065 0.4013 0.0303 0.4230 0.5123 0.6178 0.7348
1 2 3 (1) 1 4 4 4 6 7 8		(min) 1 1 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500 1500 2000 2500 2500 3000 3500 4000 4000 0.25 0.5	0 500 1000 1500 0 540 1000 1500 2000 2500 2500 2500 3000 3500 4000 Ta 1800 3000	0 0.067 0.1405 0.219 0.0106 0.1205 0.172 0.242 0.316 0.414 0.03 0.414 0.03 0.438 0.525 0.631 0.75 rget Deflection (in.) 0.275 0.525	0 0.069 0.136 0.2085 0.023 0.119 0.164 0.227 0.297 0.3885 0.0305 0.408 0.4995 0.6045 0.7195	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.0168 0.1198 0.1680 0.2345 0.3065 0.4013 0.0303 0.4230 0.5123 0.6178 0.7348 0.2665 0.5123
1 2 3 (1) 1 4 1 2 3 6 6 7 8		(min) 1 1 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500 1500 2500 2500 2500 3000 3500 4000 0 0 2500 3000 3500 4000 150 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 1500 0 540 1000 1500 2500 2500 2500 2500 3000 3500 4000 Tai 1800 3000 5160	0 0.067 0.1405 0.219 0.0106 0.1205 0.172 0.242 0.316 0.414 0.03 0.438 0.525 0.631 0.75 rget Deflection (in.) 0.275 0.525 1.0325	0 0.069 0.136 0.2085 0.023 0.119 0.164 0.227 0.297 0.3885 0.0305 0.408 0.4095 0.6045 0.7195 0.258 0.4995 0.258 0.4995	Deflection (in.) 0.0000 0.1383 0.2138 0.0168 0.1198 0.1680 0.2345 0.3065 0.4013 0.4013 0.4033 0.4230 0.5123 0.6178 0.7348 0.2665 0.5123 1.0165
1 2 3 (1) 4 1 4 7 6 7 8		(min) 1 1 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500 1500 2000 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 1500 2500 1500 2500 1000 1500	0 500 1000 1500 0 540 1000 1500 2000 2500 0 2500 3000 3500 4000 Tai 1800 3000 5160	0 0.067 0.1405 0.219 0.0106 0.1205 0.172 0.242 0.316 0.414 0.03 0.438 0.525 0.631 0.75 rget Deflection (in.) 0.275 1.0325 Target Load	0 0.069 0.136 0.2085 0.023 0.119 0.164 0.227 0.297 0.3885 0.0305 0.408 0.4095 0.6045 0.7195 0.258 0.4995 1.0005	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.0168 0.1198 0.1680 0.2345 0.3065 0.4013 0.3035 0.4013 0.4230 0.5123 0.6178 0.7348 0.2665 0.5123 1.0165
1 2 3 (1) (1) 4 4 6 7 8 9		(min) 1 1 1 1 1 1 1 1 1 1 1 1 1	(lbs) 0 500 1000 1500 0 500 2500 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 1000 10000 1000 1000 1000 1000 1000	0 500 1000 1500 0 540 1000 1500 2500 0 2500 0 2500 3500 4000 Ta 1800 3000 3000 3500 	0 0.067 0.1405 0.219 0.0106 0.1205 0.172 0.242 0.316 0.414 0.03 0.414 0.03 0.438 0.525 0.631 0.75 rget Deflection (in.) 0.275 0.525 1.0325 Target Load	0 0.069 0.136 0.2085 0.023 0.119 0.164 0.227 0.297 0.3885 0.0305 0.408 0.4095 0.6045 0.7195 0.258 0.4995 1.0005	Deflection (in.) 0.0000 0.0680 0.1383 0.2138 0.0168 0.1198 0.1680 0.2345 0.3065 0.4013 0.0303 0.4230 0.5123 0.6178 0.7348 0.2665 0.5123 1.0165

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-6 A
Date/Time Installed:	3/1/2021 7:30	Date/Time Tested:	11:20AM 3/5/21
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	3
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	11
Avg. Installation Rate (sec/ft.):	28.4	Pile Section	W6x9x15

Average Deflection (in.)

0.0000

0.0023

0.0050 0.0088 0.0128 0.0163 0.0145 0.0108 0.0060

0.0033

0.0015

-

-

0.0538 0.0085

4

Average Deflection (in.)

0.0000

0.1073

0.2245

0.3458

0.0518 0.1740

0.2725 0.3713

0.4820

0.5975 0.1033

0.6365

0.7555

0.9015

0.2630

0.5218

1.0073

Embedm	ent Data			Tensi	ile Testing				
Depth (ft.)	Time (s)	Hold Time	Target Load	Load (lbc)	Deflection 1	Deflection 2	ſ		
0	0	(min)	(lbs)	2000 (103)	(in.)	(in.)	Ľ		
1	0	1	0	0	0.0000	0.0000	Ĺ		
2	0	1	250	260	0.0020	0.0025			
3	0	1	500	540	0.0040	0.0060			
4	5.11	1	1000	1000	0.0065	0.0110			
5	10.65	1	1500	1500	0.0095	0.0160			
6	35.58	1	2000	2000	0.0115	0.0210			
7	38.06	1	1500	1540	0.0105	0.0185			
8	40.11	1	1000	1060	0.0075	0.0140			
9	41.47	1	500	520	0.0035	0.0085			
10	44.55	1	250	240	0.0010	0.0055	L		
.1	40.11	1	0	0	0.0000	0.0030			
				Target D	eflection (in.)				
		1	0.5	-	-	-	L		
		1	0.75	-	-	-	L		
		1	1	-	-	-	L		
				Tar	get Load		_		
		1	10000	10000	0.051	0.0565	L		
ime (s) =	255.64	1	0	0	0.0065	0.0105			
		·		Later	al Testing				
Time (s	econds)	Lateral Lo	ad Height	3	Deflectio	on Gauge			
20	40 60	Above G	rade (ft):	-	Heigh	it (in):	L		
		Hold Time	Target Load	Load (lbs)	Deflection 1	Deflection 2	١.		
		(min)	(lbs)	((in.)	(in.)	Ľ		
		1	0	0	0.0000	0.0000	L		
		1	500	500	0.1345	0.0800	L		
		1	1000	1000	0.2690	0.1800	L		
		1	1500	1500	0.4020	0.2895	L		
		1	0	0	0.0570	0.0465	L		
		1	500	500	0.2085	0.1395	L		
		1	1000	1000	0.3245	0.2205	L		
		1	1500	1500	0.4305	0.3120	L		
\sim		1	2000	2000	0.5480	0.4160	L		
		1	2500	2500	0.6660	0.5290	L		
		1	0	0	0.1160	0.0905	L		
		1	2500	2500	0.7010	0.5720	L		
		1	3000	3000	0.8190	0.6920	L		
		1	3500	3500	0.9575	0.8455	L		
		1	4000	-	-	-	L		
				Target D	eflection (in.)				
		1	0.25	1250	0.3075	0.2185	L		
	/	1	0.5	2150	0.5815	0.462	L		
		1	1	3900	1.0565	0.9580	L		
				Tar	get Load	1			
		1	6000	-	-	-	L		
		1	0	0	0 1000	0 2025			

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-6 B
Date/Time Installed:	3/1/2021 7:40	Date/Time Tested:	3/5/2021 11:35
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	11
Avg. Installation Rate (sec/ft.):	34.4	Pile Section	W6x9x15

Embedmen	t Data				Tensile Testing		
Depth (ft.)	Time (s)	Hold Time	Target Load	L = = = (11+ =)	Deflection 4 (in)		Average
0	0	(min)	(lbs)	Load (Ibs)	Deflection 1 (In.)	Deflection 2 (In.)	Deflection (in.)
1	0	1	0	0	0.0000	0.0000	0.0000
2	0	1	250	260	0.0015	0.0030	0.0023
3	5.85	1	500	520	0.0040	0.0060	0.0050
4	12.11	1	1000	1020	0.0070	0.0105	0.0088
5	32.58	1	1500	1500	0.0100	0.0140	0.0120
6	34.12	1	2000	2000	0.0120	0.0175	0.0148
7	36.54	1	1500	1500	0.0095	0.0130	0.0113
8	40.25	1	1000	1000	0.0065	0.0100	0.0083
9	45.96	1	500	560	0.0040	0.0085	0.0063
10	50.17	1	250	260	0.0010	0.0050	0.0030
11	52.05	1	0	0	0.0000	0.0030	0.0015
				Та	rget Deflection (in.)		
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
					Target Load		
		1	10000	10000	0.0115	0.025	0.0183
Total Time (s) =	303.78	1	0	0	0.0085	0.0085	0.0085
					Lateral Testing		
Time (se	conds)	Lateral Lo Above G	oad Height rade (ft):	3	Deflection Gaug	ge Height (in):	4
0		Hold Time (min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)
		1	0	0	0.0000	0.0000	0.0000
		1	500	500	0.1400	0.0475	0.0938
2		1	1000	1000	0.2550	0.1140	0.1845
		1	1500	1500	0.3610	0.2005	0.2808
		1	0	0	0.0515	0.1550	0.1033
4		1	500	500	0.1900	0.0825	0.1363
		1	1000	1000	0.2825	0.1685	0.2255
		1	1500	1500	0.3720	0.2600	0.3160
(#		1	2000	2000	0.4680	0.3870	0.4275
° bth		1	2500	2500	0.5790	0.4810	0.5300
ă		1	0	0	0.1070	0.0295	0.0683
		1	2500	2500	0.6250	0.5110	0.5680
8		1	3000	3000	0.7380	0.6230	0.6805
		1	3500	3500	0.8760	0.8205	0.8483
		1	4000	4000	1.0295	0.9355	0.9825
				Ta	rget Deflection (in.)		
10		1	0.25	1250	0.335	0.1985	0.2668
		1	0.5	2250	0.5485	0.4375	0.4930
	•	1	1	4120	1.0825	0.9555	1.0190
12					Target Load		
-*		1	6000	-	-	-	-
			0	0	0.175	0.0675	0 12125

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-7 A
Date/Time Installed:	3/1/2021 7:50	Date/Time Tested:	10:25am 3/5/21
Pre-Auger (Y/N)?:	Ν	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	10
Avg. Installation Rate (sec/ft.):	26.3	Pile Section	W6x9x15

Embedme	ent Data	Tensile Testing					
Depth (ft.)	Time (s)	Hold Time	Target Load		Deflection 1	Deflection 2	Average
0	0	(min)	(lbs)	Load (Ibs)	(in.)	(in.)	Deflection (in.)
1	0	1	0	0	0.0000	0.0000	0.0000
2	0	1	250	280	0.0030	0.0045	0.0038
3	4.58	1	500	540	0.0060	0.0085	0.0073
4	12.45	1	1000	1000	0.0100	0.0150	0.0125
5	18.75	1	1500	1500	0.0145	0.0215	0.0180
6	26.52	1	2000	2000	0.0185	0.0275	0.0230
7	30.98	1	1500	1500	0.0140	0.0215	0.0178
8	34.88	1	1000	1000	0.0120	0.0190	0.0155
9	36.25	1	500	540	0.0075	0.0125	0.0100
10	45.74	1	250	260	0.0040	0.0070	0.0055
		1	0	0	0.0010	0.0030	0.0020
				Target D	eflection (in.)		
		1	0.5		-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
				Tar	get Load		
		1	10000	10000	0.038	0.0805	0.0593
al Time (s) =	205.57	1	0	0	0.0015	0.009	0.0053
				Later	al Testing		
		Lateral Lo	ad Height	2	Deflectio	on Gauge	4
lime (se	200nds)	Above G	rade (ft):	3	Heigh	ıt (in):	4
		Hold Time	Target Load	Lood (lho)	Deflection 1	Deflection 2	Average
		(min)	(lbs)	Load (IDS)	(in.)	(in.)	Deflection (in.)
		1	0	0	0.0000	0.0000	0.0000
		1	500	500	0.0885	0.0965	0.0925
		1	1000	1000	0.1925	0.2030	0.1978
$ \lambda $		1	1500	1500	0.2930	0.3065	0.2998
$ \rangle$		1	0	0	0.0085	0.0155	0.0120
$ \rightarrow $		1	500	500	0.1085	0.1165	0.1125
		1	1000	1000	0.2055	0.2175	0.2115
		1	1500	1500	0.2895	0.3030	0.2963
		1	2000	2000	0.3895	0.4030	0.3963
		1	2500	2500	0.4850	0.5040	0.4945
		1	0	0	0.0200	0.0455	0.0328
\ \		1	2500	2500	0.5245	0.5455	0.5350
		1	3000	3000	0.6250	0.6545	0.6398
		1	3500	3500	0.7535	0.7920	0.7728
	V I	1	4000	4000	0.9120	0.9630	0.9375
	\mathbf{X}			Target D	eflection (in.)		
	`	1	0.25	1200	0.2455	0.2605	0.2530
		1	0.5	2550	0.49	0.515	0.5025
		1	1	4180	0.9825	1.0380	1.0103
				Tar	get Load		
		1	6000	-	-	-	-
		1	0	0	0.0905	0.0108	0.05065

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-7 B
Date/Time Installed:	3/1/2021 7:55	Date/Time Tested:	3/5/2021 10:10
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	3
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	10
Avg. Installation Rate (sec/ft.):	26.1	Pile Section	W6x9x15

Embedmen	it Data				Tensile Testing		
Depth (ft.)	Time (s)	Hold Time	Target Load	Lood (lbo)	Deflection 1 (in)	Deflection 2 (in)	Average
0	0	(min)	(lbs)	LOAD (IDS)	Deflection 1 (In.)	Deflection 2 (In.)	Deflection (in.)
1	0	1	0	0	0.0000	0.0000	0.0000
2	0	1	250	280	0.0010	0.0020	0.0015
3	0	1	500	500	0.0020	0.0045	0.0033
4	5.55	1	1000	1060	0.0035	0.0075	0.0055
5	13.67	1	1500	1520	0.0060	0.0100	0.0080
6	20.75	1	2000	2000	0.0070	0.0120	0.0095
7	30.66	1	1500	1540	0.0065	0.0105	0.0085
8	33.81	1	1000	1000	0.0030	0.0085	0.0058
9	45.67	1	500	520	0.0010	0.0055	0.0033
10	58.94	1	250	260	0.0005	0.0035	0.0020
		1	0	0	0.0000	0.0015	0.0008
				Та	rget Deflection (in.)		
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
					Target Load		
		1	10000	10000	0.0275	0.0215	0.0245
Total Time (s) =	209.05	1	0	0	0.0055	0.0045	0.0050
					Lateral Testing		
Time (se	conds)	Lateral Lo	ad Height	3	Deflection Gaug	ge Height (in):	4
0 20 40	60 80	Above G	rade (ft):				
0		Hold Time	larget Load	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average
		(11111)	(103)	0	0.0000	0.0000	Deflection (III.)
		1	500	500	0.0000	0.0000	0.0000
2		1	1000	1000	0.0505	0.1075	0.0820
		1	1000	1000	0.1375	0.2055	0.1715
		1	1300	1300	0.2280	0.0095	0.2045
		1	500	500	0.0215	0.0085	0.0150
		1	1000	1000	0.0520	0.1010	0.0905
		1	1500	1500	0.1055	0.1335	0.1825
Û.		1	2000	2000	0.3265	0.3810	0.3538
gth 0		1	2500	2500	0.4270	0.4845	0.5558
Dep		1	0	0	0.0530	0.0025	0.0278
		1	2500	2500	0.4675	0.5260	0.4968
		1	3000	3000	0.5775	0.6315	0.6045
°		1	3500	3500	0.7045	0.7640	0.7343
		1	4000	4000	0.8840	0.9295	0.9068
				Та	rget Deflection (in.)		
10		1	0.25	1500	0.2340	0.2795	0.2568
		1	0.5	2500	0.4675	0.5260	0.4968
		1	1	4260	0.9645	1.0435	1.0040
					Target Load		
12		1	6000	-	-	-	-
		1	0	0	0 123	0.059	0.091

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-8 A
Date/Time Installed:	3/1/2021 7:55	Date/Time Tested:	9:10AM 3/5/21
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	11
Avg. Installation Rate (sec/ft.):	30.2	Pile Section	W6x9x15

Embedme	nt Data	Tensile Testing					
Depth (ft.)	Time (s)	Hold Time	Target Load //b-	Load (lb-)	Deflection 1	Deflection 2	Average
0	0	(min)	Target Load (IDS)	Load (IDS)	(in.)	(in.)	Deflection (in
1	0	1	0	0	0.0000	0.0000	0.0000
2	0	1	250	240	0.0010	0.0010	0.0010
3	6.19	1	500	500	0.0050	0.0085	0.0068
4	13.54	1	1000	1000	0.0095	0.0155	0.0125
5	19.75	1	1500	1500	0.0130	0.0215	0.0173
6	25.21	1	2000	2000	0.0175	0.0290	0.0233
7	30.05	1	1500	1300	0.0135	0.0235	0.0185
8	36.16	1	1000	1000	0.0110	0.0210	0.0160
9	44.07	1	500	400	0.0040	0.0105	0.0073
10	47.05	1	250	240	0.0015	0.0080	0.0048
11	49.89	1	0	0	0.0000	0.0030	0.0015
				Target Def	ection (in.)		
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
				Targe	t Load		
		1	10000	10000	0.095	0.112	0.1035
otal Time (s) =	271.91	1	0	0	0.0325	0.0415	0.0370
				Lateral	Testing		
		Lateral Loa	d Height Above		Deflectio	on Gauge	
Time (se	conds)	Gr	Grade (ft):		Height (in):		4
0 20	40 60	Hold Time			Deflection 1	Deflection 2	Average
		(min)	Target Load (lbs)	Load (lbs)	(in.)	(in.)	Deflection (in
		1	0	0	0.0000	0.0000	0.0000
		1	0	0	0.0000	0.0000	0.0000
2		1 1 1	0 500 1000	0 500 1000	0.0000	0.0000 0.0570 0.1245	0.0000 0.0753 0.1513
2		1 1 1 1	0 500 1000 1500	0 500 1000 1500	0.0000 0.0935 0.1780 0.2620	0.0000 0.0570 0.1245 0.1865	0.0000 0.0753 0.1513 0.2243
2		1 1 1 1 1	0 500 1000 1500 0	0 500 1000 1500 0	0.0000 0.0935 0.1780 0.2620 0.0120	0.0000 0.0570 0.1245 0.1865 0.0220	0.0000 0.0753 0.1513 0.2243 0.0170
2		1 1 1 1 1 1	0 500 1000 1500 0 500	0 500 1000 1500 0 500	0.0000 0.0935 0.1780 0.2620 0.0120 0.1390	0.0000 0.0570 0.1245 0.1865 0.0220 0.9300	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345
2		1 1 1 1 1 1 1 1	0 500 1000 1500 0 500 1000	0 500 1000 1500 0 500 1000	0.0000 0.0935 0.1780 0.2620 0.0120 0.1390 0.2095	0.0000 0.0570 0.1245 0.1865 0.0220 0.9300 0.1375	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.1735
2		1 1 1 1 1 1 1 1 1	0 500 1000 1500 0 500 1000 1500	0 500 1000 1500 0 500 1000 1500	0.0000 0.0935 0.1780 0.2620 0.0120 0.1390 0.2095 0.2785	0.0000 0.0570 0.1245 0.1865 0.0220 0.9300 0.1375 0.1955	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.1735 0.2370
2		1 1 1 1 1 1 1 1 1 1	0 500 1000 1500 0 500 1000 1500 2000	0 500 1000 0 500 1000 1500 2000	0.0000 0.0935 0.1780 0.2620 0.0120 0.1390 0.2095 0.2785 0.3575	0.0000 0.0570 0.1245 0.1865 0.0220 0.9300 0.1375 0.1955 0.2615	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.1735 0.2370 0.3095
		1 1 1 1 1 1 1 1 1 1 1	0 500 1000 1500 0 500 1000 1500 2000 2500	0 500 1000 0 500 1000 1500 2000 2500	0.0000 0.0935 0.1780 0.2620 0.0120 0.1390 0.2095 0.2785 0.3575 0.4495	0.0000 0.0570 0.1245 0.1865 0.0220 0.9300 0.1375 0.1955 0.2615 0.3310	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.1735 0.2370 0.3095 0.3903
		1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 500 500 1000 1500 2000 2500 0	0 500 1000 500 500 1000 1500 2000 2500 0	0.0000 0.0935 0.1780 0.2620 0.0120 0.1390 0.2095 0.2785 0.3575 0.4495 0.0280	0.0000 0.0570 0.1245 0.1865 0.0220 0.9300 0.1375 0.1955 0.2615 0.3310 0.0375	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.2370 0.3095 0.3903 0.0328
2 4 4 (11)1da		1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 500 500 1000 1500 2000 2500 0 2500	0 500 1000 500 500 1000 1500 2500 0 2500	0.0000 0.0935 0.1780 0.2620 0.0120 0.1390 0.2095 0.2785 0.3575 0.4495 0.0280 0.4845	0.0000 0.0570 0.1245 0.1865 0.0220 0.9300 0.1375 0.1955 0.2615 0.3310 0.0375 0.3555	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.2370 0.3095 0.3095 0.3903 0.0328 0.4200
2 4 (11)106		1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 0 500 1500 1500 2500 2500 0 2500 3000	0 500 1000 0 500 1500 1500 2000 2500 0 2500 3000	0.0000 0.0935 0.1780 0.2620 0.0120 0.1390 0.2095 0.2785 0.3575 0.4495 0.0280 0.4845 0.5740	0.0000 0.0570 0.1245 0.1865 0.0220 0.9300 0.1375 0.1955 0.2615 0.3310 0.0375 0.3555 0.4305	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.1735 0.2370 0.3095 0.3903 0.3903 0.0328 0.4200 0.5023
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 500 500 1000 2000 2500 0 2500 0 2500 3000 3000	0 500 1000 500 500 1000 1500 2500 2500 0 2500 3500 3500	0.0000 0.0935 0.1780 0.2620 0.0120 0.1390 0.2095 0.2785 0.3575 0.4495 0.0280 0.4845 0.5740 0.6970	0.0000 0.0570 0.1245 0.1865 0.0220 0.9300 0.1375 0.1955 0.2615 0.3310 0.0375 0.3555 0.4305 0.5255	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.1735 0.2370 0.3095 0.3903 0.0328 0.4200 0.5023 0.6113
2 4 4 (1)104a0 8 8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 0 500 1000 1500 2500 0 2500 0 2500 3000 3500 3500	0 500 1000 1500 0 500 1000 1500 2500 0 2500 0 2500 3000 3500 3500	0.0000 0.0935 0.1780 0.2620 0.0120 0.1390 0.2095 0.2785 0.3575 0.3495 0.0280 0.4845 0.5740 0.6970 0.8160	0.0000 0.0570 0.1245 0.1865 0.0220 0.9300 0.1375 0.2615 0.2615 0.3310 0.0375 0.3555 0.4305 0.5255 0.6250	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.2370 0.3095 0.3903 0.0328 0.4200 0.5023 0.6113 0.7205
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 0 500 1000 1000 2000 2500 0 2500 3000 3500 4000	0 500 1000 500 500 1500 2500 2500 2500 2	0.0000 0.0935 0.1780 0.2620 0.0120 0.1390 0.2095 0.2785 0.3575 0.4495 0.0280 0.4845 0.5740 0.6970 0.8160 ection (in,)	0.0000 0.0570 0.1245 0.1865 0.0220 0.9300 0.1375 0.2615 0.3310 0.0375 0.3555 0.4305 0.5255 0.6250	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.2370 0.3095 0.3903 0.3903 0.0328 0.4200 0.5023 0.6113 0.7205
2 4 4 (P1) P6 6 8 10 10 10 10 10 10 10 10 10 10 10 10 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 0 500 1000 1500 2000 2500 0 2500 3000 3500 4000	0 500 1000 500 500 1500 2500 2500 0 2500 250	0.0000 0.0935 0.1780 0.2620 0.0120 0.1390 0.2095 0.2785 0.3575 0.4495 0.2785 0.3575 0.4495 0.2785 0.3575 0.4495 0.2780 0.2785 0.3575 0.4495 0.2785 0.5740 0.4845 0.5740 0.8160 ettion (in.) 0.2816	0.0000 0.0570 0.1245 0.0220 0.9300 0.1375 0.2615 0.3310 0.0375 0.3555 0.4305 0.4305 0.4305 0.5255 0.6250 0.2155	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.1735 0.2370 0.3395 0.3903 0.3903 0.3903 0.3028 0.4200 0.5023 0.6113 0.7205
2 4 4 (1)1010 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 1500 0 500 1000 1500 2000 2500 0 2500 3000 3500 4000 0.25 0.5	0 500 1000 500 500 2000 2500 0 2500 0 2500 3000 3500 4000 Target Deff 1600	0.0000 0.0935 0.1780 0.2620 0.0120 0.2095 0.2095 0.2785 0.3575 0.4495 0.3575 0.4495 0.0280 0.4845 0.5740 0.6970 0.8160 0.8160 0.8160 0.81500 0.81500 0.81500 0.81500 0.81500000000000000000000000000000000000	0.0000 0.0570 0.1245 0.0220 0.9300 0.1375 0.3955 0.2615 0.3310 0.0375 0.3555 0.4305 0.5255 0.6250 0.2155	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.1735 0.2370 0.3095 0.3903 0.0328 0.4200 0.5023 0.4203 0.5023 0.5023
2 4 4 (1)1040 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 1500 0 500 1000 1500 2500 0 2500 3000 3500 3500 3500 3500 3500 3500 1 1	0 500 1000 0 500 1500 2500 2500 2500 250	0.0000 0.0935 0.1780 0.2620 0.0120 0.2055 0.2785 0.2785 0.2785 0.2785 0.2785 0.2785 0.4495 0.0280 0.4845 0.5740 0.4845 0.5740 0.8160 0.8160 0.8150 0.8151 0.5740	0.0000 0.0570 0.1245 0.0220 0.9300 0.1375 0.2615 0.2615 0.3310 0.3755 0.4305 0.3555 0.4305 0.5255 0.6250	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.1735 0.2370 0.3095 0.3903 0.0328 0.4200 0.5023 0.6113 0.7205
2 4 4 (1)10460 8 10 10 10 10 10 10 10 10 10 10 10 10 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 1500 0 500 1000 2500 2500 0 2500 3000 3500 4000 0 0.25 0.5 1	0 500 1000 0 500 1500 2500 2500 2500 250	0.0000 0.0935 0.1780 0.2620 0.0120 0.2095 0.2095 0.2785 0.2785 0.2785 0.2785 0.2785 0.2785 0.2785 0.2785 0.2805 0.2805 0.4495 0.2805 0.4495 0.02805 0.4845 0.5740 0.8160 ection (n.) 0.2915 0.5740 1.1455 1.0457	0.0000 0.0570 0.1245 0.0220 0.9300 0.1375 0.2615 0.2615 0.3310 0.0375 0.2615 0.3310 0.0375 0.4305 0.5255 0.6250 0.2155 0.4305 0.2155 0.4305 0.8725	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.2370 0.3095 0.3903 0.3903 0.0328 0.4200 0.5023 0.6113 0.7205
2 4 4 (1) 10 (1) 10 (1) 10 (1) 10 (1) 10 (1) 10 (1) 10 (1) 10 (1) 10 (1) 10 (1) 10 (1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 0 500 1000 1500 2000 2500 0 2500 3000 3500 4000 0.25 0.5 1 500	0 500 1000 500 500 1500 1500 2500 0 2500 0 2500 3000 3500 4000 Target Defl 1600 3000 5180	0.0000 0.0935 0.1780 0.2620 0.0120 0.2095 0.2785 0.2785 0.2785 0.2785 0.2785 0.2785 0.2785 0.2785 0.2785 0.2785 0.2785 0.2785 0.2785 0.2785 0.2805 0.2805 0.5740 0.5740 0.5740 1.1455 t.toad	0.0000 0.0570 0.1245 0.0220 0.9300 0.1375 0.2615 0.3310 0.0375 0.2615 0.4305 0.4305 0.5255 0.6250 0.2155 0.4305 0.2155 0.4305	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.2370 0.3095 0.3903 0.0328 0.4200 0.5023 0.6113 0.7205 0.2535 0.5023 1.0090
2 4 4 6 8 10 12		1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 1500 0 500 1000 1500 2000 2500 0 2500 3000 3500 4000 0.25 0.5 1 1	0 500 1000 0 500 1500 2000 2500 2500 3000 3500 Target Defl 1600 3000 5180 Targe	0.0000 0.0935 0.1780 0.2620 0.0120 0.2095 0.2095 0.2785 0.2785 0.2785 0.4495 0.2785 0.4495 0.2805 0.4845 0.5740 0.4845 0.5740 0.8160 0.8160 0.8150 0.5740 1.1455 0.5740 1.1455 0.5740	0.0000 0.0570 0.1245 0.1265 0.0220 0.9300 0.1375 0.2615 0.3375 0.2615 0.3310 0.3755 0.3555 0.4305 0.6250 0.2155 0.4305 0.8725	0.0000 0.0753 0.1513 0.2243 0.0170 0.5345 0.2370 0.3095 0.3903 0.3903 0.0328 0.4200 0.5023 0.6113 0.7205 0.2535 0.5023 1.0090

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-8 B
Date/Time Installed:	3/1/2021 7:55	Date/Time Tested:	9:20AM 3/5/21
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	11
Avg. Installation Rate (sec/ft.):	29.6	Pile Section	W6x9x15

Embedmer	it Data	Tensile Testing					
Depth (ft.)	Time (s)	Hold Time	Target Load	Load (lbs)	Deflection 1 (in)	Deflection 2	Average
0	0	(min)	(lbs)	LUAU (IDS)	Deflection 1 (III.)	(in.)	Deflection (in.)
1	0	1	0	0	0.0000	0.0000	0.0000
2	0	1	250	300	0.0025	0.0030	0.0028
3	7.68	1	500	500	0.0035	0.0045	0.0040
4	17.31	1	1000	1000	0.0050	0.0085	0.0068
5	24.08	1	1500	1500	0.0085	0.0115	0.0100
6	26.7	1	2000	2000	0.0115	0.0150	0.0133
7	32.65	1	1500	1440	0.0080	0.0130	0.0105
8	35.03	1	1000	980	0.0055	0.0105	0.0080
9	36.92	1	500	580	0.0030	0.0080	0.0055
10	40.83	1	250	260	0.0020	0.0050	0.0035
11	44.94	1	0	0	0.0000	0.0030	0.0015
				Targe	t Deflection (in.)		
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
				1	arget Load		
		1	10000	10000	0.045	0.094	0.0695
Total Time (s) =	266.14	1	0	0	0.0425	0.0505	0.0465
				Lat	eral Testing		
Time (se	econds)	Lateral Load Height Above		3	Deflection Gaug	e Height (in):	4
0 20	40 60	Grad	e (π):			Deflection 2	A
0		Hold Time	larget Load	Load (lbs)	Deflection 1 (in.)	Ueflection 2	Average Deflection (in)
		()	(153)	0	0.0000	0.0000	0.0000
		1	500	500	0.0000	0.0620	0.0000
2		1	1000	1000	0.1810	0.1290	0.1550
		1	1500	1500	0.2790	0.2030	0.2410
		1	0	0	0.0160	0.0215	0.0188
4		1	500	500	0.1205	0.0960	0.1083
		1	1000	1000	0.2025	0.1525	0.1775
		1	1500	1500	0.2880	0.2170	0.2525
(j.		1	2000	2000	0.3770	0.2875	0.3323
bt 6		1	2500	2500	0.3620	0.3620	0.3620
ă		1	0	0	0.0400	0.0360	0.0380
		1	2500	2500		0.2055	0 4225
8		-	2500	2500	0.4815	0.5655	0.4333
		1	3000	3000	0.4815	0.3835	0.5093
		1 1	3000 3500	3000 3500	0.4815 0.5590 0.6650	0.4595	0.5093
		1 1 1 1	3000 3500 4000	3000 3500 4000	0.4815 0.5590 0.6650 0.7765	0.3855 0.4595 0.5500 0.6455	0.5093 0.6075 0.7110
		1 1 1 1	3000 3500 4000	2500 3000 3500 4000 Targe	0.4815 0.5590 0.6650 0.7765 t Deflection (in.)	0.3835 0.4595 0.5500 0.6455	0.5093 0.6075 0.7110
10		1 1 1 1 1	2500 3000 3500 4000 0.25	2500 3000 3500 4000 Targe 1500	0.4815 0.5590 0.6650 0.7765 t Deflection (in.) 0.2880	0.3833 0.4595 0.5500 0.6455 0.2170	0.5093 0.6075 0.7110 0.2525
10		1 1 1 1 1 1 1	2500 3000 3500 4000 0.25 0.5	2500 3000 3500 4000 Targe 1500 3000	0.4815 0.5590 0.6650 0.7765 t Deflection (in.) 0.2880 0.5590	0.3833 0.4595 0.5500 0.6455 0.2170 0.4595	0.5093 0.6075 0.7110 0.2525 0.5093
10		1 1 1 1 1 1 1 1	2500 3000 3500 4000 0.25 0.5 1	2500 3000 3500 4000 Targe 1500 3000 5560	0.4815 0.5590 0.6650 0.7765 t Deflection (in.) 0.2880 0.5590 1.1000	0.3833 0.4595 0.5500 0.6455 0.2170 0.4595 0.9005	0.5093 0.6075 0.7110 0.2525 0.5093 1.0003
10		1 1 1 1 1 1 1 1	2500 3000 3500 4000 0.25 0.5 1	2500 3000 3500 4000 Target 1500 3000 5560	0.4815 0.5590 0.6650 0.7765 t Deflection (in.) 0.2880 0.5590 1.1000 arget Load	0.3833 0.4595 0.5500 0.6455 0.2170 0.4595 0.9005	0.5093 0.6075 0.7110 0.2525 0.5093 1.0003
10		1 1 1 1 1 1 1 1	2500 3000 3500 4000 0.25 0.5 1 6000	2500 3000 3500 4000 Target 1500 3000 5560 T	0.4815 0.5590 0.6650 0.7765 t Deflection (in.) 0.2880 0.5590 1.1000 arget Load	0.5833 0.4595 0.5500 0.6455 0.2170 0.4595 0.9005	0.4333 0.5093 0.6075 0.7110 0.2525 0.5093 1.0003

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-9 A
Date/Time Installed:	3/1/2021 10:10	Date/Time Tested:	3/5/2021 7:50
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	8
Avg. Installation Rate (sec/ft.):	22.2	Pile Section	W6x9x15

Embedn	Embedment Data Tensile Testing						
Denth (ft.)	Time (s)	Hold Time	Target Load	. enone	Deflection 1	Deflection 2	Average
0	0	(min)	(lbs)	Load (lbs)	(in)	(in)	Deflection (in
1	0	1	0	0	0.0000	0.0000	0.0000
2	0	1	250	200	0.0000	0.0000	0.0000
2	2.0	1	230	500	0.0025	0.0055	0.0040
3	2.9		1000	1000	0.0043	0.0065	0.0003
4	19.42	1	1000	1000	0.0103	0.0155	0.0130
5	20.45	1	2000	2000	0.0100	0.0215	0.0188
7	20.1	1	2000	2000	0.0203	0.0275	0.0240
/ 0	20.50	1	1000	1000	0.0175	0.0250	0.0213
0	33.35	1	1000	1000	0.0120	0.0200	0.0100
		1	300	300	0.0080	0.0140	0.0100
			230	240	0.0013	0.0105	0.0080
			U	U Target Def	0.0000	0.0030	0.0015
		1	0.5	Target Der	ection (m.)		
			0.5	-	-	-	-
		1	0.75	-	-	-	-
			T	- Targo	-	-	-
		1	10000	10000	0.1095	0.1005	0 1000
	120.12	1	10000	10000	0.1085	0.1095	0.1090
i otal Time (s) =	130.12		U	Unterel	0.0305	0.042	0.0363
		1	d Hataba Abassa	Laterai	Deflection		1
Time ((seconds)	Lateral Loa	a Height Above	3	Deflectio	+ (in):	4
0 20	40 60	Hold Time	Target Load		Deflection 1	Dofloction 2	Average
-		(min)	(lbs)	Load (lbs)	(in)	(in)	Deflection (in
		1	0	0	0.0000	0.0000	Deficection (in
1		1	500	500	0.0000	0.0000	0.0885
		1	1000	1000	0.0875	0.0835	0.0885
2		1	1500	1500	0.2255	0.1040	0.2578
		1	1500	1300	0.2335	0.2800	0.2378
2		1	500	500	0.0405	0.0510	0.1365
		1	1000	1000	0.1215	0.1313	0.1978
		1	1500	1500	0.1555	0.2400	0.1578
£ 4		1	2000	2000	0.2040	0.3175	0.2508
the state of the s		1	2000	2000	0.3300	0.3335	0.3078
Š , De		1	2300	2300	0.4135	0.4320	0.4328
		1	2500	2500	0.0345	0.0445	0.0333
$\langle \rangle$		1	3000	3000	0.5120	0.5120	0.5593
6		1	3500	2500	0.5120	0.0005	0.5555
	\mathbf{X}	1	3300	4000	0.0035	0.7066	0.0371
7			4000	4000	0.7010	0.8135	0.7573
		1	0.25	1500	0.2255	0.2800	0.2570
		1	0.25	1500	0.2355	0.2800	0.2578
8			0.5	2760	0.4/1	0.548	0.5095
		1	1	5040	0.9400	1.0685	1.0043
				T			
9			6000	Targe	t Load		1
9		1	6000	Targe	t Load	-	-

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-9 B
Date/Time Installed:	3/1/2021 10:15	Date/Time Tested:	3/5/2021 8:10
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	8
Avg. Installation Rate (sec/ft.):	25.3	Pile Section	W6x9x15

Embedmer	it Data	Tensile Testing					
Depth (ft.)	Time (s)	Hold Time	Target Load	Lood (lbs)	Deflection 1 (in)	Deflection 2	Average
0	0	(min)	(lbs)	Luau (IDS)	Deflection 1 (III.)	(in.)	Deflection (in.)
1	0	1	0	0	0.0000	0.0000	0.0000
2	0	1	250	260	0.0010	0.0020	0.0015
3	7.14	1	500	500	0.0010	0.0040	0.0025
4	12.37	1	1000	1000	0.0035	0.0080	0.0058
5	25.39	1	1500	1500	0.0050	0.0105	0.0078
6	34.07	1	2000	2000	0.0065	0.0135	0.0100
7	34.36	1	1500	1560	0.0055	0.0120	0.0088
8	38.44	1	1000	1080	0.0035	0.0105	0.0070
		1	500	560	0.0010	0.0070	0.0040
		1	250	260	0.0005	0.0050	0.0028
		1	0	0	0.0000	0.0030	0.0015
				Targ	et Deflection (in.)		
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
					Target Load		
		1	10000	10000	0.0715	0.091	0.0813
Total Time (s) =	144.63	1	0	0	0.068	0.0695	0.0688
				L	ateral Testing		

Time (seconds)	Lateral L Above	Lateral Load Height Above Grade (ft):		Deflection Gaug	Deflection Gauge Height (in):		
20 40 00	Hold Time (min)	Target Load (lbs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)	
	1	0	0	0.0000	0.0000	0.0000	
	1	500	500	0.0815	0.0550	0.0683	
	1	1000	1000	0.1590	0.1240	0.1415	
	1	1500	1500	0.2270	0.1910	0.2090	
	1	0	0	0.0060	0.0505	0.0283	
	1	500	500	0.0935	0.1080	0.1008	
	1	1000	1000	0.1740	0.1635	0.1688	
	1	1500	1500	0.2465	0.2215	0.2340	
	1	2000	2000	0.3190	0.2860	0.3025	
	1	2500	2500	0.3930	0.3625	0.3778	
	1	0	0	0.0140	0.0525	0.0333	
	1	2500	2500	0.4065	0.3810	0.3938	
	1	3000	3000	0.4875	0.4550	0.4713	
	1	3500	3500	0.5750	0.5450	0.5600	
	1	4000	4000	0.6650	0.6360	0.6505	
			Targ	et Deflection (in.)			
	1	0.25	1800	0.278	0.234	0.2560	
1	1	0.5	3280	0.5125	0.501	0.5068	
	1	1	5640	1.0055	1.0185	1.0120	
				Target Load			
	1	6000	-	-	-	-	
	1	0	0	0.0245	0.1345	0.0795	

Depth (ft.)

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-10 A
Date/Time Installed:	3/1/2021 9:40	Date/Time Tested:	2:55PM 3/3/2021
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	9
Avg. Installation Rate (sec/ft.):	27.9	Pile Section	W6x9x15

Embedme	nt Data			Tensile	Testing		
Depth (ft.)	Time (s)	Hold Time	Target Load (lbs)	Load (lbc)	Deflection 1	Deflection 2	Average
0	0	(min)	Talget Load (IDS)	Luau (IDS)	(in.)	(in.)	Deflection
1	0	1	0	0	0	0	0.0000
2	0	1	250	240	0.0035	0.003	0.0033
3	6.11	1	500	540	0.0055	0.005	0.0053
4	11.77	1	1000	1000	0.0085	0.0085	0.0085
5	18.64	1	1500	1520	0.011	0.011	0.0110
6	26.85	1	2000	2000	0.013	0.013	0.0130
7	35.94	1	1500	1560	0.0115	0.012	0.0118
8	41.62	1	1000	980	0.0085	0.01	0.0093
9	54.67	1	500	500	0.0055	0.0075	0.0065
		1	250	260	0.0025	0.0065	0.0045
		1	0	0	0.0045	0.0045	0.0045
				Target Def	lection (in.)		
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
				Targe	t Load		
		1	10000	10000	0.0235	0.023	0.0233
al Time (s) =	195.6	1	0	0	0.012	0.0105	0.0113
ar rine (5)	15510	·	-	Lateral	Testing		
		Lateral Loa	d Height Above		Deflectio	n Gauge	
Time (se	conds)	Gr	ade (ft):	3	Heigh	t (in):	4
0 20	40 60	Hold Time			Deflection 1	Deflection 2	Average
		(min)	Target Load (lbs)	Load (lbs)	(in.)	(in.)	Deflection
1		1	0	0	0.0000	0.0000	0.0000
		1	500	500	0.0685	0.0695	0.0690
		1	1000	1020	0 1435	0 144	0 1438
2		1	1500	1560	0.225	0 2275	0 2263
		1	0	0	0.012	0.0325	0.0223
3		1	500	500	0.077	0.103	0.0900
		1	1000	1000	0.162	0.105	0.0500
•		1	1500	1500	0.2225	0.233	0.2778
		1	2000	2000	0.2225	0.233	0.2278
5		1	2500	2500	0.300	0.3105	0.3113
Λ.		1	2300	2,500	0.332	0.3813	0.3808
		1	2500	2540	0.027	0.040	0.0303
$ \rangle$		1	2000	2040	0.410	0.405	0.4123
, 🗌 🔪		1	3000	3000	0.5105	0.495	0.5056
	\	1	3300	4000	0.0185	0.3603	0.0023
			4000	4000	U./555	0.7005	0.7310
			0.25	arget Der	0.245	0.255	0.2500
			0.25	1800	0.245	0.255	0.2500
			0.5	3000	0.5165	0.495	0.5058
			1	5000	1.0555	0.9585	1.0070
			6000	Targe	τ μαα		
		1	6000	-	-	-	-
				-			

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-10 B
Date/Time Installed:	3/1/2021 9:50	Date/Time Tested:	3:05PM 3/3/2021
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2.5
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	9
Avg. Installation Rate (sec/ft.):	29.2	Pile Section	W6x9x15

Embedmen	it Data		Tensile Testing					
Depth (ft.)	Time (s)		Hold Time	Target Load	Load (lbs) Deflection 1 (in.)		Deflection 2	Average
0	0		(min)	(au)			(in.)	Deflection (In.)
1	0		1	0	0	0	0	0.0000
2	0		1	250	300	0.0065	0.005	0.0058
3	1.46		1	500	580	0.012	0.0105	0.0113
4	9.17		1	1000	980	0.0195	0.0105	0.0150
5	15.97		1	1500	1500	0.0275	0.026	0.0268
6	27.53		1	2000	2000	0.0355	0.0325	0.0340
7	36.48		1	1500	1460	0.0305	0.0285	0.0295
8	53.28		1	1000	1000	0.025	0.0235	0.0243
9	60.33		1	500	560	0.016	0.0135	0.0148
			1	250	280	0.0105	0.0075	0.0090
			1	0	0	0.0035	0.0005	0.0020
					Targ	et Deflection (in.)		
			1	0.5	-	-	-	-
			1	0.75	-	-	-	-
			1	1	-	-	-	-
			1	10000	10000	0.112	0.0875	0.0998
Total Time (s) =	204.22		1	0	0	0.009	0.0005	0.0048
		Lateral Testing						

Time (seconds)	Time (seconds) Above Grade (ft):		3	Deflection Gaug	e Height (in):	4
	Hold Time (min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)
	1	0	0	0.0000	0.0000	0.0000
	1	500	500	0.0575	0.089	0.0733
	1	1000	1020	0.14	0.216	0.1780
	1	1500	1560	0.233	0.32	0.2765
	1	0	0	0.001	0.04	0.0205
	1	500	500	0.062	0.16	0.1110
	1	1000	1000	0.1625	0.262	0.2123
	1	1500	1500	0.2325	0.3395	0.2860
	1	2000	2000	0.3325	0.44	0.3863
	1	2500	2500	0.4335	0.5505	0.4920
	1	0	0	0.029	0.0395	0.0343
	1	2500	2540	0.401	0.42	0.4105
	1	3000	3000	0.515	0.5305	0.5228
	1	3500	3500	0.6165	0.6285	0.6225
	1	4000	4000	0.751	0.7585	0.7548
			Targ	et Deflection (in.)		
	1	0.25	1400	0.2105	0.2885	0.2495
	1	0.5	2550	0.4455	0.5685	0.5070
	1	1	5000	1.013	1.025	1.0190
				Target Load		
	1	6000	-	-	-	-
	1	0	0	0.0785	0.0855	0.082

Depth (ft.)

10

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-11 A
Date/Time Installed:	3/1/2021 9:00	Date/Time Tested:	2:10PM 3/3/2021
Pre-Auger (Y/N)?:	Ν	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	9
Avg. Installation Rate (sec/ft.):	27.9	Pile Section	W6x9x15

Embedme	ent Data			Tensile	Testing	
Depth (ft.)	Time (s)	Hold Time	Target Load	Load (lbs)	Deflection 1	Deflection 2
0	0	(min)	(lbs)	Load (Ibs)	(in.)	(in.)
1	0	1	0	0	0	0
2	0	1	250	300	0.001	0.0005
3	6.11	1	500	520	0.001	0
4	11.77	1	1000	1000	0.003	0.001
5	18.64	1	1500	1540	0.003	0.0015
6	26.85	1	2000	2100	0.0035	0.0025
7	35.94	1	1500	1480	0.003	0.002
8	41.62	1	1000	820	0.0025	0.001
9	54.67	1	500	480	0.0015	0.001
-		1	250	260	0.001	0.001
		1	0	0	0	0.0005
			-	Target Def	lection (in.)	
		1	0.5	-	-	-
		1	0.75	-	-	-
		1	1	-	-	-
		1		Targe	t Load	ı
		1	10000	10000	0.035	0.0125
Time (s) =	189.49	1	0	0	0.0085	0.003
- \-/		·		Lateral	Testing	
		Lateral	Load Height		Deflectio	on Gauge
Time (se	econds)	Above	Grade (ft):	3	Heigh	t (in):
20	4U 60	Hold Time	Target Load		Deflection 1	Deflection 2
		(min)	(lbs)	Load (lbs)	(in.)	(in.)
		1	0	0	0	0
		1	500	500	0.0565	0.1
		1	1000	1000	0.138	0.189
		1	1500	1500	0.208	0.2595
		1	0	0	0.016	0.0235
		1	500	500	0.084	0.1435
		1	1000	1000	0.154	0.214
		1	1500	1500	0.2155	0.273
		1	2000	2000	0.2895	0.3445
- \		1	2500	2500	0.3565	0.416
		1	0	0	0.037	0.036
$ \rightarrow $		1	2500	2500	0.372	0.4475
		1	3000	3060	0.473	0.5745
`		1	3500	3520	0.545	0.6705
	λ	1	4000	4000	0.6385	0.7995
	λ.			Target Def	lection (in.)	
		1	0.25	1740	0.236	0.2885
	$ \rangle$	1	0.5	2960	0.456	0 5585
	`	1	1	4820	0.899	1 1035
			-	Targe	t Load	1.1055
		I I	6000	. arge		
		1 1	6000	-	-	-
		1	6000	-	-	- 0.116

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-11 B
Date/Time Installed:	3/1/2021 9:20	Date/Time Tested:	2:25PM 3/3/2021
Pre-Auger (Y/N)?:	Ν	Pushed to Depth (ft.):	2.5
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	9
Avg. Installation Rate (sec/ft.):	29.1	Pile Section	W6x9x15

Embedmen	it Data		Tensile Testing					
Depth (ft.)	Time (s)	н	lold Time (min)	Target Load	Load (lbs) Deflection 1 (in.)		Deflection 2	Average Deflection (in)
1	0		1	(153)	0	0	0	0.0000
2	0	-	1	350	0	0	0	0.0000
2	1.46	_	1	230	-	- 0.0015	-	-
3	1.40	_	1	1000	440	0.0015	0.0055	0.0023
4	9.17		1	1000	1000	0.0025	0.0055	0.0040
5	15.67		1	1500	1500	0.0035	0.0065	0.0050
6	27.53		1	2000	2000	0.005	0.008	0.0065
7	36.48		1	1500	1580	0.0045	0.0075	0.0060
8	53.26		1	1000	980	0.0045	0.006	0.0053
9	60.33		1	500	450	0.004	0.0045	0.0043
			1	250	260	0.004	0.004	0.0040
			1	0	0	0.003	0.003	0.0030
					Targe	et Deflection (in.)		
			1	0.5	-	-	-	-
			1	0.75	-	-	-	-
			1	1	-	-	-	-
						Target Load		
			1	10000	10000	0.0555	0.0125	0.0340
Total Time (s) =	202.44		1	0	0	0.0215	0.0115	0.0165
					La	teral Testing		
		_						

Tim

Depth (ft.) v

e (seconds)	Lateral Above	Load Height Grade (ft):	3	Deflection Gaug	e Height (in):	4	
	Hold Time (min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)	
	1	0	0	0	0	0.0000	
	1	500	500	0.04	0.138	0.0890	
	1	1000	1000	0.11	0.2405	0.1753	
	1	1500	1500	0.1835	0.3305	0.2570	
	1	0	0	0.0435	0.0075	0.0255	
	1	500	500	0.0105	0.171	0.0908	
	1	1000	1000	0.1555	0.268	0.2118	
	1	1500	1500	0.212	0.344	0.2780	
	1	2000	2000	0.293	0.436	0.3645	
	1	2500	2500	0.3685	0.523	0.4458	
	1	0	0	0.0655	0.035	0.0503	
	1	2500	2500	0.408	0.5405	0.4743	
	1	3000	3060	0.514	0.673	0.5935	
	1	3500	3520	0.586	0.76	0.6730	
	1	4000	4000	0.6805	0.8735	0.7770	
			Targe	et Deflection (in.)			
	1	0.25	1500	0.1835	0.3305	0.2570	
	1	0.5	2780	0.438	0.5875	0.5128	
	1	1	4820	0.8995	1.129	1.0143	
				Target Load			
	1	6000	-	-	-	-	
	1	0	0	0 111	0 1025	0 10675	

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-12 A
Date/Time Installed:	3/1/2021 8:30	Date/Time Tested:	1PM 3/4/21
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	9
Avg. Installation Rate (sec/ft.):	34.2	Pile Section	W6x9x15

Embedme	ent Data			Tensile	Testing		
Depth (ft.)	Time (s)	Hold Time			Deflection 1	Deflection 2	Average
0	0	(min)	Target Load (lbs)	Load (lbs)	(in.)	(in.)	Deflection (in.)
1	0	1	0	0	0	0	0.0000
2	0	1	250	260	0.002	0.002	0.0020
3	6.77	1	500	520	0.004	0.0045	0.0043
4	12 54	1	1000	1000	0.0085	0.0085	0.0085
5	26.98	1	1500	1500	0.012	0.0135	0.0128
6	29.95	1	2000	2000	0.0155	0.0175	0.0165
7	42.25	1	1500	-	-	-	-
	55.62	1	1000	900	0.0085	0.0105	0.0095
	64.92	1	500	540	0.005	0.0085	0.0068
	UNSE	1	250	260	0.0015	0.0055	0.0035
		1	0	0	0.0015	0.003	0.0023
			Ŭ	Target Defl	ection (in.)	0.005	0.0025
		1	0.5	-	-		-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
			-	Target	Load		I
		1	10000	10000	0.025	0.0585	0.0418
ne (s) =	239.03	1	0	0	0.023	0.0275	0.0253
(3) =	233.03		ů	Lateral	Testing	0.0275	0.0255
		Latoral Lo	d Hoight Abovo	Luterui	Doflactic	n Cauro	
Time (se	econds)	Gr	ade (ft):	3	Heigh	t (in).	4
20 40	60 80	Hold Time	uuc (11).		Deflection 1	Deflection 2	Average
		(min)	Target Load (Ibs)	Load (lbs)	(in.)	(in.)	Deflection (in.)
		1	0	0	0	0	0.0000
		1	500	520	0.0585	0 103	0.0808
		1	1000	920	0.0385	0.105	0.0000
		1	1500	1600	0.2335	0.2955	0.2645
		1	0	1000	0.2333	0.2333	0.0190
		1	500	480	0.0235	0.1055	0.0930
		1	1000	1080	0.1655	0.2175	0.0555
+		1	1500	1540	0.1055	0.2173	0.2575
$\langle $		1	2000	2060	0.2085	0.3685	0.3385
+		1	2500	2520	0.3005	0.3003	0.3303
		1	2500	0	0.3803	0.0105	0.0335
		1	2500	2540	0.0473	0.0193	0.4390
		1	3000	3000	0.413	0.405	0.5137
		1	3500	3520	0.400	0.5554	0.6060
		1	4000	4040	0.6845	0.7325	0.7085
	\mathbf{X}		4000	Target Defl	ection (in)	0.7525	0.7005
	\mathbf{i}	1	0.25	1600	0 2335	0 2955	0 2645
	λ	1	0.25	2900	0.2333	0.2333	0.2043
	`	1	1	5250	0.4003	1 0335	1 0155
				Target	Load	1.0333	1.0100
		1	6000	-		-	-
		1	0	0	0 102	0.0205	0.06125

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-12 B
Date/Time Installed:	3/1/2021 8:40	Date/Time Tested:	1:20PM 3/4/21
Pre-Auger (Y/N)?:	Ν	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	9
Avg. Installation Rate (sec/ft.):	42.6	Pile Section	W6x9x15

Embedment Data		1	Tensile Testing						
Depth (ft.) 0	Time (s) 0		Hold Time (min)	Target Load (lbs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)	
1	0		1	0	0	0	0	0.0000	
2	0		1	250	280	0.0015	0.0045	0.0030	
3	7.85	; 7)	1	500	520	0.0045	0.0085	0.0065	
4	19.65		1	1000	1060	0.0115	0.0165	0.0140	
5	29.87		1	1500	1540	0.0165	0.024	0.0203	
6	44.39		1	2000	2000	0.022	0.032	0.0270	
7	52.37		1	1500	1480	0.017	0.027	0.0220	
8	68.25		1	1000	1000	0.0115	0.02	0.0158	
9	75.55		1	500	520	0.0045	0.012	0.0083	
			1	250	260	0.001	0.0085	0.0048	
			1	0	0	0.0025	0.0045	0.0035	
			Target Deflection (in.)						
			1	0.5	-	-	-	-	
			1	0.75	-	-	-	-	
			1	1	-	-	-	-	
			Target Load						
			1	10000	10000	0.097	0.069	0.0830	
Total Time (s) =	297.93		1	0	0	0.0065	0.012	0.0093	
			Lateral Testing						

0	20	40	60	80
0				
1				
2				
4	\setminus			
5				
6				
7				
8				
9				/

		La	iteral Testing		
Lateral Load Height Above Grade (ft):		3	Deflection Gaug	4	
Hold Time (min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)
1	0	0	0	0	0.0000
1	500	520	0.077	0.077	0.0770
1	1000	980	0.1465	0.1435	0.1450
1	1500	1600	0.238	0.2435	0.2408
1	0	0	0.025	0.0235	0.0243
1	500	480	0.0875	0.09	0.0888
1	1000	1080	0.1695	0.175	0.1723
1	1500	1540	0.227	0.227	0.2270
1	2000	2060	0.3965	0.3175	0.3570
1	2500	2520	0.364	0.3955	0.3798
1	0	0	0.0345	0.05	0.0423
1	2500	2540	0.3895	0.425	0.4073
1	3000	3000	0.462	0.5011	0.4816
1	3500	3520	0.55	0.603	0.5765
1	4000	4040	0.654	0.7185	0.6863
		Targe	et Deflection (in.)		
1	0.25	1740	0.2565	0.2715	0.2640
1	0.5	3050	0.478	0.5179	0.4980
1	1	5200	0.9325	1.0735	1.0030
			Target Load		
1	6000	-	-	-	-
1	0	0	0.0565	0.077	0.06675

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-13 A
Date/Time Installed:	2/27/2021 13:30	Date/Time Tested:	2:15PM 3/3/2021
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	8
Avg. Installation Rate (sec/ft.):	16.2	Pile Section	W6x9x15

	ent Data			Tensile	e Testing		
Depth (ft.)	Time (s)	Hold Time	T		Deflection 1	Deflection 2	Average
0	0	(min)	Target Load (Ibs)	Load (Ibs)	(in.)	(in.)	Deflection (in.
1	0	1	0	0	0	0	0.0000
2	0	1	250	300	0.007	0.0035	0.0053
3	5.53	1	500	540	0.012	0.0085	0.0103
4	10.65	1	1000	1000	0.0215	0.0175	0.0195
5	14.78	1	1500	1500	0.0315	0.0285	0.0300
6	19.65	1	2000	2020	0.043	0.0405	0.0418
7	21.85	1	1500	1460	0.0375	0.0345	0.0360
8	24.88	1	1000	1080	0.031	0.027	0.0290
	21100	1	500	480	0.019	0.012	0.0155
		1	250	240	0.013	0.006	0.0095
		1	0	0	0.0075	0.0005	0.0040
		-	0	Target De	flection (in.)	0.0005	0.0040
		1	0.5	-	-	-	-
			0.75		-	-	-
			1		-	-	-
			+	Targ	et Load		
		1	10000	10000	0.14	0.165	0 15 25
atal Time (a) -	07.24	1	10000	10000	0.14	0.105	0.1323
otal filme (s) =	97.34	1	U	U	0.002	0.0145	0.0083
		Laterality	d Hataba Abassa	Latera	Tresung		
Time (se	econds)	Lateral Loa		3	Deflection Ga	iuge neight	4
0 10	20 30	Gr			(in)		
0		Hold Time	Target Load (lbs)	Load (lbs)	Deflection 1	Deflection 2	Average Deflection (in
		(1111)			(11.)	(11.)	Denection (in.
1		1	0	0	0	0	0.0000
			1 / / /				
		1	500	500	0.089	0.1295	0.1093
2		1	1000	500 1000	0.089 0.164	0.1295 0.256	0.1093 0.2100
2		1 1 1	1000 1500	500 1000 1500	0.089 0.164 0.238	0.1295 0.256 0.368	0.1093 0.2100 0.3030
2		1 1 1 1	1000 1500 0	500 1000 1500 0	0.089 0.164 0.238 0.012	0.1295 0.256 0.368 0.038	0.1093 0.2100 0.3030 0.0250
3		1 1 1 1 1	1000 1500 0 500	500 1000 1500 0 500	0.089 0.164 0.238 0.012 0.112	0.1295 0.256 0.368 0.038 0.1975	0.1093 0.2100 0.3030 0.0250 0.1548
2		1 1 1 1 1 1	300 1000 1500 0 500 1000	500 1000 1500 0 500 1000	0.089 0.164 0.238 0.012 0.112 0.186	0.1295 0.256 0.368 0.038 0.1975 0.3085	0.1093 0.2100 0.3030 0.0250 0.1548 0.2473
2 3 4		1 1 1 1 1 1 1	300 1000 1500 0 500 1000 1500	500 1000 1500 0 500 1000 1500	0.089 0.164 0.238 0.012 0.112 0.186 0.249	0.1295 0.256 0.368 0.038 0.1975 0.3085 0.3975	0.1093 0.2100 0.3030 0.0250 0.1548 0.2473 0.3233
2 3 4		1 1 1 1 1 1 1 1 1	300 1000 1500 0 500 1000 1500 2000	500 1000 1500 0 500 1000 1500 2000	0.089 0.164 0.238 0.012 0.112 0.186 0.249 0.3385	0.1295 0.256 0.368 0.038 0.1975 0.3085 0.3975 0.511	0.1093 0.2100 0.3030 0.0250 0.1548 0.2473 0.3233 0.4248
2 3 4		$ \begin{array}{r} 1 \\ $	500 1000 0 500 1000 1500 2000 2500	500 1000 1500 0 500 1000 1500 2000 2500	0.089 0.164 0.238 0.012 0.112 0.186 0.249 0.3385 0.471	0.1295 0.256 0.368 0.038 0.1975 0.3085 0.3975 0.511 0.662	0.1093 0.2100 0.3030 0.0250 0.1548 0.2473 0.3233 0.4248 0.5665
2 3 4 5		$ \begin{array}{c} 1 \\ $	500 1000 0 500 1000 1500 2000 2500 0	500 1000 1500 0 500 1000 1500 2000 2500 0	0.089 0.164 0.238 0.012 0.112 0.186 0.249 0.3385 0.471 0.02	0.1295 0.256 0.368 0.038 0.1975 0.3085 0.3975 0.511 0.662 0.062	0.1093 0.2100 0.3030 0.0250 0.1548 0.2473 0.3233 0.4248 0.5665 0.0410
2 3 4 5 5		1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 0 500 1000 1500 2000 2500 0 2500	500 1000 1500 0 500 1000 1500 2000 2500 0 2500	0.089 0.164 0.238 0.012 0.112 0.186 0.249 0.3385 0.471 0.02 0.505	0.1295 0.256 0.368 0.038 0.1975 0.3085 0.3975 0.511 0.662 0.062 0.7065	0.1093 0.2100 0.3030 0.0250 0.1548 0.2473 0.3233 0.4248 0.5665 0.0410 0.6058
2 3 4 5 6		1 1 1 1 1 1 1 1 1 1 1 1 1 1	300 1000 1500 0 500 1000 1500 2000 2500 0 2500 3000	500 1000 1500 0 500 1000 1500 2000 2500 0 2500 3000	0.089 0.164 0.238 0.012 0.112 0.186 0.249 0.3385 0.471 0.02 0.505 0.615	0.1295 0.256 0.368 0.038 0.1975 0.3085 0.3975 0.511 0.662 0.062 0.7065 0.83	0.1093 0.2100 0.3030 0.0250 0.1548 0.2473 0.3233 0.4248 0.5665 0.0410 0.6058 0.7225
2 3 4 6 6		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 0 500 1500 2500 2500 2500	500 1000 1500 500 1500 1500 2000 2500 0 2500 0 2500 3000 3500	0.089 0.164 0.238 0.012 0.112 0.186 0.249 0.3385 0.471 0.02 0.505 0.615 0.765	0.1295 0.256 0.368 0.038 0.1975 0.3085 0.3975 0.511 0.662 0.7065 0.83 0.984	0.1093 0.2100 0.0250 0.01548 0.2473 0.3233 0.4248 0.5665 0.0410 0.6058 0.7225 0.8745
2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 0 500 1500 2500 2500 0 2500 0 2500 3000 3500 -	500 1000 1500 500 1000 1500 2000 2500 0 2500 3000 3500	0.089 0.164 0.238 0.012 0.112 0.186 0.249 0.3385 0.471 0.02 0.505 0.615 0.615 0.765	0.1295 0.256 0.368 0.038 0.1975 0.3085 0.3975 0.511 0.662 0.062 0.7065 0.83 0.984	0.1093 0.2100 0.3030 0.0250 0.1548 0.2473 0.3233 0.4248 0.5665 0.4248 0.5665 0.4410 0.6058 0.7225 0.7225
2 3 4 4 5 5 6 7 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -	500 1000 1500 500 1000 2500 2500 0 2500 3000 3500 -	500 1000 1500 0 500 1500 2500 2500 0 2500 3000 3500 - Target De	0.089 0.164 0.238 0.012 0.112 0.186 0.249 0.3385 0.471 0.02 0.505 0.615 0.615 0.765 -	0.1295 0.256 0.368 0.038 0.1975 0.3085 0.3975 0.511 0.662 0.062 0.7065 0.83 0.984 -	0.1093 0.2100 0.3030 0.1548 0.2473 0.3233 0.4248 0.5665 0.0410 0.6058 0.7225 0.8745
2 3 4 4 5 5 6 7 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 0 500 1000 2000 2500 0 2500 3000 3500 - 0.25	500 1000 500 500 1000 1500 2000 2500 0 2500 3000 3500 - Target De 1350	0.089 0.164 0.238 0.012 0.112 0.186 0.249 0.3385 0.471 0.02 0.505 0.615 0.765 - flection (in.) 0.204	0.1295 0.256 0.368 0.038 0.1975 0.3085 0.3975 0.511 0.662 0.7065 0.83 0.984 - 0.315	0.1093 0.2100 0.3030 0.0250 0.1548 0.2473 0.3233 0.4248 0.5665 0.0410 0.6058 0.7225 0.8745
2 3 4 5 5 6 7 8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 0 500 1000 1500 2000 2500 0 2500 3000 3500 - 0.25 0.5	500 1000 0 500 1000 2000 2500 0 2500 0 2500 3000 3000 3500 - Target De 1350 2360	0.089 0.164 0.238 0.012 0.112 0.386 0.249 0.3385 0.471 0.02 0.505 0.615 0.765 - flection (in.) 0.204 0.419	0.1295 0.256 0.368 0.038 0.1975 0.3085 0.3975 0.3075 0.511 0.662 0.7065 0.7065 0.83 0.83 0.884 -	0.1093 0.2100 0.3030 0.0250 0.1548 0.2473 0.3233 0.4248 0.5665 0.0410 0.6058 0.7225 0.8745 -
2 3 4 5 6 7 8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 0 500 1000 1500 2500 0 2500 3000 - 0.25 0.5 1	500 1000 0 500 1000 2000 2500 0 2500 0 2500 3500 	0.089 0.164 0.238 0.012 0.112 0.186 0.249 0.3385 0.471 0.02 0.505 0.615 0.765 - - flection (in.) 0.204 0.204 0.419 0.89	0.1295 0.256 0.368 0.038 0.1975 0.3085 0.3975 0.511 0.662 0.062 0.7065 0.83 0.984 - 0.315 0.603 1.1355	0.1093 0.2100 0.3030 0.0250 0.1548 0.2473 0.3233 0.4248 0.5665 0.0410 0.6058 0.7225 0.8745 - - 0.2595 0.2595 0.5110 1.0128
		1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 0 500 1000 1500 2500 0 2500 3000 3500 3500 - - 0.25 0.5 1	500 1000 1500 0 500 1500 2500 2500 2500 3000 3500 - Target De 1350 2360 3800 Target De	0.089 0.164 0.238 0.012 0.112 0.186 0.249 0.3385 0.471 0.02 0.505 0.615 0.615 0.615 - - flection (in.) 0.204 0.419 0.89 et Load	0.1295 0.256 0.368 0.038 0.1975 0.3085 0.3975 0.511 0.662 0.062 0.7065 0.83 0.984 - - 0.315 0.603 1.1355	0.1093 0.2100 0.3030 0.0250 0.1548 0.2473 0.3233 0.4248 0.5665 0.0410 0.6058 0.7225 0.8745 0.8745 0.2595 0.5110 1.0128
2 3 4 6 7 8 9		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 0 500 1000 2000 2500 0 2500 3000 3500 - 0 0 2500 3000 3500 - 1 0 0 500 3500 1000 1500 1000 1500 1000 1500 1000 1500 1000 1500 1000 1500 1000 1500 1000 1500 1000 1500 1000 1500 1000 1500 1000 1500 1500 1000 1500 1000 1500 1500 1000 1500 1500 1000 1500 1500 1500 1500 1000 1500 1500 1500 1000 1500	500 1000 1500 0 500 1000 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 1350 2360 3350 2360 3350 2360 3350 2360 3500 2360 3500 2360 3500 2360 3500 2500 35	0.089 0.164 0.238 0.012 0.112 0.186 0.249 0.3385 0.471 0.02 0.505 0.615 0.765 - - flection (in.) 0.204 0.419 0.89 et Load	0.1295 0.256 0.368 0.038 0.1975 0.3085 0.3975 0.3975 0.511 0.662 0.7065 0.7065 0.7065 0.83 0.984 - -	0.1093 0.2100 0.3030 0.0250 0.1548 0.2473 0.3233 0.4248 0.5665 0.0410 0.6058 0.7225 0.8745 - - 0.2595 0.5110 1.0128

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-13 B
Date/Time Installed:	2/27/2021 13:30	Date/Time Tested:	2:25PM 3/3/2021
Pre-Auger (Y/N)?:	Ν	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	8
Avg. Installation Rate (sec/ft.):	26.7	Pile Section	W6x9x15

Embedmer	nt Data	Tensile Testing					
Depth (ft.)	Time (s)	Hold Time	Target Load	Lead (lbs)	Deflection 1 (in)	Deflection 2	Average
0	0	(min)	(lbs)	Load (IDS)	Deflection 1 (In.)	(in.)	Deflection (in.)
1	0	1	0	0	0	0	0.0000
2	0	1	250	400	0.003	0.003	0.0030
3	8.59	1	500	560	0.004	0.0035	0.0038
4	18.57	1	1000	1000	0.007	0.0065	0.0068
5	30.55	1	1500	1540	0.01	0.0105	0.0103
6	32.83	1	2000	2020	0.0125	0.012	0.0123
7	33.87	1	1500	1520	0.011	0.011	0.0110
8	35.51	1	1000	900	0.008	0.008	0.0080
		1	500	520	0.005	0.0045	0.0048
		1	250	100	0.0015	0.0005	0.0010
		1	0	0	0.001	0	0.0005
				Target	t Deflection (in.)		
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
			-	T	arget Load		
		1	10000	10000	0.0115	0.036	0.0238
Total Time (s) =	159.92	1	0	0	0.0085	0.012	0.0103
				Lat	eral Testing		
Time (se	conds)	Lateral Load	Height Above	3	Deflection Gaus	e Height (in):	4
	,	Grad	e (ft):	-		,	-
0 10 20	30 40	Giuu	e (,.				
0 10 20	30 40	Hold Time	Target Load	Load (lbs)	Deflection 1 (in.)	Deflection 2	Average
0 10 20	30 40	Hold Time (min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)
1	30 40	Hold Time (min)	Target Load (lbs) 0	Load (lbs) O	Deflection 1 (in.)	Deflection 2 (in.) 0	Average Deflection (in.) 0.0000
	30 40	Hold Time (min) 1 1	Target Load (lbs) 0 500	Load (lbs) 0 500	Deflection 1 (in.) 0 0.057	Deflection 2 (in.) 0 0.092	Average Deflection (in.) 0.0000 0.0745
	30 40	Hold Time (min) 1 1 1	Target Load (lbs) 0 500 1000	Load (lbs) 0 500 1020	Deflection 1 (in.) 0 0.057 0.1345	Deflection 2 (in.) 0 0.092 0.1945	Average Deflection (in.) 0.0000 0.0745 0.1645
	30 40	Hold Time (min) 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500	Load (lbs) 0 500 1020 1520	Deflection 1 (in.) 0 0.057 0.1345 0.2395	Deflection 2 (in.) 0 0.092 0.1945 0.2895	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645
	30 40	Hold Time (min) 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500 0	Load (lbs) 0 500 1020 1520 0	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.2645
	30 40	Hold Time (min) 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500 0 500	Load (lbs) 0 500 1020 1520 0 500	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435 0.119	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.0260 0.1150
0 10 20 1 2 3	30 40	Hold Time (min) 1 1 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500 0 500 1000	Load (lbs) 0 500 1020 1520 0 500 1000 1000	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435 0.119 0.1805	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.0260 0.1150 0.1895
	30 40	Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1	Target Load ((bs) 0 500 1000 1500 0 500 1000 1500	Load (lbs) 0 500 1020 1520 0 500 1000 1480	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435 0.119 0.1805 0.25 0.25	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985 0.2765	Average Deflection (in.) 0.0000 0.0745 0.2645 0.0260 0.1150 0.1895 0.2633
	30 40	Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 0 500 1000 1500 2000 2000	Load (lbs) 0 500 1020 1520 0 500 1000 1480 2000 2220	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435 0.119 0.1805 0.25 0.332 0.332	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985 0.2765 0.353 0.477	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.0260 0.1150 0.1895 0.2633 0.2633 0.3425
0 10 20 1 2 3 4	30 40	Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2000 2500	Load (lbs) 0 500 1020 1520 0 500 1000 1480 2000 2520 0	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435 0.119 0.1805 0.25 0.332 0.471 0.495	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985 0.2765 0.353 0.475	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.0260 0.1150 0.1895 0.2633 0.3425 0.4730
0 10 20 1 2 2 2 3 4 4 4 7 4 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7	30 40	Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2000 2500 0 3200	Load (lbs) 0 500 1020 1520 0 500 1000 1480 2000 2520 0 3500	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435 0.119 0.1805 0.25 0.332 0.471 0.1085 0.575	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985 0.2765 0.353 0.475 0.01 0.01	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.0260 0.1150 0.1895 0.2633 0.3425 0.4730 0.0593 0.0593
0 10 20 1 2 3 4 4 5		Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500 500 1000 1500 2000 2500 0 2500 0 2500 2000	Load (lbs) 0 500 1020 1520 0 500 1000 1480 2000 2520 0 2580 2000	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435 0.119 0.1805 0.25 0.332 0.471 0.1085 0.5565 0.677	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985 0.2765 0.2765 0.353 0.475 0.01 0.5175	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.0260 0.1150 0.1895 0.2633 0.3425 0.4730 0.0593 0.0593 0.5370
6 0 10 20	30 40	Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 0 2000 2500 0 2500 3000 2500	Load (lbs) 0 500 1020 0 500 500 1000 1480 2000 2520 0 2520 0 2550 2990 2990	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435 0.119 0.1805 0.25 0.332 0.471 0.1085 0.5565 0.657 0.057	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985 0.2765 0.353 0.475 0.01 0.5175 0.618 0.2775	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.2645 0.2663 0.1150 0.1895 0.2633 0.3425 0.4730 0.0593 0.5370 0.6375
0 10 20 1 2 20 4 4 4 4 6		Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 0 2500 0 2500 0 2500 3000 3500 4000	Load (lbs) 0 500 1020 0 500 1000 2500 0 2520 0 2580 2990 3440	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.435 0.119 0.1805 0.25 0.332 0.471 0.1085 0.5565 0.657 0.8165 0.909	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985 0.2765 0.353 0.475 0.01 0.5175 0.618 0.7755 0.618	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.0260 0.1150 0.1895 0.2633 0.3425 0.4730 0.0593 0.5370 0.6375 0.7960
0 10 20 0 11 2 20 1 2 3 1 2 3 1 2 3 1 4 4 5 5 6 7		Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 5500 0 5500 0 5500 0 5500 0 5500 2000 2500 3000 3500 4000	Load (lbs) 0 500 1020 0 500 500 1000 1520 0 2520 0 2520 0 2520 0 2520 0 2520 0 2520 0 2520 0 2520 0 2520 2520 0 2520 250	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435 0.119 0.1805 0.25 0.332 0.471 0.1085 0.5565 0.557 0.8165 0.908 Deflection (in)	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985 0.2765 0.353 0.475 0.01 0.5175 0.618 0.7755 0.891	Average Deflection (in.) 0.0000 0.0745 0.1645 0.02645 0.0260 0.1150 0.1895 0.2633 0.3425 0.4730 0.6593 0.5370 0.6375 0.7960 0.8995
0 10 20 1 2 4 4 5 6 7		Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2500 25	Load (lbs) 0 500 1020 0 500 1520 0 1000 1480 2000 2520 0 2520 0 2520 0 2520 0 2590 3440 4020 Targel	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435 0.119 0.1805 0.25 0.332 0.471 0.1085 0.5565 0.657 0.8165 0.908 Deflection (in.) 0.225	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985 0.2765 0.353 0.475 0.01 0.5175 0.618 0.7755 0.891	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.0260 0.1150 0.1895 0.2633 0.3425 0.4730 0.0593 0.5370 0.6375 0.7960 0.8995
0 10 20 1 2 2		Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2000 2500 0 2500 3000 3500 4000	Load (lbs) 0 500 1020 1520 0 500 1480 2000 2550 0 2580 2990 3440 4020 Targel 1488	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435 0.119 0.1805 0.25 0.332 0.471 0.1085 0.5565 0.657 0.8165 0.908 Deflection (in.) 0.2205 0.5155	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985 0.2765 0.353 0.475 0.01 0.5175 0.618 0.7755 0.891 0.2725 0.4895	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.2645 0.2633 0.3425 0.4730 0.6375 0.7960 0.8395 0.2465 0.2465
0 10 20 1 2 4 4 5 6 7 8	30 40	Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2500 0 2500 250	Load (lbs) 0 500 1020 0 500 1000 1480 2520 0 2580 2990 3440 2580 2990 3440 Targel 1480 74000 7400 7400 7400 7400 7400 7400 7400 7400 74	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.435 0.435 0.25 0.332 0.471 0.1085 0.5565 0.657 0.8165 0.908 Deflection (in.) 0.2205 0.5195	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985 0.2765 0.353 0.475 0.01 0.5175 0.618 0.7755 0.618 0.7755 0.891	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.2645 0.2663 0.1150 0.1895 0.2633 0.3425 0.4730 0.0593 0.0593 0.6375 0.7960 0.8995
0 10 20 0 10 20 1 2 2 3 4 4 5 5 6 6 7 7 8		Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 0 2000 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0 2500 0.00 3000 3500 4000 0.25 0.5 1	Load (lbs) 0 500 1020 0 500 1000 2520 0 2520 0 2520 0 2520 0 2520 0 2520 0 2520 0 2520 0 2520 0 2520 0 2520 0 2520 0 2520 0 2520 0 2520 1480 2520 2520 1480 2520 2520 2520 1480 2520 25	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435 0.119 0.1805 0.25 0.332 0.471 0.1085 0.5565 0.657 0.8165 0.908 c Deflection (in.) 0.2205 0.5195 1.051	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985 0.2765 0.353 0.475 0.01 0.5175 0.618 0.7755 0.618 0.7755 0.891	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.0260 0.1150 0.1895 0.2633 0.3425 0.4730 0.6593 0.5937 0.6375 0.7960 0.8995
0 10 20 1 2 3 (1) 4 4 5 6 7 8 9		Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2500 25	Load (lbs) 0 500 1020 0 500 1520 0 1000 2520 0 2520 0 2520 0 2520 0 2520 0 2590 3440 4020 Targel 1480 2400 7 7	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435 0.119 0.1805 0.25 0.332 0.471 0.1085 0.5565 0.657 0.8165 0.908 Deflection (in.) 0.2205 0.5195 1.051 arget Load	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985 0.2765 0.353 0.475 0.01 0.5175 0.618 0.7755 0.891 0.2725 0.4895 1.005	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.0260 0.1150 0.1895 0.2633 0.3425 0.4730 0.0593 0.5370 0.6375 0.7960 0.8995 0.2465 0.5045 1.0280
0 10 20 1 2 3 4 4 7 8 9		Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2000 2500 0 2500 3000 2500 3000 3500 4000 0.25 0.5 1	Load (lbs) 0 500 1020 1520 0 500 1480 2000 2580 2590 0 2580 2990 3440 4020 Targel 1480 2400 Targel 1480 2400 Targel 1480 2400 Targel 1480 250 Targel 1480 2550 Targel 1480 2550 Targel 1480 2550 Targel 1480 2550 Targel 1480 2550 Targel 1480 2550 Targel 1480 2550 Targel 1480 2550 Targel 1480 2550 Targel 1480 2550 Targel 1480 2550 Targel 1480 2550 Targel 1480 2550 Targel 1480 2400 Targel 1480 2400 Targel 1480 2400 Targel 1480 2400 Targel 1480 2400 Targel 1480 2400 Targel 1480 2400 Targel 1480 2400 Targel 1480 2400 Targel 1480 2400 Targel 1480 2400 Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel Targel	Deflection 1 (in.) 0 0.057 0.1345 0.2395 0.0435 0.119 0.1805 0.25 0.332 0.471 0.1085 0.5565 0.657 0.8165 0.908 Deflection (in.) 0.2205 0.5195 1.051 arget Load - 0.138	Deflection 2 (in.) 0 0.092 0.1945 0.2895 0.0085 0.111 0.1985 0.2765 0.353 0.475 0.01 0.5175 0.618 0.7755 0.891 0.2725 0.4895 1.005	Average Deflection (in.) 0.0000 0.0745 0.1645 0.2645 0.2645 0.2633 0.3425 0.4730 0.6375 0.7960 0.8995 0.2465 0.5045 1.0280

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-14 A
Date/Time Installed:	2/27/2021 14:30	Date/Time Tested:	12:45PM 3/3/2021
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	1
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	9
Avg. Installation Rate (sec/ft.):	27.9	Pile Section	W6x9x15

Embode	ont Data	Tensile Testing					
			1	Tensile	resting		
Depth (ft.)	Time (s)	Hold Time	Target Load (lbs)	Load (lbs)	Deflection 1	Deflection 2	Average
0	0	(min)			(In.)	(In.)	Deflection (In.)
1	0	1	0	0	0	0	0.0000
2	5.77	1	250	280	0.0035	0.004	0.0038
3	10.23	1	500	500	0.006	0.0065	0.0063
4	19.74	1	1000	1000	0.012	0.0135	0.0128
5	28.65	1	1500	1500	0.0175	0.0195	0.0185
6	36.97	1	2000	2040	0.0235	0.0265	0.0250
7	43.71	1	1500	1500	0.0195	0.0225	0.0210
8	44.5	1	1000	1080	0.016	0.0185	0.0173
9	51.87	1	500	660	0.01	0.012	0.0110
		1	250	300	0.005	0.007	0.0060
		1	0	0	0.001	0.002	0.0015
				Target Defl	ection (in.)		
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
				Target	t Load		
		1	10000	10000	0.0545	0.1	0.0773
Total Time (s) =	225.44	1	0	0	0.0095	0.0195	0.0145
				Lateral	Testing		
Time		Lateral Loa	d Height Above	2	Deflectio	on Gauge	4
lime (seconds)	Gr	ade (ft):	⁵ Height (in):			4
0 20	40 00	Hold Time	T	1 (11)	Deflection 1	Deflection 2	Average
		(min)	Target Load (Ibs)	Load (IDS)	(in.)	(in.)	Deflection (in.)
1		1	0	0	0	0	0.0000
		1	500	500	0.111	0.785	0.4480
2		1	1000	1020	0.1955	0.124	0.1598
		1	1500	1540	0.3285	0.221	0.2748
		1	0	0	0.0255	0.0245	0.0250
		1	500	500	0.1355	0.127	0.1313
		1	1000	980	0.2485	0.1905	0.2195
4		1	1500	1500	0.328	0.241	0.2845
(ft.)		1	2000	2000	0.51	0.37	0.4400
5 bt		1	2500	2540	0.6675	0.526	0.5968
De	\backslash	1	0	0	0.115	0.1105	0.1128
6	-\	1	2500	2500	0.7405	0.5995	0.6700
	λ	1	3000	3000	0.9205	0.748	0.8343
7		1	3500	3500	1.135	0.9455	1.0403
		1	4000	-	-	-	-
8				Target Defl	ection (in.)		
	$ \rangle$	1	0.25	1400	0.2955	0.2005	0.2480
	$ \rangle \rangle$	1	0.5	2100	0.5385	0.4475	0.4930
5	`	1	1	3500	1.135	0.9455	1.0403
3	\	1	1	3500 Target	1.135 t Load	0.9455	1.0403
10		1	1 6000	3500 Target	1.135 t Load -	0.9455	1.0403

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-14 B
Date/Time Installed:	2/27/2021 14:45	Date/Time Tested:	12:45PM 3/3/2021
Pre-Auger (Y/N)?:	Ν	Pushed to Depth (ft.):	1
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	9
Avg. Installation Rate (sec/ft.):	25.5	Pile Section	W6x9x15

Embedmen	t Data		Tensile Testing						
Depth (ft.) 0	Time (s) 0	Hold Time (min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)		
1	0	1	0	0	0	0	0.0000		
2	6.05	1	250	240	0	0.0025	0.0013		
3	9.51	1	500	580	0.0015	0.0055	0.0035		
4	18.74	1	1000	1000	0.0035	0.0085	0.0060		
5	24.55	1	1500	1500	0.0065	0.012	0.0093		
6	32.74	1	2000	2060	0.0085	0.015	0.0118		
7	42.1	1	1500	-	-	-	-		
8	43.5	1	1000	800	0.003	0.0085	0.0058		
9	50.9	1	500	500	0.002	0.0045	0.0033		
		1	250	300	0.001	0.005	0.0030		
		1	0	0	0.0005	0.002	0.0013		
				Targe	et Deflection (in.)				
		1	0.5	-	-	-	-		
		1	0.75	-	-	-	-		
		1	1	-	-	-	-		
					Target Load				
		1	10000	10000	0.019	0.0415	0.0303		
Total Time (s) =	212.53	1	0	0	0.0135	0.0105	0.0120		
			Lateral Testing						

Depth (ft.)

Time (seconds)	Lateral Lo Above G	ad Height rade (ft):	3 Deflection Gauge Height (in):		4	
	Hold Time (min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)
	1	0	0	0.0000	0.0000	0.0000
	1	500	500	0.1055	0.0855	0.0955
	1	1020	1000	0.1745	0.1145	0.1445
	1	1500	1540	0.322	0.2385	0.2803
	1	0	0	0.0555	0.0515	0.0535
	1	500	500	0.1575	0.1025	0.1300
	1	1000	1020	0.2485	0.1965	0.2225
	1	1500	1500	0.3455	0.2505	0.2980
	1	2000	2000	0.5015	0.3905	0.4460
	1	2500	2540	0.6775	0.522	0.5998
	1	0	0	0.117	0.1095	0.1133
	1	2500	2500	0.7065	0.599	0.6528
	1	3000	3000	0.9115	0.7245	0.8180
	1	3500	3500	1.145	0.9175	1.0313
	1	4000	-	-	-	-
			Targe	et Deflection (in.)		
	1	0.25	1500	0.315	0.2105	0.2628
	1	0.5	2100	0.558	0.441	0.4995
	1	1	3500	1.145	0.9175	1.0313
				Target Load		
	1	6000	-	-	-	-
	1	0	0	0.218	0.152	0.185

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-15 A
Date/Time Installed:	2/27/2021 15:10	Date/Time Tested:	3:45PM 3/3/2021
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	1
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	10
Avg. Installation Rate (sec/ft.):	22.1	Pile Section	W6x9x15

Embedme	ent Data			Tensile '	Testing		
Denth (ft.)	Time (s)	Hold Time			Deflection 1	Deflection 2	Average
0	0	(min)	Target Load (Ibs)	Load (lbs)	(in.)	(in.)	Deflection (in.)
1	0	1	0	0	0.0000	0,0000	0.0000
2	3 71	1	250	300	0.004	0.0045	0.0043
3	5.24	1	500	540	0.0075	0.0085	0.0080
4	8.8	1	1000	1020	0.0165	0.0165	0.0165
5	20.85	1	1500	1520	0.023	0.024	0.0235
6	24.36	1	2000	2020	0.0305	0.033	0.0318
7	28.79	1	1500	1240	0.024	0.0255	0.0248
8	31.84	1	1000	940	0.0195	0.0205	0.0200
9	33.65	1	500	540	0.013	0.0145	0.0138
10	41.88	1	250	220	0.0065	0.0085	0.0075
		1	0	0	0.002	0.004	0.0030
				Target Defle	ection (in.)		
		1	0.5	9560	0.4155	0.6155	0.5155
		1	0.75	9920	0.7085	0.845	0.7768
		1	1	10000	0.9065	1.1265	1.0165
				Target	Load		
		1	10000	10000	0.9065	1.1265	1.0165
Time (s) =	199.12	1	0	0	0.8965	1.0655	0.9810
				Lateral	Testing		
Time (se	econds)	Lateral Lo	ad Height Above	3	Deflectio	n Gauge	4
20	40 60	Gi	ade (ft):		Heigh	t (in):	•
		Hold Time	Target Load (lbs)	Load (lbs)	Deflection 1	Deflection 2	Average
		(min)			(in.)	(in.)	Deflection (in.)
۱		1	0	0	0.0000	0.0000	0.0000
		1	500	500	0.0925	0.0625	0.0775
		1	1000	1000	0.185	0.1145	0.1498
		1	1500	1540	0.318	0.2385	0.2783
		1	0	0	0.0485	0.0425	0.0455
\mathbf{n}		1	500	500	0.1485	0.11	0.1293
\sim		1	1000	1020	0.258	0.1875	0.2228
Ν		1	1500	1500	0.3585	0.241	0.2998
		1	2000	2000	0.4995	0.3815	0.4405
		1	2500	2500	0.6875	0.5155	0.6015
		1	0	0	0.1255	0.101	0.1133
			2500	2500	0.7355	0.5875	0.6615
		1	3000	3000	0.901	0.7355	0.8183
			3500	3500	1.115	0.9255	1.0203
	$\langle $		4000	- Taunah D : (1	-	-	-
	\mathbf{X}		0.25	1400	ection (in.)	0.2255	0.2770
		1	0.25	1400	0.3285	0.2255	0.2770
		1	0.5	2250	0.0255	0.4522	0.5389
			Ŧ	3300 Target		0.9255	1.0203
				raiget	Ludu		
		1	6000				
		1	6000	-	- 0.115	- 0.159	- 0.1265

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-15 B
Date/Time Installed:	2/27/2021 13:30	Date/Time Tested:	12:45PM 3/3/2021
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	1
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	10
Avg. Installation Rate (sec/ft.):	21.4	Pile Section	W6x9x15

Embedmen	t Data			Te	ensile Testing		
Depth (ft.) 0	Time (s) 0	Hold Time (min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in
1	0	1	0	0	0.0000	0.0000	0.0000
2	3.65	1	250	340	0.0005	0.0015	0.0010
3	6.25	1	500	540	0.0005	0.003	0.0018
4	9.2	1	1000	1020	0.001	0.005	0.0030
5	19.78	1	1500	1560	0.001	0.0075	0.0043
6	21.65	1	2000	2080	0.001	0.01	0.0055
7	23.49	1	1500	1320	0.001	0.0085	0.0048
8	30.67	1	1000	1080	0.0005	0.008	0.0043
9	31.88	1	500	-	-	-	-
10	45.66	1	250	220	0.0005	0.0035	0.0020
		1	0	0	0.001	0.002	0.0015
				Targ	et Deflection (in.)		
		1	0.5	9600	0.501	0.5185	0.5098
		1	0.75	9890	0.7545	0.802	0.7783
		1	1	10000	1.065	1.0245	1.0448
					Target Load		
		1	10000	10000	1.065	1.0245	1.0448
otal Time (s) =	192.23	1	0	0	1.065	1.0245	1.0448
				La	ateral Testing		

Time (se	me (seconds) 0 40 60 Hold Time Target Load		3	Deflection Gaug	ge Height (in):	4	
20	40 80	Hold Time (min)	Target Load (lbs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)
		1	0	0	0.0000	0.0000	0.0000
		1	500	500	0.09	0.062	0.0760
		1	1000	1000	0.1945	0.1345	0.1645
		1	1500	1540	0.328	0.2385	0.2833
		1	0	0	0.05	0.0435	0.0468
		1	500	500	0.1595	0.109	0.1343
		1	1000	1020	0.249	0.1745	0.2118
		1	1500	1500	0.351	0.26	0.3055
		1	2000	2000	0.488	0.371	0.4295
		1	2500	2500	0.65	0.5065	0.5783
1		1	0	0	0.1905	0.142	0.1663
		1	2500	2500	0.722	0.5675	0.6448
		1	3000	3000	0.8925	0.7175	0.8050
1		1	3500	3500	1.0825	0.9	0.9913
		1	4000	-	-	-	-
				Targ	et Deflection (in.)		
		1	0.25	1540	0.328	0.2385	0.2833
		1	0.5	2300	0.61	0.4555	0.5328
		1	1	3550	1.116	0.9265	1.0213
					Target Load		
		1	6000	-	-	-	-
		1	0	0	0.218	0.152	0.185

Depth (ft.)

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-16 A
Date/Time Installed:	2/27/2021 13:30	Date/Time Tested:	3/3/2021 13:30
Pre-Auger (Y/N)?:	Ν	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	7
Avg. Installation Rate (sec/ft.):	26.2	Pile Section	W6x9x15

Embedme	Embedment Data		Tensile Testing								
Depth (ft.)	Time (s)	Hold Time	T	1	Deflection 1	Deflection 2	Average				
0	0	(min)	Target Load (Ibs)	Load (Ibs)	(in.)	(in.)	Deflection (in.)				
1	0	1	0	0	0.0000	0.0000	0.0000				
2	0	1	250	300	0.001	0.0025	0.0018				
3	5.71	1	500	500	0.0015	0.0035	0.0025				
4	13.85	1	1000	1040	0.003	0.008	0.0055				
5	28.94	1	1500	1520	0.0045	0.012	0.0083				
6	36.57	1	2000	2040	0.0055	0.016	0.0108				
7	45.66	1	1500	-	-	-	#DIV/0!				
		1	1000	1040	0.003	0.0105	0.0068				
		1	500	560	0.0015	0.0065	0.0040				
		1	250	280	0.0005	0.003	0.0018				
		1	0	0	0	0	0.0000				
				Target Defle	ction (in.)						
		1	0.5	-	-	-	-				
		1	0.75	-	-	-	-				
		1	1	-	-	-	-				
				Target	Load						
		1	10000	10200	0.01	0.0875	0.0488				
Total Time (s) =	130.73	1	0	0	0.0085	0.0105	0.0095				
				Lateral T	esting						
Time (or		Lateral Lo	ad Height Above	2	Deflectio	on Gauge	4				
0 20	40 60	G	rade (ft):	5 Height (in):			4				
0		Hold Time	Target Load (lbs)	Load (lbs)	Deflection 1	Deflection 2	Average				
		(min)	Target Load (103)	2000 (103)	(in.)	(in.)	Deflection (in.)				
		1	0	0	0.0000	0.0000	0.0000				
-		1	500	500	0.064	0.064					
		1		500		0.004	0.0640				
		1	1000	1000	0.1375	0.133	0.0640				
2		1 1 1	1000 1500	1000 1500	0.1375 0.2075	0.133 0.2045	0.0640 0.1353 0.2060				
2		1 1 1 1	1000 1500 0	1000 1500 0	0.1375 0.2075 0.0075	0.133 0.2045 0.009	0.0640 0.1353 0.2060 0.0083				
2		1 1 1 1 1	1000 1500 0 500	1000 1500 0 500	0.1375 0.2075 0.0075 0.0715	0.133 0.2045 0.009 0.0725	0.0640 0.1353 0.2060 0.0083 0.0720				
3		1 1 1 1 1 1	1000 1500 0 500 1000	1000 1500 0 500 1000	0.1375 0.2075 0.0075 0.0715 0.14	0.133 0.2045 0.009 0.0725 0.14	0.0640 0.1353 0.2060 0.0083 0.0720 0.1400				
3		1 1 1 1 1 1 1	1000 1500 0 500 1000 1500	1000 1500 0 500 1000 1500	0.1375 0.2075 0.0075 0.0715 0.14 0.2045	0.133 0.2045 0.009 0.0725 0.14 0.209	0.0640 0.1353 0.2060 0.0083 0.0720 0.1400 0.2068				
2 ('t)) 4 ('t)		1 1 1 1 1 1 1 1	1000 1500 0 500 1000 1500 2000	1000 1500 0 500 1000 1500 2000	0.1375 0.2075 0.0075 0.0715 0.14 0.2045 0.2855	0.133 0.2045 0.009 0.0725 0.14 0.209 0.288	0.0640 0.1353 0.2060 0.0083 0.0720 0.1400 0.2068 0.2868				
hpth (ft.)		1 1 1 1 1 1 1 1 1	1000 1500 0 500 1000 1500 2000 2500	1000 1500 0 500 1000 1500 2000 2500	0.1375 0.2075 0.0075 0.0715 0.14 0.2045 0.2855 0.3725	0.133 0.2045 0.009 0.0725 0.14 0.209 0.288 0.377	0.0640 0.1353 0.2060 0.0083 0.0720 0.1400 0.2068 0.2868 0.3748				
2 3 4		$ \begin{array}{c} 1 \\ $	1000 1500 500 1000 1500 2000 2500 0	1000 1500 0 500 1000 2000 2500 0	0.1375 0.2075 0.0075 0.0715 0.14 0.2045 0.2855 0.3725 0.0245	0.133 0.2045 0.009 0.0725 0.14 0.209 0.288 0.377 0.011	0.0640 0.1353 0.2060 0.0083 0.0720 0.1400 0.2068 0.2868 0.3748 0.0178				
2 Depth (ft.) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1 1 1 1 1 1 1 1 1 1	1000 1500 500 1000 1500 2000 2500 0 2500	1000 1500 0 500 1000 1500 2000 2500 0 2500	0.1375 0.2075 0.0075 0.0715 0.14 0.2045 0.2855 0.3725 0.0245 0.3645	0.133 0.2045 0.009 0.0725 0.14 0.209 0.288 0.377 0.011 0.3985	0.0640 0.1353 0.2060 0.0083 0.0720 0.1400 0.2068 0.2868 0.3748 0.0178 0.3815				
2 3 (1)) (14) 4 5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1500 0 500 1000 2000 2500 0 2500 3000	1000 1500 0 500 1000 1500 2000 2500 0 2500 3000	0.1375 0.2075 0.0075 0.0715 0.14 0.2045 0.2855 0.3725 0.0245 0.3645 0.443	0.133 0.2045 0.009 0.0725 0.14 0.209 0.288 0.377 0.011 0.3985 0.4785	0.0640 0.1353 0.2060 0.0083 0.0720 0.1400 0.2068 0.2868 0.3748 0.3748 0.3178 0.3815 0.4608				
2 beth (ft.) 2 c		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1500 0 500 1000 2500 2500 0 2500 3000 3500	1000 1500 0 500 1000 1500 2500 0 2500 0 2500 0 3000 3500	0.1375 0.2075 0.0075 0.0715 0.14 0.2045 0.2855 0.3725 0.0245 0.3645 0.3645 0.443 0.542	0.133 0.2045 0.009 0.0725 0.14 0.209 0.288 0.377 0.011 0.3985 0.4785 0.579	0.0540 0.1353 0.2060 0.0083 0.0720 0.1400 0.2068 0.2868 0.3748 0.0178 0.3815 0.4608 0.5605				
2 (1)) 41dag 5 6		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1500 0 500 1000 2500 0 2500 2500 3000 3500 4000	1000 1500 0 500 1000 1500 2500 0 2500 0 2500 3000 3500 -	0.1375 0.2075 0.0075 0.0715 0.14 0.2045 0.2855 0.3725 0.0245 0.3645 0.3645 0.443 0.542	0.133 0.2045 0.009 0.0725 0.14 0.209 0.288 0.377 0.011 0.3985 0.4785 0.579	0.0640 0.1353 0.2060 0.0083 0.0720 0.1400 0.2068 0.2868 0.3748 0.0178 0.3815 0.4608 0.5605				
2 3 (1)) trideo 5 6		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1500 500 1000 2000 2500 0 2500 3000 3500 4000	1000 1500 0 500 1500 2500 2500 0 2500 3500 3500 -	0.1375 0.2075 0.0075 0.0715 0.14 0.2045 0.2855 0.3725 0.0245 0.3645 0.443 0.542	0.133 0.2045 0.009 0.0725 0.14 0.209 0.288 0.377 0.011 0.3985 0.4785 0.4785 0.579	0.0640 0.1353 0.2060 0.0083 0.0720 0.1400 0.2068 0.2868 0.3748 0.0178 0.3815 0.3815 0.4608 0.5605				
2 060th (ft) 4 5 6 6		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1500 0 500 1000 2500 0 2500 3000 3500 4000 0.25	1000 1500 0 500 1000 1500 2000 2500 3000 3000 3000 - Target Defle 1860	0.1375 0.2075 0.0075 0.0715 0.2855 0.3725 0.3645 0.3645 0.443 0.542 	0.133 0.2045 0.009 0.0725 0.14 0.209 0.288 0.377 0.011 0.3985 0.4785 0.4785 0.579 -	0.0540 0.1353 0.2060 0.0083 0.0720 0.1400 0.2068 0.2868 0.3748 0.0178 0.3815 0.4608 0.5605 - -				
2 (1)) tuber 5 6 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1500 0 500 1000 2000 2500 0 2500 3000 3500 4000 0.25 0.5	1000 1500 0 500 1000 1500 2500 2500 3000 3500 - Target Defle 1860 3150	0.1375 0.2075 0.0075 0.0715 0.14 0.2045 0.2045 0.2045 0.3725 0.3725 0.3725 0.3645 0.3645 0.3645 0.3642 0.542 0.542 0.542 0.542	0.133 0.2045 0.009 0.0725 0.14 0.209 0.288 0.377 0.011 0.288 0.377 0.011 0.3885 0.3895 0.3895 0.3985 0.579 -	0.0640 0.1353 0.2060 0.0083 0.0720 0.1400 0.2068 0.2868 0.3748 0.0178 0.3815 0.4608 0.5605 -				
2 (1)) 4 5 6 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1500 0 500 1000 2500 0 2500 3000 3500 4000 0.25 0.5 1	1000 1500 0 500 1000 2500 2500 2500 3000 3500 - Target Defle 1860 3150 5380	0.1375 0.2075 0.075 0.075 0.715 0.245 0.245 0.245 0.3725 0.3725 0.3725 0.3645 0.3645 0.3645 0.3643 0.542 	0.133 0.2045 0.009 0.0725 0.209 0.209 0.288 0.377 0.011 0.3985 0.4785 0.579 - - - - 0.2605 0.536 1.034	0.0640 0.1353 0.2060 0.0083 0.0720 0.1400 0.2068 0.2868 0.3748 0.3748 0.3815 0.4608 0.5605 - - - 0.2585 0.5118 1.0153				
2 (1)) the formation of		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1500 0 500 1000 2500 0 2500 3000 3500 4000 0.25 0.5 1	1000 1500 0 500 1000 1500 2500 3000 3500 - Target Defle 1860 3150 5380 Target	0.1375 0.2075 0.0705 0.0715 0.245 0.245 0.245 0.245 0.3245 0.3245 0.3245 0.3245 0.443 0.542 - - - - - - - - - - - - -	0.133 0.2045 0.009 0.0725 0.14 0.209 0.288 0.377 0.211 0.3985 0.4785 0.579 - - 0.2605 0.536 1.034	0.0640 0.1353 0.2060 0.0083 0.0720 0.1400 0.2068 0.2868 0.3748 0.0178 0.3815 0.4608 0.5605 - -				
2 3 4 5 6 7 8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1500 0 500 1000 2500 0 2500 3000 3500 4000 0.25 0.5 1 6000	1000 1500 0 500 1000 1500 2000 2500 0 2500 3000 3500 - Target Defle 1860 3150 5380 Target -	0.1375 0.2075 0.0705 0.0715 0.14 0.2045 0.2045 0.3725 0.3725 0.3725 0.3245 0.3443 0.542 - - ction (in.) 0.2565 0.4875 0.4875 0.4875 0.4995 1.0945 1.09555 1.09555 1.09555 1.09555 1.	0.133 0.2045 0.009 0.0725 0.14 0.209 0.288 0.377 0.214 0.3985 0.4785 0.579 - 0.2605 0.536 1.034	0.0540 0.1353 0.2060 0.0083 0.0720 0.1400 0.2068 0.2868 0.3748 0.0178 0.3815 0.4608 0.5605 - - - - - - - - - - -				

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-16 B
Date/Time Installed:	2/27/2021 13:30	Date/Time Tested:	3/3/2021 13:45
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	7
Avg. Installation Rate (sec/ft.):	31.1	Pile Section	W6x9x15

Embedmen	t Data			Te	ensile Testing		
Depth (ft.)	Time (s)	Hold Time	Target Load (lbs)	Load (lbc)	Deflection 1 (in)	Deflection 2	Averag
0	0	(min)	Target Load (IDS)	Load (IDS)	Deflection 1 (In.)	(in.)	Deflection
1	0	1	0	0	0.0000	0.0000	0.000
2	0	1	250	240	0	0.0005	0.0003
3	6.94	1	500	500	0.001	0.0015	0.001
4	19.54	1	1000	1040	0.001	0.003	0.002
5	33.51	1	1500	1520	0.0015	0.0045	0.003
6	44.01	1	2000	2000	0.002	0.0055	0.003
7	51.23	1	1500	1400	0.001	0.0045	0.002
		1	1000	960	0.001	0.0035	0.002
		1	500	460	0.001	0.0025	0.001
		1	250	260	0.001	0.0015	0.001
		1	0	0	0	0.001	0.000
		-	ů	Targe	t Deflection (in.)	0.001	0.000
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
					Target Load		
		1	10000	10000	0.07	0.0565	0.063
l Time (s) =	155.23	1	0	0	0.0485	0.044	0.046
- (-7				La	teral Testing		
		Lateral	Load Height		, j		1
Time (se	conds)	Above	Grade (ft):	3	Deflection Gaug	e Height (in):	4
		Hold Time				Deflection 2	Averag
		(min)	Target Load (lbs)	Load (lbs)	Deflection 1 (in.)	(in.)	Deflection
		1	0	٥	0.0000	0.0000	0.000
		1	500	500	0.0000	0.0585	0.000
		1	1000	1000	0.000	0.0385	0.002
		1	1000	1000	0.1325	0.130	0.134
		1	1300	1300	0.199	0.21	0.204
		1	500	500	0.0195	0.011	0.013
		1	300	500	0.0815	0.0725	0.077
		1	1000	1000	0.142	0.143	0.142
		1	1500	1500	0.2015	0.214	0.207
		1	2000	2000	0.277	0.2975	0.287
		1	2500	2500	0.36	0.385	0.372
		1	0	0	0.049	0.018	0.033
		1	2500	2500	0.349	0.4075	0.378
		1	3000	3000	0.4275	0.4875	0.457
		1	3500	3500	0.525	0.5875	0.556
		1	4000	4000	0.629	0.696	0.662
				Targe	t Deflection (in.)		1
		1	0.25	1860	0.25	0.2685	0.259
		1	0.5	3150	0.482	0.542	0.512
		1	1	5380	0.986	1.07	1.028
					Target Load		
		1	6000	-	-	-	-

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-17 A
Date/Time Installed:	3/1/2021 13:30	Date/Time Tested:	9:20AM 3/4/2021
Pre-Auger (Y/N)?:	Ν	Pushed to Depth (ft.):	2.5
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	10
Avg. Installation Rate (sec/ft.):	26.1	Pile Section	W6x9x15

Average Deflection (in.) 0.0000 0.0015 0.0020 0.0045 0.0060 0.0068 0.0060 0.0058 0.0043 0.0025 0.0020 --0.0100 0.0055

4

Average Deflection (in.) 0.0000 0.1348 0.2025 0.2790 0.0388 0.1295 0.2175 0.2868

0.3728 0.4853 0.1238 0.5280 0.6265 0.7813 0.9215 0.2583 0.5030 1.0088

0.11725

Embedm	ent Data			Tens	le Testing		-
Depth (ft.)	Time (s)	Hold Time	Target Load		Deflection 1	Deflection 2	٢
0	0	(min)	(lbs)	Load (lbs)	(in.)	(in.)	l
1	0	1	0	0	0.0000	0.0000	Г
2	0	1	250	300	0.0005	0.0025	ſ
3	2.05	1	500	520	0.001	0.003	ſ
4	6.96	1	1000	1040	0.003	0.006	ſ
5	16.82	1	1500	1540	0.004	0.008	ſ
6	25.78	1	2000	2040	0.0045	0.009	ſ
7	33.05	1	1500	1480	0.0035	0.0085	Γ
8	38.21	1	1000	1020	0.003	0.0085	ſ
9	42.38	1	500	600	0.002	0.0065	ſ
10	43.22	1	250	250	0.0005	0.0045	ſ
		1	0	0	0.0005	0.0035	ſ
				Target D	eflection (in.)		
		1	0.5	-	-	-	ſ
		1	0.75	-	-	-	Ĺ
		1	1	-	-	-	
				Tar	get Load		
		1	10000	10000	0.01	0.01	
otal Time (s) =	208.47	1	0	0	0.006	0.005	
				Later	al Testing		
Timo (s	(acondo)	Lateral Lo	ad Height	2	Deflectio	on Gauge	Ĺ
0 20	40 60	Above G	rade (ft):	5	Heigh	ıt (in):	
0		Hold Time	Target Load	Load (lbs)	Deflection 1	Deflection 2	Ĺ
		(min)	(lbs)	2000 (103)	(in.)	(in.)	
		1	0	0	0.0000	0.0000	
2		1	500	520	0.1125	0.157	Ĺ
-		1	1000	1000	0.18	0.225	Ĺ
		1	1500	1520	0.257	0.301	L
		1	0	0	0.032	0.0455	L
4		1	500	500	0.1025	0.1565	L
		1	1000	1000	0.1905	0.2445	L
N N		1	1500	1500	0.262	0.3115	L
6		1	2000	2000	0.351	0.3945	L
		1	2500	2500	0.4695	0.501	L
· · · · ·		1	0	0	0.107	0.1405	L
	$\langle \rangle$	1	2500	2500	0.518	0.538	L
8		1	3000	3000	0.6225	0.6305	L
	λ	1	3500	3500	0.7845	0.778	L
		1	4000	4000	0.925	0.918	L
10				Target D	eflection (in.)	0.0	г
10		1	0.25	1380	0.236	0.2805	L
		1	0.5	2420	0.4865	0.5195	L
		1	1	4380	1.021	0.9965	L
12				Tar	get Load		-
		1	6000	-	-	-	L
		1	0	0	0 1215	0 113	1

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-17 B
Date/Time Installed:	3/1/2021 13:30	Date/Time Tested:	9:35AM 3/4/2021
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2.75
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	10
Avg. Installation Rate (sec/ft.):	23.4	Pile Section	W6x9x15

Embedmen	t Data				Tensile Testing		
Depth (ft.)	Time (s)	Hold Time	Target Load	Lood (lbo)	Deflection 1 (in)	Deflection 2 (in)	Average
0	0	(min)	(lbs)	LOAD (IDS)	Deflection 1 (In.)	Deflection 2 (In.)	Deflection (in.)
1	0	1	0	0	0.0000	0.0000	0.0000
2	0	1	250	260	0.0025	0.0005	0.0015
3	1.18	1	500	540	0.0045	0.001	0.0028
4	4.75	1	1000	1040	0.008	0.003	0.0055
5	12.16	1	1500	1520	0.0115	0.0045	0.0080
6	20.38	1	2000	2020	0.015	0.006	0.0105
7	29.06	1	1500	1420	0.013	0.005	0.0090
8	36.03	1	1000	-	-	-	#DIV/0!
9	40.27	1	500	680	0.0085	0.003	0.0058
10	43.05	1	250	240	0.0045	1	0.5023
		1	0	0	0.002	0.001	0.0015
				Та	rget Deflection (in.)		
		1	0.5	-	-	-	-
		1	0.75	-	-	-	-
		1	1	-	-	-	-
					Target Load		
		1	10000	10000	0.069	0.0055	0.0373
Total Time (s) =	185.7	1	0	0	0.017	0.012	0.0145
					Lateral Testing		
Time (see	conds)	Lateral Lo Above G	oad Height rade (ft):	3	Deflection Gaug	ge Height (in):	4
0 20	40 60	Hold Time (min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)	Average Deflection (in.)
		1	0	0	0.0000	0.0000	0.0000
		1	500	520	0.1195	0.1765	0.1480
2		1	1000	1000	0.2045	0.253	0.2288
		1	1500	1520	0.301	0.3605	0.3308
		1	0	0	0.025	0.0725	0.0488
4		1	500	500	0.115	0.176	0.1455
		1	1000	1000	0.227	0.277	0.2520
		1	1500	1500	0.318	0.361	0.3395
Ű.		1	2000	2000	0.429	0.4675	0.4483
bt 6		1	2500	2500	0.5615	0.5975	0.5795
ă		1	0	0	0.1045	0.1845	0.1445
		1	2500	2500	0.5955	0.6505	0.6230
8		1	3000	3000	0.7055	0.755	0.7303
	N I	1	3500	3500	0.8585	0.905	0.8818
		1	4000	4000	0.9955	1.0255	1.0105
				Та	rget Deflection (in.)		
10	1	1	0.25	1200	0.24	0.2935	0.2668
		1	0.5	2250	0.4865	0.5195	0.5030
		1	1	4000	0.9955	1.0255	1.0105
12					Target Load		
**		1	6000	-	-	-	-
		4	0	0	0.1215	0.207	0.16025

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-18 A
Date/Time Installed:	3/1/2021 16:30	Date/Time Tested:	1:45PM 3/6/21
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	2.5
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	8
Avg. Installation Rate (sec/ft.):	23.4	Pile Section	W6x9x15

Embedme	Embedment Data			Tensil	Tensile Testing						
Depth (ft.)	Time (s)	Hold Time	Target Load	Logal (lbs)	Deflection 1	Deflection 2	Average				
0	0	(min)	(lbs)	Load (Ibs)	(in.)	(in.)	Deflection (in.)				
1	0	1	0	0	0.0000	0.0000	0.0000				
2	0	1	250	280	0.0010	0.0010	0.0010				
3	2.01	1	500	500	0.0015	0.0030	0.0023				
4	9.58	1	1000	1060	0.0025	0.0075	0.0050				
5	17.96	1	1500	1480	0.0035	0.0115	0.0075				
6	29.23	1	2000	2060	0.0075	0.0160	0.0118				
7	38.78	1	1500	-	-	-	-				
8	42.74	1	1000	1140	0.0035	0.1050	0.0543				
		1	500	500	0.0025	0.0085	0.0055				
		1	250	300	0.0015	0.0060	0.0038				
		1	0	0	0.0015	0.0025	0.0020				
				Target De	flection (in.)						
		1	0.5	-	-	-	-				
		1	0.75	-	-	-	-				
		1	1	-	-	-	-				
				Targ	et Load						
		1	10000	10000	0.019	0.022	0.0205				
Total Time (s) =	140.3	1	0	0	0.01	0.02	0.0150				
				Latera	l Testing						
Time lee		Lateral	Load Height	2	Deflection Ga	uge Height	4				
0 20	40 60	Above	Grade (ft):	5	(in)	:	4				
0		Hold Time	Target Load	Load (lbs)	Deflection 1	Deflection 2	Average				
		(min)	(lbs)	LOAG (IDS)	(in.)	(in.)	Deflection (in.)				
1		1	0	0	0.0000	0.0000	0.0000				
		1	500	600	0.1300	0.0945	0.1123				
		1	1000	1000	0.2290	0.1865	0.2078				
2		1	1500	1500	0.2505	0.2100					
		1			0.5505	0.5100	0.3303				
3		1	0	0	0.0445	0.0380	0.3303 0.0413				
		1	0 500	0 500	0.0445	0.0380 0.1325	0.3303 0.0413 0.1295				
		1 1	0 500 1000	0 500 1000	0.0445 0.1265 0.2490	0.0380 0.1325 0.2370	0.3303 0.0413 0.1295 0.2430				
- 4		1 1 1 1	0 500 1000 1500	0 500 1000 1500	0.3303 0.0445 0.1265 0.2490 0.3505	0.3100 0.0380 0.1325 0.2370 0.3290	0.3303 0.0413 0.1295 0.2430 0.3398				
4 (ft.)		1 1 1 1 1 1	0 500 1000 1500 2000	0 500 1000 1500 2000	0.3303 0.0445 0.1265 0.2490 0.3505 0.4620	0.3100 0.0380 0.1325 0.2370 0.3290 0.4335	0.3303 0.0413 0.1295 0.2430 0.3398 0.4478				
epth (ft.)		1 1 1 1 1 1	0 500 1000 1500 2000 2500	0 500 1000 1500 2000 2500	0.3505 0.0445 0.1265 0.2490 0.3505 0.4620 0.5760	0.3100 0.0380 0.1325 0.2370 0.3290 0.4335 0.5425	0.3303 0.0413 0.1295 0.2430 0.3398 0.4478 0.5593				
2 Depth (ft.)		1 1 1 1 1 1 1	0 500 1000 1500 2000 2500 0	0 500 1000 1500 2000 2500 0	0.3303 0.0445 0.1265 0.2490 0.3505 0.4620 0.5760 0.0625	0.0380 0.1325 0.2370 0.3290 0.4335 0.5425 0.0725	0.3303 0.0413 0.1295 0.2430 0.3398 0.4478 0.5593 0.0675				
c Depth (ft.)		1 1 1 1 1 1 1 1 1	0 500 1000 1500 2000 2500 0 2500	0 500 1000 2000 2500 0 2500	0.3303 0.0445 0.1265 0.2490 0.3505 0.4620 0.5760 0.0625 0.6085	0.3100 0.0380 0.1325 0.2370 0.3290 0.4335 0.5425 0.0725 0.5850	0.3303 0.0413 0.1295 0.2430 0.3398 0.4478 0.5593 0.0675 0.5968				
6 Depth (ft.)		1 1 1 1 1 1 1 1 1 1	0 500 1000 2000 2500 0 2500 3000	0 500 1000 2000 2500 0 2500 3000	0.3303 0.0445 0.1265 0.2490 0.3505 0.4620 0.5760 0.0625 0.6085 0.7270	0.3100 0.0380 0.1325 0.2370 0.3290 0.4335 0.5425 0.0725 0.5850 0.6970	0.3303 0.0413 0.1295 0.2430 0.3398 0.4478 0.5593 0.0675 0.5968 0.7120				
9 Depth (ft.)		1 1 1 1 1 1 1 1 1 1	0 500 1000 2000 2500 0 2500 3000 3500	0 500 1000 2000 2500 0 2500 3000 3500	0.3303 0.0445 0.1265 0.2490 0.3505 0.4620 0.5760 0.0625 0.6085 0.7270 0.8450	0.3100 0.0380 0.1325 0.2370 0.3290 0.4335 0.5425 0.0725 0.5850 0.6970 0.8050	0.3303 0.0413 0.1295 0.2430 0.3398 0.4478 0.5593 0.0675 0.5968 0.7120 0.8250				
0 Depth (ft.)		1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 1500 2500 0 2500 3000 3500 4000	0 500 1000 2000 2500 0 2500 3000 3500 4000	0.303 0.0445 0.1265 0.2490 0.3505 0.4620 0.5760 0.0625 0.6085 0.7270 0.8450 0.9860	0.3100 0.0380 0.1325 0.2370 0.3290 0.4335 0.5425 0.0725 0.5850 0.6970 0.8050 0.9360	0.3303 0.0413 0.1295 0.2430 0.3398 0.4478 0.5593 0.0675 0.5968 0.7120 0.8250 0.9610				
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 2500 2500 2500 2500 3000 3500 4000	0 500 1000 2500 2500 0 2500 3000 3500 4000 Target De	0.3303 0.0445 0.1265 0.2490 0.3505 0.4620 0.5760 0.0625 0.6085 0.7270 0.8450 0.9860 (flection (in.)	0.3100 0.0380 0.1325 0.2370 0.3290 0.4335 0.5425 0.5425 0.5850 0.6970 0.8050 0.9360	0.3303 0.0413 0.1295 0.2430 0.3398 0.4478 0.5593 0.0675 0.5968 0.7120 0.8250 0.9610				
6 0ebth (ft,)		1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 2500 2500 0 2500 3000 3500 3500 4000 0.25	0 500 1000 2000 2500 0 2500 3000 3500 4000 Target De 1300	0.3303 0.0445 0.1265 0.2490 0.3505 0.4620 0.5760 0.0625 0.6085 0.7270 0.8450 0.9860 flection (in.) 0.278	0.3100 0.0380 0.1325 0.2370 0.3290 0.4335 0.5425 0.5425 0.5425 0.5850 0.6970 0.8050 0.9360	0.3303 0.0413 0.1295 0.2430 0.3398 0.4478 0.5593 0.0675 0.5968 0.7120 0.8250 0.9610				
(t1) Depth (ft2) 4 4 8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 1500 2000 2500 0 2500 3000 3500 4000 0.25 0.5	0 500 1000 2000 2500 0 2500 3000 3500 3500 4000 Target De 1300 2200	0.3503 0.0445 0.1265 0.2490 0.3505 0.4620 0.5760 0.0625 0.6085 0.7270 0.8450 0.9860 0.9860 flection (in.) 0.278 0.5355	0.3100 0.0380 0.1325 0.2370 0.3290 0.4335 0.5425 0.5425 0.5850 0.6970 0.8050 0.9360	0.3303 0.0413 0.1295 0.2430 0.3398 0.4478 0.5593 0.0675 0.5968 0.7120 0.8250 0.9610 				
bench (ftt)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 1500 2000 2500 0 2500 3000 3500 4000 	0 500 1000 2500 2500 3000 3500 4000 Target De 1300 2200 4200	0.3303 0.0445 0.1265 0.2490 0.3505 0.4620 0.5760 0.0625 0.7270 0.0625 0.7270 0.8450 0.9860 flection (in.) 0.278 0.5355 1.0390	0.3100 0.3800 0.325 0.2370 0.3290 0.4335 0.5425 0.0725 0.5850 0.0725 0.5850 0.6970 0.8050 0.9360 0.234 0.4795 0.9860	0.3303 0.0413 0.1295 0.2430 0.3398 0.4478 0.5593 0.0675 0.5968 0.7120 0.8250 0.9610 0.2560 0.5075 1.0125				
Depth (ft.)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 2000 2500 0 2500 3000 3500 4000 0.25 0.5 1	0 500 1000 2000 2500 0 2500 3500 3500 4000 Target De 1300 2200 4200 Target De	0.3303 0.0445 0.1265 0.2490 0.3505 0.4620 0.5760 0.0625 0.7270 0.6885 0.7270 0.8450 0.9860 0.9860 0.9860 0.9860 0.9860 0.278 0.278 0.2355 1.0390 et Load	0.3100 0.320 0.325 0.2370 0.3290 0.4335 0.5425 0.5425 0.6770 0.5850 0.6970 0.8050 0.8050 0.8050 0.9360	0.3303 0.0413 0.1295 0.2430 0.3398 0.4478 0.5593 0.0675 0.5968 0.7120 0.8250 0.9610 0.2560 0.5075 1.0125				
9 Oppth (ft)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 500 1000 1500 2000 2500 0 2500 3000 3500 3500 3500 3000 3500 0.25 0.5 1 6000	0 500 1000 2000 2500 0 2500 3000 3500 3500 4000 Target De 1300 2200 4200 Target De	0.3303 0.0445 0.1265 0.2490 0.3505 0.4620 0.5760 0.0625 0.6085 0.7270 0.8450 0.9860 .9860 .9860 .9860 .9860 .9860 .9278 0.5355 1.0390 et Load	0.3100 0.3200 0.325 0.2370 0.3290 0.4335 0.5425 0.5425 0.5425 0.5425 0.5425 0.5425 0.5425 0.5425 0.5850 0.6970 0.8050 0.9360 0.234 0.4795 0.9860	0.3303 0.0413 0.1295 0.2430 0.3398 0.4478 0.5593 0.0675 0.5968 0.7120 0.8250 0.9610 0.2560 0.5075 1.0125				

Project:		ibV Energy-Rhudes Creek		Pile ID:		PLT-18 B		
	Date/Time Installed:		3/1/2021 16:45		Date/Time Tested:		2PM 3/6/21	
	Pre-Auger ((Y/N)?:	N		Pushed to Depth (ft.):		2.5	
	Pre-Auger De	epth (ft):		-	Embedment Depth (ft.):		8	
Avg	Avg. Installation Rate (sec/ft.):		24	4.0	Pil	e Section	W6:	x9x15
	-							
	Embedmen	nt Data			Te	ensile Testing		
	Depth (ft.)	Time (s)	Hold Time	Target Load			Deflection 2	Average
	0	0	(min)	(lbs)	Load (lbs)	Deflection 1 (in.)	(in.)	Deflection (in.)
	1	0	1	0	0	0.0000	0.0000	0.0000
	2	0	1	250	280	0.0010	0.0030	0.0020
	3	2.85	1	500	520	0.0025	0.0045	0.0035
	4	10.25	1	1000	1000	0.0045	0.0085	0.0065
	5	19.58	1	1500	1500	0.0080	0.0140	0.0110
	6	28.09	1	2000	2000	0.0100	0.0180	0.0140
	7	39.51	1	1500	-	-	-	-
	8	43.95	1	1000	1160	0.0060	0.0135	0.0098
			1	500	480	0.0010	0.0085	0.0048
			1	250	260	0.0010	0.0065	0.0038
			1	0	0	0.0000	0.0040	0.0020
					Targe	et Deflection (in.)		
			1	0.5	-	-	-	-
			1	0.75	-	-	-	-
			1	1	-	-	-	-
						Target Load		
			1	10000	10000	0.055	0.049	0.0520
Tot	tal Timo (c) =	144.22	1	0	٥	0.010	0.02	0.0105
10	tai iiiie (s) –	144.23	-	0	U	0.019	0.02	0.0195
10	tai fille (S) –	144.25		0	La	ateral Testing	0.02	0.0195
	Time (s) -	144.25	Lateral	Load Height	La	ateral Testing	0.02	0.0135
	Time (se	econds)	Lateral	Load Height Grade (ft):	La	Deflection Gaug	ge Height (in):	4
	Time (se	144.23 econds) 40 60	Lateral Above Hold Time	Load Height Grade (ft): Target Load	3	Deflection Gaug	ge Height (in):	4 Average
	Time (se	20000000000000000000000000000000000000	Lateral Above Hold Time (min)	Load Height Grade (ft): Target Load (lbs)	3 Load (lbs)	Deflection 1 (in.)	ge Height (in): Deflection 2 (in.)	4 Average Deflection (in.)
	Time (se	2000 200 200 200 200 200 200 200 200 20	Lateral Above Hold Time (min)	Load Height Grade (ft): Target Load (lbs) 0	Load (lbs)	Deflection Gauge Deflection 1 (in.)	ge Height (in): Deflection 2 (in.) 0.0000	4 Average Deflection (in.) 0.0000
		2conds) 40 60	Lateral Above Hold Time (min) 1 1	Grade (ft): Target Load (lbs) 0 500	Load (lbs)	Deflection 1 (in.) 0.0000 0.0770	Deflection 2 (in.) 0.0000 0.0980	4 Average Deflection (in.) 0.0000 0.0875
		200 do	Lateral Above Hold Time (min) 1 1 1	Load Height Grade (ft): Target Load (lbs) 0 500 1000	Load (lbs) 0 600 1000	0.019 ateral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410	Deflection 2 (in.) 0.0000 0.0980 0.1880	4 Average Deflection (in.) 0.0000 0.0875 0.1645
	Time (se) -	40 60	Lateral Above Hold Time (min) 1 1 1 1	Coad Height Grade (ft): Target Load (lbs) 0 500 1000 1500	Load (lbs) 0 600 1000 1500	0.019 tteral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588
	Time (se	2000 conds)	Lateral Above Hold Time (min) 1 1 1 1 1	0 Load Height Grade (ft): Target Load ((lbs) 0 500 1000 1500 0	Load (lbs) 0 600 1000 1500 0	0.019 steral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468
	Time (sp - 200	2conds) 60	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1	Cod Height Grade (ft): Target Load (lbs) 0 500 1000 1500 0 500	Load (lbs) 0 600 1000 1500 0 500	0.019 teral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010	0.02 ce Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.1250	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.1130
	Time (s) -	240 50	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1	Coad Height Grade (ft): Target Load (lbs) 0 500 1000 1500 0 500 1000	Load (lbs) 0 600 1000 1500 0 500 1000	0.013 teral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755	0.02 3:e Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.1250 0.2205	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.1130 0.1980
	Time (s) -	20 60	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1	Load Height Grade (ft): Target Load (lbs) 0 500 1000 1500 0 500 1000 1500	Load (lbs) 0 600 1000 1500 0 500 1000 1500	0.019 steral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755 0.2395	0.02 5 Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.1250 0.2205 0.2290	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.2468 0.1130 0.1980 0.2693
(ft.)		2000	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1	Load Height Grade (ft): Target Load ((lbs) 0 500 1000 500 0 500 1000 1500 2000_	Load (lbs) 0 600 1000 1500 0 500 1000 1500 2000	0.013 teral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755 0.2395 0.3160	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.2205 0.2205 0.22990 0.3885	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.1130 0.1980 0.2693 0.3523
apth (ft.)	Time (s) - 20	2conds)	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Load Height Grade (ft): Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2000 2500	Lad (lbs) 0 600 1000 1500 0 500 1000 1500 2000 2500	0.013 teral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755 0.2395 0.3160 0.4045	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.1250 0.2205 0.2990 0.3885 0.4870	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.1130 0.1980 0.2693 0.3523 0.4458
Depth (ft.)	Time (s) -	econds)	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Load Height Grade (ft): Target Load (lbs) 0 500 1500 1500 500 1000 1500 2500 0	Load (lbs) 0 600 1000 1500 0 500 1000 1500 2000 2500 0 0 0 2500 0 0	0.013 teral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755 0.2395 0.3160 0.4045 0.0690	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.2205 0.2205 0.2290 0.3885 0.4870 0.0585	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.1130 0.2693 0.3523 0.3523 0.4458
Depth (ft.)	Time (s) -	240 50	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Load Height Grade (ft): Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2000 2500 0 0 2500	La 3 Load (lbs) 0 600 1000 1500 0 500 1000 1500 2000 2500 0 2500	0.013 teral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755 0.2395 0.3160 0.4045 0.0690 0.4400 0.4400 0.400	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.2205 0.2295 0.2295 0.2295 0.3885 0.4870 0.0585 0.5415	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.1130 0.2468 0.1130 0.2468 0.1130 0.2693 0.3523 0.3523 0.4458 0.0638 0.0638
Depth (ft.)		2000	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Load Height Grade (ft): Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2000 2500 0 2500 0 2500 3000	Load (lbs) 0 600 1000 1500 0 500 1000 1500 2500 0 2500 0 2500 3000	0.013 bitral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755 0.2395 0.3160 0.4045 0.0690 0.4400 0.5385	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.2205 0.2205 0.2205 0.2205 0.2290 0.3885 0.4870 0.0585 0.5415 0.6585	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.1130 0.1980 0.2693 0.3523 0.4458 0.0638 0.0638 0.4908
Depth (ft.)	Time (s) - 20	2conds) 40 60	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Load Height Grade (ft): Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2500 25	Load (lbs) 0 600 1000 1500 0 500 1000 1500 2500 0 2500 0 2500 3000 3500	0.013 teral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755 0.2395 0.3160 0.4405 0.0690 0.4400 0.5385 0.6415	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.2205 0.2900 0.4550 0.2205 0.2990 0.3885 0.4870 0.0585 0.5885 0.6585 0.7790	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.1130 0.1980 0.2693 0.3523 0.4458 0.0638 0.4908 0.4908 0.5985 0.7103
Depth (ft.)	Time (s) -	econds)	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Load Height Grade (ft): Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2500 25	Load (lbs) 0 600 1000 1500 0 500 1000 1500 2500 0 2500 0 2500 3000 3500 3500	0.013 teral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755 0.2395 0.3160 0.4045 0.0690 0.4400 0.5385 0.6415 0.7750	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.2205 0.2205 0.2290 0.3885 0.4870 0.0585 0.5415 0.6585 0.7790 0.9290	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.1130 0.1980 0.2693 0.3523 0.4458 0.0638 0.4908 0.5985 0.7103 0.8520
Depth (ft.)	Time (s) -	econds)	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Load Height Grade (ft): Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2000 2500 0 2500 0 2500 3000 3500 35	La Control Control Co	0.013 teral Testing Deflection Gauge Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755 0.2395 0.3160 0.4045 0.0690 0.4400 0.5385 0.6415 0.7750 et Deflection (in.)	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.2205 0.2295 0.2295 0.2295 0.2295 0.4870 0.0585 0.4870 0.0585 0.5415 0.6585 0.7790 0.9290	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.1130 0.2693 0.3523 0.4458 0.6638 0.4458 0.6638 0.4458 0.6638 0.4908 0.5985 0.7103 0.8520
Depth (ft.)	Time (sp - 20 20 1 2 3 4 5 6 7	2conds)	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Load Height Grade (ft): Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2500 25	Load (lbs) 0 600 1000 1000 1500 0 500 1000 2500 0 2500 0 2500 0 2500 0 2500 3000 3500 3500 4000 Targ	0.013 bitral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755 0.2395 0.3160 0.4045 0.0690 0.4400 0.4400 0.5385 0.6415 0.7750 et Deflection (in.) 0.2275	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.2205 0.2205 0.2900 0.3885 0.4870 0.0585 0.5415 0.6585 0.7790 0.9290 0.2900	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.1130 0.1980 0.2693 0.3523 0.4458 0.0638 0.0638 0.0638 0.4458 0.0638 0.4908 0.5985 0.7103 0.8520
Depth (ft.)	Time (s) - 20	2conds)	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Load Height Grade (ft): Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2500 25	Load (lbs) 0 600 1000 1500 0 500 1000 1500 2500 0 2500 0 2500 3000 35	0.013 bitral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755 0.2395 0.3160 0.4045 0.0690 0.4400 0.5385 0.6415 0.7750 et Deflection (in.) 0.2275 0.2275	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.2205 0.2900 0.3885 0.4870 0.0585 0.5415 0.6585 0.7790 0.9290 0.2900 0.5415	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.2468 0.1130 0.2693 0.3523 0.4458 0.0638 0.4908 0.5985 0.7103 0.8520
Depth (ft.)	Time (s) -	2000	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Load Height Grade (ft): Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2500 25	Load (lbs) 0 600 1000 1500 0 500 1000 1500 2500 0 2500 0 2500 3500 4000 Targe 1500 2500 4660	0.013 teral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755 0.2395 0.3160 0.4045 0.0690 0.4400 0.5385 0.6415 0.7750 et Deflection (in.) 0.2275 0.4400 0.2275 0.4400 0.2275	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.2205 0.2990 0.3885 0.4870 0.0585 0.5415 0.6585 0.7790 0.9290 0.2900 0.5415 1.1250	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.1130 0.1980 0.2693 0.3523 0.3523 0.4458 0.0638 0.4908 0.5985 0.7103 0.8520
Depth (ft.)	Time (s) -	econds)	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contemporation of the second s	Load (lbs) 0 600 1000 1500 0 500 1000 1500 2500 2500 3000 2500 3000 Targ 1500 2500 4660	0.013 tteral Testing Deflection Gauge Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755 0.2395 0.3160 0.4045 0.0690 0.4400 0.5385 0.6415 0.7750 et Deflection (in.) 0.2275 0.4400 0.9255 Target Load	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.2205 0.2990 0.3885 0.4870 0.0585 0.5415 0.6585 0.7790 0.9290 0.2900 0.5415 1.1250	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.1130 0.2693 0.3523 0.4458 0.0638 0.0638 0.4458 0.0638 0.4458 0.4908 0.5985 0.7103 0.8520 0.2588 0.4908 1.0253
Depth (ft.)	Time (sp - 20 20 1 2 3 4 5 6 7 8 9	2000	Lateral Above Hold Time (min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Load Height Grade (ft): Target Load (lbs) 0 500 1000 1500 0 500 1000 1500 2500 25	Load (lbs) 0 600 1000 1500 0 500 1000 2500 0 2500 0 2500 0 2500 3000 3500 3500 4660 -	0.013 0.013 teral Testing Deflection Gaug Deflection 1 (in.) 0.0000 0.0770 0.1410 0.2275 0.0385 0.1010 0.1755 0.2395 0.3160 0.4045 0.0690 0.4400 0.5385 0.6415 0.7750 0.2375 0.4400 0.9225 Target Load	0.02 ge Height (in): Deflection 2 (in.) 0.0000 0.0980 0.1880 0.2900 0.4550 0.2205 0.2900 0.3885 0.4870 0.0585 0.5415 0.6585 0.7790 0.9290 0.2900 0.5415 1.1250	4 Average Deflection (in.) 0.0000 0.0875 0.1645 0.2588 0.2468 0.1130 0.1980 0.2693 0.3523 0.4458 0.0638 0.4908 0.5985 0.7103 0.8520 0.2588 0.4908 1.0253

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-19 A
Date/Time Installed:	3/1/2021 16:30	Date/Time Tested:	3PM 3/6/21
Pre-Auger (Y/N)?:	Ν	Pushed to Depth (ft.):	1.5
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	10
Avg. Installation Rate (sec/ft.):	29.3	Pile Section	W6x9x15

Embeum	ent Data	7 1			Tensile	e Testing		
Depth (ft.)	Time (s)	11	Hold Time	Target		Deflection 1	Deflection 2	Average
0	0		(min)	Load (lbs)	Load (lbs)	(in.)	(in.)	Deflection (in.)
1	0	1 1	1	0	0	0.0000	0.0000	0.0000
2	0.79	65	1	250	240	0.0015	0.0025	0.0020
3	9.8	1 1	1	500	500	0.0045	0.0055	0.0050
4	14.05	11	1	1000	1000	0.0085	0.0120	0.0103
5	18.01		1	1500	1500	0.0125	0.0170	0.0148
6	25.12		1	2000	2000	0.0160	0.0215	0.0188
7	37.22	1 1	1	1500	1460	0.0140	0.0185	0.0163
8	42.08	1 1	1	1000	1000	0.0095	0.0120	0.0108
9	53.32	1 1	1	500	500	0.0060	0.0075	0.0068
10	62.95	1 [1	250	240	0.0030	0.0035	0.0033
			1	0	0	0.0010	0.0010	0.0010
					Target De	flection (in.)		
			1	0.5	-	-	-	-
			1	0.75	-	-	-	-
			1	1	-	-	-	-
					Targ	et Load		
			1	10000	10000	0.035	0.075	0.0550
Total Time (s) =	263.34		1	0	0	0.003	0.0075	0.0053
					Latera	l Testing		
Time (s	econds)		Lateral Loa	d Height	3	Deflectio	on Gauge	4
0 20 40	60 80		Above Gra	ade (ft):	5	Heigh	t (in):	•
0			Hold Time	Target	Load (lbs)	Deflection 1	Deflection 2	Average
			(min)	Load (lbs)		(in.)	(in.)	Deflection (in.)
			1	0	0	0.0000	0.0000	
2		1 1	-	-	U	0.0000	0.0000	0.0000
			1	500	500	0.0530	0.0880	0.0000 0.0705
			1 1 1	500 1000	500 1000	0.0530	0.0880	0.0000 0.0705 0.1458
			1 1 1 1	500 1000 1500	500 1000 1500	0.0530 0.1215 0.2000	0.0880 0.1700 0.2600	0.0000 0.0705 0.1458 0.2300
			1 1 1 1 1	500 1000 1500 0	500 1000 1500 0	0.0530 0.1215 0.2000 0.0305	0.0880 0.1700 0.2600 0.0565	0.0000 0.0705 0.1458 0.2300 0.0435
4			1 1 1 1 1 1	500 1000 1500 0 500	500 1000 1500 0 500	0.0530 0.1215 0.2000 0.0305 0.0845	0.0880 0.1700 0.2600 0.0565 0.1225	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035
4			1 1 1 1 1 1 1	500 1000 1500 0 500 1000	500 1000 1500 0 500 1000	0.0530 0.1215 0.2000 0.0305 0.0845 0.1480	0.0880 0.1700 0.2600 0.0565 0.1225 0.2025	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035 0.1753
4 			1 1 1 1 1 1 1 1 1	500 1000 1500 0 500 1000 1500	500 1000 1500 0 500 1000 1500	0.0530 0.1215 0.2000 0.0305 0.0845 0.1480 0.2150	0.0880 0.1700 0.2600 0.0565 0.1225 0.2025 0.2770	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035 0.1753 0.2460
o th (ft.) b			1 1 1 1 1 1 1 1 1	500 1000 1500 0 500 1000 1500 2000	500 1000 1500 0 500 1000 1500 2000	0.0530 0.0530 0.1215 0.2000 0.0305 0.0845 0.1480 0.2150 0.2880	0.0000 0.0880 0.1700 0.2600 0.0565 0.1225 0.2025 0.2025 0.2770 0.3640	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035 0.1753 0.2460 0.3260
Depth (ft.)			1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 0 500 1000 1500 2000 2500	500 500 1000 1500 0 500 1000 1500 2000 2500	0.0530 0.0530 0.1215 0.2000 0.0305 0.0845 0.1480 0.2150 0.2880 0.3880	0.0880 0.1700 0.2600 0.0565 0.1225 0.2025 0.2770 0.3640 0.4795	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035 0.1753 0.2460 0.3260 0.4338 0.4338
Depth (ft.)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 500 1000 1500 2000 2500 0	500 500 1000 1500 0 500 1000 1500 2000 0 0 2500 0	0.0530 0.0530 0.1215 0.2000 0.0305 0.0845 0.1480 0.2150 0.2880 0.3880 0.3880 0.0765	0.0880 0.0880 0.1700 0.2600 0.0565 0.1225 0.2025 0.2770 0.3640 0.4795 0.1040	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035 0.1035 0.1753 0.2460 0.3260 0.4338 0.0903 0.4740
Depth (ft.)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 0 500 1000 1500 2000 2500 0 2500 0 2500	500 1000 1500 0 500 1000 1500 2000 2500 0 2500 0 2500 0 2500	0.0530 0.0530 0.1215 0.2000 0.0305 0.0845 0.1480 0.2150 0.2880 0.3880 0.3880 0.0765 0.4255	0.0000 0.0880 0.1700 0.2600 0.0565 0.1225 0.2025 0.2770 0.3640 0.4795 0.1040 0.5225	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035 0.1035 0.1753 0.2460 0.3260 0.4338 0.0903 0.4740
Depth (ft.)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 500 1000 1500 2000 2500 0 2500 3000 3000	500 500 1000 0 500 1000 1500 2000 2500 0 2500 3000 3000 3000	0.0530 0.1215 0.2000 0.0305 0.0845 0.1480 0.2150 0.2880 0.3880 0.0765 0.4255 0.5235 0.5235	0.0000 0.0880 0.1700 0.2600 0.0565 0.1225 0.2025 0.2770 0.3640 0.4795 0.1040 0.5225 0.6275 0.6275	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035 0.1035 0.1753 0.2460 0.3260 0.4338 0.0903 0.4740 0.5755 0.6045
s pepth (ft.)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 500 1000 1500 2000 2500 0 2500 3000 3500 3500	500 500 1000 0 500 1000 1500 2000 2500 0 2500 0 2500 3000 3500 1000	0.0530 0.0530 0.1215 0.2000 0.0305 0.0845 0.1480 0.2150 0.2880 0.2150 0.2880 0.0765 0.4255 0.5235 0.6380	0.0880 0.1700 0.2600 0.0565 0.1225 0.2025 0.2770 0.3640 0.4795 0.1040 0.5225 0.6275 0.7510	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035 0.1753 0.2460 0.3260 0.4338 0.0903 0.4740 0.5755 0.6945
bepth (ft.)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 500 1000 2500 2500 2500 3000 3500 4000	500 500 1500 500 1500 2000 2500 2500 0 2500 3000 3500 4000	0.0530 0.1215 0.2000 0.0305 0.0845 0.1480 0.2150 0.2880 0.3880 0.3880 0.0765 0.4255 0.4255 0.5235 0.6380 0.7785	0.0880 0.1700 0.2600 0.0565 0.1225 0.2025 0.2770 0.3640 0.4795 0.1040 0.5225 0.6275 0.7510 0.8850	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035 0.1753 0.2460 0.3260 0.4338 0.0903 0.4740 0.5755 0.6945 0.8318
a Depth (ft)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 0 500 1500 2500 0 2500 0 2500 0 2500 3000 3500 4000	500 500 1000 500 1500 2500 2500 0 2500 0 2500 0 33000 3500 4000 Target De	0.0530 0.0530 0.2000 0.0305 0.0845 0.2150 0.2150 0.2150 0.2280 0.2250 0.2880 0.25235 0.6380 0.7785 flection (in.)	0.0880 0.1700 0.2600 0.0565 0.1225 0.2025 0.2770 0.3640 0.4795 0.1040 0.5225 0.6275 0.6275 0.7510 0.8850	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035 0.1753 0.2460 0.3260 0.4338 0.0903 0.4740 0.5755 0.6945 0.8318
9 (ft)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 500 5500 1000 1500 2500 25	500 1000 1500 0 500 1000 1500 2500 2500 3000 2550 3000 Target De 1550	0.0530 0.1215 0.2000 0.0305 0.245 0.1480 0.2150 0.2880 0.2150 0.2880 0.0765 0.4255 0.5235 0.6325 0.6325 0.7785 flection (in.) 0.2200	C.0600 C.0600 0.0880 0.1700 0.2600 0.2600 0.2255 0.2025 0.22770 0.3640 0.4795 0.1040 0.5225 0.6275 0.7510 0.8850 0.8850 0.2850 0.2850 0.2850 0.2750 0.2850 0.2850 0.2850 0.2525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.55	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035 0.1035 0.1753 0.2460 0.3260 0.3260 0.4338 0.0903 0.4740 0.5755 0.6945 0.8318
4 06000 (ft) 4				500 1000 1500 0 500 2500 2500 2500 3000 3500 4000 	500 1000 1500 0 500 1500 2500 2500 2500	0.0530 0.0530 0.2000 0.0305 0.0845 0.2880 0.2150 0.2880 0.2255 0.2285 0.3880 0.0765 0.4255 0.5235 0.6380 0.7785 flection (in.) 0.2200 0.4265	0.0880 0.1700 0.2600 0.0265 0.1225 0.2025 0.2770 0.3640 0.2025 0.2770 0.3640 0.5225 0.5225 0.5275 0.7510 0.8850 0.2890 0.5525	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035 0.1035 0.1753 0.2460 0.3260 0.4338 0.0903 0.4740 0.5755 0.6945 0.8318 0.2545 0.2545 0.5103 1.0100
4 5 5 10 10			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 1000 1500 0 500 2000 2500 0 2500 3000 3500 4000 	500 1000 1500 0 500 1000 1500 2000 2500 0 2500 3000 3500 3000 3500 3000 Target De 1550 3150 3150 2500 315	0.0530 0.0530 0.2200 0.0305 0.0845 0.2880 0.2150 0.2880 0.2880 0.2785 0.5235 0.6380 0.7785 fletton (in.) 0.2200 0.24685 0.2200	0.0880 0.1700 0.2600 0.2650 0.2225 0.2277 0.3640 0.4795 0.5225 0.6275 0.7510 0.8850 0.2890 0.552 1.0655	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035 0.1753 0.2460 0.3260 0.4338 0.0903 0.4740 0.5755 0.6945 0.8318 0.2545 0.5103 1.0100
4 (t)) 6 8 10 12				500 1000 1500 0 500 1500 2500 2500 2500	500 1000 1500 0 500 1000 1500 2500 2500 3000 2500 3000 3500 4000 Target De 1550 3150 4700	0.0530 0.0530 0.2000 0.0305 0.0845 0.1480 0.2150 0.2880 0.3880 0.0765 0.5235 0.6380 0.7785 flection (in.) 0.2200 0.4685 0.29545 et Load	0.0880 0.1700 0.2600 0.2650 0.1225 0.2025 0.2770 0.3640 0.4795 0.1040 0.5225 0.5225 0.5225 0.6275 0.7510 0.8850 0.2890 0.552 1.0655	0.0000 0.0705 0.1458 0.2300 0.0435 0.1035 0.1753 0.2460 0.3260 0.4338 0.0903 0.4740 0.5755 0.6945 0.8318 0.2545 0.5103 1.0100

Project:	ibV Energy-Rhudes Creek	Pile ID:	PLT-19 B
Date/Time Installed:	3/1/2021 16:30	Date/Time Tested:	3:15PM 3/6/21
Pre-Auger (Y/N)?:	N	Pushed to Depth (ft.):	1.75
Pre-Auger Depth (ft):	-	Embedment Depth (ft.):	10
Avg. Installation Rate (sec/ft.):	50.1	Pile Section	W6x9x15

Depth (ft.) Time (s) Time (s) Hold Time (b) Target Load (bs) Deflection 1 (in.) Deflection 2 Deflection (in (in.)) Average Deflection (in (in.)) 1 0 1 0 0 0.0000 0.0000 0.0000 2 3.69 1 250 300 0.0010 0.0020 0.0010 3 12.48 1 550 500 0.0010 0.0020 0.0035 6 53.73 1 1500 1500 0.0040 0.0035 0.0038 7 61.74 1 1000 1900 0.0040 0.0040 0.0040 9 84.03 1 500 460 0.0030 0.0030 0.0035 10 10.05 - - - - - - 1 0.75 - - - - - - 1 10000 10000 0.0016 0.0010 0.0010 0.0128 1 0	Embedmen	t Data		Tensile Testing						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth (ft.)	Time (s)	Hold Time	Target Load			Deflection 2	Average		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	0	(min)	(lbs)	Load (lbs)	Deflection 1 (in.)	(in.)	Deflection (in		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	0	1	0	0	0.0000	0.0000	0.0000		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	3.69	1	250	300	0.0005	0.0010	0.0008		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	12.48	1	500	500	0.0010	0.0020	0.0015		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	25.47	1	1000	1000	0.0030	0.0030	0.0030		
6 53.73 1 2000 2000 0.0065 0.0040 0.0033 7 61.74 1 1500 1350 0.0045 0.0040 0.0043 9 84.03 1 1000 940 0.0040 0.0040 0.0040 10 101.08 1 250 200 0.0030 0.0030 0.0030 1 0 0 0.0010 0.0010 0.0010 0.0010 1 0.75 - - - - - 1 0.75 - - - - - 1 0.75 -	5	37.63	1	1500	1500	0.0040	0.0035	0.0038		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	53.73	1	2000	2000	0.0065	0.0040	0.0053		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7	61.74	1	1500	1350	0.0045	0.0040	0.0043		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	70.96	1	1000	940	0.0040	0.0040	0.0040		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	84.03	1	500	460	0.0035	0.0035	0.0035		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	101.08	1	250	200	0.0030	0.0030	0.0030		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			1	0	0	0.0010	0.0010	0.0010		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Targ	et Deflection (in.)		•		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1	0.5	-	-	-	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1	0.75	-	-	-	-		
$\begin{tabular}{ c c c c c c } \hline Target Load \\ \hline 1 & 10000 & 10000 & 0.075 & 0.065 & 0.0700 \\ \hline 1 & 0 & 0 & 0.016 & 0.0095 & 0.0128 \\ \hline 1 & 0 & 0 & 0.016 & 0.0095 & 0.0128 \\ \hline 1 & 0 & 0 & 0.016 & 0.0095 & 0.0128 \\ \hline 1 & 0 & 0 & 0.016 & 0.0095 & 0.0128 \\ \hline \\ $			1	1	-	-	-	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Target Load				
I 0 0 0.016 0.0095 0.0128 Lateral Testing Lateral Load Height Above Grade (ft): 3 Deflection Gauge Height (in): 4 1 0 0 0.016 0.0095 0.0128 Lateral Load Height Above Grade (ft): 3 Deflection Gauge Height (in): 4 1 0 0 0.0000 0.00000 0.00000 0.00000 1 1000 1000 0.0128 0.0128 0.0128 1 1 0 0 0.0000 0.00000 0.00000 1 500 500 0.0780 0.0335 0.0558 1 10000 10000 0.0245 0.1650 0.1948 1 0 0 0.0305 0.0100 0.0203 1 10000 10000 0.0101 0.0235 0.2673 1 10000 2000 2000 0.3101 0.2335 0.2673 1 2500			1	10000	10000	0.075	0.065	0.0700		
Lateral Load Height Above Grade (ft): So Lateral Load Height Above Grade (ft): So Deflection Gauge Height (in): 4 2 Hold Time (min) Target Load (lbs) Load (lbs) Deflection 1 (in.) Deflection 2 (in.) Average Deflection (in 1 0 0 0.0000 0.0000 0.0000 1 500 500 0.0780 0.0335 0.0558 0.1510 0.1010 0.1260 1 1000 1000 0.1510 0.1010 0.1260 0.1948 1 0 0 0.0305 0.0010 0.0203 0.1948 1 0 0 0.3035 0.0100 0.2245 0.1650 0.1948 1 1000 1000 0.1115 0.1205 0.1460 1 1.2000 2000 0.3010 0.2335 0.2673 1 2500 2500 0.3010 0.2335 0.2673 1 2500 2500 0.3035 0.0405 1.3130 0.3618 <	otal Time (s) =	450.81	1	0	0	0.016	0.0095	0.0128		
Time (seconds) Lateral Load Height Above Grade (ft): 3 Deflection Gauge Height (in): 4 0 50 100 150 160 Deflection Gauge Height (in): 4 Hold Time (min) Target Load (lbs) Load (lbs) Deflection 1 (in.) Deflection 2 (in.) Average Deflection (in.) 1 0 0 0.0000 0.0000 0.0000 1 500 500 0.0780 0.0335 0.0558 1 1000 1000 0.1510 0.1010 0.1260 1 1500 1500 0.2245 0.1650 0.1948 1 0 0 0.0305 0.0100 0.0203 1 1000 1000 0.1715 0.1205 0.1460 1 1500 1500 0.2380 0.1890 0.2975 1 1000 1000 0.0475 0.0335 0.0405 1 2500 2500 0.4105 0.3130 0.3618 1 3000 300					L	ateral Testing				
Bit International State Internate International State	Time (se	conds)	Lateral L Above	.oad Height Grade (ft):	3	Deflection Gaug	e Height (in):	4		
(min) (lbs) Load (lbs) Deflection 1 (ln.) (in.) Deflection (in.) 1 0 0 0.0000 0.0000 0.0000 1 500 500 0.0780 0.0335 0.0558 1 1000 1000 0.1510 0.1010 0.1260 1 1500 1500 0.2245 0.1650 0.1948 1 0 0 0.0305 0.0100 0.0203 1 500 500 0.1010 0.0203 0.1460 1 1500 1500 0.2380 0.1890 0.2135 1 1000 1000 0.1715 0.1205 0.1460 1 1500 1500 0.2380 0.1890 0.2135 1 2000 2000 0.3010 0.2335 0.2673 1 2500 2500 0.3805 0.2975 0.3390 1 0 0 0.0475 0.0335 0.0405 1	0 50	100 150	Hold Time	Target Load	1 1 (11	Deflection (()	Deflection 2	Average		
1 0 0 0.0000 0.0000 0.0000 1 500 500 0.0780 0.0335 0.0558 1 1000 1000 0.1510 0.1010 0.1260 1 1500 1500 0.2245 0.1650 0.1948 1 0 0 0.0305 0.0100 0.0203 1 500 500 0.1010 0.0890 0.0950 1 1000 1000 0.1715 0.1205 0.1460 1 1500 1500 0.2380 0.1890 0.2135 1 2000 2000 0.3010 0.2335 0.2673 1 2500 2500 0.3805 0.2975 0.3390 1 0 0 0.0475 0.0335 0.0405 1 2500 2500 0.4105 0.3130 0.3618 1 3000 3000 0.4855 0.3990 0.4423 1 3000 35			(min)	(lbs)	Load (IDS)	Deflection 1 (In.)	(in.)	Deflection (in		
1 500 500 0.0780 0.0335 0.0558 1 1000 1000 0.1510 0.1010 0.1260 1 1500 1500 0.245 0.1650 0.1948 1 0 0 0.0305 0.0100 0.0203 1 500 500 0.1010 0.0203 1 1 0 0 0.0305 0.0100 1 1000 1000 0.1715 0.1205 0.1460 1 1000 1000 0.1715 0.1205 0.1460 1 1500 1500 0.2380 0.1890 0.2135 1 2000 2000 0.3010 0.2335 0.2673 1 2500 2500 0.3055 0.2975 0.3390 1 0 0 0.0475 0.0335 0.0405 1 2500 2500 0.4105 0.3130 0.3618 1 3000 3000 0.4855 <td></td> <td></td> <td>1</td> <td>0</td> <td>0</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td>			1	0	0	0.0000	0.0000	0.0000		
1 1000 1000 0.1510 0.1010 0.1260 1 1500 1500 0.2245 0.1650 0.1948 1 0 0 0.0305 0.0100 0.0203 1 500 500 0.1010 0.0203 1 1000 1000 0.1715 0.1205 0.1460 1 1000 1000 0.2380 0.1890 0.2135 1 1500 1500 0.2380 0.1890 0.2135 1 2000 2000 0.3010 0.2335 0.2673 1 2500 2500 0.3055 0.2975 0.3390 1 0 0 0.0475 0.0335 0.0405 1 2500 2500 0.4105 0.3130 0.3618 1 3000 3000 0.4855 0.3990 0.4423 1 3500 0.5690 0.4605 0.5148			1	500	500	0.0780	0.0335	0.0558		
1 1500 1500 0.2245 0.1650 0.1948 1 0 0 0.0305 0.0100 0.0203 1 500 500 0.1100 0.0890 0.0950 1 1000 1000 0.1715 0.1255 0.1460 1 1500 1500 0.2380 0.1890 0.2135 1 1500 1500 0.3010 0.2335 0.2673 1 2000 2000 0.3010 0.2335 0.2673 1 2500 2500 0.3805 0.2975 0.3390 1 0 0 0.0475 0.0335 0.0405 1 2500 2500 0.4105 0.3130 0.3618 1 3000 3000 0.4855 0.3990 0.4423 1 3500 3500 0.5690 0.4605 0.5148	2		1	1000	1000	0.1510	0.1010	0.1260		
1 0 0 0.0305 0.0100 0.0203 1 500 500 0.1010 0.0890 0.0950 1 1000 1000 0.1715 0.1205 0.1460 1 1500 1500 0.2380 0.1890 0.2135 1 2000 2000 0.3010 0.2335 0.2675 1 2500 2500 0.3805 0.2975 0.3390 1 0 0 0.0475 0.0335 0.0405 1 2500 2500 0.4105 0.3130 0.3618 1 3000 3000 0.4855 0.3990 0.4423 1 3500 3500 0.5690 0.4605 0.5148			1	1500	1500	0.2245	0.1650	0.1948		
4 1 500 500 0.1010 0.0890 0.0950 1 1000 1000 0.1715 0.1205 0.1460 1 1500 1500 0.2380 0.1890 0.2135 1 2000 2000 0.3010 0.2335 0.2673 1 2500 2500 0.3805 0.2975 0.3390 1 0 0 0.0475 0.0335 0.0405 1 2500 2500 0.4105 0.3130 0.3618 1 3000 3000 0.4855 0.3990 0.4423 1 3500 3500 0.5699 0.4605 0.5148			1	0	0	0.0305	0.0100	0.0203		
1 1000 1.115 0.1205 0.1460 1 1500 1500 0.2380 0.1890 0.2135 1 2000 2000 0.3010 0.2335 0.2673 1 2500 2500 0.3805 0.2975 0.3390 1 0 0 0.0475 0.0335 0.0405 1 2500 2500 0.4105 0.3130 0.3618 1 3000 3000 0.4855 0.3990 0.4423 1 3500 3500 0.5690 0.4605 0.5148	4		1	500	500	0.1010	0.0890	0.0950		
1 1500 1.2380 0.1890 0.2135 1 2000 2000 0.3010 0.2335 0.2673 1 2500 2500 0.3055 0.2975 0.3390 1 0 0 0.0475 0.0335 0.0405 1 2500 2500 0.4105 0.3130 0.3618 1 3000 3000 0.4855 0.3990 0.4423 1 3500 3500 0.5690 0.4605 0.5148 1 4000 4000 0.6050 0.4605 0.5148			1	1000	1000	0.1715	0.1205	0.1460		
1 2000 2000 0.3010 0.2335 0.2673 1 2500 2500 0.3805 0.2975 0.3390 1 0 0 0.0475 0.0335 0.0405 1 2500 2500 0.4105 0.3130 0.3618 1 3000 3000 0.4855 0.3990 0.4423 1 3500 3500 0.5690 0.4605 0.5148			1	1500	1500	0.2380	0.1890	0.2135		
1 2500 2500 0.3805 0.2975 0.3390 1 0 0 0.0475 0.0335 0.0405 1 2500 2500 0.4105 0.3330 0.3618 1 3000 3000 0.4855 0.3990 0.4423 1 3500 3500 0.6605 0.4055 0.5148			1	2000	2000	0.3010	0.2335	0.2673		
1 0 0 0.0475 0.0335 0.0405 1 2500 2500 0.4105 0.3130 0.3618 1 3000 3000 0.4855 0.3990 0.4423 1 3500 3500 0.6605 0.5148 1 4000 0.6605 0.5168	6		1	2500	2500	0.3805	0.2975	0.3390		
a 1 2500 2500 0.4105 0.3130 0.3618 1 3000 3000 0.4855 0.3990 0.4423 1 3500 3500 0.6609 0.4605 0.5148 1 4000 4000 0.6605 0.5168	Ι Ι		1	0	0	0.0475	0.0335	0.0405		
1 3000 3000 0.4855 0.3990 0.4423 1 3500 3500 0.5690 0.4605 0.5148 1 4000 4000 0.6605 0.5148			1	2500	2500	0.4105	0.3130	0.3618		
1 3500 3500 0.5690 0.4605 0.5148	8		1	3000	3000	0.4855	0.3990	0.4423		
	- I V		1	3500	3500	0.5690	0.4605	0.5148		
			1	4000	4000	0 6605	0 5505	0.6055		

n (ft.)	
Dept	
8	
10	
12	

ld Time min)	Target Load (Ibs)	Load (lbs)	Deflection 1 (in.)	Deflection 2 (in.)		
1	0	0	0.0000	0.0000		
1	500	500	0.0780	0.0335		
1	1000	1000	0.1510	0.1010		
1	1500	1500	0.2245	0.1650		
1	0	0	0.0305	0.0100		
1	500	500	0.1010	0.0890		
1	1000	1000	0.1715	0.1205		
1	1500	1500	0.2380	0.1890		
1	2000	2000	0.3010	0.2335		
1	2500	2500	0.3805	0.2975		
1	0	0	0.0475	0.0335		
1	2500	2500	0.4105	0.3130		
1	3000	3000	0.4855	0.3990		
1	3500	3500	0.5690	0.4605		
1	4000	4000	0.6605	0.5505		
		Targ	et Deflection (in.)			
1	0.25	2000	0.3010	0.2335		
1	0.5	3400	0.5540	0.4505		
1	1	6000	1.0365	0.9345		
			Target Load			
1	6000	6000	1.0365	0.9345		
1	0	0	0.1145	0.1995		

0.2673 0.5023 0.9855

0.9855

0.157

Attachment F

Seismic Support Data

ASCE 7 Hazards Report

Address: No Address at This Location Standard: ASCE/SEI 7-16

Risk Category: II Soil Class: C

: II C - Very Dense Soil and Soft Rock
 Elevation:
 704.01 ft (NAVD 88)

 Latitude:
 37.656346

 Longitude:
 -85.993722

Site Soil Class: Results:	C - Very Dense Soil	and Soft Rock	
S _s :	0.208	S _{D1} :	0.11
S ₁ :	0.11	T∟ :	12
F _a :	1.3	PGA :	0.101
F _v :	1.5	PGA M :	0.131
S _{MS} :	0.271	F _{PGA} :	1.299
S _{M1} :	0.165	l _e :	1
S _{DS} :	0.18	C _v :	0.708
Seismic Design Category	В		

Data Accessed: Date Source:

Wed Mar 31 2021 USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Attachment G

Geophysical Report (Karst Investigation)

GEOPHYSICAL INVESTIGATION Rhudes Creek Solar Project Cecilia, Kentucky

Prepared for: ANS Geo, Inc. 4405 S Clinton Ave South Plainfield, NJ 07080

February 24, 2021

Prepared by:

THG Geophysics, Ltd. 4280 Old William Penn Highway Murrysville, Pennsylvania 15668 724-325-3996 www.thggeophysics.com THG Project No. 1265-10736

TABLE OF CONTENTS

1.0	INTR	RODUCTION	2
	1.1	Background	
	12	Work Scope	2
	1.2		
20	GEO		3
2.0	2 1	Floatrical Imaging Theory	
	Ζ.Ι	2.4.4 Introduction	······
		2.1.2 Methods	4
	2.2	Processing	4
	2.3	MASW Theory	4
3.0	GEO	DLOGY	5
4.0	GEO	PHYSICAL ANALYSIS	6
	4.1	Introduction	
		4 1 1 Flectrical Imaging	6
		1.12 MAS/M	6
	12	4. 1.2 MAGW	
	4.2		
	4.3		
	4.4	Area 3	
	4.5	Area 4	8
	4.6	Area 5	8
	4.7	Area 6	9
	4.8	Areas 7-8	9
	4.9	Right-of-Way	9
50	CON	ICLUSION	10
0.0	001		
60	REFI	ERENCES	11
0.0			

TABLES

- 1. MASW Shear Wave Velocity Data
- 2. TABLE 2

FIGURES

- 1. Site Location Map
- 2. Geophysical Survey Map
- 3. Site Geological Map
- 4. Area 1 El Profiles 1-3
- 5. Area 2 El Profiles 4-7
- 6. Area 3 El Profiles 8-15
- 7. Area 4 El Profiles 16-18
- 8. Area 5 El Profiles 8-9

- 9. Area 6 El Profiles 21-24
- 10. Areas 7 & 8 El Profiles 25-28
- 11. ROW El Profile 29
- 12. Shear Wave Velocity Profiles M1-M3
- 13. Shear Wave Velocity Profiles M4-M6
- 14. Shear Wave Velocity Profiles M7-M9
- 15. Shear Wave Velocity Profiles M10-M11

1.0 INTRODUCTION

1.1 BACKGROUND

THG Geophysics, Ltd. (THG) conducted a geophysical investigation to characterize a sampling of the subsurface across approximately 950 acres of the proposed Rhudes Creek Solar Project and transmission line Right-of-Way (ROW) located near Cecilia, Kentucky. The project site is in an area prone to development of sinkholes and other karst phenomena. The survey was completed February 8-12, 2021 (**Figure 1**).

1.2 WORK SCOPE

The scope of work included the use of electrical resistivity imaging (EI) and multichannel analysis of surface wave (MASW) testing to characterize bedrock in an area known to be impacted by karst. THG utilized a GF Instruments' ARES II electrical resistivity meter and a Geometrics Geode seismograph to image the subsurface. Given the size of the project site, testing locations were selected to be distributed across the property while also targeting potential karst features determined in the field (**Figure 2**).

2.0 GEOPHYSICAL INVESTIGATION

2.1 ELECTRICAL IMAGING THEORY

2.1.1 Introduction

Electrical resistance is based upon Ohm's Law:

$$R = \frac{V}{I}$$
 [ohms]

Where, resistance, **R**, is equal to the ratio of potential, **V** (volts) to current flow, **I** (amperes).

Resistivity is the measure of the resistance along a linear distance of a material with a known cross-sectional area. Consequently, resistivity is measured in Ohm-meters. This report presents the geophysical results as geo-electrical profiles of modeled resistance plotted as 2-dimensional profiles of distance and depth, in units of feet.

Electrical currents propagate as a function of three material properties (1) ohmic conductivity, (2) electrolytic conductivity, and (3) dielectric conductivity. Ohmic conductivity is a property exhibited by metals. Electrolytic conductivity is a function of the concentration of total dissolved solids and chlorides in the groundwater that exists in the pore spaces of a material. Dielectric conductivity is a function of the permittivity of the matrix of the material. Therefore, the matrix of most soil and bedrock is highly resistive. Of these three properties, electrolytic conductivity is the dominant material characteristic that influences the apparent resistivity values collected by this method. In general, resistivity values decrease in water-bearing rocks and soil with increasing:

- a. Fractional volume of the rock occupied by groundwater;
- b. Total dissolved solid and chloride content of the groundwater;
- c. Permeability of the pore spaces; and,
- d. Temperature.

Materials with minimal primary pore space (i.e., limestone, dolomite) or those which lack groundwater in the pore spaces will exhibit high resistivity values (Mooney, 1980). Highly porous, moist, or saturated soil will exhibit very low resistivity values.

In homogeneous ground, the apparent resistivity is the true ground resistivity; however, in heterogeneous ground, the apparent resistivity represents a weighted average of all formations through which the current passes. Many electrode placements (arrays) have been proposed (for examples see Reynolds, 1997); however, the Schlumberger array has proven to be an effective configuration for imaging bedrock. The following Schlumberger array was used in the collection of data:

$$R_{i} = \frac{\pi a^{2}}{b} [1 - \frac{b^{2}}{4 a^{2}}]R; a = 5b$$

Where, R_i , resistivity, is related to the number of poles, n, the separation distance between the current source and current sink b, and the pole spacing, a.

2.1.2 Methods

The resistivity survey was performed using the ARES II multi-electrode cable system (GF Instruments, s.r.o., Brno, Czech Republic). The survey was conducted using stainless steel electrodes and passive multi-electrode cables with switch boxes. Twenty nine (29) El profiles were collected with a 3-m step-out Schlumberger array. The locations and elevations of all data were recorded in the field using a Trimble Geo-7XH global positioning system (DGPS).

2.2 PROCESSING

A forward modeling subroutine was used to calculate the apparent resistivity values using the EarthImager2D program (AGI, 2002). This program is based on the smoothness-constrained least-squares method (deGroot-Hedlin and Constable, 1990; Loke and Barker, 1996). The smoothness-constrained least-squares method is based upon the following equation:

$$J^T g = (J^T J + \mu F)d$$

Where, **F** is a function of the horizontal and vertical flatness filter, **J** is the matrix of partial derivatives, μ is the damping factor, **d** is the model perturbation vector, and **g** is the discrepancy vector.

The EarthImager2D program divides the subsurface 2-D space into a number of rectangular blocks. Resistivities of each block are then calculated to produce an apparent resistivity pseudo section. The pseudo section is compared to the actual measurements for consistency. A measure of the difference is given by the root-mean-squared (rms) error.

2.3 MULTICHANNEL ANALYSIS OF SURFACE WAVES THEORY

Multichannel Analysis of Surface Waves (MASW) is a method of collecting shear-wave data using surface wave velocity analysis (Xia, et al., 2000). MASW uses surface wave fronts (i.e., Raleigh and Love waves) to predict the shear wave velocity often to a depth of 75 feet or greater. This method is non-destructive and non-intrusive. MASW theory holds that the penetration depth of a surface wave increases with wavelength. Further, propagation velocity (i.e., phase velocity) is determined mainly by shear-wave velocity of penetrated materials; consequently, surface waves have nearly the same velocity as shear wave at depth. Through the use of dispersion curves, or the change of propagation speed (i.e., phase velocity) with wavelength (or frequency), the shear wave velocity with depth can be derived.

One-dimensional multichannel analysis of surface waves (MASW) data was collected at eleven (11) locations across the site. Elastic waves were initiated using a 16-lbs sledge hammer striking a 12-in by 12-in aluminum plate. The velocity data were collected using a 24-channel seismograph and 4.5-Hz geophones in a 5-foot step-out array. Three events (5 stacks each) were recorded and processed using SurfSeis 6.0.1.4 software. The location of each MASW test was recorded using a Trimble Geo-7XH DGPS.

3.0 GEOLOGY

The bedrock in the project area primarily consists of the Mississippian-aged Ste. Genevieve Limestone (**Figure 3**). This unit consists of limestone, dolomite, and shale. Limestone is light yellowish gray and massive, interbedded with sublithographic to medium-grained clastic limestone. Dolomite is yellowish gray, very fine grained and massive. Shale is yellowish to greenish gray. This unit is commonly covered by as much as 30 feet of soil (Kepferle 1963). This soil coverage is consistent with a preliminary geotechnical report performed by Terracon that revealed auger refusal depths of 6.5 to 26 feet below grade (ft bg) across the site.

The Karst Potential Classification developed by the Kentucky Geological Survey (KGS) classifies this unit as having very high karst potential. This classification is defined by thickbedded, typically fine-grained and pure limestone units with little or no insoluble content. Units in this class will exhibit mature karst, including caves, sinkholes, and springs where they crop out (KGS Karst Potential Index).

The Kentucky Geological Survey also developed a GIS database of topographically mapped depressions resulting from karst processes (i.e. sinkholes). This database was developed by digitizing the highest elevation, closed, topographic contour as a polygon. Although these data do not indicate the probability of future cover-collapse or bedrock collapse, they do identify areas where karst features are likely to have developed. These features are common along the eastern and western borders of the project site (Purple hashed polygons, **Figure 2**).

4.0 GEOPHYSICAL ANALYSES

4.1 INTRODUCTION

This report covers the 950-acre proposed Rhudes Creek Profect and is divided into eight project areas and a transmission line right-of-way (ROW). This naming scheme does not necessarily divide the site into distinct subsurface conditions, but was instead based on polygon divisions provided by ANS during the proposal phase of this survey (Areas 1-8 & ROW, **Figure 2**).

4.1.1 Electrical Imaging

Twenty-nine (29) EI profiles were collected within the eight (8) project areas and ROW (**Figures 2-11**). All profiles were acquired using a three-meter (9.8 feet) electrode spacing and imaged to a depth of approximately forty-eight (48) feet below grade (ft bg), with slight variations depending on topography.

El test locations were selected to get both a sampling of subsurface conditions across the site and to delineate potential karst features. Potential karst features were determined in the field using a combination of aerial imagery showing farmer-avoidance areas; observations of depressions that either ephemerally or actively held shallow standing water (orange polygons, **Figure 2**); and low-grade erosional creeks that lead to depressions. This report does not include all depressions within the nine (9) study areas.

Low apparent resistivity values are typically associated with soils, saturated materials, and highly weathered bedrock, whereas high apparent resistivity values are associated with rock (increasing with rock competence). Clay materials can exhibit a range of resistivity from 1-100 Ohm-m, sand and shale can exhibit a range from 20-300 Ohm-m, and limestone units can exhibit a range of resistivity from 100-1,000,000 Ohm-m, depending on weathering and porosity. Consequently, very high apparent resistivity measurements can indicate very hard, non-permeable rock (i.e., limestone) or air–filled voids. Very low apparent resistivity measurements can indicate soil or saturated voids.

The preliminary geotechnical report by Terracon observed groundwater between 3-18.5 ft bg at this site. Because groundwater is relatively close to the surface, voids may exist within rock zones that show high variability. Similarly, drier soils near the surface overlying saturated soils at depth are commonly exhibited as resistivity inversions at this site, where a more resistive layer near the surface is underlain by a less resistive layer. In areas with deeper soil, this is likely due to increases in saturation with depth. However, in areas with shallow rock, this resistivity inversion may be caused by more competent rock underlain by more vuggy, saturated rock.

4.1.2 MASW

Eleven (11) 1-D MASW profiles were collected at the center point (~113 feet) of each El profile. MASW test locations were selected to provide a relatively even distribution across the project site and to help further characterize El data. Results are included in this report as stand-alone intervals (**Table 1, Figures 12-15**) and as overlays on El profiles, highlighting velocity increases that may indicate the transition from overburden to bedrock (Vs overlays, **Figures 4-10**). These must be the stars that are on the figures – you have lable them on the figures Various rock types display unique shear wave velocities that are further impacted by factors such as saturation, temperature, and porosity. Shale has a shear wave velocity of 1,500-8,000 ft/s and limestones exhibit shear wave velocities from 1,000-8,000 ft/s (Greenwood, 2015).

4.2 Area 1

Area 1 is located along the western edge of the project site and measures approximately 75 acres (**Figure 4**). At the time of this survey, this area was highly saturated and is adjacent to an alluvial deposit along the creek (**Figure 3**). KGS sinkhole GIS identified potential karst features along the northern and western edge of this area (Paylor et al. 2003).

El Lines 1 and 3 were collected in saturated surface soil conditions through observed depressions, while Line 2 was collected in a drier area. Additionally, El Line 3 was collected diagonally across the footprint of a proposed substation near the entrance to the transmission line ROW.

No anomalies were identified in EI profiles collected near depressions. However, EI Line 1 exhibits some lateral variation in resistivity at depth, likely due to irregular weathering of limestone surface at depth.

MASW tests M1 and M2, collected in Area 1, indicate that top of rock is at approximately 35-40 ft bg where tested, consistent with an increase in resistivity at those depths along the EI profiles (Vs overlay, **Table 1; Figure 4**; **Figure 12**).

4.3 Area 2

Area 2 is located along the southwestern edge of the project site and measures approximately 75 acres (**Figure 5**). Four (4) El profiles and one (1) MASW test were acquired in Area 2. No field depressions or KGS sinkholes were identified in this area, but El Lines 4-5 were collected perpendicular to a low-grade erosional creek that held standing water in some areas (Paylor et al. 2003).

El Lines 4, 6, and 7 exhibit resistivity inversions to varying extents along each profile (**Table 2**). The inversion at 140-226 feet along El Line 4 overlies a decrease in resistivity at depth, indicating a possible increase in shallow porosity caused by deeper karst features. Inversions on El Lines 6 and 7 are likely related to changes in saturation with depth.

MASW test M3, collected in Area 2, indicates that top of rock is at approximately 30 bg, consistent with an increase in resistively at that depth along El Line 7 (Vs overlay, **Table 1**; **Figure 5**; **Figure 12**).

4.4 Area 3

Area 3 is located in the central portion of the project site and measures approximately 204 acres (**Figure 6**). Eight (8) El profiles and two (2) MASW tests were acquired in Area 3. Five (5) field depressions exist along the creek in this area and were imaged on El Lines 9, 10, 11, 14, and 15. These depressions occurred on or near the edges of an alluvial deposit (**Figure 3**).

El Lines 8, 12, 13, 14, and 15 exhibit resistivity inversions to varying extents along each profile (**Table 2**). Inversions on El Lines 8, 13, and 14 are likely related to increasing saturation with depth through a thick overburden layer.

From 45 to 58 feet and 155 to 226 feet along El Line 12, more conductive areas are present in an otherwise resistive shallow subsurface that connects to laterally varied resistivity inversions at depth. These features are characteristic of karst features in saturated conditions. From 20 to 120 feet along El Line 15, apparent resistivities were far greater than other profiles, requiring the use of a different color scale than the rest of the profiles. This highly resistive feature, which overlaps with a dry depression on the surface, is characteristic of an <u>air-filled</u> void.

MASW tests M4 and M5, collected in Area 3, indicate that the top of rock is at approximately 33-38 feet below grade, consistent with an increase in resistivity at those depths along the El profiles (Vs overlay, **Table 1; Figure 6; Figure 13**).

4.5 Area 4

Area 4 is located in the north-central portion of the project site and measures approximately 144 acres (**Figure 7**). Three (3) EI profiles and two (2) MASW tests were acquired in Area 4. No field depressions or KGS sinkholes were identified in this area, but EI line 17 was collected perpendicular to a dry erosional creek (Paylor et al. 2003).

El Lines 16 and 17 exhibit resistivity inversions to varying extents along each profile (**Table 2**). These inversions are likely related to increasing saturation with depth through a thick overburden layer. None of the El profiles collected in this area are interpreted to image karst-related features.

MASW tests M6 and M7, collected in Area 4, indicate that there is a variable top of rock at between approximately 17 to 44 feet below grade, consistent with an increase in resistivity at those depths along their respective EI profiles (Vs overlay, **Table 1**; **Figure 7**; **Figures 13-14**)

4.6 Area 5

Area 5 is located in the south-central portion of the project site and measures approximately 115 acres (**Figure 8**). Two (2) EI profiles and one (1) MASW tests were acquired in Area 5. No field depressions or KGS sinkholes were identified in this area (Paylor et al. 2003).

El Lines 19 and 20 exhibit laterally extensive resistivity inversions along each profile (**Table 2**). These inversions are likely related to increasing saturation with depth through a thick overburden layer. None of the El profiles collected in this area are interpreted to image karst-related features.

MASW test M8, collected in Area 5, indicates that the top of rock is at approximately 43 feet below grade, consistent with an increase in resistivity at that depth along El Line 20 (**Table 1**; Vs overlay, **Figure 8**; **Figure 14**).

4.7 Area 6

Area 6 is located in the northeastern portion of the project site and measures approximately 141 acres (**Figure 9**). Four (4) El profiles and one (1) MASW tests were acquired in Area 6. No field depressions or KGS sinkholes were identified in this area (Paylor et al. 2003). One field depression was identified in this area and is imaged by El Line 24. KGS sinkholes are present along the northern edge of the project site, including one within the project site that was not observed or imaged in the field. El Line 23 was collected perpendicular to an erosional creek leading into an off-property sinkhole.

All four El Lines collected in this area (Lines 21-24) exhibit laterally varied resistivity inversions along each profile (**Table 2**). This lateral inconsistency suggests that these features may be related to karst features instead of increased saturation with depth in the overburden. While the profiles likely did not image karst features directly, they may be the result of increased porosity in the overlying soils caused by deeper karst features.

MASW test M9, collected in Area 6, indicates that the top of rock is at approximately 41 feet below grade, consistent with an increase in resistivity at that depth along EI Line 23 (Vs overlay, **Table 1; Figure 9**; **Figure 14**).

4.8 Areas 7-8

Areas 7 and 8 are located along the southeastern edge of the project site and measure approximately 143 acres combined (**Figure 10**). Four (4) El profiles and one (2) MASW tests were acquired in Areas 7-8. Several KGS sinkholes are located along the eastern edge of Areas 7-8 (Paylor et al. 2003). El Line 26 was collected perpendicular to an erosional creek leading into a sinkhole in the southeast corner of Area 7. Following a heavy rain during field work, the large sinkhole along the southeastern edge of Area 8 was too wet to access and/or survey.

All four El Lines (Lines 25-28) collected in this area exhibit resistivity inversions to varying extents along each profile (**Table 2**). Inversions on El Lines 25, 27, and 28 are likely related to changes in saturation with depth in the soil overburden.

From 40-70 feet along EI profile 26, a slight inversion in resistivity may be related to the sinkhole located just east of the profile.

MASW tests M10 and M11, collected in Areas 7 and 8, indicate that the top of rock is at approximately 34-36 feet below grade, consistent with an increase in resistivity at those depths along each El profile (Vs overlay, **Table 1; Figure 10**; **Figure 15**).

4.9 Right-of-Way (ROW)

The transmission line ROW is a narrow corridor of land extending north of the project site measuring approximately 40 acres (**Figure 11**). ANS request that two additional areas of interest be imaged along this ROW, if time allowed after completing the primary project areas. One surrounded a wetlands area around the middle of the ROW, and the other was for a substation near the northern extent. One El profile was collected about two-thirds of the way

across the central area of interest. However, heavy rain and flooding along the only identified access to the northern portion of the ROW prevent further surveying.

No anomalies were identified in EI Line 29, collected over the wetlands area of interest. However, this profile exhibits some lateral variation in resistivity at depth, likely due to irregular weathering of limestone surface.

5.0 CONCLUSION

This geophysical report characterizes a sampling of the subsurface at the approximately 950acre Rhudes Creek Solar Project located southwest of Cecilia, Kentucky. The area is characterized by surface features that indicate karst is present in the subsurface. Electrical imaging acquired from February 9-11, 2021, confirms the presence of karst features at this site.

The findings and conclusions in this report are stated with a reasonable degree of scientific certainty. THG's findings and conclusions are as follows:

- 1. The project site is located in a geological setting with a high potential for karst development.
- 2. Depth to bedrock is variable, but is commonly greater than 20 feet below grade within the solar project footprint.
- 3. Topographically-derived sinkhole features developed by KGS located with Areas 6 and 8 were not geophysically surveyed, either because they were not observed in the field or conditions were too wet to access.
- 4. Shallow (within 30 ft bg) karst conditions may exist at the following locations:
 - Line 12: 45-58 ft and 155-226 ft
 - Line 15: 20-120 ft (potential <u>air-filled</u> void)
- 5. Deeper (greater than 45 ft) karst conditions may exist at the following locations:
 - Line 4: 155-226 ft
 - Line 21: 110-160 ft
 - Line 22: 160-200 ft
 - Line 23: 20-115 ft
 - Line 24: 140-180 ft
- 6. The results of this survey should be confirmed with drilling.

6.0 REFERENCES

AGI (2002). EarthImager Program. American Geosciences Inc., Austin Texas.

- deGroot-Hedlin, C. and Constable, S. (1990). Occam's inversion to generate smooth, twodimensional models from magnetotelluric data. Geophysics, V. 55, 1613-1624.
- Greenwood, William (2015). In Situ Shear Wave Velocity Measurements in Rocks. Rock Mechanics Geo Engineer.
- Kepferle, R. C. (1963). Geology of the Cecilia Quadrangle, Kentucky. Kentucky Geologic Survey. Map GQ-263.
- Kepferle, R. C. (1963). Geology of the Howe Valley Quadrangle, Kentucky. Kentucky Geologic Survey. Map GQ-232.
- KGS Databases, Maps, and Publications. KGS Web Map Services: Karst Potential Index (KPI): Kentucky Geological Survey.
- Loke, M. N., and Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosection by quasi-Newton method. Geophysical Prospecting, V. 44, 131-152.
- Mavko, G. (2019). Conceptual Overview of Rock and Fluid Factors that Impact Seismic Velocity and Impedance. Stanford Rock Physics Laboratory.
- Mooney, H. M. (1980). Handbook of Engineering Geophysics: Volume 2: Electrical Resistivity, Bison Instruments, Inc.
- Paylor, R.L., Florea, L., Caudill, M., & Currens, J. C. (2003). A GIS Sinkhole Coverage for the Karst Areas of Kentucky. Kentucky Speleological Survey, Inc., 228 Mining and Minerals Resources Building, Lexington, KY.
- Reynolds, J. M. (1997). An Introduction to Applied and Environmental Geophysics. New York, NY, Wiley.
- Xia, J.; Miller, R. D.; Park, C. B.; Hunter J. A.; Harris, J. B.; and Ivanov, J., (2002), Comparing shear-wave velocity profiles inverted from multi-channel surface wave with borehole measurements: *Soil Dynamics Earthquake Engineering*, Vol. 22, pp. 181-190.

Geophysical investigations are a non-invasive method of interpreting physical properties of the shallow earth using electrical, electromagnetic, or mechanical energy. This document contains geophysical interpretations of responses to induced or real-world phenomena. As such, the measured phenomenon may be impacted by variables not readily identified in the field that can result in a false-positive and/or false negative interpretations. THG makes no representations or warranties as to the accuracy of the interpretations.

	Fasting	Northing	Elevation at	Depth	Elevation	Shear Wave
	Lasting	Northing	Surface	(ft/bg)	Lievation	Velocity (ft/S)
				-2	710	749
				-3	708	764
				-6	705	808
				-9	702	864
М1	1 817 395	3 76/ 117	711	-13	699	859
	4,047,000	0,704,117	7.1.1	-17	694	742
				-23	688	751
				-30	681	929
				-39	672	1,105
				-49	662	1,876
				-3	699	542
				-7	695	492
				-12	690	534
				-19	684	686
MO	1 817 567	3 764 507	703	-26	676	935
	4,847,567	3,764,307	703	-36	666	1,168
				-49	654	1,285
				-64	639	1,428
				-83	619	1,580
				-104	599	2,521
	4.045.005		735	-2	733	872
				-4	731	915
				-8	728	965
				-11	724	973
M2		2 760 254		-16	719	913
IVIS	4,040,090	3,700,234		-22	713	910
				-30	705	1,013
				-39	696	1,146
				-51	684	1,367
				-64	671	2,108
				-3	719	909
				-6	716	924
				-10	712	920
				-15	707	872
MA	1 810 376	3 761 227	700	-21	701	756
141-4	7,073,370	5,104,201	122	-29	693	815
				-38	684	1,056
				-51	671	1,414
				-66	656	1,758
				-82	640	2,859

TABLE 1MASW Shear Wave Velocity Data

NOTES:

Coordinates - NAD83 State Plane (Kentucky Single Zone), US Survey ft

MASW ID	Easting	Northing	Elevation at	Depth	Elevation	Shear Wave
	g		Surface	(ft/bg)		Velocity (ft/S)
				-4	701	921
				-9	696	638
				-15	690	638
				-23	682	847
M5	4 850 718	3 762 617	705	-33	672	1,144
ine	1,000,110	0,102,011	100	-45	660	1,296
				-60	645	1,475
				-79	626	1,748
				-102	602	2,173
				-128	577	3,702
				-2	744	776
				-5	742	875
				-8	738	792
				-13	734	792
Мб	1 852 502	3,763,903	747	-18	728	965
INIO	4,002,002			-25	722	749
				-34	713	834
				-44	702	1,168
				-57	689	1,344
				-72	675	1,785
			719	-1	718	1,160
				-3	717	1,033
				-4	715	907
				-7	713	907
N47	1 955 650	2 762 246		-9	710	907
IVI 7	4,000,000	3,703,210		-13	706	907
				-17	702	1,274
				-23	697	1,737
				-30	690	1,688
				-37	682	2,381
				-3	694	783
				-6	691	783
				-11	686	783
				-17	681	783
	4 050 400	0 700 000	007	-24	674	783
δivi	4,852,128	3,700,690	097	-32	665	913
				-43	654	1,454
				-57	640	1,142
				-74	623	1,805
				-93	604	2,071

TABLE 1MASW Shear Wave Velocity Data

NOTES:

Coordinates - NAD83 State Plane (Kentucky Single Zone), US Survey ft

MASW ID	Easting	Northing	Elevation at	Depth	Elevation	Shear Wave
			Surface	(ft/bg)		Velocity (ft/S)
				-2	711	736
				-5	709	862
				-8	706	777
				-12	701	784
МО	4 856 770	3 762 376	713	-17	696	698
1110	4,000,770	0,102,010	110	-24	690	617
				-32	682	998
				-41	672	1,241
				-54	660	1,434
				-67	646	2,392
				-2	725	803
		3,760,208	727	-4	723	877
				-7	720	829
				-10	716	829
M10	4,856,106			-15	712	829
				-20	706	885
				-27	700	646
				-36	691	877
				-46	680	1,148
				-58	669	1,673
				-2	696	699
				-4	693	932
				-7	691	825
				-10	687	825
M11	1 954 104	2 757 464	607	-14	683	966
	4,004,104	3,131,404	097	-20	678	691
				-26	671	941
				-34	663	748
				-45	653	1,398
				-56	641	1,530

TABLE 1MASW Shear Wave Velocity Data

NOTES: Coordinates - NAD83 State Plane (Kentucky Single Zone), US Survey ft

TABLE 2 El Profile Features

Figure	Area	El Line	Surface	Surface	Resistivity	Potentially Karst	Notes
			Feature	Location (ft)	Inversion	Related	
4	1	1	Depression	72 - 141			
		2			Yes		
		3	Depression	130 - 170			Standing water; Substation
5	2	4	Erosion creek	132	Yes	Yes, Deep	
		5	Erosion creek	116			Standing water
		6			Yes		
		7	Pond	170 SW	Yes		
6	3	8	Boring B-7	110	Yes		
		9	Depression	70 - 167			Standing water
		10	Depression	77 - 156			Standing water
		11	Depression	40 - 160			Standing water
		12			Yes	Yes	
		13	Pond	260 N	Yes		Wet area
		14	Depression	47 - 141	Yes		
		15	Depression	74 - 160	Yes	Yes, air-filled	Different color scale
7	4	16	Pond	100 NW	Yes		
		17	Erosion creek	87	Yes		Dry
		18	Depression	100 NE			Trees-not farmed
8	5	19			Yes		
		20			Yes		
9	6	21			Yes	Yes, Deep	
		22	Pond	22 E	Yes	Yes, Deep	
		23	Erosion creek	70	Yes	Yes, Deep	Leads into sinkhole
		24	Depression	87 - 175	Yes	Yes, Deep	Standing water
10	7	25	Erosion creek	50	Yes		Leads into sinkhole
		26			Yes	Yes, offset from profile	
10	8	27			Yes		
		28	Erosion creek	80	Yes		
11	ROW	29	Depression	300 - 474			Standing water

Line 3 (Substation) NNW SSE Distance (ft) Depression 180 200 160 220 20 40 60 80 100 **M2**120 140 0 0 --0 Depth (ft bg) -10 --20 --30 ~1,168 ft/s -40---40 Color Scale (Ohm-m)

Notes

Geophysical survey conducted February 8-12, 2021 using a GF Instruments ARES II electrical resistivity meter with active multi-electrode cable sections and Geometrics Geode 24-channel seismograph.

Vertical Scale 1 in = 40 ft No Vertical Exaggeration.

Color Scale (Ohm-m)

EPARED FOR

NS

A

No Vertical Exaggeration.

1265-10736 DWG10736F5

26° 20° , 10° , 10° 60° 10° 60° 10° 20° 20° 10° 10° 10°

Northing (ft)

A

DWG10736F9

1				Notes	
ostation C 8 A w a s			C 8 A w a s	Geophysical survey conducted February 3-12, 2021 using a GF Instruments ARES II electrical resistivity meter with active multi-electrode cable section and Geometrics Geode 24-channel seismograph.	y s
ĪV	ed Sinkho	oles			
			F .	Horizontal Scale 1 in = 40 ft	
	o (field)		V N	Venical Scale T III = 40 Il	
חכ	is (neid)		N	vo venicai ⊏xaygeration.	
			[4280 Old William Penn Hwy HGEOPHYSICS Murrysville, Pennsylvania 15668	
				G (724) 325-3996 Fax: (724) 733-79	01
ſ	DRN				
Г		АХВ	2/16/21	PROJECT:	
L	DES	AXB AXB	2/16/21 2/16/21	Geophysical Investigation	
ł	DES CHK	AXB AXB PJH	2/16/21 2/16/21 2/23/21	Geophysical Investigation Rhudes Creek Solar Project	
	DES CHK REV	AXB AXB PJH	2/16/21 2/16/21 2/23/21	Roject: Geophysical Investigation Rhudes Creek Solar Project Cecilia, Kentucky	
	DES CHK REV PROJ. MGR.	AXB AXB PJH AXB	2/16/21 2/16/21 2/23/21 2/23/21	Roject: Geophysical Investigation Rhudes Creek Solar Project Cecilia, Kentucky	
	DES CHK REV PROJ. MGR. SCALE:	AXB PJH AXB	2/16/21 2/16/21 2/23/21 2/23/21 2/23/21	PROJECT: Geophysical Investigation Rhudes Creek Solar Project Cecilia, Kentucky	
•	DES CHK REV PROJ. MGR. SCALE: / SOURCE: US Ea	AXB AXB PJH AXB As Show GS 2012 rthimage	2/16/21 2/16/21 2/23/21 2/23/21 /n /n 2 r 2D	PROJECT: Geophysical Investigation Rhudes Creek Solar Project Cecilia, Kentucky PRAWING NO.: Figure 11 El Profiles - ROW	
•	DES CHK REV PROJ. MGR. SCALE: / SOURCE: US Ea PREPARED FOR	AXB AXB PJH AXB AS Show GGS 2012 rthimage R:	2/16/21 2/16/21 2/23/21 2/23/21 /n r 2D	PROJECT: Geophysical Investigation Rhudes Creek Solar Project Cecilia, Kentucky PRAWING NO.: Figure 11 El Profiles - ROW PROJECT NO.: 1265-1073	6

MASW M1

MASW M2

MASW M3

Notes

			4280 Old William Penn Hwy Murrysville, Pennsylvania 15668 (724) 325-3996 Fax: (724)733-7901 www.thggeophysics.com	
DRN	AXB	2/17/21	PROJECT:	
DES	АХВ	2/17/21	Geophysical Investigation	
снк	PJH	2/18/21	Rhudes Creek Solar Project	
REV			Cecilia, Kentucky	
PROJ. MGR.	АХВ	2/18/21	· · · · · · · · · · · · · · · · · · ·	
SCALE: Not to Scale			DRAWING NO.: Figure 12	
Source: SurfSeis 6.0.1.46			MASW Data - M1-M3	
PREPARED FOR:			PROJECT NO.: 1265-10736	
			SHEET TITLE: DWG10736F12	

<u>MASW M4</u>

MASW M5

MASW M6

Notes

			GEOPHYSICS ™	4280 Old William Penn Hwy Murrysville, Pennsylvania 15668 (724) 325-3996 Fax: (724) 733-7901 www.thggeophysics.com	
DRN	AXB	2/17/21	PROJECT:		
DES	АХВ	2/17/21	Geophy	sical Investigation	
снк	PJH	2/18/21	Rhudes (Creek Solar Project	
REV			Cecilia. Kentucky		
PROJ. MGR.	AXB	2/18/21			
SCALE: N	ot to Sc	ale	Figure 13 MASW Data - M4-M6		
SOURCE: Su	rfSeis 6.i	0.1.46			
PREPARED FOR:			NC	PROJECT NO.: 1265-10736	
			SHEET TITLE: DWG10	SHEET TITLE: DWG10736F13	

MASW M7

MASW M8

MASW M9

Notes

			4280 Old William Penn Hv Murrysville, Pennsylvania (7244) 325-3996 Fax: (724) www.thggeophysics.com	/y 15668 733-7901	
DRN	AXB	2/17/21	PROJECT:		
DES	AXB	2/17/21	Geophysical Investigation	on	
снк	PJH	2/18/21	Rhudes Creek Solar Proi	ect	
REV			Cecilia, Kentucky		
PROJ. MGR.	AXB	2/18/21			
SCALE: Not to Scale			DRAWING NO.: Figure 14		
SOURCE: SurfSeis 6.0.1.46			MASW Data - M7-M	9	
PREPARED FOI	R:	A	PROJECT NO.: 1265-	10736	
A			DWG10	0736F14	

<u>MASW M10</u>

MASW M11

Notes

			GEOPHYSICS	1280 Old William Penn Hwy Murrysville, Pennsylvania 15668 724) 325-3996 Fax: (724) 733-7901 www.thggeophysics.com	
DRN	AXB	2/17/21	PROJECT:		
DES	АХВ	2/17/21	Geophys	ical Investigation	
снк	PJH	2/18/21	Rhudes Creek Solar Project Cecilia. Kentucky		
REV					
PROJ. MGR.	АХВ	2/18/21			
SCALE: Not to Scale DRAWING SOURCE: SurfSeis 6.0.1.46			Figure 15		
			MASW	Data - M10-M11	
PREPARED FOR:			NC	PROJECT NO.: 1265-10736	
A				DWG10736F15	

Attachment H

Terracon's Preliminary Geotechnical Engineering Report

LGE-KU Solar Project

Cecilia, Hardin County, Kentucky

December 30, 2020 Terracon Project No. 57205074

Prepared for:

ibV Energy Partners, LLC Miami, Florida

Prepared by:

Terracon Consultants, Inc. Louisville, Kentucky

Materials

Facilities

Geotechnical

December 30, 2020

ibV Energy Partners, LLC 777 Brickell Ave Ste 500 Miami, Florida 33131-2809

- Attn: Mr. Steven Link, Sr. Director Project Development
 P: (954) 319-4143
 E: steven.link@ibvenergy.com
- Re: Preliminary Geotechnical Engineering Report LGE-KU Solar Project Cecilia, Hardin County, Kentucky Terracon Project No. 57205074

Dear Mr. Link:

We have completed the Preliminary Geotechnical Engineering services for the above referenced project. This study was performed in general accordance with Terracon Proposal No. P57205074 dated September 25, 2020. This report presents the findings of the subsurface exploration and provides preliminary geotechnical recommendations concerning earthwork and solar panel foundations for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

Sadra Javadi, Ph.D. Geotechnical Engineer Benjamin W. Taylor, P.E. Principal, Regional Manager

SME Reviewer: James M. Jackson, P.E. (FL)

Terracon Consultants, Inc. 13050 Eastgate Park Way Suite 101 Louisville, Kentucky 40223 P (502) 456 1278 F (502) 456 1278 terracon.com

REPORT TOPICS

INTRODUCTION	1
SITE CONDITIONS	2
PROJECT DESCRIPTION	3
GEOTECHNICAL CHARACTERIZATION	4
GEOTECHNICAL OVERVIEW	5
CONTRIBUTORY RISK COMPONENTS	7
PRELIMINARY RECOMMENDATIONS FOR DRIVEN PILE FOUNDATIONS	9
PRELIMINARY RECOMMENDATIONS FOR ISOLATED SLAB FOUNDATIONS	. 12
PRELIMINARY RECOMMENDATIONS FOR SUBSTATION AND TRANSMISSION	ON
LINE FOUNDATIONS	. 13
PRELIMINARY EARTHWORK RECOMMENDATIONS	. 16
SEISMIC CONSIDERATIONS	. 16
CORROSIVITY	. 16
GENERAL COMMENTS	. 17
FIGURES	1
ATTACHMENTS	2

Note: This report was originally delivered in a web-based format. **Orange Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the *GeoReport* logo will bring you back to this page. For more interactive features, please view your project online at <u>client.terracon.com</u>.

ATTACHMENTS

PHOTOGRAPHY LOG EXPLORATION AND TESTING PROCEDURES SITE LOCATION AND EXPLORATION PLANS EXPLORATION RESULTS SUPPORTING INFORMATION

Note: Refer to each individual Attachment for a listing of contents.

LGE-KU Solar Project Cecilia, Hardin County, Kentucky Terracon Project No. 57205074 December 30, 2020

INTRODUCTION

This report presents the results of our preliminary subsurface exploration and geotechnical engineering services performed for the proposed 100-Megawatt (Mw) AC photovoltaic (PV) solar power facility to be located in Cecilia, Hardin County, Kentucky. The purpose of these services is to provide information and preliminary geotechnical engineering recommendations relative to:

- Subsurface Soil Conditions
- Foundation Design and Construction
- Corrosivity Testing
- Site Preparation and Earthwork
- Groundwater Considerations
- Seismic Site Classification per IBC
- Thermal Resistivity Testing

The scope of services for this project included the advancement of 18 test borings to the depths ranging between 9½ to 46 feet below existing site grades, field electrical resistivity and laboratory testing.

Maps showing the site and exploration locations are shown in the **Site Location** and **Exploration Plans**. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included on the boring logs and/or as separate graphs in the **Exploration Results** section.

The General Comments section provides an understanding of the report limitations.

SITE CONDITIONS

The following description of site conditions is derived from our site visit in association with the field exploration and our review of publicly available geologic and topographic maps.

Item	Description
Parcel Information	The project site consists of approximately 945 acres and 7,300 linear feet of Right of Way (ROW) located on Hardinsburg Road in Cecilia, Hardin County, Kentucky. The approximate coordinates of the site are: 37.655705°, -85.990534°. See Site Location
Existing Improvements	The site is primarily agricultural land. South Black Branch Road crosses the site in a northeast-southwest direction. Multiple small wooded areas are located within the project boundaries. A train track parallel to the South Black Branch Road crosses the southeast portion of the site.
Current Ground Cover	The project site is covered with crops, bare soil, and grass with isolated stands of trees presenting between the fields, residential houses, roads/driveways, and ponds.
Existing Topography	Site-specific topographic survey was not available at the time of this report. Based on review of topographic elevation in Google Earth Pro [™] and our observation during exploration, the site appears to generally be hilly. Ground surface sloping from an approximate elevation of 770 feet in the West to about 695 feet in the Southeast.
	The project site is mapped within an area reported by the Kentucky Geological Survey (KGS) to have a very high karst potential. Multiple sinkholes are mapped by the KGS within 1-mile of the site. Further, there are several sinkholes mapped within the site boundaries. A quarry is mapped to the Southeast of the site. It is common for quarry operations to cause fluctuations in the local groundwater levels which can affect sinkhole development in adjacent areas.
Geology	The project site mapped with the following underlying bedrock geology:
Cecilla Quadrangle GQ-263 Hardin County, KY by the Kentucky Geological Survey (KGS)	Ste. Genevieve Limestone Primary Lithology: Limestone, dolomite, and Shale Limestone is light-yellowish-gray that is weathered partially with white to light - gray color, interbedded with about equal amounts of light-gray to light-brownish- gray sublithographic to medium-grained clastic limestone, locally shaly, cherty or pyritic. Dolomite is yellowish gray, very fine grained, massive; locally calcareous and contains fist-sized vugs filled with crystalline calcite. Silty clay shale is yellowish to greenish gray, locally calcareous.
	Alluvium Primary Lithology: Sand, silt, clay, and gravel Sand is very fine to fine grained, poorly graded, interbedded with silt and clay. Gravel composed of pebbles, cobbles, and scattered boulders of chert, limestone, and some cemented sandstone. Clayey and silty sand in large shallow sinks. Bedrock exposed in stream beds of West Rhudes, Shaw, and Valley Creeks in narrow strips too small to show on map.

PROJECT DESCRIPTION

Our understanding of the project conditions is as follows:

Item	Description	
Information Provided	The updated project boundary New LGE-KU Sites- Primary RoW.kmz was provided to us by Mr. Link with ibV via email dated September 8, 2020. The ALTA/NSPS TITLE SURVEY dated January 29, 2020, prepared by Harris Gary, LLC. was provided to us via email on August 19, 2020. The ALTA map was preliminary and did not include the elevations.	
Project Description	It is our understanding that the Client intends to develop a 100 MWac solar facility consisting of photovoltaic (PV) solar facility. Ultimately, the facility will consist of solar panels and various other equipment associated with the substation and O&M Building (e.g. switchgear, transformers, inverters, and overhead and underground electrical conveyance). We understand that electrical transmission lines are planned to be constructed at right-of-way. We assumed transmission towers will be supported on drilled shaft foundation.	
Proposed Structures	Photovoltaic panels are anticipated to be supported on steel racking system founded on wide flange piles (W6x9 or similar) or other proprietary sections. Electrical equipment will be supported on concrete slabs-on-grade, spread footings, or drilled piers.	
Maximum Loads	 Structural loads were not provided at the time of this report. Based on our experience with fixed rack systems, we have assumed the following structural loading. Downward: 3 to 7 kips Uplift: 2 kips Lateral: 1.5 to 3.5 kips Substation Structures: 1,500 psf (Substation dimensions were not provided to us at the time of this report. Based on the provided kmz file we assumed that the substation dimensions are 350 ft by 400 ft) O&M Building: 5 kips per linear foot (klf) 	
Grading/Slopes	A site grading plan has not been developed at this time. It is anticipated that the site work will be minimal, with cuts and fills within +/- 2 feet of existing grade. Localized high and low areas may require greater cut and/or fill.	
Pavement We anticipate low-volume, aggregate-surfaced and native soil access primarily service relatively light maintenance vehicles (pick-up trucks) heavier delivery vehicles (maximum load of 30,000 lbs.) throughout		
Estimated Start of Construction		

GEOTECHNICAL CHARACTERIZATION

We have developed a general characterization of the subsurface conditions based upon our review of the subsurface exploration, laboratory data, geologic setting and our understanding of the project. This characterization, termed GeoModel, forms the basis of our geotechnical calculations and evaluation of site preparation and foundation options. Conditions encountered at each exploration point are indicated on the individual logs. The individual logs can be found in the **Exploration Results** section and the GeoModel can be found in the **Figures** section of this report.

As part of our analyses, we identified the following model layers within the subsurface profile. For a more detailed view of the model layer depths at each boring location, refer to the GeoModel.

Model Layer	Layer Name	General Description
1	LEAN CLAY (CL)	with silt, trace fine sand, brown with reddish brown, soft to hard
2	FAT CLAY (CH)	trace fine sand, with limestone fragments, reddish brown to brown and gray, soft to stiff
3	SILTY SAND (SM)	black, medium dense
4	LIMESTONE	light with dark gray, moderate to very close spacing, thin bedding, unweathered to slightly weathered, medium strong to very strong rock

The boreholes were observed while drilling and after completion for the presence and level of groundwater. The water levels observed in the exploration locations can be found on the boring logs in **Exploration Results** and are summarized below.

Boring Number	Approximate Depth to Groundwater while Drilling ¹ (ft)
В-3	12
B-6	18½
ROW-1	31/2
ROW-2 ²	13
ROW-4 ²	13
ROW-5 ²	3
ROW-7 ²	8

1. Below ground surface.

2. Water was used as drilling fluid during for rock coring and the actual water level could be affected due to the introduced water to the borehole.

Groundwater was not observed in the other borings while drilling, or for the short duration the borings could remain open. However, this does not necessarily mean the borings terminated above groundwater, or the water levels summarized above are stable groundwater levels. Due to

Preliminary Geotechnical Engineering Report LGE-KU Solar Project Cecilia, Hardin County, Kentucky December 30, 2020 Terracon Project No. 57205074

the relatively low permeability of the soils encountered in the boring, a relatively long period of time may be necessary for a groundwater level to develop and stabilize in a borehole in these materials. Long-term observations in piezometers or observation wells sealed from the influence of surface water are often required to define groundwater levels in materials of this type.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the structure may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

GEOTECHNICAL OVERVIEW

Our exploration encountered overburden that generally consisted of low plasticity LEAN CLAY (CL) underlain by highly plastic FAT CLAY (CH). At boring B-3, SILTY SAND (SM) was encountered below the FAT CLAY (CH). The consistency of native cohesive soils ranged from soft to hard. Rock coring was performed as part of this preliminary exploration at borings B-11, and ROW-1 through ROW-7. Rock core samples consist of unweathered to slightly weathered, medium to very strong limestone.

As discussed in the Geology section, the site is reported to have a very high karst potential. Multiple sinkholes are mapped by the KGS within 1-mile radius inside and on west, north, and east side of the site. Soil softening with depth, which can be indicative of soil raveling into subsurface voids was observed below depths of:

- 5 feet at ROW-4,
- 10 feet at borings B-2, B-4, B-6, B-8, ROW-2, and
- 15 feet at borings B-5, B-7, B-9, B-10, B-11, and ROW-1

Considering the very high karst potential and sinkholes previously mapped by the Kentucky Geological Survey (KGS) as well as the observations noted from boring logs, we recommend Terracon be engaged to perform a karst survey for the site during the project's preliminary assessment and design phase. The purpose of the karst survey will be to identify and delineate existing karst features, evaluate site feasibility for development, assess karst risk, and recommend avoidance and mitigation measures.

Borings were advanced to auger refusal at depths of 6½ to 26 feet below existing grade. Auger refusal is defined as the depth below the ground surface at which a test boring can no longer be advanced with the soil drilling technique being used. Karst bedrock, such as the Ste. Genevieve Limestone formation is known for producing several obstructions that can cause the augers to refuse above sound bedrock.

LGE-KU Solar Project Cecilia, Hardin County, Kentucky December 30, 2020 Terracon Project No. 57205074

These obstructions can range from floaters to rock pinnacles as illustrated in Examples A, B, C, and D in the figure. Depth to competent bedrock can vary greatly over short distances. The possibility of varying depths to bedrock should be considered when developing the design and construction plans for this project.

Specific conditions encountered at the exploration locations are indicated by the **Exploration Results**. Stratification boundaries on the boring log represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual.

Due to the residual nature of the overburden soils, rock fragments, chert, and cobbles should be expected. Therefore, it is possible that piles driven into the overburden soils and weathered rock stratum can

A B C D E NATURAL SOIL

AUGER REFUSAL ILLUSTRATION

encounter difficult driving or shallow refusal across most of the site. Pre-drilling of undersized holes and backfilling with soil cuttings may be required to accommodate pile installation in areas where driving piles is difficult. We recommend a pile driving and testing program be developed to assess the difficulty of piles penetrating the onsite soils. The pile test program should include pre-drilling.

Design recommendations and construction considerations for the solar PV panel foundations are presented in the **Foundations** section of this report.

Terracon should be retained for final, design-level geotechnical engineering services and during construction of the project to observe earthwork and to perform necessary tests and observations during pile driving, subgrade preparation; proof-rolling; placement and compaction of controlled compacted fill; backfilling of excavations in the completed subgrade; and for construction of foundations.

Preliminary recommendations contained in this report are based upon the data obtained from the limited number of test borings. This report does not reflect conditions between the points investigated, or between sampling intervals in test borings. The nature and extent of variations between test borings and sampling intervals may not become evident until the course of construction. A detailed subsurface geotechnical investigation should be completed prior to final design and construction to assess localized subsurface conditions at proposed structure locations.

The General Comments section provides an understanding of the report limitations.

THIS FIGURE IS FOR ILLUSTRATIVE PURPOSES ONLY AND DOES NOT NECESSARILY DEPICT THE SPECIFIC BEDROCK CONDITIONS AT THIS SITE

LGE-KU Solar Project Cecilia, Hardin County, Kentucky December 30, 2020 Terracon Project No. 57205074

CONTRIBUTORY RISK COMPONENTS

ITEM	DESCRIPTION
Supplemental Exploration and Services	Additional soil test borings should be performed to adequately explore the site as part of a design-level study. Additionally, a full-scale pile load testing (PLT) program should be considered as the project design progresses. The results of a full scale PLT program in conjunction with soil test boring/test pit results are often successful in reducing the design embedment depth when compared to designs solely based on explorative results and analytical methods.
Soil Conditions	Project site subsurface profile consisted of predominately native cohesive soil underlain by limestone to the depths explored. The surface layer at the site generally contained top soil up to approximately 18 inches thick. These soils are not considered suitable for subgrade support or reuse as fill material. The borings encountered highly expansive soils. Please see information related to expansion soil hazards below.
Karst Potential	Borings were advanced to auger refusal at depths of 6½ to 26 feet below existing grade. Auger refusal is defined as the depth below the ground surface at which a test boring can no longer be advanced with the soil drilling technique being used. Karst bedrock, such as the Ste. Genevieve Limestone formation is known for producing several obstructions that can cause the augers to refuse above sound bedrock. Depth to competent bedrock can vary greatly over short distances. The possibility of varying depths to bedrock should be considered when developing the design and construction plans for this project. Based on the auger refusal depth encountered in our exploration program, the bedrock elevation varies across the site. The project site is mapped within an area reported by the Kentucky Geological Survey (KGS) to have a very high karst potential. Multiple sinkholes are mapped by the KGS within 1-mile of the site. Further, there are several sinkholes mapped within the site boundaries. A quarry is mapped to the Southeast of the site. It is common for quarry operations to cause fluctuations in the local groundwater levels which can affect sinkhole development in adjacent areas.
Access	Wet and loose/soft surface conditions due to rainwater will create access issues for vehicles. The site will generally be more accessible in the summer and early fall due to the improved drying conditions.
Grading	We anticipate very little grading will be required. On-site materials that are used as fill or backfill will likely require drying prior to re-compaction as engineered fill. Alternatively, these materials could be replaced with imported soils containing an appropriate moisture content. We expect localized areas of unsuitable conditions will be encountered prior to placing fill and within the subgrade for roadways and shallow foundations that are planned. Stabilization measures, such as over-excavation and replacement, should be expected.
Groundwater	Groundwater was observed in 7 borings at completion of drilling, and was not observed at the rest of borings. However, this does not necessarily mean the borings terminated above groundwater. Due to the relatively low permeability of the soils encountered in the boring, a relatively long period of time may be necessary for a groundwater level to develop and stabilize in a borehole in these

LGE-KU Solar Project Cecilia, Hardin County, Kentucky December 30, 2020 Terracon Project No. 57205074

ITEM	DESCRIPTION	
	materials. Based on our experience in the project area, groundwater level fluctuation should be anticipated at times during the design period for the project. Excavations, such as trenches for electrical cable and conduit, could encounter groundwater and require dewatering. Excavations for shallow foundations could also encounter groundwater, especially if construction is performed during periods of seasonally high groundwater.	
Site Drainage	Final site grading may impact the drainage within the site. A drainage study should be performed once a grading plan has been finalized to review potential drainage or flooding issues.	
Corrosion Hazard ¹	Based on field resistivity data and laboratory testing for electrical resistivity and chemical properties, the site soils have a moderate corrosion range to buried metal per corrosion guideline from U.S Department of Transportation Federal Highway Administration. The soils have a 'negligible' classification for sulfate exposure according to ACI Design Manual. The results of our laboratory testing of soil chemical properties (provided in the attachment) are expected to assist a qualified engineer to design corrosion protection for the production piles and other project elements.	
Expansive Soil Hazards	Except boring ROW-3, highly expansive soils were encountered at all boring locations within the upper 10 ft during the subsurface exploration and soils in the region may experience moisture content fluctuations to some extent. Therefore, expansive behavior may be anticipated for the site soils. Further impact of highly expansive soils should be investigated in detail using additional evaluations such as swell test. This report provides recommendations to help mitigate the effects of soil shrinkage and expansion. However, even if these procedures are followed, some movement and (at least minor) cracking in the structure should be anticipated. The severity of cracking and other damage such as uneven floor slabs will probably increase if modification of the site results in excessive wetting or drying of the expansive soils. Eliminating the risk of movement and distress may not be feasible, but it may be possible to further reduce the risk of movement if significantly more expensive measures are used during construction. Depending on the final grading plan, remedial measures may be implemented to limit swelling potential, such as over-excavation and replacement with 2-foot of low volume change (LVC) materials, treatment with a chemical admixture, etc.	
Slope Hazards	The site is generally located in a relatively flat area.	
Anticipated Pile Drivability	Due to the medium stiff to hard consistency of the overburden and variable depth to bedrock due to karst geology, there is a chance of encountering difficulties/obstructions during pile driving. If difficult pile driving is encountered, we anticipate pre-drilling to be required.	
General Construction Considerations	The near-surface soils are moderately moisture sensitive and subject to degradation with exposure to moisture. To the extent practical, earthwork should be performed during warmer and drier periods of weather to reduce the amount of necessary subgrade remedial measures for soft and unsuitable conditions beneath access roadways, equipment pads, etc.	

LGE-KU Solar Project Cecilia, Hardin County, Kentucky December 30, 2020 Terracon Project No. 57205074

	ITEM	DESCRIPTION			
1.	The soil properties that can significantly affect the aggressiveness of corrosion to buried metal				
	structures include: pH, oxidation-reduction potential, sulfates, sulfides, total dissolved salts,				
	chlorides, resistivity, and moisture content. These properties were measured, and the results				
	are reported in the attachment. These test results are provided to assist the designers of				
	corrosion prot	ection for the project.			

PRELIMINARY RECOMMENDATIONS FOR DRIVEN PILE FOUNDATIONS

We have performed preliminary geotechnical analyses for driven pile foundations to support the typical PV panel racking system. Subsequent analyses will be required once design level geotechnical information is available and once other design considerations are more fully defined. **THEREFORE, THE RESULTS OF THE ANALYSES DESCRIBED BELOW ARE NOT SUITABLE FOR FINAL DESIGN.** Instead, this analysis is intended to assist you in roughly evaluating construction costs and development viability for the proposed project. It should also be noted that our analyses are based on short-term conditions based on boring information. For this type of foundation system, provisions for flexible or adjustable connection between the posts and the array superstructure are recommended.

Adfreeze Stress

The overburden soils encountered in the borings are frost susceptible. In cold weather climates, design to resist frost heave forces exerted on foundations is often the limiting factor in the foundation design. Specifically, pile lengths will need to be long enough to counteract potential heave forces in the seasonal frost zone.

As the frost penetrates deeper into the soil and the ground swells due to freezing, the ground surface will rise due to frost heaving. The upward displacement is due to freezing water contained in the soil voids along with the formation of ice lenses in the soil. The freezing material grips the steel pile and exerts an uplift force due to the adfreeze stress developed around the surface area of the pile. The amount of upward force depends on the following:

- The thickness of ice lenses formed in the seasonal frozen ground
- The bond between the steel pile surface and the frozen ground
- The surface area of the steel pile in the seasonally frozen ground

Based on our review of soil samples, we recommend an adfreeze stress of 1,500 psf be considered when determining the frost heave load on a pile. The box perimeter of the pile (two times the depth plus two times the flange width) acting over a maximum depth of about 1-foot below ground surface should be considered when determining the frost heave load on a pile.

Uplift forces will govern the design and length of the driven pile; therefore, uplift will be the primary factor in foundation costs. The factor of safety against uplift should be determined based on discussions with the owner and design engineer considering the desired level or risk, construction costs, and the long-term maintenance program.

Geotechnical Axial Capacity

The following preliminary geotechnical parameters can be used to estimate the capacity of driven W-section pile foundations. These values should also be suitable to prepare a full-scale pile load testing program which is recommended as part of the overall project design. Final design values will vary from the preliminary estimates below. The upper 1 foot of soil should be neglected when calculating the ultimate capacity from skin friction.

Depth (feet bgs)	Ultimate Unit Skin Friction, q_s (psf) ¹	Ultimate End Bearing Capacity, Qp (psf)					
Zone A (B-1)							
0 – 1							
1 – 9½	650	9,000 ²					
below 9½	2,000	100,000 ^{2, 3}					
Zone B (B-3)							
0 – 1							
1 – 13½	750	13,500 ²					
13½ – 20	650	69,000 ²					
	Zone C (All borings except B-1 and B-3)						
0 – 1							
1 – 3½	650						
3½ – 13	750	13,500 ²					
13 – 20	750	9,000 ²					

1. The upper 1 foot should be neglected in pile design due to frost heave.

 Appropriate for pile toe bearing at depths of at least 5 feet below the ground surface. The ultimate end bearing capacity values are selected based on the type of the soil/rock and our experience with similar geology. We assumed that section W6X9 would be utilized for the pile foundations.

3. The skin friction and ultimate end bearing capacity for rock stratum at B-1 is based on our experience with similar geology

The above values are to be used in the following equations to obtain the ultimate uplift or compression load capacity of a pile:

 $Q_{ult (compressive)} = q_t x A + H x P x q_s$ $Q_{ult (uplift)} = H x P x q_s$

 Q_{ult} = Ultimate uplift or compression capacity of post (lbs.) $Q_{ult (end)}$ = Ultimate end bearing capacity per table above (lbs.) H = Depth of embedment of pile (ft.) P = Perimeter area/ft. of pile. (i.e. W6x9 = 1.64 sf/ft.) q_s = Skin friction per depth per table above (psf) q_t = unit toe-bearing resistance per table above (psf) A = cross sectional area of pile (i.e. W6x9 = 0.019 sf).

The recommended geotechnical design parameters in this table are based on average conditions encountered in our borings. Additional subsurface exploration and pile load testing should be performed to determine actual design parameters across the site.

The skin friction is appropriate for uplift and compressive loading and represents ultimate values. A factor of safety of 2 should be applied to the skin friction values. The end bearing is also an ultimate value and should have a factor of safety of 2 applied for design.

Piles should have a minimum center-to-center spacing of at least 3 times their largest crosssectional dimension to prevent reduction in the axial capacities due to group effects. If the piles are designed using the above parameters, settlements are not anticipated to exceed 1 inch.

Geotechnical Lateral Capacity

The parameters in the following table can be used for a preliminary analysis of the lateral capacity of driven steel piles in support of solar panel arrays:

Depth (feet bgs)	LPILE Soil Type	Unit Weight (pcf) ¹	Undrained Cohesion, c (psf)	Friction Angle (Deg)	Uniaxial Compressive Strength (psi)	Strain Factor ε ₅₀	RQD (%)	Rock Mass (PSI)	P- Multiplier
			Z	one A – (B	-1)				
0 – 1	Stiff Clay without Free	125	750			default			0.7
1 – 9½	Water (Reese)	125	750			default			1.0
below 9½	Weak Rock (Reese) ²	135			100	0.0005	10	50,000	1.0
	Zone B – (B-3)								
0 – 1	Stiff Clay without Free	120	1,500			default			0.7
1 – 13½	Water (Reese)	120	1,500			default			1.0
13½ – 20	Sand (Reese) ³	130		32		default			1.0

LGE-KU Solar Project Cecilia, Hardin County, Kentucky December 30, 2020 Terracon Project No. 57205074

Depth (feet bgs)	LPILE Soil Type	Unit Weight (pcf) ¹	Undrained Cohesion, c (psf)	Friction Angle (Deg)	Uniaxial Compressive Strength (psi)	Strain Factor ε ₅₀	RQD (%)	Rock Mass (PSI)	P- Multiplier
Zone C – (All borings except B-1 and B-3)									
0 – 1	Stiff Clay without Free Water (Reese)	120	750			default			0.7
1 – 3½		125	750			default			1.0
3½ – 13		128	1,500			default			1.0
13 – 20		125	1,000			default			1.0

1. Effective unit weight should be used for stratum below groundwater table.

For the weathered limestone stratum at B-1 and anticipated limestone bedrock below refusal, we assumed a preliminary
parameter based on our experience with similar projects. For the final design, rock coring should be performed to confirm
the strength parameters.

3. Use default value for Soil Modulus, k.

The above indicated effective unit weight and effective friction angle have no factor of safety and may be used to analyze suitability of the proposed section and serviceability requirements. These parameters are based on correlations with SPT results, published values, and our experience with similar soil types. Existing p-y models typically under-predict the lateral capacity of shallow driven piles. Therefore, the P-multiplier is most likely higher but would need to be confirmed based on results of site-specific load test results.

PRELIMINARY RECOMMENDATIONS FOR ISOLATED SLAB FOUNDATIONS

We understand that some equipment may be supported on mat/slab foundations while other structures and O&M building may be supported on shallow foundations. Medium stiff lean clay was encountered near the surface and might require improvement prior to foundation construction. Based on the anticipated types of structures and the expected magnitude of loading, surface compaction using an adequately loaded vehicle such as a fully-loaded tandem-axle dump truck with total weight of 20 tons or greater should provide adequate improvement for shallow foundation support of these structures. As discussed in **Geotechnical Overview**, we recommend that fat clay if encountered be undercut a minimum of 2-foot below design foundation bearing elevation and replaced with LVC engineered fill, or lean concrete extending to at least stiff clay. We would expect an allowable bearing capacity of 1,700 psf with total and differential settlements of about 1 inch and ³/₄ inch, respectively, depending on minimum foundation width and embedment.

PRELIMINARY RECOMMENDATIONS FOR SUBSTATION AND TRANSMISSION LINE FOUNDATIONS

Our recommendations provided below are based on the subsurface information encountered near boring locations B-11 and ROW-1 through ROW-7. If the location of the new substation and equipment pad areas change we should be consulted prior to the design and construction of foundations.

It is anticipated that some of the substation structures/appurtenances will be supported on deep foundation systems such as drilled shaft/pier foundation elements. It is recommended that each drilled shaft element be at least 1.5 feet in diameter. Based on our subsurface findings near the boring locations B-11 and ROW-1 through ROW-7, it is recommended that drilled shaft lengths should be at least 3 times the shaft diameter and it should be terminated within native cohesive soil of at least stiff consistency.

It is recommended that the drilled shaft design should incorporate a factor of safety of 3.0 for end bearing and 2.5 for side resistance, when subjected to axial compression loading situation. A factor of safety of 3.0 is recommended for side resistance against uplift loading situation. Soil parameters for axial design of drilled shaft are provided in the following section.

Depth (feet bgs)	Ultimate Skin Friction, f (psf)	Ultimate End Bearing Pressure, Qp (psf)					
B-11							
0 – 2 ¹							
2 – 7	1,200						
7 – 15	1,050	27,000 ²					
15 – 26	950	9,000					
26 – 46	18,000	28,000					
	ROW-1						
0 – 2 ¹							
2 - 31/2	250						
3½ – 20	1,500	16,500					
20 – 30	950	9,000					
	ROW-2						
0 – 2 ¹							
2 – 13	1,500	18,000					
13 – 18½	250	2,250					
18½ – 23½	20,000	28,000					
	ROW-3						
0 – 2 ¹							
2 – 18½	1,125	11,250					
18½ – 23½	22,900	28,000					

LGE-KU Solar Project Cecilia, Hardin County, Kentucky December 30, 2020 Terracon Project No. 57205074

Depth (feet bgs) Ultimate Skin Friction, f (psf)		Ultimate End Bearing Pressure, Qp (psf)						
	B-11							
ROW-4								
0 – 2 ¹								
2 – 18	1,350	13,500						
18 – 23	22,000	28,000						
	ROW-5							
0 – 2 ¹								
2 – 6	500							
6 – 10	1,500	15,750						
10 – 15	20,000	28,000						
ROW-6								
0 – 2 ¹								
2 - 61/2	950							
6½ – 16½	12,500	28,000						
	ROW-7							
0 – 2 ¹								
2 – 7	1,125							
7 – 15	750	6,750						
15 – 20	21,000	28,000						

1. The side resistance of the uppermost 2 feet of the soil should be ignored due to the potential for disturbance caused during the drilled shaft construction.

2. Drilled shafts should be founded at a depth of at least 10 feet below the ground surface.

Recommended geotechnical parameters of drilled shaft foundations have been developed for use in the L-PILE computer program. Based on the encountered subsurface conditions, laboratory test results, and field penetration test results, generalized engineering properties have been provided at boring locations B-11 and ROW-1 through ROW-7, as shown in the following table:

Depth (feet bgs)	LPILE Soil Type	Unit Weight (pcf) ¹	Undrained Cohesion, c (psf)	Uniaxial Compressive Strength (psi)	Strain Factor _{٤50}		
	B-11						
0-7		125	1,500		default		
7 – 15	Stiff Clay without Free Water (Reese)	128	3,000		default		
15 – 26		120	1,000		default		
26 – 46	Strong Rock (Vuggy Limestone)	167		12,000	0.00001		
	ROW-1						
0 - 3½	Soft Clay (Matlock)	115	250		default		

LGE-KU Solar Project Cecilia, Hardin County, Kentucky December 30, 2020 Terracon Project No. 57205074

Depth (feet bgs)	LPILE Soil Type	Unit Weight (pcf) ¹	Undrained Cohesion, c (psf)	Uniaxial Compressive Strength (psi)	Strain Factor _{E50}		
	B-11						
3½ – 20	Stiff Clay without Free	120	1,850		default		
20 – 30	Water (Reese)	120	1,000		default		
	ROW-2						
0 – 13	Stiff Clay without Free Water (Reese)	120	2000		default		
13 – 18½	Soft Clay (Matlock)	115	250		default		
18½ – 23½	Strong Rock (Vuggy Limestone)	165		17,000	0.00001		
		RC	DW-3				
0-18½	Stiff Clay without Free Water (Reese)	120	1,250		default		
18½ – 23½	Strong Rock (Vuggy Limestone)	158		6,000	0.00001		
		RC	DW-4				
0-18½	Stiff Clay without Free Water (Reese)	125	1,500		default		
18½ – 23½	Strong Rock (Vuggy Limestone)	165		8,000	0.00001		
ROW-5							
0-2	Stiff Clay without Free Water (Reese)	120	1500		default		
2 – 6 Soft Clay (Matlock) 115 500		500		default			
6 – 10	Stiff Clay without Free Water (Reese)	120	1750		default		
10 – 15	Strong Rock (Vuggy Limestone)	166		6,000	0.00001		
		RC	DW-6				
0-6½	Stiff Clay without Free Water (Reese)	120	1,000		default		
6½ - 16½	Strong Rock (Vuggy Limestone)	167		15,200	0.00001		
ROW-7							
0-7	Stiff Clay without Free Water (Reese)	120	1,250		default		
7 – 15	Soft Clay (Matlock)	115	750		default		
15 – 20	Strong Rock (Vuggy Limestone)	163		9,800	0.00001		
1. Effective unit weight should be used for stratum below groundwater table.							

PRELIMINARY EARTHWORK RECOMMENDATIONS

The site work conditions will be largely dependent on the weather conditions and the contractor's means and methods in controlling surface drainage and protecting the subgrade. Final surrounding grades for any possible structures and inverters should be sloped away from structures on all sides to prevent ponding of water. All grades must provide effective drainage away from the structures during and after construction. Site preparation where inverter mat foundations will be installed should include clearing and grubbing, installation of a site drainage system (where necessary), subgrade preparation, and proof-rolling as necessary. Site preparation is not necessary in the PV Array field or where inverters will be supported on driven piles except to improve site drainage where necessary.

We would expect typical earthmoving equipment (bulldozers, excavators, fully-loaded tandemaxle dump truck) to be suitable for completion of earthwork activities on the site. The most challenging obstacle for earthwork construction will be the control of surface and groundwater, especially during wet season. The site should be graded to prevent ponding of surface water. Additionally, dewatering (rim ditches, sump pumps, well points, etc.) may be needed to lower the groundwater and allow for adequate compaction in trenches.

Typical unpaved access roads in the lightly loaded array areas consisting of about 4 to 6 inches of aggregate base on compacted native soil should be suitable. The substation access road will likely require 6 to 8 inches of aggregate base over 12 inches of stabilized subgrade or native soils reinforced with a geogrid.

SEISMIC CONSIDERATIONS

The seismic design requirements for buildings and other structures are based on Seismic Design Category. Site Classification is required to determine the Seismic Design Category for a structure. The Site Classification is based on the upper 100 feet of the site profile defined by a weighted average value of either shear wave velocity, standard penetration resistance, or undrained shear strength in accordance with Section 20.4 of ASCE 7 and the International Building Code (IBC). Based on the soil properties encountered at the site and as described on the exploration logs and results, it is our professional opinion that the **Seismic Site Classification is C**. Subsurface explorations at this site were extended to a maximum depth of 46 feet. The site properties below the boring depth to 100 feet were estimated based on our experience and knowledge of geologic conditions of the general area. We recommend geophysical testing be performed to confirm the conditions below the current boring depth; preliminarily, we expect that the geophysical testing may result in better site class.

CORROSIVITY

The results of laboratory testing for water soluble sulfate, sulfides, soluble chloride, RedOx, Total

Salts, Resistivity, and pH are presented in **EXPLORATION RESULTS**. The values may be used by others to estimate potential corrosive characteristics of the on-site soils with respect to contact with the various underground materials which will be used for project construction.

GENERAL COMMENTS

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in this report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third-party beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

FIGURES

Contents:

GeoModel

GEOMODEL

LGE-KU Solar Project E Cecilia, KY Terracon Project No. 57205074

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description
1	LEAN CLAY (CL)	with silt, trace fine sand, brown with reddish brown, soft to hard
2	FAT CLAY (CH)	trace fine sand, with limestone fragments, reddish brown to brown and gray, soft to stiff
3	SILTY SAND (SM)	black, medium dense
4	LIMESTONE	light with dark gray, moderate to very close spacing, thin bedding, unweathered to slightly weathered, medium strong to very strong rock

LEGEND

Topsoil

Silty Sand Limestone

Lean Clay Fat Clay

✓ First Water Observation

Groundwater levels are temporal. The levels shown are representative of the date and time of our exploration. Significant changes are possible over time. Water levels shown are as measured during and/or after drilling. In some cases, boring advancement methods mask the presence/absence of groundwater. See individual logs for details.

NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project. Numbers adjacent to soil column indicate depth below ground

llerracon

surface.

GEOMODEL

LGE-KU Solar Project E Cecilia, KY Terracon Project No. 57205074

✓ First Water Observation

Groundwater levels are temporal. The levels shown are representative of the date and time of our exploration. Significant changes are possible over time. Water levels shown are as measured during and/or after drilling. In some cases, boring advancement methods mask the presence/absence of groundwater. See individual logs for details.

NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project.

<u> Ilerracon</u>

Numbers adjacent to soil column indicate depth below ground surface.

ATTACHMENTS

Responsive Resourceful Reliable

PHOTOGRAPHY LOG

Geotechnical Engineering Report

LGE-KU Solar Project Cecilia, Hardin County, Kentucky December 30, 2020 Terracon Project No. 57205074

Terracon

GeoReport.

Geotechnical Engineering Report

LGE-KU Solar Project Cecilia, Hardin County, Kentucky December 30, 2020 Terracon Project No. 57205074

ROW-6 - Rock Core Run 1, 2 - 61/2 to 161/2 feet

Geotechnical Engineering Report

LGE-KU Solar Project Cecilia, Hardin County, Kentucky December 30, 2020 Terracon Project No. 57205074

ROW-7 - Rock Core Run 1 – 15 to 20 feet

Terracon GeoReport.

EXPLORATION AND TESTING PROCEDURES

Field Exploration

Number of Borings	Boring Depth (feet)	Explored Locations
10	9½ to 20	Proposed PV array areas
1	46	Proposed substation area
7	15 to 30	Proposed transmission line right-of-way

Boring Layout and Elevations: Terracon personnel provided the boring layout. Coordinates were obtained with a handheld recreational GPS unit (estimated horizontal accuracy of about ± 10 feet) and approximate elevations were obtained by interpolation from the Google EarthTM. If elevations and a more precise boring layout are desired, we recommend exploration locations be surveyed.

Subsurface Exploration Procedures: We advanced the borings with a track-mounted rotary drill rig using continuous flight hollow stem augers. Four samples were obtained in the upper 10 feet of each boring and at intervals of 5 feet thereafter. In the thin-walled tube sampling procedure, a thinwalled, seamless steel tube with a sharp cutting edge was pushed hydraulically into the soil to obtain a relatively undisturbed sample. In the split-barrel sampling procedure, a standard 2-inch outer diameter split-barrel sampling spoon was driven into the ground by a 140-pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration is recorded as the Standard Penetration Test (SPT) resistance value. The SPT resistance values, also referred to as N-values, are indicated on the boring logs at the test depths. We observed and recorded groundwater levels during drilling and sampling. For safety purposes, all borings were backfilled with auger cuttings and bentonite chips upon completion.

The sampling depths, penetration distances, and other sampling information was recorded on the field boring logs. The samples were placed in appropriate containers and taken to our soil laboratory for testing and classification by a Geotechnical Engineer. Our exploration team prepared field boring logs as part of the drilling operations. These field logs included visual classifications of the materials encountered during drilling and our interpretation of the subsurface conditions between samples. Final boring logs were prepared from the field logs. The final boring logs represent the Geotechnical Engineer's interpretation of the field logs and include modifications based on observations and tests of the samples in our laboratory.

Field (In-Situ) Electrical Resistivity: Utilizing AEMC Model 6471 Digital Ground Resistance Tester, electrical resistivity surveys were performed within the PV array areas. The surveys were performed in general accordance with the Wenner Four Point method (ASTM G57). Two mutually

perpendicular arrays with "a" spacing of 2.5, 5, 10, 20, 50, 100, and 150 feet were performed at each location.

Laboratory Testing

The project engineer reviewed the field data and assigned laboratory tests to understand the engineering properties of the various soil strata. Procedural standards noted below are for reference to methodology in general. In some cases, variations to methods were applied because of local practice or professional judgment. Standards noted below include reference to other, related standards. Such references are not necessarily applicable to describe the specific test performed.

- ASTM D2216 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.
- ASTM D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
- ASTM D422 Standard Test Method for Particle-Size Analysis of Soils.
- ASTM D2166/D2166M Standard Test Method for Unconfined Compressive Strength of Cohesive Soil.
- ASTM D7012 Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures
- ASTM D698 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort

The laboratory testing program included observation of soil samples by an engineer or geologist. Based on the material's texture and plasticity, we described and classified the soil samples in accordance with the Unified Soil Classification System.

SITE LOCATION AND EXPLORATION PLANS

Contents:

Site Location Exploration Plan

Note: All attachments are one page unless noted above.

SITE LOCATION

LGE-KU Solar Project Cecilia, Hardin County, Kentucky December 30, 2020 Terracon Project No. 57205074

EXPLORATION PLAN

LGE-KU Solar Project Cecilia, Hardin County, Kentucky December 30, 2020 - Terracon Project No. 57205074

EXPLORATION RESULTS

Contents:

Boring Logs (B-1 through B-11 & ROW-1 through ROW-7) Atterberg Limits Results Unconfined Compression Test Results (2 pages) Grain Size Distribution Field Electrical Resistivity (6 pages) Results of Corrosion Analysis (1 pages) Standard Compaction Test Results (3 pages) Thermal Resistivity Results (4 pages)

Note: All attachments are one page unless noted above.

				BO	RI	NG	LOG NC). B-'	1					I	Page 1 of	1
Р	ROJ	ECT: LGE-KU Solar Project					CLIENT:	ibV E Miam	nergy i Fl	Part	iners	LLC				
S	SITE:	Hardinsburg Road Cecilia, KY						wiidiii	II, I ⊑							
ĥ	g	LOCATION See Exploration Plan	_	NS EL	Ш	n.)			×	ST	RENGTH	TEST	()	6	ATTERBERG LIMITS	
ΓĄ		Latitude: 37.6495° Longitude: -85.9687°	H (Ft.)	LEVE	Σ	ERY (I	TEST	(%)	ATOR (tsf)	붠	SIVE	(%)	NT (%	TINL T(pd		
DEL	APF	Approvimeto Surface Flavu 702 (Ft) /	EPT!	ATER SERV	MPLE	COVE	IELD	Rap	HP (STTY	PRES RENG (tsf)	SAIN (WAT	DRY EIGH	LL-PL-PI	
ž	0 U	DEPTH ELEVATION (Ft.)		₩ OB%	SA	RE	L.		P	ΤË	COMI	STF	X	_>		
		0.8 TOPSOIL 702+/-														
		LEAN CLAY (CL), with silt,	-	1	\bigtriangledown		2-2-2	-	1.25							
		brown, mearann san	-	-	Ŵ	18	N=4		(HP)				21.0			
1			-	-												
'			_	-	\bigtriangledown	10	3-3-4		2.00				10.7			
			5-	1	\square		N=7		(HP)				19.7			
		6.0 697+/-	•													
		FAT CLAY (CH), reddish			\mathbb{N}	18	3-3-4		1.75				37.9			
1 2			_		\square		N=7	-	(HP)							
2			_					-	4.50					-		
		9.5with limestone fragments693.5+/	-		X	10	10-50/4"	-	(HP)				25.6			
		Auger Refusal at 9.5 Feet														
-	Str	atification lines are approximate. In-situ, the transition	may be	gradua	al.				Hamme	er Type	: Automa	tic				
Adv 4	anceme hollow	nt Method: stem auger		See Ex descrip	<mark>cplora</mark> otion o	t <mark>ion ar</mark> of field	nd Testing Procedures f and laboratory procedu	for a ures used	Notes:							
				and ad	dition	al data	a (If any).	on of								
Aba		nt Method:		see Si symbo	ls and	d abbre	eviations.	л I Oľ								
В	oung ba	commed with auger cultings upon completion.	terpolated from Google	Earth Pro.												
	~	WATER LEVEL OBSERVATIONS						_	Boring Sta	arted: 1	1-24-202	0	Borin	ng Comp	leted: 11-24-2	020
	Gr	oundwater not encountered				2	1900		Drill Rig: E	3-53			Drille	er: R. Ma	athes	
					130	50 Ea	stgate Park Way Ste 10	01	Project No	o.: 5720	05074					

BORING LOG NO. B-1A

	Ρ	ROJ	ECT: LGE-KU Solar Project					CLIENT	ibV E Miam	nergy i, FL	Part	ners	LLC				
	S	ITE:	Hardinsburg Road Cecilia, KY							-,							
	R	ŋ	LOCATION See Exploration Plan		NS II	ЪЕ	n.)			~	STF	RENGTH	TEST	(9	6	ATTERBERG LIMITS	
	MODEL LAYE	GRAPHIC LO	Latitude: 37.6495° Longitude: -85.9687° Approximate Surface Elev.: 703 (Ft.) +/-	DEPTH (Ft.)	WATER LEVE DBSERVATIO	SAMPLE TYF	RECOVERY (II	FIELD TEST RESULTS	RQD (%)	LABORATOR HP (tsf)	TEST TYPE	DMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%	DRY UNIT WEIGHT (pd	LL-PL-PI	
			DEPTH ELEVATION (Ft.)		- 0	0)	ш					8	0,				
	1		2.0 701+/-	_	-												
12/30/20			LEAN CLAY (CL), with silt, brown, very stiff 4.0 699+/-	_	_		22			3.50 (HP)	UC	2.73	3.6	18.0	110	36-16-20	
LID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 57205074 PRELIMINARY GEOTE.GPJ TERRACON_DATATEMPLATE.GDT	Advz 41	Str.	Boring Terminated at 4 Feet Boring Terminated at 4 Feet attification lines are approximate. In-situ, the transition t Method: stem auger	gradua See Exit	I. ploral tion c	tion and	d Testing Procedures and laboratory proced (if anv).	for a ures used	Hamme	r Type:	Automa	tic					
G IS NOT VALIE	Abar Bi	ndonme oring ba	nt Method: ckfilled with auger cuttings upon completion.		and ad See Su symbol Elevation	dition upport ls and ons w	al data ing Info l abbre vere into	(If any). ormation for explanatic viations. erpolated from Google	on of Earth Pro.								
GLO			WATER LEVEL OBSERVATIONS	-				Borina Sta	arted: 1	1-24-2020)	Borin	iq Comr	leted: 11-24-20)20		
ORIN		Gr	oundwater not encountered		21	'acc		Drill Rig. F	3-53	. 1020		Drille	er: R Ma	ithes	-		
HIS B						130	50 Eas	tgate Park Way Ste 10	01	Project No	. 5720	5074					
ΕĒ.								Louisville, NT		I I UJECLING	0120						

BORING LOG NO. B-2

	Ρ	ROJ	ECT: LGE-KU Solar Project			_		CLIENT:	ibV E Miam	nergy i, FL	Part	ners	LLC				
	S	ITE:	Hardinsburg Road Cecilia, KY														
	Ϋ́	gg	LOCATION See Exploration Plan		NS	Ш	ln.)			X	STF	RENGTH	TEST	(%)	f)	ATTERBERG LIMITS	
	- LAY	HIC LO	Latitude: 37.6549° Longitude: -85.9733°	H (Ft.	LEVE	Σ	ERY (TESJ	(%)	ATOF (tsf)	ΡE	SIVE	(%)	TER INT (9	UNIT IT (pc		
	MODEL	GRAPH	Approximate Surface Elev.: 725 (Ft.) +/-	DEPT	WATER	SAMPL	RECOVE	FIELD	RQD	LABOR HP	TEST TY	OMPRES STRENG (tsf)	STRAIN	CONTE	DRY WEIGH	LL-PL-PI	
F		<u></u>	TOPSOIL 7241/									0					
2			LEAN CLAY (CL), with silt, brown, medium stiff to stiff	_	-		18	1-2-2 N=4		0.75 (HP)				24.3			
	1				-		18	2-3-5 N=8		2.25 (HP)				21.7			
				-	-	X	18	3-4-5 N=9		1.75 (HP)				14.7			
			8 5 716 5+/-	-	-												
			FAT CLAY (CH), reddish brown, medium stiff to stiff	- 10-	-		18	4-5-6 N=11		2.00 (HP)				18.8			
				-	-												
				_	-			2-3-4		2.25							
	2			15-	-	$\mid \land \mid$	18	N=7		(HP)				14.1			
				_													
				_		\bigtriangledown	17	3-3-4		2.25				21.3			
, , , , , , , , , , , , , , , , , , ,			20.0 705+/- Boring Terminated at 20 Feet	20-													
		Stra	atification lines are approximate. In-situ, the transition	n may be	gradua	al.			•	Hamme	r Type:	Automa	tic				
	Adva 4"	ncemer hollow	nt Method: stem auger		See Ex descrip and ad	<mark>cplora</mark> otion c Idition	<mark>tion an</mark> of field al data	d Testing Procedures f and laboratory procedu a (If any).	or a ires used	Notes:							
A 4	bar Bo	ndonme oring ba	nt Method: ckfilled with auger cuttings upon completion.		See Si symbo Elevati	upport Is and ons w	ting Inf d abbre vere inf	ormation for explanatio eviations. terpolated from Google	n of Earth Pro.								
		~								Boring Sta	rted: 1	1-24-2020)	Borin	ıg Comp	leted: 11-24-20	020
		Gr	ounawater not encountered				2	1920		Drill Rig: B	-53			Drille	er: R. Ma	thes	
2						130	50 Eas	stgate Park Way Ste 10 Louisville, KY	1	Project No	.: 5720)5074					

BORING LOG NO. B-3 Page 1 of 1 **PROJECT: LGE-KU Solar Project CLIENT: ibV Energy Partners LLC** Miami, FL SITE: **Hardinsburg Road** Cecilia, KY ATTERBERG LIMITS LOCATION See Exploration Plan STRENGTH TEST WATER LEVEL OBSERVATIONS SAMPLE TYPE MODEL LAYER **GRAPHIC LOG** WATER CONTENT (%) RECOVERY (In. DRY UNIT WEIGHT (pcf) LABORATORY HP (tsf) FIELD TEST RESULTS DEPTH (Ft.) COMPRESSIVE STRENGTH (tsf) RQD (%) Latitude: 37.6510° Longitude: -85.9782° TEST TYPE STRAIN (%) LL-PL-PI Approximate Surface Elev .: 747 (Ft.) +/-ELEVATION (Ft.) DEPTH TOPSOIL 0.8 746+/-LEAN CLAY (CL), with silt, 1-3-7 1.25 brown, stiff 18 21.7 N=10 (HP) 1 4-7-8 4.50+ 18 13.9 (HP) N=15 5 741+/-FAT CLAY (CH), trace fine 3-5-6 4.50 18 17.2 52-18-34 sand, gray, stiff N=11 (HP) 6-3-5 1.75 18 18.5 N=8 (HP) 10 \bigtriangledown 733.5+/-SILTY SAND (SM), black, 5-10-12 medium dense 18 18.9 N=22 15 3 7-10-8 18 21.8 N=18 20.0 727+/-20 Boring Terminated at 20 Feet Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a 4" hollow stem auger description of field and laboratory procedures used and additional data (If any). See Supporting Information for explanation of Abandonment Method: Boring backfilled with auger cuttings upon completion. symbols and abbreviations. Elevations were interpolated from Google Earth Pro WATER LEVEL OBSERVATIONS Boring Started: 11-24-2020 Boring Completed: 11-24-2020 At completion of drilling Drill Rig: B-53 Driller: R. Mathes 13050 Eastgate Park Way Ste 101 Project No.: 57205074 Louisville, KY

BORING LOG NO. B-4 Page 1 of 1 **PROJECT: LGE-KU Solar Project CLIENT: ibV Energy Partners LLC** Miami, FL SITE: **Hardinsburg Road** Cecilia, KY ATTERBERG LIMITS LOCATION See Exploration Plan STRENGTH TEST WATER LEVEL OBSERVATIONS SAMPLE TYPE MODEL LAYER **GRAPHIC LOG** WATER CONTENT (%) RECOVERY (In. DRY UNIT WEIGHT (pcf) LABORATORY HP (tsf) FIELD TEST RESULTS DEPTH (Ft.) COMPRESSIVE STRENGTH (tsf) RQD (%) Latitude: 37.6439° Longitude: -85.9797° TEST TYPE STRAIN (%) LL-PL-PI Approximate Surface Elev .: 720 (Ft.) +/-ELEVATION (Ft.) DEPTH TOPSOIL 0.8 719+/-LEAN CLAY (CL), with silt, trace fine sand, brown, 3-4-5 2.50 18 16.9 N=9 (HP) medium stiff to stiff 1 716.5+/-FAT CLAY (CH), reddish 5-7-8 4.50+ 18 28.0 brown, stiff (HP) N=15 5 4-7-7 4.50+ 18 30.8 N=14 (HP) 5-6-7 4.50+ 18 31.2 N=13 (HP) 10 4-6-6 3.00 18 24.7 N=12 (HP) 15 3-4-5 2.50 18 30.2 N=9 (HP) 700+/-20 Boring Terminated at 20 Feet Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a 4" hollow stem auger description of field and laboratory procedures used and additional data (If any). See Supporting Information for explanation of Abandonment Method: Boring backfilled with auger cuttings upon completion. symbols and abbreviations. Elevations were interpolated from Google Earth Pro WATER LEVEL OBSERVATIONS Boring Started: 11-24-2020 Boring Completed: 11-24-2020 Groundwater not encountered Drill Rig: B-53 Driller: R. Mathes 13050 Eastgate Park Way Ste 101 Project No.: 57205074 Louisville, KY

BORING LOG NO. B-4A

Page 1 of 1

	PR	OJ	ECT: LGE-KU Solar Project					CLIENT: ib\ Mia	V Er iami	nergy l . FL	Part	ners	LLC				
:	SIT	E:	Hardinsburg Road Cecilia, KY							,							
Ř		G	LOCATION See Exploration Plan		NS	Ë	n.)			X	STF	RENGTH	TEST	6)	(ATTERBERG LIMITS	
MODEL LAYE		GRAPHIC LC	Latitude: 37.6439° Longitude: -85.9797° Approximate Surface Elev.: 720 (Ft.) +/-	DEPTH (Ft.)	WATER LEVE OBSERVATIOI	SAMPLE TYF	RECOVERY (I	FIELD TEST RESULTS	RQD (%)	LABORATOR HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%	DRY UNIT WEIGHT (pcf	LL-PL-PI	
			Blank Drilling														
1			1.0 719+/- LEAN CLAY (CL), with silt, brown, hard 717+/- 3.0 717+/-	-	-		21			3.50 (HP)	UC	4.61	3.9	18.0	109	45-17-28	
Г		////	Boring Terminated at 3 Feet	-													
Ad	Ivano 4" ho	Stra	atification lines are approximate. In-situ, the transition at Method: stem auger	maybe	gradua See Si	plora dition	tion ar of field al data	d Testing Procedures for a and laboratory procedures us (If any).	used	Hamme	г Туре:	Automa	tic				
Ab	ando Borir	onmei ng ba	nt Method: ckfilled with auger cuttings upon completion.		symbo Elevati	ls and ons w	d abbre	viations. erpolated from Goodle Earth	h Pro.								
E			WATER LEVEL OBSERVATIONS							Boring Sta	rted: 1	1-24-2020	0	Borin	q Comp	leted: 11-24-20	20
		Gr	oundwater not encountered				9	looel		Drill Rig: E	-53	020	-	Drille	er: R. Ma	thes	
L						130	50 Eas	tgate Park Way Ste 101		- Proiect No	.: 5720)5074					

BORING LOG NO. B-5 Page 1 of 1 **PROJECT: LGE-KU Solar Project CLIENT: ibV Energy Partners LLC** Miami, FL SITE: **Hardinsburg Road** Cecilia, KY ATTERBERG LIMITS LOCATION See Exploration Plan STRENGTH TEST WATER LEVEL OBSERVATIONS SAMPLE TYPE MODEL LAYER **GRAPHIC LOG** WATER CONTENT (%) RECOVERY (In. DRY UNIT WEIGHT (pcf) LABORATORY HP (tsf) FIELD TEST RESULTS DEPTH (Ft.) COMPRESSIVE STRENGTH (tsf) RQD (%) Latitude: 37.6522° Longitude: -85.9892° TEST TYPE STRAIN (%) LL-PL-PI Approximate Surface Elev .: 713 (Ft.) +/-ELEVATION (Ft.) DEPTH TOPSOIL 0.8 712+/-LEAN CLAY (CL), with silt, 1-2-3 1.50 brown, medium stiff to stiff 18 22.9 N=5 (HP) 1 3-5-6 2.75 18 19.9 (HP) N=11 5 707+/-FAT CLAY (CH), reddish 3-5-6 3.00 18 21.7 brown, medium stiff to stiff N=11 (HP) 4-4-6 3.50 18 20.9 N=10 (HP) 10 5-6-5 2.50 18 39.7 N=11 (HP) 15 3-3-5 2.50 29.3 18 N=8 (HP) 693+/-20 Boring Terminated at 20 Feet Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a 4" hollow stem auger description of field and laboratory procedures used and additional data (If any). See Supporting Information for explanation of Abandonment Method: Boring backfilled with auger cuttings upon completion. symbols and abbreviations. Elevations were interpolated from Google Earth Pro WATER LEVEL OBSERVATIONS Boring Started: 11-23-2020 Boring Completed: 11-23-2020 Groundwater not encountered Drill Rig: B-53 Driller: R. Mathes 13050 Eastgate Park Way Ste 101 Project No.: 57205074 Louisville, KY

BORING LOG NO. B-5A

P	ROJ	ECT: LGE-KU Solar Project					CLIENT: ibV Mia	Ene mi, I	rgy l FL	Part	ners	LLC				
s	ITE:	Hardinsburg Road Cecilia, KY						, .								
ĸ	g	LOCATION See Exploration Plan	_	NS II	Ш	n.)			Σ	STF	RENGTH	TEST	()	E.	ATTERBERG LIMITS	
MODEL LAYE	GRAPHIC LC	Latitude: 37.6522° Longitude: -85.9892° Approximate Surface Elev.: 713 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVE OBSERVATIOI	SAMPLE TYF	RECOVERY (I	FIELD TEST RESULTS RESULTS		LABORATOR HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%	DRY UNIT WEIGHT (pcf	LL-PL-PI	
		Blank Drilling														
1		2.0 711+/- LEAN CLAY (CL), with silt, brown, very stiff	-	-		23		-	3.50		2 01	3.6	17.8	108	33-18-15	
		4.0 709+/-				20			(HP)	00	2.01	0.0	17.0		00 10 10	
		Boring Terminated at 4 Feet														
-	Str	atification lines are approximate. In-situ, the transition	may be	gradua	al.				Hamme	r Type:	: Automa	Itic				
Adv 4	anceme " hollow	nt Method: stem auger		See Ex descrip and ad	cplora otion of Idition	tion an of field al data	Testing Procedures for a and laboratory procedures use (If any).	d N	lotes:							
Aba B	ndonme oring ba	ent Method: cckfilled with auger cuttings upon completion.		See Si symbo Elevati	ippor Is and ons w	ung inf d abbre vere inf	rmauon for explanation of viations. erpolated from Google Earth P	ro.								
⊢	G	WATER LEVEL OBSERVATIONS						Bo	ring Sta	rted: 1	1-23-202	0	Borin	ig Comp	leted: 11-23-20	20
	91	Canamator not choculitered				4	IJLUN	Dri	ll Rig: B	-53			Drille	er: R. Ma	ithes	
					130	50 Eas	gate Park Way Ste 101	Pro	niect No	. 5720	5074					

BORING LOG NO. B-6 Page 1 of 1 **PROJECT: LGE-KU Solar Project CLIENT: ibV Energy Partners LLC** Miami, FL SITE: **Hardinsburg Road** Cecilia, KY ATTERBERG LIMITS LOCATION See Exploration Plan STRENGTH TEST WATER LEVEL OBSERVATIONS SAMPLE TYPE MODEL LAYER **GRAPHIC LOG** WATER CONTENT (%) RECOVERY (In. DRY UNIT WEIGHT (pcf) LABORATORY HP (tsf) FIELD TEST RESULTS DEPTH (Ft.) COMPRESSIVE STRENGTH (tsf) RQD (%) Latitude: 37.6570° Longitude: -85.9909° TEST TYPE STRAIN (%) LL-PL-PI Approximate Surface Elev .: 715 (Ft.) +/-ELEVATION (Ft.) DEPTH TOPSOIL 0.8 714+/-LEAN CLAY (CL), with silt, 1-2-3 2.00 brown, medium stiff to stiff 18 23.9 N=5 (HP) 1 4-5-7 3.25 18 19.0 (HP) N=12 5 709+/-FAT CLAY (CH), reddish 6-8-7 3.00 18 21.9 brown, medium stiff to stiff N=15 (HP) 3-4-5 2.50 18 23.4 N=9 (HP) 10 3-4-4 2.75 18 26.5 N=8 (HP) 15 \bigtriangledown 2-3-4 1.75 18 28.0 N=7 (HP) 695+/-20 Boring Terminated at 20 Feet Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a 4" hollow stem auger description of field and laboratory procedures used and additional data (If any). Supporting Information for explanation of See Abandonment Method: Boring backfilled with auger cuttings upon completion. symbols and abbreviations. Elevations were interpolated from Google Earth Pro WATER LEVEL OBSERVATIONS Boring Started: 11-24-2020 Boring Completed: 11-24-2020 At completion of drilling Drill Rig: B-53 Driller: R. Mathes 13050 Eastgate Park Way Ste 101 Project No.: 57205074 Louisville, KY

BORING LOG NO. B-7 Page 1 of 1 **PROJECT: LGE-KU Solar Project CLIENT: ibV Energy Partners LLC** Miami, FL SITE: **Hardinsburg Road** Cecilia, KY ATTERBERG LIMITS LOCATION See Exploration Plan STRENGTH TEST WATER LEVEL OBSERVATIONS SAMPLE TYPE MODEL LAYER **GRAPHIC LOG** WATER CONTENT (%) RECOVERY (In. DRY UNIT WEIGHT (pcf) LABORATORY HP (tsf) FIELD TEST RESULTS DEPTH (Ft.) COMPRESSIVE STRENGTH (tsf) RQD (%) Latitude: 37.6605° Longitude: -85.9985° TEST TYPE STRAIN (%) LL-PL-PI Approximate Surface Elev .: 718 (Ft.) +/-ELEVATION (Ft.) DEPTH TOPSOIL 0.8 717+/-LEAN CLAY (CL), with silt, 2-3-5 2.00 brown, medium stiff to stiff 18 17.7 N=8 (HP) 1 714.5+/-FAT CLAY (CH), reddish 5-7-9 4.50+ 18 22.5 brown, stiff (HP) N=16 5 4-6-7 3.50 18 20.6 N=13 (HP) 5-6-6 4.00 18 23.6 N=12 (HP) 10 6-7-8 2.25 with fine sand 18 21.1 N=15 (HP) 15 3-3-4 0.75 18 28.2 trace fine sand N=7 (HP) 698+/-20 Boring Terminated at 20 Feet Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a 4" hollow stem auger description of field and laboratory procedures used and additional data (If any). See Supporting Information for explanation of Abandonment Method: Boring backfilled with auger cuttings upon completion. symbols and abbreviations. Elevations were interpolated from Google Earth Pro WATER LEVEL OBSERVATIONS Boring Started: 11-23-2020 Boring Completed: 11-23-2020 Groundwater not encountered Drill Rig: B-53 Driller: R. Mathes 13050 Eastgate Park Way Ste 101 Project No.: 57205074 Louisville, KY

BORING LOG NO. B-7A

F	ROJ	ECT: LGE-KU Solar Project					CLIENT:	ibV E Miam	nergy i. FL	Part	ners	LLC				
S	SITE:	Hardinsburg Road Cecilia, KY							.,							
Ř	g	LOCATION See Exploration Plan		R R	Щ	ц.)				STR	RENGTH	TEST		<u> </u>	ATTERBERG LIMITS	
EL LAYE	HIC LO	Latitude: 37.6605° Longitude: -85.9985°	TH (Ft.)	R LEVE	LE TYP	/ERY (Ir	D TEST SULTS	(%) Q	RATOR' (tsf)	γpe	(GTH	۱ (%)	ATER ENT (%	/ UNIT HT (pd		
MODE	GRAF	Approximate Surface Elev.: 718 (Ft.) +/-	DEP	WATE	SAMPI	RECOV	FIELI	RQ	LABOI	TESTT	STREN (tsf	STRAIN	CONT	VEIG	LL-PL-PI	
-		Blank Drilling									0					
			-	-												
1		3.0 715+/-	_	_	m											
		LEAN CLAY (CL), reddish brown, hard	_			13			4.50 (HP)	UC	4.96	4.8	19.2	107	46-20-26	
_		5.0 713+/- Boring Terminated at 5 Feet	5 –						(,							
		Doning reminiated at or eet														
-	Str	atification lines are approximate. In-situ, the transition r	may be	gradua	 al.				Hamme	er Type	: Automa	l tic				
Adv	anceme	nt Method:		See E	xplora	tion an	I Testing Procedures f	or a	Notes:							
4	noliow	stern auger		description and ac	ption o Idition	of field a al data	and laboratory procedu (If any).	ires used								
Aba E	indonme Boring ba	nt Method: ckfilled with auger cuttings upon completion.		See S symbo	upport ols and	abbre	rmation for explanation viations.	Farth Pro								
L		WATER LEVEL OBSERVATIONS					apolateu nom Google	Latul P10.	Boring St	arted [.] 1	1-23-202	0	Borin	la Comr	leted. 11-23-20)20
	Gr	oundwater not encountered	_			21	lgca		Drill Rig: E	3-53	-20-2020		Drille	er: R. Ma	ithes	,20
					130	50 Eas	gate Park Way Ste 10	1	Project No	· 5720	05074					

BORING LOG NO. B-8 Page 1 of 1 **PROJECT: LGE-KU Solar Project CLIENT: ibV Energy Partners LLC** Miami, FL SITE: **Hardinsburg Road** Cecilia, KY ATTERBERG LIMITS LOCATION See Exploration Plan STRENGTH TEST WATER LEVEL OBSERVATIONS SAMPLE TYPE MODEL LAYER **GRAPHIC LOG** WATER CONTENT (%) RECOVERY (In. DRY UNIT WEIGHT (pcf) LABORATORY HP (tsf) FIELD TEST RESULTS DEPTH (Ft.) COMPRESSIVE STRENGTH (tsf) RQD (%) Latitude: 37.6544° Longitude: -86.0004° TEST TYPE STRAIN (%) LL-PL-PI Approximate Surface Elev .: 735 (Ft.) +/-ELEVATION (Ft.) DEPTH TOPSOIL 0.8 734+/-LEAN CLAY (CL), with silt, 1-2-2 1.25 brown, medium stiff 18 24.5 N=4 (HP) 1 731.5+/-FAT CLAY (CH), reddish 4-7-7 2.25 18 26.4 brown, stiff N=14 (HP) with gray 5 2-4-6 3.50 18 21.8 N=10 (HP) 4.25 4-5-7 18 27.6 N=12 (HP) 10 4-5-6 3.75 18 39.3 N=11 (HP) 15 8-5-5 3.00 18 33.3 N=10 (HP) 715+/-20 Boring Terminated at 20 Feet Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a 4" hollow stem auger description of field and laboratory procedures used and additional data (If any). See Supporting Information for explanation of Abandonment Method: Boring backfilled with auger cuttings upon completion. symbols and abbreviations. Elevations were interpolated from Google Earth Pro WATER LEVEL OBSERVATIONS Boring Started: 11-23-2020 Boring Completed: 11-23-2020 Groundwater not encountered Drill Rig: B-53 Driller: R. Mathes 13050 Eastgate Park Way Ste 101 Project No.: 57205074 Louisville, KY

BORING LOG NO. B-9 Page 1 of 1 **PROJECT: LGE-KU Solar Project CLIENT: ibV Energy Partners LLC** Miami, FĽ SITE: **Hardinsburg Road** Cecilia, KY ATTERBERG LIMITS LOCATION See Exploration Plan STRENGTH TEST WATER LEVEL OBSERVATIONS SAMPLE TYPE MODEL LAYER **GRAPHIC LOG** WATER CONTENT (%) RECOVERY (In. DRY UNIT WEIGHT (pcf) LABORATORY HP (tsf) FIELD TEST RESULTS DEPTH (Ft.) COMPRESSIVE STRENGTH (tsf) RQD (%) Latitude: 37.6541° Longitude: -86.0098° TEST TYPE STRAIN (%) LL-PL-PI Approximate Surface Elev .: 740 (Ft.) +/-ELEVATION (Ft.) DEPTH TOPSOIL 0.8 739+/-LEAN CLAY (CL), with silt, 1-2-3 2.00 brown, medium stiff to stiff 18 17.6 N=5 (HP) 1 4-6-7 2.50 18 14.9 N=13 (HP) 5 734+/-FAT CLAY (CH), reddish 5-6-8 4.50+ 18 17.4 brown, medium stiff to stiff N=14 (HP) 3-5-5 2.75 18 24.7 N=10 (HP) 10 3-4-6 2.50 18 22.6 N=10 (HP) 15 3-3-4 1.50 18 46.8 N=7 (HP) 720+/-20 Boring Terminated at 20 Feet Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a 4" hollow stem auger description of field and laboratory procedures used and additional data (If any). See Supporting Information for explanation of Abandonment Method: Boring backfilled with auger cuttings upon completion. symbols and abbreviations. Elevations were interpolated from Google Earth Pro WATER LEVEL OBSERVATIONS Boring Started: 11-23-2020 Boring Completed: 11-23-2020 Groundwater not encountered Drill Rig: B-53 Driller: R. Mathes 13050 Eastgate Park Way Ste 101 Project No.: 57205074 Louisville, KY

BORING LOG NO. B-9A

P	ROJ	ECT: LGE-KU Solar Project					CLIENT: ib	bV Er <i>I</i> liami	nergy , FL	Part	ners	LLC				
S	ITE:	Hardinsburg Road Cecilia, KY														
н.	g	LOCATION See Exploration Plan		R S S	Щ	(i			~	STF	RENGTH	TEST		(ATTERBERG LIMITS	
MODEL LAYE	GRAPHIC LO	Latitude: 37.6541° Longitude: -86.0097° Approximate Surface Elev.: 740 (Ft.) +/- DEPTH EL EVATION (Ft.)	DEPTH (Ft.)	WATER LEVE OBSERVATIO	SAMPLE TYF	RECOVERY (II	FIELD TEST RESULTS	RQD (%)	LABORATOR HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%	DRY UNIT WEIGHT (pcf	LL-PL-PI	
		Blank Drilling														
1		2.0 738+/- LEAN CLAY (CL), with silt, brown, very stiff	-	-					3 50							
		4.0 736+/-	_			19			(HP)	UC	3.26	5.3	19.4	103	25-17-8	
Adv. 4	Str	Boring Terminated at 4 Feet	gradua See Edescription	al.	tion ar	d Testing Procedures for a and laboratory procedures (If any).	a s used	Hamme	:r Type:	Automa	tic					
Aba B	ndonme oring ba	ent Method: cckfilled with auger cuttings upon completion.		See Si symbo Elevati	uppor Is and	ting Inf d abbre vere inf	verup. ormation for explanation of viations. erpolated from Google Ear	f rth Pro.								
		WATER LEVEL OBSERVATIONS							Borina Sta	arted 1	1-23-2020)	Borin	la Comr	leted: 11-23-20	20
	Gr	roundwater not encountered				2	locol		Drill Ria: F	3-53	0 _020	-	Drille	er: R. Ma	thes	
					130	50 Eas	tgate Park Way Ste 101		Project No	5720)5074					

BORING LOG NO. B-11 Page 1 of 2 CLIENT: ibV Energy Partners LLC Miami, FL **PROJECT: LGE-KU Solar Project** SITE: Hardinsburg Road Cecilia, KY ATTERBERG LIMITS LOCATION See Exploration Plan STRENGTH TEST WATER LEVEL OBSERVATIONS SAMPLE TYPE MODEL LAYER **GRAPHIC LOG** WATER CONTENT (%) RECOVERY (In. DRY UNIT WEIGHT (pcf) LABORATORY HP (tsf) FIELD TEST RESULTS DEPTH (Ft.) COMPRESSIVE STRENGTH (tsf) RQD (%) Latitude: 37.6776° Longitude: -85.9951° TEST TYPE STRAIN (%) LL-PL-PI Approximate Surface Elev .: 725 (Ft.) +/-ELEVATION (Ft.) DEPTH TOPSOIL 0.8 724.5+/-LEAN CLAY (CL), with silt, brown with reddish brown, 2-3-4 3.75 18 17.8 N=7 (HP) medium stiff 3-4-5 2.25 18 17.8 N=9 (HP) 5 3-4-5 2.00 18 17.8 718+/-7.0 N=9 (HP) FAT CLAY (CH), reddish brown, medium stiff to stiff 3.00 5-6-6 18 18.4 N=12 (HP) 10 4-5-6 3.00 18 38.7 N=11 (HP) 15 2 2-3-4 1.25 18 38.9 N=7 (HP) 20 2-2-2 0.50 18 27.0 N=4 (HP) 25 Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a 4" hollow stem auger description of field and laboratory procedures used and additional data (If any). Supporting Information for explanation of See Abandonment Method: Boring backfilled with auger cuttings upon completion. symbols and abbreviations. Elevations were interpolated from Google Earth Pro WATER LEVEL OBSERVATIONS Boring Completed: 12-01-2020 Boring Started: 11-30-2020 Groundwater not encountered Drill Rig: B-53 Driller: R. Mathes 13050 Eastgate Park Way Ste 101 Project No.: 57205074 Louisville, KY

				В	BOF	RIN	١G	LC	G NO	. B-1	1					I	Page 2 of 2	2
	Ρ	ROJ	ECT: LGE-KU Solar Project						CLIENT:	ibV E	nergy	Par	iners l	LLC			0	
	S	ITE:	Hardinsburg Road Cecilia, KY							wiam	I, FL							
	YER	90	LOCATION See Exploration Plan	t.)	/EL ONS	ŕΡΕ	(In.)		t. (RY	ST	RENGTH	TEST	(%)	cf)	Atterberg Limits	
	EL LA	PHICL	Latitude: 37.6776° Longitude: -85.9951°	TH (F	ER LEV RVATIO	PLE T	VERY		ESULTS	QD (%)	DRATO IP (tsf)	TYPE	ESSIVE NGTH sf)	(%) NI	ATER TENT (ኛY UNI ⁷ GHT (p		
	MOL	GRA	Approximate Surface Elev.: 725 (Ft.) +/-	DE	WAT OBSE	SAMI	RECC		ΗR	£	LABO	TEST	STRE STRE (t	STRA	CON	DF		
	2		26.0 699+/-															
			LIMESTONE, light gray, moderate to very close	_								UC	867 60			167		
0/20			spacing, thin bedding, unweathered to slightly weathered, strong rock	_	_													
DT 12/3			4 inches high-angled fracture	-	-													
ATE.GI				30–	-													
TEMPL				-	-		112			60%								
L_DATA				_														
RACON				_														
J TER				35-														
OTE.GF	4			-							_		-					
RY GE				_	-													
IMINA				-														
74 PRE				-	-													
572050				40-														
WELL							119.5			89%								
OG-NO				_														
MART L				-	-													
GEO SI				45-	-													
PORT.			46.0 679+/- Boring Terminated at 46	-														
NAL RE			reel															
I ORIGI																		
D FROM																		
EPARATE		Stra	atification lines are approximate. In-situ, the transition	n may be	gradua	I.					Hamme	r Type	: Automat	tic				
ALID IF SE	Adva 4'	ancemer " hollow	nt Method: stem auger		See Ex descrip and ad	plora tion d dition	tion an of field al data	id Testir and lab a (If any)	ng Procedures f poratory procedu).	or a ires used	Notes:							
IS NOT V,	Abai B	ndonme oring ba	nt Method: ckfilled with auger cuttings upon completion.		See Su symbol	s and	ting Info d abbre		n for explanations.	n of Farth Pro								
G LOG			WATER LEVEL OBSERVATIONS					orpoidu	ca nom Google		Borina Sta	arted: 1	1-30-2020)	Borin	ig Comr	leted: 12-01-20)20
BORIN		Gr	oundwater not encountered				21		DCO		Drill Rig: E	3-53			Drille	er: R. Ma	thes	-
THIS					130	50 Eas	stgate P Louisvil	Park Way Ste 10 Ile, KY	1	Project No	o.: 572	05074						

). B-1′	1A					I	Page 1 of	1					
Р	ROJ	ECT: LGE-KU Solar Project					CLIEM	NT: ibV E	nergy	Part	ners	LLC				
S	ITE:	Hardinsburg Road Cecilia, KY						Ivitati	", Г∟							
DEL LAYER	APHIC LOG	LOCATION See Exploration Plan Latitude: 37.6776° Longitude: -85.9951°	EPTH (Ft.)	TER LEVEL ERVATIONS	PLE TYPE	OVERY (In.)	ESULTS	QD (%)	ORATORY HP (tsf)	STI	RENGTH BRUCLH ENGTH BRUCLH	TEST (%) NIT	VATER VTENT (%)	RY UNIT IGHT (pcf)	ATTERBERG LIMITS	_
ЮW	GR	Approximate Surface Elev.: 725 (Ft.) +/- DEPTH ELEVATION (Ft.) Blank Drilling	Ö	WA1 OBSE	SAM	REC	ᇤᇝ		[TAB	TESI	COMPF STRE	STR		^Q ^M		
		2.0 723+/-	-	-												
1		4.0 721+/-	-	-		20			4.00 (HP)	UC	3.18	4.8	16.7	112	27-19-8	
		5.0 720+/- LEAN CLAY (CL), reddish brown, stiff	5 -	-		24			3.00 (HP)	UC	1.17	7.2	16.7	101	35-15-20	
	/////	Boring Terminated at 7 Feet	-													
	Str	atification lines are approximate. In-situ, the transitior	n may be	e gradua	al.				Hamme	er Type	: Automa	atic				
Adva 4'	anceme ' hollow	nt Method: stem auger		See Ex descrip and ad	<mark>cplora</mark> otion c Idition	<mark>tion an</mark> of field al data	d Testing Procedu and laboratory pro (If any).	ires for a ocedures used	Notes:							
Aba B	ndonme oring ba	nt Method: ckfilled with auger cuttings upon completion.		See Si symbo Elevati	upport Is and ons w	ting Inf d abbre vere int	ormation for expla viations. erpolated from Go	nation of ogle Earth Pro								
	0	WATER LEVEL OBSERVATIONS							Boring Sta	arted: 1	1-30-202	0	Borin	ng Comp	leted: 12-01-20	020
	Gľ	ounowater not encountered				2	IJC	ΟΠ	Drill Rig: E	3-53			Drille	er: R. Ma	athes	
					130	50 Eas	tgate Park Way S Louisville, KY	te 101	Project No	o.: 572	05074					

BORING LOG NO. ROW-1 Page 1 of 2 **PROJECT: LGE-KU Solar Project CLIENT: ibV Energy Partners LLC** Miami, FĽ SITE: **Hardinsburg Road** Cecilia, KY ATTERBERG LIMITS LOCATION See Exploration Plan STRENGTH TEST WATER LEVEL OBSERVATIONS SAMPLE TYPE MODEL LAYER **GRAPHIC LOG** WATER CONTENT (%) RECOVERY (In. DRY UNIT WEIGHT (pcf) LABORATORY HP (tsf) FIELD TEST RESULTS DEPTH (Ft.) COMPRESSIVE STRENGTH (tsf) RQD (%) Latitude: 37.6622° Longitude: -86.0019° TEST TYPE STRAIN (%) LL-PL-PI Approximate Surface Elev .: 715 (Ft.) +/-ELEVATION (Ft.) DEPTH <u>7, 1%. 77</u> TOPSOIL 0.7 714.5+/-LEAN CLAY (CL), with silt, brown with gray, soft, trace 1-1-1 0.25 17 25.4 rock fragments N=2 (HP) 1 \bigtriangledown 711.5+/-FAT CLAY (CH), reddish 3-5-5 2.00 18 27.5 73-24-49 brown, medium stiff to stiff (HP) N=10 5 4-6-8 2.00 18 21.1 N=14 (HP) 3-3-5 1.50 18 31.8 N=8 (HP) 10 3-4-5 1.00 18 39.6 N=9 (HP) 15 2-3-4 2.00 18 28.9 N=7 (HP) 20 2-2-2 1.00 18 36.9 N=4 (HP) 25 Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a 4" hollow stem auger description of field and laboratory procedures used and additional data (If any). Supporting Information for explanation of See Abandonment Method: Boring backfilled with auger cuttings upon completion. symbols and abbreviations. Elevations were interpolated from Google Earth Pro WATER LEVEL OBSERVATIONS Boring Started: 12-03-2020 Boring Completed: 12-03-2020 At completion of drilling Drill Rig: B-53 Driller: R. Mathes 13050 Eastgate Park Way Ste 101 Project No.: 57205074 Louisville, KY

			BC	DRI	N	GL	_00	g no.	ROV	V-1					I	Page 2 of	2
Р	ROJ	ECT: LGE-KU Solar Project						CLIENT	: ibV E	inergy	Par	iners	LLC				
s	ITE:	Hardinsburg Road Cecilia, KY							wiam	॥, г∟							
Ř	ŋ	LOCATION See Exploration Plan		- S	щ	(·:				>	ST	RENGTH	TEST			ATTERBERG LIMITS	
MODEL LAYE	GRAPHIC LO	Latitude: 37.6622° Longitude: -86.0019° Approximate Surface Elev.: 715 (Ft.) +/-	DEPTH (Ft.)	WATER LEVE DBSERVATION	SAMPLE TYF	RECOVERY (In		FIELD TEST RESULTS	RQD (%)	LABORATOR [,] HP (tsf)	TEST TYPE	DMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%	DRY UNIT WEIGHT (pof	LL-PL-PI	
2	Str	DEPTH ELEVATION (FL) FAT CLAY (CH), reddish brown, medium stiff to stiff brown, medium stiff to stiff (continued) 30.0 685+/- Boring Terminated at 30 Feet atification lines are approximate. In-situ, the transition nt Method:			al.	2 18		1-2-2 N=4	for a	0.25 (HP)	er Type	E Automa	tic tic	29.7			
4' Aba B	' hollow ndonme oring ba	stem auger nt Method: ckfilled with auger cuttings upon completion.		descrip and ac See Si symbo	ption of Idition uppor	of field al data ting Inf d abbre	and lat a (If any cormatic eviation	oporatory procedures (). on for explanatic s.	on of								
				∟ievati	ions v	vere in	terpolat	ea from Google	⊧ ⊨aπn Pro.								
	Δt	completion of drilling								Boring St	arted: 1	2-03-202	0	Borir	ng Comp	leted: 12-03-2	020
	_ Al									Drill Rig:	B-53			Drille	er: R. Ma	ithes	
					130	50 Eas	stgate F Louisv	²ark Way Ste 10 ille, KY	U1	Project N	o.: 572	05074					

BORING LOG NO. ROW-1A

	Ρ	ROJ	ECT: LGE-KU Solar Project					CLIENT:	ibV E Miam	nergy i, FL	Part	ners	LLC				
	S	ITE:	Hardinsburg Road Cecilia, KY							,							
	R	Q	LOCATION See Exploration Plan		Ч К	Ĕ	(·L	·		~	STR	RENGTH	TEST			ATTERBERG LIMITS	
	MODEL LAYE	GRAPHIC LO	Latitude: 37.6622° Longitude: -86.0019° Approximate Surface Elev.: 715 (Ft.) +/-	DEPTH (Ft.)	WATER LEVE OBSERVATION	SAMPLE TYF	RECOVERY (Ir	FIELD TEST RESULTS	RQD (%)	LABORATOR ¹ HP (tsf)	TEST TYPE	OMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%	DRY UNIT WEIGHT (pcf	LL-PL-PI	
	_	/////	DEPTH ELEVATION (Ft.) Blank Drilling									0					
30/20	1		3.0712+/-	-	-												
SDT 12/			brown, stiff	_			22			3.00 (HP)	UC	1.85	3	25.7	96		
ATE.G			5.0 710+/- Boring Terminated at 5 Feet	5 -													
/ALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 57205074 PRELIMINARY GEOTE.GPJ TERRACON_DATATEMPLA	Advæ 41	Str.	atification lines are approximate. In-situ, the transition	gradua See Ev descriptand ad	I.	tion and	1 Testing Procedures and laboratory procedu (If any).	for a ures used	Hamme	r Type	Automa	tic					
IG IS NOT	Abar Bi	ndonme oring ba	nt Method: ckfilled with auger cuttings upon completion.	ang Info I abbre vere inte	ormation for explanation viations. erpolated from Google	on of e Earth Pro.											
NG LC		-	WATER LEVEL OBSERVATIONS				Boring Sta	arted: 1	2-03-2020)	Borin	ıg Comp	leted: 12-03-20)20			
BORIN		Gr	ounawater not encountered				21	1900		Drill Rig: E	3-53			Drille	er: R. Ma	ithes	
THIS.						130	50 Eas	tgate Park Way Ste 10 ₋ouisville, KY	01	Project No	o.: 5720	05074					

			N	Gι	G LOG NO. ROW-2							Page 1 of	1			
Γ	PRO	JECT: LGE-KU Solar Project					CLIEN	IT: ibV E Miam	nergy i. FL	Part	iners	LLC				
	SITE	: Hardinsburg Road Cecilia, KY							,							
ŭ	í g	LOCATION See Exploration Plan	<u>.</u>	DNS DNS	ΡE	(In.)	⊢		RY	ST	RENGTH	TEST	(%)	- cf)	ATTERBERG LIMITS	
	HICL	Latitude: 37.6638° Longitude: -86.0033°	TH (Ft	R LEV	∠ □	ERY (D TES	D (%)	RATOI (tsf)	ΥPE	SSIVE GTH	1 (%)	TER ENT (HT (po		
HOOM	GRAF	Approximate Surface Elev.: 710 (Ft.) +/-	DEP	WATE	SAMPI	RECOV	FIELI	RQ	LABOI	TEST T	OMPRE STREN (tsf	STRAIN	CONT	DRY	LL-PL-PI	
	. <u>x1 1</u> /.	DEPTH ELEVATION (Ft.) 1 7 TOPSOIL 7 709.5+/-									0					
		LEAN CLAY (CL), with silt, brown, medium stiff to stiff	-	1	\bigtriangledown	17	1-2-2	_	1.75				10.5			
20			-		$\mid \land \mid$	17	N=4	_	(HP)	-			19.5	-		
12/30/							3_1_5	_	1 75							
E.GDT			5-		igarproduct	18	N=9		(HP)	-			27.8			
		6.0 704+/-	-	_				_		-						
ATATE		brown, stiff	-		X	18	4-4-4 N=8		2.50 (HP)				22.7			
CON			-	_												
TERR/			-		\mathbb{X}	18	3-4-4 N=8		2.50 (HP)				29.7			
E.GPJ			10-													
GEOT			-	-												
IINARY 2																
RELIN							1_3_9	_	0.25	-						
05074 F			15-		igarproduct	18	N=12	_	(HP)				33.7			
L 5720			-	_												
0 WEL			-	_												
LOG-N		18.5 691.5+/-	-	-												
MART		LIMESTONE, light gray with dark gray, close fracture	-	-										105		
GEO S	F	spacing, thin bedding, unweathered, very strong	20-	-						00	1233.30			165		
ORT. 0		high-angled fracture from 18.5 ft to 19.25 ft	-	-		58		75%								
AL REF			-	-												
		23.5 686.5+/-	-						_							
		Feet														
RATED I		Stratification lines are approximate. In-situ, the transition	n may be	gradua	 al.				Hamme	er Type	: Automa	tic				
SEPAF	lvancer	nent Method:		0		0	IT IN DUIL		Notes:							
ALID IF	4" hollo	bw stem auger		See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any).						d						
NOT V V AI	andoni	nent Method:		See Supporting Information for explanation of symbols and abbreviations.												
OG IS I	Boring	backfilled with auger cuttings upon completion.		Elevations were interpolated from Google Earth Pro.					ο.							
	7	WATER LEVEL OBSERVATIONS						Boring Started: 12-03-2020 Boring Completed: 12-03					leted: 12-03-20	020		
S BOR	<u>~</u> /	חי ואווויאס ארייאס איז איז איז איז איז אי		- IICIICOLO					Drill Rig: B-53 Driller: R. Mathes							
Ϊ			Itgate Park Way Ste 101 Louisville, KY Project No.: 57205074													

BORING LOG NO. ROW-3

Page 1 of 1

Pl	ROJ	ECT: LGE-KU Solar Project			CLIENT:	ibV Er Miami	nergy i. FL	Part	ners	LLC			~				
SI	TE:	Hardinsburg Road Cecilia, KY						main	·, · _								
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 37.6660° Longitude: -86.0025° Approximate Surface Elev.: 710 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	RQD (%)	LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits		
	<u></u>	0.7 <u>TOPSOIL</u> 709.5+/- <u>LEAN CLAY (CL)</u> , with silt, brown, medium stiff	-	-	X	18	2-2-3 N=5		1.50 (HP)				32.0				
1			- 5 -	-	X	18	4-3-4 N=7		2.00 (HP)				28.5				
			_	-	X	18	2-2-3 N=5		1.25 (HP)				28.3				
		10.0 700+/-	- 10-	-	X	13	2-17-50/1"		1.00 (HP)				48.2				
1		LIMESTONE, close fracture 11.0 spacing, thin bedding, 699+/- unweathered to completely weathered, strong rock 3 inches of high-angled fracture CLAY-FILLED VOID 14.0 696+/-	-	-		40		10%									
1		LIMESTONE, close fracture 15.0 spacing, thin bedding, 695+/- unweathered to completely weathered, strong rock CLAY-FILLED VOID	- 15- - -	-		20		0%	_								
4		LIMESTONE, close fracture spacing, thin bedding, unweathered to slightly weathered, medium strong	- 20- - -	-		60		85%		UC	436.32			158			
	-	Boring Terminated at 23.5 Feet															
	Str	atification lines are approximate. In-situ, the transition	I		Hamme	er Type	: Automa	tic	1	I		1					
Adva 4" Aban Bo	ncemer hollow donme pring ba	nt Method: stem auger nt Method: ckfilled with auger cuttings upon completion.		See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Notes: See Supporting Information for explanation of symbols and abbreviations. Elevations were interpolated from Google Earth Pro.													
	<u> </u>	WATER LEVEL OBSERVATIONS							Boring Started: 12-02-2020					Boring Completed: 12-02-2020			
	Gr	ounuwaler not encountered		13050 Eastgate Park Way Ste 101					Drill Rig: E	3-53			Drille	er: R. Ma	thes		
				13050 Eastgate Park Way Ste 101 Louisville, KY Project No.: 57205074													

BORING LOG NO. ROW-4

Page 1 of 1

	PF	ROJ	ECT: LGE-KU Solar Project		CLIENT:	ibV E Miam	nergy i. FL	Part	ners	LLC			-				
	Sľ	TE:	Hardinsburg Road Cecilia, KY							.,							
	MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 37.6681° Longitude: -86.0005° Approximate Surface Elev.: 715 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	RQD (%)	LABORATORY HP (tsf)	TEST TYPE IS	SOMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits	
		<u> </u>	0.5 TOPSOIL 714.5+/ LEAN CLAY (CL), with silt, brown, medium stiff to stiff	-	-	X	17	1-2-2 N=4		1.25 (HP)		0		22.5			
				- 5 -	-	X	18	3-4-5 N=9		2.50 (HP)				22.9			
	1			-	-	X	18	4-4-5 N=9		2.00 (HP)				24.1			
				- 10-	-	X	18	1-2-2 N=4		1.75 (HP)				32.5			
			13.5														
	2		FAT CLAY (CH), readish brown, medium stiff		-	X	18	3-3-4 N=7		1.25 (HP)				36.6			
	4		18.0 697+/ LIMESTONE, light gray with dark gray, moderate to close spacing, thin bedding, unweathered, strong rock	20-	-		58		81 %		UC	578.16			165		
			23.0 692+/ Boring Terminated at 23		_												
			Feet								-						
		Stra	atification lines are approximate. In-situ, the transitic	n may be	e gradua	al.				Hamme	er Type	: Automa	tic				
	4"	hollow	nt Method:		See E descri and ac See S	xplora ption o Idition	tion ar of field al data ting Inf	nd Testing Procedures f and laboratory procedu a (If any). Cormation for explanation	d Testing Procedures for a and laboratory procedures used (If any). prmation for explanation of								
	Bo	ring ba	ckfilled with auger cuttings upon completion.		symbols and abbreviations. Elevations were interpolated from Google Earth												
	$\overline{\nabla}$	Λ+	WATER LEVEL OBSERVATIONS							Boring Started: 11-24-2020					Boring Completed: 11-24-2020		
	<u> </u>	Al							Drill Rig: B-53 Driller: R. Mathem					athes			
2						130	50 Eas	astgate Park Way Ste 101									

12/30/20

BORING LOG NO. ROW-4A

1	PROJ	ECT: LGE-KU Solar Project		CLIENT: ibV Energy Partners LLC Miami, FL												
:	SITE:	Hardinsburg Road Cecilia, KY							-,							
Ř	U	LOCATION See Exploration Plan		ц S	щ	(·۲	·		~	STR	RENGTH	TEST	()	(ATTERBERG LIMITS	
10DEL LAYE	SRAPHIC LO	Latitude: 37.6681° Longitude: -86.0005° Approximate Surface Elev.: 715 (Ft.) +/-	DEPTH (Ft.)	ATER LEVE SERVATION	AMPLE TYP	ECOVERY (Ir	FIELD TEST RESULTS	RQD (%)	ABORATOR' HP (tsf)	EST TYPE	APRESSIVE IRENGTH (tsf)	FRAIN (%)	WATER ONTENT (%	DRY UNIT VEIGHT (pcf)	LL-PL-PI	
_		DEPTH ELEVATION (Ft.) Blank Drilling		> 0	Ś	R				F	N CO	ο.		_		
1			_	-												
		3.0 712+/- <u>LEAN CLAY (CL)</u> , with silt, brown, stiff	_	-		22			4.00 (HP)	UC	1.67	3	19.3	107	31-20-11	
		5.0 710+/- Boring Terminated at 5 Feet	5 –													
╞	Str	atification lines are approximate. In-situ, the transition			I	Hamme	I er Type	L Automa	l	I		<u> </u>				
Ad	vanceme 4" hollow	nt Method: stem auger		See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any).						d Notes:						
Ab	andonme Boring ba	nt Method: cckfilled with auger cuttings upon completion.		See Su symbo Elevati	upport Is and ons w	ing Info I abbre vere int	ormation for explanatio viations. erpolated from Google	n of Earth Pro.	^o ro.							
		WATER LEVEL OBSERVATIONS			-				Boring Started: 11-24-2020 Boring Corr					g Comp	leted: 11-24-20	20
	Groundwater not encountered						'aco	Driller P. Mathae								
				13050 Eastgate Park Way Ste 101						Project No.: 57205074						

				BC	RI	N	GL	OG NO. ROW-5							Page 1 of 1				
ſ	Pl	ROJ	ECT: LGE-KU Solar Project					CL	IENT:	ibV Er Miami	nergy i Fl	Part	iners	LLC					
F	S	ITE:	Hardinsburg Road Cecilia, KY							mann	·, · -								
	Υ ΕΥ	-0G	LOCATION See Exploration Plan	t)	VEL ONS	ΥΡΕ	(In.)	ST	0	(ЛКУ	STI	RENGTH	TEST	(%)	T ocf)	ATTERBERG LIMITS	-	
		GRAPHIC	Latitude: 37.6703° Longitude: -85.9990° Approximate Surface Elev.: 713 (Ft.) +/-	DEPTH (F	WATER LE	SAMPLE T	RECOVERY			RQD (%	LABORATC HP (tsf)	TEST TYPE	OMPRESSIV STRENGTH (tsf)	STRAIN (%)	WATER	DRY UNI WEIGHT (F	LL-PL-PI		
┢		<u>7, 1</u> × . 7	DEPTH ELEVATION (Ft.) 0.8 TOPSOIL 0.8 712+/-										ŏ						
	1		LEAN CLAY (CL), with silt, brown, medium stiff	-		X	17	3-3- N=	-4 7		1.50 (HP)				25.5				
2/30/20			3.5709.5+/-	_															
ATE.GDT 12			FAT CLAY (CH), brown, soft to medium stiff	- 5 -	-	X	18	1-1- N=	-2 3		0.50 (HP)				23.5				
DATATEMPL	2			-	-	X	18	1-2- N=	-2 4		1.75 (HP)				25.6				
ACON				_	-													-	
GPJ TERR			10.0 703+/- LIMESTONE. light grav	- 10-	-	X	18	2-2- N=	.3 5		1.75 (HP)		-		30.4		62-21-41	-	
74 PRELIMINARY GEOTE.(4		with dark gray, moderate to close spacing, thin bedding, unweathered, medium strong	-	-		60			90%		UC	445.68			166			
IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 572050	dva 4"	Stra Stra hollow	15.0 Vertical fracture from 14.25 698+/- ft to 14.75 ft Boring Terminated at 15 Boring Terminated at 15 Feet atification lines are approximate. In-situ, the transition tt Method: stem auger	15-	gradua See E descrig and ad See Si Symbo	plora dition of ls and	tion ar of field al data	d Testing Pro and laborato (If any). ormation for e viations.	pcedures f y procedu	or a res used n of	Hamme Notes:	r Type	: Automa	tic					
, LOG I		-	WATER LEVEL OBSERVATIONS		Elevations were interpolated from Google Earth Pro.												020		
At completion of drilling											ring Completed: 11-25-2020								
R R							13050 Eastgate Park Way Ste 101 Louisville, KY Project No.: 57205074												

			BC	ORING LOG NO. ROW-6											Page 1 of 1			
F	PROJ	ECT: LGE-KU Solar Project						CLIENT:	ibV E Miam	nergy	Part	ners	LLC					
٤	SITE:	Hardinsburg Road Cecilia, KY							Wiam	,, ,								
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 37.6724° Longitude: -85.9976° Approximate Surface Elev.: 713 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)		FIELD TEST RESULTS	RQD (%)	LABORATORY HP (tsf)	TEST TYPE	OMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	-	
1	<u></u>	<u>DEPTH</u> <u>ELEVATION(FL)</u> 0.5 <u>TOPSOIL</u> 712.5+/- <u>LEAN CLAY (CL)</u> , with silt, brown, medium stiff		-	X	18		1-1-3 N=4		1.50 (HP)				23.6				
AIE.GUI 12/30/2		3.5 709.5+/- FAT CLAY (CH), reddish brown with brown, medium stiff	- - 5-	-	X	18		2-2-3 N=5	-	2.00 (HP)				28.1				
		6.5 706.5+/- LIMESTONE, light gray with dark gray, moderate to close spacing, thin bedding, unweathered to slightly	–	-	\ge	4	<u> </u>	50/4"		1.50 (HP)	UC	1098.72	2	27.8	167			
		weathered, very strong	- 10- -	-		58.5			54%			-						
		16.5 696.5+/-	- - 15- -	-		60			88%									
1 OKIGINAL KEPOKI. GEO SMARI LUG-NO W		Boring Terminated at 16.5 Feet																
	Str	atification lines are approximate. In-situ, the transition	be gradual.						Hamme	er Type	: Automa	tic						
	vancemer " hollow andonme Boring ba	nt Method: stem auger nt Method: ckfilled with auger cuttings upon completion.		See Exploration and Testing Procedures for a description of field and laboratory procedures and additional data (If any). See Supporting Information for explanation o symbols and abbreviations. Elevations were interpolated from Google Fa					for a ures used on of e Earth Pro.	Notes:								
		WATER LEVEL OBSERVATIONS					Boring Started: 11-25-2020 Boring Completed: 11-25-2020											
	Gr	ounowater not encountered	13050 Eastgate Park Way Ste 101 Louisville KY						Drill Rig: B-53 Driller: R. Mathes Project No.: 57205074									

BORING LOG NO. ROW-6A

Page 1 of 1

PI	ROJ	ECT: LGE-KU Solar Project		CLIENT:	ibV E Miam	nergy i, FL	Part	ners	LLC			-				
S	TE:	Hardinsburg Road Cecilia, KY														
10DEL LAYER	SRAPHIC LOG	LOCATION See Exploration Plan Latitude: 37.6724° Longitude: -85.9976° Approximate Surface Elev.: 713 (Ft.) +/-	DEPTH (Ft.)	ATER LEVEL SERVATIONS	AMPLE TYPE	ECOVERY (In.)	FIELD TEST RESULTS	RQD (%)	ABORATORY HP (tsf)	STITYPE	APRESSIVE RENGTH DA (tsf) H	LEST (%)	WATER ONTENT (%)	DRY UNIT VEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	
Z	0	DEPTH ELEVATION (Ft.) Blank Drilling		≥ ®	SA	R			د 	Ĩ	ST	ST	0	>		
1		LEAN CLAY (CL), with silt, brown, stiff 4.0 709+/- Boring Torminated at 4 Foot	-			10			1.50 (HP)	UC	1.07	9.6	22.6	97	45-19-26	
Adva 4"	dvancement Method: See Exploration and 1 Boing backfilled with auger cuttings upon completion. See Supporting Inform							for a ures used	Hamme	er Type	Automa	tic				
Aban Bo	donmei oring ba	nt Method: ckfilled with auger cuttings upon completion.		symbo Elevati	ions w	vere interpo	lated from Google	Earth Pro.								

				OG NO.	ROV	V-7					F	Page 1 of	1						
Γ	PI	roj	ECT: LGE-KU Solar Project					CLIENT	ibV E Miam	nergy i Fl	Part	ners	LLC						
	SI	TE:	Hardinsburg Road Cecilia, KY							.,									
		POG	LOCATION See Exploration Plan	Ft.)	EVEL	ГУРЕ	۲ (In.)	IS	(9	ORY (STI	RENGTH	TEST	(%) (%)	llT (pcf)	ATTERBERG LIMITS	-		
		GRAPHIC	Latitude: 37.6756° Longitude: -85.9944° Approximate Surface Elev.: 718 (Ft.) +/-	DEPTH (ATER LE SERVAT	AMPLE 7	ECOVER	FIELD TE RESUL ⁻	RQD (%	ABORAT HP (tsf	EST TYPE	APRESSIV TRENGTH (tsf)	TRAIN (%	WATEI	DRY UN MEIGHT (LL-PL-PI			
-		<u>~</u>	DEPTH ELEVATION (Ft.)		<pre>> 8</pre>	Ś	Ϋ́Υ				μ	N C	ω'		_				
			LEAN CLAY (CL), with silt, brown, medium stiff	_		\bigtriangledown	18	2-3-4		1.25				25.1					
	1			_		\square		N=7		(HP)				20.1					
			3.5 714.5+/- FAT CLAY (CH), reddish brown, soft to medium stiff	_	_	\bigtriangledown	18	2-2-3	-	1.25				23.7					
				5 -				N-5	-										
				-	-	\mathbb{X}	18	2-2-2 N=4		1.25 (HP)				71.2					
				_	\bigtriangledown														
	2			-		\mathbb{X}	18	1-1-2 N=3		1.25 (HP)				41.4					
				-10															
				_	-														
				-		\times	5	50/5"	-	0.50				33.8					
			15.0 703+/-	15-						<u>(HP)</u>									
			close fracture spacing, thin bedding, unweathered,	-	-						UC	709.92			163				
	4		Strong rock	-			58.5		76%										
				-															
	-		20.0 698+/- Boring Terminated at 20	20-										<u> </u>					
			Feet																
		Str	atification lines are approximate. In-situ, the transitior	gradua	al.				Hamme	r Type	: Automa	tic							
	dva	ncemer	nt Method:	voloro	tion on	d Tasting Drassduras	for a	Notes:											
	4"	hollow	stem auger		description and ac	tion dition	of field al data	and laboratory procedures (If any).	ures used	d									
A	ban Bc	donme ring ba	nt Method: ckfilled with auger cuttings upon completion.		See S symbo	uppor Is and	ting Inf d abbre vere int	ormation for explanation viations. eroplated from Google											
			WATER LEVEL OBSERVATIONS							Boring Sta	irted: 1	1-25-2020	0	Borir	ng Comp	leted: 11-25-20	020		
	\bigtriangledown	At	completion of drilling		- Ilerracon						Drill Rig: B-53 Driller: R. Mathes								
2					13050 Eastgate Park Way Ste 101 Louisville, KY							Project No.: 57205074							

TERRACON DATATEMPLATE.GDT 12/30/20 5074 PRFI IMINARY GEOTE GP.I 5720 IIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL E

2.84 5.61 1.98 Calculated Void Ratio: Assumed Specific Gravity: Failure Strain: % 3.60 **Unconfined Compressive Strength** (tsf) 2.73 Undrained Shear Strength: (tsf) 1.37 Strain Rate: 0.0673 in/min Remarks: SAMPLE TYPE: Shelby Tube SAMPLE LOCATION: B-1A @ 2 - 4 feet ΡI LL PL Percent < #200 Sieve **DESCRIPTION: Lean Clay** 36 16 20 PROJECT NUMBER: 57205074 PROJECT: LGE-KU Solar Project 13050 Eastgate Park Way Ste 101 SITE: Hardinsburg Road CLIENT: ibV Energy Partners LLC Louisville, KY Cecilia, KY Miami, FL

45

13050 Eastgate Park Way Ste 101

Louisville, KY

17

ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. UNCONFINED WITH PHOTOS 57205074 PRELIMINARY GEOTE.GPJ TERRACON_DATATEMPLATE.GDT 12/30/20

PROJECT: LGE-KU Solar Project

SITE: Hardinsburg Road

Cecilia, KY

CLIENT: ibV Energy Partners LLC Miami, FL

PROJECT NUMBER: 57205074

28

13050 Eastgate Park Way Ste 101

Louisville, KY

PROJECT: LGE-KU Solar Project

SITE: Hardinsburg Road Cecilia, KY CLIENT: ibV Energy Partners LLC Miami, FL

PROJECT NUMBER: 57205074

UNCONFINED COMPRESSION TEST

ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. UNCONFINED WITH PHOTOS 57205074 PRELIMINARY GEOTE.GPJ TERRACON_DATATEMPLATE.GDT 12/30/20

Unconfined Compressive Strength (tsf) 3.26 Undrained Shear Strength: (tsf) 1.63 Strain Rate: 0.0673 in/min Remarks: SAMPLE TYPE: Shelby Tube SAMPLE LOCATION: B-9A @ 2 - 4 feet ΡI LL PL Percent < #200 Sieve **DESCRIPTION: Lean Clay** 25 17 8 PROJECT NUMBER: 57205074 PROJECT: LGE-KU Solar Project 13050 Eastgate Park Way Ste 101 SITE: Hardinsburg Road CLIENT: ibV Energy Partners LLC Louisville, KY Cecilia, KY Miami, FL

Calculated Void Ratio: Assumed Specific Gravity:

%

5.35

Failure Strain:

ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. UNCONFINED WITH PHOTOS 57205074 PRELIMINARY GEOTE.GPJ TERRACON_DATATEMPLATE.GDT 12/30/20

AXIAL STRAIN - %

SPECIMEN FAILURE PHOTOGRAP	н		SPEC	CIMEN TEST DATA			
	Moisture Co	ntent:		%	16.7		
	Dry Density:			pcf	101		
7	Diameter:			in.	2.85		
1	Height:			in.	5.58		
	Height / Diar	neter Ratio:			1.96		
	Calculated S	aturation:		%			
	Calculated V	oid Ratio:					
57205074	Assumed Sp	ecific Gravity:					
RIIA	Failure Strai	n:		%	7.20		
DITIA	Unconfined	Compressive S	Strength	(tsf)	1.17		
5.0-7.0	Undrained S	hear Strength:		(tsf)	0.59		
· Ou	Strain Rate:			in/min	0.0670		
44	Remarks:						
SAMPLE TYPE: Shelby Tube		SAMPLE LO	CATION	B-11A @ 5 -	7 feet		
DESCRIPTION: Lean Clay		LL	PL 15	PI	Percent < #200 Sieve		
		35	15	20			
PROJECT: LGE-KU Solar Project	Tlerr				IBER: 57205074		
SITE: Hardinsburg Road Cecilia, KY	13050 Eastgate F Louisv	13050 Eastgate Park Way Ste 101 Louisville, KY			CLIENT: ibV Energy Partners LLC Miami, FL		

SAMPLE TYPE: Shelby Tube		SAMPLE LC	CATION:	ROW-1A @	3 - 5 feet
DESCRIPTION:		LL	PL	PI	Percent < #200 Sieve
PROJECT: LGE-KU Solar Project	Terr	arn	n	PROJECT NUN	IBER: 57205074
SITE: Hardinsburg Road Cecilia. KY	13050 Eastgate I Louisv	Park Way Ste 101 ille, KY	••	CLIENT: ibV E	nergy Partners LLC i. FL

Remarks:

12/30/20	1.0 1.0													
DT	∑ 0 08-					1								
ATE.0	0.0													
MPL	0.0													
TATE	0.6													
DA														
ACON	0.4													
ERR.														
F L H	0.2													
DTE.0														
Y GEC	0			1.0	1	5	2	0	2.5		3.0		2.5	1
NAR	0	L L	1.5	1.0		.5	Z	.0	2.5		3.0		3.0	4.
ELIM						AXIAI	LST	RAIN - 9	%					
74 PR														
2050														
S 57	SPECI	MEN FAILU	RE PHOT	OGRAPH	4				SPEC	IMEN	I TEST D	ATA		
НОТО						Moisture Co	onten	t:			%			
ΗE		ALC: NO				Dry Density	:				pcf			
ED W						Diameter:					in.			
NFIN						Height:					in.			
NCO						Height / Dia	mete	r Ratio:						
⊃ ⊢						Calculated S	Satur	ation:			%			
POR.		A	Call	and the		Calculated \	Void I	Ratio:						
L RE	a fair	572	2	and a		Assumed S	pecifi	c Gravity:						
GINA	3.	5100		ang -		Failure Stra	in:				%			
1 ORI		Ra	N-4A	•		Unconfined	Com	pressive S	trength		(tsf)			
FROM		3.0	-50'			Undrained S	Shear	Strength:			(tsf)			
TED			3.0			Strain Rate:					in/min			0
PARA	1. Julie	G	4	9 9		Remarks:								
F SEI		1	1000											
ALID	SAMPLE TYPE	· Shelby Tube					SA	MPLEIO	CATION	R	OW-4A @ :	3 - 5 feet		
OT V	DESCRIPTION	: Lean Clay					0,	LL	PL		PI	Pe	rcent < #2	00 Sieve
ARE N		-						31	20		11			
STS /	PROJECT I	GE-KU Solar P	roiect		_	_						BER: 572	205074	
₹ TE	TROULOT. L		, 9001			Prr	5					JEN. 012		
ATOR					1	3050 Eastgate		Vav Ste 101				oray Dort		
BOR		KY				Louis	ville, K	Y		CLIE	Miami	, FL		
5														

3.00 1.67 0.83 0.0672

ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. UNCONFINED WITH PHOTOS 5720574 PRELIMINARY GEOTE.GPJ TERRACON_DATATEMPLATE.GDT 12/30/20

GRAIN SIZE DISTRIBUTION

Test Line at B-1 location with approximate center poin: 37.64949°, -85.96873°

Project	LGE-KU Solar Project	Weather	Sunny
Location	Cecilia, Hardin County, KY	Surface Soil	Silty Clay
Project #	57205074	Instrument	AEMC Model 6471
Test Date	November 24, 2020	Tested By	Colton M. Hall

Electrode Spacing "a"		Electrode Depth "b"		"A" T (Extende	est d E-W)	"B" Test (Extended N-S)	
[fa at]	[motoro]	[foot]		Measured	Apparent	Measured	Apparent
lieet]	[meters]	lieet]	[meters]		Resistivity ρ		[Ohm-meters]
2.5	0.76	0.5	0.15	23.70	120.9	22.50	114.8
5	1.52	0.5	0.15	13.80	134.4	14.20	138.3
10	3.05	1	0.30	6.89	134.2	6.61	128.8
20	6.10	1	0.30	2.83	108.9	2.72	104.6
50	15.24	1	0.30	1.500	143.7	1.580	151.4
100	30.48	1	0.30	1.350	258.6	1.370	262.4
150	45.72	1	0.30	1.160	333.3	1.300	373.5

Test Line at B-2 location with approximate center poin: 37.654627°, -85.990830°

Project LGE-KU Solar Project	t Weather	Partially Clouidy
Location Cecilia, Hardin Count	ty, KY Surface Soil	Silty Clay
Project # 57205074	Instrument	AEMC Model 6471
Test Date December 2, 2020	Tested By	Sadra Javadi

Electrode Spacing "a"		Electrode Depth "b"		"A" T (Extende	est d E-W)	"B" Test (Extended N-S)		
[feet]	[meters]	[feet]	[meters]	Measured Resistance "R"	Apparent Resistivity "o"	Measured Resistance "R"	Apparent Resistivity "o"	
[]	[]	l [ieer]	[]	[Ohms]	[Ohm-meters]	[Ohms]	[Ohm-meters]	
2.5	0.76	0.5	0.15	29.60	151.1	31.60	161.3	
5	1.52	0.5	0.15	14.40	140.3	14.20	138.3	
10	3.05	1	0.30	6.01	117.1	6.80	132.5	
20	6.10	1	0.30	2.40	92.3	2.64	101.6	
50	15.24	1	0.30	1.120	107.3	0.980	93.9	
100	30.48	1	0.30	0.830	159.0	0.780	149.4	
150	45.72	1	0.30	0.770	221.2	0.710	204.0	

Test Line at B-4 location with approximate center poin: 37.64436°, -85.97974°

Project	LGE-KU Solar Project	Weather	Sunny
Location	Cecilia, Hardin County, KY	Surface Soil	Silty Clay
Project #	57205074	Instrument	AEMC Model 6471
Test Date	November 24, 2020	Tested By	Colton M. Hall

Electrode Spacing "a"		Electrode Depth "b"		"A" T (Extende	est d E-W)	"B" Test (Extended N-S)		
[foot]	[motors]	[foot]	[motors]	Measured Resistance "R"	Apparent Resistivity "o"	Measured Resistance "R"	Apparent Resistivity "o"	
liced	[metero]	licel	[metero]	[Ohms]	[Ohm-meters]	[Ohms]	[Ohm-meters]	
2.5	0.76	0.5	0.15	32.70	166.9	29.90	152.6	
5	1.52	0.5	0.15	15.80	153.9	16.80	163.6	
10	3.05	1	0.30	5.96	116.1	6.79	132.3	
20	6.10	1	0.30	2.18	83.9	2.07	79.6	
50	15.24	1	0.30	0.780	74.7	0.860	82.4	
100	30.48	1	0.30	0.660	126.4	0.680	130.3	
150	45.72	1	0.30	0.600	172.4	0.650	186.7	

Test Line at B-6 location with approximate center poin: 37.65708°, -85.990830°

Project LGE-KU Solar Project	Weather Partially Clouidy
Location Cecilia, Hardin County, KY	Surface Soil Silty Clay
Project # 57205074	Instrument AEMC Model 6471
Test Date December 2, 2020	Tested By Sadra Javadi

Electrode Spacing "a"		Electrode Depth "b"		"A" T (Extende	est d E-W)	"B" Test (Extended N-S)		
[feet]	[meters]	[feet]	[meters]	Measured Resistance "R"	Apparent Resistivity "p"	Measured Resistance "R"	Apparent Resistivity "ρ"	
				[Ohms]	[Ohm-meters]	[Ohms]	[Ohm-meters]	
2.5	0.76	0.5	0.15	20.60	105.1	21.30	108.7	
5	1.52	0.5	0.15	11.70	114.0	12.20	118.8	
10	3.05	1	0.30	6.35	123.7	6.29	122.5	
20	6.10	1	0.30	2.86	110.0	3.04	116.9	
50	15.24	1	0.30	2.090	200.3	1.810	173.4	
100	30.48	1	0.30	0.740	141.7	0.820	157.1	
150	45.72	1	0.30	0.710	204.0	0.750	215.5	

Test Line at B-7 location with approximate center poin: 37.66067°, -85.99841°

Project LGE-KU Solar Project	Weather Partially Clouidy
Location Cecilia, Hardin County, KY	Surface Soil Silty Clay
Project # 57205074	Instrument AEMC Model 6471
Test Date December 2, 2020	Tested By Sadra Javadi

Electrode Spacing "a"		Electrode Depth "b"		"A" Test (Extended E-W)		"B" Test (Extended N-S)	
[feet]	[meters]	[feet]	[meters]	Measured Resistance "R"	Apparent Resistivity "o"	Measured Resistance "R"	Apparent Resistivity "o"
[]	[]	[meters] [reet]		[Ohms]	[Ohm-meters]	[Ohms]	[Ohm-meters]
2.5	0.76	0.5	0.15	22.20	113.3	22.80	116.4
5	1.52	0.5	0.15	12.50	121.8	11.90	115.9
10	3.05	1	0.30	6.68	130.1	6.68	130.1
20	6.10	1	0.30	2.93	112.7	3.14	120.8
50	15.24	1	0.30	1.520	145.7	1.590	152.4
100	30.48	1	0.30	0.940	180.1	0.890	170.5
150	45.72	1	0.30	0.810	232.7	0.770	221.2

Test Line at B-10 location with approximate center poin: 37.65115°, -86.00841°

Project L	GE-KU Solar Project	Veather Partially Clouidy
Location C	Cecilia, Hardin County, KY Surfa	ce Soil Silty Clay
Project # 5	7205074 Ins	rument AEMC Model 6471
Test Date D	December 2, 2020 Te	sted By Sadra Javadi

Electrode Spacing "a"		Electrode Depth "b"		"A" Test (Extended E-W)		"B" Test (Extended N-S)		
[feet]	[meters]	[feet]	[meters]	Measured Resistance "R"	Apparent Resistivity "p"	Measured Resistance "R"	Apparent Resistivity "p"	
					[Ohms]	[Ohm-meters]	[Ohms]	[Ohm-meters]
2.5	0.76	0.5	0.15	15.60	79.6	15.10	77.1	
5	1.52	0.5	0.15	9.51	92.6	9.58	93.3	
10	3.05	1	0.30	5.12	99.7	5.56	108.3	
20	6.10	1	0.30	2.45	94.2	2.39	91.9	
50	15.24	1	0.30	1.500	143.7	1.530	146.6	
100	30.48	1	0.30	0.890	170.5	0.940	180.1	
150	45.72	1	0.30	0.820	235.6	0.840	241.3	

CHEMICAL LABORATORY TEST REPORT

 Project Number:
 57205074

 Service Date:
 12/09/20

 Report Date:
 12/10/20

Client

ibV Energy Partners LLC 777 Brickell Ave Ste 500 Miami, FL 33131-2809 Project

LGE-KU Solar Project Hardinsburg Road Cecilia, KY

Sample Location	B-1	B-2	B-4	B-6	B-7	B-10
Sample Depth (ft.)	2'-3'	2'-3'	2'-3'	2'-3'	2'-3'	2'-3'
pH Analysis, ASTM - G51-18	7.10	7.00	6.90	5.80	5.90	5.40
Water Soluble Sulfate (SO4), ASTM C 1580 (mg/kg)	116	100	41	37	32	33
Sulfides, ASTM - D4658-15, (mg/kg)	nil	nil	nil	nil	nil	nil
Chlorides, ASTM D 512, (mg/kg)	16	10	6	6	5	25
RedOx, ASTM D-1498, (mV)	+435	+412	+417	+423	+420	+462
Total Salts, ASTM D1125-14, (mg/kg)	448	235	170	118	175	110
Resistivity, ASTM G187, (ohm-cm)	11358	10325	9293	14455	10325	12390

Analyzed By:

Nohun midon

Nohelia Monasterios Field Engineer

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

MOISTURE-DENSITY RELATIONSHIP

ASTM D698/D1557

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. COMPACTION - V3 57205074 PRELIMINARY GEOTE.GPJ TERRACON_DATATEMPLATE.GDT 12/11/20

MOISTURE-DENSITY RELATIONSHIP

ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. COMPACTION - V3 57205074 PRELIMINARY GEOTE.GPJ TERRACON_DATATEMPLATE.GDT 12/11/20

MOISTURE-DENSITY RELATIONSHIP

ASTM D698/D1557

21239 FM529 Rd., Bldg. F Cypress, TX 77433 Tel: 281-985-9344 Fax: 832-427-1752 <u>info@geothermusa.com</u> <u>http://www.geothermusa.com</u>

December 18, 2020

Terracon Consultants, Inc. 13050 Eastgate Park Way, Ste 101 Louisville, KY 40223 Attn: Sadra Javadi, Ph.D.

Re: Thermal Analysis of Native Soil Samples LGE – KU Solar Project – Cecilia, KY (PO No. 57205074)

The following is the report of thermal dryout characterization tests conducted on the three (3) soil samples from the referenced project sent to our laboratory.

<u>Thermal Resistivity Tests:</u> The samples were tested at the 'as received' moisture content and at 85% of the dry density *provided by Terracon.* The tests were conducted in accordance with the IEEE standard 442-2017. The results are tabulated below and the thermal dryout curves are presented in **Figures 1 to 3**.

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	Description (Terracon)	Thermal F (°C-c	Resistivity m/W)	Moisture Content	Dry Density (lb/ft ³)	
	, , , , , , , , , , , , , , , , , , ,	Wet	Dry	(%)		
B-1 @ 1'-4'	Silty Lean Clay	55	124	19	95	
B-6 @ 1'-4'	Lean/Fat Clay	59	169	23	93	
B-10 @ 1'-4'	Fat Clay	60	147	20	93	

<u>Comments:</u> The thermal characteristic depicted in the dryout curves apply for the samples at their respective test dry density.

Please contact us if you have any questions or if we can be of further assistance.

Geotherm USA

Nimesh Patel

COOL SOLUTIONS FOR UNDERGROUND POWER CABLES THERMAL SURVEYS, CORRECTIVE BACKFILLS & INSTRUMENTATION

Serving the electric power industry since 1978

Terracon Consultants, Inc. (PO No. 57205074)

Thermal Analysis of Native Soil

December 2020

Figure 1

Terracon Consultants, Inc. (PO No. 57205074)

Thermal Analysis of Native Soil

December 2020

Figure 2

Terracon Consultants, Inc. (PO No. 57205074)

Thermal Analysis of Native Soil

December 2020

Figure 3

SUPPORTING INFORMATION

Contents:

General Notes Unified Soil Classification System Description of Rock Properties

Note: All attachments are one page unless noted above.

GENERAL NOTES DESCRIPTION OF SYMBOLS AND ABBREVIATIONS LGE-KU Solar Project Cecilia, KY Terracon Project No. 57205074

SAMPLING	WATER LEVEL		FIELD TESTS
	─ Water Initially Encountered	N	Standard Penetration Test Resistance (Blows/Ft.)
Rock Core Grab	Water Level After a Specified Period of Time	(HP)	Hand Penetrometer
	Water Level After a Specified Period of Time	(T)	Torvane
Tube Split Spoon	Cave In Encountered	(DCP)	Dynamic Cone Penetrometer
	Water levels indicated on the soil boring logs are the levels measured in the borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not possible with short term water level observations.		Unconfined Compressive Strength
			Photo-lonization Detector
		(OVA)	Organic Vapor Analyzer

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification as noted on the soil boring logs is based Unified Soil Classification System. Where sufficient laboratory data exist to classify the soils consistent with ASTM D2487 "Classification of Soils for Engineering Purposes" this procedure is used. ASTM D2488 "Description and Identification of Soils (Visual-Manual Procedure)" is also used to classify the soils, particularly where insufficient laboratory data exist to classify the soils in accordance with ASTM D2487. In addition to USCS classification, coarse grained soils are classified on the basis of their in-place relative density, and fine-grained soils are classified on the basis of their consistency. See "Strength Terms" table below for details. The ASTM standards noted above are for reference to methodology in general. In some cases, variations to methods are applied as a result of local practice or professional judgment.

LOCATION AND ELEVATION NOTES

Exploration point locations as shown on the Exploration Plan and as noted on the soil boring logs in the form of Latitude and Longitude are approximate. See Exploration and Testing Procedures in the report for the methods used to locate the exploration points for this project. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

STRENGTH TERMS

RELATIVE DENSITY OF ((More than 50% re sie Density determi Penetration	COARSE-GRAINED SOILS etained on No. 200 ve.) ned by Standard Resistance	CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance			BEDROCK	
Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength Qu, (tsf)	Standard Penetration or N-Value Blows/Ft.	Standard Penetration or N-Value Blows/Ft.	Descriptive Term (Consistency)
Very Loose	0 - 3	Very Soft	less than 0.25	0 - 1	< 20	Weathered
Loose	4 - 9	Soft	0.25 to 0.50	2 - 4	20 - 29	Firm
Medium Dense	10 - 29	Medium Stiff	0.50 to 1.00	4 - 8	30 - 49	Medium Hard
Dense	30 - 50	Stiff	1.00 to 2.00	8 - 15	50 - 79	Hard
Very Dense	> 50	Very Stiff	2.00 to 4.00	15 - 30	>79	Very Hard
		Hard	> 4.00	> 30		

RELEVANCE OF SOIL BORING LOG

The soil boring logs contained within this document are intended for application to the project as described in this document. Use of these soil boring logs for any other purpose may not be appropriate.

UNIFIED SOIL CLASSIFICATION SYSTEM

llerracon GeoReport

Soil Classification						Soil Classification
Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests A						Group Name ^B
		Clean Gravels:	$Cu \geq 4$ and $1 \leq Cc \leq 3$ $^{\textbf{E}}$		GW	Well-graded gravel F
	Gravels: More than 50% of	Less than 5% fines ^C	Cu < 4 and/or [Cc<1 or 0	Cu < 4 and/or [Cc<1 or Cc>3.0] ^E		Poorly graded gravel F
	coarse fraction	Gravels with Fines:	Fines classify as ML or N	ИΗ	GM	Silty gravel F, G, H
Coarse-Grained Soils: More than 50% retained on No. 200 sieve		More than 12% fines ^C	Fines classify as CL or C	ЭН	GC	Clayey gravel ^{F, G, H}
		Clean Sands:	$Cu \ge 6$ and $1 \le Cc \le 3^{E}$		SW	Well-graded sand
	Sands: 50% or more of coarse fraction passes No. 4 sieve	Less than 5% fines ^D	Cu < 6 and/or [Cc<1 or Cc>3.0] ^E		SP	Poorly graded sand
		Sands with Fines:	Fines classify as ML or MH		SM	Silty sand ^{G, H, I}
		More than 12% fines ^D	Fines classify as CL or C	ЭН	SC	Clayey sand ^{G, H, I}
	Silts and Clays:	Inorgania	PI > 7 and plots on or above "A"		CL	Lean clay ^{K, L, M}
		morganic.	PI < 4 or plots below "A"	line <mark>J</mark>	ML	Silt K, L, M
	Liquid limit less than 50	Organic:	Liquid limit - oven dried	< 0.75	0	Organic clay K, L, M, N
Fine-Grained Soils:			Liquid limit - not dried	< 0.75	OL	Organic silt K, L, M, O
No. 200 sieve		Inorganic	PI plots on or above "A"	line	СН	Fat clay ^{K, L, M}
	Silts and Clays:	morganic.	PI plots below "A" line		MH	Elastic Silt K, L, M
	Liquid limit 50 or more	Organic:	Liquid limit - oven dried	.0.75	ОН	Organic clay K, L, M, P
		organic.	Liquid limit - not dried	< 0.75	011	Organic silt ^{K, L, M, Q}
Highly organic soils:	Primarily	olor, and organic odor		PT	Peat	
A Based on the material na	HIF fines are organic, add "with organic fines" to group name			to group name		

material passing the 3-inch (75-mm) sieve.

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.

$$E Cu = D_{60}/D_{10}$$
 $Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$

F If soil contains \geq 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- organic, add "with organic fines" to group name.
- If soil contains \geq 15% gravel, add "with gravel" to group name.
- J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^MIf soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- N PI \geq 4 and plots on or above "A" line.
- PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- QPI plots below "A" line.

DESCRIPTION OF ROCK PROPERTIES

	WEATHERING				
Term	Description				
Unweathered	No visible sign of rock material weathering, perhaps slight discoloration on major discontinuity surfaces.				
Slightly weathered	Discoloration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discolored by weathering and may be somewhat weaker externally than in its fresh condition.				
Moderately weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a continuous framework or as corestones.				
Highly weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a discontinuous framework or as corestones.				
Completely weathered	All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.				
Residual soil	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.				

STRENGTH OK HARDNESS				
Description	Field Identification	Uniaxial Compressive Strength, psi (MPa)		
Extremely weak	Indented by thumbnail	40-150 (0.3-1)		
Very weak	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife	150-700 (1-5)		
Weak rock	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer	700-4,000 (5-30)		
Medium strong	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer	4,000-7,000 (30-50)		
Strong rock	Specimen requires more than one blow of geological hammer to fracture it	7,000-15,000 (50-100)		
Very strong	Specimen requires many blows of geological hammer to fracture it	15,000-36,000 (100-250)		
Extremely strong	Specimen can only be chipped with geological hammer	>36,000 (>250)		
DISCONTINUITY DESCRIPTION				

Fracture Spacing (Joints	, Faults, Other Fractures)	Bedding Spacing (May Include Foliation or Banding)		
Description Spacing		Description	Spacing	
Extremely close	< ¾ in (<19 mm)	Laminated	< ½ in (<12 mm)	
Very close	¾ in – 2-1/2 in (19 - 60 mm)	Very thin	½ in – 2 in (12 – 50 mm)	
Close	2-1/2 in - 8 in (60 - 200 mm)	Thin	2 in – 1 ft. (50 – 300 mm)	
Moderate	8 in – 2 ft. (200 – 600 mm)	Medium	1 ft. – 3 ft. (300 – 900 mm)	
Wide	2 ft. – 6 ft. (600 mm – 2.0 m)	Thick	3 ft. – 10 ft. (900 mm – 3 m)	
Very Wide	6 ft. – 20 ft. (2.0 – 6 m)	Massive	> 10 ft. (3 m)	

<u>Discontinuity Orientation (Angle)</u>: Measure the angle of discontinuity relative to a plane perpendicular to the longitudinal axis of the core. (For most cases, the core axis is vertical; therefore, the plane perpendicular to the core axis is horizontal.) For example, a horizontal bedding plane would have a 0-degree angle.

ROCK QUALITY DESIGNATION (RQD) ¹				
Description	RQD Value (%)			
Very Poor	0 - 25			
Poor	25 – 50			
Fair	50 – 75			
Good	75 – 90			
Excellent	90 - 100			

1. The combined length of all sound and intact core segments equal to or greater than 4 inches in length, expressed as a percentage of the total core run length.

Reference: U.S. Department of Transportation, Federal Highway Administration, Publication No FHWA-NHI-10-034, December 2009 <u>Technical Manual for Design and Construction of Road Tunnels – Civil Elements</u>

WEATHERING