

Green Station Closure Extension Demonstration

Big Rivers Electric Corporation (BREC)

Green Station Closure Extension Project No. 126878

Revision 0 11/25/2020

Green Station Closure Extension Demonstration

prepared for

Big Rivers Electric Corporation (BREC)
Green Station Closure Extension
Robards, Kentucky

Project No. 126878

Revision 0 11/25/2020

prepared by

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

INDEX AND CERTIFICATION

Big Rivers Electric Corporation (BREC) Green Station Closure Extension Demonstration Project No. 126878

Report Index

<u>Chapter</u> Number	Chapter Title	Number of Pages
		
1.0	Executive Summary	1
2.0	Introduction	2
3.0	Documentation of No Alternative Disposal Capacity On-Site	
	or Off-Site	4
6.0	Documentation of Closure Completion Timeframe	2
7.0	Conclusion	1
Figure 1	Site Plan	1

Certification

I hereby certify, as a Professional Engineer in the state of Kentucky, that the information in this document was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Big Rivers Electric Corporation (BREC) or others without specific verification or adaptation by the Engineer.

YODER

Samuel Yoder, P.E., Kentucky License # 31964

Date: 11/25/2020

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY			<u>Page</u>	<u>No.</u>
3.0 DOCUMENTATION OF NO ALTERNATIVE DISPOSAL CAPACITY ON- SITE OR OFF-SITE 3.1 Site-Layout and Wastewater Processes 3.2 CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.3 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.4 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.5 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.6 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.7 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.8 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.9 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.0 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.1 Option Option Options Considered 3.2 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.1 Option Option Options Considered 3.2 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.2 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.2 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.2 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.2 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.2 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.2 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.3 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.2 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.2 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 3.2 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered 4.0 Risk	1.0	EXE	CUTIVE SUMMARY	. 1-1
SITE OR OFF-SITE	2.0	INTE	RODUCTION	. 2-1
3.1 Site-Layout and Wastewater Processes	3.0			
3.2 CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered				
Considered				3-1
3.3 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered		3.2		3_1
## Considered ## 4- 4.0 RISK MITIGATION PLAN ## 4- 5.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE ## 5- 5.1 Owner's Certification of Compliance - \$ 257.103(f)(2)(v)(C)(1) ## 5- 5.2 Visual representation of hydrogeologic information - \$ 257.103(f)(2)(v)(C)(2) 5- 5.3 Groundwater monitoring results - \$ 257.103(f)(2)(v)(C)(3) ## 5- 5.4 Description of site hydrogeology including stratigraphic cross-sections - \$ 257.103(f)(2)(v)(C)(4) ## 5- 5.5 Corrective measures assessment - \$ 257.103(f)(2)(v)(C)(5) ## 5- 5.6 Remedy selection progress report - \$ 257.103(f)(2)(v)(C)(6) ## 5- 5.7 Structural stability assessment - \$ 257.103(f)(2)(v)(C)(6) ## 5- 5.8 Safety factor assessment - \$ 257.103(f)(2)(v)(C)(7) ## 5- 6.0 DOCUMENTATION OF CLOSURE COMPLETION TIMEFRAME ## 6- 7.0 CONCLUSION ## 7- FIGURE 1 - SITE PLAN ## FIGURE 2 - WATER BALANCE ## FIGURE 3 - SCHEDULE ## ATTACHMENT 1 - RISK MANAGEMENT PLAN ATTACHMENT 2 - MAP OF GROUNDWATER MONITORING WELL LOCATIONS ## ATTACHMENT 3 - WELL CONSTRUCTION DIAGRAMS AND DRILLING		3 3		
5.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE 5.1 Owner's Certification of Compliance - \$ 257.103(f)(2)(v)(C)(1)		3.3		
5.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE 5.1 Owner's Certification of Compliance - \$ 257.103(f)(2)(v)(C)(1)				
5.1 Owner's Certification of Compliance - \ 257.103(f)(2)(v)(C)(1)	4.0	RIS	MITIGATION PLAN	. 4-1
5.1 Owner's Certification of Compliance - \ 257.103(f)(2)(v)(C)(1)	5.0	DOC	LIMENTATION AND CERTIFICATION OF COMPLIANCE	5-1
5.2 Visual representation of hydrogeologic information - § 257.103(f)(2)(v)(C)(2) 5-2 5.3 Groundwater monitoring results - § 257.103(f)(2)(v)(C)(3) 5-2 5-3 5-4 Description of site hydrogeology including stratigraphic cross-sections - § 257.103(f)(2)(v)(C)(4) 5-2 5-3 5-3 Corrective measures assessment - § 257.103(f)(2)(v)(C)(5) 5-3 6 Remedy selection progress report - § 257.103(f)(2)(v)(C)(6) 5-3 5-4 5-3 5-4 5-4 5-4 5-4 5-4 5-4 5-4 5-4 5-4 5-4	5.0			
5.3 Groundwater monitoring results - § 257.103(f)(2)(v)(C)(3)				
5.4 Description of site hydrogeology including stratigraphic cross-sections - \$ 257.103(f)(2)(v)(C)(4)				
5.5 Corrective measures assessment - § 257.103(f)(2)(v)(C)(5)		5.4	Description of site hydrogeology including stratigraphic cross-sections - §	
5.6 Remedy selection progress report - § 257.103(f)(2)(v)(C)(6)		5 5		
5.7 Structural stability assessment - § 257.103(f)(2)(v)(C)(7)				
5.8 Safety factor assessment - § 257.103(f)(2)(v)(C)(8)				
7.0 CONCLUSION				
FIGURE 1 - SITE PLAN FIGURE 2 - WATER BALANCE FIGURE 3 - SCHEDULE ATTACHMENT 1 - RISK MANAGEMENT PLAN ATTACHMENT 2 - MAP OF GROUNDWATER MONITORING WELL LOCATIONS ATTACHMENT 3 - WELL CONSTRUCTION DIAGRAMS AND DRILLING	6.0	DOC	CUMENTATION OF CLOSURE COMPLETION TIMEFRAME	. 6-1
FIGURE 2 - WATER BALANCE FIGURE 3 - SCHEDULE ATTACHMENT 1 - RISK MANAGEMENT PLAN ATTACHMENT 2 - MAP OF GROUNDWATER MONITORING WELL LOCATIONS ATTACHMENT 3 - WELL CONSTRUCTION DIAGRAMS AND DRILLING	7.0	CON	ICLUSION	. 7-1
	FIGU FIGU ATTA	JRE 2 JRE 3 ACHM ACHM	- WATER BALANCE - SCHEDULE ENT 1 - RISK MANAGEMENT PLAN ENT 2 - MAP OF GROUNDWATER MONITORING WELL LOCATIONS ENT 3 - WELL CONSTRUCTION DIAGRAMS AND DRILLING LOGS	
ATTACHMENT 4 - MAP OF THE DIRECTION OF GROUNDWATER FLOW ATTACHMENT 5 - TABLES SUMMARIZING CONSTITUENT CONCENTRATIONS AT EACH MONITORING WELL		_	ENT 5 - TABLES SUMMARIZING CONSTITUENT	

ATTACHMENT 6 - A STRATIGRAPHIC CROSS-SECTION OF THE SITE ATTACHMENT 7 – ASSESSMENT OF CORRECTIVE MEASURES (FOR REID/HMP&L POND AND GREEN LANDFILL)

ATTACHMENT 8 – REMEDY SELECTION REPORTS FOR GREEN LANDFILL

ATTACHMENT 9 – AGREED ORDER

ATTACHMENT 10 - REMEDY SELECTION REPORTS FOR REID/HMP&L POND

ATTACHMENT 11 - STRUCTURAL STABILITY ASSESSMENT (OCTOBER 2016)

ATTACHMENT 12 - SAFETY FACTOR ASSESSMENT (OCTOBER 2016) ATTACHMENT 13 - CLOSURE PLAN

LIST OF TABLES

	<u>Page No.</u>
Table 1: Green CCR Wastestreams	3-2
Table 2: Green Non-CCR Wastestreams	3-4
Table 3: Non-CCR Wastestream Off-Site Disposal	3-5

LIST OF ABBREVIATIONS

Abbreviation Term/Phrase/Name

BREC Big Rivers Electric Corporation

CCR Coal Combustion Residual

CFR Code of Federal Regulations

EPA Environmental Protection Agency

HMP&L Henderson Municipal Power & Light

KDEP Kentucky Department for Environmental Protection

KPDES Kentucky Pollutant Discharge Elimination System

MISO Midcontinent Independent System Operator

POTW Publicly Owned Treatment Works

PSC Kentucky Public Service Commission

RCRA Resource Conservation and Recovery Act

SSIs Statistically Significant Increases

SWPPP Stormwater Pollution Prevention Plan

WMB Water Mass Balance

1.0 EXECUTIVE SUMMARY

Big Rivers Electric Corporation (BREC) submits this request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternate deadline to initiate closure pursuant to 40 C.F.R. § 257.103(f)(2) —"Permanent Cessation of a Coal-Fired Boiler(s) by a Date Certain"— for the Ash Pond located at the Robert D. Green Generating Station ("Green" or the "Plant") in Kentucky. The Ash Pond is a 26-acre Coal Combustion Residual (CCR) surface impoundment used to manage CCR and non-CCR wastestreams at Green. The Ash Pond is unlined and fails to meet the location restriction for aquifer separation at 40 C.F.R. § 257.60, and as such must either cease placing wastestreams in the surface impoundment and initiate closure no later than April 11, 2021, under 40 C.F.R. § 257.101(a)(1) and 40 C.F.R. § 257.101(b)(1)(i), or request this site-specific alternate deadline under the modified 40 C.F.R. § 257.103(f). The station will permanently cease coal-fired operation of the boilers on May 31, 2022¹, and the impoundment will complete closure no later than October 17, 2023. Therefore, an extension is requested from EPA pursuant to 40 C.F.R. § 257.103(f)(2) so the Ash Pond may continue to receive CCR and/or non-CCR wastestreams after April 11, 2021, and complete closure no later than October 17, 2023.

This demonstration replaces the document previously developed for the Ash Pond under 40 C.F.R. § 257.103(a)(1), which was prepared on October 31, 2019, and uploaded to the facility's CCR compliance website. Closure under 40 C.F.R. § 257.101(b)(1)(i) was not required to initiate prior to October 31, 2020, per the Phase 1 Part 1 modifications. BREC pre-emptively posted this document to allow for conversion of the facility to a dry ash handling system, but has since decided to cease coal-fired operations and complete impoundment closure as allowed by the Part A Rule modifications and the revisions to 40 C.F.R. § 257.103 (which have essentially nullified the previously published document).

¹ The Green generating units will be classified as idled to allow Big Rivers to maintain generator interconnection rights with Midcontinent Independent System Operator (MISO). Coal-fired operation of the boilers will permanently cease as of the date stated herein. However, dependent on various conditions, BREC may install new noncoal-fired generating capacity (including changing the fuel source to natural gas) at the facility at a later date.

2.0 INTRODUCTION

Green is a coal fired electric generating station near Robards, Kentucky. The plant consists of Unit 1 and Unit 2 which are 250MW and 242MW (gross) units commercialized in 1979 and 1981 respectively. Units 1 and 2 burn bituminous coal (pulverized). Green Station has two CCR units including the Green Station Surface Impoundment (referred to herein as the "Ash Pond" that is the subject of this demonstration) and the Green Station Landfill. The separate Reid/Henderson Municipal Power & Light (HMP&L) coal-fired electric generating station is located adjacent to the Green Station. The Reid/HMP&L station sit on separate parcels of property from the Green Station and is under a separate ownership structure that includes both BREC (Reid) and HMP&L (HMP&L Units 1 and 2). Reid/HMP&L Station consists of three retired coal-fired generating units, a gas-fired combustion turbine, and the Reid/HMP&L Surface Impoundment which is currently undergoing closure.

Green utilizes the Ash Pond to manage the CCR and non-CCR wastestreams. The Ash Pond has been in service for the life of the plant. The CCR wastestreams that are managed in the Ash Pond include sluiced bottom ash and economizer ash. All fly ash is dry handled. The various non-CCR wastewaters routed to the Ash Pond originate from the Unit 1 and 2 boiler sumps, metal cleaning wastes, clarifier blowdown, bottom ash hopper seal water, miscellaneous drains including roof drains, landfill leachate, coal pile runoff, and various stormwater sources. A site plan is provided on Figure 1, and the plant water balance is included on Figure 2.

On April 17, 2015, the EPA issued the federal CCR Rule, 40 C.F.R. Part 257, Subpart D, to regulate the disposal of CCR materials generated at coal fired units. The rule is being administered under Subtitle D of the Resource Conservation and Recovery Act (RCRA, 42 U.S.C. § 6901 et seq.). On August 28, 2020, the EPA Administrator issued revisions to the CCR Rule that require all unlined surface impoundments to initiate closure by April 11, 2021, unless an alternative deadline is requested and approved. 40 C.F.R. § 257.101(a)(1) (85 Fed. Reg. 53,516, Aug. 28, 2020). Specifically, owners and operators of a CCR surface impoundment may continue to receive CCR and non-CCR wastestreams if the facility will cease operation of the coal-fired boiler(s) and complete closure of the impoundments within certain specified timeframes. 40 C.F.R. § 257.103(f)(2). To qualify for an alternate closure deadline under § 257.103(f)(2), a facility must meet the following four criteria:

§ 257.103(f)(2)(i) – There is no alternative disposal capacity available on-site or off-site. An
increase in costs or the inconvenience of existing capacity is not sufficient to support
qualification;

- 2) § 257.103(f)(2)(ii) Potential risks to human health and the environment from the continued operation of the CCR surface impoundment have been adequately mitigated;
- 3) § 257.103(f)(2)(iii) The facility is in compliance with the CCR rule, including the requirement to conduct any necessary corrective action. Note that the Ash Pond does not meet the placement above the uppermost aquifer requirement of 257.60(a).
- 4) § 257.103(f)(2)(iv) The coal-fired boilers must cease operation and closure of the impoundment must be completed within the following timeframes:
 - a) For a CCR surface impoundment that is 40 acres or smaller, the coal-fired boiler(s) must cease operation and the CCR surface impoundment must complete closure no later than October 17, 2023.
 - b) For a CCR surface impoundment that is larger than 40 acres, the coal-fired boiler(s) must cease operation, and the CCR surface impoundment must complete closure no later than October 17, 2028.

Section 257.103(f)(2)(v) sets out the documentation that must be provided to EPA to demonstrate that the four criteria set out above have been met. Therefore, this demonstration is organized based on the documentation requirements of §§ 257.103(f)(2)(v)(A) - (D).

3.0 DOCUMENTATION OF NO ALTERNATIVE DISPOSAL CAPACITY ON-SITE OR OFF-SITE

To demonstrate the criteria in § 257.103(f)(2)(i) has been met, the following provides documentation that no alternative disposal capacity is currently available on-site or off-site for each CCR and non-CCR wastestream that BREC seeks to continue placing into the Ash Pond after April 11, 2021. Consistent with the regulations, neither an increase in costs nor the inconvenience of existing capacity was used to support qualification under these criteria. However, as EPA explained in the preamble to the proposed Part A revisions, "it would be illogical to require facilities [ceasing power generation] to construct new capacity to manage CCR and non-CCR wastestreams." 84 Fed. Reg. 65,941, 65,956 (Dec. 2, 2019). EPA again reiterated in the preamble to the final revisions that "[i]n contrast to the provision under § 257.103(f)(1), the owner or operator does not need to develop alternative capacity because of the impending closure of the coal fired boiler. Since the coal-fired boiler will shortly cease power generation, it would be illogical to require these facilities to construct new capacity to manage CCR and non-CCR wastestreams." 85 Fed. Reg. at 53,547. Thus, new construction or the development of new alternative disposal capacity was not considered a viable option for any wastestream discussed below.

3.1 Site-Layout and Wastewater Processes

The Ash Pond (shown in Figure 1) receives the plant's CCR sluice flows and many of the non-CCR wastewater flows onsite, as shown on Figure 2. These wastestreams are discussed in more detail in the following sections.

3.2 CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered

Each CCR wastestream placed in the Ash Pond at Green, which consists mainly of bottom ash sluice, was evaluated and flow data for each of these streams is included in Figure 2. Additionally, detail on the lack of managing these flows with alternative disposal capacity onsite is also discussed in Table 1 and the subsequent paragraphs.

Table 1: Green CCR Wastestreams

CCR Wastestreams	Average Flow (gpm)	Can Reroute to Existing Installed Capacity? YES/NO	Details	Rerouted location
Unit 1 Bottom Ash (and Economizer Ash) Sluice	235	NO	Currently, alternative capacity is not available on or off-site and would have to be installed. Alternative capacity would need to be designed, permitted, and installed on-site. Off-site alternative capacity would include installation of	NA
Unit 2 Bottom Ash (and Economizer Ash) Sluice	235	NO	on-site temporary holding tanks and subsequent transporting of this sluice material offsite for disposal. Refer to the discussion below for a more detailed evaluation on the development of alternative capacity.	NA

- Bottom ash (and economizer ash) sluice (470 gpm total for both units):
 - On-site alternative capacity is currently not available and would need to be developed. The Reid/HMP&L Ash Pond is currently being closed. The remaining impoundments onsite (CSI yard drainage runoff pond, coal pile runoff pond, and metal cleaning waste pond) are non-CCR impoundments and as such are not permitted to receive the CCR sluice flows.
 - O Development of on-site alternative capacity would require the design, permitting, and installation of a new treatment system including CCR ponds, conveyors, clarifiers, and/or storage tank(s), to provide the necessary retention time to meet the KPDES permit limits. The environmental permitting would include PSC approval, a modification to the current individual KPDES permit (to allow for the rerouting of this wastestream to another outfall) and a Stormwater Pollution Prevention Plan (SWPPP) at a minimum. Based on our experience with environmental permitting, this effort could require at least 18 months (or longer than the expected remaining coal-fired operation of the Green boilers).
 - Off-site alternative capacity is currently not available and would need to be developed. BREC has not yet identified a Publicly Owned Treatment Works (POTW) that will accept these wastestreams. Developed off-site alternative capacity would consist of temporary on-site wet storage (such as frac tanks), the installation of sumps/pumps/piping/and power supply to reroute these flows to that temporary storage, KPDES permit modifications with external

sources (if a POTW can be identified and contracted to receive these flows), and significant daily tanker truck traffic driving an unknown distance across Kentucky roadways. With an average daily flow of 338,400 gallons/day of sluice water for each unit, approximately 32 frac tanks (21,000 gallons) and 90 daily tanker trucks (~7500 gallons per truck to maintain DOT weight restrictions) would be required. The daily tanker truck traffic would result in increased potential for safety and noise impacts and further increases in fugitive dust, greenhouse gas emissions and carbon footprint which may require a Prevention of Significant Deterioration (PSD) permit and modification under the Clean Air Act Permit Program if the calculated increases in emissions are over the PSD limits. The potential for leaks/spills from the tank system or transportation of the wastewater offsite does exist. Furthermore, the temporary wet storage needed to accommodate off-site disposal would require design, associated PSC approval/environmental permitting, and plant reconfiguration (including the addition of sumps, pumps, piping, and power supply to redirect these flows to the temporary storage system). This effort would require at least 18 months (or longer than the expected remaining coal-fired operation of the Green boilers). For all of these reasons, BREC has determined that offsite disposal is not feasible for these flows at Green.

As stated previously, since BREC has elected to pursue the option to cease the use of the coal fired boilers by a date certain, BREC agrees with EPA that developing alternative disposal capacity is illogical. As long as BREC continues to wet handle the bottom ash, there are no other onsite CCR impoundments available to receive and treat these wastestreams. Also, as discussed above, it is not feasible to dispose of the wet-generated material offsite. As EPA explained in the preamble of the 2015 rule, it is not possible for sites that sluice CCR material to an impoundment to eliminate the impoundment and dispose of the material offsite. See 80 Fed. Reg. 21,301, 21,423 (Apr. 17, 2015) ("[W]hile it is possible to transport dry ash off-site to [an] alternate disposal facility that is simply not feasible for wet-generated CCR. Nor can facilities immediately convert to dry handling systems."). For the reasons discussed above, in order to continue to operate and generate electricity, the bottom ash must continue to be placed in the Green Ash Pond due to lack of alternative capacity both on and off-site.

3.3 Non-CCR Wastestreams: Lack of Alternative Disposal Capacity and Options Considered

The Green Ash Pond receives the following non-CCR wastestreams shown in Table 2.

Table 2: Green Non-CCR Wastestreams

Non-CCR Wastestreams	Average Flow (gpm)	Alternative Disposal Capacity currently Available? YES/NO	Details
Unit 1 and 2 Boiler Blowdown	1.39	NO	These wastestreams could be rerouted to the Metal Cleaning Waste Pond, but the pond has an internal outfall to the Ash Pond. KPDES discharge permit
Metal Cleaning Wastewater	7.64 (per Unit)	NO	modifications would be required, and additional sumps, pumps, and piping would need to be installed for discharge to an existing or new permitted outfall. Refer to the discussion below for a more detailed evaluation on the development of alternative capacity
Roof Drains	2.08	NO	options.
Miscellaneous Drains	100 (per unit)	NO	
Clarifier Blowdown	104.17	NO	
Bottom Ash Hopper Seal Water	1,700	NO	
Landfill Leachate	54	NO	Currently, alternative capacity is not available on or off-site and would have to be developed. Alternative capacity would need to be designed, permitted, and
Coal Pile Runoff ¹	37.50 (avg) 1,472 (max)	NO	installed. Off-site alternative capacity would include development of on-site temporary tanks and transporting of this sluice material offsite for disposal. Refer to the discussion below for a more detailed
Stormwater Runoff from Surrounding Area	546²	NO	evaluation on the development of alternative capacity.
FGD Sludge Disposal Area Stormwater Runoff	702²	NO	

¹Coal pile runoff from water balance diagram, based on pump run times and capacities

With respect to alternative onsite disposal capacity, the Unit 1 and 2 boiler blowdown, metal cleaning wastewater, miscellaneous drains and the roof drains can currently be routed to the Metal Cleaning Waste Pond; however, the current discharge from the Metal Cleaning Waste Pond is routed to the Ash Pond. Consequently, a new discharge from the Metal Cleaning Waste Pond would be required, as well as rerouting the clarifier blowdown, bottom ash hopper seal water, landfill leachate, coal pile runoff,

²Stormwater runoff calculations are based on 10-year, 24-hour storm event, averaged over a 24-hour period

stormwater runoff and FGD sludge disposal stormwater runoff to a new treatment system including ponds, clarifiers, and/or storage tank(s). These projects would require permit modifications, and installation of new sumps, pumps, piping, and power supply systems. The environmental permitting would include PSC approval, a modification to the current individual KPDES permit (to allow for the rerouting of this wastestream to another outfall) and a Stormwater Pollution Prevention Plan (SWPPP) at a minimum. Based on our experience with environmental permitting, this effort could require at least 18 months (or longer than the expected remaining coal-fired operation of the Green boilers).

Off-site alternative capacity is currently not available and would need to be developed. BREC has not yet identified a POTW that will accept these wastestreams. Developed off-site alternative capacity would consist of on-site temporary storage (such as frac tanks), the installation of sumps/pumps/piping/and power supply to reroute these flows to that temporary storage, KPDES permit modifications with external sources (if a POTW can be identified and contracted to receive these flows), and significant daily tanker truck traffic driving an unknown distance across Kentucky roadways. The requirements for frac tanks and truck frequencies are provided in Table 3. The daily tanker truck traffic would result in increased potential for safety and noise impacts and further increases in fugitive dust, greenhouse gas emissions and carbon footprint which may require a PSD permit and modification under the Clean Air Act Permit Program if the calculated increases in emissions are over the PSD limits. The potential for leaks/spills from the tank system or from transportation of the wastewater offsite does exist. Furthermore, the temporary wet storage needed to accommodate off-site disposal would require design, associated PSC approval/environmental permitting, and plant reconfiguration (including the addition of sumps, pumps, piping, and power supply to redirect these flows to the temporary storage system). This effort would require at least 18 months (or longer than the expected remaining coal-fired operation of the Green boilers).

Table 3: Non-CCR Wastestream Off-Site Disposal

Non-CCR Wastestreams	Average Flow (gpm)	Frac Tanks Required (21,000 gallons)	Daily Trucks Required (7,500 gallons)
Unit 1 and 2 Boiler Blowdown	1.39	1	1
Metal Cleaning Wastewater	7.64 (per unit)	1	3
Roof Drains	2.08	1	1
Miscellaneous Drains	100 (per unit)	13	38

Non-CCR Wastestreams	Average Flow (gpm)	Frac Tanks Required (21,000 gallons)	Daily Trucks Required (7,500 gallons)
Clarifier Blowdown	104.17	7	20
Bottom Ash Hopper Seal Water	1,700	117	326
Landfill Leachate	54	4	10
Coal Pile Runoff	37.50 (avg) 1,472 (max)	100*	283*
Stormwater Runoff from Surrounding Area	546	37	105
FGD Sludge Disposal Area Stormwater Runoff	702	48	67
	Total	329	854

^{*}Assumes max flow for 24-hours

As stated previously, since BREC has elected to pursue the option to cease the use of the coal fired boilers by a date certain, BREC agrees with EPA that developing alternative disposal capacity is illogical. There is no infrastructure currently available at the plant to support reroute of these flows. BREC cannot feasibly plan for the fluctuations in trucking that would be required to prevent discharges during rain events.

For the reasons discussed above, in order to continue to operate and generate reliable electricity, Green must continue to use the 26-acre Ash Pond to manage the CCR and non-CCR wastestreams due to lack of alternative capacity both on and off-site.

4.0 RISK MITIGATION PLAN

To demonstrate that the criteria in § 257.103(f)(2)(ii) has been met, BREC has prepared and attached a Risk Mitigation Plan for the Ash Pond (see Attachment 1). Per § 257.103(f)(2)(v)(B), this Risk Mitigation Plan is only required for the specific CCR Unit(s) that are the subject of this demonstration.

5.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE

In the Part A rule preamble, EPA reiterates that compliance with the CCR rule is a prerequisite to qualifying for an alternative closure extension, as it "provides some guarantee that the risks at the facility are properly managed and adequately mitigated." 85 Fed. Reg. at 53,543. EPA further stated that it "must be able to affirmatively conclude that the facility meets this criterion prior to authorizing any continued operation." 85 Fed. Reg. at 53,543. Accordingly, EPA "will review a facility's current compliance with the requirements governing groundwater monitoring systems." 85 Fed. Reg. at 53.543. In addition, EPA will also "require and examine a facility's corrective action documentation, structural stability documents and other pertinent compliance information." 85 Fed. Reg. at 53,543. Therefore, EPA is requiring a certification of compliance and specific compliance documentation be submitted as part of the demonstration. 40 C.F.R. § 257.103(f)(2)(v)(C).

Green Station has two CCR units including the Green Station Surface Impoundment (referred to herein as the "Ash Pond" that is the subject of this demonstration) and the Green Station Landfill. The retired Reid/HMP&L coal-fired electric generating station is located adjacent to Green Station. The Reid/HMP&L station sit on separate parcels of property from Green Station and is under a separate ownership structure that includes both BREC (Reid) and HMP&L (HMP&L Units 1 and 2). The Reid/HMP&L Station consists of three retired coal-fired generating units, a gas fired combustion turbine, and the Reid/HMP&L Surface Impoundment, which is currently undergoing closure. For informational purposes, BREC is including the compliance documents for this adjacent CCR unit as part of the submittal for the Green facility. To demonstrate that the criteria in § 257.103(f)(2)(iii) has been met, BREC is submitting the following information as required by § 257.103(f)(2)(v)(C):

5.1 Owner's Certification of Compliance - § 257.103(f)(2)(v)(C)(1)

I hereby certify that, based on my inquiry of those persons who are immediately responsible for compliance with environmental regulations for the Green station, the facility is in compliance with all of the requirements contained in 40 C.F.R. Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. The Green CCR compliance website is up-to-date and contains all the necessary documentation and notification postings.

On behalf of Big Rivers Electric Corporation:

Michael S Mizell - Vice President Environmental Compliance

November 25, 2020

5.2 Visual representation of hydrogeologic information - § 257.103(f)(2)(v)(C)(2)

Consistent with the requirements of $\S 257.103(f)(2)(v)(C)(2)(i) - (iii)$, BREC has attached the following items to this demonstration:

- Map(s) of groundwater monitoring well locations in relation to the CCR units (Attachment 2)
- Well construction diagrams and drilling logs for all groundwater monitoring wells (Attachment 3)
- Maps that characterize the direction of groundwater flow accounting for seasonal variations (Attachment 4)

5.3 Groundwater monitoring results - § 257.103(f)(2)(v)(C)(3)

The evaluation of groundwater results from the characterization events for baseline (April 2016 through September 2017) and detection monitoring events (October 2017 through April 2020) was reported to have no statistically significant increases (SSIs) above background concentrations for the CCR Rule Appendix III constituents at the Ash Pond. Results summary tables from the both the characterization and subsequent monitoring events are included in Attachment 5.

The Green Station Landfill and the Reid/HMP&L Station pond are in assessment monitoring. Per the most recent groundwater monitoring reports posted on BREC' CCR compliance website, lithium is present at statistically significant levels above the groundwater protection standard for monitoring wells MW-3A, MW-4, MW-5, and MW-6 at the Green Landfill and for MW-10 at the Reid/HMP&L pond (which is currently in the process of closure). Results summary tables from all groundwater monitoring events at these CCR units are included in Attachment 5.

5.4 Description of site hydrogeology including stratigraphic cross-sections - § 257.103(f)(2)(v)(C)(4)

According to the U.S. Geological Survey (USGS) Geologic Map of the Robards Quadrangle (USGS, 1973), the Site surface geology primarily consists of unconsolidated alluvium (silt, clay, sand, and gravel, and intermixed) with localized loess deposits (silt, light-yellowish brown, locally finely sandy or clayey) that commonly mantle elevated hills. However, much of the surface geology at the Site has been either disturbed/removed and covered/replaced with artificial fill for construction of BREC's Green Station and associated infrastructure and also includes construction of artificial levees along Green River. The consolidated bedrock underlying the alluvium (where present) and artificial fill is composed of Pennsylvanian-aged sedimentary rocks of the Carbondale Formation. A typical sequence of beds deposited during a sedimentary cycle in the Pennsylvanian rocks consists of sandstone, shale, clay, coal, and limestone. The sandstones mostly are channel-fill deposits and are separated by sequences of shale,

coal, and limestone. Generally, the sandstones and some limestones form the principal and most productive aquifers.

As reported by Associated Engineers (2016), the stratigraphic interval considered as the most prominent water transmitting zone within and adjacent to the Green Station is considered to be the Upper Sandstone Member (Sebree sandstone) of the Carbondale Formation. The USGS Geologic Map of the Robards Quadrangle describes the Sebree sandstone sequence as "Siltstone, sandstone, shale and coal: Siltstone, light- to medium-gray, micaceous, thin-bedded, locally calcareous. Sandstone, light- to medium-gray, grayish- and yellowish-brown, fine- to medium-grained slightly micaceous, thin-bedded to massive; locally fills channels." For purposes of compliance with the CCR Rule groundwater monitoring requirements, this sequence, and in particular the member sandstone intervals, is considered to be the uppermost aquifer underlying the Surface Impoundment. All monitoring wells were reportedly completed in the Sebree Sandstone, the upper sandstone member of the Carbondale Formation.

Generalized stratigraphic cross-sections are provided in Attachment 6 to illustrate the hydrogeology beneath the CCR Units based on monitoring well drill logs (included in Attachment 3).

Groundwater primarily moves through fractures and bedding planes in the rocks. Generally, the groundwater typically flows to the east-southeast toward the Green River indicating that the groundwater is discharging from the bedrock aquifer to the Green River (short flow path; hydraulically connected).

5.5 Corrective measures assessment - § 257.103(f)(2)(v)(C)(5)

Due to a lack of SSIs above background concentrations for the CCR Rule Appendix III constituents, characterization monitoring wells, assessment monitoring, and an assessment of corrective measures are not currently required for the Ash Pond. Green will continue to conduct groundwater monitoring in accordance with all state and federal requirements.

In accordance with 40 CFR 257.96, Assessment of Corrective Measures (ACM) were implemented for the Green Landfill (groundwater and non-groundwater) and Reid/HMP&L Ash Pond (Groundwater only). These ACM reports are included in Attachment 7.

5.6 Remedy selection progress report - § 257.103(f)(2)(v)(C)(6)

As noted above, an assessment of corrective measures and the resulting selection of remedy is not currently required for the Green Ash Pond. For the Green Landfill, BREC hosted a public meeting on July 16, 2020, to review the alternatives prior to selecting a remedy. The final remedy selection report for the Green Landfill (groundwater and non-groundwater) was completed in November 2020 and is included in

Attachment 8. The prior semi-annual progress reports from June 2020 and December 2019 are included in Attachment 8 as well. BREC has selected closure in place with additional source controls, including: removal of incidental (or *de minimis*) amounts of accumulated CCR material from the south sedimentation stormwater runoff pond (groundwater corrective action); the addition of a landfill perimeter drainage collection system (groundwater and non-groundwater corrective action); and installation of two containment systems intended as an interim corrective measure to reduce and prevent non-groundwater releases as the remedy for the Green Landfill. The non-groundwater containment systems were installed in late 2019/early 2020 and are currently active and functioning properly. Construction on the perimeter drainage collection system began in the 4th quarter of 2020 and is expected to be completed in the spring of 2021. The cleanout of the south sedimentation pond will be completed as weather allows but will be completed no later than summer of 2021.

BREC entered into an Agreed Order (File #18-3-0138) with the Kentucky Energy and Environment Cabinet, Division of Waste Management on December 16, 2019 to address and monitor ongoing construction and corrective action projects at the Green Landfill. BREC is in compliance with all conditions of the Agreed Order (File #18-3-0138). A copy of the Agreed Order is included as Attachment 9.

BREC is still evaluating the remedy alternatives for the Reid/HMP&L pond; however, the facility has initiated closure in place. BREC and HMP&L are currently in litigation regarding a number of issues related to Reid/HMP&L, the majority of which do not pertain to the Reid/HMP&L surface impoundment. Despite this litigation, BREC is attempting to work with HMP&L to take the steps needed to complete closure of the surface impoundment by April 17, 2024 as required per 40 C.F.R. § 257.101(b)(1)(ii), for failing the location restriction at 40 C.F.R. § 257.63. The June 2020 and December 2019 semi-annual remedy selection progress reports for the Reid/HMP&L pond are included in Attachment 10.

5.7 Structural stability assessment - § 257.103(f)(2)(v)(C)(7)

Pursuant to § 257.73(d), the initial structural stability assessments for the Ash Pond and the Reid/HMP&L pond were prepared in October 2016 and are included as Attachment 11. Periodic structural stability assessments are not required for landfills.

5.8 Safety factor assessment - § 257.103(f)(2)(v)(C)(8)

Pursuant to § 257.73(e), the initial safety factor assessments for the Ash Pond and the Reid/HMP&L pond were prepared in October 2016 and are included as Attachment 12. Periodic safety factor assessments are not required for landfills.

6.0 DOCUMENTATION OF CLOSURE COMPLETION TIMEFRAME

To demonstrate the criteria in § 257.103(f)(2)(iv) has been met, "the owner or operator must submit the closure plan required by § 257.102(b) and a narrative that specifies and justifies the date by which they intend to cease receipt of waste into the unit in order to meet the closure deadlines." BREC has included a closure plan for the Ash Pond as Attachment 13. The closure plan submittal is not required for the CCR units that are not the subject of this demonstration (the Green Landfill and the Reid/HMP&L pond).

In order for a CCR surface impoundment under 40 acres to continue to receive CCR and non-CCR wastestreams after the initial April 11, 2021, deadline, the coal-fired boiler(s) at the facility must cease operation and the CCR surface impoundment must complete closure no later than October 17, 2023. As discussed below, Green will cease receipt of waste into the Ash Pond by May 31, 2022, in order for closure to be completed by this deadline.

A schedule is included in Figure 3, which summarizes the major tasks and durations associated with closing the Ash Pond in place. The design, permitting, and procurement efforts will take place while the units are still in operation. The following activities will be completed during the design/ permitting phase:

- Award engineering services for Ash Pond closure
- Finalize Ash Pond closure plan and seek Kentucky Department for Environmental Protection (KDEP) approval
- Obtain environmental permits (based on KDEP approval of closure plan)
 - o Kentucky Air Quality Construction/Operating Permit
 - o KPDES Industrial Wastewater Permit Modification
 - General KPDES Permit for Storm Water Discharges from Construction Site Activities and Storm Water Pollution Prevention Plan (SWPPP)
- Receive approval from MISO to cease coal-fired operations on May 31, 2022 (at the end of the MISO operating year)
- Develop specifications
- Bid and award construction services for Ash Pond closure
- Ash Pond closure Contractor mobilization

To facilitate construction of the new water mass balance (WMB) pond and the pond closure, the existing non-CCR wastestreams will need to be managed. The pond water level will be lowered as much as feasible after ceasing the receipt of CCR upon the permanent cessation of the coal-fired boilers and prior

to the Ash Pond closure Contractor coming on site. When the Contractor begins construction, the remaining non-CCR wastestreams (essentially site stormwater and landfill leachate after the boilers cease coal-fired operations) will be managed using a series of temporary berms, ditches, and pumps to temporarily divert site stormwater to other locations. This will likely require KPDES permit modifications following the permanent cessation of the coal-fired boilers operation and the remediation of the coal pile to discharge water from the existing coal pile runoff pond to the Green River. Alternatively, the Contractor may choose to maintain a small portion of the current Ash Pond footprint to continue to receive these flows and pump them through a temporary treatment system to the existing outfall structure. The sequencing of construction and means and methods for the water management will be determined by the Contractor once a contract is finalized with BREC.

While managing the incoming stormwater and leachate flows, the Contractor will initiate grading and relocating CCR material for the WMB pond and pond closure and continue dewatering and removing the interstitial water in the CCR material (with drainage ditches or potentially an engineered dewatering system) so that the consolidated CCR material is stabilized to allow for the closure in place to be performed in phases to meet the performance standards as required by \$257.102(d). The discharge will be directed to the KPDES permitted Outfall #009 (the Ash Pond outfall), with temporary treatment systems installed if required by the permit. As grading is completed in certain areas, the contractor will begin forming a 10-acre WMB Pond to treat remaining process and stormwater flows from Green prior to discharge. The approximate volume of CCR in the ash pond is 1,000,000 cubic yards. Approximately 400,000 cubic yards will be removed for the WMB pond construction. The Contractor will remove the CCR material from the portion of the impoundment that will receive the new WMB pond berm and begin placing fill for the new berm. While this fill is placed in lifts, the Contractor will continue removing CCR from the WMB portion of the pond and compacting it on the outside of the berm in the portion of the pond to be capped in place.

In addition to the new berm, the work for the WMB construction may consist of the installation of a HDPE geomembrane liner, 12-inches of protective cover material, and 18-inches of riprap for the pond side slopes. This liner system will be finalized during detailed design and permitting for the WMB Pond, but this scope is included in the overall closure schedule. If the pond liner system is required, the duration shown will be adequate to allow for construction and if not, there will be additional float available to meet the regulatory deadline. Concurrent to the WMB Pond lining work, the contractor will begin placing the final cover system over the closed in place CCR material. For the purposes of providing conservatism in the schedule, we have assumed the alternative cover system outlined in the Ash Pond's closure plan will be constructed.

The planned duration for completing this effort is based on the following assumptions for major scope items:

- CCR Cut to Fill 3,500 cubic yards per day
- Berm Construction 3,500 cubic yards per day
- Geomembrane Construction 25,000 square feet per day
- Protective Cover Installation 1,500 cubic yards per day
- Topsoil Installation 2,500 cubic yards per day
- Seeding 2 acres/day

The schedule presented in Figure 3 includes an additional 20% to account for weather delays. In addition to the 20% weather days, it is known that when the temperatures are below freezing for much of the day, earthwork and compaction activities are difficult. Therefore, a winter break from construction has been factored into the schedule for the timeline between December 1st and March 1st. This timeframe is when the average temperature dips below 40-degrees Fahrenheit in the region, based on data between the years of 1981 and 2010 by the National Oceanic and Atmospheric Administration (NOAA) for Louisville, Kentucky. If possible, the Contractor may elect to continue work during this period; however, that is not accounted for in the current schedule.

7.0 CONCLUSION

Based upon the information included in and attached to this demonstration, BREC has demonstrated that the requirements of 40 C.F.R. § 257.103(f)(2) are satisfied for the 26-acre Ash Pond at Green. This CCR surface impoundment is needed to continue to manage the CCR and non-CCR wastestreams identified in Sections 3.2 and 3.3 above, is smaller than 40 acres, the station will cease coal-fired operation on May 31, 2022, and the Ash Pond will be closed by the October 17, 2023, deadline. Therefore, this CCR unit qualifies for the site-specific alternate deadline for the initiation of closure authorized by 40 C.F.R. § 257.103(f)(2).

Therefore, it is requested that EPA approve BREC' demonstration and authorize the Ash Pond at Green to continue to receive CCR and non-CCR wastestreams notwithstanding the deadline in 40 C.F.R. § 257.101(a)(1) or 40 C.F.R. § 257.101(b)(1)(i) and to grant the alternate deadline of October 17, 2023, by which to complete closure of the impoundment.

FIGURE 1 - SITE PLAN

drawing SK-C001 Your Touchstone Energy* Cooperative file 126878SK-C001.DGN

9/11/2020 jridder 11:52:06 AM

Z:\Clients\ENR\BigRiversEC\126878_CCRF2Docs\2_Design\Civil\Dwgs\Sketches\126878SK-C001.dgn

A 09/11/20 MDB ETT ISSUED FOR OWNER REVIEW

no. | date | by | ckd |

description

no. date by ckd

description

M. BLEYTHING J. RIDDER

ROBERT D. GREEN STATION WEBSTER COUNTY, KENTUCKY sheets

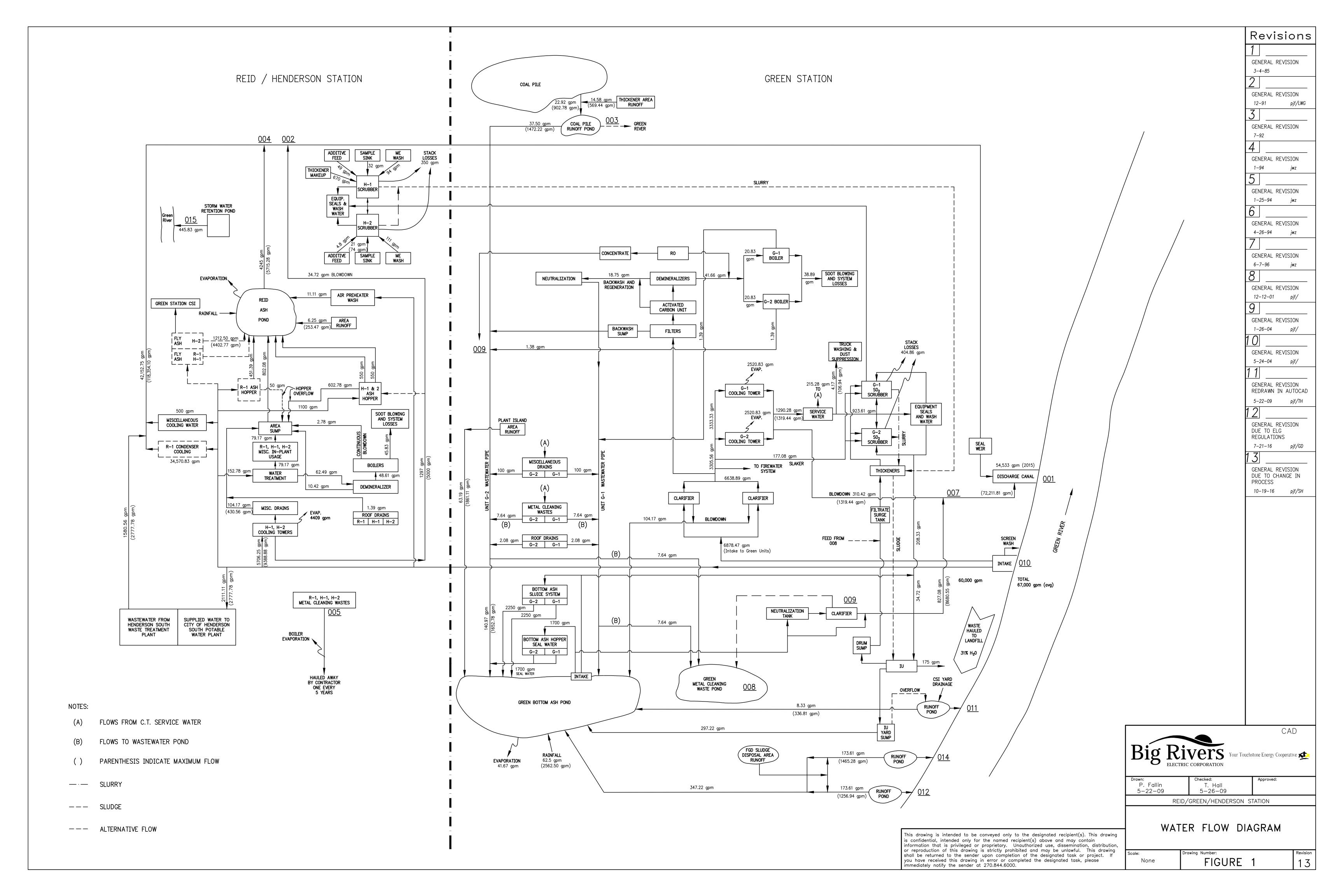
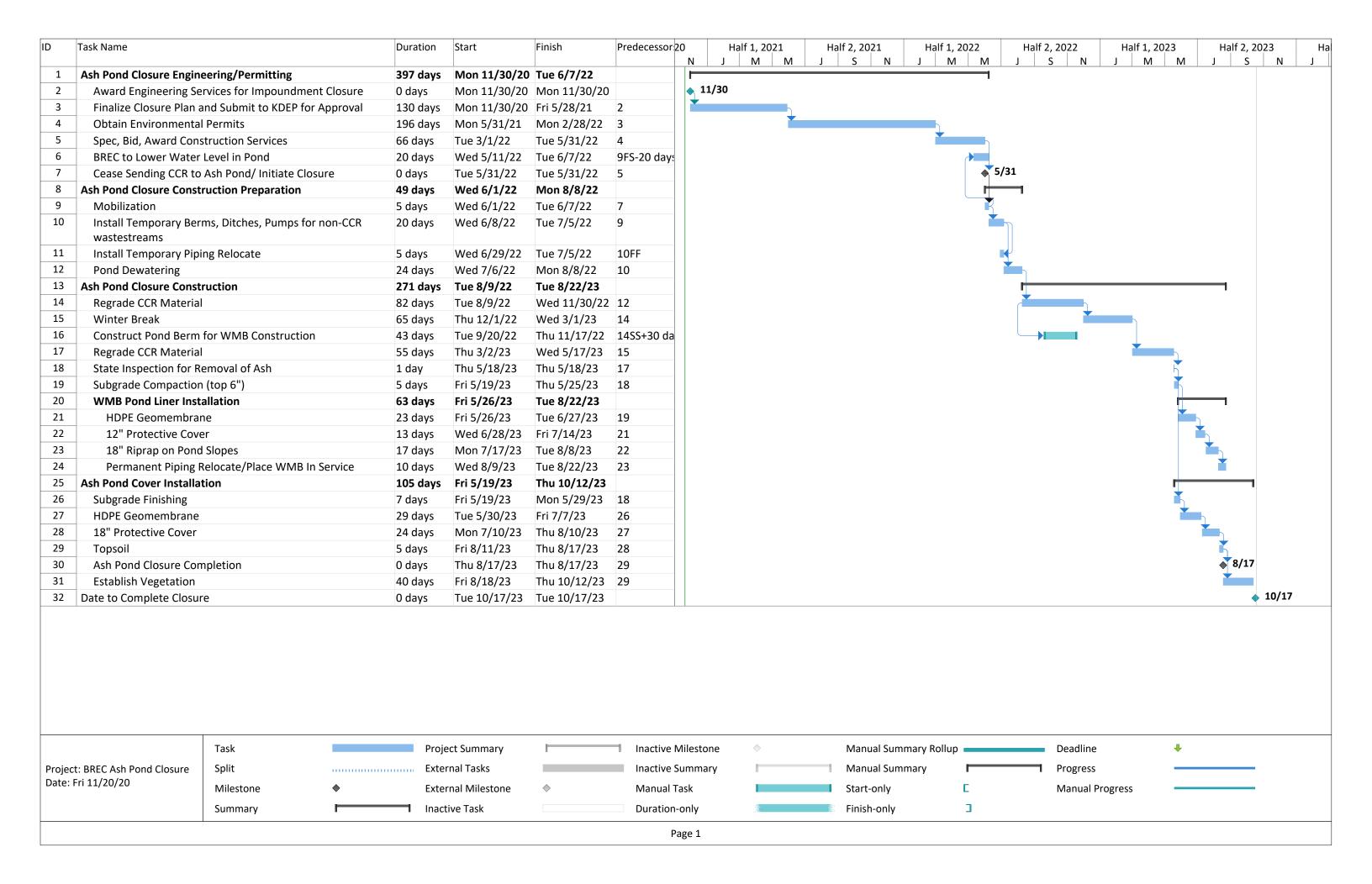
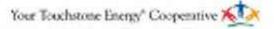



FIGURE 3 - SCHEDULE



Risk Mitigation Plan

Big Rivers Electric Corporation

Green Station Surface Impoundment Project No. 126878

Revision 0 11/17/2020

Risk Mitigation Plan

prepared for

Big Rivers Electric Corporation Green Station Surface Impoundment Robards, Kentucky

Project No. 126878

Revision 0 11/17/2020

prepared by

Burns & McDonnell Kansas City, Missouri

TABLE OF CONTENTS

	<u>Page No.</u>
RODUCTION	1-1
Purpose	1-1
Rationale	1-1
EASE MITIGATION MEASURES	2-1
Current Physical and Chemical Treatment Processes	2-1
RRENT CONDITIONS AND RECEPTOR ANALYSIS	3-1
Groundwater Monitoring Results	3-1
Plume Delineation	3-1
3.2.1 Receptor Analysis	3-2
NTAMINANT PLUME CONTAINMENT ALTERNATIV	ES EVALUATION 4-1
Containment Objectives	4-1
Containment Alternatives	4-1
4.2.1 Alternative 1 – No Action	4-2
4.2.2 Alternative 2 – Monitored Natural Attenuation	4-2
4.2.3 Alternative 3 – Groundwater Extraction	
Containment Alternatives Evaluation	4-3
4.3.1 Alternative 1 – No Action	
4.3.2 Alternative 2 – Monitored Natural Attenuation	4-3
4.3.3 Alternative 3 – Groundwater Extraction	4-4
NTAMINANT PLUME CONTAINMENT PLAN	5-1
NCLUSIONS	6-1
ITATIONS AND QUALIFICATIONS	7-1
FERENCES	
	Purpose

ATTACHMENT 1 - GREEN RIVER WATER QUALITY ASSESSMENT SUMMARY

LIST OF ABBREVIATIONS

Abbreviation Term/Phrase/Name

ACM Assessment of Corrective Measures

BREC Big Rivers Electric Corporation

Burns & McDonnell Engineering Company, Inc.

CCR Coal Combustion Residuals

CFR Code of Federal Regulations

GWPS Groundwater Protection Standard

HHE Human Health and Environment

IUCS Illinois University Conversion System

KPDES Kentucky Pollution Discharge Elimination System

LTM Long-Term Monitoring

MNA Monitored Natural Attenuation

O&M Operation and Maintenance

P&T Pump and Treat

RMP Risk Management Plan

SSI Statistically Significant Increase

SSL Statistically Significant Level

EPA U.S. Environmental Protection Agency

USGS U.S. Geological Survey

WMB Water Management Basin

1.0 INTRODUCTION

Burns & McDonnell Engineering Company, Inc. (Burns & McDonnell) has prepared this Risk Mitigation Plan (RMP) for the existing Coal Combustion Residuals (CCR) Surface Impoundment, or Ash Pond (AI# 4196 & Kentucky Pollutant Discharge Elimination System [KPDES] # KY0001929; Outfall #009) for the Big Rivers Electric Corporation's (BREC's) Robert D. Green Generating Station (Green) in Kentucky (Site) in Webster County. This RMP supports the facility's compliance with the requirements of the *Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals From Electric Utilities; A Holistic Approach to Closure Part A: Deadline To Initiate Closure* (40 CFR Part 257, U.S. Environmental Protection Agency [EPA], 2020) [CCR Part A Rule] and in obtaining an alternative closure deadline for the existing Ash Pond. The Ash Pond is located directly south of the facility within the property boundaries of BREC. An aerial photographic site plan illustrating the location of the active Ash Pond is provided in Figure 1 of the Closure Extension Demonstration Memorandum.

1.1 Purpose

BREC is seeking EPA approval to obtain a site-specific alternative deadline to initiate closure of the Ash Pond under 40 CFR § 257.103(f)(2) ("Permanent Cessation of a Coal-Fired Boiler(s)") to continue to receive CCR and/or non-CCR wastestreams by ceasing the operations of the coal-fired boiler(s) and complete closure of the Ash Pond no later than October 17, 2023 (for a CCR surface impoundment that is 40 acres or smaller).

Pursuant to the requirements set forth in the CCR Part A Rule for obtaining an alternative closure deadline, this document serves as the RMP for inclusion in BREC's Demonstration for a Site-Specific Alternate to Initiation of Closure Deadline for the Ash Pond in order to continue operating the Ash Pond. In accordance with CFR § 257.103(f)(2)(v)(B), this RMP describes the measures that will be taken to address increased risk from continued operation of the Ash Pond, which EPA will review as part of determining whether to grant the extension. If additional measures to mitigate the risk are necessary to ensure that the statutory standard is met, EPA will require those as a condition of granting the extension. The focus of this document is the RMP.

1.2 Rationale

BREC is subject to the CCR Rule and as such is required to ensure that its CCR units maintain compliance with CCR Rule requirements. Any facility that has currently posted on its publicly accessible CCR internet site a notification to close a CCR surface impoundment pursuant to § 257.103(a) or (b) must submit a demonstration for EPA approval that meets the requirements under § 257.103(f)(1) or (f)(2) in

order to continue operating that unit. Therefore, if a facility has a notification posted and is currently operating under § 257.103(a) or (b), due to closure under § 257.101(b)(1)(ii), and does not submit a demonstration to EPA by November 30, 2020, the facility must cease the receipt of waste into the unit no later than April 11, 2021 and initiate closure. BREC posted its notification of intent to close the Ash Pond, utilizing alternative closure requirements in accordance with 40 C.F.R 257.103, on its publicly accessible CCR internet site on October 31, 2019.

Alternate off-site disposal capacity is not available for wastestreams currently entering the Ash Pond. As acknowledged previously by EPA, it is not feasible to transport wet CCR to an off-site location, nor is it feasible to transport the facility's large volume non-CCR wastestreams off-site for disposal. Alternate on-site disposal capacity is not currently available and cannot be made available prior to April 11, 2021.

As certified in the Closure Extension Demonstration Memorandum, the Ash Pond is in compliance with all the requirements of the CCR Rule and will remain in compliance until closure of the Ash Pond is completed. Regular compliance activities, including required groundwater monitoring and reporting, are continuing and all required documents have been placed into the facility's Operating Record and posted on the publicly available website. The Ash Pond is currently in detection monitoring and concentrations of constituents listed in Appendix III to the CCR Rule have not exhibited statistically significant increases (SSI) above background.

Because of the demonstrated lack of available alternate disposal capacity before April 11, 2021, the compliance status of the Surface Impoundment, and BREC's diligent and good faith efforts since April 2015 to develop alternate disposal capacity in order to close the Ash Pond, BREC respectfully requests a site-specific alternate deadline of October 17, 2023 to initiate closure of the Ash Pond at Green Station.

2.0 RELEASE MITIGATION MEASURES

In accordance with $\S 257.103(f)(2)(v)(B)(I)$, this section provides discussion on the physical or chemical measures the facility has taken to limit any future releases to groundwater during operation.

2.1 Operational Measures to Limit Future Releases to Groundwater

The Ash Pond is a 26-acre CCR surface impoundment which can receive flows from a coal pile runoff pond, landfill runoff pond, metal cleaning waste pond and Flue Gas Desulfurization area runoff pond.

The Ash Pond receives all CCR transport waters and most of the non-CCR wastewater flows on-site before discharging to the Green River via Outfall 001 in accordance with KPDES Permit No. KY0001929.

Fly ash is typically captured dry via a dry conveying system from the existing electrostatic precipitator. Therefore, current operations already limit the addition of fly ash to the Ash Pond. Economizer ash is wet sluiced to the Ash Pond. Bottom ash is transported through the sluice lines into the Ash Pond.

Green's current physical and chemical treatment operation adequately mitigates potential risks to human health and the environment (HHE). Green will continue this treatment process for the Ash Pond until such time as closure is required per 40 CFR 257. The facility's physical and chemical treatment process is discussed below, followed by a discussion of other chemical and physical treatments required per § 257.103(f)(2)(v)(B)(1).

2.2 Current Physical and Chemical Treatment Processes

The Flue Gas Desulphurization waste streams are currently treated by the IU Conversions Systems, Inc. (IUCS) solidifying treatment process, with filtrate returned to the process for reuse.

The coal pile runoff pond is also a wastewater treatment settling system which allows the solids generated from the IUCS to settle further during upset conditions.

As part of normal maintenance, ash is removed from the Ash Pond and transported to the landfill.

Therefore, the current and future operation encompassing the IUCS and the physical removal of solids from the Ash Pond limit current and future releases to groundwater during operation.

No potential safety impacts or exposure to human health or environmental receptors are expected to result from continued operation of the IUCS and the Ash Pond.

3.0 CURRENT CONDITIONS AND RECEPTOR ANALYSIS

To demonstrate that the criteria in 40 CFR § 257.103(f)(2)(ii) have been met, the following information is submitted pursuant to 40 CFR § 257.103(f)(2)(v)(B) to demonstrate that the Ash Pond is in compliance with the CCR rule. The information presented in this section provides the basis for the conceptual site model.

3.1 Groundwater Monitoring Results

In accordance with § 257.91, monitoring wells comprising a CCR unit groundwater monitoring system were installed at the Green Ash Pond in 2015 and 2016 and the monitoring system was certified on June 28, 2016. As stated in the CCR Impoundment Groundwater Monitoring System and Statistical Methods Assessment and Certification (BREC, 2016), temporary piezometers were installed adjacent to the Ash Pond to determine the general direction of groundwater movement. Static water levels measured in these piezometers were used to calculate a hydraulic gradient or apparent direction of groundwater movement that is generally from the northwest to southeast. This groundwater gradient characterization and the ability to locate monitoring wells specific to the Ash Pond justified the placement of the minimum of one upgradient and three downgradient monitoring wells.

A groundwater sampling and analysis program was developed and implemented in accordance with § 257.93 and a detection monitoring program was initiated as required by § 257.94. The first groundwater sampling event at the Green Ash Pond was conducted in April 2016.

In accordance with § 257.103(f)(2)(v)(B)(2), the evaluation of groundwater results from the characterization events for baseline (April 2016 through September 2017) and detection monitoring events (October 2017 through April 2020) was reported to have no SSI above background concentrations for the CCR Rule Appendix III constituents (AECOM, 2020). Results summary tables from the both the characterization and detection monitoring events are included in Attachment 5 of the Closure Extension Demonstration Memorandum.

3.2 Plume Delineation

In accordance with § 257.103(f)(2)(v)(B)(2), plume delineation is not necessary based on the current groundwater monitoring results showing no SSI above background concentrations for the CCR Rule Appendix III constituents. However, if one or more CCR Rule Appendix IV constituents are detected at statistically significant levels (SSL) exceeding Groundwater Protection Standards (GWPS), established in accordance with 40 CFR §257.95(h), the nature and extent of the release would be characterized to delineate the contaminant plume. The existing conceptual site model – comprised of groundwater

analytical data, potentiometric surface elevation and hydraulic gradient data, subsurface cross-sections, and other hydrogeologic data — would provide an adequate basis for planning and executing a plume delineation investigation. If required, plume delineation activities could consist of additional monitoring well installation and sampling, other subsurface investigation activities (e.g., direct-push soil and groundwater characterization, direct-sensing investigation, aquifer hydraulic conductivity testing, etc.), and/or groundwater / surface water interaction evaluation. A demonstration may also be made that a source other than the CCR unit caused the contamination, or that the SSL resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality [§257.95(g)(3)(ii)].

3.2.1 Receptor Analysis

In accordance with § 257.103(f)(2)(v)(B)(2), a receptor analysis has been conducted to determine human and ecological receptors that may come into contact with impacted media associated with the Ash Pond. As presented in previous sections, water from the Ash Pond may permeate underlying soils and impact groundwater. Groundwater flows east-southeast from the Ash Pond through additional property owned and operated by BREC and into the Green River. Once in the Green River, potential contaminants from the groundwater may mix with the surface water or deposit onto sediments.

On October 29, 2013, the Kentucky Department for Environmental Protection – Division of Water published a surface water quality assessment for the segment of the Green River extending from Panther Creek to the Pond River (River Mile 28.05 to 55.0). The Site is located at River Mile 41.7. The Assessment Summary stated that this segment of the Green River fully supports aquatic life and drinking water (domestic water supply). A copy of the Assessment Summary is provided as Attachment 1.

Given the site conditions, on-site exposure to downgradient groundwater potentially impacted by the Ash Pond is not anticipated because BREC owns and operates the property up to the Green River and does not extract downgradient groundwater for use. Potable water for the facility is provided by the municipal Henderson South Water Treatment Plant. The anticipated human receptors to potential groundwater impacts from the Ash Pond include downgradient recreational users of Green River. Recreational users could include adults or children wading, swimming, or fishing in the Green River, who could be exposed to surface water or sediment through ingestion or dermal contact. They could also be exposed by ingesting river biota potentially impacted by contaminants from the Ash Pond. As stated above, the segment of the Green River on which the facility is located was assessed in 2013 and found to be fully supportive of aquatic life and drinking water. If needed, the measures presented in the Contaminant Plume Containment Plan (Section 5.0 of this RMP) will address the potential exposures described above by containing potential groundwater impacts and mitigating impacts to surface water or sediment.

A prior study (AECOM, 2018) that included field surveys and delineations identified two downgradient wetland areas and an intermittent stream southwest of the Ash Pond. The study determined that the Ash Pond would not impact on-site wetlands, threatened or endangered species, or wildlife in general. Groundwater interaction with surface water could result in potential impact to benthic invertebrates and other aquatic life in Green River. As stated above, the segment of the Green River on which the facility is located was assessed in 2013 and found to be fully supportive of aquatic life and drinking water. If needed, the measures presented in The Contaminant Plume Containment Plan (Section 5.0 of this RMP) will address the potential impacts described above by mitigating the migration of groundwater impacts to surface water.

Currently, because groundwater is not impacted at a statistically significant level by constituents from the Ash Pond, no human or ecological receptors are adversely impacted. Potential exposure to future releases would be mitigated as discussed in Section 5.0.

4.0 CONTAMINANT PLUME CONTAINMENT ALTERNATIVES EVALUATION

A contaminant plume containment alternatives evaluation was conducted to evaluate options for addressing an increased risk of groundwater contamination resulting from continued operation of the Ash Pond. This evaluation assumes that potential risks are present under current conditions and presents measures for addressing these in the event they develop into actual, unacceptable risks. These unacceptable risks include any constituent listed in Appendix IV of the CCR Rule that has been detected at a SSL exceeding the GWPS defined under 40 CFR §257.95(h), or immediately upon detection of a release from a CCR unit.

4.1 Containment Objectives

During the development of containment objectives, appropriate consideration must be given to the contaminated media, compounds of interest, exposure pathways and receptors, and media cleanup standards. Containment objectives are media-specific goals for protection of HHE that provide the foundation upon which containment alternatives for a site are identified, assembled, and evaluated. Site-specific containment objectives have been identified and are based on hypothetical (what-if) or potential future risk scenarios that would initiate an Assessment of Corrective Measures (ACM; 40 CFR §257.96) to prevent further releases, to remediate any releases, and to restore the affected area to original condition.

General containment objectives are to protect HHE and to prevent exposure to groundwater contamination at levels that are unacceptable. More specific goals include:

- Prevent further degradation of uppermost aquifer;
- Prevent off-site migration of groundwater impacts;
- Prevent migration to potential receptors; and
- Return the aquifer to the most beneficial use by restoring it to natural background concentrations.

The target area for contaminant plume containment is limited to the Ash Pond area.

4.2 Containment Alternatives

The purpose of this section is to identify, evaluate, screen, and recommend an appropriate containment alternative for the Ash Pond. Consideration should also be given to containment alternatives that will achieve cleanup levels associated with the reasonable anticipated land use of the site in question.

Containment objectives can be achieved by eliminating exposure pathways associated with environmental

media, enacting engineering and institutional controls that serve to eliminate exposure pathways associated with environmental media, or by removing the source of contamination.

Containment alternatives developed to address containment objectives for the Site include a "no action" alternative and two containment alternatives consisting of monitored natural attenuation (MNA) and groundwater extraction.

4.2.1 Alternative 1 – No Action

"No Action" means that the Site is left "as is". Under the "No Action" alternative, institutional controls (e.g., land use restrictions, etc.) are not implemented, contamination is not remediated, and monitoring is not conducted. This alternative is used as a baseline for comparing the relative performance of the other alternatives.

4.2.2 Alternative 2 – Monitored Natural Attenuation

MNA refers to the use of "natural attenuation processes as part of the overall site remediation". Natural attenuation processes include a variety of physical, chemical, or biological processes that, under favorable conditions, act without intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in soil and groundwater. These processes include biodegradation, dispersion, dilution, sorption, volatilization, and chemical and/or biological stabilization, transformation, or destruction of contaminants. The MNA technology includes long-term groundwater monitoring and reporting to demonstrate natural attenuation processes are occurring.

4.2.3 Alternative 3 – Groundwater Extraction

Implementation of this alternative would include the installation and operation of a groundwater extraction and treatment (commonly referred to as pump and treat [P&T]) system to address on-site groundwater contamination. The primary objective of a P&T system is to affect groundwater flow and exert hydraulic control over a groundwater contamination plume. Through the extraction (i.e., pumping) of groundwater from wells installed in the vicinity of the plume, a P&T system causes a reduction in hydraulic head (or drawdown). This reduction in hydraulic head drives groundwater flow toward the extraction well, decreasing the migration of contaminated groundwater toward downgradient receptors. Impacted groundwater pumped from the extraction well(s) is treated as required to meet applicable compliance limits and discharged. In addition to exerting local hydraulic control over a groundwater plume, P&T systems can recover contaminants and reduce overall contaminant mass within the subsurface aquifer.

The technical P&T approach developed for potential implementation at the Green Ash Pond includes the use of groundwater extraction well(s) to capture and treat groundwater contamination and provide hydraulic control to reduce plume migration. A pump would be installed in each extraction well and recovered groundwater would be conveyed from the extraction well(s) via subgrade piping to an on-site facility for treatment and discharge. The treatment facility would include the piping, valves, controls, and other equipment required for operation and monitoring of the P&T system. A number of treatment technologies, including physical separation, chemical precipitation, filtration, carbon adsorption, and ion-exchange, may be used to treat recovered groundwater. Treated groundwater may discharged to a permitted outfall or publicly- or privately-owned treatment works facility, repurposed for beneficial use, or injected into the ground. Discharge of treated water via a permitted outfall or underground injection would be conducted in accordance with local and state regulatory requirements.

4.3 Containment Alternatives Evaluation

The purpose of this containment alternatives evaluation is to select a groundwater remedy that can be expeditiously implemented to promptly mitigate potential exposures to receptors in the event a future release is identified during continued operations of the Green Ash Pond. A more detailed evaluation may be performed during an ACM (if required). This ACM may consider other groundwater corrective action alternatives that may be implemented during or after closure of the Ash Pond. An alternate source demonstration may be pursed under 40 CFR §257.94(e)(2) in demonstrating that a source other than the Ash Pond is the cause for an SSI over background levels (Detection Monitoring Program) or SSL over GWPS (Assessment Monitoring Program).

4.3.1 Alternative 1 – No Action

This alternative is not considered protective of HHE as it does not include measures to prevent future exposures to CCR contamination. The no action alternative is the least protective alternative because the site is left "as-is" with no institutional controls, monitoring, or application of any containment technology. This alternative has been eliminated as it does not provide for prompt mitigation of potential exposures.

4.3.2 Alternative 2 – Monitored Natural Attenuation

MNA may be a viable long-term remedy for CCR-impacted groundwater; however, it has been eliminated as a short-term contaminant plume containment alternative as it cannot be expeditiously implemented for the prompt mitigation of potential exposures.

4.3.3 Alternative 3 – Groundwater Extraction

In terms of effectiveness, this P&T technology is proven and widely used for groundwater containment/treatment. P&T could be implemented expeditiously to mitigate contaminant migration and exposure risk, and to reduce contaminant concentrations in groundwater. P&T would be implemented onsite to maintain hydraulic control of the plume through active extraction, treatment, and discharge. Recovered groundwater would be conveyed to an on-site facility for treatment and discharge. This technology provides protection of HHE through hydraulic containment of the plume and reductions in the volume, mobility, and toxicity of groundwater impacts. Groundwater extraction wells would effectively control the movement of CCR contaminants within the P&T capture zone, thereby reducing the migration of contaminants downgradient. The system would also reduce contaminant mass through the removal of CCR constituents.

Implementation of this technology would be feasible but may be met with minor technical challenges (e.g., the installation of extraction wells and piping may be difficult in the vicinity of sensitive utilities, active plant operations, facility access roads, non-CCR ponds, and the Green River). The primary disadvantages associated with the P&T alternative include high capital costs and high annual operating costs due to intensive operation and maintenance (O&M) requirements.

Potentially applicable technologies for the removal of CCR contaminants from recovered groundwater include physical separation, filtration, adsorption, coagulation and precipitation, ion exchange, or reverse osmosis. The treatment system may consist of a combination of treatment technologies to address multiple contaminants prior to discharge. Treated water will be conveyed from the treatment system via discharge piping to a permitted outfall to the Green River in accordance with local and state regulatory requirements. Prior to discharge, the facility may consider utilizing a portion of the treated groundwater for beneficial use at the facility, if deemed viable based on current operations and capacities.

The extraction wells, pumps, and other components associated with a P&T system are designed and operated to achieve a specific hydraulic capture zone. The design parameters for a P&T system are dependent on the site-specific hydrogeological characteristics of the subsurface (i.e., saturated thickness, permeability, transmissivity, etc.). Aquifer pump testing would be required evaluate the overall effectiveness of P&T under site-specific conditions, estimate the achievable or appropriate groundwater capture zone for each well, and establish design parameters such as extraction well quantities, locations, and pumping rates, and raw water quality characteristics. This information would be used to complete detailed design, permitting, and construction planning for the P&T system. Implementation of the P&T

containment measure would require extraction well drilling, conveyance and discharge piping installation, treatment system construction, and system startup and commissioning.

The discharge of atmospheric emissions (if any) and liquid effluent from the on-site treatment system would be conducted in accordance with applicable regulatory requirements and permit conditions.

Controls may also be required prior to discharging emissions or effluent generated by the P&T system to maintain permit compliance.

Ongoing system O&M and performance monitoring would be required following startup. The existing groundwater monitoring well network, and potentially new monitoring wells, would be used to monitor the performance of the remedy and to monitor groundwater plume concentrations and movement. Performance monitoring data would be evaluated to assess the overall effectiveness of P&T system in containing the plume and preventing unacceptable exposures to receptors.

Depending upon the distribution and concentration of contaminants following implementation of this alternative, institutional controls (i.e., environmental use controls) may be required to prevent direct contact with contaminated groundwater.

5.0 CONTAMINANT PLUME CONTAINMENT PLAN

In accordance with 40 CFR §257.103(f)(2)(v)(B)(3), this plan is intended to expedite and maintain the containment of any contaminant plume that is either present or identified during continued operation of the Ash Pond. Based on the containment alternatives evaluated for a future potential groundwater contaminant plume originating from the Ash Pond, with one or more Appendix IV constituents detected at an SSL exceeding the GWPS, Alternative 3 – Groundwater Extraction (P&T), could be used for expeditious, short-term containment of a plume during continued operation of the Ash Pond. This containment alternative would provide hydraulic control and capture of the plume and prevent migration off-site towards receptors associated with the Green River, located east of the Ash Pond. This containment alternative would directly control movement of an on-site contaminant the plume while also reducing the toxicity, mobility, and volume of downgradient CCR impacts to groundwater. If groundwater extraction were implemented, the appropriateness of this remedy would be reevaluated following closure of the Ash Pond.

The existing conceptual site model described in Section 3.2 would serve as the basis for designing the P&T containment remedy. However, due to the proximity of the Ash Pond to the Green River, measures will be taken to facilitate expeditious implementation of a P&T system if the Ash Pond enters into assessment monitoring (i.e., one or more Appendix III constituents are detected at an SSI above background levels). These measures include the following:

- Assessment monitoring will be conducted on a quarterly basis to minimize the length of time between groundwater sampling events; and
- Aquifer pump testing and conceptual (i.e., 30-percent level) P&T system design and planning will be initiated.

In the event a future release is identified during continued operation of the Ash Pond, other groundwater alternatives may be considered for post-closure implementation. The selection and implementation of these alternatives would depend on the location and plume geometry of any Appendix IV exceedances of GWPS, the specific parameter(s) exhibiting exceedances, and the distance between exceedances and potential receptors. These considerations would be evaluated in detail once the plume is characterized to support the selection of a groundwater corrective action alternative during development of the ACM.

6.0 CONCLUSIONS

Based upon the information submitted in this RMP, BREC has demonstrated that potential risks to HHE from the continued operation of the Ash Pond have been adequately addressed in accordance with 40 CFR § 257.103(f)(2)(ii). This RMP meets the criteria in CFR § 257.103(f)(2)(v)(B) in describing the measures that will be taken to expedite any required corrective action to address increased risk from continued operation of the Ash Pond.

7.0 LIMITATIONS AND QUALIFICATIONS

Burns & McDonnell's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time. Burns & McDonnell makes no warranties, express or implied, regarding the findings, estimates, projections, conclusions, or recommendations. Burns & McDonnell does not warrant the work of laboratories, regulatory agencies, or other third parties supplying information used in the preparation of the report.

Findings, conclusions, and recommendations resulting from these services are based upon information derived from third party on-site activities and other services; such information is subject to change over time. Certain indicators of the presence of hazardous substances or other constituents of concern may have been latent, inaccessible, unobservable, nondetectable, or not present during these services. We cannot represent that the site contains no hazardous substances, toxic materials or other latent conditions beyond those identified by third party activities/services. Subsurface conditions may vary from those encountered by third party at specific borings or wells or during other surveys, tests, assessments, investigations, or exploratory services. The data, interpretations, findings, and our recommendations are based solely upon third party data provided by BREC at the time and within the scope of these services.

8.0 REFERENCES

- AECOM Technical Services, Inc. (AECOM), 2020, 2019 Annual Groundwater Monitoring and Corrective Action Report, Coal Combustion Residuals (CCR) Rule, Sebree Generation Station, Henderson and Webster Counties, Kentucky.
- AECOM, 2018, Big Rivers Electric Corporation, Existing Green CCR Surface Impoundment, Disposal of Coal Combustion Residuals (CCR) from Electric Utilities Final Rule, Wetlands Demonstration for Coal Combustion Residuals (CCR), October 17, 2018.
- Big Rivers Electric Corporation (BREC), 2019, RE: Green Surface Impoundment (AI# 4196 & KPDES# KY0001929): Notification of intent to close the Green Surface Impoundment (Outfall #009) utilizing alternative closure requirements in accordance with 40 CFR 257.103., October 31, 2019.
- Big Rivers Electric Corporation (BREC), 2016, Big Rivers Electric Corporation, Disposal of Coal

 Combustion Residuals (CCR) from Electric Utilities Final Rule, CCR Impoundment Groundwater

 Monitoring System and Statistical Methods Assessment and Certification, June 28, 2016.
- United States Environmental Protection Agency (EPA), 2020, <u>Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; A Holistic Approach to Closure Part A: Deadline to Initiate Closure, 40 CFR Parts 257, Federal Register, Vol. 85, No. 168, August 28, 2020, https://www.federalregister.gov/documents/2020/08/28/2020-16872/hazardous-and-solid-waste-management-system-disposal-of-coal-combustion-residuals-from-electric.</u>
- EPA, 2015, *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule*, 40 CFR Parts 257 and 261, Federal Register, Vol. 80, No. 74,

 April 17, 2015, http://www.gpo.gov/fdsys/pkg/FR-2015-04-17/pdf/2015-00257.pdf.

Assessment Summary

Green River 28.05 to 55.0
KY493284_02

Panther Creek to Pond River

Webster County, Green River Basin

water (Domestic Water Supply).

This part of the stream fully supports aquatic life, fully supports drinking

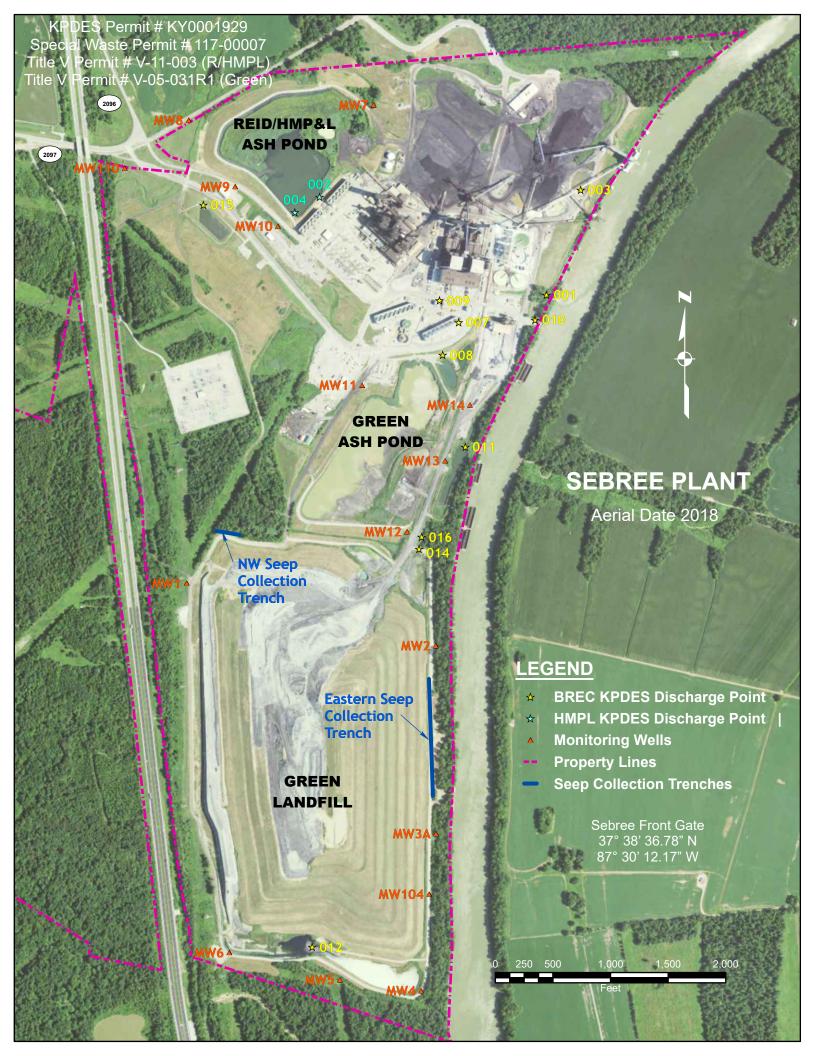
Assessment Date: 10/29/2013				
Use	Cause of Impairment	Suspected Source(s) of Impairment	Basis for Listing	Data Collection and Analysis Methods
(2-FS)				Monitoring Data Collected by Other Agencies or Organizations, Physical/Chemical Monitoring
(2-FS)				Drinking Water Monitoring (Finished Water), Monitoring data more than 5 years old

KDOW cannot ensure that this information is accurate, current, or complete. The information provided in this document is for informational purposes only, is subject to revision or correction at anytime and cannot be relied upon for regulatory or other purposes. This is not an official document. For questions or comments contact KDOW at water@ky.gov or 502-564-3410

Page Created 6/29/2018 Page 1 of 1

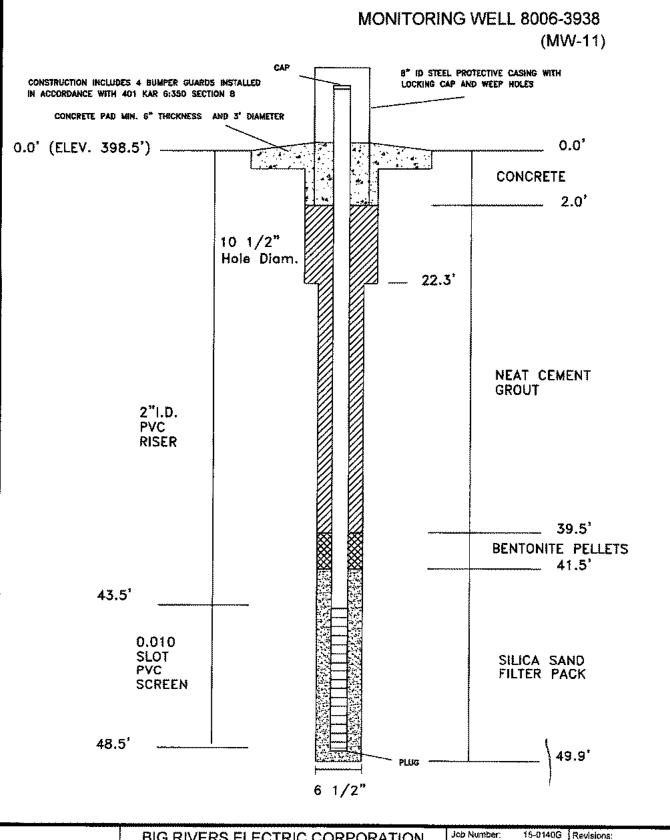
¹ Data locations: Physical/chemical monitoring data and pathogen data can be found on the EPA Water Quality Portal; chemical monitoring data for regulated facilities (e.g. wastewater and drinking water) can be found in the EPA ECHO database (online); biological monitoring summary scores and habitat assessment scores can be found in the EPA STORET database (online); and raw community species data and fish tissue analysis data are available on request through KDOW Open Records (expected in STORET 2015).

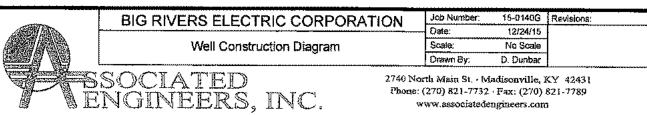
² Data Source(s): ORSANCO, PWS


³ Data Collection Date(s): 1/10/2008 - 7/24/2013

CREATE AMAZING.

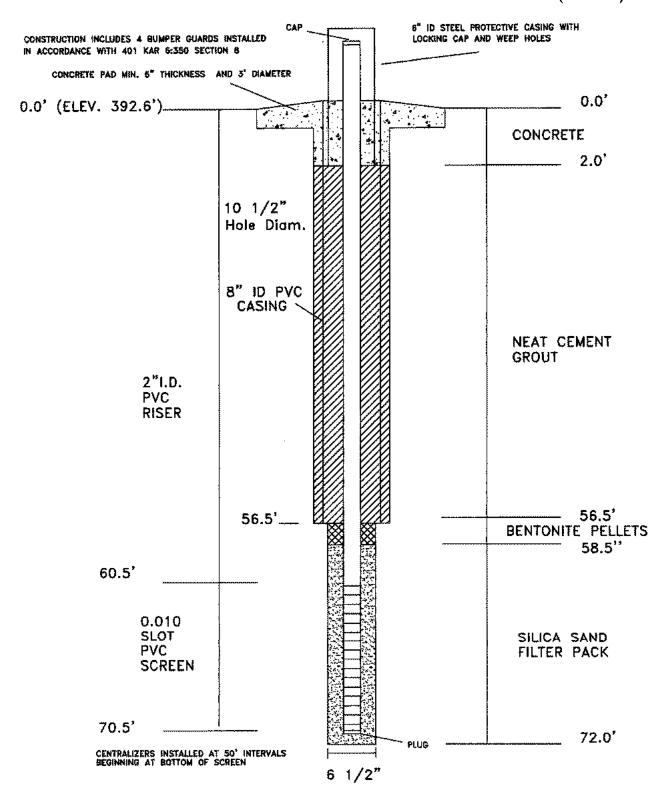
Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 •• 816-333-9400 •• 816-333-3690 •• www.burnsmcd.com

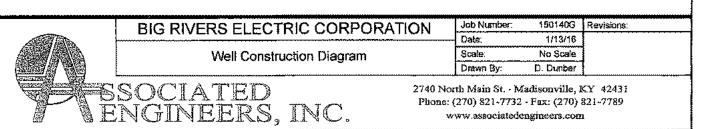




48. Lithologic Log MW-11

From depth (ft)	To depth (ft)	Description
0.0	0.3	Ash
0.3	2.0	Silty clay light brown
2.0	3.1	Silty clay brown
3.1	4.0	Silty clay light gray
4.0	6.7	Silty clay gray moist
6.7	15.0	Silty clay yellowish brown moist
15.0	21.3	Silty clay w/weathered shale light gray
21.3	22.3	Sandy shale light gray soft
	22.3	Auger refusal
22.3	33.0	Sandy shale gray
33.0	35.9	Claystone
35.9	40.4	Sandstone gray
40.4	41.5	Claystone
41.5	44.3	Sandstone gray water
44.3	45.1	Shale gray
45.1	49.9	Sandstone with carbonaceous strks gray water
	49.9	TD

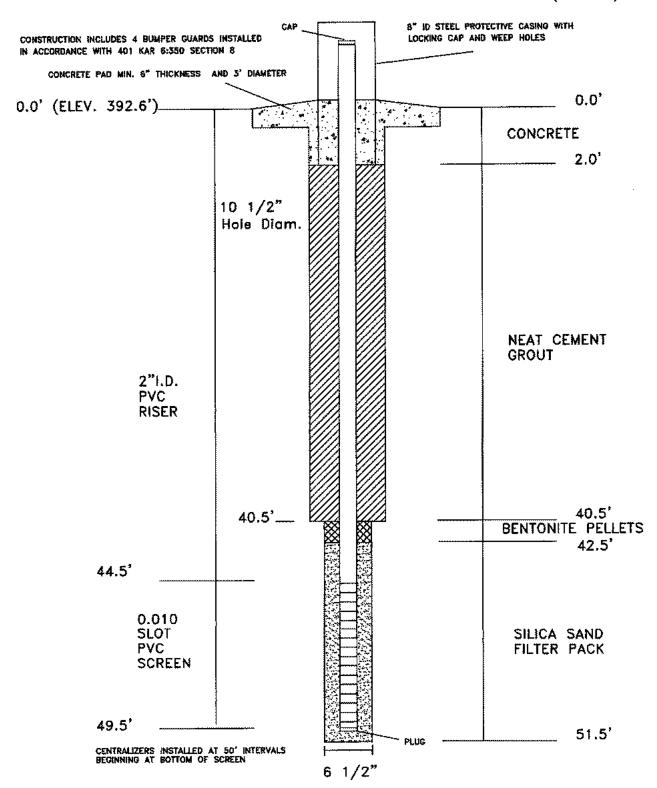



2740 North Main St. - Madisonville, KY 42431 Phone: (270) 821-7732 · Fax: (270) 821-7789 www.associatedengineers.com

48. Lithologic Log MW-12

From	То	Description				
depth (ft)	depth (ft)					
		out to the feet				
0.0	4.0	Silty clay brown fill				
4.0	12.6	Ash gray wet fill				
12.6	13.6	Clay gray wet				
13.6	21.2	Silty clay yellowish brown very moist				
21.2	23.0	Silty clay yellowish brown very moist				
23.0	31.5	Silty clay yellowish brown very moist				
31.5	37.0	Silty clay brown, moist				
37.0	40.5	Silty clay yellowish brown moist				
40.5	52.0	Silty clay brown moist				
52.0	55.0	Silty clay brown very moist				
55.0	56.5	Shale gray soft				
56.5	63.0	Shale gray				
63.0	63.6	Shale and interbedded sandstone gray				
63.6	72.0	Shale gray				
	72.0	TD				

MONITORING WELL 8006-3939 (MW-12)



48. Lithologic Log MW-13

From depth (ft)	To depth (ft)	Description
0.0	1.0	Ash black
1.0	2.7	Silty clay gray
2.7	10.6	Silty clay yellowish brown
10.6	12.8	Silty clay light gray
12.8	23.5	Silty clay yellowish brown wet
23.5	34.2	Silty clay brown very moist
34.2	39.5	Silty clay yellowish brown very moist
39.5	40.5	Sandstone yellowish brown soft weathered
	40.5	Auger refusal
40.5	50.4	Sandstone yellowish brown soft weathered
50.4	51.1	Shale gray
51.1	51.5	Sandy shale gray
	51.5	TD

MONITORING WELL 8006-3940 (MW-13)

 BIG RIVERS ELECTRIC CORPORATION	Job Number:	t50140G	Revisions:
DIG RIVERS ELECTRIC CORT OTATION	Date:	1/13/16	
Well Construction Diagram	Scale:	No Scale	
	Drawn By:	D. Dunbar	
Phone:	th Main St. M (270) 821-7732 ww.associated	Fax: (270)	821-7789

48. Lithologic Log MW-14

From	To	Description
depth (ft)	depth (ft)	
0.0	2.4	A ala falandi.
0.0	2.4	Ash black
2.4	3.8	Silty clay yellowish brown
3.8	11.2	Silty clay brown
11.2	16.9	Silty clay yellowish brown w/sandstone fragments
16.9	21.9	Sandstone yellowish brown soft weathered
21.9	24.7	Shale gray soft
	24.7	Auger refusal
24.7	26.5	Shale gray soft
26.5	39.8	Sandy shale gray
39.8	48.3	Sandstone gray, water
48.3	49.1	Shale and interbedded sandstone gray
49.1	49.3	Sandstone gray
49.3	49.6	Shale gray
	49.6	TD

MONITORING WELL 8006-3941 (MW-14) B" ID STEEL PROTECTIVE CASING WITH LOCKING CAP AND WEEP HOLES CONSTRUCTION INCLUDES 4 BUMPER GUARDS INSTALLED BY ACCORDANCE WITH 401 KAR 6:350 SECTION 8 CONCRETE PAD MIN. 6" THICKNESS AND 3" DIAMETER 0.0' 0.0' (ELEV. 387.7') -CONCRETE 2.0' 10 1/2" Hole Diam. 24.7 NEAT CEMENT **GROUT** 2"1.D. PVC RISER 37.8 BENTONITE PELLETS 39.8 41.8 0.010 SILICA SAND FILTER PACK SLOT SCREEN 46.8 49.6' PLUG -6 1/2" Job Number: 15-0140G Revisions: **BIG RIVERS ELECTRIC CORPORATION** Date: 1/13/16

2740 North Main St. Madisonville, KY 42431 Phone: (270) 821-7732 Pax: (270) 821-7789 www.associatodengineers.com

Scale:

Drawn By:

No Scale

D. Dunbar

TABLE 2
SUMMARY OF MONITORING WELL CONSTRUCTION, GREEN SURFACE IMPOUNDMENT CCR GROUNDWATER MONITORING PROGRAM

BIG RIVERS ELECTRIC CORPORATION - SEBREE STATION GREEN STATION SURFACE IMPOUNDMENT WEBSTER COUNTY, KENTUCKY

		Loca	ation*	Reference TOIC	Elevation*	Casing Length	Size / Type		r Pack erval	Scre Inte		Bottom of Boring
Well No.		Lat	Long	(feet, NAD27)	(feet, NAD27)	(feet, TOIC)	(ID / Material)	(feet, GS	S, NAD27)	(feet, GS	, NAD27)	(feet, GS)
Program Monitoring Wells								Тор	Bottom	Тор	Bottom	
MW-11 (8006-3938)	U/B	37.64262	-87.50325	401.32	398.36	51.5	2 inch / PVC	356.86	348.46	354.86	349.86	49.5
MW-12 (8006-3939)	D	37.63915	-87.50182	395.54	392.35	73.7	2 inch / PVC	333.85	320.35	331.85	321.85	72.0
MW-13 (8006-3940)	D	37.64086	-87.50072	394.60	391.46	52.6	2 inch / PVC	348.96	339.96	346.96	341.96	51.5
MW-14 (8006-3941)	D	37.64220	-87.50001	390.71	387.55	50.0	2 inch / PVC	347.75	337.95	345.75	340.75	49.6

^{*}Reference elevation of monitoring wells surveyed by Associated Engineers, Inc., Madisonville, Kentucky, January 2015 Survey coordinates were based on the Kentucky State Plane, Kentucky Southern Zone, NAD27 datum

PVC = Polyvinyl chloride

ID = Internal Diameter

TOIC = Top of internal casing

GS = Ground Surface

U / B = Upgradient / Background

Table 2 from 2019 Annual Groundwater Monitoring and Corrective Action Report (AECOM, January 2020)

KENTUCKY MONITORING WELL RECORD

Please read all instructions prior to completing this form. Do not write in shaded areas. Completed copies of this form are to be submitted within 30 days of well completion to the Kentucky Natural Resources and Environmental Protection Cabinet, Division of Water - Groundwater Branch, 18 Reilly Road, Frankfort Office Park, Frankfort, Kentucky 40601 Telephone (502) 564-3410.

(TYPE OR PRINT CLEARLY)

CV

(2) GENERAL	INFORMATION:				
Facility Name Bi	g Rivers Electric	Facility Address Po	Box 325	5 Dale Rece	ived
_	P.O. Box 24	City Sebree			
City Hende		State Kenfucky	Zip 424		ANUMBER:
	cky zip 42420			1 0 1 0	0 2 - 9 6 2 5
	USGS Quadrangle Name	County	Latitus		Longitude
(4) WELL LOCATION:	Robards	Webste		7: 38 /7N	
	<u> </u>		<u> </u>	edomatical control of the second second second second	TORY ANALYSIS:
	ELL CONSTRUCTION:	(6) PHYSIOGRAPHIC/HYDR () Blue Grass (OLOGIC REGION:) Ohio River Alluvit	am (Attach Copy	of Results)
Start Date:	•	() E Coal Field ()	W. Coal Field) Jackson Purchase		ie
Finish Date:	Air Rotary		<u> </u>		
Surface Elevation	•	·) Surface Mining) TSCA		,
Total Depth:		()CERCLA () Site Assessment	Laboratory N.	not performing
Depth to Bedrock		() UST () () Other; (←) Sołid Waste Lanc →) Landlarm	lab sei	ruices
(II Applicati	e;	(8) WELLUSE: () Water Level Mon		<u> </u>
Depth to Static Wa	ater: <u>37.70</u> ft.	,-,) Remediation		
	N ETION INFORMATION		CKETCH	(12) LITHOLOGIC LO	ng:
(10) WELL COMP Feel Below Surface	PLETION INFORMATION Hole Casing Casing	(11) WELL CONSTRUCTION	SACIUM:	Feet Below Surface	Description
From: To:	Diameter Type			From To 0 35 5	ilty Clay, brown
0 33	8.75" 4" Sel 80 PUC				imestone, groy
7. 7.7	8.75" 4" Sch 80 Puc Riser	_		29 45	Soundstone gray
23 43	875 4" SI 80 RUC	See		<u> </u>	p. January
	8.75 4" Sch 80 RUC. Screen (.010)	Attach men	/		
	· · · · · · · · · · · · · · · · · · ·				
					
Attach additional st	neets if necessary				
(13) SITE SKETC	H MAP:				

See	•				
See Attachi	ment				
' ' ' ' ' ' '					
		1.0	٠. ا		
			· [
		1	ļ	Attach additional sheets if i	necessary
(14) COMMENTS	S: 10.000				
				_	
Owners	well no. Mw.	-/		FM5m Pa	oject 10, 96155
(15) AFFIRMATIO	ON: The work described above v	vas done under my supervisio	n, and this report is	true and correct to the	best of my knowledge.
Drilling Company	<i>i</i>	State Certification Number of	or Rig Operator's No	Signatu	e of Responsible Certified Driller
	Engineers, Inc.	0202-023		t	MULACUTA
Company Mailing		City	<u> </u>	State Zip Co	1777761
1409 N	U. Forbes Rd.	Le	exing ton	Ky 40	5// Month, Day, Year
Number of Attac	:had		7	ov to Driller's Eiles	DEP-8043
Sheets:	white Copy to Divi	sion of Water, Yellow copy	to Owner, Pilik COP	y to Dimer a Fees	Ponted with State Funds 10:31:91

WELL CONSTRUCTION DATA SHEET DEC 9 3996 Steel Protective-Cover with Locking Cap 2.5 Dimension of -NOTES: . Concrete Pad <u>48 x 48 x 24</u> inches Cement-Bentonite-Grout Schedule_80_ Puc Riser Material Bentonite Seal -4.3' 2.8' 45′ Sand Filter Pack -10' <u> 4</u> —inch Diameter --010 Slot Size, Schedule_80_ <u>Pvc</u> Screen Material 8.75" PROJECT TITLE: Big Rivers, Green Station PROJECT NO.: 96155 OWNER'S WELL NO .: MW-1 AKGWA NO.: 8002-9625 NOT TO SCALE

KENTUCKY MONITORING WELL RECORD

Please read all instructions prior to completing this form. Do not write in shaded areas. Completed copies of this form are to be submitted within 30 days of well completion to the

1409

Sheets:

Number of Attached

Forbes Kd.

Kentucky Natural Resources and Environmental Protection Cabinet, Division of Water - Groundwater Branch, '18 Reilly Road, Frankfort Office Park, Frankfort, Kentucky 40601. Telephone (502) (TYPE OR PRINT CLEARLY) (2) GENERAL INFORMATION: DEC 9 pg6 Date Received: Facility Name Big Rivers Electric Facility Address Mailing Address P.O. Box 24 City (3) AKGWA NUMBER: city Henderson State Ζιp 8002-9630 State Kentucky Owner's Phone (502) 827 - 256/ Zip 42420 Latitude USGS Quadrangle Name Longitude County (4) WELL 87 30 05 W 37 38 *15* N LOCATION: Robands Webster (9) LABORATORY ANALYSIS: (6) PHYSIOGRAPHIC/HYDROLOGIC REGION: (5) GENERAL WELL CONSTRUCTION:) Ohio River Alfuvium (Attach Copy of Results) 1 Blue Grass (X) W Coal Field) E. Coal Field Sampling Date ___ Finish Date: 11/15/96) Jackson Purchase 1 Miss. Plateau Drilling Method: Hir Rotary Analysis Date (7) FACILITY TYPE:) Surface Mining Surface Elevation _______380 III.) RCRA) TSCA Laboratory Name FMSM not performing) CERCLA 1 Site Assessment 47.8 Ħ. Total Depth:) UST X) Solid Waste Landfill *3*0 lab services.) Other;) Landlarm Depth to Bedrock: (If Applicable) (8) WELL USE:) Water Level Monitoring 28.78 Depth to Static Water: _ (X) Water Quality) Remediation) Ambient Monitoring i Other (12) LITHOLOGIC LOG: (11) WELL CONSTRUCTION SKETCH: (19) WELL COMPLETION INFORMATION Feet Below Surface Hole Casing Casing From: To. Diameter Diameter Type 49 Sordstone, gray 4 Sch 80 PUC 30 <u>O 37.8 8.75°</u> Riser 4"5ch 80 PUC 37.8 47.8 8.75 Attachment Serven (.010) Attach additional sheets if necessary (13) SITE SKETCH MAP: Sec Attach ment Atrach additional sheets if necessary (14) COMMENTS: FMSM Project no. 96155 no. MW-2 (15) AFFIRMATION: The work described above was done under my supervision, and this report is true and correct to the best of my knowledge Signature of Responsible Certified Duller State Certification Number or Rig Operator's No. **Drilling Company** 0<u>8</u>02-0237-12 FMSM Engineers, Inc Date /3/6/C Month, Day, Year Zip Code State Company Mailing Address

Lexington

White Copy to Division of Water, Yellow copy to Owner, Pink Copy to Driller's Files

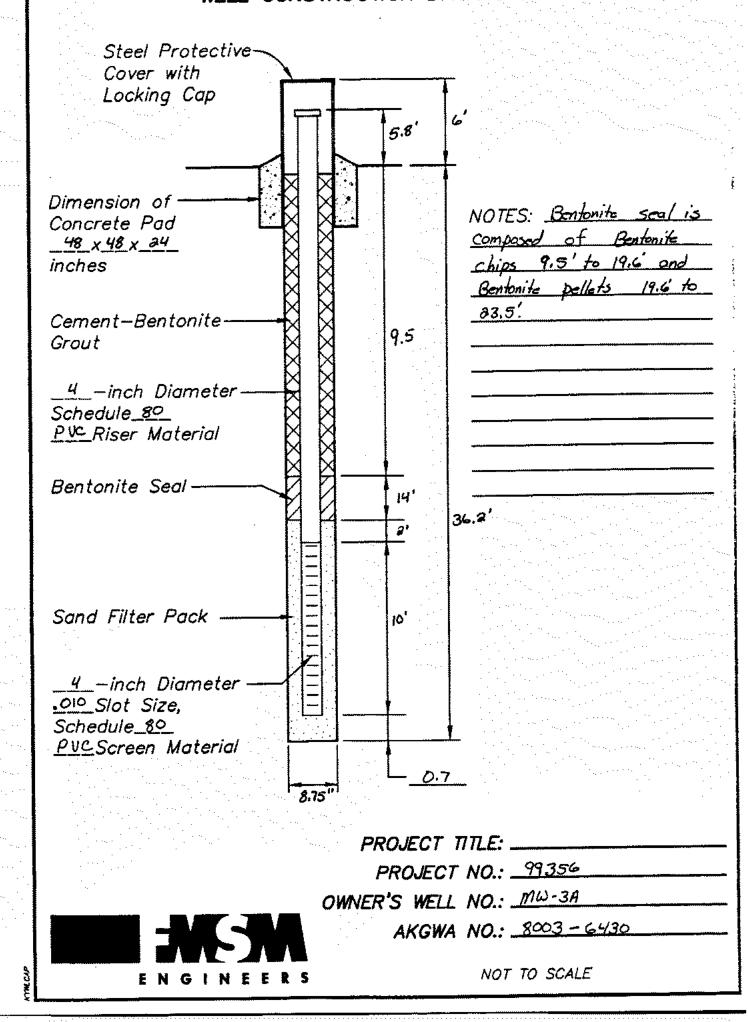
40511

DEP-8043

Printed with State Funds 10/31/91

WELL CONSTRUCTION DATA SHEET Steel Protective-Cover with Locking Cap a.5' Dimension of -NOTES: Concrete Pad <u>48 x 48 x 24</u> inches 31.6 Cement-Bentonite Grout _4_—inch Diameter— Schedule_ <u>২০</u> Puc Riser Material Bentonite Seal-4.2' Sand Filter Pack -10' <u>4</u>_-inch Diameter -.<u>010</u> Slot Size, Schedule_80_ <u>Puc Screen Material</u> 1.2' PROJECT TITLE: Big Rivers, Green Station PROJECT NO.: 96155 OWNER'S WELL NO .: MW-2 AKGWA NO.: 8002-9630 NOT TO SCALE

KENTUCKY MONITORING WELL RECORD


Please read all instructions prior to completing this form. Do not write in shaded area. The original copy of this form must be submitted within 30 days of well completion to the Kentucky Natural Resources and Environmental Protection Cabinet, Division of Water - Groundwater Branch, 14 Reilly Road, Frankfort, KY 40601. Telephone (502) 564-3410.

(TYPE OR PRINT CLEARLY)

(2) GENERAL II	NFORMATION:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1				
_	g Rivers Elaci		Reid-Green ne HMP & L Statio	DEC 0 8 1999				
			7/5 (3) IDENTIFICATION NUMB					
			zip 42					2 0
State Ky Zip 42419 Owner's Ph			ione (270) 844- 6	<i>5031</i> _	8003-6430			
USGS Quadrangle Name			County	Latitude	-		Longitud o	
(4) WELL LOCATION:	Robards		Webster	N 3	7 38	06	w 87 3	0 05
(5) GENERAL W Start Date: Finish Date: Drilling Method: () Auger HS () Auger SS () Air Rotary () Mud Rotary Work Type: () New Well Surface Elevation Depth to Bedrock Wellhead: () Flush Moun () Stickup; incl (10) WELL COM	ELL CONSTRUCTION: / 29 / 99 () Reverse Rotary () Cable Tool () Hand Auger () Other: () Nested Well () a: 389 Total Dept a: 17 Static Wate the Locking Cap (these above surface: PLETION INFORMATIO acces Borehole Casing	() Push/probe () Excavation () Sonic Hework () Plug h: 35.5 er Level: 80.8 () No Cap	(6) FACILITY TYPE: () RCRA () Surface () CERCLA () Site Ass () TSCA () Solid Wa () UST () Landfarm () Other: (7) WELL USE: (check all () Water Quality () Ambient Monitoring () Water Level Monitoring () Hemediation () Other: (11) LITHOLOGI Feet Below Su	Mining essment aste Landfin that apply) () Dry () Not () Des	Hole t Used andoned stroyed	(8) PHYSIO () Blue Gri () E. Coal () Miss. Pl (9) ATTACH Required 1. Site plan 2. Well cons 3. Well local On topo Obtained	GRAPHIC REGIO ass () Onio F Field () W. Co. ateau () Jackso IMENTS: or sketch map truction diagram graphic map, or d by GPS unit y analysis report	N: liver Alluvium al Field
				-		•	M4.142	
	19" 10"	, ,			•			
<u> </u>	5 8.75" 4"	ANC 25x 80 F						
	···		_173	6,2	Thaley.	Soudsto	ne, gray	····
Well Screens:			 			 		
I.D. (in.) 4 Fr	_{от} 25.5 _{То} 35.5 _{Ту}	pe PC Slot Size	e					
I.D. (in.)Fr	omToTy	peSlot Size	e					·
, ,	omToTy	peSlot Size	e					
Annulus Fili and								
Feet Below Sui From	тасе Го	Material						
0	a Concrete				**********			_
	7.5 Coment -8	entonite Grou	+					
	9.6 Bentonite							
	3.5 Bentonite							
	.2 Sond		·					
<u> </u>	P) P JURO							
		11 425 0000			K L.	~~~	be above	
	Top of we flood elevent		leted 6' above	graine The second				243 <i>5</i> 6
			der my supervision, and this	report is t	rue and ce)	
Drilling Company		······································	ication Number or Rig Opera		<i>-</i>	V/	Responsible Certif	
	Engineers, I		2-0837-14		()	TH	MAUT	
Company Mailing	Address	······································	City		State	Zip Code	Date	515
1409 N.	Forbes R	U .	Lexington		Ky	40511	Month, Day,	Year
Number of Attac	hed	Division of Water, Y	ellow Copy to Owner, Pink	Copy to I	Oriller's Fi	iles Printe	DEP-8043	Jan 1 1991

WELL CONSTRUCTION DATA SHEET

KENTUCKY MONITORING WELL RECORD

Please read all instructions prior to completing this form. Do not write in shaded areas. Completed copies of this form are to be submitted within 30 days of well completion to the Kentucky Natural Resources and Environmental Protection Cabinet. Division of Water - Groundwater Branch, 18 Reilly Road, Frankfort Office Park, Frankfort, Kentucky 40601 Telephone (502) 564-3410.

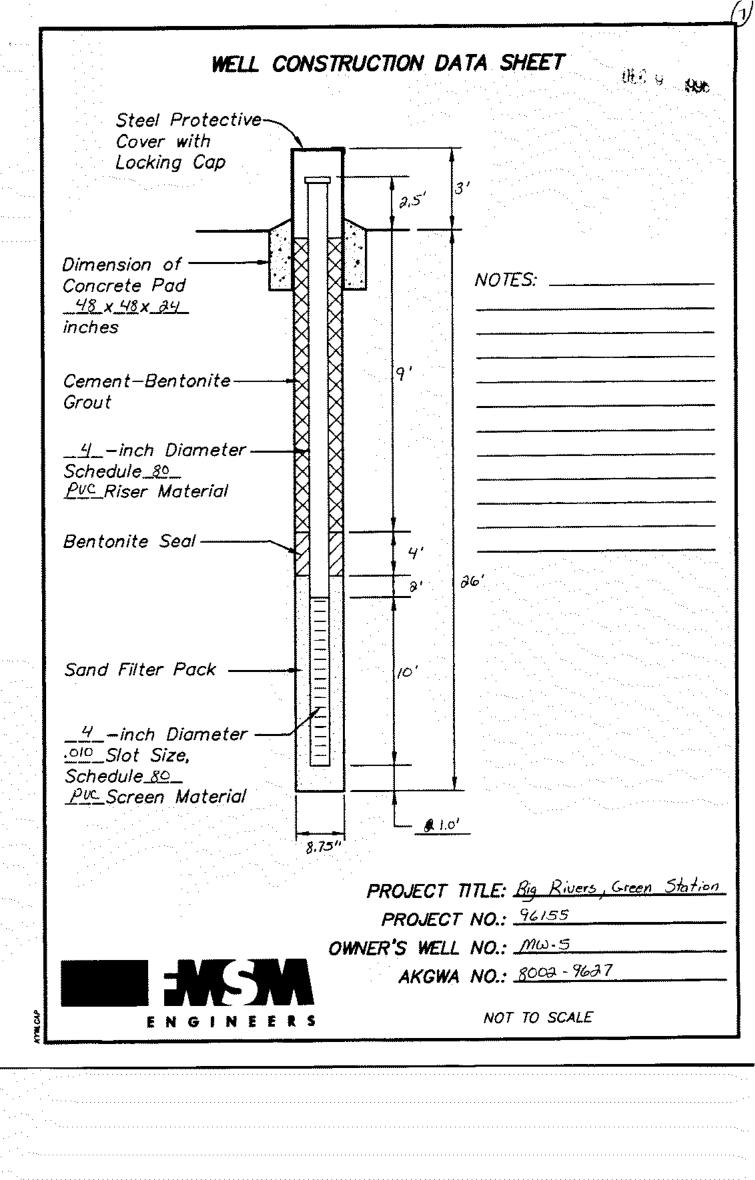
(TYPE OR PRINT CLEARLY)

(2) GENERAL INFORMATION:		
Facility Name Big Rivers Electric	Facility Address	Date Received: DEC 9 1996
Mailing Address P.O. Box 94	City	33 AKGWA NUMBER:
city <u>Henderson</u>	State Zip	80002-9628
State Kentucky zip 42420	Owner's Phone (502) 827 - 256/	
(4) WELL USGS Quadrangle Name LOCATION: Robards	County Latitu Webster 31	congresse 7 37 44N 87 30%04 W
(5) GENERAL WELL CONSTRUCTION:	(6) PHYSIOGRAPHIC/HYDROLOGIC REGION:	(9) LABORATORY ANALYSIS:
Start Date: 11/13/94	() Blue Grass () Ohio River Alluvi	
Finish Date: 11/15/96	()E. Coal Field () W. Coal Field () Miss. Plateau () Jackson Purchas	se Samping Date
Drilling Method: Air Potury		Analysis Date
Surface Elevation: 380 It.	()RCRA ()TSCA	t aboratory Namo
Total Depth: 38.4 It.	() CERCLA () Sate Assessment () UST (🔀) Solid Waste Lan	EMSM Not Derforming
Depth to Bedrock:ft	() Other; () Landlarm	dill FMSM not performing lab services.
(If Applicable)	(s) WELLUSE: () Water Level Mor	
Depth to Static Water:	(X) Water Quality () Remediation () Ambient Monitoring () Other	
(10) WELL COMPLETION INFORMATION	(11) WELL CONSTRUCTION SKETCH:	(12) LITHOLOGIC LOG:
Feet Below Surface Hole Casing Casing		Feet Below Surface Description
From To: Diameter Diameter Type		0 15 Silty Chy, brown
0 32.4 8.75" 4"\$3.80 Puc	~	15 33 Sondstone, gray
Hiser	Sec	
22.4 32.4 8.75" 4" S.L 10 PUC	Attachment	
22.4 32.4 8.75" 4" Sch 80 PUC Screen (.010)		
Attach additional sheets if necessary		
(13) SITE SKETCH MAP:		
See Attachment		
Attachment		
and the second second	· · · · · · · · · · · · · · · · · · ·	
		Attach additional sheets direcessary
		Author desired and a vice start
(14) COMMENTS:		
. 11	,	comment of the comment
Owners well no. MW-4		FMSM Project no. 96155
(15) AFFIRMATION: The work described above v	was done under my supervision, and this report is	true and correct to the best of my knowledge.
Drilling Company	State Certification Number or Rig Operator's No.	Signal re of Responsible Centried Driller
FMSM Engineers, Inc.	0202 - 0237 - 12	() BUCHIOCOT
Company Mailing Address	City	State Zip Code Date
1409 N. Forbes Rd.	Lexington	Ky 40511 Month Day, Year ?
Number of Attached	······································	DEP-8043
Sheets:3 White Copy to Divi	ision of Water, Yellow copy to Owner, Pink Co	py to Driller's Files Printed with State Funds 10/31/91

KENTUCKY MONITORING WELL RECORD

Please read all instructions prior to completing this form. Do not write in shaded areas, Completed copies of this form are to be submitted within 30 days of well completion to the water Branch, 18 Reilly Road, Frankfort Office Park, Frankfort, Kentucky 40601. Telephone (502)

Number of Attached


Sheets:

8002-9627 Kentucky Natural Resources and Environmental Protection Cabinet, Division of Water - Ground-564-3410. (TYPE OR PRINT CLEARLY) (2) GENERAL INFORMATION: Facility Name Big Rivers Electric Date Received: Facility Address Mailing Address P.O. Box 24 City (3) AKGWA NUMBER: City Henderson State 8008-9627 State Kentucky zip 42420 Owner's Phone (502) 827-2561 USGS Quadrangle Name Latitude (4) WELL Longitude 87 30 10 ¥ Webster 37 37 41 N LOCATION: Robards (9) LABORATORY ANALYSIS: (6) PHYSIOGRAPHIC/HYDROLOGIC REGION: (5) GENERAL WELL CONSTRUCTION:) Blue Grass) Ohio River Alluvium (Attach Copy of Results) (🔀 W. Coal Field) E. Coal Field Finish Date: 11/15/96 Sampling Date) Miss. Plateau) Jackson Purchase Drilling Melhod: Air Rotary Analysis Date _ (7) FACILITY TYPE:) Surface Mining Surface Elevation: _____ 380 ft.) TSCA Laboratory Name CERCLA) Site Assessment Total Depth: _____ 35 FMSM not performing () Solid Waste Landfill) UST) Landlarm Depth to Bedrock: _) Other: lab services. (If Applicable)) Water Level Monitoring MWFLL USE: Depth to Static Water: 21.83 (X) Water Quality) Remediation) Ambient Monitoring (12) LITHOLOGIC LOG: (11) WELL CONSTRUCTION SKETCH: (10) WELL COMPLETION INFORMATION Feet Below Surface Feet Below Surface Hole Casing Casing FROIT From. To: Diameter 10 Silty Clay, brown 26 Sandstone, gray 0 0 15 8.75" 4"5ch80 Puc Riser <u>15 .45 8.75"</u> 4"5kh 80 AVC Attachment creen (.010) Attach additional sheets if necessary (13) SITE SKETCH MAP: Attach additional sheets if necessary (14) COMMENTS: Project no. 96155 FMSM Owners well no. MW-5 (15) AFFIRMATION: The work described above was done under my supervision, and this report is true and correct to the best of my knowledge. Signature of Responsible Certified Driller State Certification Number or Rig Operator's No. **Drilling Company** 7~~ FMSM Engineers, Inc. 0202-0237-12 State Žip Code City Company Mailing Address Month, Day, Year Lexington 40511 Forbes Rd. N. 1409 DEP-8043

White Copy to Division of Water, Yellow copy to Owner, Pink Copy to Driller's Files

Printed with State Funds 10/31 91

		IG WELL RECORD			
Completed copies of this form a	are to be submitte	g this form. Do not write in shade ed within 30 days of well completio	in to the		
		otection Cabinet, Division of Water - , Frankfort, Kentucky 40601, Telepho		isterest and the same	
564-3410. (TY	PE OR PRINT	T CLEARLY)			
(2) GENERAL INFORMATI	ON:				
Facility Name Big Rivers	Electric	Facility Address		Date Rece	wed AEC O SEA
Mailing Address P.O. Box					A.1.1.1.1.27 P.17
city Herderson		State	ıρ	1 1	NUMBER:
State Kentucky		F	•	[8][9]	08-968
(4) WELL USGS Quadra		County	Latitude		Longitude
LOCATION: Robaro		Webster	37	37 45N	87 30 27
(5) GENERAL WELL CONSTRU		(6) PHYSIOGRAPHIC/HYDROLOGIC	C REGION:	(9) LABORAT	ORY ANALYSIS:
Start Date: 11/14/96		() Blue Grass () Ohio	River Alluvium	n (Attach Copy	of Results)
Finish Date: 11/15/96		() E Coal Field (X) W Co () Miss. Plateau () Jacks		Sampling Dat	e
Drilling Method: Air Rotor	rv L	(7) FACILITY TYPE: () Surla	ce Minina	Analysis Date	
Surface Elevation	380 H	() RCRA () TSCA	4	Laboratory Na	ame, <u>-</u>
Total Depth: 43.0	11.	() (IST () Solid	Assessment Waste Landh	FMSM 1	not performing rvices.
Depth to Bedrock: 27 (If Applicable)	!t.	() Other, () Land	larm	lab se	rvices.
Depth to Static Water: 20.		(*) WELLUSE : () Wate (X) Water Quality () Remo	r Level Monito	oring	
1		() Ambient Monitoring	Julauon		
WALLES & ACCEPT PRIORITIES	DASA TION	() Other	ъ. 1	(12) LITHOLOGIC LO	OG.
(10) WELL COMPLETION INFOR	Casing Casing	(11) WELL CONSTRUCTION SKET	-n:	Feet Below Surface	Description
	ıameter Type	the second secon		From To	Silty Clav. hunun
0 33 8.75" 4"	54 80 Puc			a7 45 5	Silty Clay, brown Sandstone, gray
	iser	500			
33 43 8.75" 4°	Sel go Puc	See Attachment			· · · · · · · · · · · · · · · · ·
<u> </u>	ten (,0/0)	Miachmeni			
Attach additional sheets if necessary					
(53) SITE SKETCH MAP:					
AND OUR DISCIPLIANCE.					
~					
See Attachment					
H Machmen (
e de la companya de La companya de la co					
				Astach additional sheets dis	necessary
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	William William 1	
(14) COMMENTS:					
· .					
Owners well no	MW-6			FMSm L	Project Na 96155
		as done under my supervision, and t	his report is tr	***************************************	
Drilling Company		State Certification Number or Rig Op	perator's No.		e of Besponsible Certified Drille
FMSM Engineers	Inc.	0202-0237-	12		nwing
Company Mailing Address	· · · · · · · · · · · · · · · · · · ·	City	,	State Zip Co	12/3/96
• · · · · · · · · · · · · · · · · · · ·	4m 1	f	4 .	1//	CT// (Adonth) (Daily Mook
1409. N Forbe	s Rd	Lexingi	ton	Ky 403	DEP-8043

WELL CONSTRUCTION DATA SHEET Web a 1990 Steel Protective-Cover with Locking Cap 2.5 Dimension of -NOTES: _ Concrete Pad <u>48 x 48 x 34</u> inches 26.8' Cement-Bentonite-Grout <u>4</u>—inch Diameter-Schedule_80_ Pvc_Riser Material Bentonite Seal -8.2' Sand Filter Pack -10' <u> 4</u>—inch Diameter -.010 Slot Size, Schedule 80_ Puc Screen Material

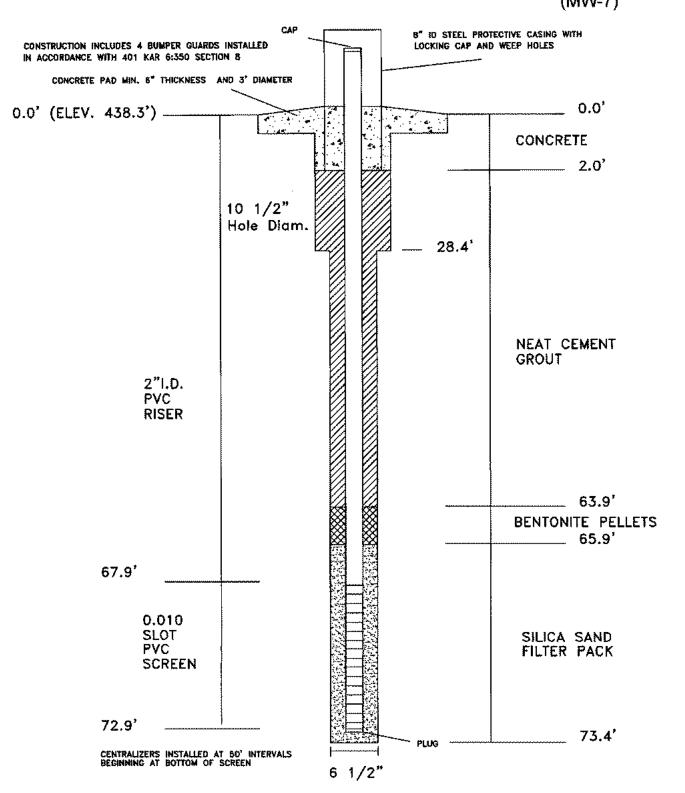
PROJECT TITLE: Big Rivers, Green Station

PROJECT NO.: 96/55

OWNER'S WELL NO .: MW-6

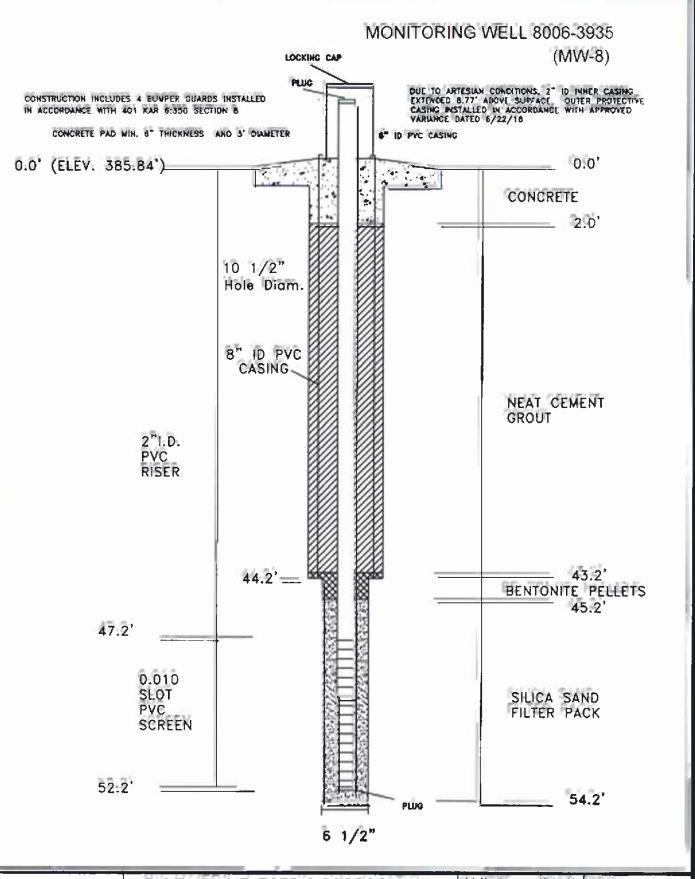
8.75"

AKGWA NO .: 8008 - 9686

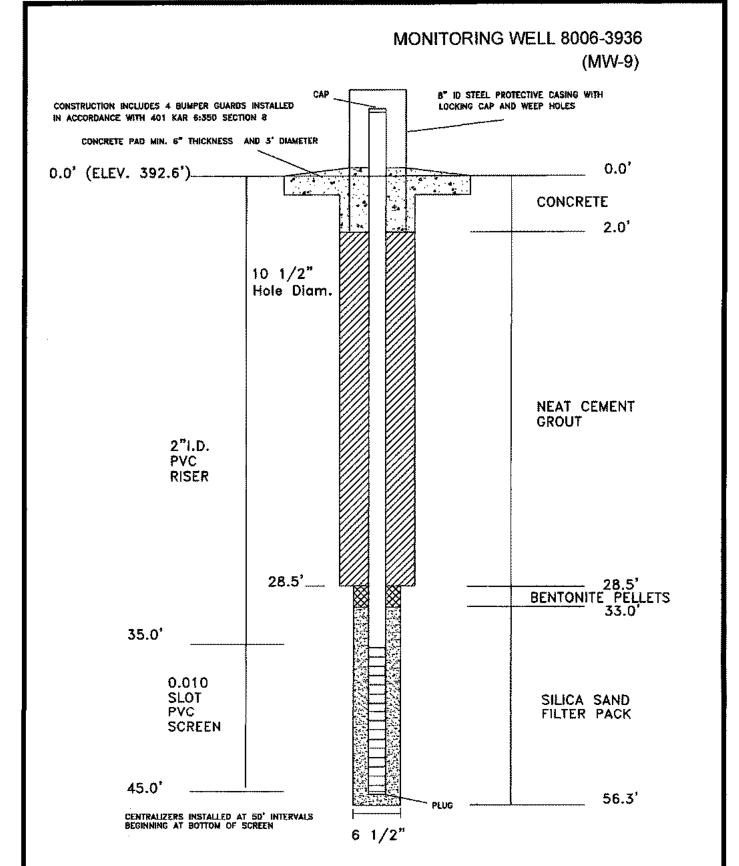

NOT TO SCALE

48. Lithologic Log MW-7

From depth (ft)	To depth (ft)	Description
0.0	6.5	Silty clay brown
6.5	11.7	Silty clay brown, moist
11.7	12.9	Silty clay yellowish brown moist
12.9	15.5	Sandy clay yellowish brown moist
15.5	18.8	Sandy clay yellowish brown moist
18.8	24.1	Silty sand yellowish brown wet
24.1	28.4	Sandstone yellowish brown weathered
	28.4	Auger refusal
28.4	33.8	Sandstone yellowish brown weathered
33.8	37.3	Shale dark gray
37.3	49.8	Shale gray soft
49.8	51.4	Shale w/interbedded shale gray soft
51.4	55.3	Sandstone gray hard
55.3	57.6	Sandstone w/sandy shale streaks gray
57.6	63.4	Sandy shale gray
63.4	66.7	Shale gray
66.7	67.0	Sandy shale gray
67.0	67.5	Shale gray w/interbedded sandstone
67.5	73.4	Sandstone gray
	73.4	TD


MONITORING WELL 8006-3934 (MW-7)

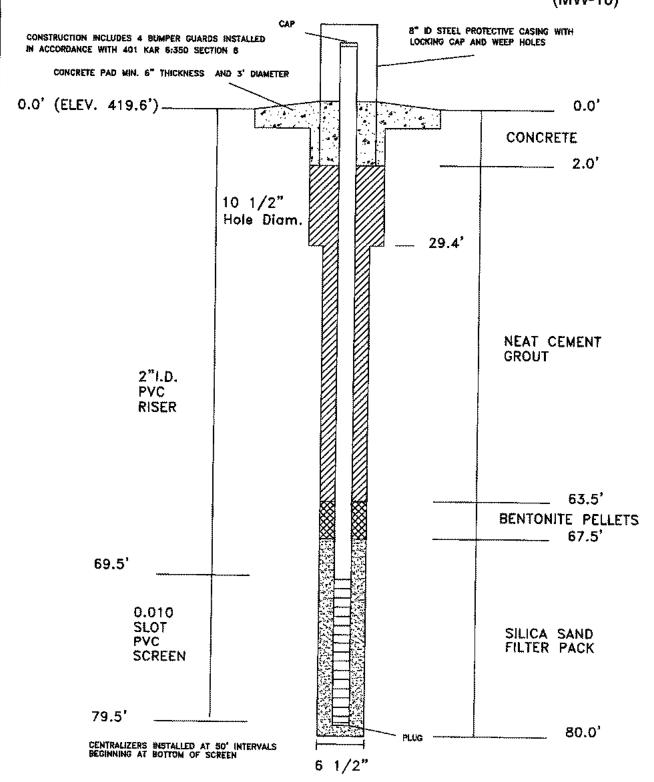
48. Lithologic Log MW-8

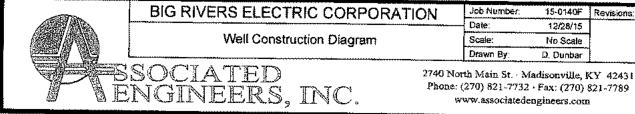

From depth (ft)	To depth (ft)	Description
0.0	0.3	Topsoil
0:3	3.0	Silty clay brown
3.0	7.0	Silty clay gray moist
7.0	10.0	Silty clay brown very moist
10.0	21.5	Silty clay brown wet
21.5	27.0	Silty clay gray wet
27:0	44.2	Silty clay w/gravel gray wet
	44.2	Auger refusal
44.2	48:4	Sandstone gray hard
48:4	49.5	Sandstone W/carbonaceous strksgray/nard
49.5	51.0	Sandstone gray hard
51:0	51.8	sandstone w/ shalle striks gray
51:8	54.3	vergranovstrues batchedrami time alents vones
	54.2	TB

	BIG RIVERS ELECTRIC CORPORATION	Job Number	15-01404	Revisions:
		Date	12/28/15	
	Well Construction Diagram	Scale:	No Scale	
		Drawn By:	D. Dunbar	
77		North Main St I no: (270) 821-773 www.sssociated	2 · Fax: (270)	821-7789

48. Lithologic Log MW-9

From	То	Description
depth (ft)	depth (ft)	
0.0	1.5	Clay dark brown trace grass and roots
1.5	12.0	Clay yellowish brown moist
12.0	23.2	Clay brown wet
23.2	28.2	Sandy clay gray wet
28.2	28.5	Sandstone yellowish brown soft weathered
	28.5	Auger refusal
28.5	30.5	Sandstone yellowish brown soft weathered
30.5	33.2	Sandstone gray soft
33.2	34.8	Sandstone gray
34.8	3 6 .6	Sandstone yellowish brown soft weathered
36.6	44.6	Sandstone gray
44.6	50.8	Shale and interbedded sandstone gray abundant carbonaceous laminations
50.8	53.6	Shale gray
53. 6	56.3	Shale and interbedded sandstone gray
	56.3	TD



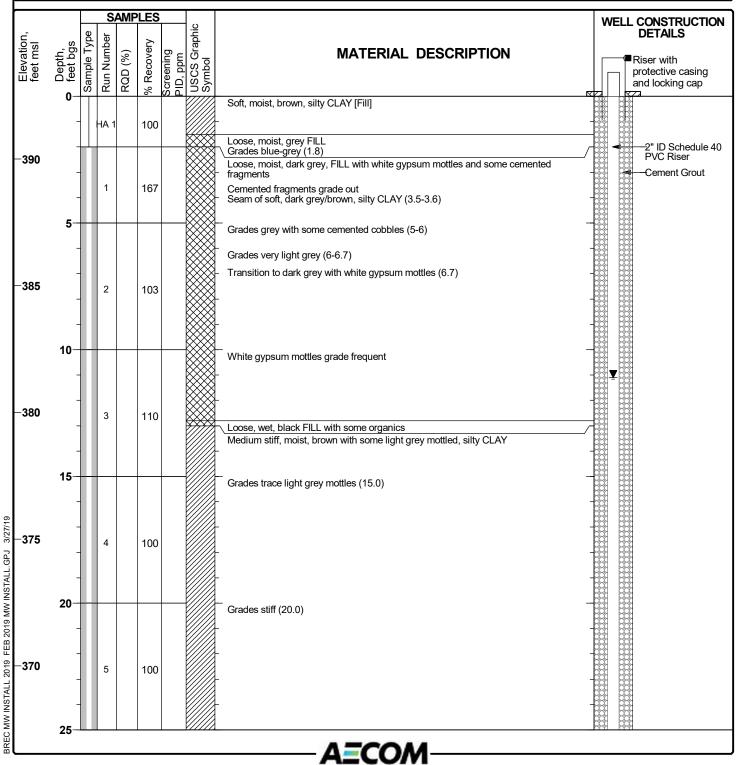

	BIG RIVERS ELECTRIC CORPORATION	Job Number:	15-0140F	Revisions:
		Date:	12/28/15	
	Well Construction Diagram	Scale:	No Scale	
	*	Drawn By:	D. Dunbar	
PE	Phone: ((270) 821-7732	víadisonville, k 2 · Fax: (270) (engineers.com	921-7789

48. Lithologic Log MW-10

From depth (ft)	To depth (ft)	Description
0.0	0.3	Dense graded aggregate
0.3	12.9	Silty clay yellowish brown
12.9	14.0	Silty clay brown moist
14.0	17.5	Sandy clay brown wet
17.5	28.5	Sandy clay yellowish brown wet
28.5	29.4	Shale gray soft
	29.4	Auger refusal
30.0	35.8	Shale gray soft
35.8	37.6	Sandstone gray
37.6	48.5	Shale and interbedded sandstone gray
48.5	52.3	Sandstone gray
52.3	54.5	Shale and interbedded sandstone gray
54.5	55.6	Shale gray
55.6	59.7	Shale gray soft
59.7	60.9	Shale and interbedded sandstone gray
60.9	64.6	Shale gray
64.6	65.6	Sandy shale gray
65.6	66.5	Sandstone gray
66.5	68.4	Shale and interbedded sandstone gray
68.4	79.4	Sandstone gray
79.4	80.0	Shale and interbedded sandstone gray
	80.0	TD

MONITORING WELL 8006-3937 (MW-10)

Project: Sebree Station - Green Landfill

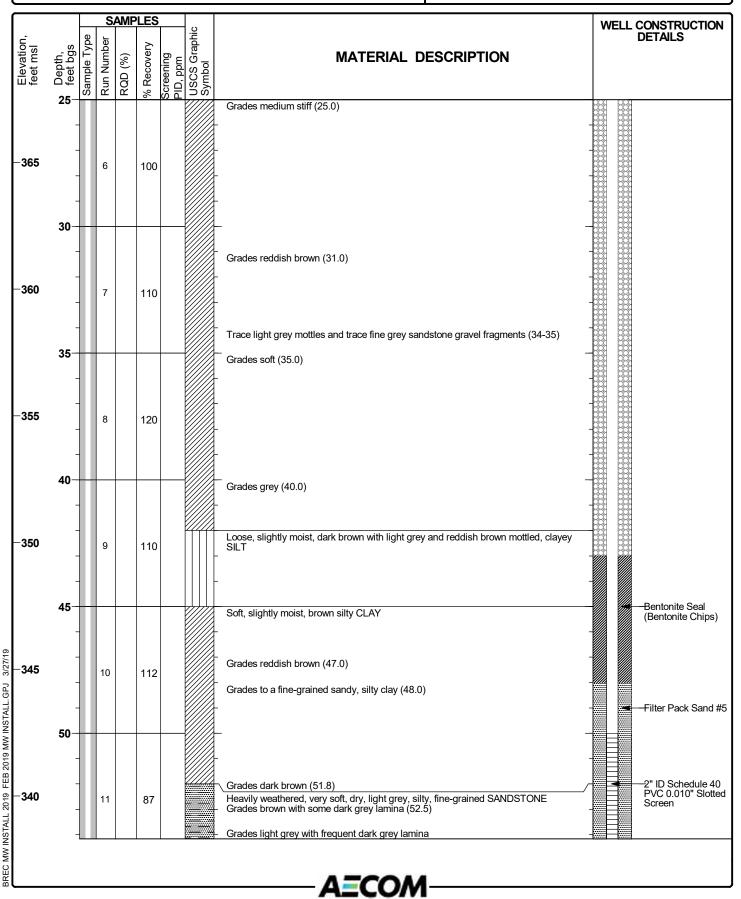

Site: Robards, KY

Project Number: 60594108

MW-104

Sheet 1 of 3

Date(s) Drilled and Installed	2/19/19-2/20/19	Logged By	S. Lillard	Reviewed By	M. Wagner
Drilling Method	Rotosonic	Drilling Contractor	Cascade	Total Depth of Borehole	60.0 feet
Sampling Method	4" Sonic Sampler	Water Level	11.1 b.g.s. (measured 2/22/19)	Top of Casing Elevation	395.13 feet msl
Size and Type of Well Casing	2" PVC Schedule 40	Screen Perforation	0.010 inch slotted	Ground Surface Elevation	392.47 feet msl
Seal or Backfill	Bentonite/Cement Grout	Coordinates	N 4,164,939.61 E 455,797.24	AKGWA#	8007-1139

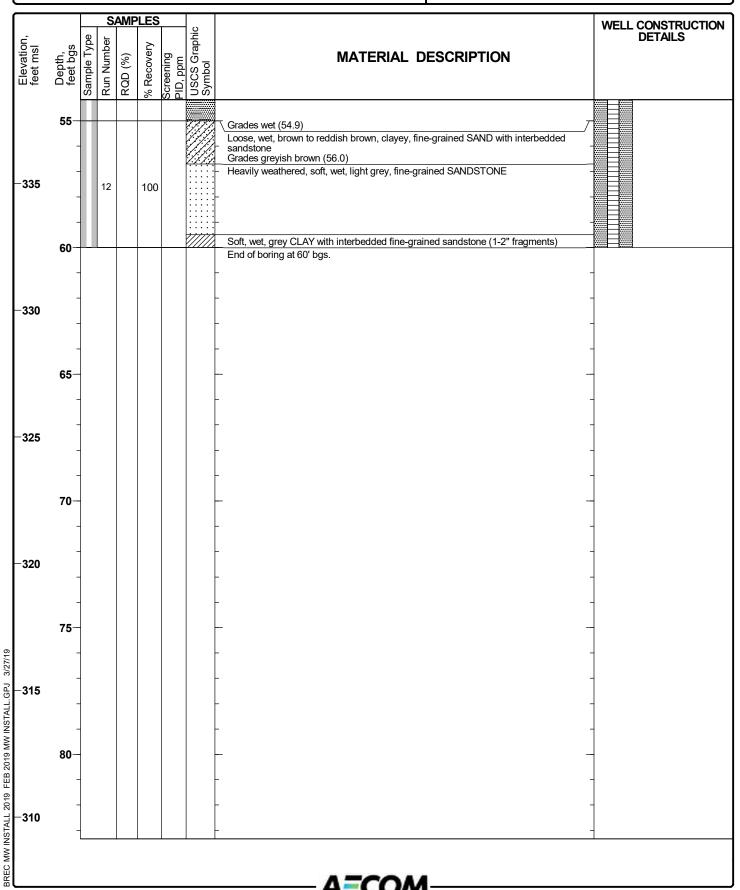

Project: Sebree Station - Green Landfill

Site: Robards, KY

Project Number: 60594108

MW-104

Sheet 2 of 3


Project: Sebree Station - Green Landfill

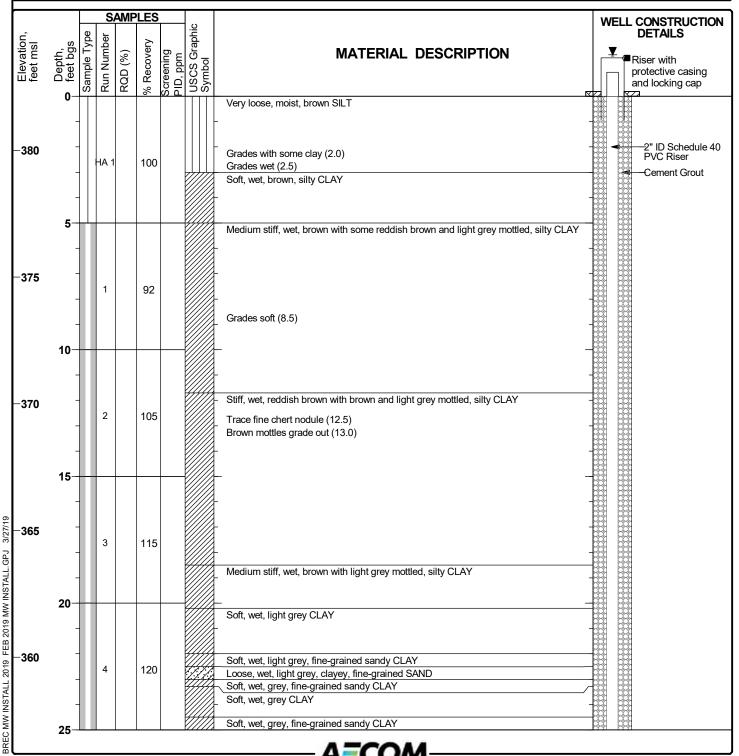
Site: Robards, KY

Project Number: 60594108

MW-104

Sheet 3 of 3

Project: Sebree Station - Reid/HMPL Landfill

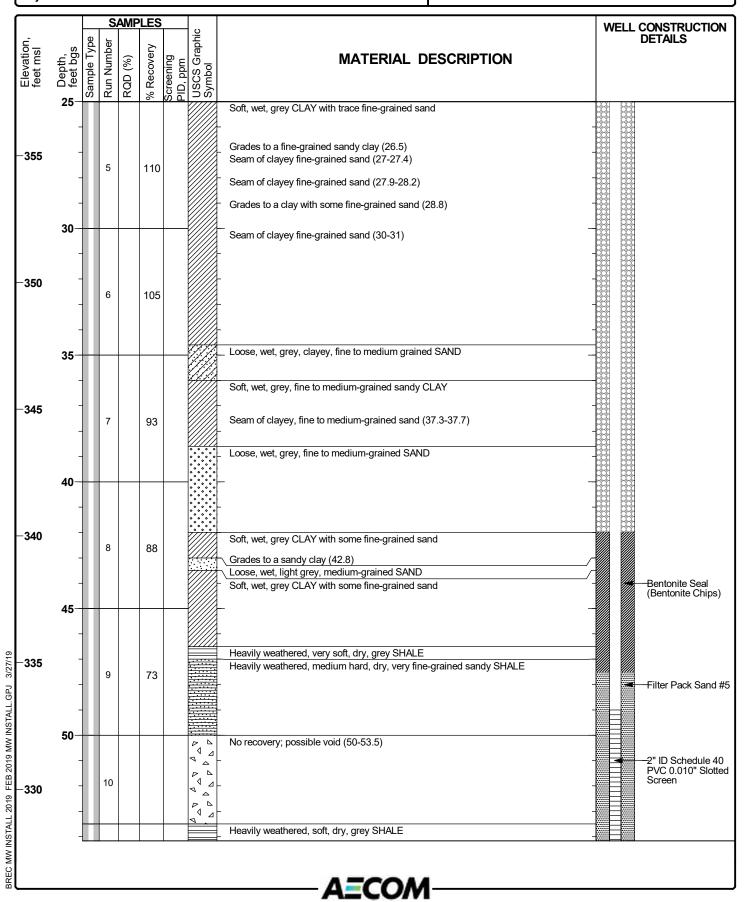

Site: Robards, KY

Project Number: 60594107

MW-110

Sheet 1 of 3

Date(s) Drilled and Installed	2/20/19-2/21/19	Logged By	S. Lillard	Reviewed By	M. Wagner
Drilling Method	Rotosonic	Drilling Contractor	Cascade	Total Depth of Borehole	59.0 feet
Sampling Method	4" Sonic Sampler	Water Level	-4.51 b.g.s. (measured 2/24/19)	Top of Casing Elevation	388.70 feet msl
Size and Type of Well Casing	2" PVC Schedule 40	Screen Perforation	0.010 inch slotted	Ground Surface Elevation	382.14 feet msl
Seal or Backfill	Bentonite/Cement Grout	Coordinates	N 4,166,849.09 E 454,966.80	AKGWA#	8007-1138

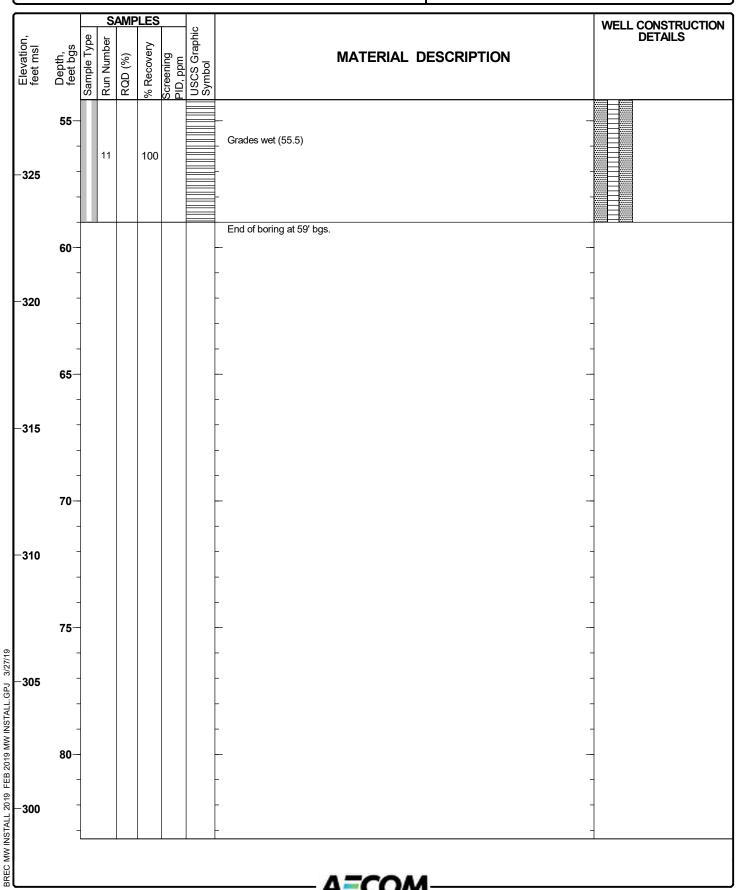

Project: Sebree Station - Reid/HMPL Landfill

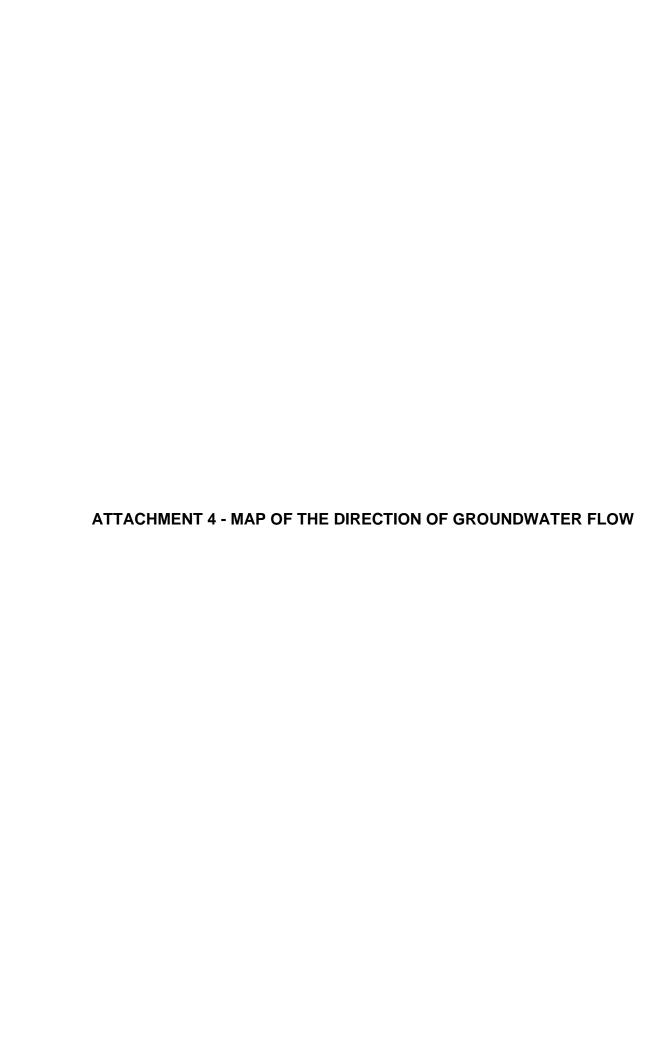
Site: Robards, KY

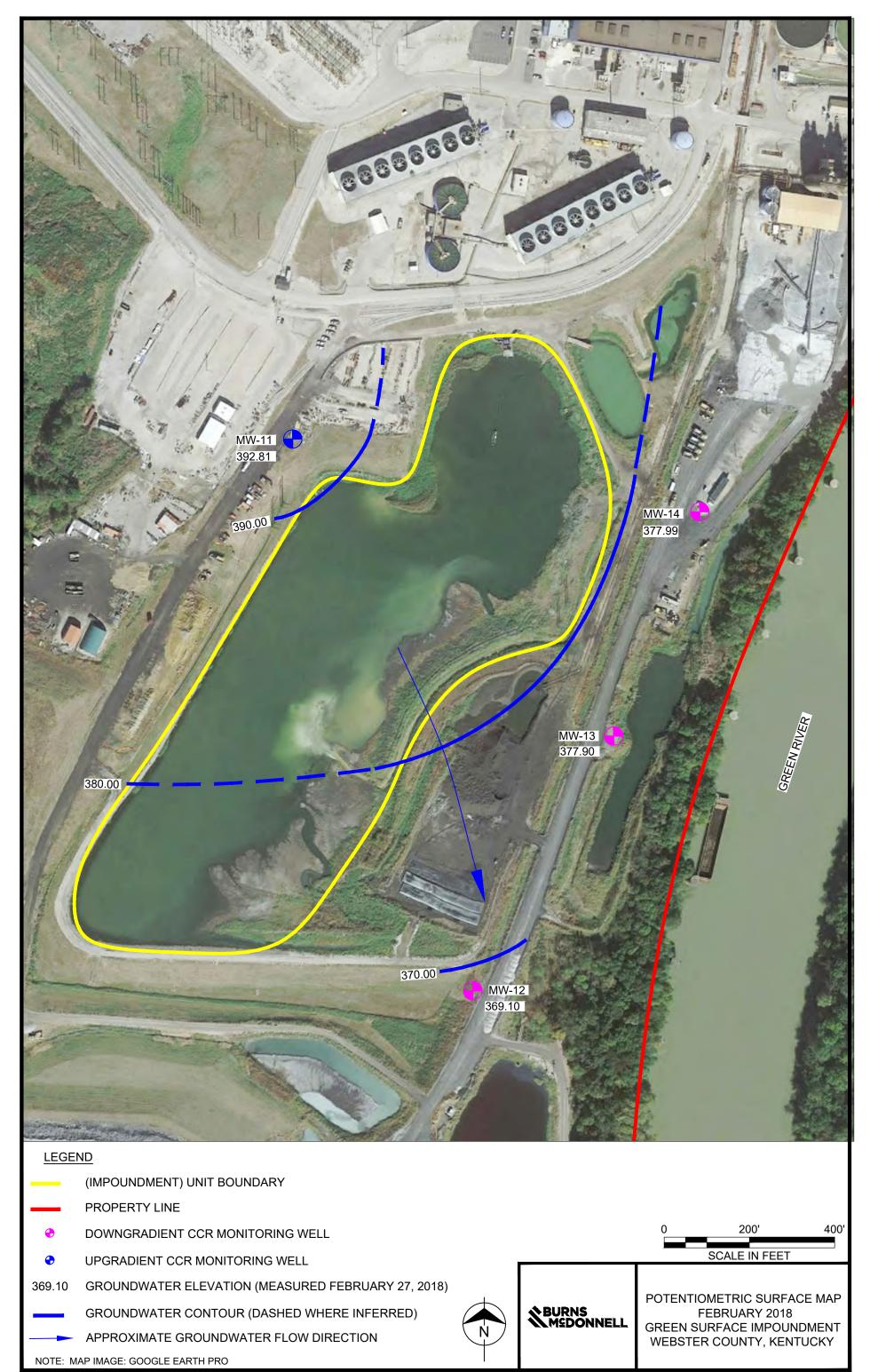
Project Number: 60594107

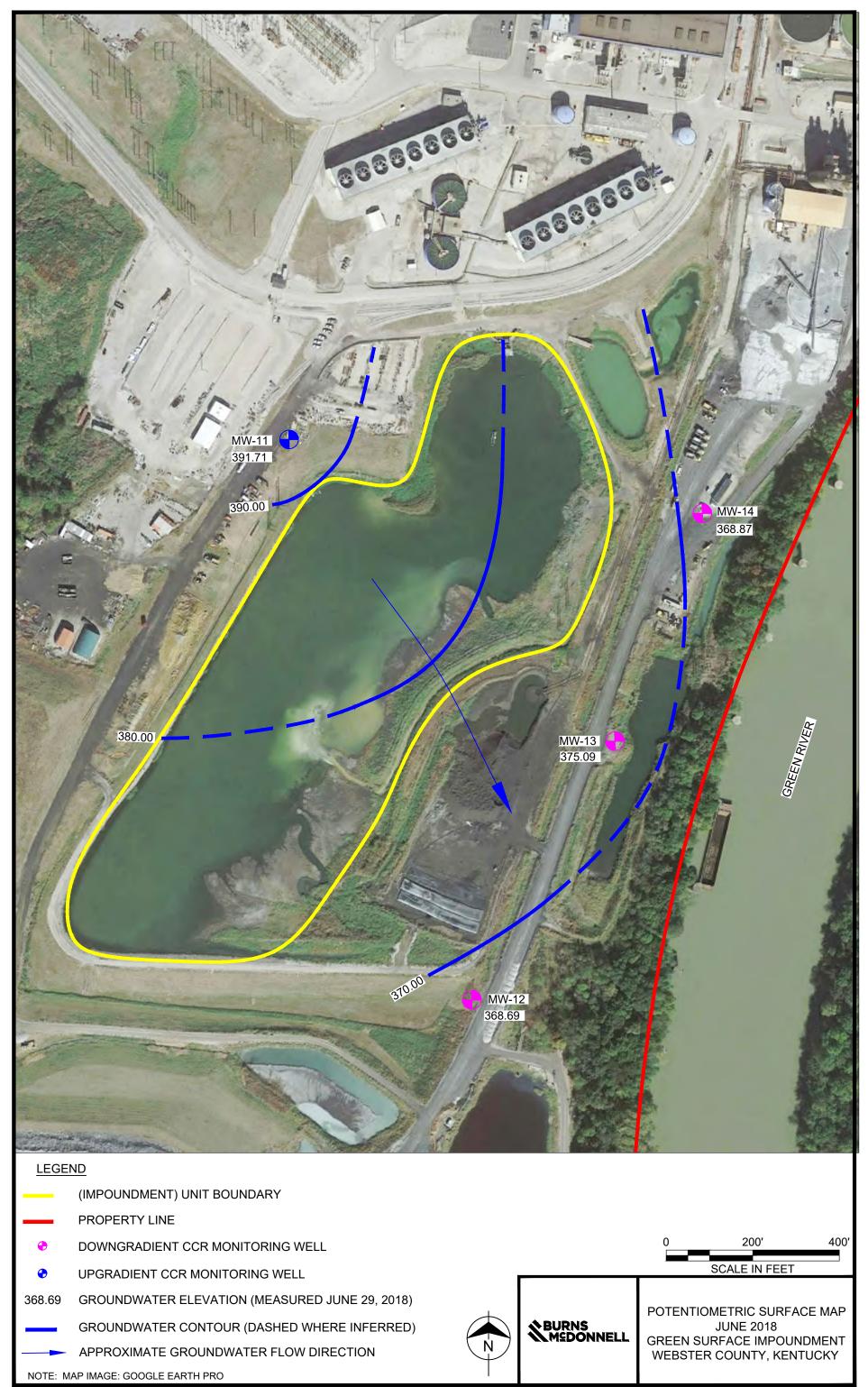
MW-110

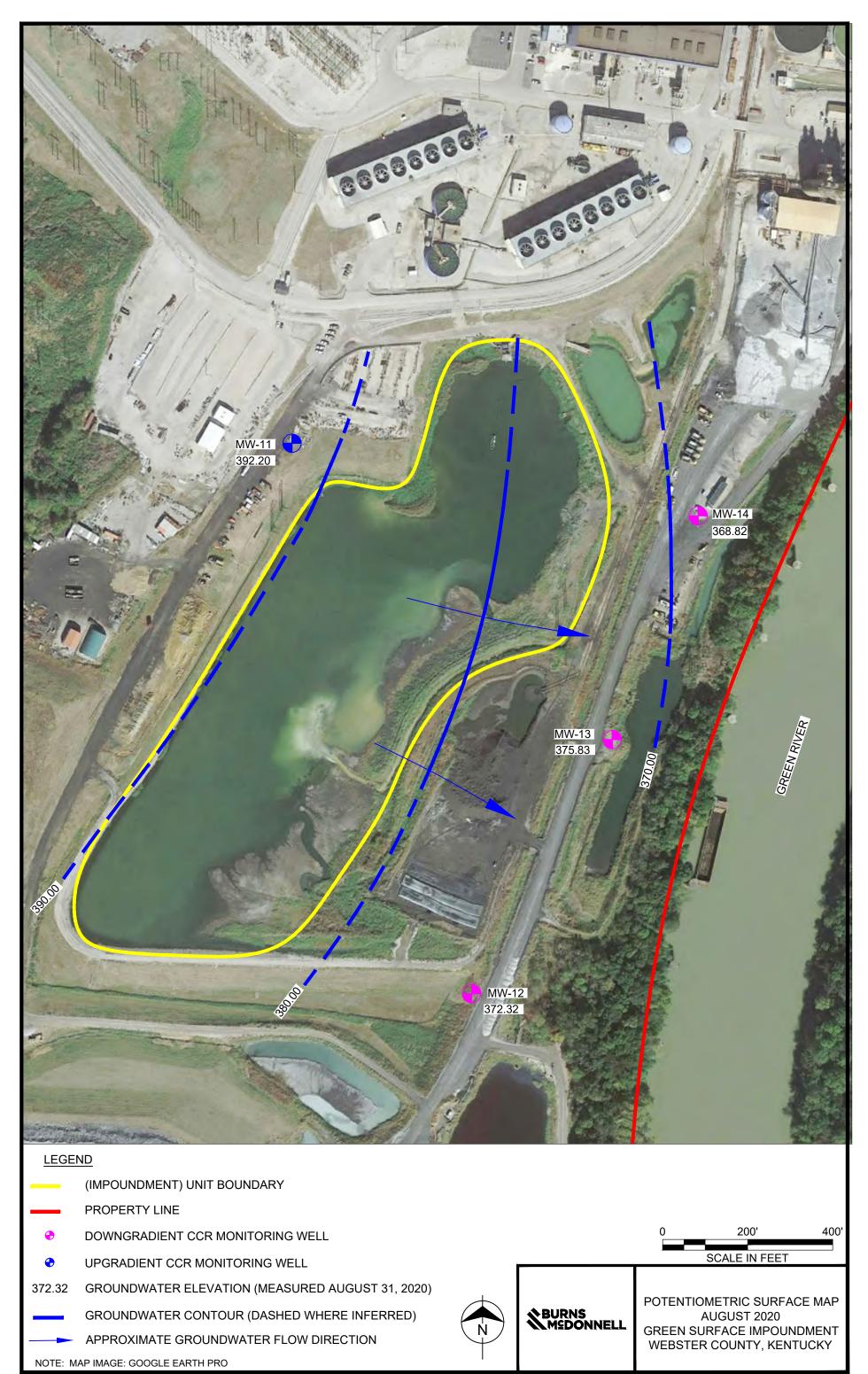
Sheet 2 of 3

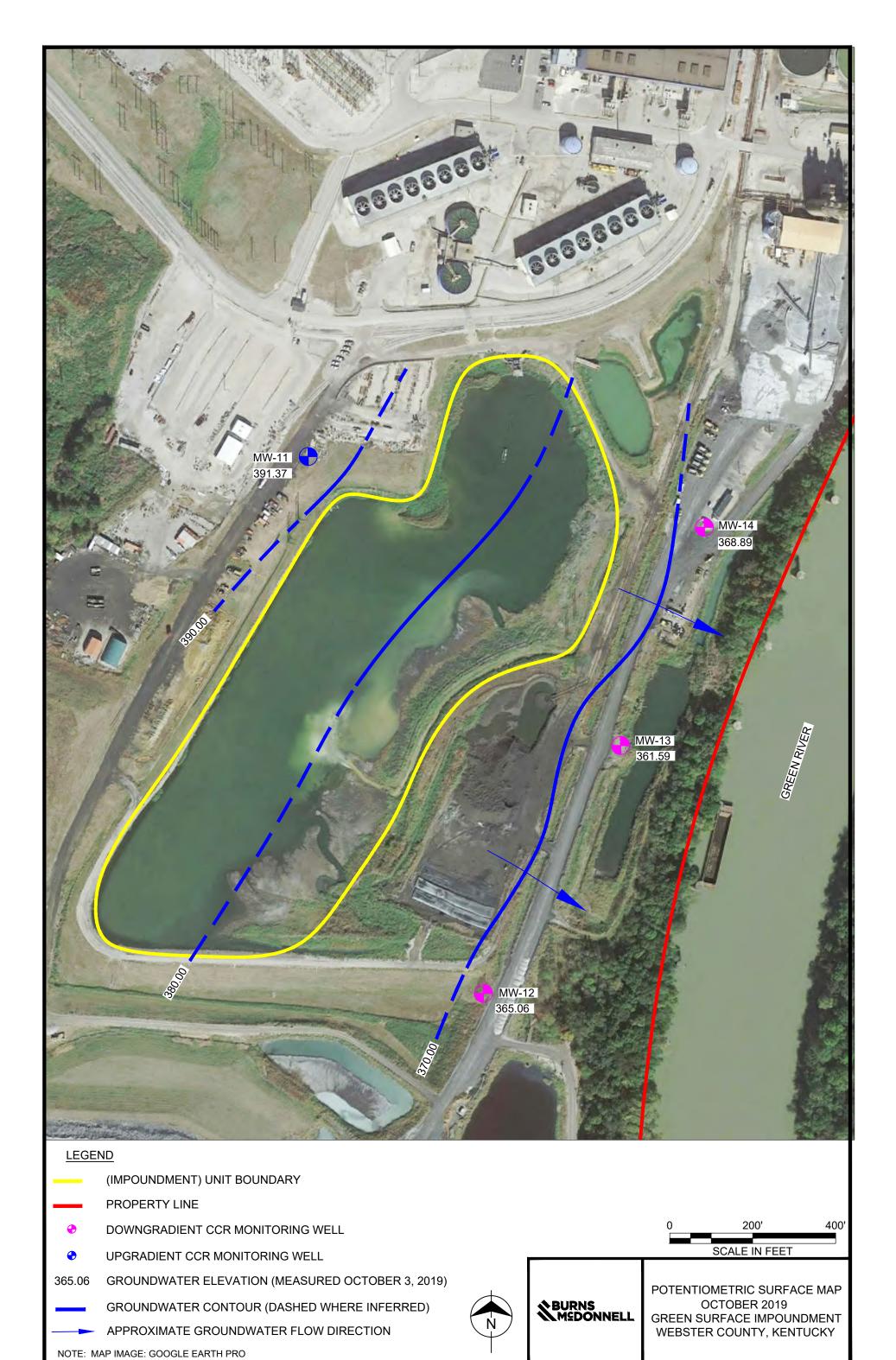

Project: Sebree Station - Reid/HMPL Landfill

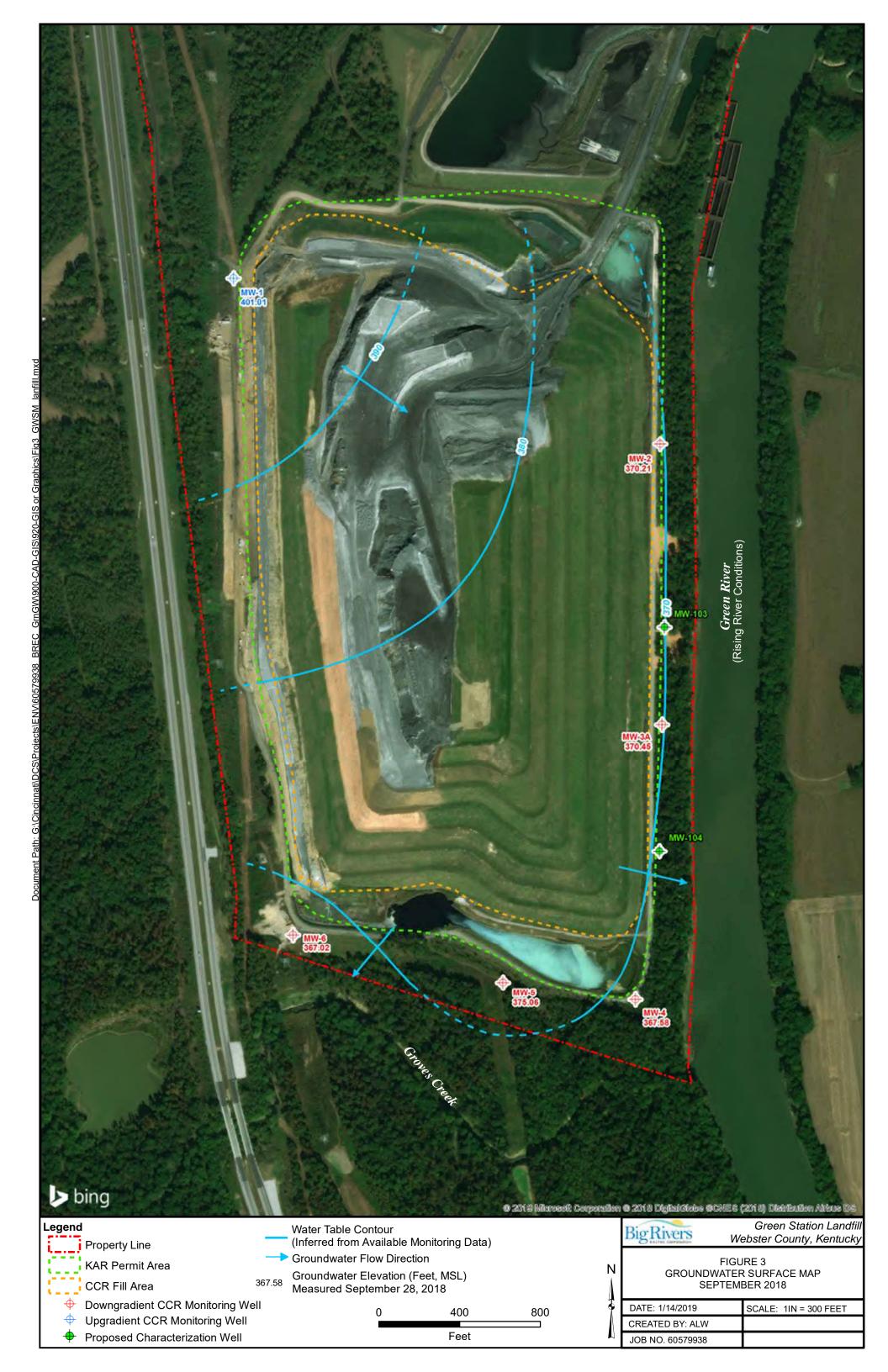

Site: Robards, KY

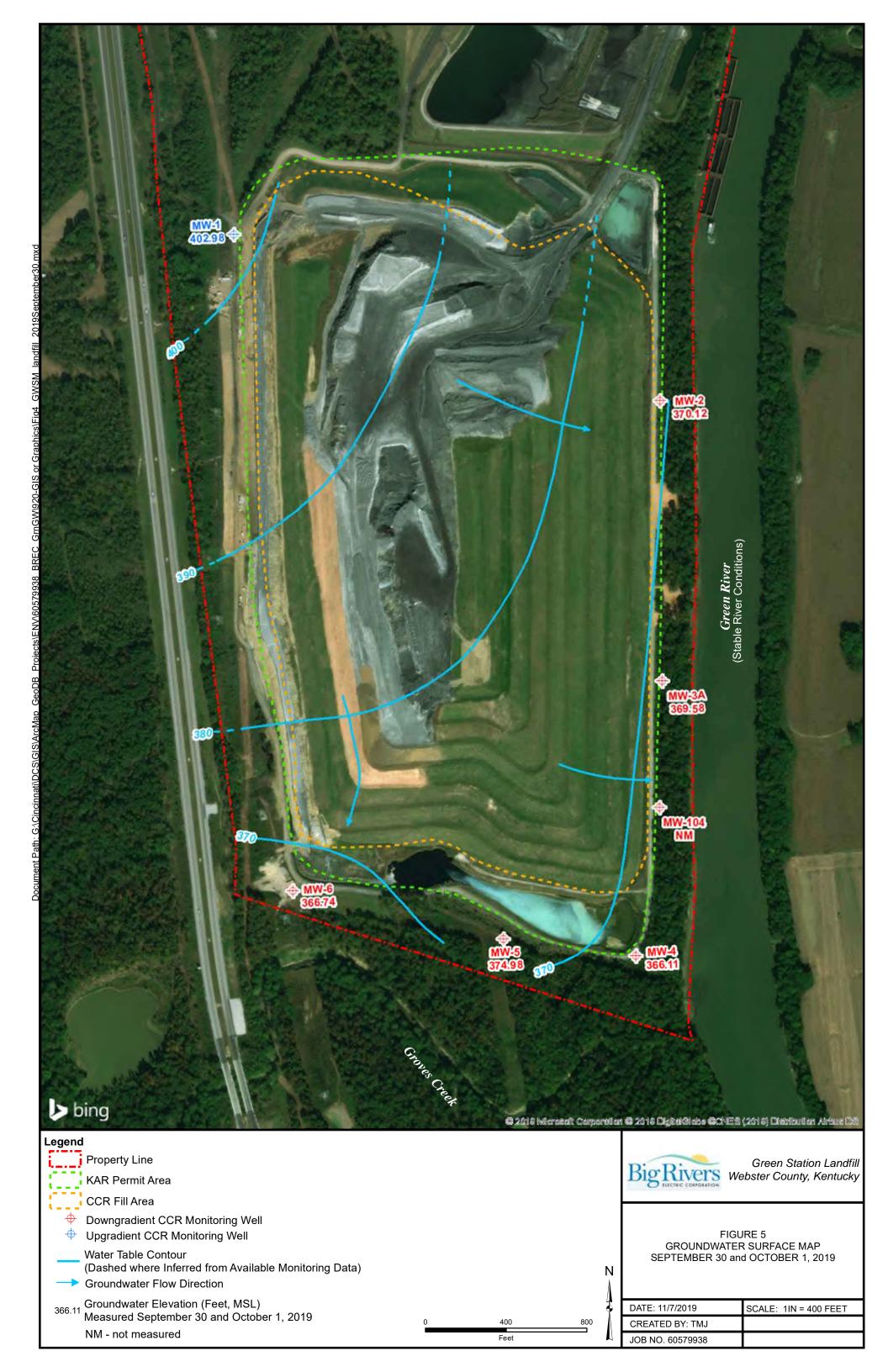

Project Number: 60594107

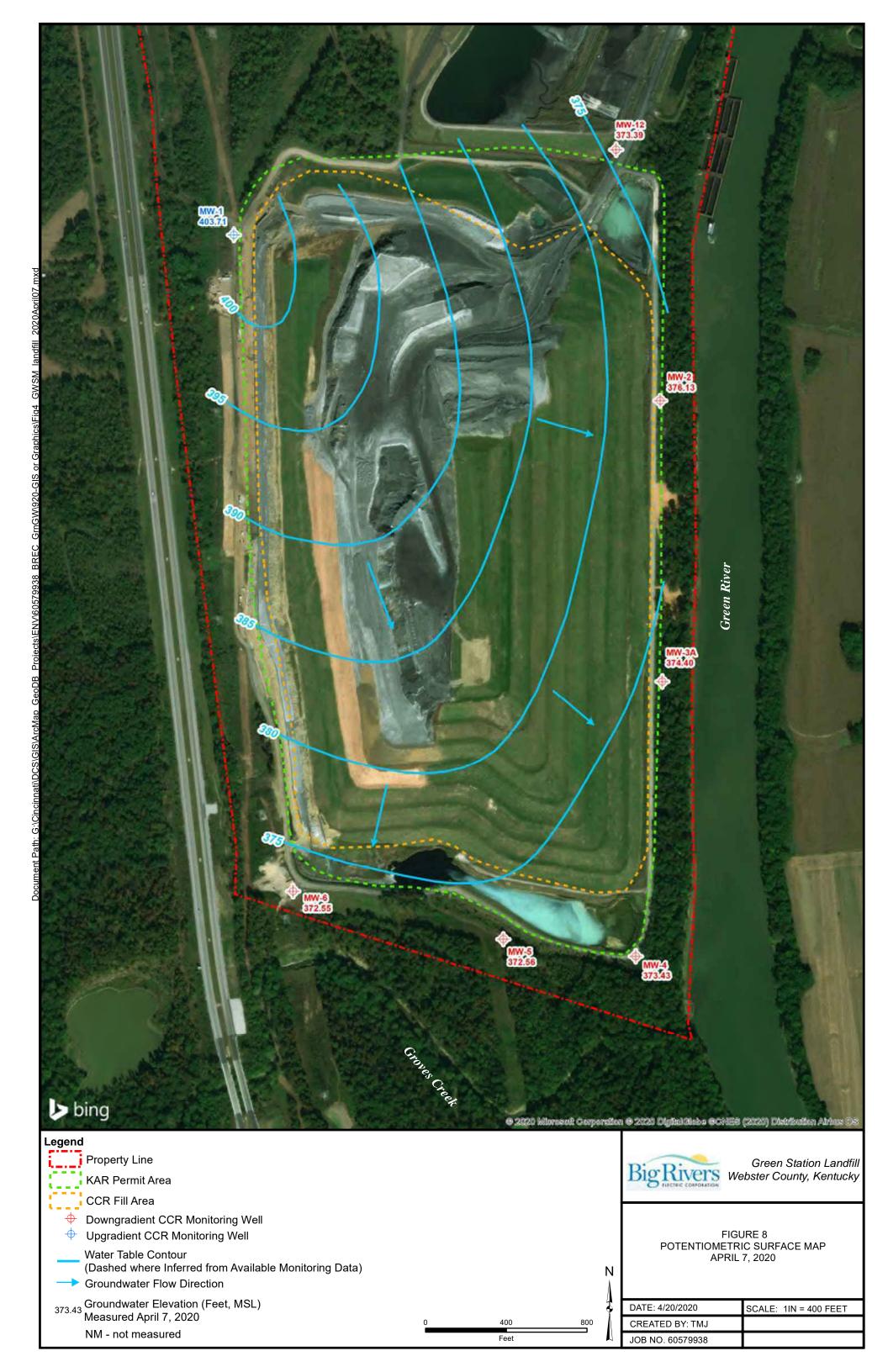

MW-110

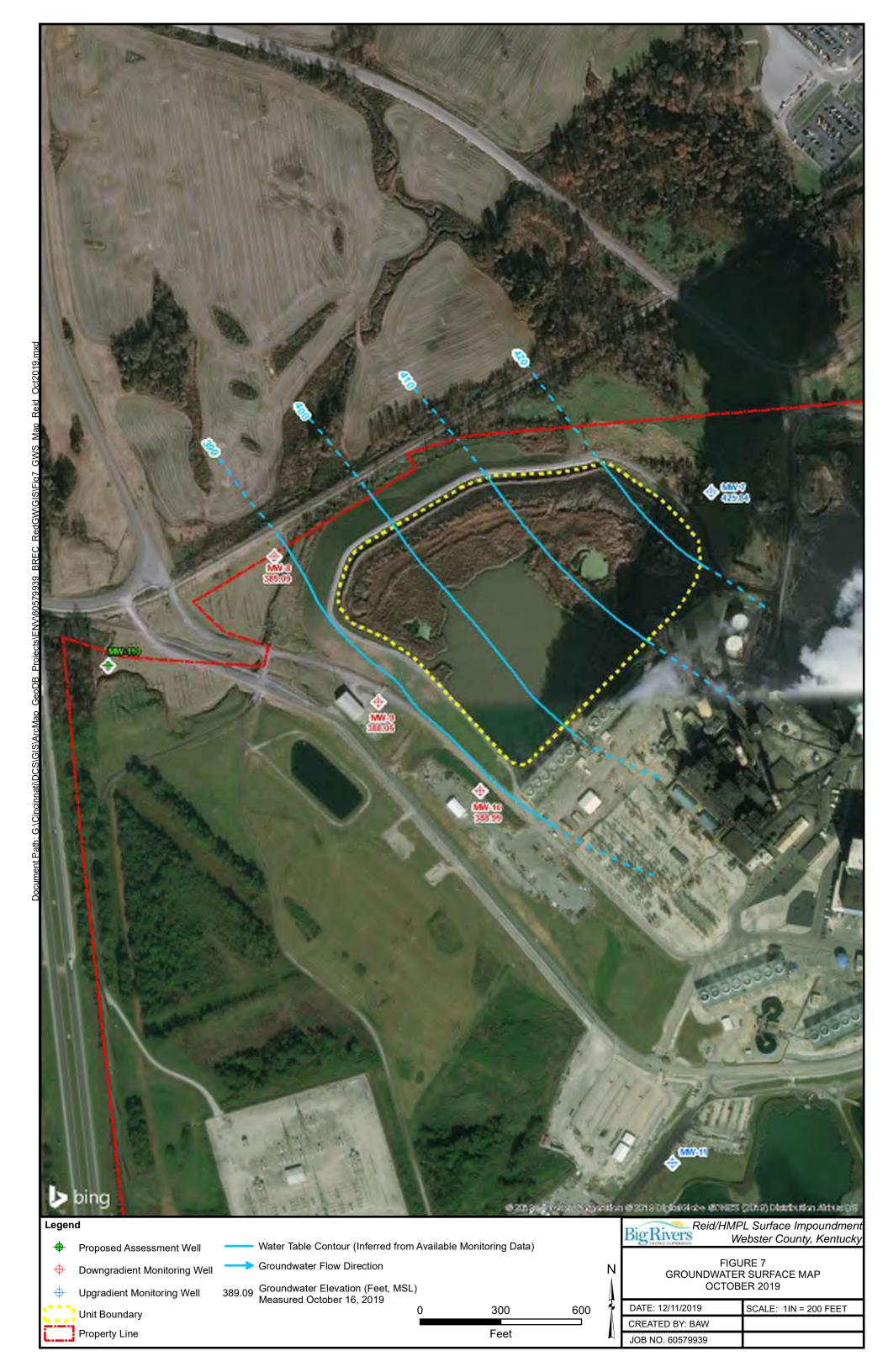

Sheet 3 of 3

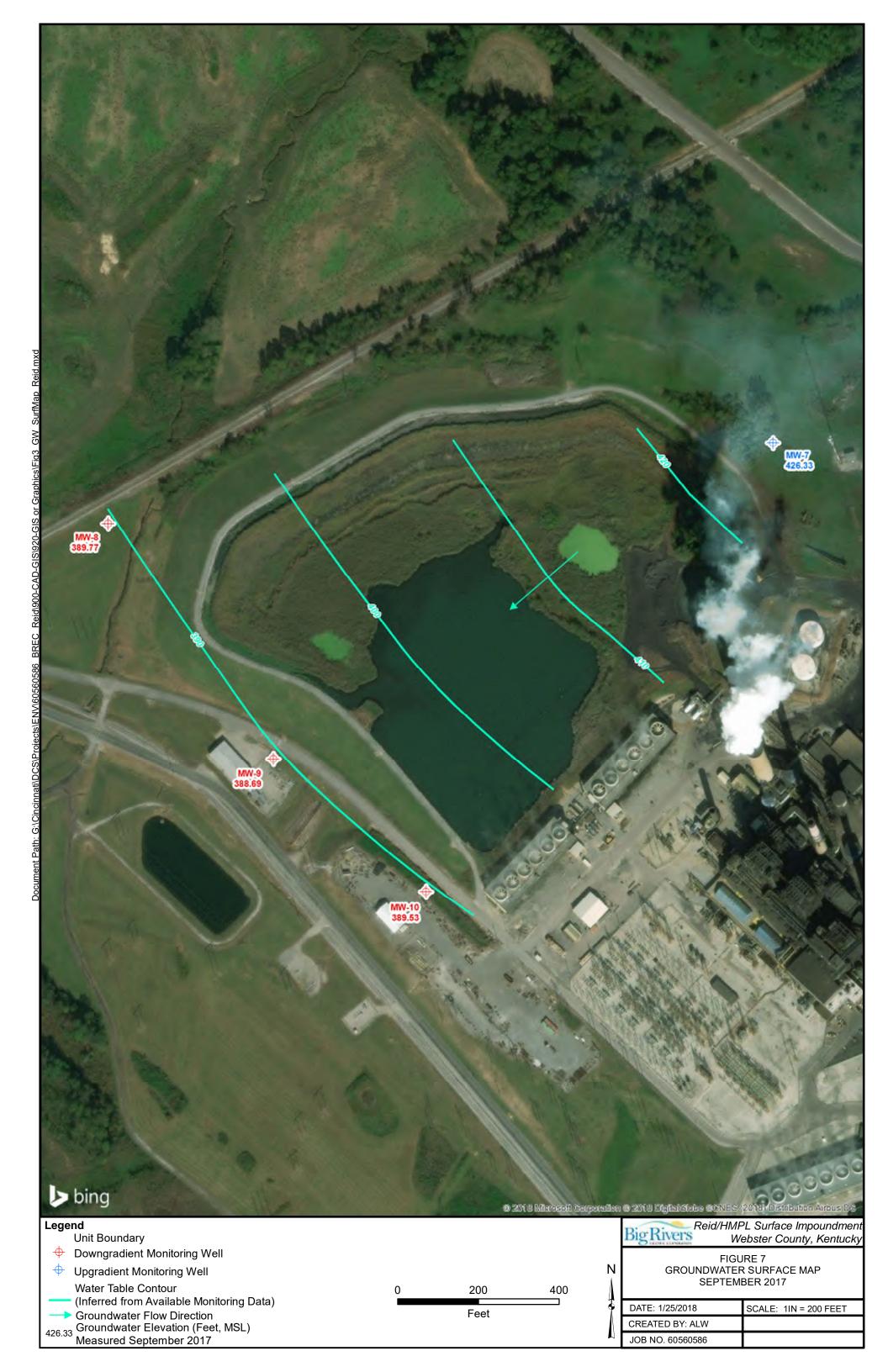


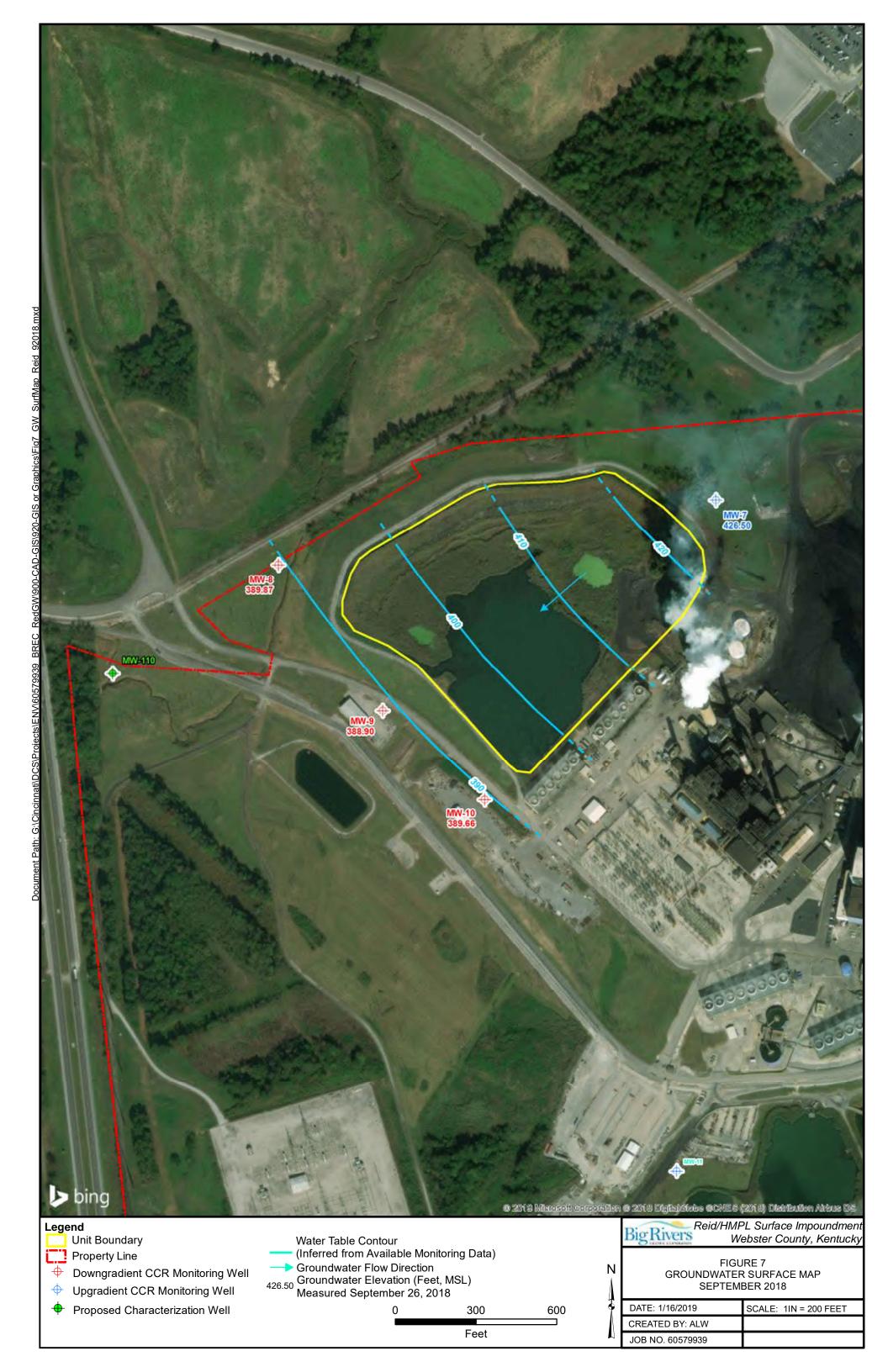












ATTACHMENT 5 - TABLES SUMMARIZING CO	NSTITUENT CONCENTRATIONS AT EACH MONITORING WELL

4555115117111											DATE										
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	4/1/2016	6/2/2016	8/16/2016	10/25/2016	1/26/2017	5/1/2017	8/11/2017	9/20/2017	10/9/2017	5	/7/2018	9/27/2018	4/29/2019	10	0/3/2019	4/8	/2020	9/25	5/2020
CONSTITUENTS							Baseline Events									Dete	ction	•			
Boron	0.08	NA	0.818 JB	0.645 J	0.736 JB^	0.736 J	0.920 JB	0.754 JB	0.695 JB	0.802 J	0.769 J		0.879	0.671 B	0.717	ND	D2, M2. M4, U	0.78	M2, M4	ND	D2, M2, U
Calcium	0.5	NA	371	378 B	243	291	276	326 B	321	299	315 B		317	312	345	318	D1, M1	316	D1. M2	335	D2,M3
Chloride	3	NA	1070 B	1740 B	1880 B	2000 B	1880 B	1910 B	2360 B	1520 B	1940 B		1860 B	2000 B	1900	3900	D	2270	D	2620	D
Fluoride	1	4 mg/L	ND J	ND J	ND JB^	ND	ND JB	ND JB	ND	ND JB	ND J F	1	ND J	ND J	0.227 J	0.2		0.2		0.2	
Sulfate	5	NA	1170	1400	1150	1150 B	1060	1010 B	1410	797 J	1050 B		1020 B	1080 B	949 B	971		1210	D	1280	D
pH (Field Measurement)	0.10	NA	7.23	7.24	7.29	7.22	7.20	7.04	6.89	6.88	6.86		7.18	6.70	7.11	6.86		6.78		6.98	
Total Dissolved Solids	10	NA	3920 H	4610	4840	4490	4930	4830	5100	4880	5080		5070	5020	4890 B	682		4650		4510	
APPENDIX IV CONSTIUENTS																					
Antimony	0.002	0.006 mg/L	ND	ND JB	ND JB	ND	ND JB	ND JB	ND JB	ND JB											
Arsenic	0.005	0.01 mg/L	ND J	ND	ND	ND J	ND J	ND JB	ND J	ND JB											
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J											
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND											
Cadmium	0.001	0.005 mg/L	ND	ND	ND	ND	ND	ND	ND	ND											
Chromimum	0.003	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J											
Cobalt	0.005	0.006 mg/L	0.00494 J	0.00267 J	0.00277 J	0.00138 J	0.00131 J	0.00129 J	0.000654 J	0.000619 J											
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND	ND J	ND J	ND	ND JB	ND J F	1	ND J	ND J	0.227 J	0.2		0.2		0.2	
Lead	0.005	0.015 mg/L	ND	ND JB	ND	ND	ND	ND	ND J	ND											
Lithium	0.05	0.040 mg/L	0.0365 J	0.0685	0.0651	0.0544	0.0591	0.0545	0.0615	0.0596											
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND	ND											
Molybdenum	0.01	0.1 mg/L	0.0163	ND J	ND J	ND J	ND J	ND J	ND J	ND											
Radium 226 Radium 228	1	5 pCi/L	1.35	0.975	1.61	1.86	1.66	2.18	2.69	2.08											
Selenium	0.01	0.05 mg/L	ND	ND J	ND J	ND	ND J	ND JB	ND	ND J											
Thallium	0.001	0.002 mg/L	ND J	ND	ND	ND	ND	ND J	ND J	ND											

MW-11 - Upgradient Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

DEFINITION Detected at 07 above Method Detection Limit policy.

JerocCuries per Liter

JerocLuries per Liter

Jero

H = Sample was prepped or analyzed beyond the specified holding time

^ = ICV,CCV,ICB,CCB,ISA,ISB,CRI,CRA,DLCK or MRL standard; Instrument related QC is outside acceptance limits

F1 = MS and/or MSD Recovery is outside acceptance limits

D1 = Sample required dilution due to high concentration of target analysis

D2 = Sample required dilution due to matrix interference
D = Results reported from dilution

M1 = Matrix spike recovery was high; the method control sample recovery was acceptable

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable

M4 = The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

										C	ATE				Detection 3 0.290 ND D2, U 0.31 93.1 92.0 D2 98.3 D2 3 15.1 14.0 13.9							
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	4/1/2016	6/2/2016	8/16/2016	10/25/2016	1/27/2017	5/1/2017	8/11/2017	9/20/2017	10/9/2017	4/29/20	18 5/7/2018	9/27/2018	4/29/2019	10/4/2019	4/8/2020	9/25/2020				
				Baseline Events										Detection								
Boron	0.08	NA	0.174 JB	0.186 J	0.280 JB	0.286 J	0.335 JB	0.306 JB	0.296 JB	0.334 J	0.274 J	0.717	0.352	0.335 B	0.290	ND D2, U	0.31	ND D2, U				
Calcium	0.5	NA	68.6	95.1 B	81.0	99.4	87.7	90.9 B	88.5	94.5	92 B	345	93.5	96.4	93.1	92.0 D2	98.3 D2	89.6 D2				
Chloride	3	NA	29.0 B	32.4 B	26.9 B	26.2 B	24.6 JB	21.7 B	21.0 JB	19.8 B	17.4 B	1900	15.4	15.5 B	15.1	14.0	13.9	13.5				
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND J	ND JB	ND J	0.227 J	ND J	ND J	0.428 J	0.4	0.4	0.4				
Sulfate	5	NA	168	146	95.7	64.0 B	54	41.3 B	33.8 J	25.3 J	19.7 B	949 B	13.5 B	14.3	11.9 B	11	9	8				
pH (Field Measurement)	0.10	NA	7.85	7.4	7.52	7.33	7.65	5.02	6.56	7.07	7.07	7.11	7.34	6.84	7.36	7.07	6.90	6.83				
Total Dissolved Solids	10	NA	472	745	726	677	679	676	674	758	641	4890 B	649	595	618 B	546	532	658				
APPENDIX IV CONSTIUENTS																						
Antimony	0.002	0.006 mg/L	0.00204	ND JB	ND JB	ND	ND JB	ND JB	ND JB	ND JB												
Arsenic	0.005	0.01 mg/L	0.00596	0.00566	ND J	ND J	ND J	ND JB	ND J	ND JB												
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND J	ND JB	ND J	ND J												
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND												
Cadmium	0.001	0.005 mg/L	ND	ND	ND	ND	ND	ND	ND	ND												
Chromimum	0.003	0.1 mg/L	ND J	ND J	ND	ND	ND	ND	ND	ND J												
Cobalt	0.005	0.006 mg/L	ND	ND J	ND J	ND J	ND J	ND JB	ND J	ND J												
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND J	ND JB	ND J	0.227 J	ND J	ND J	0.428 J	0.4	0.4	0.4				
Lead	0.005	0.015 mg/L	ND J	ND JB	ND	ND	ND	ND	ND J	ND J												
Lithium	0.05	0.040 mg/L	0.0100 J	0.0194 J	0.0173 J	0.0208 J	0.0215 J	0.0169 JB	0.0244 J	0.0229 J												
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND	ND												
Molybdenum	0.01	0.1 mg/L	0.0769	0.0234	0.0141	0.0123	0.0100	ND JB	ND J	ND J												
Radium 226 Radium 228	1	5 pCi/L	0.842	ND	ND	0.954	0.361	0.556	0.566	ND												
Selenium	0.01	0.05 mg/L	ND J	ND	ND	ND	ND	ND JB	ND	ND												
Thallium	0.001	0.002 mg/L	ND	ND	ND	ND	ND	ND JB	ND	ND												

MW-12 - Downgradient Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value

B = Compound was found in the blank and sample

U = Target analyte was analyzed for, but was below detection limit

D1 = Sample required dilution due to high concentration of target analysis

D2 = Sample required dilution due to matrix interference

D = Results reported from dilution

M1 = Matrix spike recovery was high; the method control sample recovery was acceptable

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable

M4 = The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable.

											DATE										
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	4/1/2016	6/2/2016	8/16/2016	10/25/2016	1/27/2017	5/1/2017	8/11/2017	9/20/2017	10/9/2017	4/29/2018	5/7/2018	9/27/2018	4/29/2019	10/4	/2019	4/8/2020	9/25/2020		
				Baseline Events										Detection							
Boron	0.08	NA	ND B	ND J	ND JB	ND J	ND JB	ND JB	ND JB	ND J	ND J	0.717	ND J	0.0565 JB	0.0392 J	ND	D2, U	ND U	ND D2, U		
Calcium	0.5	NA	93.0	95.1 B	85.1	94.5	82.8	90.2 B	92.3	94.3	92.2 B	345	94.3	95.6	95.1	87.4	D2	86.6 D2	84.9 D2		
Chloride	3	NA	20.5 B	25.2 B	22.3 B	24.8 B	22.2 JB	21.4 B	21.6 JB	21.3 JB	19.9 B	1900	21.0	26.6 B	24.4	24.6		22.8	33.3 D		
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND J	ND JB	ND J	0.227 J	ND J	ND J	0.271 J	0.2		0.3	0.4 D		
Sulfate	5	NA	118	118	106	104 B	96.2	98.1 J	96.6	88.0	96.4 B	949 B	87.6 B	109 B	98.6 B	41		117 D	87 D		
pH (Field Measurement)	0.10	NA	6.78	6.9	6.97	6.86	7.22	8.25	6.48	6.64	6.62	7.11	7.03	6.54	6.94	6.75		6.53	6.80		
Total Dissolved Solids	10	NA	699	721	684	704	678	714	702	727	695	4890 B	673	697	711 B	586		608	552		
APPENDIX IV CONSTIUENTS																					
Antimony	0.002	0.006 mg/L	ND	ND JB	ND JB	ND	ND JB	ND JB	ND JB	ND JB											
Arsenic	0.005	0.01 mg/L	ND J	ND J	ND J	ND J	ND J	ND JB	ND J	ND JB											
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J											
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND											
Cadmium	0.001	0.005 mg/L	ND	ND	ND	ND	ND	ND	ND	ND											
Chromimum	0.003	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J											
Cobalt	0.005	0.006 mg/L	0.00378 J	0.00221 J	0.0018 J	0.00149 J	0.000720 J	0.00115 J	0.0009 J	0.000981 J											
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND J	ND JB	ND J	0.227 J	ND J	ND J	0.271 J	0.2		0.3	0.4 D		
Lead	0.005	0.015 mg/L	ND J	ND JB	ND	ND	ND	ND	ND	ND											
Lithium	0.05	0.040 mg/L	0.00929 J	0.0104 J	0.0123 J	0.0104 J	0.0113 J	ND	0.0111 J	ND											
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND	ND											
Molybdenum	0.01	0.1 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J											
Radium 226 Radium 228	1	5 pCi/L	ND	ND	ND	ND	ND	0.164	0.47	0.749											
Selenium	0.01	0.05 mg/L	ND	ND	ND J	ND	ND	ND	ND	ND											
Thallium	0.001	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND	ND											

MW-13 - Downgradient Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

- pCi/L = picoCuries per Liter

 J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- U = Target analyte was analyzed for, but was below detection limit
- D1 = Sample required dilution due to high concentration of target analysis
 D2 = Sample required dilution due to matrix interference
- D = Results reported from dilution
- M1 = Matrix spike recovery was high; the method control sample recovery was acceptable
- M2 = Matrix spike recovery was low; the method control sample recovery was acceptable
- M4 = The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable.

60594108

11/25/2020

											DATE												
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	4/1/2016	6/2/2016	8/16/2016	10/25/2016	1/27/2017	5/1/2017	8/11/2017	9/20/2017	10/9/2017	5/7/2018	9/27/2018	4/28/2019	4/29/2019	10/3/2	019 4/8/2	2020	9/25/2020				
				Baseline Events										Detection									
Boron	0.08	NA	0.196 JB	0.186 J	0.234 JB	0.209 J	0.250 JB	0.234 JB	0.277 JB	0.273 J	0.241 J	0.254	0.232 B	0.717	0.206	ND	D2, U 0.20		ND D2, U				
Calcium	0.5	NA	194	194 B	171	193	183	193 B	193	187	194 B	189	200	345	206	194	D1 195	D1	194 D2				
Chloride	3	NA	161 B	184 B	185 B	193 B	191 B	185 B	212 B	230 B	199 B	198 B	189 B	1900	165	262	D 121	D	131 D				
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND JB	ND JB	ND J	ND	ND J	0.227 J	0.342 J	0.3	0.3		0.3				
Sulfate	5	NA	188	219	216	215 B	221	197 B	179	198 J	185	222 B	231 B	949 B	222 B	871	D 183	D	221 D				
pH (Field Measurement)	0.10	NA	6.63	6.35	7.43	7.34	7.78	5.23	7.33	7.13	7.32	7.26	6.57	7.11	7.05	6.77	6.57		6.75				
Total Dissolved Solids	10	NA	1080	1130	1140	1130	1150	1170	1150	1240	1170	1180	1100	4890 B	1180 B	1120	H2 1030		946				
APPENDIX IV CONSTIUENTS																							
Antimony	0.002	0.006 mg/L	ND	ND JB	ND JB	ND	ND JB	ND JB	ND JB	ND JB													
Arsenic	0.005	0.01 mg/L	ND J	ND J	ND J	ND J	ND J	ND JB	ND J	ND JB													
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J													
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND													
Cadmium	0.001	0.005 mg/L	ND	ND	ND	ND	ND	ND	ND	ND													
Chromimum	0.003	0.1 mg/L	ND	ND	ND	ND	ND	ND	ND	ND J													
Cobalt	0.005	0.006 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND J													
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND JB	ND	ND JB	ND J	ND JB	ND J	ND	ND J	0.227 J	0.342 J	0.3	0.3		0.3				
Lead	0.005	0.015 mg/L	ND	ND JB	ND	ND	ND	ND	ND	ND J													
Lithium	0.05	0.040 mg/L	0.0400 J	0.0488 J	0.0477 J	0.0456 J	0.0486 J	0.0437 J	0.0494 J	0.0496 J													
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND	ND													
Molybdenum	0.01	0.1 mg/L	ND J	ND J	ND	ND	ND	ND	ND	ND													
Radium 226 Radium 228	1	5 pCi/L	1.54	1.42	1.86	1.55	1.31	2.17	2.85	1.8													
Selenium	0.01	0.05 mg/L	ND	ND	ND	ND	ND	ND	ND	ND													
Thallium	0.001	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND	ND													

MW-14 - Downgradient Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- U = Target analyte was analyzed for, but was below detection limit
- D1 = Sample required dilution due to high concentration of target analysis
- D2 = Sample required dilution due to matrix interference
- D = Results reported from dilution
- M1 = Matrix spike recovery was high; the method control sample recovery was acceptable
- M2 = Matrix spike recovery was low; the method control sample recovery was acceptable
- M4 = The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable.

											DATE							
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/26/2016	5/23/2016	8/18/2016	10/26/2016	2/1/2017	5/2/2017	8/7/2017	9/5/2017	10/5/2017	6/4/2018	7/10/2018	9/28/2018	4/22/2019	9/30/2019	4/6/2020	9/22/2020
	Limit						Baseline Events					Assessment	Re-Sampling			Assessment		
Boron	0.08	NA	1.67	1.49	2.25	1.70	1.71 J	1.68	1.85 B	1.79	1.92		1.41	1.94 B	1.73 B	1.68 D2 M4	1.69 D1, M3	1.66 D2, M4
Calcium	0.5	NA	29.1	31.8 B	33.0	30.9	20.8	28.1	27.1	29.9 B	26.4		26.5	28.5 B	32.1	29.1 D2	27.7 D1, M3	26.4 D2
Chloride	3	NA	9.03 JB	0.501 JB	6.60 B	6.02 B	5.56 B F1	5.30 B	5.12 B F1	5.71 B	4.07 F1 B		6.34 B	6.17 B	6.41 B F1	7.5	6.5	6.6
Fluoride	1	4 mg/L	ND J	ND JB	ND J	ND JB	ND J F1	ND JB	ND J F1	ND J	ND J F1	ND J	ND J	ND JB	0.521 J	0.6	0.5	0.6
Sulfate	5	NA	25.2	22.8 JB	22.9	20.7 B	28.4	24.0 B	25.3 B	23.4	24.9 JB		23.5	22.5 B	35.1 B F1	19	21	24
pH (SU)	0.10	NA	7.39	7.24	7.57	7.19	7.63	7.54	7.45	7.48	7.63		7.08	8.43	7.87	7.79 H3	7.22	6.88
Total Dissolved Solids	10	NA	598	588	585	585	605	630	614	627	636		585	616	568 B	444 H1	488	388
APPENDIX IV CONSTITUENTS																		
Antimony	0.002	0.006 mg/L	ND	ND J	ND B	ND	ND	ND JB	0.00297 B	ND JB		ND JB	ND J	NA	0.000254 JB	ND M1 V1 U	ND U	ND U
Arsenic	0.005	0.01 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J F1	ND JB		ND JB	ND J	ND JB	0.00167 JB	0.0005 V1 J	0.0019	ND U
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J F1	ND J		ND JB	ND J	ND J	0.0862 J	0.091 D2	0.087	0.077
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	0.000533 J	ND D2 U	ND U	ND U
Cadmium	0.001	0.005 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	0.000299 J	ND VI U	ND U	ND U
Chromium	0.003	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J		ND JB	ND	NA	0.00354 B	ND U	0.0011 J	ND U
Cobalt	0.005	0.006 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND JB	ND J	NA	0.000571 J	ND U	ND U	ND U
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND JB	ND J F1	ND JB	ND J F1	ND J	ND J F1	ND J	ND J	ND JB	0.521 J	0.6	0.5	0.6
Lead	0.005	0.015 mg/L	ND J	ND J	ND J	ND	ND	ND	ND	ND J		ND	ND J	NA	0.000279 J	ND V1 U	ND U	ND U
Lithium	0.05	0.040 mg/L	0.0293 J	0.0317 J	0.0326 J	0.0286 J	0.0342 J	0.0396 J	0.0314 J	0.0315 J		0.0319 J	0.0298 J	0.0279 J	0.0295 J	ND D2 M3 U	0.03	ND M1, U
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND V1 U	ND U	ND U
Molybdenum	0.01	0.1 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND		ND J	ND J	NA	0.00105 J	ND U	ND U	ND U
Radium 226	1	5 pCi/L	1.05	1 02	0.676	1.02	0.694	0.666	0.491	0.601		1.92	0.882	0.905	0.689	0.782	0.808	0.564
Radium 228		3 PCI/L	1.00	1.02	0.070	1.02	0.094	0.000	0.491	0.001		1.92	0.002	0.903	0.009	0.733	0.000	0.304
Selenium	0.01	0.05 mg/L	ND	ND	ND	ND	ND	ND	ND J	ND		ND	ND	NA	0.00105 J	ND U	ND U	ND U
Thallium	0.001	0.002 mg/L	ND	ND J	ND	ND J	ND	ND	ND J	ND		ND	ND	NA	0.000498 J	0.0001 V1 J	0.0001 J	0.0001 J

MW-1 - Upgradient Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

H1 = Sample analysis performed pasts holding time

H3 = Sample received and analyzed past holding time

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

	D. ((DATE							
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/26/2016	5/23/2016	8/18/2016	11/14/2016	2/1/2017	5/2/2017	8/8/2017	9/7/2017	10/6/2017	6/5/2018	7/11/2018	9/28/2018	4/23/2019	10/1/2019	4/7/2020	9/22/2020
	Lillit					E	Baseline Events					Assessment	Re-Sampling			Assessment		
Boron	0.08	NA	ND J	ND J	ND J	ND J	ND JB	ND J	0.113 JB	ND JB	ND J		ND J	0.0630 JB	0.101 JB	ND D2 U	ND U	ND U
Calcium	0.5	NA	119	116 B	140	140 B	126	152	154	121	150		155	165 B	156	166 D1	145 D1	157 D1
Chloride	3	NA	126 B	125 B	129 B	133	142 B	129 B	145 B	136 B	129 B		154 B	159 B	144	108 D	120 D	231 D
Fluoride	1	4 mg/L	ND J	ND	ND J	ND JB F1	ND J	ND JB	ND JB	ND JB F1	ND J	ND J	ND J	ND JB	0.193 J	0.3	0.2	0.3
Sulfate	5	NA	80.0	84.5 J	85.5 J	90.1	89.8	83.2	92.0 JB	90.8	88.6 JB		107	108 B	105	79.0 D	85 D	117 D
pH (SU)	0.10	NA	6.81	6.59	6.7	6.78	7.12	7.04	6.77	6.69	6.86	6.64	6.40	7.02	7.15	7.39 H3	6.92	6.22
Total Dissolved Solids	10	NA	764	780	830	880	862	918	913	818	970		884	937	918 B	930 H1	806	914
APPENDIX IV CONSTITUENTS																		
Antimony	0.002	0.006 mg/L	ND	ND J	ND JB	ND JB	ND	ND JB	ND B	ND JB		ND JB	ND J	NA	0.0000670 JB	ND V1 U	ND U	ND U
Arsenic	0.005	0.01 mg/L	0.00703 J	0.00633	0.0110	0.0159	0.0462	0.00755	0.0381	0.00527		0.0327 B	0.0119	0.0211 B	0.00738 B	0.0129 D2	0.0033	0.0095
Barium	0.2	2 mg/L	ND J	ND J	0.280	0.319	0.347	0.332	0.308	ND J		0.369	0.323	0.367	0.362	0.380 D2	0.238	0.336
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	0.000281 J	ND D2 U	ND U	ND U
Cadmium	0.001	0.005 mg/L	ND J	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND V1 U	ND U	ND U
Chromium	0.003	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND JB	ND	NA	0.00122 JB	ND D2 U	ND U	ND U
Cobalt	0.005	0.006 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND JB	ND J		ND JB	ND J	NA	0.00382 J	ND D2 U	ND U	ND U
Fluoride	1	4 mg/L	ND J	ND	ND J	ND JB F1	ND J	ND JB	ND JB	ND JB F1	ND J	ND J	ND J	ND JB	0.193 J	0.3	0.2	0.3
Lead	0.005	0.015 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND J	NA	ND	ND V1 U	ND U	ND U
Lithium	0.05	0.040 mg/L	ND J	ND	ND	ND	ND J	ND J	ND JB	ND		ND	ND	ND	ND	ND D2 VI U	0.007 J	0.006 V1, J
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND V1 U	ND U	ND U
Molybdenum	0.01	0.1 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND JB	ND JB		ND J	ND J	NA	0.00210 J	0.003 J	0.002 J	0.002 J
Radium 226	1	5 pCi/L	0.533	ND	0.46	ND	0.856	0.73	0.968	0.537		1 18	0.733	0.803	0.391	0.136	0.529	0.493
Radium 228	'	3 poi/L	0.555	IND	0.40	ND	0.000	0.73	0.300	0.007		1.10	0.733	0.003	0.001	0.834	0.023	0.400
Selenium	0.01	0.05 mg/L	ND	ND	ND	ND JB	ND	ND	ND JB	ND		ND	ND	NA	ND	ND U	ND U	ND U
Thallium	0.001	0.002 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND	ND	NA	0.0000800 J	ND V1 U	ND U	ND U

MW-2 - Downgradient Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

H1 = Sample analysis performed pasts holding time

H3 = Sample received and analyzed past holding time

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

											DATE							
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/26/2016	5/23/2016	8/18/2016	11/14/2016	2/1/2017	5/2/2017	8/8/2017	9/6/2017	10/6/2017	6/5/2018	7/11/2018	9/28/2018	4/23/2019	10/1/2019	4/7/2020	9/22/2020
	Limit						Baseline Events					Assessment	Re-Sampling			Assessment		
Boron	0.08	NA	0.145	0.135 J	0.279 J	0.213 J	0.235 JB	0.232 J	0.304 JB	0.376 J	0.313		0.177 J	0.257 JB	0.259 JB	ND D2 U	0.26	0.28
Calcium	0.5	NA	431	322 B	362	365 B	327	420	421	438 B	408		469	447 B	411	490 D1	425 D1	423 D1
Chloride	3	NA	2630 HB	3070	2150 B	2150 B	2220 B	2120 B	1790 B	2270 B	1870 B		2180 B	2040 B	1850	4570 D	3220 D	1200 D
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND	3.16	ND J	ND J	ND J	ND JB	0.387 J	0.4	0.5	0.4
Sulfate	5	NA	1330	1330	1190	1660	1080	1030 B	942	1130	1030 B		1010	1130 B	1080	1680 D	1840 D	1830 D
pH (SU)	0.10	NA	6.92	6.86	6.95	6.75	7.17	7.11	6.81	6.9	6.95	6.84	6.55	7.98	7.23	7.33 H3	6.86	6.61
Total Dissolved Solids	10	NA	4440	5010	4170	4450	4270	5170	5010	5020	5300		4540	4940	4250 B	6900 H1	5860	5680
APPENDIX IV CONSTITUENTS																		
Antimony	0.002	0.006 mg/L	ND	ND J	ND JB	ND JB	ND	ND JB	ND JB	ND JB		ND JB	ND	NA	0.000102 JB	ND V1 U	ND U	ND U
Arsenic	0.005	0.01 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND JB		ND JB	ND J	ND JB	0.000575 JB	ND D2 U	ND U	ND U
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND J	ND J	ND J	0.0474 J	0.051 D2 U	0.042	0.043
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	0.000199 J	ND D2 U	ND U	ND U
Cadmium	0.001	0.005 mg/L	ND J	ND J	ND	ND	ND J	ND J	ND	ND		ND J	ND J	NA	0.000164 J	ND V1 U	0.0001 J	ND U
Chromium	0.003	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J		ND JB	ND	NA	0.00168 JB	ND D2 U	ND U	0.0006 J
Cobalt	0.005	0.006 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND JB	ND J	NA	0.000243 J	0.008	ND U	0.004
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND	3.16	ND J	ND J	ND J	ND JB	0.387 J	0.4	0.5	0.4
Lead	0.005	0.015 mg/L	ND J	ND	ND	ND	ND	ND	ND J	ND J		ND	ND J	NA	0.000137 J	ND V1 U	ND U	ND U
Lithium	0.05	0.040 mg/L	0.669	0.516	0.648	0.677	0.689	0.746	0.767	0.762		0.699	0.790	0.766	0.678	0.79 D1	0.68	0.8 D2
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND V1 U	ND U	ND U
Molybdenum	0.01	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND D2 U	ND U	ND U
Radium 226	1	5 pCi/L	1.38	0.386	0.472	1 15	1.15	0.923	1.53	1.03		1 18	1.43	1.21	0.641	0.139	1.06	1.51
Radium 228	1	3 poi/L	1.50	0.300	0.472	1.10	1.13	0.923	1.55	1.03		1.10	1.45	1.21	0.041	0.734	1.00	1.31
Selenium	0.01	0.05 mg/L	ND	ND	ND J	ND JB	ND	ND	ND	ND		ND J	ND	NA	0.00103 J	ND D2 U	ND U	ND U
Thallium	0.001	0.002 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J		ND	ND	NA	0.000860 J	ND V1 U	ND U	ND U

MW-3A - Downgradient Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

H1 = Sample analysis performed pasts holding time

H3 = Sample received and analyzed past holding time

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

	D. t t'										DATE							
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/29/2016	5/23/2016	8/18/2016	10/26/2016	2/1/2017	5/2/2017	8/8/2017	9/7/2017	10/6/2017	6/5/2018	7/11/2018	9/28/2018	4/22/2019	10/1/2019	4/7/2020	9/22/2020
	LIIIII						Baseline Events					Assessment	Re-Sampling			Assessment		
Boron	0.08	NA	0.602	0.498 J	1.58	1.7	1.54 B	2.09	2.51 B	2.87 B	1.36		0.751 J	1.33 B	1.25 B	1.75 D2	0.83	1.70 D2
Calcium	0.5	NA	660	386 B	464	558	591	774	743	739	828		822	722 B	730	690 D1	464 D1	823 D1
Chloride	3	NA	1450 B	939 B	952 B	1000 B	1420 B	1320 B	1360 B	1880 B	1730 B		1430 B	1310 B	1510	1910 D	1560 D	2030 D
Fluoride	1	4 mg/L	ND J	ND	ND J	ND JE	B ND J	1.06 B	ND	ND JB	ND J	ND J	ND J	ND JB	0.102 J	0.2	0.2	0.2
Sulfate	5	NA	1830	1640	1420	1420 B	1620	1430 B	1600 B	2020	1590 B		1460	1400 B	1440	2490 D	4000 D	2080 D
pH (SU)	0.10	NA	6.36	6.83	7.08	6.61	7.28	7.1	6.84	6.64	6.93	6.86	6.58	8.06	7.26	7.36 H3	6.70	6.64
Total Dissolved Solids	10	NA	3700	4250	3440	3250	4420	4550	4890	4700 H	6220		4880	5170	4840 B	4820 H1	5120	4470
APPENDIX IV CONSTITUENTS																		
Antimony	0.002	0.006 mg/L	ND	ND J	ND JB	ND	ND	ND JB	ND JB	ND JB		ND JB	ND	NA	0.0000360 JB	ND V1 U	ND U	ND U
Arsenic	0.005	0.01 mg/L	ND	ND J	ND J	ND	ND J	ND J	ND J	ND JB		ND JB	ND J	ND JB	0.000445 JB	ND D2 U	ND U	ND U
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND JE	B ND J	ND J	ND J	ND JB		ND J	ND J	ND J	0.0308 JB	0.029 D2 J	0.022	0.031
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND D2 U	ND U	ND D2, U
Cadmium	0.001	0.005 mg/L	ND J	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND V1 U	ND U	ND U
Chromium	0.003	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND JB	ND	NA	0.00110 JB	ND D2 U	0.0008 J	ND U
Cobalt	0.005	0.006 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND JB	ND J	NA	0.000415 J	ND U	ND U	ND U
Fluoride	1	4 mg/L	ND	ND	ND J	ND JE	B ND J	ND B	ND	ND JB	ND J	ND J	ND J	ND JB	0.102 J	0.2	0.2	0.2
Lead	0.005	0.015 mg/L	ND J	ND J	ND	ND	ND	ND	ND	ND		ND	ND J	NA	ND	ND V1 U	ND U	ND U
Lithium	0.05	0.040 mg/L	1.39	0.838	1.13	1.25	1.35	1.59	1.77	1.66		1.81	1.91	1.81	1.73	ND D2 V1 U	0.82	1.73 D2
Mercury	0.0002	0.002 mg/L	0.00027	0.000224	ND J	0.000248	0.000302	0.000717	0.000825	0.000485		0.000824	0.000832	0.000680	0.000825	0.0004 V1 J	0.0003 J	0.0003 J
Molybdenum	0.01	0.1 mg/L	ND J	ND J	ND	ND	ND J	ND	ND	ND		ND	ND	NA	ND	ND D2 U	0.002 J	ND U
Radium 226	1	5 pCi/L	1.26	0.592	ND	0.536	1.22	1.43	1.94	1 10		1.62	2.00	1.51	1 66	0.451	1.26	0.877
Radium 228	ı.	3 pCl/L	1.20	0.592	ND	0.550	1.22	1.43	1.94	1.19		1.02	2.00	1.51	1.00	0.804	1.20	0.077
Selenium	0.01	0.05 mg/L	ND J	ND J	ND J	ND	ND J	ND	ND	ND J		ND J	ND	NA	0.00211 J	ND U	0.023	ND U
Thallium	0.001	0.002 mg/L	ND	ND	ND	ND J	ND	ND	ND	ND		ND	ND	NA	0.0000410 J	ND V1 U	ND U	ND U

MW-4 - Downgradient Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

H1 = Sample analysis performed pasts holding time

H3 = Sample received and analyzed past holding time

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

											DATE							
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/29/2016	5/23/2016	8/18/2016	10/26/2016	2/1/2017	5/2/2017	8/7/2017	9/7/2017	10/6/2017	6/5/2018	7/11/2018	9/28/2018	4/22/2019	9/30/2019	4/7/2020	9/22/2020
	Lillit					Ì	Baseline Events			•		Assessment	Re-Sampling			Assessment		
Boron	0.08	NA	0.217	0.0896 J	0.216 J	0.214 J	0.222 JB	0.241 J	0.257 JB	0.276 B	0.262		0.207 J	0.263 JB	0.271 JB	ND D2 U	0.25	0.24
Calcium	0.5	NA	452	189 B	374	399	335	464	423	407 B	383		469	441 B	446	476 D1	464 D1	495 D1
Chloride	3	NA	1630 B	521	688 B	755 B	734 B	722 B	945 B	779 B	608 B		941 B	1140 B	931	1500 D	1860 D	1800 D
Fluoride	1	4 mg/L	ND J	ND	ND J	ND	ND J	ND JB	ND	3.69	ND J	ND J	ND J	ND JB	0.128 J	0.2	0.2	0.2
Sulfate	5	NA	1760 HB	876	1780	1740 B	1880	1760 B	2060 B	1920	1600 B		1800	1890 B	1800	2990 D	3720 D	973 D
pH (SU)	0.10	NA	6.76	6.74	6.99	6.61	7.14	7.44	6.87	7.13	7.06	6.88	6.40	7.99	7.15	7.41 H3	6.77	6.52
Total Dissolved Solids	10	NA	4210	1660	3470	3610	3680	4250	4130	4120	4390		4100	4540	4360 B	5320 H1	4960	5170
APPENDIX IV CONSTITUENTS																		
Antimony	0.002	0.006 mg/L	ND	ND J	ND JB	ND	ND	ND JB	ND JB	ND JB		ND JB	ND	NA	0.0000700 JB	ND V1 U	ND U	ND U
Arsenic	0.005	0.01 mg/L	ND	ND J	ND JB	ND J	ND J	ND J	ND J	ND JB		ND JB	ND J	ND JB	0.000424 JB	ND D2 U	ND U	ND U
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND J	ND J	ND J	0.0167 J	0.016 D2 J	0.014	0.014
Beryllium	0.002	0.004 mg/L	ND	ND	ND J	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND D2 U	ND U	ND D2,U
Cadmium	0.001	0.005 mg/L	ND J	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND V1 U	ND U	ND U
Chromium	0.003	0.1 mg/L	ND	ND J	ND	ND	ND J	ND J	ND	ND J		0.00363 B	ND	NA	0.00159 JB	0.0033	ND U	0.0008 J
Cobalt	0.005	0.006 mg/L	ND	ND J	ND J	ND J	ND	ND J	ND	ND J		ND JB	ND J	NA	0.000288 J	ND U	ND U	ND U
Fluoride	1	4 mg/L	ND J	ND	ND J	ND	ND J	ND	ND	3.69	ND J	ND J	ND J	ND JB	0.128 J	0.2	0.2	0.2
Lead	0.005	0.015 mg/L	ND J	ND J	ND	ND	ND	ND	ND	ND		ND J	ND J	NA	0.0000860 J	ND V1 U	ND U	ND U
Lithium	0.05	0.040 mg/L	0.521	0.136	0.305	0.325	0.368	0.415	0.405	0.353		0.459	0.481	0.425	0.434	0.40 D1	0.38	0.42 D2
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	0.00351	ND		ND	ND	ND	ND	ND V1 U	ND U	ND U
Molybdenum	0.01	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND D2 U	ND U	ND U
Radium 226 Radium 228	1	5 pCi/L	1.16	0.736	0.959	0.957	0.765	0.888	1.54	0.773		0.862	1.42	1.37	0.945	0.368 0.730	1.48	1.68
	0.01	0.05 mg/l	ND	ND	ND	ND	ND J	ND J	ND	ND		ND J	ND	NA	0.000624 J	0.730 ND U	ND U	ND U
Selenium Thallium	0.01 0.001	0.05 mg/L 0.002 ma/L	ND ND	ND ND	ND J	ND J	ND J	ND J	ND ND	ND J		ND J	ND ND	NA NA	0.000624 J 0.0000890 J	ND V1 U	ND U	ND U
Hidiliuiii	0.001	U.002 Hig/L	ועטו	טא	INDIA	ווטון	ועטו	JUDIJ	ועטו	JUDI		ווטון	טא	INA	0.0000090[J	טועןטאו	טןטא	טוטא

MW-5 - Downgradient Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference H1 = Sample analysis performed pasts holding time

H3 = Sample received and analyzed past holding time

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

											DATE							
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/29/2016	5/23/2016	8/18/2016	10/26/2016	2/1/2017	5/2/2017	8/7/2017	9/5/2017	10/5/2017	6/4/2018	7/10/2018	9/28/2018	4/22/2019	9/30/2019	4/6/2020	9/22/2020
	Lillit						Baseline Events					Assessment	Re-Sampling			Assessment		
Boron	0.08	NA	0.156	0.137 J	0.193 J	0.168 J	0.173 B	0.179 J	0.167 JB	0.199 J	0.178		0.155 J	0.196 JB	0.194 JB	ND D2 U	0.19	0.19
Calcium	0.5	NA	467	374 B	373	400	320	415	365	382 B	376		386	356 B	421	431 D1	458 D1	417 D1
Chloride	3	NA	167 B	149 B	136 JB	150 B	125 B	129 B	128 B	123 B	138 B		147 B	142 B	142	230 D	181 D	286 D
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND	ND J	ND J	ND J	ND J	ND JB	0.409 J	0.5	0.4	0.5
Sulfate	5	NA	2250 HB	3340	2550	2610 B	2700	2600 B	2820 B	2490	2700 B		2120	2420	2200	3830 D	4650 D	2380 D, H2
pH (SU)	0.10	NA	6.66	6.65	6.96	6.6	6.92	6.97	6.76	6.95	6.86		6.50	7.94	6.86	7.15 H3	6.36	6.32
Total Dissolved Solids	10	NA	4060	4280	4350	4470	4720	4700	4830	4890	4910		4500	4820	4780 B	4830 H1	4610	4740
APPENDIX IV CONSTITUENTS																		
Antimony	0.002	0.006 mg/L	ND	ND J	ND JB	ND	ND	ND JB	ND JB	ND JB		ND JB	ND	NA	0.0000920 JB	ND V1 U	ND U	ND U
Arsenic	0.005	0.01 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND JB		ND JB	ND J	ND JB	0.000722 JB	ND V1 U	ND U	ND U
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND J	ND J	ND J	0.0128 J	0.010 D2 J	0.011	0.011
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND D2 U	ND U	ND V1, U
Cadmium	0.001	0.005 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND V1 U	0.0001 J	ND U
Chromium	0.003	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J		ND JB	ND	NA	0.00196 JB	ND U	ND U	0.0006 J
Cobalt	0.005	0.006 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND JB	ND J	NA	0.000276 J	ND U	ND U	ND U
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND	ND J	ND J	ND J	ND J	ND JB	0.409 J	0.5	0.4	0.5
Lead	0.005	0.015 mg/L	ND J	ND J	ND	ND	ND	ND	ND	ND		ND	ND J	NA	ND	ND V1 U	ND U	ND U
Lithium	0.05	0.040 mg/L	0.0475 J	0.0527	0.0555	0.0524	0.0607	0.0724	0.0589	0.0554		0.0650	0.0592	0.0558	0.0633	0.05 D2 V1 J	0.05	0.05 D2, J
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND V1 U	ND U	ND U
Molybdenum	0.01	0.1 mg/L	ND J	ND J	ND J	ND B	ND J	ND J	ND J	ND J		ND J	ND J	NA	0.000972 J	ND D2 U	ND U	ND U
Radium 226	1	5 pCi/L	0.741	0.386	ND	0.751	ND	ND	0.462	ND		0.392	0.532	ND U	0.450	0.548	0.744	0.380
Radium 228	1	3 POI/L	0.741	0.300	ND	0.731	ND	IND	0.402	שויו	<u>_</u> _	0.332	0.552	טושוו	0.430	0.698	0.744	0.300
Selenium	0.01	0.05 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND J	ND	NA	0.00110 J	ND U	ND U	ND U
Thallium	0.001	0.002 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND	ND	NA	0.0000610 J	ND V1 U	ND U	ND U

MW-6 - Downgradient Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- F1 = MS and/or MSD Recovery is outside acceptance limits.
- D1 = Sample required dilution due to high concentration of target analyte
- D2 = Sample required dilution due to matrix interference
- H1 = Sample analysis performed pasts holding time
- H2 = Initial analysis within holding time. Reanalysis was past holding time
- H3 = Sample received and analyzed past holding time
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
- M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
- U = Target analyte was analyzed for, but was below detection limit
- V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

											DATE							
APPENDIX III CONSTITUENTS	Detection	GWPS	3/30/2016	5/31/2016	8/23/2016	10/18/2016	1/31/2017	5/11/2017	8/23/2017	9/22/2017	10/11/2017	4/6/2018	6/29/2018	9/26/2018	5/2/2019	10/16/2019	4/16/2020	9/24/2020
	Limit					I	Baseline Events		•	•		Assessment	Re-Sample			Assessment		
Boron	0.08	NA	0.246	0.245 J	0.271 J	0.250 J	0.33 J	0.295 J	0.286 JB	0.268 J	0.320 J		0.249 J	0.299 J	0.309 JB	ND D2, M4, U	0.34 M4	0.33 M2, M4
																		D2, M1,
Calcium	0.5	NA	41.1	42.1 B	42.3	47.6	41.5 B	41.1	45.1	40.6	41.8 B		46.6	41.6 B	46.1	44.4 D2	45.7 D2. M2	41.8 M2
Chloride	3	NA	2.48 JB	2.52 J	2.93 JB F1	3.26 B F1	4.02 B	5.73 E	4.99 F1 E	5.28 F1 B	3.65 B		6.88 B F1	5.38 B	4.94	4.7	4.1	3.3
Fluoride	1	4 mg/L	ND J	ND J	ND J F1	ND J F1	ND JB	ND J	ND J F1	ND J F1	ND J	ND J	ND J	ND J	0.255 J	0.3	0.3	0.3
Sulfate	5	NA	12.8	13.2	15.9	18.8	23.6 B	25.7	22.3 B	16.6 B	14.2 F1		23.4	18.7 B	16.8 B	19	15	12
pH (Field Measurement)	0.10	NA	7.39	7.47	7.6	7.16	7.74	7.26	7.23	7.36	7.36	7.01	7.17	6.94	7.46	7.07	6.86	6.56
Total Dissolved Solids	10	NA	233	243	243	250	253	291	290	267	278		295	263	271	228	148	114
APPENDIX IV CONSTIUENTS																		
Antimony	0.002	0.006 mg/L	ND	ND JB	ND JB	ND J	ND	ND	ND JB	ND JB		ND JB	ND JB	NA	0.0000760 JB	ND U	ND U	ND M2, U
Arsenic	0.005	0.01 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND JB	ND JB	NA	0.00116 J	0.0014	0.0025	0.0015 M2
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND J	ND J	ND J	0.0824 J	0.062	0.087	0.075 M3
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	NA	NA	ND	ND U	ND V1, U	ND U
Cadmium	0.001	0.005 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	NA	NA	ND	ND U	ND U	ND M2, U
Chromium	0.003	0.1 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND JB	ND JB	NA	0.00136 J	ND U	ND U	ND M2, U
Cobalt	0.005	0.006 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	B ND J	ND J		ND J	ND J	NA	0.000158 J	ND U	ND U	ND M2, U
Fluoride	1	4 mg/L	ND J	ND J	ND J F1	ND J F1	ND JB	ND J	ND J F1	ND J F1	ND J	ND J	ND J	ND J	0.255 J	0.3	0.3	0.3
Lead	0.005	0.015 mg/L	ND J	ND JB	ND	ND J	ND	ND	ND	ND		ND	ND	NA	0.0000730 J	ND U	ND U	ND M2, U
Lithium	0.05	0.040 mg/L	ND J	ND	ND	ND	ND J	ND	ND	ND		ND	ND	ND	ND	0.008 J	0.007 V1, J	0.008 J
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	0.000135	ND		ND	NA	NA	ND	ND U	ND U	ND M2, U
Molybdenum	0.01	0.1 mg/L	0.0109	0.0185	0.0136	0.0118	0.0127	ND J	ND J	ND J		ND J	ND J	ND J	0.00442 J	0.01	0.006 J	0.006 M2, J
Radium 226 Radium 228	1	5 pCi/L	0.865	0.685	0.473	ND	0.921	0.662	0.795	0.642		0.650	1.15	0.730	0.698	0.652 -0.208	1.83	0.968
Selenium	0.01	0.05 mg/L	ND	ND	ND	ND J	ND	ND	ND	ND		ND	NA	NA	ND	ND U	ND U	ND M2. U
Thallium	0.001	0.002 mg/L	ND	ND J	ND J	ND	ND	ND	ND	ND		ND	NA	NA	ND	ND U	ND U	ND M2, U

MW-7 - Upgradient Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

D1 = Sample required dilution due to high concentration of target analyte D2 = Sample required dilution due to matrix interference

M1 = Matrix spike recovery was high; the method control sample recovery was acceptable

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

											n	ATE							
APPENDIX III CONSTITUENTS	Detection	GWPS	3/30/2016	5/31/2016	8/23/2016	10/18/2016	1/31/2017	5/11/2017	8/23/2017	9/22/2017	10/11/2017	5/2/2018	4/6/2018	6/29/2018	9/26/2018	5/2/2019	10/17/2019	4/16/2020	9/24/2020
	Limit						Baselin	e Events					Assessmen	t Re-Sample			Assessment		
Boron	0.08	NA	1.46	1.07	1.3	1.00	1.74	1.60 B	1.37 B	1.32	1.54	0.309 JB		1.32	1.46	1.41 B	1.49 D2	1.56 D1	1.41 D2
Calcium	0.5	NA	283	242 B	228	194	235 B	251	253	228	235 B	46.1		253	254 B	272	267 D1	292 D1	257 D1
Chloride	3	NA	48.7	38.2 J	41.4 B	66.4 JB	42.1 B	43.6 B	47.1 B	58.5 JB	38.6 B	4.94		42.0 B	46.3 B	57.2	49.5	47.3	49.2
Fluoride	1	4 mg/L	ND J	ND J F1	ND J	ND J	ND JB	ND J	ND J	ND J	ND J	0.255 J	ND J	ND J	ND J	0.370 J	0.4	0.4	0.4
Sulfate	5	NA	1100 HB	1140	1120	1080	1220 B	1180 B	1110	1440 B	1040	16.8 B		1050	1180 B	1220 B	1240 D	1130 D	1400 D
pH (Field Measurement)	0.10	NA	7.13	7.14	7.37	7.06	7.50	7.10	7.11	7.10	7.15	7.46	6.97	7.09	6.93	725	7.04	6.78	6.58
Total Dissolved Solids	10	NA	1930	1980	1960	2030	2010	1990	2090	2030	2100	271		2060	1990	2090	2200	1930	1940
APPENDIX IV CONSTIUENTS											·	·							
Antimony	0.002	0.006 mg/L	ND	ND JB	ND JB	ND J	ND	ND JB	ND JB	ND JB		0.0000760 B	ND JE	B ND JB	NA	0.000205 JB	ND U	ND U	ND U
Arsenic	0.005	0.01 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND	ND J		0.00116 J	ND JI	B ND JB	NA	0.000438 J	ND U	ND U	ND U
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J		0.0824 J	ND J	ND J	ND J	0.0188 J	0.016	0.017	0.016
Beryllium	0.002	0.004 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA	ND	ND U	ND V1, U	ND U
Cadmium	0.001	0.005 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA	ND	ND U	ND U	ND U
Chromium	0.003	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		0.00136 J	ND JE	B ND JB	NA	0.00320	ND U	ND U	ND U
Cobalt	0.005	0.006 mg/L	ND	ND J	ND J	ND J	ND	ND J	ND	ND		0.000158 J	ND J	ND J	NA	0.000141 J	ND U	ND U	ND U
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND J	ND JB	ND J	ND J	ND J	ND J	0.255 J	ND J	ND J	ND J	0.370 J	0.4	0.4	0.4
Lead	0.005	0.015 mg/L	ND	ND	ND	ND J	ND	ND	ND	ND		0.0000730 J	ND	ND	NA	0.000104 J	ND U	ND U	ND U
Lithium	0.05	0.040 mg/L	0.0314 J	0.035 J	0.0314 J	0.0324 J	0.0408 J	0.0377 J	0.0367 J	0.0375 J		ND	0.0347 J	0.0368 J	0.0375 J	0.0370 J	0.03	0.03	0.03
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND JB	ND		ND	ND	NA	NA	ND	ND U	ND U	ND U
Molybdenum	0.01	0.1 mg/L	0.0138 J	0.0186	0.0157	0.0147	0.0173	0.0158	0.0175	0.0139		0.00442 J	0.0147	0.0140	0.0149	0.0146	0.01	0.01	0.01
Radium 226 Radium 228	1	5 pCi/L	1.98	1.32	1.36	1.36	1.92	1.12	1.48	1.4		0.698	1.29	1.6	1.46	1.43	0.914 1.59	1.93	0.366
Selenium	0.01	0.05 mg/L	ND	ND	ND	ND J	ND	ND	ND	ND J		ND	ND	NA	NA	0.000634 J	ND U	NDU	ND U
Thallium	0.001	0.003 mg/L	ND	ND J	ND ND	ND 3	ND	ND	ND ND	ND 3		ND	ND ND	NA NA	NA NA	0.000034 J	ND U	NDU	ND U

MW-8 - Downgradient Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

M1 = Matrix spike recovery was high; the method control sample recovery was acceptable

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

60594108

												DATE							
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/30/2016	5/31/2016	8/23/2016	10/18/2016	1/31/2017	5/11/2017	8/23/2017	9/22/2017	10/11/2017	5/2/2018	4/6/2018	6/29/2018	9/26/2018	5/2/2019	10/17/2019	4/16/2020	9/24/2020
					-		Basel	ine Events	-				Assessment	Re-Sample			Assessment		
Boron	0.08	NA	0.316	0.264 J	0.333 J	0.257 J	0.431 J	0.362 JB	0.101 JB	0.0844 J	0.0816 J	0.309 JB		0.239 J	0.0857 J	0.307 JB	ND D2, U	0.32	0.22
Calcium	0.5	NA	64.1	71.2 B	71.5	72.3	75.0 B	72.9	60.8	57.6	57.0 B	46.1		68.6	60.3 B	68.6	66.8 D2	71.2 D2	65.3 D2
Chloride	3	NA	26.5 B	30.9	36.6 B	32.6 B	42.4 B	38.0 B	6.40 B	7.14 B	5.83 B	4.94		31.2 B	6.93 B	21.8	17.6	22.8	19.9
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND J	ND JB	ND J	ND J	ND J	ND J	0.255 J	ND JB	ND J	ND J	0.223 J	0.2	0.3	0.3
Sulfate	5	NA	9.51	17.6	27.7	39.6	57.2 B	30.4	ND J	ND JB	ND J	16.8 B		ND J	0.481 JB	0.223 JB	ND U	ND U	ND U
pH (Field Measurement)	0.10	NA	7.32	7.27	7.55	7.13	7.64	7.31	7.04	7.04	7.04	7.46	7.13	7.00	6.69		7.22	7.04	6.67
Total Dissolved Solids	10	NA	363	389	403	409	465	435	303	308	316	271		399	293		392	320	308
APPENDIX IV CONSTIUENTS																			
Antimony	0.002	0.006 mg/L	ND	ND JB	ND JB	ND J	ND	ND JB	ND JB	ND JB		0.0000760 B	ND JB	ND JB	NA	0.000192 JB	ND U	ND U	ND U
Arsenic	0.005	0.01 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND		0.00116 J	ND JB	ND JB	NA	0.000563 J	ND U	ND	ND U
Barium	0.2	2 mg/L	1.1	1.03	0.889	0.635	0.827	0.833	0.253	0.227		0.0824 J	0.967	0.777	0.288	1.03	0.763	1.06 D1	0.730
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA	ND	ND U	ND V1, U	ND U
Cadmium	0.001	0.005 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA	ND	ND U	ND U	ND U
Chromium	0.003	0.1 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		0.00136 J	ND JB	ND JB	NA	0.00316	ND U	ND U	ND U
Cobalt	0.005	0.006 mg/L	ND	ND J	ND J	ND J	ND	ND	ND	ND		0.000158 J	ND JB	ND J	NA	0.0000550 J	ND U	ND U	ND U
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND J	ND JB	ND J	ND J	ND J	ND J	0.255 J	ND JB	ND J	ND J	0.223 J	0.2	0.3	0.3
Lead	0.005	0.015 mg/L	ND	ND JB	ND	ND J	ND	ND	ND	ND		0.0000730 J	ND	ND	NA	0.0000760 J	ND U	ND U	ND U
Lithium	0.05	0.040 mg/L	0.0120 J	0.0105 J	0.0102 J	0.0119 J	0.0179 J	0.0136 J	ND	ND		ND	0.0108 JB	0.0112 J	ND	0.0141 J	0.009 J	0.01 V1, J	0.009 J
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND JB	ND J		ND	ND	NA	NA	ND	ND U	ND U	ND U
Molybdenum	0.01	0.1 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		0.00442 J	ND	ND	ND	ND	ND U	ND J	ND U
Radium 226 Radium 228	1	5 pCi/L	2.87	2.84	2.91	1.38	2.11	2.53	1.28	1.26		0.698	2.04	1.93	1.23	2.32	1.09 1.23	2.90	3.44
Selenium	0.01	0.05 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA	ND	ND U	ND U	ND U
Thallium	0.001	0.002 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA	ND	ND U	ND U	ND U

MW-9 - Downgradient Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- F1 = MS and/or MSD Recovery is outside acceptance limits.
- D1 = Sample required dilution due to high concentration of target analyte
- D2 = Sample required dilution due to matrix interference
- M1 = Matrix spike recovery was high; the method control sample recovery was acceptable
- M2 = Matrix spike recovery was low; the method control sample recovery was acceptable
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
- M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
- U = Target analyte was analyzed for, but was below detection limit
- V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

											D	ATE							
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/30/2016	5/31/2016	8/23/2016	10/18/2016	2/9/2017	5/11/2017	8/23/2017	9/22/2017	10/11/2017	5/2/2018	4/6/2018	6/29/2018	9/26/2018	5/2/2019	10/17/2019	4/16/2020	9/24/2020
							Baseli	ne Events					Assessment	Re-Sample			Assessmer	nt	
Boron	0.08	NA	0.416	0.336 J	0.460 J	0.489 J	0.540 JB	0.679 JB	0.560 JB	0.543 J	0.637 J	0.309 JB		0.419 J	0.464 J	0.498 JB	ND D2,	U 0.54	0.51
Calcium	0.5	NA	16.5	21.3 B	23	36	14.3 B	13.1	33.7	21.4	11.9 B	46.1		9.94	10.5 B	19.5	9.76 D2	12.5 D2	8.80 D2
Chloride	3	NA	31.5 B	26.9	28.9 B	31.6 B	29.4 JB	29.1 B	32.3 B	29.7 B	25.8 B	4.94		26.7 B	27.9 B	26.6	25.7	21.5	21.4
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND J	ND	ND J	ND J	ND J	ND J	0.255 J	ND J	ND J	ND J	0.570 J	0.6	0.5	0.5
Sulfate	5	NA	208 HB	135	144	152	145	168	177 B	226 B	147	16.8 B		129	138 B	114 B	80 D	58 D	62 D
pH (Field Measurement)	0.10	NA	9.72	8.95	8.1	7.53	7.08	9.84	8.14	8.14	9.19	7.46	9.37	9.15	8.98	9.15	9.24	8.87	8.74
Total Dissolved Solids	10	NA	644	532	558	602	679	763	758	763	728	271		721	673	642	568	466	436
APPENDIX IV CONSTIUENTS																			
Antimony	0.002	0.006 mg/L	ND	ND JB	ND J	B ND J	ND	ND JB	ND JB	ND JB		0.0000760 B	ND JB	ND JB	NA	0.0000580 JB	ND U	ND U	ND U
Arsenic	0.005	0.01 mg/L	ND J	ND J	ND J	ND J	ND JB	ND J	ND JB	ND J		0.00116 J	ND JB	ND JB	NA	0.00254 J	0.0022	0.0019	0.0019
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND JB	ND J	ND JB	ND J		0.0824 J	ND J	ND J	ND J	0.100 J	0.077	0.093	0.084
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA	ND	ND U	ND V1, U	ND U
Cadmium	0.001	0.005 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA	ND	ND U	ND U	ND U
Chromium	0.003	0.1 mg/L	ND J	ND J	ND J	ND	ND J	ND J	ND JB	ND		0.00136 J	ND JB	ND JB	NA	0.00299 J	0.0006 J	ND U	0.0006 J
Cobalt	0.005	0.006 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND JB	ND J		0.000158 J	ND J	ND J	NA	0.000685 J	ND U	ND U	ND U
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	0.255 J	ND J	ND J	ND J	0.570 J	0.6	0.5	0.5
Lead	0.005	0.015 mg/L	ND	ND JB	ND	ND J	ND J	ND J	ND	ND		0.0000730 J	ND J	ND	NA	0.000671 J	ND U	ND U	ND U
Lithium	0.05	0.040 mg/L	0.339	0.199	0.219	0.0736	0.481	0.607	0.204	0.345		ND	0.694	0.630	0.570	0.574	0.51	0.49	0.56
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND JB	ND		ND	ND	NA	NA	ND	0.0002 J	0.0002 J	0.0002 J
Molybdenum	0.01	0.1 mg/L	0.0170 J	0.0171	0.0141	ND J	0.0119	ND J	ND J	ND J		0.00442 J	ND J	ND J	ND J	0.00797 J	0.007 J	0.006 J	0.007 J
Radium 226	1	5 pCi/L	0.612	ND	0.715	ND	0.422	0.287	0.619	0.391		0.698	0.512	0.683	0.704	0.205 U	0.458	1.24	0.594
Radium 228		•															0.379		
Selenium	0.01	0.05 mg/L	ND	ND	ND	ND J	ND	ND	ND	ND		ND	ND	NA	NA	ND	ND U	ND U	ND U
Thallium	0.001	0.002 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND	ND	NA	NA	ND	ND U	ND U	ND U

MW-10 - Downgradient Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

M1 = Matrix spike recovery was high; the method control sample recovery was acceptable

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

60594108

GREEN LANDFILL - CCR ANALYTICAL SUMMARY MW-104

	Datastian					DATE				
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/29/2019	4/10/20	19	10/25/2019	4/17/	2020	10/1/	2020
	Lillit					Characterizat	tion			
Boron	0.08		0.1880 JB	0.2710	JB	ND D	2, U 0.21		0.23	D2
Calcium	0.5		465 B	502		505 D	1 527	D1	491	D1
Chloride	3		1430	1430	В	1610 D	2630	D	2220	D
Fluoride	1		ND	0.3230	JB	0.4	0.3	1	0.3	
Sulfate	5		2870	2880	В	2440 D	4710	D	2730	D
pH (Field Measurement)	0.10		6.88	6.99		6.86	6.58	1	6.91	
Total Dissolved Solids	10		6990	6690		7330	6320	1	6270	
APPENDIX IV CONSTITUENTS										
Antimony	0.002	0.006 mg/L	0.0001 JB	0.0001	JB	ND U	ND	U	ND	U
Arsenic	0.005	0.01 mg/L	0.0022 J	0.0021	J	0.0039	0.0013	3	0.0013	
Barium	0.2	2 mg/L	0.0243 J	0.0216	JB	0.030	0.018	1	0.018	
Beryllium	0.002	0.004 mg/L	ND	ND		ND U	ND	U	ND	U, D2
Cadmium	0.001	0.005 mg/L	ND	ND		0.0004 J	ND	U	ND	U
Chromium	0.003	0.1 mg/L	0.0047 B	0.0036		0.0066	0.0020)	0.0013	J
Cobalt	0.005	0.006 mg/L	0.0059 B	0.0052		0.011	0.005	5	0.005	
Fluoride	1	4 mg/L	ND	0.3230	JB	0.4	0.3	3	0.3	
Lead	0.005	0.015 mg/L	0.0011 J	0.0002	J	0.003	ND	U	ND	U
Lithium	0.05	0.040 mg/L	0.0281 J	0.0286	J	0.02	0.02	2	0.02	D2
Mercury	0.0002	0.002 mg/L	ND	ND	٨	ND U	ND	U	ND	U
Molybdenum	0.01	0.1 mg/L	0.0015 J	0.0010	J	0.005 J	0.003	J	ND	U, D2
Radium 226	1	5 pCi/L	0.7760	0.3190	11	0.126	0.655	1	0.422	
Radium 228	'	5 pci/L	0.7760	0.3190		1.52	0.655	<u>'</u>	0.422	
Selenium	0.01	0.05 mg/L	ND	ND		ND U	ND	U	ND	U, D2
Thallium	0.001	0.002 mg/L	ND	ND		ND U	ND	U	ND	U

Notes:

MW-104 - Characterization Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- F1 = MS and/or MSD Recovery is outside acceptance limits.
- D1 = Sample required dilution due to high concentration of target analyte
- D2 = Sample required dilution due to matrix interference
- H1 = Sample analysis performed pasts holding time
- H3 = Sample received and analyzed past holding time
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
- M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
- U = Target analyte was analyzed for, but was below detection limit
- V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

REID/HMPL SURFACE IMPOUNDMENT - ANATLYCIAL SUMMARY MW-110

	Detectio:						DATE					
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/29/2019		4/10/2019)	10/24/2019		4/17/2	2020	10/1/	2020
							Characterization					
Boron	0.08		0.484	JB	0.496	JB	ND	D2, U	0.54	M4	0.53	D2, M1, M4
Calcium	0.5		176 E	В	178		204	D1	181	D1, M2	162	D1, M2
Chloride	3		26.0		30.4		30.0		22.1		19.9	
Fluoride	1		0.279	J	0.255	JB	0.3		0.3		0.3	
Sulfate	5		563		596	В	568	D M1	460	D	411	D
pH (Field Measurement)	0.10		7.25		7.50		6.84		7.17		7.56	
Total Dissolved Solids	10		1170		1200		1270		1150		1060	
APPENDIX IV CONSTITUENTS												
Antimony	0.002	0.006 mg/L	0.000240	JB	0.000204	JB	ND	U	ND	U	ND	M4. U
Arsenic	0.005	0.01 mg/L	0.00534		0.00238	J	ND	U	0.0012		0.0004	J
Barium	0.2	2 mg/L	0.118 .	J	0.107	JB	0.065		0.065		0.056	M1
Beryllium	0.002	0.004 mg/L	0.000716	J	0.000314	J	ND	U	ND	M2, U	ND	M4, U
Cadmium	0.001	0.005 mg/L	ND		ND		ND	U	ND	U	ND	U
Chromium	0.003	0.1 mg/L	0.0180 E	В	0.0115		0.0010	J	0.0047		0.0016	J
Cobalt	0.005	0.006 mg/L	0.00911 E	В	0.00384	J	ND	U	ND	U	ND	M4, U
Fluoride	1	4 mg/L	0.279 .	J	0.255	JB	0.3		0.3		0.3	
Lead	0.005	0.015 mg/L	0.00661		0.00399	J	ND	U	0.002		0.0008	J
Lithium	0.05	0.040 mg/L	0.0299	J	0.0303	J	0.02		0.02		0.02	M4
Mercury	0.0002	0.002 mg/L	ND		ND	٨	ND	U	0.0002	J	ND	M1, M4, U
Molybdenum	0.01	0.1 mg/L	0.00153	J	0.00120	J	ND	U	ND	U	ND	M4, U
Radium 226	1	5 pCi/L	1.84		1.93		0.195		1.37		0.941	
Radium 228	'	3 poi/L	1.04		1.93		0.727		1.37		0.341	
Selenium	0.01	0.05 mg/L	ND		ND		ND	U	ND	U	ND	M4, U
Thallium	0.001	0.002 mg/L	0.000112 、	J	0.0000640	J	ND	U	ND	U	ND	U

Notes:

MW-110 - Characterization Well

New Groundwater Protection Standard (GWPS) limit as amended through EPA CCR rule (40 CFR 257) 7/17/2018

Groundwater results provided by Big Rivers Electric Corporation.

All results listed in milligrams per liter (mg/L) unless otherwise noted by the GWPS.

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

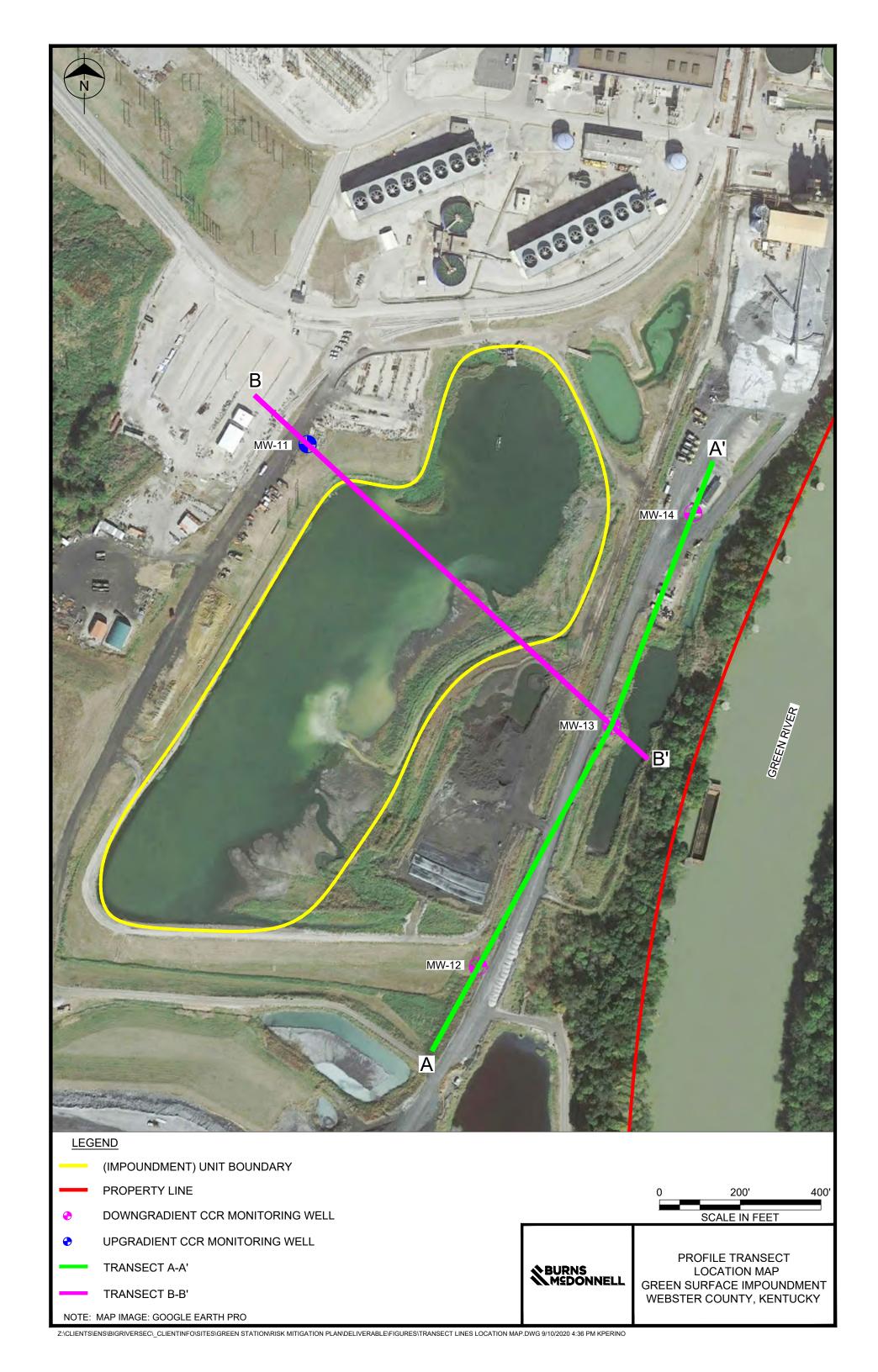
B = Compound was found in the blank and sample.

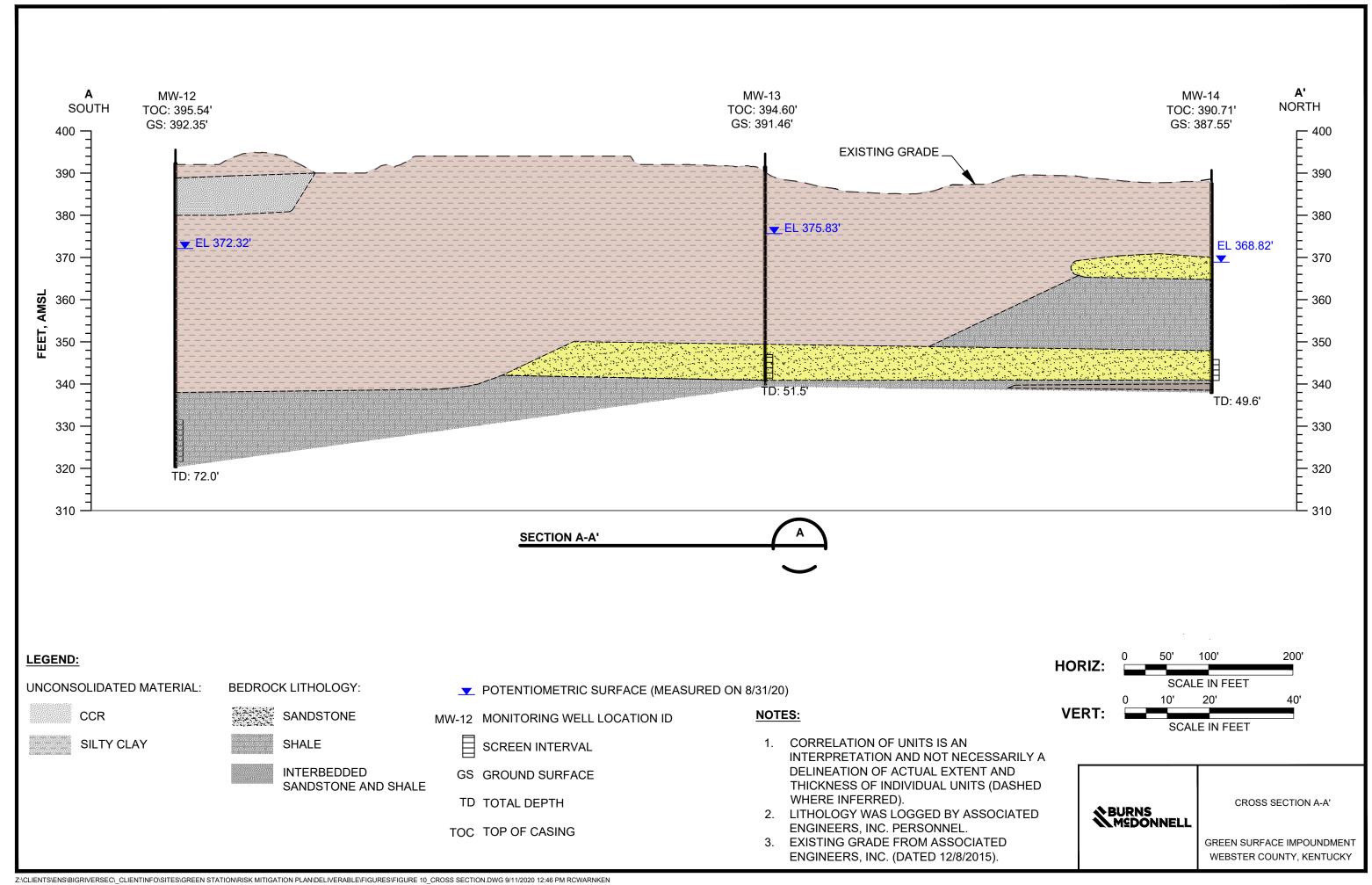
F1 = MS and/or MSD Recovery is outside acceptance limits.

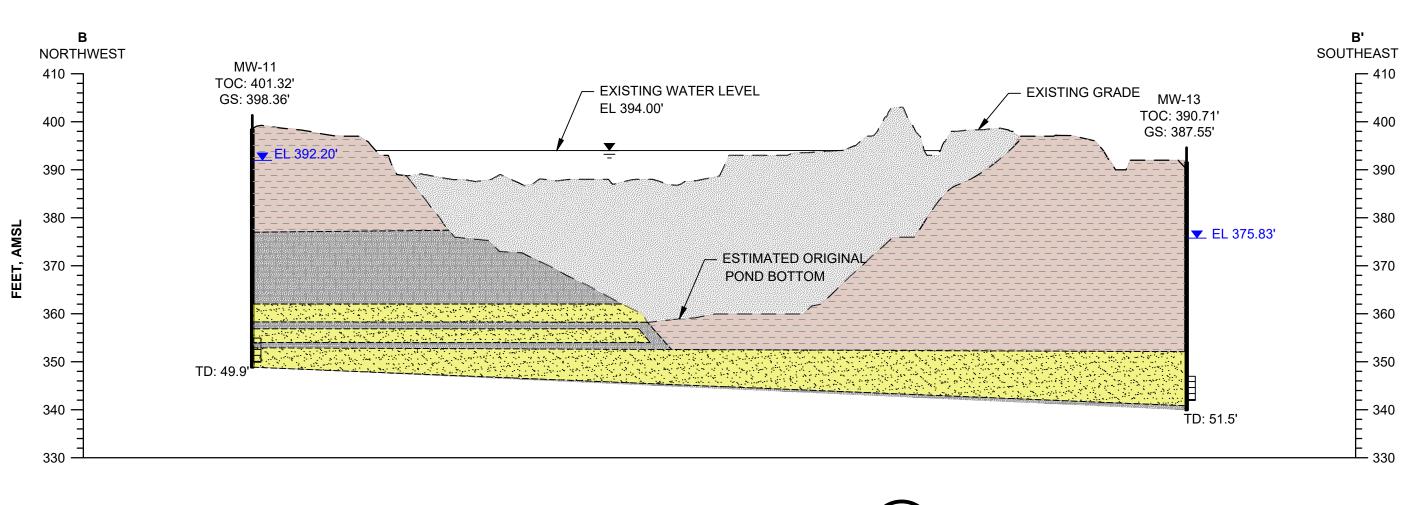
D1 = Sample required dilution due to high concentration of target analyte

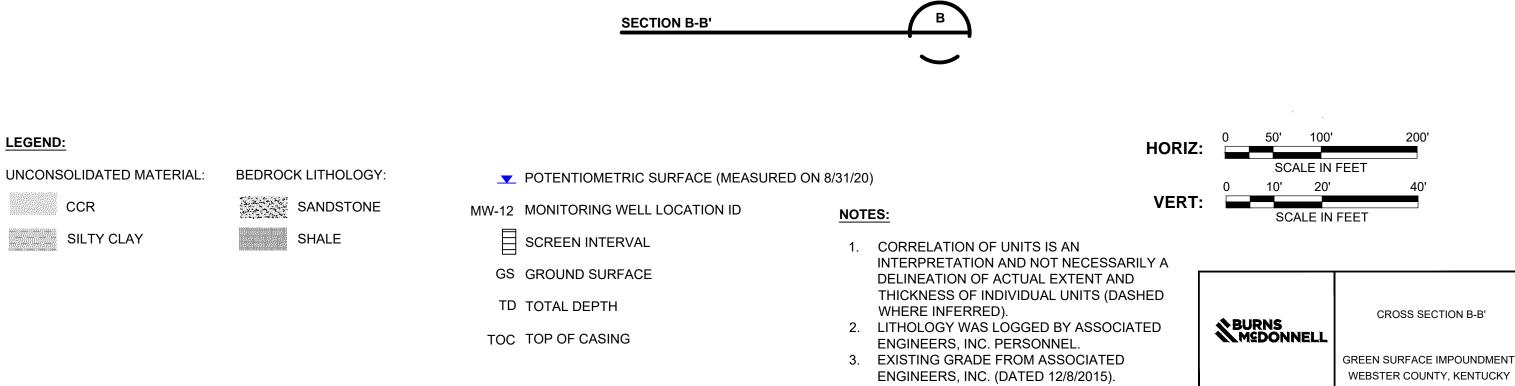
D2 = Sample required dilution due to matrix interference

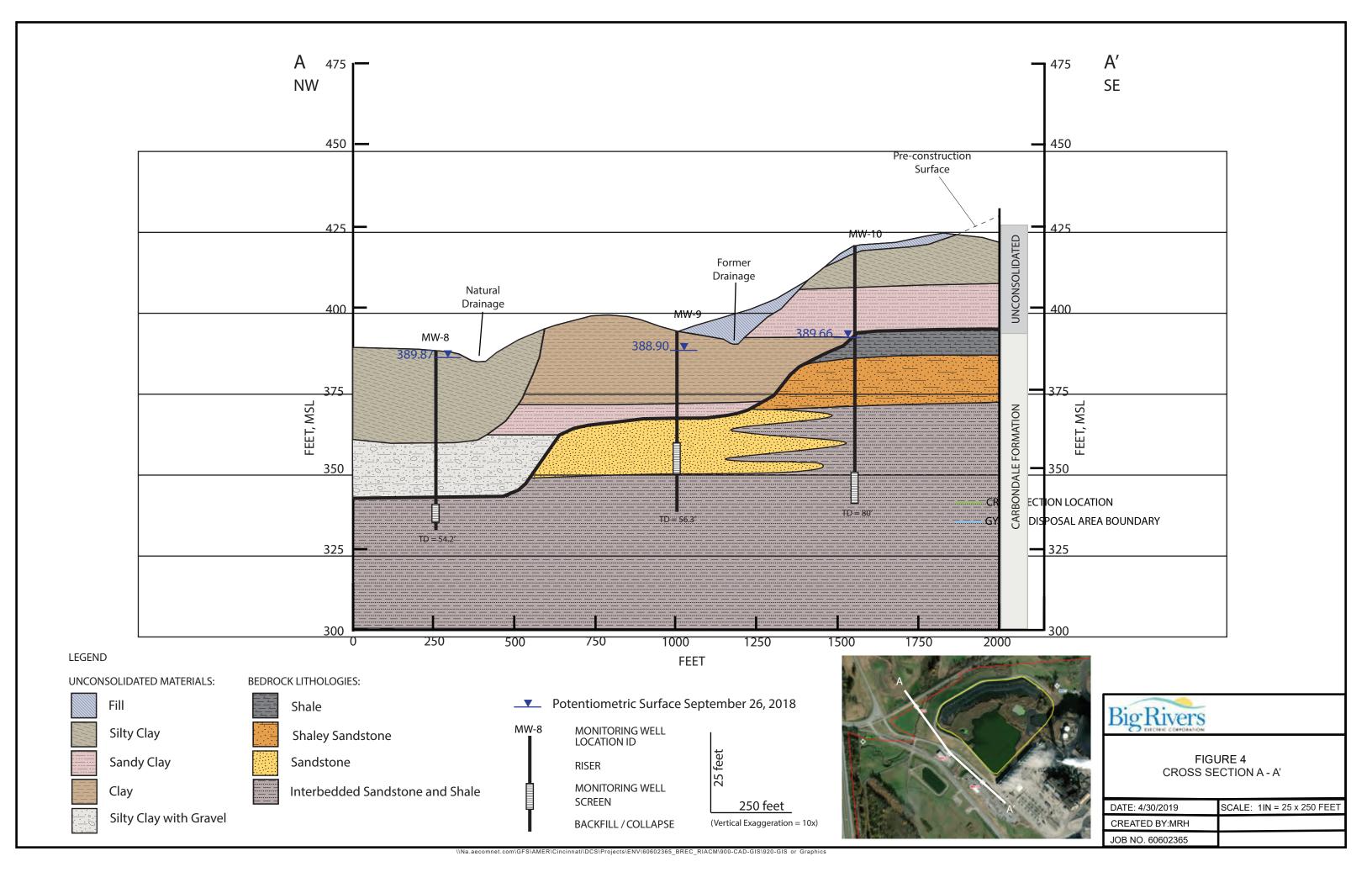
M1 = Matrix spike recovery was high; the method control sample recovery was acceptable

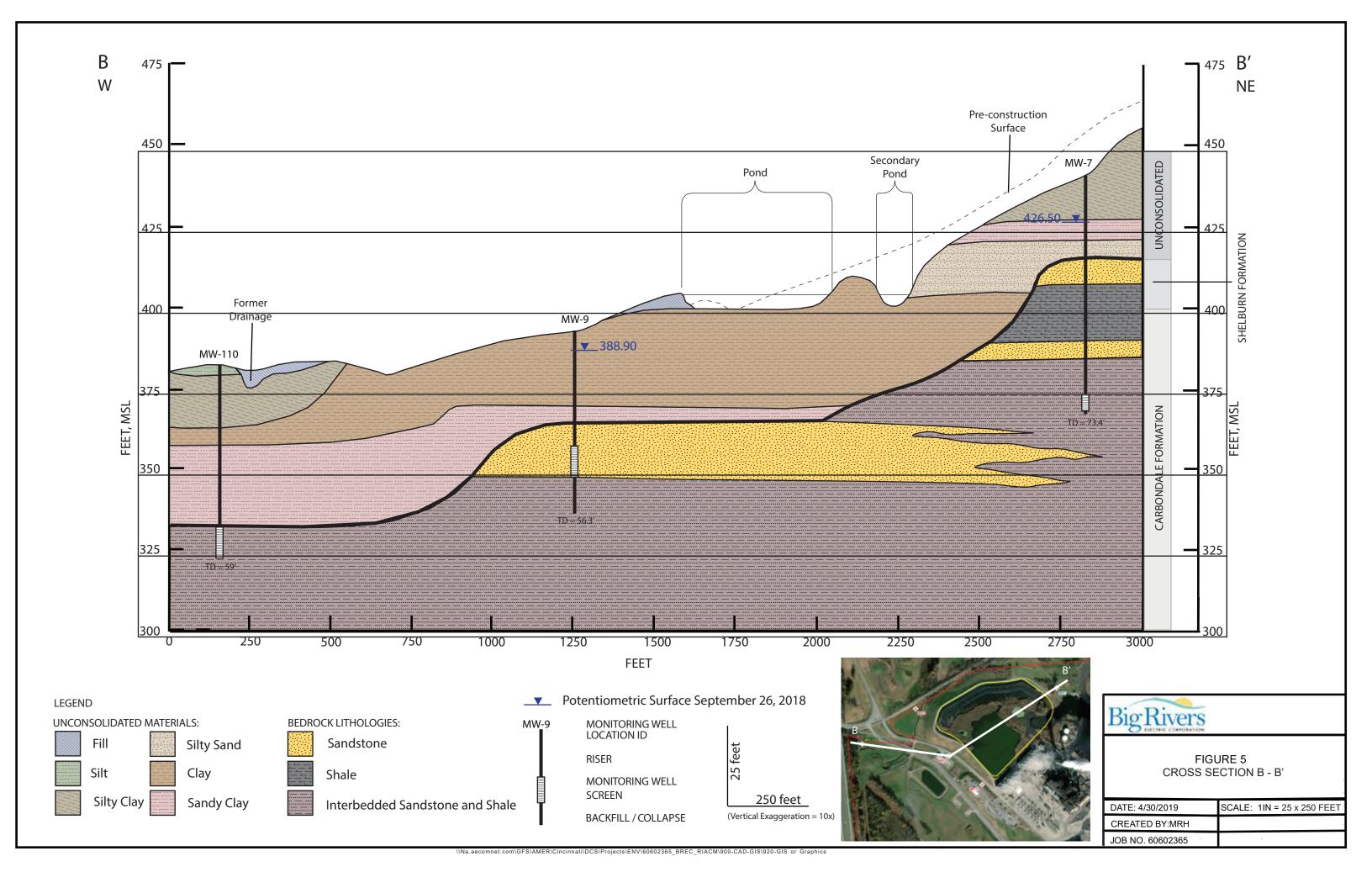

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable

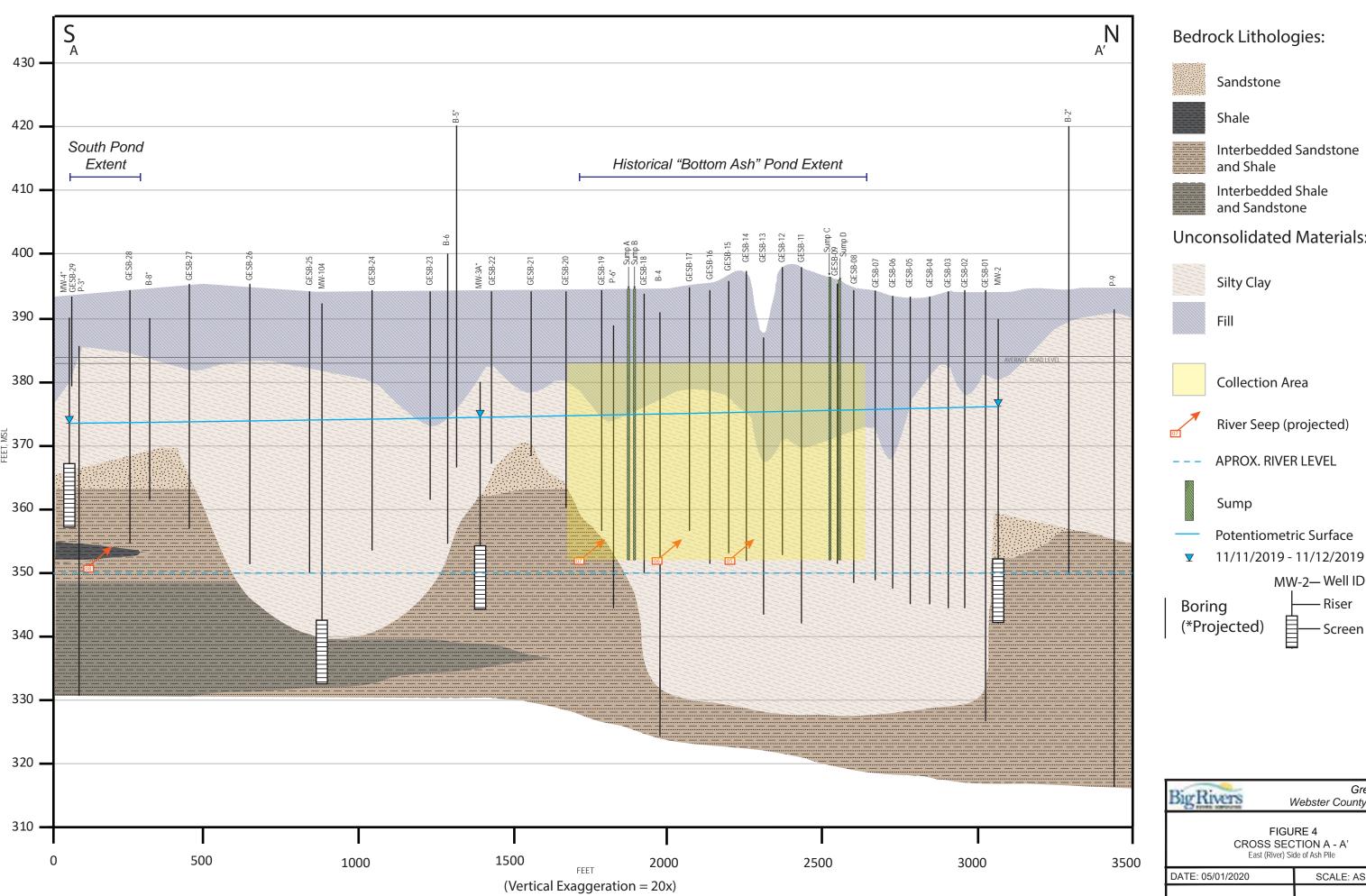

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

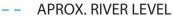

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable


U = Target analyte was analyzed for, but was below detection limit





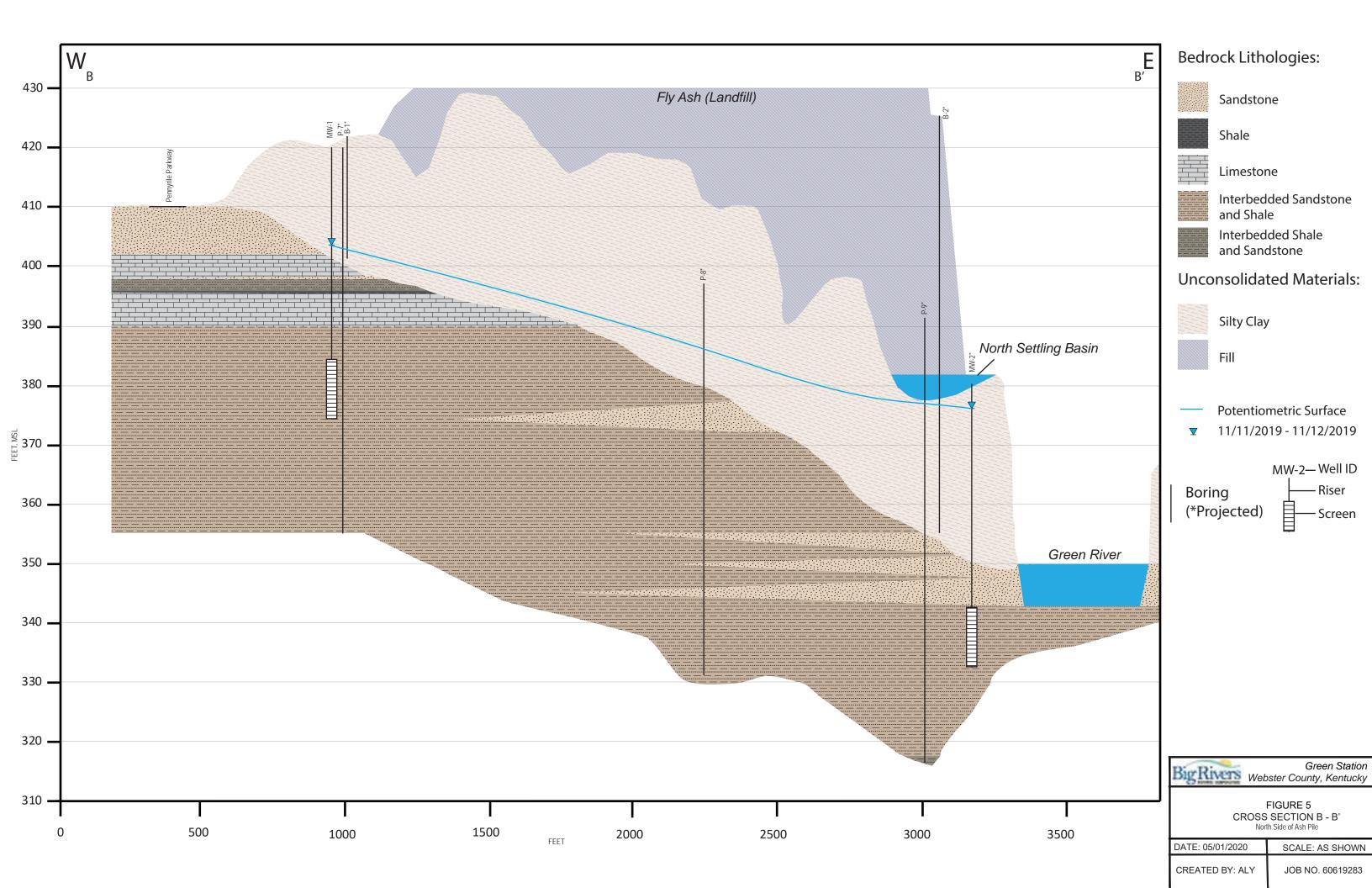


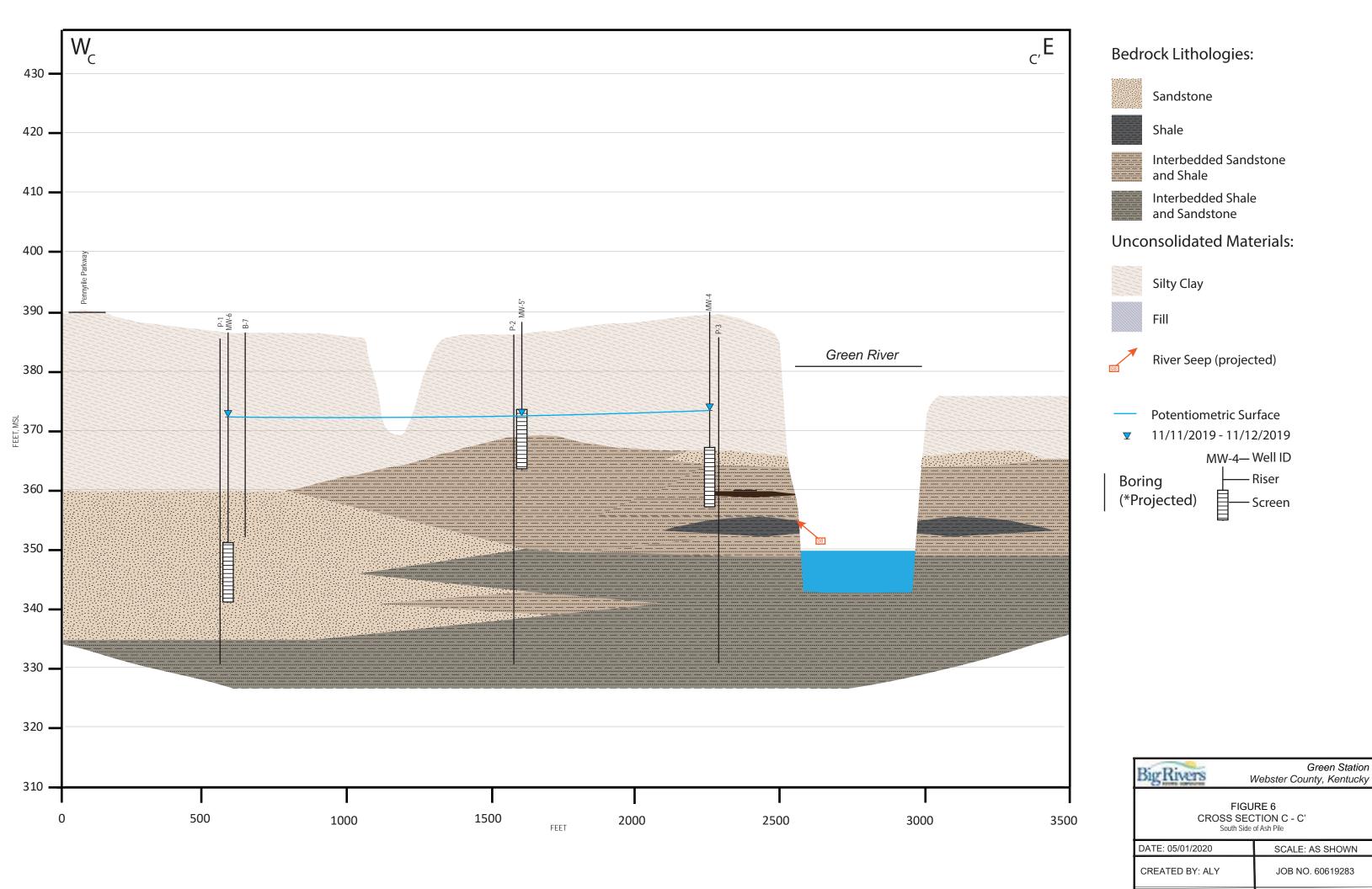


Interbedded Sandstone

Unconsolidated Materials:

Potentiometric Surface


11/11/2019 - 11/12/2019


- Riser - Screen

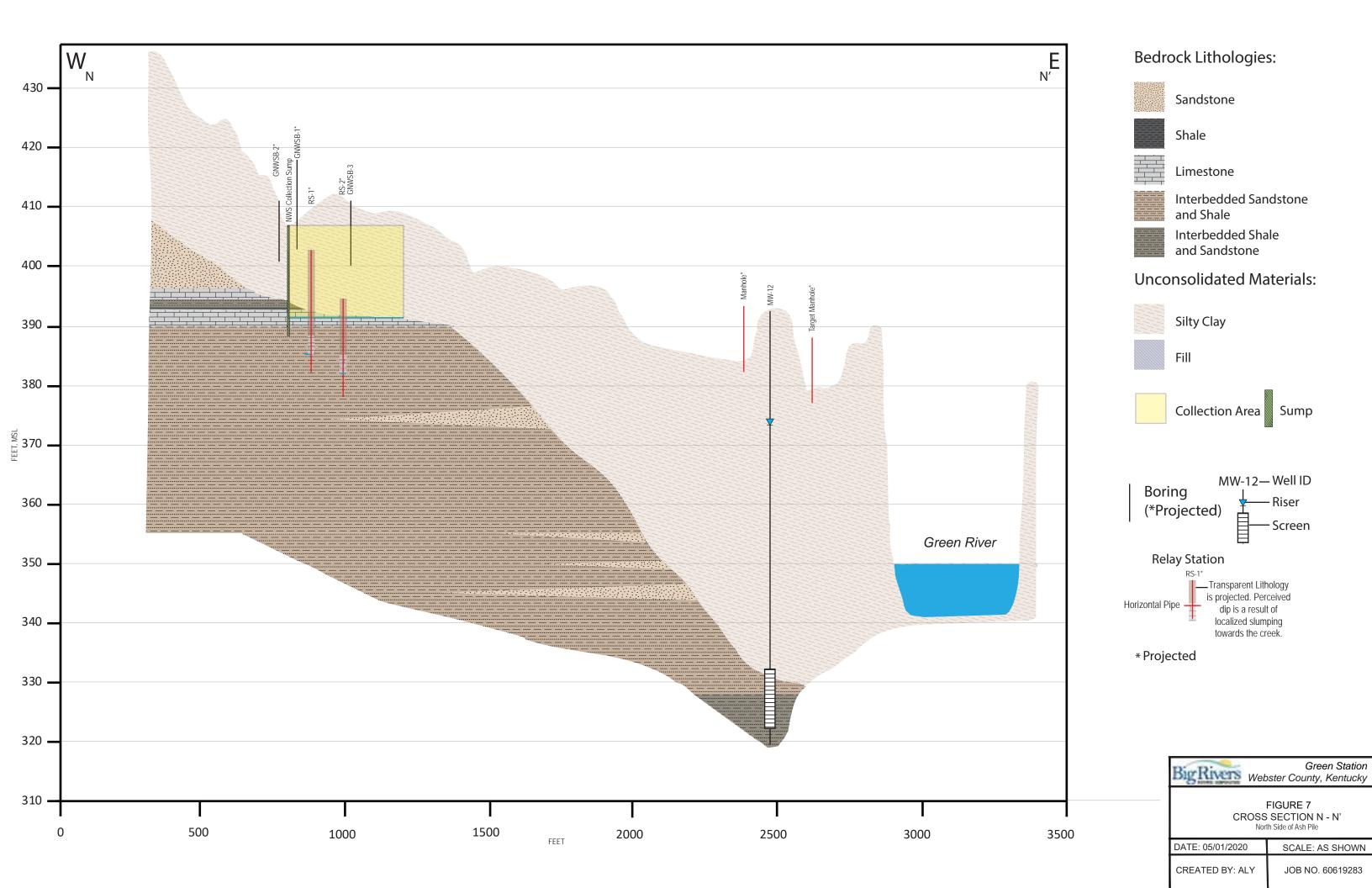

> Green Station Webster County, Kentucky

FIGURE 4 CROSS SECTION A - A' East (River) Side of Ash Pile

SCALE: AS SHOWN CREATED BY: ALY JOB NO. 60619283

ATTACHMENT 7 – ASSESSMENT OF CORRECTIVE MEASURES (FOR REID/HMP&L POND AND GREEN LANDFILL)

Assessment of Corrective Measures Under the CCR Rule

GREEN STATION CCR LANDFILL GREEN STATION WEBSTER COUNTY, KENTUCKY

June 13, 2019

Prepared For:

Big Rivers Electric Corporation Sebree Generating Station 9000 Highway 2096 Robards, Kentucky 42452

Prepared by:

AECOM Technical Services

525 Vine Street Suite 1800 Cincinnati, Ohio 45202 Phone: (513) 651-3440 Fax: (877) 660-7727

Job Number: 60602364

CONTENTS

Section	on			Page
ACRO	ONYMS .			iii
EXEC	CUTIVE S	SUMMAF	RY	1
1.0	INTRO	DUCTIO	DN	4
2.0		RIPTION Site Ba Site In	N OF CURRENT CONDITIONS ackground vestigation and Interim Measures ptual Site Model (CSM) Physical Setting Geology Hydrogeology Constituents of Concern (COCs) Impacted Media COCs Distribution Groundwater Quality Potential Receptors / Pathways	5 5 6 7 7 8 8
3.0	CORF	RECTIVE	ACTION OBJECTIVE (CAO)	10
4.0	TECH	NOLOG'	Y IDENTIFICATION AND SCREENING	11
5.0	CORF 5.1 5.2	Assum	ACTION ALTERNATIVES ASSEMBLY	13 13 14 14 15
6.0	ALTER 6.1		E EVALUATIONial Data Gaps	
7.0	RFFF	RENCES		18

i

List of Tables

- 1. Green Station CCR Landfill Constituents of Concern
- 2. Green Station CCR Landfill Characterization Sample Results
- 3. Potential Corrective Measures Options Technology Description/Overview

List of Figures

- 1. Site Location Map
- 2. Well Location Map
- 3. Site Geologic Map
- 4. Cross-Section A-A'
- 5. Cross Section B-B'
- 6. Cross Section C-C'
- 7. Contaminants of Concern Distribution

List of Appendix

A. Corrective Measures Technologies and Alternatives Evaluation Process

ACRONYMS

ACM Assessment of Corrective Measures
AECOM Technical Services, Inc.
BREC Big Rivers Electric Corporation

°C Degrees Celsius

CAO Corrective Action Objectives

CbR Closure by Removal

CCR Coal Combustion Residuals
CFR Code of Federal Regulations

CiP Closure in Place

cm/sec Centimeters per second
COCs Constituents of Concern
CSM Conceptual Site Model
DO Dissolved Oxygen

ft., amsl Feet above mean sea level

ft., msl Feet mean sea level gpm Gallons per minute

GWPS Groundwater Protection Standards

ICs Institutional Controls

KGS Kentucky Geological Survey

Li Lithium

MCL Maximum Contaminant Level

mg/L Milligrams per liter

mS/cm milliSiemens per centimeter

mV Millivolt MW Megawatts

NPDES National Pollution Discharge Elimination System

NTU Nephelometric Turbidity Unit
ORP Oxidation Reduction Potential

RCRA Resource Conservation and Recovery Act

SSI Statistically Significant Increase
SSL Statistically Significant Level

TDS Total Dissolved Solids
UPL Upper Prediction Limit

USEPA United States Environmental Protection Agency

EXECUTIVE SUMMARY

AECOM Technical Services, Inc. (AECOM) was retained by Big Rivers Electric Corporation (BREC) to prepare an Assessment of Corrective Measures (ACM) to identify appropriate corrective measures for groundwater impacted by coal combustion residuals (CCR). The subject groundwater impacts are associated with the CCR that has been historically managed within the Green Station CCR Landfill (Green Landfill) at the Sebree Generating Station (Sebree Station), located near Sebree, Kentucky (Site). Groundwater monitoring was conducted for the CCR management unit in accordance with the United States Environmental Protection Agency's (USEPA) CCR rule (40 Code of Federal Regulations (CFR) Section 257.90 through Section 257.95). Detection and Assessment groundwater monitoring are complete at the Green Landfill, and one constituent of concern (COC), lithium (Li), has been identified based on exceedance of the applicable groundwater protection standard (GWPS) at a statistically significant level (SSL).

Section 257.96(c) requires this assessment to include an analysis of the effectiveness of potential corrective measures in meeting the objectives for remedies identified under Section 257.97(b), by addressing at least the following:

- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

Several potential corrective measures technologies were evaluated to identify which ones could be carried forward as components of corrective measures alternatives. The results of the corrective measures technology evaluation are presented below:

Potentially Applicable Technology	Status	Description/Overview
No Action	Not retained as standalone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because it will not meet the established Corrective Action Objectives (CAOs).
Institutional Controls (ICs)	Retained as supplement to corrective measures alternatives	The use of ICs (i.e., Environmental Covenant, groundwater use restrictions, etc.) is retained as a useful technology. However, it is noted the ICs are not anticipated to be used as a stand-alone technology. Environmental Covenants, groundwater use restrictions, etc., are expected to be combined with other applicable technologies as part of corrective measures alternatives.
Groundwater Monitoring (Assessment and Detection mode)	Retained as supplement to corrective measures alternatives	The use of groundwater monitoring (Assessment and/or Detection modes as appropriate) when combined with other applicable technologies as part of any proposed corrective measures alternative is retained to address the CAO and to track the effectiveness of the overall remedy. However, it is not retained as a standalone technology.

Potentially Applicable Technology	Status	Description/Overview
Hydraulic Containment	Retained	The use of hydraulic containment is retained because it is an effective means of preventing offsite migration of soluble contaminants. Hydraulic containment requires management and potential ex-situ treatment of extracted groundwater, so it is not a stand-alone technology. The Conceptual Site Model (CSM) will guide the design of any groundwater extraction system to optimize the total discharge of groundwater needed to provide hydraulic containment.
Physical Containment	Retained	The use of physical containment is retained because it can be an effective means of managing groundwater flow. Physical containment often requires pairing with hydraulic containment and/or in-situ treatment (funnel and gate style) to manage the flux of groundwater flow into the system. The CSM will guide the design of any physical barrier system, but technology limitations increase implementation difficulty with scale.
Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment technologies are retained as a way of removing contaminants from extracted groundwater from a hydraulic containment system. Ex-situ treatment may be paired with wastewater treatment, non-groundwater release treatment systems, or with permitted discharge to manage groundwater contamination. The CSM and data gaps investigations will guide the design of any ex-situ treatment
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.
Other Source Control Technologies Note: Technologies that were retained.	Retained	Control of source area non-groundwater related releases. For the purposes of this groundwater ACM, management of non-groundwater releases are not included in the alternatives evaluation. Engineering measures, including leachate collection, lining of trenches and/or ponds, and other isolation methods are regarded as part of closure technologies selected by other means.

Note: Technologies that were retained may be used as components of a corrective action alternative, but when evaluated in conjunction with other available technologies any single technology may not be utilized.

Preliminary assembly of corrective measures alternatives was performed based on site-specific and regional geology and groundwater conditions. For the Green Landfill, six corrective measures alternatives were developed from this list of applicable corrective measures technologies:

- Alternative #1 No Action and Groundwater Monitoring
- Alternative #2a Closure in Place (CiP), Institutional Controls (ICs), and Groundwater Monitoring
- Alternative #2b Closure by Removal (CbR), ICs, and Groundwater Monitoring
- Alternative #3 CiP, Hydraulic Containment, Other Source Control (consisting of seepage collection and treatment), Ex-Situ Treatment, ICs, and Groundwater Monitoring

- Alternative #4 CiP, Physical Containment, Ex-Situ Treatment, ICs, and Groundwater Monitoring
- Alternative #5 CiP, Other Source Control, ICs, and Groundwater Monitoring

The assembly of corrective measures alternatives is preliminary and could be revised at a later date following detailed analysis during the remedy selection process and/or following comment from the regulatory community and public. Specifically, a public meeting is required under Section 257.96(e) at least 30 days prior to the selection of remedy so that the owner or operator may discuss the results of the corrective measures assessment with interested and affected parties.

Following submittal of the ACM, the Site will begin the remedy selection process that is set forth in Section 257.97. The selected remedy must:

- Meet the requirements of Section 257.97(b) of the CCR Rule;
- Consider the standards in Section 257.97(c), and;
- Address the schedule and other factors specified in Section 257.97(d).

Upon remedy selection, a remedy selection report will be prepared that documents details of the selected remedy and how the selected remedy meets Section 257.97 requirements. As needed to accommodate further investigation(s) and/or evaluation, Section 257.97 requires the preparation of a semiannual report that documents progress toward remedy selection and design.

1.0 INTRODUCTION

The following report presents the Assessment of Corrective Measures (ACM) for groundwater impacts identified at the Green Station CCR Landfill (Green Landfill), which is a coal combustion residuals (CCR) management unit located at the Big Rivers Electric Corporation (BREC) Sebree Generating Station (Sebree Station), located near Sebree, Kentucky (Site).

Groundwater monitoring was conducted for the unit in accordance with the United States Environmental Protection Agency's (USEPA) CCR Rule (40 Code of Federal Regulations (CFR) Section 257.90 through Section 257.95). The results of Detection Monitoring (per Section 257.94) identified the presence of one or more indicator constituents (Appendix III to Section 257) with downgradient concentrations representing a statistically significant increase(s) (SSI) over background or upgradient conditions. The detection of one or more SSI required the implementation of Assessment Monitoring following the requirements of Section 257.95, which was initiated in June 2018. Assessment Monitoring results indicated the downgradient presence of one or more constituent of concern [COC] (Appendix IV to Section 257) at concentrations that represent a SSI over background concentration, and that represent a statistically significant level (SSL) over the groundwater protection standard(s) established in accordance with to Section 257.95(h).

For the Green Landfill, the following SSLs were identified:

Lithium (Li) in MW-3A, MW-4, MW-5, and MW-6

The identification of these SSLs requires characterization of the nature and extent of impact (sufficient to support the ACM) in accordance with Section 257.95(g)(1) and the initiation of an ACM following the requirements of Section 257.96. Notice of ACM initiation dated January 14, 2019 was posted to BREC's publicly-accessible CCR reporting website.

Section 257.96(c) requires this ACM to include an analysis of the effectiveness of potential corrective measures in meeting the objectives for remedies identified under Section 257.97(b), by addressing at least the following:

- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

This report presents the ACM evaluation in the following five sections, along with their associated appendices and attachments.

2.0 DESCRIPTION OF CURRENT CONDITIONS

This section provides information related to the current use of the Site, as well as the history of activities relevant to the ACM for the Green Landfill at the Sebree Station.

2.1 Site Background

BREC owns and operates Sebree Station, which is a coal-fired power generating facility located on the Green River northeast of Sebree, Kentucky. Sebree Station is composed of Green Station and Reid/HMP&L Station. The Sebree Station is bounded by Interstate-69 to the west and the Green River to the east (see **Figure 1**). Reid Unit 1 (66 Megawatts [MW]) began commercial operation in 1966 and it will be converted from coal to natural gas in the future. The Reid Combustion Turbine (72 MW) was commercialized in 1976. HMP&L Station 2, Units 1 (167 MW) and 2 (168 MW) began commercial operation in 1973 and 1974 respectively. Both HMP&L units were retired as of February 1, 2019. Green Station Units 1 (242 MW) and 2 (242 MW) began commercial operation in 1979 and 1981, respectively.

The location of the Green Landfill is illustrated on **Figure 2**. The Green Landfill is located directly south of Sebree Station, situated south of the Green Station CCR Surface Impoundment. The Green Landfill is a Kentucky permitted landfill (Permit No. SW11700007) that receives special wastes generated by burning coal (CCRs) from Green and Reid/HMP&L Stations. The landfill began receiving CCR wastes in 1980. The current Green Landfill footprint is approximately 170 acres.

As stated in the published CCR monitoring well network certification, available on the BREC website (http://www.bigrivers.com/), the original ground surface within the landfill footprint was irregular and the dominant features were small stream valleys draining towards the Green River, which is located just east of the landfill; and towards Groves Creek, which is located just south of the landfill. There was also historic oil and gas production at and in the immediate vicinity of the Green Landfill. A review of the records from the Kentucky Geological Survey (KGS) showed that at or immediately adjacent to the Site, there were a number of dry exploratory oil/gas exploration holes, oil production wells, one gas production well, and one secondary recovery injection well. There were also former brine ponds at the Site. Most of these wells were abandoned in accordance with applicable regulations by BREC in 1997 and 1998. The last existing well was decommissioned in 2019.

2.2 Site Investigation and Interim Measures

Monitoring wells were installed in the vicinity of the Green Landfill beginning in November 1996 prior to the implementation of the CCR Rule. However, the existing wells meet the requirements of Section 257.90 of the CCR Rule for installation of a groundwater monitoring system. These requirements are that wells must adequately represent the quality of background groundwater and groundwater representing the downgradient waste boundary. The existing wells are located along the perimeter of the footprint for the Green Landfill (**Figure 2**). One upgradient monitoring well (MW-1) and five downgradient monitoring wells (MW-2, MW-3A, MW-4, MW-5 and MW-6) were installed adjacent to the Green Landfill to determine the general direction of groundwater movement and to monitor groundwater at the Site. The monitoring wells were installed in the uppermost saturated portion of the sandstone bedrock aguifer.

Hydraulic testing (slug tests) was performed in April 2019, and nine rounds of Baseline groundwater sampling for Appendix III constituents were conducted between March 2016 and October 2017. Statistical evaluation for Detection monitoring indicated that SSIs over background had occurred, and therefore, Assessment monitoring was triggered. Detection monitoring activities and data are presented in the annual reports that have been prepared to date, (AECOM 2018 and 2019).

As part of Assessment monitoring, upgradient and downgradient wells for the Landfill were sampled for Appendix IV constituents in June, July, and September 2018. Groundwater Protection Standards (GWPS) were established for Assessment monitoring of the Appendix IV constituents, and statistical evaluation indicated exceedances of GWPSs at SSLs.

For the purposes of this ACM, the COC that exceeds GWPSs at SSLs is Li (see Table 1).

Table 1 Green Station CCR Landfill Constituents of Concern

Monitoring Well (Date)	Parameter Lithium Background UPL 0.008 GWPS 0.04 (mg/L)
MW-3A (Jun 2018)	0.699
MW-3A (Jul 2018)	0.790
MW-3A (Sep 2018)	0.766
MW-4 (Jun 2018)	1.81
MW-4 (Jul 2018)	1.91
MW-4(Sep 2018)	1.81
MW-5(Jun 2018)	0.459
MW-5 (Jul 2018)	0.481
MW-5 (Sep 2018)	0.425
MW-6 (Jun 2018)	0.0650
MW-6 (Jul 2018)	0.0590
MW-6 (Sep 2018)	0.0558

GWPSs are the greater of the site-specific background concentrations, the USEPA primary drinking water standard maximum contaminant limits (MCL), or GWPS provided in 40 CFR 257.95(3)(h)(2)

Bold red values exceed the GWPS by direct comparison; yellow shaded indicates an SSL above the GWPS (i.e., 95 LCL > GWPS) mg/L = milligrams per liter; UPL = Upper Prediction Limit.

No formal interim corrective measures have been performed at the Green Landfill but corrective measures for known non-groundwater releases are underway. The compatibility of those corrective measures with potential groundwater remedies is a consideration in this assessment.

2.3 Conceptual Site Model (CSM)

The main purpose of a CSM is to support the decision-making process for groundwater corrective action at the Green Landfill.

2.3.1 Physical Setting

The Site is mapped within the Interior Low Plateaus physiographic province (https://www.nps.gov/subjects/geology/physiographic-provinces.htm). The province is part of the Interior Plains division of the United States. Characteristic features of the province include unglaciated rolling limestone plains with alluvial valleys and entrenched rivers and streams. Several large rivers are in the region, including the Green, the Ohio, the Kentucky, the Tennessee, and the Cumberland Rivers. The

geology underlying the Site consists of unconsolidated materials, including loess and alluvial deposits, underlain by Upper to Middle Pennsylvanian-age clastics and carbonates consisting primarily of sandstone and shale. The unconsolidated material also include fill, silty and clayey residuum, and minor amounts of sandy, clayey channel fill alluvium.

The Green Landfill is located on an upland adjacent to the west bank of the Green River at an elevation of approximately 436 feet, above mean sea level [ft., amsl] (at the north end of the landfill) and 397 ft., amsl (at the south end of the landfill), with a maximum elevation of 608 ft., amsl at the landfill crest. Precipitation falling within the Green Landfill is directed to ponds in the north and south sides of the unit and then to the river under Kentucky Pollution Discharge and Elimination System (KPDES) permit. Underlying preconstruction soils consisted of Loring-Grenada, Loring-Zanesville-Wellston (Henderson County) and Loring-Wellston-Zanesville (Webster County) soil associations which are generally characterized as well drained to moderately well drained soils on nearly level to sloping uplands (Associated Engineers 2016, Hydrologic and Hydraulic Capacity Assessment and Initial Inflow Design Flood Control System Plan). The Green Landfill does not have an existing leachate collection and management system.

2.3.2 Geology

Figure 3 presents a geologic map of the site and vicinity. The Site lies in the Western Kentucky Coalfields section, characterized by rolling uplands underlain by coal-bearing bedrock of the Pennsylvanian Period. In the vicinity of the site, maximum topographic relief is on the order of 80 feet. The geologic quadrangle (Geologic map of the Robards quadrangle, Henderson and Webster Counties, Kentucky, 1973) for the Site vicinity published by the KGS shows the surficial material to be unconsolidated loess representing the Pleistocene and Holocene geologic epoch. The loess consists of sandy and clayey silt. The unconsolidated surficial materials, which include silty and sandy clay units, are up to approximately 25 feet in thickness.

The unconsolidated materials are shown to be underlain by bedrock of the Upper Pennsylvanian Shelburn Formation (formerly identified as the Lisman Formation (Fairer, 1973)) and the Middle Pennsylvanian Carbondale Formation. At the base of the Shelburn Formation is the Providence Limestone Member, consisting of limestone and interbedded shale, but this unit is absent in much of the area due to erosional channeling. Due to its discontinuous character and the presence of interbedded shale, hydrologically significant karst features are not present in the Providence Limestone Member. The underlying Carbondale Formation consists of cyclic sequences of sandstones, shales, siltstones and coals. The Carbondale sediments were deposited in a fluvial-deltaic system. As a result of this depositional environment, the lithologic units of the Carbondale tend to be lenticular bodies rather than continuous sheet-like strata. Gradational and abrupt horizontal changes in lithology are often encountered.

Cross-sections were prepared during development of this ACM, and cross-section locations are shown on **Figure 2**. The individual cross-sections are presented on **Figures 4, 5 and 6**. These sections illustrate the sequence of geologic materials present under the Green Landfill as evidenced by the currently available data.

2.3.3 Hydrogeology

For purposes of compliance with the CCR Rule groundwater monitoring requirements the interbedded sandstone and shale of the Carbondale Formation, is considered to be the uppermost aquifer underlying the Green Landfill. The uppermost aquifer is unconfined and first encountered at an elevation of approximately 401 ft., amsl at the northwest end of the landfill, and 367 ft., amsl at the southeast end of

the landfill (AECOM, 2019). Flow direction beneath the Site is typically southeast towards the Green River.

Slug tests were performed on April 25, 2019 at monitoring wells MW-3A, MW-4, MW-6, and MW-104 to assess the hydraulic characteristics of the uppermost aquifer. The estimated hydraulic conductivity of the monitoring wells tested ranged from 2x10⁻⁵ to 3x10⁻³ centimeters per second (cm/sec).

Although previous site-specific investigations have noted the presence of perched zones of saturation in the overlying unconsolidated materials, these discontinuous zones do not qualify as an uppermost aquifer under the CCR Rule because they do not produce usable quantities of groundwater.

2.3.4 Constituents of Concern (COCs)

As described in Section 2.2, a single Appendix IV constituent, Li, was detected at concentrations exceeding GWPS at multiple monitoring well locations. Li was detected at SSLs above the GWPS at the locations of monitoring wells MW-3A, MW-4, MW-5, and MW-6.

2.3.5 Impacted Media

Groundwater is the sole impacted media of concern addressed by this ACM. Non-groundwater releases will be covered under a separate ACM.

2.3.6 COCs Distribution

Groundwater analytical data from the Site investigations through 2018 indicate that COC concentrations above GWPSs are present in the vicinity of the Green Landfill along the south and east edges of the landfill, near the station's property boundary (Figure 7). COC concentrations at MW-1 and MW-2 were not above GWPSs at SSLs. Due to this, the area of projected corrective measures is confined to the area between and adjacent to MW-3A, MW-4, MW-5, and MW-6.

An additional characterization well, MW-104, was subsequently installed to estimate the downgradient extent of impacted groundwater. Sample collection for Appendix III and IV parameters took place in March and April 2019. The analytical results for Li were below the GWPS. The additional characterization data are summarized in **Table 2**.

Table 2 – Green Station CCR Landfill Characterization Sample Results

	Parameter	
Monitoring Well (Date)	Lithium UPL 0.008 GWPS 0.04	
MW-104 (March 2019)	(mg/L) 0.0281	
MW-104 (April 2019)	0.0288	

The two sampling event results from the characterization well help confirm the downgradient (southwestern) extent of COC impacts above the GWPS at the Green Landfill.

2.3.7 Groundwater Quality

In addition to the presence of COCs above GWPSs, other geochemical characteristics of the shallow aquifer zone consist of the following:

- The temperature of the samples taken at the downgradient wells during the September 2018 sampling event ranged from 16.92 degrees Celsius (°C) to 17.54 °C.
- Specific conductance ranged from 1.68 to 8.00 milliSiemens per centimeter (mS/cm).
- Dissolved Oxygen (DO) concentration ranged from 0.42 to 6.36 mg/L.
- Oxidation Reduction Potential (ORP) ranged from -83 to 447 milliVolts (mV). The only monitoring well sample with a negative ORP was collected from monitoring well MW-2.
- Turbidity of the samples ranged from 0.14 to 25.6 Nephelometric Turbidity Units (NTU).
- The pH of the samples ranged from 6.50 to 6.72.
- Total Dissolved Solids (TDS) concentration of the samples ranged from 937 to 5,170 mg/L.

2.3.8 Potential Receptors / Pathways

Contact with water (e.g., shallow groundwater or surface water) impacted by COCs at levels above GWPS is regarded as the potential pathway for exposure of potential receptors. Based on data published by KGS, there are no known groundwater wells used for drinking water within a 1-mile radius of the Green Landfill, thus limiting the potential receptors to the surface water, i.e., the Green River and its tributary, Groves Creek. The pathways to these receptors include seepage of water from the Green Landfill through manmade and natural hydraulic barriers.

Other potential exposure pathways (e.g., soil or vapor) are not considered complete as the CCR material is isolated in the unit. This isolation prevents direct access by individuals that might result in direct contact or ingestion. In addition, the inherent non-volatile nature of the unit-specific COCs eliminates the potential for a complete vapor pathway (i.e., vapor intrusion to indoor air). Therefore, soil and vapor pathways will not be considered within the context of this ACM.

3.0 CORRECTIVE ACTION OBJECTIVE (CAO)

For CCR units, 40 CFR Parts 257.90 through 257.98 outlines the groundwater monitoring programs (Detection and Assessment) and the corrective action evaluation process, which provide the basis for the development of the site-specific CAO. Detection and Assessment groundwater monitoring are complete at the Landfill, and the COC Li has been identified based on exceedance of the GWPS.

Section 257.96(c) requires this assessment to include an analysis of the effectiveness of potential corrective measures to meet the objectives for remedies identified under Section 257.97(b), by addressing at least the following:

- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

The subsequent remedy selection process will evaluate the following objectives for remedies, as required under Section 257.97(b):

- Protect human health and the environment;
- Attain the COC-specific GWPSs as specified pursuant to Section 257.95(h);
- Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix IV constituents into the environment;
- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems (applicable to material releases only); and
- Comply with standards for management of wastes as specified in Section 257.98(d).

Together, these requirements comprise the site-specific CAO that will be used during the remedy selection process.

4.0 TECHNOLOGY IDENTIFICATION AND SCREENING

As required under Section 257.97(b), source control is one element of the CAO that is intended to prevent further releases from the source, i.e., the Green Landfill. In adherence with the BREC's permit conditions, the Site will continue to operate as a solid waste disposal facility through its life cycle and will be closed in accordance with the requirements of the permit. Source control through landfill closure will include installation of final cover that will prevent infiltration and contribute to groundwater quality restoration. Control of non-groundwater sources associated with the Green Landfill are also planned and are described separately.

The identification and screening of potentially applicable corrective measures technologies for groundwater downgradient of the Green Landfill is presented in **Appendix A** to this report. The findings of that screening are summarized in the table below.

Table 3 - Potential Corrective Measures Options Technology Description/Overview

Potentially Applicable Technology	Status	Description/Overview
No Action	Not retained as standalone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because it will not meet the established CAOs.
Institutional Controls (ICs)	Retained as supplement to corrective measures alternatives	The use of ICs (i.e., Environmental Covenant, groundwater use restrictions, etc.) is retained as a useful technology. However, it is noted the ICs are not anticipated to be used as a stand-alone technology. Environmental Covenants, groundwater use restrictions, etc., are expected to be combined with other applicable technologies as part of corrective measures alternatives.
Groundwater Monitoring (Assessment and Detection mode)	Retained as supplement to corrective measures alternatives	The use of groundwater monitoring (Assessment and/or Detection modes as appropriate) when combined with other applicable technologies as part of any proposed corrective measures alternative is retained to address the CAO and to track the effectiveness of the overall remedy. However, it is not retained as a standalone technology.
Hydraulic Containment	Retained	The use of hydraulic containment is retained because it is an effective means of preventing offsite migration of soluble contaminants. Hydraulic containment requires management and potential ex-situ treatment of extracted groundwater, so it is not a stand-alone technology. The CSM will guide the design of any groundwater extraction system to optimize the total discharge of groundwater needed to provide hydraulic containment.
Physical Containment	Retained	The use of physical containment is retained because it can be an effective means of managing groundwater flow. Physical containment often requires pairing with hydraulic containment and/or in-situ treatment (funnel and gate style) to manage the flux of groundwater flow into the system. The CSM will guide the design of any physical barrier system, but technology limitations increase implementation difficulty with scale.

Potentially Applicable Technology	Status	Description/Overview
Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment technologies are retained as a way of removing contaminants from extracted groundwater from a hydraulic containment system. Ex-situ treatment may be paired with wastewater treatment, non-groundwater release treatment systems, or with permitted discharge to manage groundwater contamination. The CSM and data gaps investigations will guide the design of any ex-situ treatment
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.
Other Source Control Technologies	Retained	Control of source area non-groundwater related releases. For the purposes of this groundwater ACM, management of non-groundwater releases are not included in the alternatives evaluation. Engineering measures, including leachate collection, lining of trenches and/or ponds, and other isolation methods are regarded as part of closure technologies selected by other means.

References: Technology descriptions referenced from 1) FRTR: Federal Remediation Technologies Roundtable, CLU-IN, and/or AECOM reference materials.

5.0 CORRECTIVE ACTION ALTERNATIVES ASSEMBLY

Applicable corrective measures technologies identified in Section 4.0 above were assembled into corrective measures alternatives for evaluation (see **Appendix A** and Section 6.0). Each corrective measures alternative consists of one or more corrective measures technologies assembled into a strategy for the groundwater remedy. Six corrective measures alternatives for the Green Landfill were assembled and are described below.

- Alternative #1 No Action and Groundwater Monitoring
- Alternative #2a Closure in Place (CiP), Institutional Controls (ICs), and Groundwater Monitoring
- Alternative #2b Closure by Removal (CbR), ICs, and Groundwater Monitoring
- Alternative #3 CiP, Hydraulic Containment, Other Source Control, Ex-Situ Treatment, ICs, and Groundwater Monitoring
- Alternative #4 CiP, Physical Containment, Ex-Situ Treatment, ICs, and Groundwater Monitoring
- Alternative #5 CiP, Other Source Control, ICs, and Groundwater Monitoring

5.1 Assumptions for Corrective Measure Alternatives Development

In developing the corrective measures alternatives, a number of assumptions have been made based on the data available to AECOM at the time of this report and operational plans as reported by the owner/operator. The specific assumptions include:

- The currently observed dissolved phase groundwater impacts are limited to the area between and adjacent to monitoring well locations MW-3A, MW-4, MW-5, and MW-6 along the south and east edges of the landfill.
- Groundwater impacts are limited to the saturated zone between the observed water table at approximate elevation 370 feet mean sea level (ft., msl) and the base of the aquifer at approximately 320 ft-msl.
- Ex-situ treatment of groundwater may involve physical/chemical methods and/or discharge to a permitted National Pollution Discharge and Elimination System (NPDES) outfall.
- Groundwater corrective measures will be conducted until the CAOs are met. The objectives may
 be met at an earlier date, but the alternatives analysis is based on the conservative assumption
 that corrective measures and the associated monitoring of groundwater conditions will be
 required for up to 30 years following the initiation of the corrective measures.
- CiP and Other Source Control are part of planned plant operations.

5.2 Groundwater Corrective Measures Alternatives Overview

The developed groundwater corrective measures alternatives, outlined above, are detailed in the following sections.

5.2.1 Alternative #1 - No Action and Groundwater Monitoring

Alternative #1 consists of taking no action to remedy the CCR impact observed in the Green Landfill groundwater monitoring system. Under the No Action alternative, no corrective measures would be

implemented to remove, control, mitigate, or minimize exposure to impacted groundwater. Groundwater monitoring (Assessment) is required by the CCR rule during the nominal performance period of 30 years to track the effectiveness of the alternative and to identify conditions that allow the return to Detection monitoring. The No Action alternative establishes a baseline, or reference point against which each of the developed corrective measures alternatives may be compared.

5.2.2 Alternative #2a - CiP, ICs, and Groundwater Monitoring

Alternative #2a employs a combination of three of the retained corrective measures technologies:

- CiP source control, which consists of two elements: routine cover management during landfill
 operation, and planned closure activities to be conducted at the end of the landfill's operational
 life cycle;
- Implementation of ICs designed to restrict the property to industrial use and to prohibit groundwater use for potable purposes; and
- Groundwater Monitoring (Assessment) to track the effectiveness of the corrective measures and to identify conditions that allow the return to Detection monitoring and ultimately to cessation of corrective measures.

CiP was selected as the source control technology because the unit is a state-permitted solid waste facility subject to operational and closure controls designed to limit the potential for impact to human health and the environment.

Implementation of ICs is employed to help maintain the CiP and associated corrective measures by limiting the accessibility of the unit to unauthorized users and restricting future use of the property to those activities that may result in exposure potentials. ICs for the landfill are specifically addressed by the facility's solid waste permit, which restricts the use of the property and associated resources (groundwater).

Groundwater monitoring of the unit is required by 40 CFR 257.90 through .98. The unit triggered Assessment mode monitoring by the detection of indicator parameters (Appendix III of 40 CFR 257) in downgradient monitoring wells at concentrations representing a SSI over background. Continued groundwater monitoring is required under 40 CFR 257.95 until the CAOs are met. The CAOs are anticipated to be met as the effect of source control technologies are realized and as natural attenuation mechanisms (advection, dilution and dispersion) take effect.

5.2.3 Alternative #2b – CbR, ICs, and Groundwater Monitoring

Alternative #2b is similar to Alternative #2a except that CiP is replaced by CbR, which consists of excavation and removal of the Green Landfill, implementation of ICs and an Environmental Covenant intended to restrict the unit to industrial use and prohibit groundwater use for potable purposes. The excavation of impacted CCR material would typically be completed using standard construction equipment (e.g., backhoe, excavator, wheel loader, dump trucks). The excavated materials are then placed directly into dump trucks for transport/disposal or beneficial use. Excavation limits would typically be verified with confirmation sampling to demonstrate that the underlying soil is not impacted above applicable standards.

Groundwater monitoring of the unit is required by 40 CFR 257.90 through .98. The unit triggered Assessment mode monitoring by the detection of indicator parameters (Appendix III of 40 CFR 257) in downgradient monitoring wells at concentrations representing a SSI over background. Continued groundwater monitoring is required under 40 CFR 257.95 until the CAOs are met. The CAOs are

anticipated to be met as the effect of source control technologies are realized and as natural attenuation mechanisms (advection, dilution and dispersion) take effect.

5.2.4 Alternative #3 – CiP, Hydraulic Containment, Other Source Control, Ex-Situ Treatment, ICs, and Groundwater Monitoring

Alternative #3 builds on Alternative #2a to also include the addition of Hydraulic Containment, Other Source Control, and Ex-Situ Treatment of groundwater:

- CiP source control, which consists of two elements: routine cover management during landfill
 operation, and planned closure activities to be conducted at the end of the landfill's operational
 life cycle;
- Hydraulic Containment using one or more vertical wells designed to prevent the movement of impacted groundwater past the limits of the unit to the downgradient groundwater environment and potential points of exposure;
- Other Source Control in the form of draining and lining the south Leachate Pond, which helps eliminate the potential for additional contaminant migration from the landfill, and managing existing non-groundwater seepages;
- Ex-Situ Treatment of groundwater extracted for hydraulic containment, which involves aboveground physical/chemical treatment methods and/or permitted discharge for until the CAOs are achieved;
- Implementation of ICs designed to restrict the property to industrial use and to prohibit groundwater use for potable purposes; and
- Groundwater Monitoring (Assessment mode) to track the effectiveness of the corrective measures and to identify conditions that allow the return to Detection mode monitoring and ultimately to cessation of corrective measures.

Vertical groundwater recovery wells for Hydraulic Containment would be installed near the downgradient limit of the unit. It is noted that Pre-Design Studies will be needed to identify the appropriate number, design, and spacing of the extraction well system, but for the purposes of this ACM, preliminary specifications are as follows:

- Five vertical groundwater extraction wells;
- The extraction wells would be installed along the south side and the southeast corner of the landfill, equally spaced between MW-6 and MW-3A;
- Well installed to a depth of approximately 50-75 ft-bgs;
- Estimated total groundwater extraction rate of 200 gallons per minute (gpm).

Alternative #3 incorporates treatment of extracted groundwater before it can be discharged to an outfall. Treatment will consist of piping the extracted groundwater to an existing surface water impoundment at the Sebree Station, which will allow for compliance with discharge permits through an established NPDES outfall.

Other Source Control would consist of re-design of the pond located south of Green Landfill by dividing the pond into thirds. The east and west sections of the pond will be designed to collect non-groundwater seepage from around the toe of the unit so that it can be isolated and pumped to a central location for treatment. The middle section of the pond will continue to be used for stormwater collection.

The COC concentrations downgradient of the hydraulic containment would also be expected to decrease over time through natural attenuation mechanisms including advection, dilution, and dispersion. As such, groundwater monitoring would be modified to include system performance monitoring, which may require installation of wells at new locations to evaluate the efficacy of hydraulic containment and to identify when CAOs have been achieved.

5.2.5 Alternative #4 - CiP, Physical Containment, Ex-Situ Treatment, ICs, and Groundwater Monitoring

Alternative #4 is similar to Alternative #2a except for the addition of a Physical Containment barrier such as a slurry wall or grout curtain along the affected downgradient boundary of the unit to contain groundwater flow. Impacted groundwater would be contained by grout curtain constructed in a funnel-and-gate arrangement that directs the flow of groundwater to an extraction point at the gate, from which groundwater is pumped and conveyed to ex-situ treatment. Design of a Physical Containment system is largely driven by the depth and character of the groundwater bearing zone, and the length barrier needed to effect containment. In this case, the aquifer ranges to depths on the order of 75 feet below ground surface near the downgradient limit of the unit. The projected length of a physical barrier is 4,000 feet. Similar to Alternative #3, Treatment will consist of piping the extracted groundwater to an existing surface water impoundment at the Sebree Station, which will allow for compliance with discharge permits through an established NPDES outfall.

5.2.6 Alternative #5 - CiP, Other Source Control, ICs, and Groundwater Monitoring

Alternative #5 builds on Alternative #2a to also include the addition of Other Source Control for non-groundwater releases. Other Source Control would consist of draining and lining the pond located south of Green Landfill with geomembrane, and dividing the pond into sections. The east and west sections of the pond will collect the seepage, where it will be pumped to a central location for treatment. The middle section of the pond will continue to be used for stormwater collection.

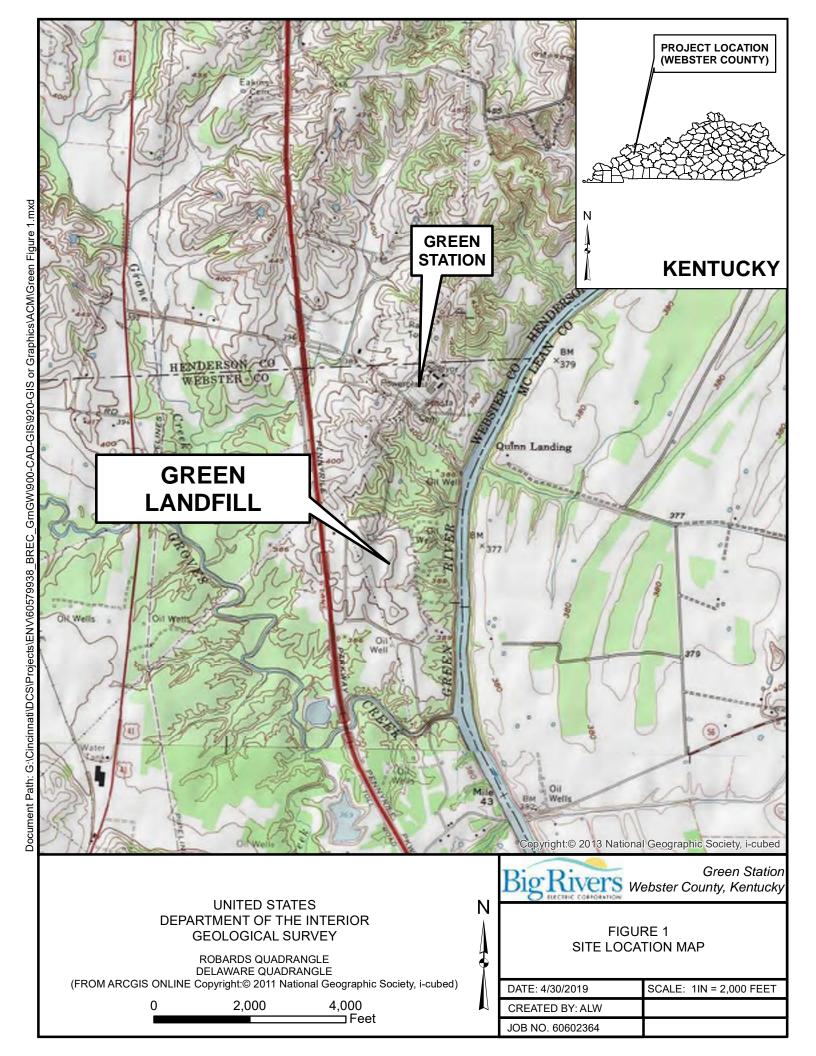
6.0 ALTERNATIVE EVALUATION

The formal remedy selection process, in accordance with the CCR Rule 40 CFR Section 257.97, will begin following submission of the ACM Report. The subsequent remedy selection process will evaluate the following objectives for remedies, as required under Section 257.97(b):

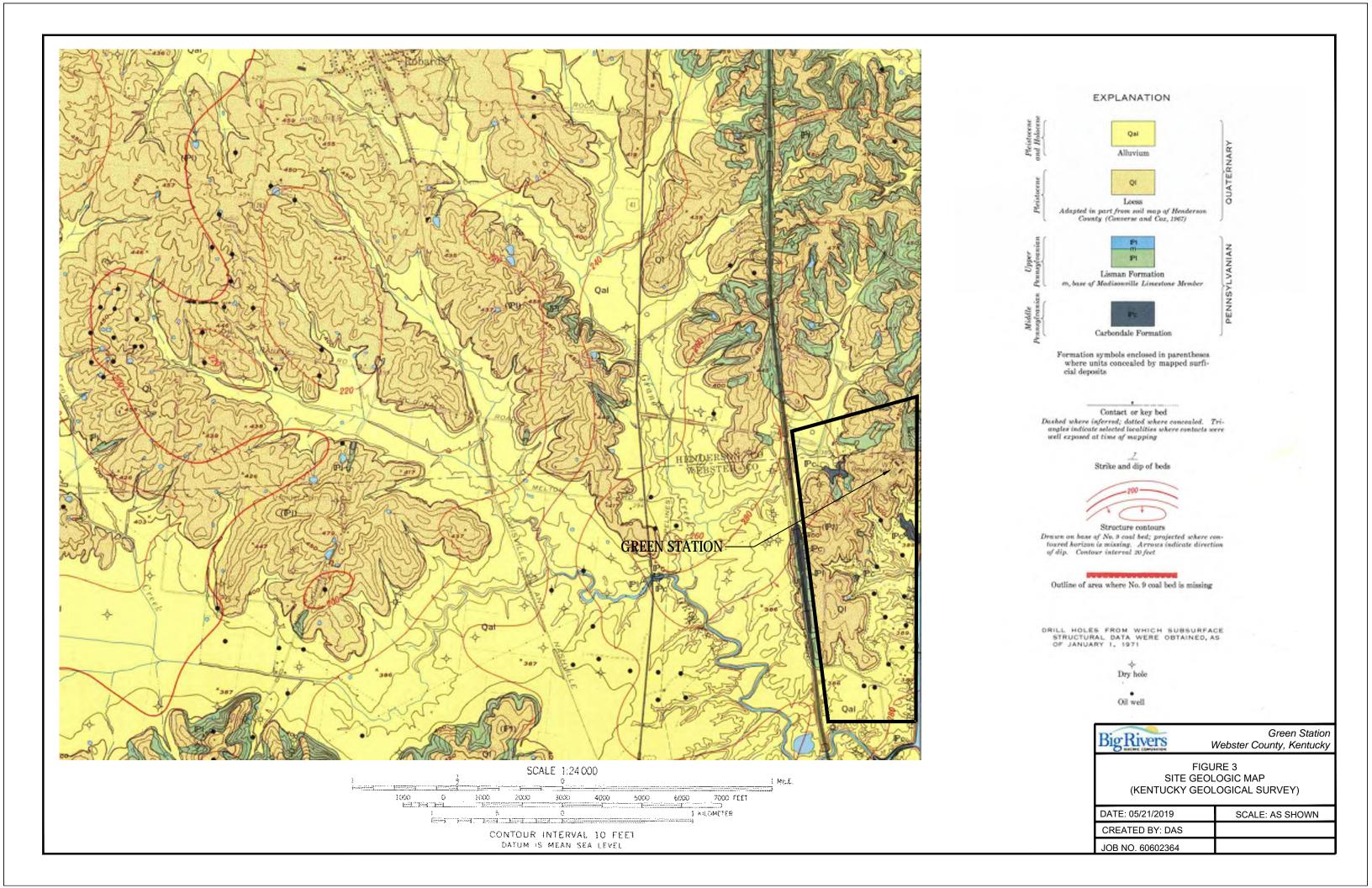
- Protect human health and the environment;
- Attain the COC-specific GWPSs as specified pursuant to Section 257.95(h);
- Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix IV constituents into the environment;
- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems (applicable to material releases only); and
- Comply with standards for management of wastes as specified in Section 257.98(d).

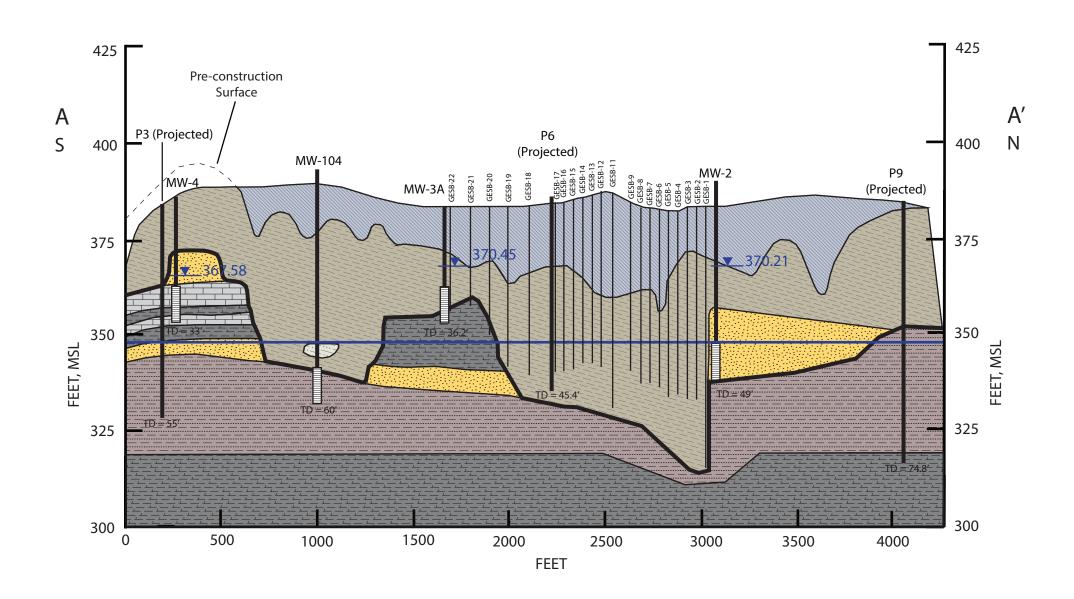
6.1 Potential Data Gaps

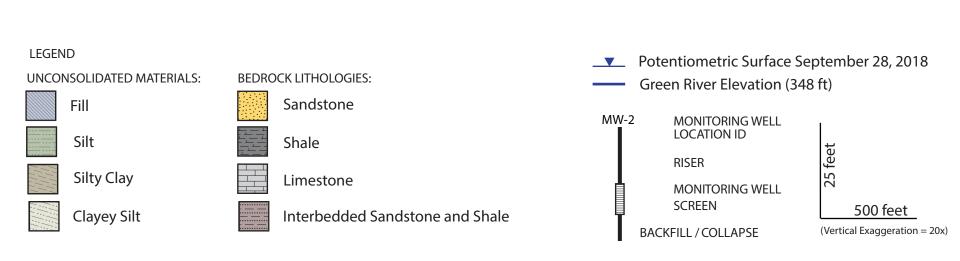
No data gaps investigation is projected at this time.

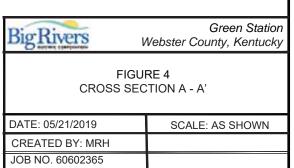

Depending on which alternative is selected, a data gap investigation may be needed to further refine the targeted areas for corrective measures. Potential data gaps may include the following:

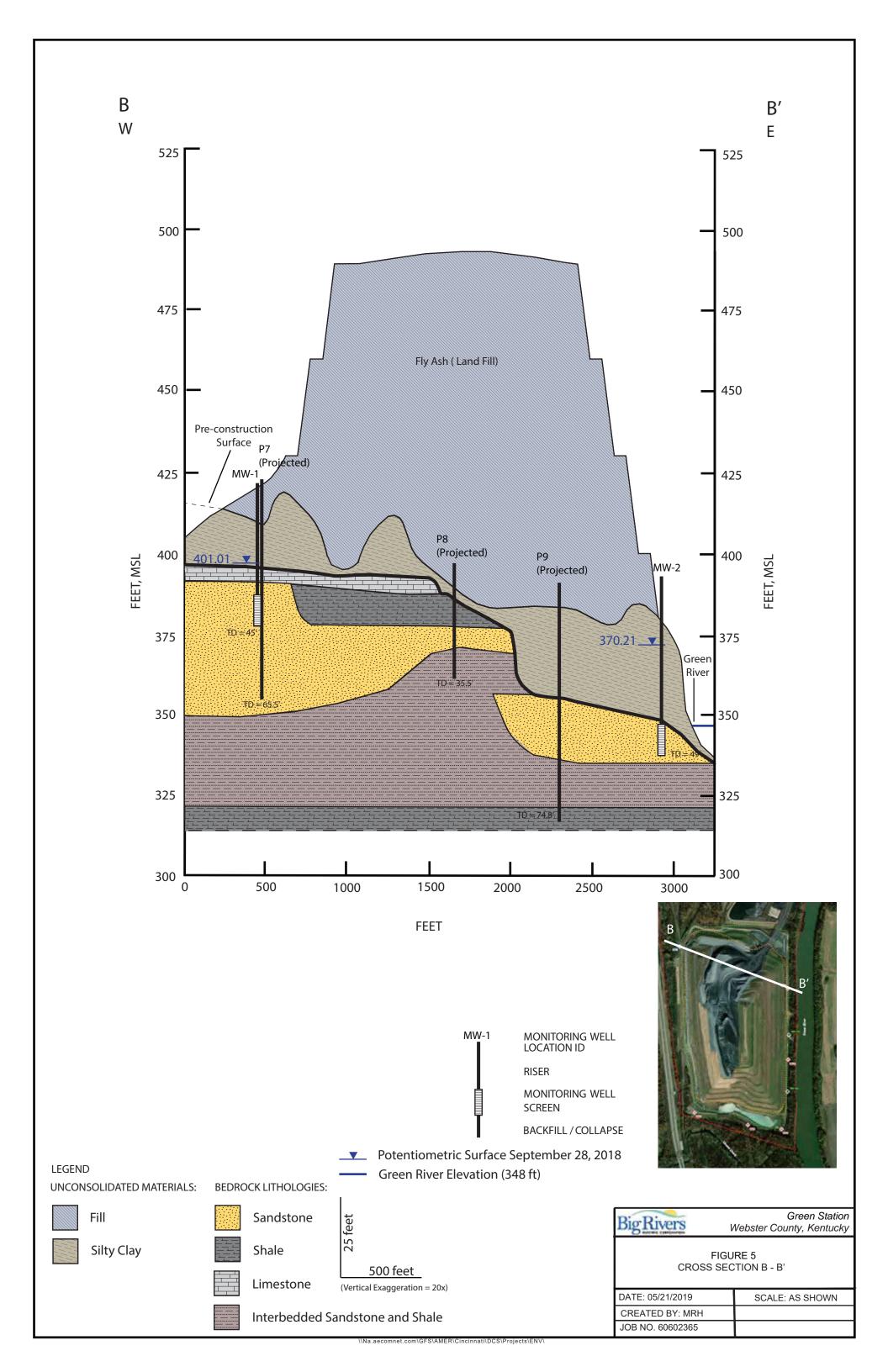
- Supplemental Groundwater Investigation This investigation may consist of additional monitoring well installation and sampling to refine the existing CSM as well as to provide data related to the hydraulic characteristics of the subsurface.
- 2) Physical Containment Profile Prior to committing to a physical barrier design, it may be necessary to probe the subsurface along the proposed alignment to:
 - Establish the character of the materials through which the barrier would be installed,
 - The depth to confinement where the barrier would terminate.

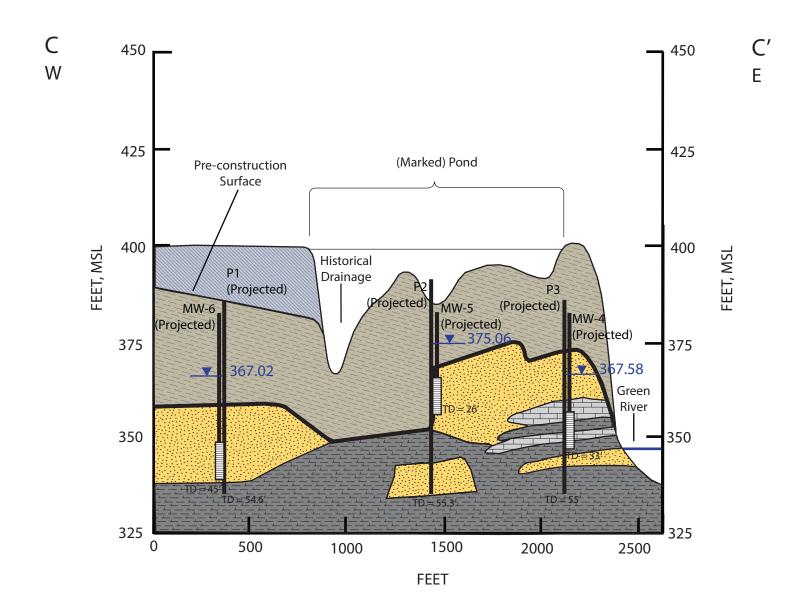

7.0 REFERENCES

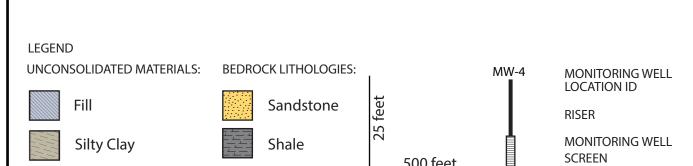

- AECOM, 2018. Annual Groundwater Monitoring and Corrective Action Report, 2016-2017; Green Station CCR Landfill, Webster County, Kentucky.
- AECOM, 2019. Annual Groundwater Monitoring and Corrective Action Report, 2018; Green Station CCR Landfill, Webster County, Kentucky.
- Associated Engineers 2016. Hydrologic and Hydraulic Capacity Assessment and Initial Inflow Design Flood Control System Plan.
- EPA, 40 CFR Part 257. [EPA-HQ-RCRA-2015-0331; FRL-9928-44-OSWER]. RIN-2050-AE81. Technical Amendments to the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities—Correction of the Effective Date. Federal Register / Vol. 80, No. 127 / Thursday, July 2, 2015 / Rules and Regulations.
- Fairer, G.M., Geologic Map of the Robards Quadrangle, Henderson and Webster Counties, Kentucky, U.S. Geological Survey, 1973.
- Federal Remediation Technologies Roundtable (FRTR). Remediation Technologies Screening Matrix and Reference Guide, Version 4.0. URL: https://frtr.gov/scrntools.htm Page last modified on: Tuesday, May 17, 2016
- Interstate Technology Regulatory Council (ITRC), 2009. Evaluating LNAPL Remedial Technologies for Achieving Project Goals. ITRC guidance document LNAPL-2, Washington, DC; 54 pp.











Limestone

BigRivers	Green Station Vebster County, Kentucky
FIGU CROSS SEC	· · ·
DATE: 05/21/2019	SCALE: AS SHOWN
CREATED BY: MRH	
JOB NO. 60602365	

BACKFILL / COLLAPSE

500 feet

 $(Vertical\ Exaggeration = 20x)$

Appendix A

Corrective Measures Technologies and Alternatives Evaluation Process

Appendix A
Corrective Measures Technologies and
Alternatives Screening Process

CONTENTS

Section			Page
A1.0	CORR	ECTIVE MEASURES EVALUATION PROCESS	1
	A1.1	Potential Remedial Technologies	
	A1.2	Other Source Control Technologies	3
	A1.3	No Action	3
	A1.4	Institutional Controls (ICs)	4
	A1.5	Groundwater Monitoring	
	A1.6	Hydraulic Containment	
	A1.7	Physical Containment	5
	A1.8	Ex-Situ Physical/Chemical/Biological Treatment	6
	A1.9	In-Situ Physical/Chemical/Biological Treatment	
	A1.10	Permeable Reactive Barriers (PRB)	6
	A1.11	Closure-in-Place (CiP) [of the regulated unit]	7
	A1.12	Closure by Removal (CbR) [of the regulated unit]	7
	A1.13	Screened Corrective Measures Technologies Summary	7
A2.0	CORR	ECTIVE MEASURES ALTERNATIVES	9

Tables

Table A1 Potential Remedial Technologies

Table A2 Screened Corrective Measures Technologies

A1.0 CORRECTIVE MEASURES EVALUATION PROCESS

This appendix describes the overall process used in the selection and screening of corrective measures technologies that are considered potentially applicable to Coal Combustion Residuals (CCR) groundwater impacts at the subject Site. This appendix also describes the process for assembling preliminary corrective measures alternatives from one or more applicable technologies and evaluating these alternatives.

A1.1 Potential Remedial Technologies

Section 257.96(c) requires this assessment to include an analysis of the effectiveness of potential corrective measures to meet the objectives for remedies under Section 257.97(b), addressing at least the following:

- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

The following corrective measures technologies are regarded as potentially applicable to corrective measures for CCR groundwater impact:

- No Action (Included as a baseline case)
- Institutional Controls (ICs)
- Groundwater Monitoring
- Hydraulic Containment
- Physical Containment
- Ex-situ Physical/Chemical/Biological Treatment
- In-situ Physical/Chemical/Biological Treatment
- Permeable Reactive Barrier (PRB)
- Closure in Place (CiP) (of the regulated unit)
- Closure by Removal (CbR) (of the regulated unit)

A brief overview of these technologies is provided below in **Table A1**.

Table A1 – Potential Remedial Technologies

Potential Technology	Description/Overview		
No Action	Default baseline approach against which other options are evaluated. No corrective action would be taken to remove, control, mitigate or minimize exposure to impacted media.		
Institutional Controls (ICs)	Non-engineering measures, such as administrative and/or legal controls that help to minimize the potential for human exposure to contamination, and/or to protect the integrity of a remedy by limiting land or resource use (United States Environmental Protection Agency [USEPA), <i>Institutional Control Data Standard</i> EX000015.1, January 6, 2006).		
Groundwater Monitoring	Groundwater monitoring (Assessment and/or Detection modes) to assess effectiveness of corrective measures performance, as well as natural subsurface processes such as dilution, adsorption, and chemical reactions that together serve to reduce inorganic constituents of concern (COC) concentrations to acceptable levels.		
Hydraulic Containment	Hydraulic containment is a common method for remediating groundwater impacted with metals and other inorganics. Groundwater is pumped from wells or collection trenches to aboveground discharge point or to a treatment system that removes the contaminants. The extraction network would be designed to provide hydraulic containment of the impacted groundwater, preventing it from flowing downgradient towards surface water or other receptors.		
Physical barriers are walls constructed below the ground surface to restrict the flow of groundwater. They are constructed by injection groundwater to the use of excavator or deep trenching equipment to insert and thorous selected amendment to create a homogenized impermeable wall that impacted groundwater from flowing downgradient. The bottom of the containment structure is typically keyed into a low-permeability soil of (confining layer) to keep groundwater from seeping beneath the wall. In hydraulic control of the impacted groundwater behind (upgradier physical barrier and to prevent impacted water from flowing around the the wall, extraction wells would be installed behind the vertical barrier the extracted groundwater processed through a treatment system.			
Ex-situ Physical/Chemical/Biological Treatment	Ex-situ treatment requires pumping of groundwater and engineering for equipment, possible permitting, and material handling. Physical/chemical treatment uses the physical properties of the contaminants or the contaminated medium to destroy (i.e., chemically convert), separate, or contain the contamination. Physical/chemical treatment can be completed in short time periods (in comparison with biological treatment). Equipment is readily available. Treatment residuals from separation techniques will require treatment or disposal.		

Potential Technology	Description/Overview	
In-situ Physical/Chemical Treatment	With in-situ treatment, groundwater is treated without being brought to the surface. In-situ processes, however, generally require longer time periods. Physical/chemical treatment uses the physical properties of the contaminants or the contaminated medium to destroy (i.e., chemically convert), or separate the contamination.	
Permeable Reactive Barriers (PRB)	A PRB is a constructed subsurface barrier designed to intercept groundwater flow and react with the entrained COCs. PRBs can be established through trench injection or direct-push injection (on closely spaced grids) of reactive material. PRBs are typically installed to the depth of impacted groundwater (often the bottom of the shallow aquifer) and along the length of the impacted zone. The amendment used to generate the PRB is generally permeable as or more permeable than the surrounding material, encouraging impacted groundwater to flow through the reactive material. The reactive material then causes chemical reactions to occur, resulting in adsorption, precipitation, or degradation of the COC. PRBs are commonly used to control organic contamination in groundwater and have been successfully used to remediate metals.	
Closure in Place (CiP) (of the regulated unit)	Landfill caps can be installed to minimize generation of leachate and to minimize infiltration into underlying waste. Landfill caps also may be applied to waste masses that are so large that other treatment is impractical. By providing a suitable base for the establishment of vegetation. In conjunction with water diversion and detention structures, landfill caps may be designed to route surface water away from the waste area while minimizing erosion	
Closure by Removal (CbR) (of the regulated unit)		

References: Technology descriptions referenced from 1) FRTR: Federal Remediation Technologies Roundtable, CLU-IN, and/or AECOM reference materials.

A1.2 Other Source Control Technologies

In addition to the groundwater corrective measures technologies summarized above, CCR impacts are also mitigated through a variety of engineering measures, including leachate collection, lining of trenches and/or ponds, and other isolation methods for source control.

A1.3 No Action

No Action is included in the evaluation as a baseline against which other technologies are evaluated. With this option, no corrective action would be taken to remove, control, mitigate or minimize exposure to impacted media. In the event that the other identified alternatives do not offer substantial benefits, No Action is the default baseline approach.

Under this alternative, existing impacted media (i.e., CCR materials and impacted soil/groundwater along the exposure pathway) would remain. No capital costs would be incurred, and no cleanup standards would be considered.

No Action does not meet the performance requirement of attaining the established Corrective Action Objective (CAO). Although implementation would be very easy, the required state approval for "No Action" would likely not occur. Safety impacts, cross-media impacts, and residual CCR exposure control

would be no different from current conditions. Therefore, No Action is not an appropriate standalone technology. However, it is retained for use as a baseline against which other technologies and alternatives are evaluated.

A1.4 Institutional Controls (ICs)

The potential use of ICs is considered the least aggressive corrective action technology for CCR impacts.

ICs would not change the concentration or mobility of COCs and therefore would not meet the performance requirement of attaining the established CAO as a standalone technology unless it can be demonstrated that impacted groundwater is not leaving the facility. ICs would be used in combination with other corrective measures to limit human exposures and would be easy to implement, consisting of preparation and recording of Environmental Restrictive Covenants [ERC(s)]. Safety impacts and cross-media impacts would be identical to current conditions. Because ICs would control exposure and thus enhance protection of human health and the environment, the use of ICs can be a component of corrective measures alternatives. The use of ICs as a standalone technology will not be considered.

A1.5 Groundwater Monitoring

The use of groundwater monitoring is only applicable for dissolved-phase groundwater impacts, and it will take place in Assessment and/or Detection modes as appropriate for the current phase of CCR activity. Groundwater monitoring is not a standalone technology, but instead will be combined with other remedial technologies in order to track progress of the overall remedy, which also incorporates natural attenuation processes.

The use of groundwater monitoring as a stand-alone remedial technology will not be considered; instead the incorporation of groundwater monitoring in conjunction with other technologies will be used to monitor effectiveness of a given corrective measures alternative to attain the CAO at points immediately downgradient over an extended period of time. Data reliability is controlled by adherence to the site's groundwater monitoring plan. Implementation of the existing groundwater monitoring plan is easy because it is currently underway. Safety impacts are minimized by use of the existing Health and Safety Plan and there are no construction activities required. There are no cross-media impacts or institutional requirements, nor is there any residual CCR exposure control.

A1.6 Hydraulic Containment

The use of hydraulic containment as a potential remedial technology is considered. The use of groundwater extraction can be effective at hydraulically controlling long-term downgradient dissolved phase impacts.

Hydraulic containment through groundwater extraction and subsequent treatment has historically been a common method for management of groundwater impacted with metals and other inorganics. Groundwater is pumped from wells (vertical or horizontal) or collection trenches to a discharge point (e.g., a permitted outfall) or to an aboveground treatment system. The extraction network would be designed, constructed, and operated to provide a hydraulic barrier between the impacted groundwater and the migration pathway to potential receptors.

This technology attains the established CAO because hydraulic containment rapidly eliminates the offsite migration of impacted groundwater, thereby eliminating the exposure pathway. Performance and reliability would be controlled by adherence to the operations and maintenance plan prepared for the extraction and treatment systems. Implementation would be difficult because of areas of limited access for drilling equipment and uneven groundwater flow in the uppermost aquifer materials that consist of interbedded sandstone and shale having hydraulic conductivity values spanning several orders of

magnitude. Potential safety impacts during construction, operation, and maintenance of the system would be mitigated by health and safety plans prepared for these tasks. There would be no cross-media impacts. Hydraulic containment will reduce mobility due to COCs capture provided by the groundwater extraction system and treatment to remove COCs from the environment. The time period for CAO attainment may be relatively short, but system operation will need to continue until CCR source loading of COCs to groundwater ceases. For institutional requirements, treated discharge would occur under existing or modified National Pollution Discharge Elimination System (NPDES) permit.

Based on the preliminary screening, hydraulic containment is a potentially viable remedial technology and will be retained for further consideration.

A1.7 Physical Containment

The use of physical containment to isolate the impacted materials associated with a CCR unit is considered. Physical containment typically consists of a barrier or wall (i.e., slurry wall, sheet pile wall, or injection grouting) constructed below the ground surface to control or restrict the flow of groundwater. The barrier is typically constructed by excavators and/or deep trenching equipment that thoroughly mix bentonite/cement slurry to create a homogenized impermeable wall, or by driving sheet pile. The construction of the barrier would prevent impacted groundwater from flowing downgradient. Where possible, the bottom of the barrier would be keyed into the low-permeability soil or bedrock (confining layer) at the bottom of the aquifer, keeping groundwater from seeping beneath it. To provide hydraulic control of the impacted groundwater behind the barrier and prevent impacted water from flowing around the edges, a hydraulic containment system would be installed behind the wall. Extracted groundwater would then be discharged or processed through a groundwater treatment system, as needed. Extraction flow rates for this option will generally be lower than in a standalone hydraulic containment option, because the pumping rates will only need to accommodate natural groundwater flow rates, rather than providing a hydraulic barrier. However, pumping would need to be performed indefinitely to maintain water levels behind the barrier. It is also noted that physical barriers can also be utilized in a funnel-andgate arrangement to direct the flow of groundwater to a small, more permeable area (i.e., the gate) where reactive material can be used to treat the metals in-situ. The "gate" can also be configured as a single extraction point for impacted groundwater directed to it by the "funnel."

This technology attains the established CAO after combined physical and hydraulic containment eliminates the offsite migration of impacted groundwater, thereby eliminating the exposure pathway. In the long term, this technology will maintain compliance with the established CAO after final cover construction at the Green Landfill, which will end the source loading to the groundwater, and groundwater flushes through the aquifer. Performance and reliability would be controlled by adherence to the operations and maintenance plan prepared for the extraction and treatment systems. The technology would pose substantial challenges to the installation and operation of the physical barrier such as areas of limited access and highly variable depths to bedrock. Potential safety impacts during construction, operation, and maintenance of the system would be mitigated by health and safety plans prepared for these tasks. Cross-media impacts include the potential for airborne fugitive dust issues during construction, which would be mitigated by construction contingency planning. The time period for attainment is based on construction of the barrier. For institutional requirements, treated discharge would occur under existing or modified NPDES permit.

Based on the preliminary screening, physical containment is potentially viable as a potential corrective measures alternative component when combined with supplemental groundwater extraction and treatment. However, physical containment does not appear to add value to a stand-alone hydraulic containment approach.

A1.8 Ex-Situ Physical/Chemical/Biological Treatment

Ex-situ treatment requires the use of groundwater extraction with related engineering, equipment, permitting, and material handling necessary to convey the waste stream to above-ground treatment. Treatment technologies would be designed to remove the specific constituents from groundwater to meet regulatory discharge requirements; treatment options for the varied constituents may include pH adjustment, filtration, coagulation/chemical precipitation, membrane filtration, ion exchange, carbon adsorption, reverse osmosis, chemical reduction, and other potential treatment technologies. Multiple treatment technologies would potentially be needed to effectively remove the different types of contaminants. If this technology is incorporated into a corrective action alternative, further detailed evaluation and/or bench- and pilot-scale studies would be necessary to identify technically effective treatment technologies given the inorganic COCs.

This is not a standalone technology, but would be used in combination with hydraulic containment. System reliability would be controlled by adherence to an operation and maintenance plan prepared for the system. Implementation is expected to be straightforward based on well-established water treatment principles and experience. Potential safety impacts during construction, operation, and maintenance of the system would be mitigated by health and safety plans prepared for these tasks. There would be no cross-media impacts, nor would there be exposure to residual CCR materials. The time period for attainment is based on performance of the overall corrective measure, of which ex-situ treatment would be a component. For institutional requirements, treated discharge would occur under existing or modified NPDES permit.

Based on the preliminary screening, ex-situ treatment is a potentially viable remedial technology and will be retained for further consideration.

A1.9 In-Situ Physical/Chemical/Biological Treatment

For the inorganic COCs at CCR sites, in-situ treatment involves enhancement of natural attenuation processes such as dilution, adsorption, and chemical reactions to reduce concentrations to acceptable levels. This technology is appropriate for sites in which groundwater flow volumes are low, source controls are effective, and impacted groundwater is not expected to be long-lived.

Lithium (Li) is the sole COC for the Assessment of Corrective Measures (ACM) at the Green Landfill, and in-situ treatment methods are ineffective for Li. Therefore, this technology will not meet the performance requirement, and it will not be retained for further consideration.

A1.10 Permeable Reactive Barriers (PRB)

A PRB is an in-situ treatment method consisting of subsurface trench filled with reactive material installed to intercept and react with impacted groundwater. PRBs can be established through direct-push injection (on closely spaced grids) or emplaced as a continuous trench of reactive material. PRBs are typically installed to the depth of impacted groundwater (often the bottom of the shallow aquifer) and are oriented perpendicular to the flow of impacted groundwater. The amendment used to generate the PRB is generally as permeable as or more permeable than the surrounding material, encouraging impacted groundwater to flow through the reactive material. The reactive material then causes chemical reactions to occur within the PRB, resulting in adsorption, precipitation, or degradation.

PRBs are commonly used to control organic contamination in groundwater, and have been successfully used to remediate some metals. However, because Li is the sole COC for the ACM at the Green Landfill,

and in-situ methods are ineffective for Li, PRB will not meet the performance requirement, and it will not be retained for further consideration.

A1.11 Closure-in-Place (CiP) [of the regulated unit]

CiP would entail capping and restoration of the unit that contains the CCR material. Capping would minimize infiltration into the CCR material, thereby minimizing the potential for leachate to impact underlying soil and shallow groundwater. Capping would reduce potential exposure pathways and thus enhance protection of human health and the environment.

CiP will help attain the established CAO after final cover construction ends the source loading to the groundwater, and impacted groundwater flushes through the aquifer. This technology is easily implemented, as CiP is required by conditions of the solid waste permit and re-design of the southern storm water pond requires nominal engineering and construction efforts. Potential safety impacts during construction, operation, and maintenance of the final cover are governed by conditions of the solid waste permit and are mitigated by health and safety plans prepared for these tasks. There are no cross-media impacts associated with CiP, and it will provide for significant reduction in mobility of COCs upon implementation of the CiP source control. Final cover for the Green Landfill is anticipated as part of facility operations. Institutional requirements will consist of solid waste permit renewal(s) and state and community acceptance of the final remedy.

Based on the preliminary screening, CiP is retained for further consideration.

A1.12 Closure by Removal (CbR) [of the regulated unit]

CbR is a proven remedy that can effectively remove the source of contamination. The excavation of impacted CCR material would typically be completed using standard construction equipment (e.g., backhoe, excavator, wheel loader, dump trucks). The excavated materials are then placed directly into dump trucks for transport/disposal or beneficial use. Excavation limits would typically be verified with confirmation sampling to demonstrate that the underlying soil is not impacted above applicable standards.

This technology would help attain the established CAO after CCR removal ends and the source loading to groundwater is eliminated. This technology would be difficult to implement, because of the large-scale construction effort required and resulting disruption to station operations and community impact. Potential safety impacts during excavation and backfilling would be mitigated by health and safety planning. However, the volume of truck traffic for waste and fill hauling would be a significant community safety issue. Potential airborne fugitive dust issues during excavation and hauling would be significant, but would be mitigated by construction contingency planning. CbR will eliminate exposure through removal of the CCR. CbR would begin following state and community approvals, and duration of excavation activities is anticipated to be many years. In addition to state and community acceptance of the proposed remedy, excavation and backfilling may require local building permits and local municipality input and approval. Excavation dewatering discharge would occur under existing or modified NPDES permit.

Based on the preliminary screening, CbR is retained for further consideration.

A1.13 Screened Corrective Measures Technologies Summary

A summary of the results of the corrective measures technologies screening is presented below in **Table A2**. The design and specific application of the retained technologies, either as stand-alone or part of a treatment train, will be crucial in the success of the corrective action.

Table A2 – Screened Corrective Measures Technologies

Potentially Applicable Technology	Status	Description/Overview
No Action	Not retained as standalone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because it will not meet the established CAOs.
Institutional Controls (ICs) Retained as supplement to corrective measures alternatives		The use of ICs (i.e., Environmental Covenant, groundwater use restrictions, etc.) is retained as a useful technology. However, it is noted the ICs are not anticipated to be used as a stand-alone technology. Environmental Covenants, groundwater use restrictions, etc., are expected to be combined with other applicable technologies as part of corrective measures alternatives.
Groundwater Monitoring (Assessment and Detection mode)	Retained as supplement to corrective measures alternatives	The use of groundwater monitoring (Assessment and/or Detection modes as appropriate) when combined with other applicable technologies as part of any proposed corrective measures alternative is retained to address the CAO and to track the effectiveness of the overall remedy. However, it is not retained as a standalone technology.
Hydraulic Containment	Retained	The use of hydraulic containment is retained because it is an effective means of preventing offsite migration of soluble contaminants. Hydraulic containment requires management and potential ex-situ treatment of extracted groundwater, so it is not a stand-alone technology. The Conceptual Site Model (CSM) will guide the design of any groundwater extraction system to optimize the total discharge of groundwater needed to provide hydraulic containment.
Physical Containment Retained		The use of physical containment is retained because it can be an effective means of managing groundwater flow. Physical containment often requires pairing with hydraulic containment and/or in-situ treatment (funnel and gate style) to manage the flux of groundwater flow into the system. The CSM will guide the design of any physical barrier system, but technology limitations increase the difficulty with scale.
Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment technologies are retained as a way of removing contaminants from extracted groundwater from a hydraulic containment system. Ex-situ treatment may be paired with wastewater treatment, non-groundwater release treatment systems, or with permitted discharge to manage groundwater contamination. The CSM and data gaps investigations will guide the design of any ex-situ treatment
In-situ Physical/Chemical Treatment	Not Retained	In-situ treatment technologies are ineffective for the Li

Potentially Applicable Technology Status		Description/Overview	
Permeable Reactive Barriers (PRB)	Not Retained	The use of PRBs is not retained because in-situ treatment technologies are ineffective for Li.	
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.	
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.	
Other Source Control Retained		Control of source area non-groundwater related releases. For the purposes of this groundwater ACM, management of non-groundwater releases are not included in the alternatives evaluation. Engineering measures, including leachate collection, lining of trenches and/or ponds, and other isolation methods are regarded as part of closure technologies selected by other means.	

References: Technology descriptions referenced from 1) FRTR: Federal Remediation Technologies Roundtable, CLU-IN, and/or AECOM reference materials.

A2.0 CORRECTIVE MEASURES ALTERNATIVES

Corrective measures technologies from the initial screening and evaluation (see **Table A2**) were utilized to create corrective measures alternatives. Professional judgment was used to assemble technically efficient pairings of technologies for each corrective measures alternative in consideration of the range of site-specific COCs and concentrations.

The corrective measures alternatives typically incorporate the use of technologies that will require additional investigation needed to 1) finalize the alternative selection, 2) delineate the assumed corrective action areas, 3) provide for full-scale cost estimation and design, and 4) demonstrate alternative efficacy. To this end, data gaps will be identified and addressed as needed.

It should be emphasized that the technology screening and alternatives assembly employed for this ACM is qualitative in nature. The formal remedy selection process, in accordance with the CCR Rule 40 CFR Section 257.97, will begin following submission of the ACM Report. The subsequent remedy selection process will evaluate the following objectives for remedies, as required under Section 257.97(b):

- Protect human health and the environment;
- Attain the COC-specific GWPS as specified pursuant to Section 257.95(h);
- Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix IV constituents into the environment;
- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems (applicable to material releases only); and
- Comply with standards for management of wastes as specified in Section 257.98(d).

Assessment of Corrective Measures Non-Groundwater Releases Under the CCR Rule

GREEN STATION CCR LANDFILL GREEN STATION WEBSTER COUNTY, KENTUCKY

June 28, 2019

Prepared For:

Big Rivers Electric Corporation Sebree Generating Station 9000 Highway 2096 Robards, Kentucky 42452

Prepared by:

AECOM Technical Services

525 Vine Street Suite 1800 Cincinnati, Ohio 45202 Phone: (513) 651-3440 Fax: (877) 660-7727

Job Number: 60602364

CONTENTS

Secti	tion	Page
ACR	RONYMS	ا
EXEC	CUTIVE SUMMARY	1
1.0	INTRODUCTION	4
2.0	DESCRIPTION OF CURRENT CONDITIONS	5 5
	2.2 Site Investigation and Interim Measures	5
	2.2.2 Perimeter Seeps	
3.0	CORRECTIVE ACTION OBJECTIVE (CAO)	
4.0	TECHNOLOGY IDENTIFICATION	17
5.0	REFERENCES	19

List of Tables

- 1. July 2018 River Seep Sampling Results
- 2. April 2019 Northwest Seep Sampling Results
- 3. July 2018 Perimeter Seep Sampling Results
- 4. Potential Corrective Measures Options Technology Description/Overview

List of Figures

- 1. Site Location Map
- 2. Monitoring Well and Seep Location Map

List of Appendices

- A. Technical Memorandum River and Seep Sampling and Analysis, September 6, 2018
- B. Supplemental Boring Logs and Cross-Sections
- C. Northwest Seep Laboratory Analytical Results
- D. Landfill Perimeter Seeps Laboratory Analytical Results

ACRONYMS

ACM Assessment of Corrective Measures
AECOM AECOM Technical Services, Inc.

As Arsenic

BREC Big Rivers Electric Corporation
CAO Corrective Action Objectives

CbR Closure by Removal

CCR Coal Combustion Residuals
CFR Code of Federal Regulations

CiP Closure in Place

ft. amsl Feet above mean sea level

KAR Kentucky Administrative Regulations

KDoW Kentucky Division of Water

KPDES Kentucky Pollution Discharge Elimination

mg/L Milligrams per liter

PRB Permeable Reactive Barrier
TDS Total Dissolved Solids

USEPA United States Environmental Protection Agency

EXECUTIVE SUMMARY

AECOM Technical Services, Inc. (AECOM) was retained by Big Rivers Electric Corporation (BREC) to prepare an Assessment of Corrective Measures (ACM) to identify appropriate supplemental corrective measures for non-groundwater impacts from coal combustion residuals (CCR). The subject non-groundwater impacts are associated with seeps that are impacted from CCR that has been historically managed within the Green Station CCR Landfill (Green Landfill) at the Sebree Generating Station (Sebree Station), located near Sebree, Kentucky.

Pursuant to Title 40 of the Code of Federal Regulations (CFR) parts 257.90(d) and 257.84(b)(5), BREC initiated design of containment systems intended to reduce and prevent non-groundwater releases from reaching the Green River as an interim corrective measure. Plans for these measures have been submitted to the Kentucky Energy and Environment Cabinet (Cabinet) for review and comment. The Cabinet has adopted the federal CCR Rule by reference in Title 401 of the Kentucky Administrative Regulations (KAR) Chapter 46:110. Contracting for that work is complete and construction is scheduled to commence in 2019. This ACM is considering and evaluating whether additional remedial measures, that would be supplemental to the interim measures already planned, are warranted to address non-groundwater surface seeps. This ACM is also being coordinated with the ACM for groundwater at the facility.

The United States Environmental Protection Agency (USEPA) is in the process of clarifying the extent to which the assessment of corrective measures provisions of 40 CFR 257.96 apply to surface seeps. Specifically, USEPA announced in a litigation settlement it would remand for further comment the provision in the CCR Rule requiring entities to implement the rule's corrective action requirements for non-groundwater "releases" from CCR units. USEPA has proposed, but has not finalized, amendments to the rule to clarify the type and magnitude of non-groundwater releases that would require a facility to comply with some or all of the corrective action procedures in the CCR rule. USEPA confirmed that while the rule's general obligation to respond to releases from CCR units remains in place, the settlement sends a clear message that not all non-groundwater releases are subject to the rule's corrective action provisions and that the scope of non-groundwater releases subject to the rule's corrective action requirements will be resolved in the future rulemaking.

Consistent with USEPA guidance and 40 CFR 257.90(d) and 257.84(b)(5), BREC has, as noted above, proceeded with an initial containment project consisting of collection trenches, which have been designed, with the designs submitted to the Cabinet for review. Following additional seep sampling conducted in December 2018, BREC is also preparing this supplemental ACM to outline the potentially applicable remedial technologies should the interim corrective measures be insufficient to meet the corrective action objectives. This ACM is being presented even though the CCR Rule is not clear as to whether an ACM is required in these circumstances and the reconsideration rule has not been finalized.

Two types of non-groundwater releases have been identified through inspection and investigation of the site: river seeps and perimeter seeps. The occurrence and chemistry of the seeps was evaluated through observation and sampling as reported in memoranda and analytical reports appended herein. The character of the seepage water was compared to Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure identified in 401 KAR 10:031 Section 6. The samples largely exceeded the criteria for chloride, which became the basis for further investigation and corrective measures. Interim corrective measures to eliminate these non-groundwater seeps have been planned and are under way.

Because of their positions along the water ways where access is restricted, the river seep corrective measures involve the installation of interceptor trenches to capture seepage and route it to discharge via Kentucky Pollution Discharge Elimination (KPDES) permit. The river seep areas to be captured cover the

eastern seepage area adjacent to the Green River between monitoring wells MW-2 and MW-3A, and the northwestern seepage area located adjacent to ditch discharging to the Green River. These measures will commence in 2019, and are scheduled to be completed by the end of the year.

Perimeter seeps corrective measures similarly involve the containment and routing of seepage to permitted discharge, but because they are accessible at the surface, they are amenable to simple piping and ditch lining approaches. The perimeter seeps will be routed either to the North Pond, which will then discharge to the Green Surface Impoundment (KPDES Outfall 009), or the South Pond (KPDES Outfall 012), which will also be routed to the Green Surface Impoundment. The corrective measures will include cleaning and re-design of the South Pond to remove residual CCR material and to create lined sumps on either end to manage the seepage water separately from storm water. The corrective measures for the perimeter seeps are being coordinated with corrective measures to address groundwater impacts at the facility, which are discussed under a separate ACM for groundwater impacts (AECOM, June 13, 2019).

If the interim corrective measures currently under way are not adequate to meet the corrective action objectives, then the assessment of potential technologies identified herein, which follows the requirements of 40 CFR 257.96, will be reconsidered. 40 CFR 257.96(c) requires an ACM to include an analysis of the effectiveness of potential corrective measures in meeting the objectives for remedies identified under Section 257.97(b), by addressing at least the following:

- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination:
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

Several potential corrective measures technologies were evaluated in order to identify which ones could be carried forward as components of corrective measures alternatives. The results of the corrective measures technology evaluation are presented below:

Potentially Applicable Technology	Status	Description/Overview
No Action	Not retained as stand-alone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because it will not meet the established CAOs.
Hydraulic Containment	Retained	Hydraulic containment in the form of pumping of vertical or horizontal wells would potentially be used to provide spot control of seepage if the interim corrective measures are unable to fully capture the seepage.
Physical Containment	Retained	Physical containment in the form of a cutoff wall would potentially be used to re-direct or otherwise intercept seepage that was not adequately captured by the interim corrective measures.

Potentially Applicable Technology	Status	Description/Overview
Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment is retained as a potential supplement to the interim corrective measures in the event that discharge via the station's KPDES permit is not possible.
In-situ Physical/Chemical Treatment	Retained	In-situ treatment is retained in the form of spot treatment or fixation of seepage areas in the event that the interim corrective measures do not adequately address all seepage areas.
Permeable Reactive Barriers (PRB)	Retained	The use of PRBs is retained in the form of a reactive cell in the event that interim measures result in seepage concentrations that require pre-treatment in-situ prior to discharge.
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.
Other Source Control Technologies	Retained	Control of source area non-groundwater releases is being implemented as interim corrective measures but is retained in the event that interim measures need to be evaluated for expansion.

1.0 INTRODUCTION

The following report presents the Assessment of Corrective Measures (ACM) for non-groundwater impacts identified at the Big Rivers Electric Corporation (BREC) Green Station CCR Landfill (Green Landfill) at the Sebree Generating Station (Sebree Station) located near Sebree, Kentucky. The Green Landfill is identified as a coal combustion residuals (CCR) unit under the requirements of the United States Environmental Protection Agency (USEPA) regulations in Title 40 of the Code of Federal Regulations (CFR) Part 257 (CCR rule). The subject non-groundwater impacts are from surface seeps that are impacted by CCR constituents and that are not currently controlled by the station's Kentucky Pollution Discharge Elimination System (KPDES) permit.

Pursuant to 40 CFR 257.90(d) and 257.84(b)(5), BREC initiated design of containment systems intended to reduce and prevent non-groundwater releases from reaching the Green River as an interim corrective measure. Plans for these measures have been submitted to the Kentucky Energy and Environment Cabinet (Cabinet) for review and comment. The Cabinet has adopted the federal CCR Rule by reference in Title 401 of the Kentucky Administrative Regulations (KAR) Chapter 46:110. Contracting for that work is complete and construction is scheduled to commence in 2019. This ACM is considering and evaluating whether additional remedial measures, that would be supplemental to the interim measures already planned, are warranted to address non-groundwater surface seeps. This ACM is also being coordinated with the ACM for groundwater at the facility.

The United States Environmental Protection Agency (USEPA) is in the process of clarifying the extent to which the assessment of corrective measures provisions of 40 CFR 257.96 apply to surface seeps. Specifically, USEPA announced in a litigation settlement it would remand for further comment the provision in the CCR Rule requiring entities to implement the rule's corrective action requirements for non-groundwater "releases" from CCR units. USEPA has proposed, but has not finalized, amendments to the rule to clarify the type and magnitude of non-groundwater releases that would require a facility to comply with some or all of the corrective action procedures in the CCR rule. USEPA confirmed that while the rule's general obligation to respond to releases from CCR units remains in place, the settlement sends a clear message that not all non-groundwater releases are subject to the rule's corrective action provisions and that the scope of non-groundwater releases subject to the rule's corrective action requirements will be resolved in the future rulemaking.

Consistent with USEPA guidance and 40 CFR 257.90(d) and 257.84(b)(5), BREC has, as noted above, proceeded with an initial containment project consisting of collection trenches, which have been designed, with the designs submitted to the Cabinet for review. Following additional seep sampling conducted in December 2018, BREC is also conducting this supplemental ACM to outline the potentially applicable remedial technologies should the interim corrective measures be insufficient to meet the corrective action objectives. This ACM is being presented even though the CCR Rule is not clear as to whether an ACM is required in these circumstances and the reconsideration rule has not been finalized.

As described in Section 2, the character of seeps has been identified through a series of investigations and interim corrective measures have been planned and are underway. Sections 3 provides a description of the corrective action objective (CAO), while Section 4 provide a list of potential technologies. If the interim corrective measures currently under way are not adequate to meet the corrective action objectives, then an assessment of potential technologies that follows the requirements of 40 CFR 257.96 will be performed.

2.0 DESCRIPTION OF CURRENT CONDITIONS

This section provides information related to the current use of the Site, as well as the history of activities relevant to the non-groundwater ACM for the Green Landfill at Sebree Station.

2.1 Site Background

BREC owns and operates Sebree Station, which is a coal-fired power generating facility located on the Green River northeast of Sebree, Kentucky. Sebree Station is composed of Green Station and Reid/HMPL Station. The Sebree Station is bounded by Interstate-69 to the west and the Green River to the east (**Figure 1**). Reid Unit 1 (66 Megawatts) began commercial operation in 1966 and it will be converted from coal to natural gas in the future. The Reid Combustion Turbine (72 MW) was commercialized in 1976. HMPL Station 2, Units 1 (167 MW) and 2 (168 MW) began commercial operation in 1973 and 1974, respectively. Both HMP&L units were retired as of February 1, 2019. Green Station Units 1 (242 MW) and 2 (242 MW) began commercial operation in 1979 and 1981, respectively.

The location of the Green Landfill is illustrated on **Figures 1 and 2**. The Green Station CCR Landfill (Green Landfill) is located directly south of Sebree Station, situated south of the Green Station CCR Surface Impoundment. The Green Landfill is a Kentucky permitted landfill (Permit No. SW11700007) that currently receives special wastes generated by burning coal (CCRs) from Green Station. The landfill began receiving CCR wastes in 1980. The current Green Landfill footprint is approximately 170 acres.

The original ground surface within the landfill footprint was irregular and the dominant features were small stream valleys draining towards the Green River, which is located just east of the landfill; and towards Groves Creek, which is located just south of the landfill. There was also historic oil and gas production at and in the immediate vicinity of the Green Landfill. A review of the records from the Kentucky Geological survey showed that at or immediately adjacent to the Site, there were a number of dry exploratory oil/gas exploration holes, oil production wells, one gas production well, and one secondary recovery injection well. There were also former brine ponds at the Site. Most of these wells were abandoned in accordance with applicable regulations by BREC in 1997 and 1998. The last existing well was decommissioned in 2019.

2.2 Site Investigation and Interim Measures

Two types of non-groundwater releases have been identified through inspection and investigation of the site: river seeps and perimeter seeps as discussed below.

2.2.1 River Seeps

The river seeps are those found along the Green River and its tributary streams. Seeps have been observed on the bank of the river, on the slope between the river and the landfill perimeter road, and adjacent to a tributary stream on the northwest side of the Landfill.

Green River Seeps

An investigation of the river seeps was conducted in July 2018 as reported in a technical memorandum from AECOM to BREC dated September 6, 2018 (**Appendix A**). In this investigation, the banks of the Green River were surveyed by boat for evidence of seepage. Samples of seeps having visible flow were collected and tested for CCR indicator parameters (40 CFR 257 Appendix III), CCR constituents of concern (40 CFR 257 Appendix IV), and general chemistry parameters. The data from these analyses were used to evaluate whether individual seeps were likely associated with the Landfill. Three seeps

(RS-05, RS-07, and RS-08 as illustrated on **Figure 2**) were found to be similar to the chemistry of the Landfill (see **Table 1** below). Seeps RS-05 and -07 are located near the center of the Landfill between monitoring wells MW-2 and MW-3A. This is the same area in which seeps have been observed higher on the slope between the river and the perimeter road, suggesting that they have a similar origin. Seep RS-08 is located adjacent to the South Pond and appears to be tied to that unit.

The results of river seep sample testing were compared to Kentucky Water Quality criteria for warm water aquatic habitat identified in 401 KAR 10:031 Section 6. Where there are no Kentucky Water Quality criteria for a specific constituent, the USEPA Region 4 surface water screening values are listed for comparison. The Region 4 screening values are not compliance criteria, but rather values used to determine whether further evaluation is warranted. Samples from RS-05, -07 and -08 were found to exceed the 600 milligrams per liter (mg/L) limit for chloride. RS-05 also exceeded the current criteria for cadmium (0.00029 mg/L) and lead (0.0036 mg/L), but Kentucky has introduced a new cadmium criteria that may bring RS-05 back into compliance. Follow-up sampling conducted in December 2018 by KDEP and BREC confirmed the exceedance of the chloride criteria. Accordingly, this parameter (chloride) is regarded as the primary basis for further investigation and interim action.

The analytical results for the river seep samples are summarized in **Table 1** below. Presented in parallel with the river seep results are deep instream river samples that were collected immediately adjacent to the river seeps to characterize the river water quality that is most likely to be impacted by seepage. The deep samples were collected within 1 foot of the river bed within 3 to 5 feet of the water line. None of the river sample results exceed the water quality or screening criteria.

Options for interim measures were evaluated based on the site topographic setting, the character of the seepage, jurisdictional restrictions around the waterway, and operational logistics. Interception by french drain was selected as the most feasible and effective solution.

To evaluate the logistics of french drain installation, two investigations were conducted to probe the subsurface along in the area between the landfill and the river, creating a profile of the affected subsurface materials. The results of these investigations are in the form of boring logs and a cross section presented in **Appendix B**. These data indicate that the seepage occurs along a specific horizon 3.5 to 26 feet below the perimeter road surface. Accordingly, the french drain has been designed to intercept that horizon across the area of seepage, which covers roughly 1,000 feet between MW-2 and MW-3A. Contractors capable of installing the trench and appurtenant features have been identified and are being contracted for implementation of this interim measure in 2019. The drain is designed to intercept the seepage, thereby eliminating the source of the non-groundwater release. The intercepted water in the collector pipe at the base of the gravel-filled trench will be pumped to a collection sump and conveyed by underground pipe to the Green Surface Impoundment for disposal under the station's KPDES permit.

Table 1 – July 2018 River Seep Sampling Results

	Water	Laboratory Analytical Results (mg/L or pCi/L where noted)							
Parameter	Quality/Screening Criteria (mg/L) ¹	RS05	R03B	RS07	R02B	RS08	R01B		
Appendix III Con	stituents								
Boron	7.2 ^b 0.853 J 0.0235 J		0.0235 J	1.46	0.0322 J	0.510 J	0.0252 J		
Calcium	116 ^b	916	32.6	1120	35.8	801	33.2		
Chloride	600 °	1670	5.59	1990	6.69	2040	4.52		
Fluoride	2.7 ^b	0.0795 J	0.0954 J	0.102J	0.0979 J	0.0915 J	0.105 J		
Sulfate	NE ^e	1170	28.9	1480 30.		1440	28.3		
TDS ^a	NE ^e	5140	170	6080	170	5310	161		
Appendix IV Con	stituents								
Antimony	0.19 ^b	0.000366 J	0.000514 J	<0.000002	0.00106 J	0.00141 J	0.000476 J		
Arsenic	0.15 ^c	0.0192	0.00131 J	0.00182 J	0.00135 J	0.000404 J	0.00137 J		
Barium	0.22 ^b	0.718	0.0362 J	0.0605 J	0.0396 J	0.0443 J	0.0374 J		
Beryllium	0.011 ^b	0.000545 J	<0.002	<0.000002	<0.002	<0.002	<0.002		
Cadmium	0.00029 ^{d, †}	0.000563 J	<0.001	<0.000001	<0.001	<0.001	<0.001		
Chromium III/VI	0.074/0.011 ^b	0.0124	0.00119 J	0.000340 J	0.00155 J	0.000560 J	0.00143 J		
Cobalt	0.019 ^b	0.0327	0.0008 J	0.0218	0.000937 J	0.000691 J	0.000623 J		
Fluoride	2.7 b	0.0795 J	0.0954 J	0.102 J	0.0979 J	0.0915 J	0.105 J		
Lead	0.0036 ^d	0.0104	0.00166 J	0.000523 J	0.00199 J	0.000769 J	0.006		
Lithium	0.44 ^b	0.340	<0.05	0.772	<0.05	1.80	<0.05		
Mercury	0.00077 ^c	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Molybdenum	0.8 b	0.00442 J	0.00103 J	0.00219 J	0.00145 J	0.00296 J	0.0013 J		

Note: Table continued on the following page

60602364 7 6/28/19

Table 1 - July 2018 River Seep Sampling Results (cont.)

	Water	Laboratory Analytical Results (mg/L or pCi/L where noted)								
Parameter	Quality/Screening Criteria (mg/L) ¹	RS05	R03B	RS07	R02B	RS08	R01B			
Radium 228	NE ^e	3.83 pCi/L	-0.197 pCi/L	0.831 pCi/L	0.417 pCi/L	0.983 pCi/L	-0.00993 pCi/L			
Radium 226+228	NE ^e	7.64 pCi/L	0.391 pCi/L	1.4 pCi/L	0.735 pCi/L	1.31 pCi/L	0.249 pCi/L			
Selenium	0.005 ^c	0.00121 J	<0.01	<0.01	0.000636 J	<0.01	<0.01			
Thallium	0.006 ^b	0.000164 J	<0.001	<0.001	<0.001	<0.001	<0.001			

Notes:

- 1. Where a Kentucky Water Quality Criteria has not been adopted for a specific constituent, USEPA Region 4 Surface Water Screening Values are listed for comparison.
- a. TDS = total dissolved solids
- b. USEPA Region 4 Surface Water Screening Values for freshwater chronic exposure, updated August 2015.
- c. Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure (401 KAR 10:031)
- d. Calculated Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure using a water hardness value of 110 mg/L. (401 KAR 10:031)
- e. NE = not established.
- f. The Kentucky Water Quality Criteria for cadmium under 401 KAR 10:031 have been proposed for amendment under the 2018 Triennial Review by KDEP.
- J The analytical result is less than the reporting limit but greater than the method detection limit and is an approximate value.

Shaded cells = A result above Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure

Bold Text = A results above USEPA Region 4 Surface Water Screening Values

60602364 8 6/28/19

Northwest Seep

In April 2019, inspection of the Landfill site by the Kentucky Division of Waste Management and Kentucky Division of Water (KDoW) identified an area of seepage outside the perimeter road on the northwest side of the Landfill (See **Figure 2**). This seepage (herein identified as the NW seep) is adjacent to a ditch that flows eastward to an unnamed outfall for which a KPDES discharge permit has been applied for. The outfall was sampled by KDoW and BREC on April 2, 2019. The laboratory results from the April 2, 2019 sampling event are presented in **Appendix C** and summarized below in **Table 2**. A sample from this seep area (identified as sample 023) was collected by BREC personnel on April 11, 2019. The laboratory results from the April 11, 2019 sampling event are presented in **Appendix C** and summarized below in **Table 2**. The results indicate that the seep sample exceeded Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure for chloride and cadmium (until the proposed cadmium criteria is adopted as noted in Section 2.1 above). Therefore, the area will be subject to interim corrective measures.

The NW seep appears to be emanating from a horizon in or above a natural limestone ledge adjacent to the ditch (see photographs below on the following pages). This conclusion is based on the observation of natural springs of groundwater upstream from the seep that clearly flows from fractures in the ledge. A series of three soil borings drilled between the landfill and the NW seep area in May 2019 further suggest the seepage is controlled by this feature.

A trench drain similar to the interim measure being designed for the east side of the Green Landfill was selected as the most feasible and effective interim solution. Accordingly, the trench drain is being designed for implementation in 2019. The trench will be backfilled with gravel and constructed with a sump to pump the intercepted water for underground conveyance to the Green Surface Impoundment for discharge under the station's KPDES permit. Interception via the drain is expected to eliminate this discharge of impacted seep water.

Table 2 - April 2019 Northwest Seep Sampling Results

	Water	Laboratory Analytical Result	s (mg/L or pCi/L where noted)		
Parameter	Quality/Screenin g Criteria (mg/L) ¹	023 April 11, 2019	SW-Culvert-1 April 2, 2019		
Appendix III C	onstituents				
Boron	7.2 ^b	0.626 J	<1.0		
Calcium	116 ^b	488	203		
Chloride	600 ^c	864	344		
Fluoride	2.7 ^b	0.0356 J	<0.2		
Sulfate	NE ^e	548	401		
TDS ¹	NE ^e	2850	Not analyzed		
Appendix IV C	onstituents				
Antimony	0.19 ^b	0.0000690 J	<0.005		
Arsenic	0.15 ^c	0.000759 J	<0.01		
Barium	0.22 b	0.0557 J	0.043		
Beryllium	0.011 ^b	<0.002	<0.02		
Cadmium	0.00029 ^{d, f}	0.000411 J	<0.001		
Chromium	0.074/0.011 ^b	0.00281 J	<0.02		
Cobalt	0.019 ^b	0.000450 J	<0.04		
Fluoride	2.7 ^b	0.0356 J	<0.2		
Lead	0.0036 ^d	0.000140 J	<0.002		
Lithium	0.44 ^b	0.766	0.11		
Mercury	0.00077 ^c	<0.0002	<0.0005		
Molybdenum	0.8 ^b	0.0110	<0.1		
Radium 226	NE ^e	Not analyzed	Not analyzed		
Radium 228	NE ^e	Not analyzed	Not analyzed		
Radium 226+228	NE ^e	Not analyzed	Not analyzed		
Selenium	0.005 ^c	<0.01	<0.03		
Thallium	0.006 ^b	0.0000670 J	0.0001 J		

Notes:

- 1. Where a Kentucky Water Quality Criteria has not been adopted for a specific constituent, USEPA Region 4 Surface Water Screening Values are listed for comparison.
- a. TDS = total dissolved solids
- b. USEPA Region 4 Surface Water Screening Values for freshwater chronic exposure, updated August 2015.
- c. Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure (401 KAR 10:031)
- d. Calculated Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure using a water hardness value of 110 mg/L. (401 KAR 10:031)
- e. NE = not established.
- f. The Kentucky Water Quality Criteria for cadmium under 401 KAR 10:031 have been proposed for amendment under the 2018 Triennial Review by KDEP.

J The analytical result is less than the reporting limit but greater than the method detection limit and is an approximate value. Shaded cells = A result above Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure **Bold Text** = A results above USEPA Region 4 Surface Water Screening Values

Photo 1: The NW Seep as observed on April 9, 2019.

Photo 2: Bedrock outcrop located west of the NW Seep as observed on April 9, 2019.

2.2.2 Perimeter Seeps

During the July 2018 investigation of River Seeps, the area inside the Landfill perimeter road was also inspected for seeps. Four areas of seepage were identified (see **Figure 2**): along the west side of the landfill (LS-01), the southwest corner (LS-04), the south end adjacent to the South Pond (LS03), and the east side north of MW-2 vicinity (LS02). LS-01, LS-03, LS-04 are directed to the South Pond. LS-02 is directed to the North Pond.

Samples of a select set of these perimeter seeps were collected in July 2018 and tested for the Appendix III, Appendix IV, and general chemistry parameters. The laboratory analytical results are presented in **Appendix D** and summarized below in **Table 3**. The results indicate that these samples exceed Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure for chloride, arsenic, cadmium, and selenium. These seeps do not directly discharge to surface waters, but have the potential to influence groundwater and non-groundwater releases, so they are being addressed by interim corrective measures to manage those potentials.

Table 3 - July 2018 Perimeter Seep Sampling Results

	Water	Laboratory Analytical Results (mg/L)						
Parameter	Quality/Screening Criteria (mg/L) ¹	LS01	LS02	LS03	LS04			
Appendix III Cor	nstituents							
Boron	7.2 ^b	1.15	2.92	2.49	0.799 J			
Calcium	116 ^b	1210	1030	2250	1750			
Chloride	600 ^c	2090	1710	4370	2710			
Fluoride	2.7 ^b	1.68	1.19	0.269 J	1.53			
Sulfate	NE ^e	1580	1500	2080	1490			
TDS ¹	NE ^e	8560	7080	12400	10100			
Appendix IV Cor	nstituents							
Antimony	0.19 ^b	0.00432	0.00218	0.0000610 J	0.00470			
Arsenic	0.15 ^c	0.364	0.126	0.00176 J	0.300			
Barium	0.22 ^b	0.0666 J	0.0627 J	0.140 J	0.101 J			
Beryllium	0.011 ^b	<0.002	<0.002	<0.002	<0.002			
Cadmium	0.00029 ^{d, †}	<0.001	0.000464 J	0.000279 J	0.000161 J			
Chromium	0.074/0.011 b	<0.003	<0.003	<0.003	<0.003			
Cobalt	0.019 ^b	0.0000370 J	0.000115 J	0.000321 J	<0.005			
Fluoride	2.7 ^b	1.68	1.19	0.269 J	1.53			
Lead	0.0036 ^d	0.000239 J	0.000247 J	0.000215 J	0.0000730 J			
Lithium	0.44 ^b	3.11	2.85	7.19	4.07			
Mercury	0.00077 ^c	0.000372	0.000167 J	<0.0002	0.000539			
Molybdenum	0.8 ^b	0.0925	1.78	0.792	0.214			
Radium 226	NE ^e	0.656 pCi/L	0.658 pCi/L	1.41 pCi/L	0.897 pCi/L			
Radium 228	NE ^e	0.851 pCi/L	0.507 pCi/L	0.136 pCi/L	0.873 pCi/L			
Radium 226+228	NE ^e	1.51 pCi/L	1.16 pCi/L	1.54 pCi/L	1.77 pCi/L			
Selenium	0.005 ^c	0.00781 J	0.0103	0.00163 J	0.0103			
Thallium	0.006 ^b	<0.001	<0.001	<0.001	<0.001			

Notes:

- 1. Where a Kentucky Water Quality Criteria has not been adopted for a specific constituent, USEPA Region 4 Surface Water Screening Values are listed for comparison.
- a. TDS = total dissolved solids
- b. USEPA Region 4 Surface Water Screening Values for freshwater chronic exposure, updated August 2015.
- c. Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure (401 KAR 10:031)
- d. Calculated Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure using a water hardness value of 110 mg/L. (401 KAR 10:031)
- e. NE = not established.
- f. The Kentucky Water Quality Criteria for cadmium under 401 KAR 10:031 have been proposed for amendment under the 2018 Triennial Review by KDEP.
- J The analytical result is less than the reporting limit but greater than the method detection limit and is an approximate value.

Shaded cells = A result above Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure **Bold Text** = A results above USEPA Region 4 Surface Water Screening Values

Interim corrective measures for the perimeter seeps are being planned in a phased approach. The first step is to provide conveyance of the seepage to either the South Pond or to the North Pond, both of which are routed to the Green Surface Impoundment. Removing them from stormwater channels will prevent mixing with impounded stormwater. The use of the South Pond requires re-lining so that the seepage does not have the potential to infiltrate to groundwater. Partial re-lining of the South Pond is also proposed in the corrective measures planned for groundwater impact, which is the subject of a separate ACM. The re-design of the South Pond involves removal of any sludge and creation of two lined sump areas, one on the east end to collect the South and East perimeter seeps and one on the west end to collect Southwest corner perimeter seeps.

3.0 CORRECTIVE ACTION OBJECTIVE (CAO)

As noted in Section 2, non-groundwater releases have been identified, characterized, and interim corrective measures are being planned and implemented. The site-specific Corrective Action Objective (CAO) for non-groundwater releases is to meet the following objectives under the CCR Rule:

- Protect human health and the environment:
- Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix III and IV constituents into the environment;
- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems (applicable to material releases only); and
- Comply with standards for management of wastes.

Together, these requirements comprise the site-specific CAO. The interim corrective measures described in Section 2 are expected to meet these objectives. Should any further measures be required, these same objectives will be applied.

3.1 Assessment of Interim Corrective Measure Ability to meet CAO

The Interim Corrective Measure being implemented in 2019 is designed to capture river seepage and divert it to KPDES outfalls, eliminating any potential exposure to public health or the environment. It is anticipated that the Interim Corrective Measure will meet the CAOs by effectively eliminating any future river seepage through source control, and as a result, no supplemental remedies are warranted at this time. Performance monitoring will be performed after the Interim Corrective Measure is constructed to demonstrate source control and evaluate the ability of the measure to meet the CAO. If warranted based on performance monitoring results, additional evaluation of supplemental corrective measures will be performed consistent with 40 CFR 257.98(b).

4.0 TECHNOLOGY IDENTIFICATION

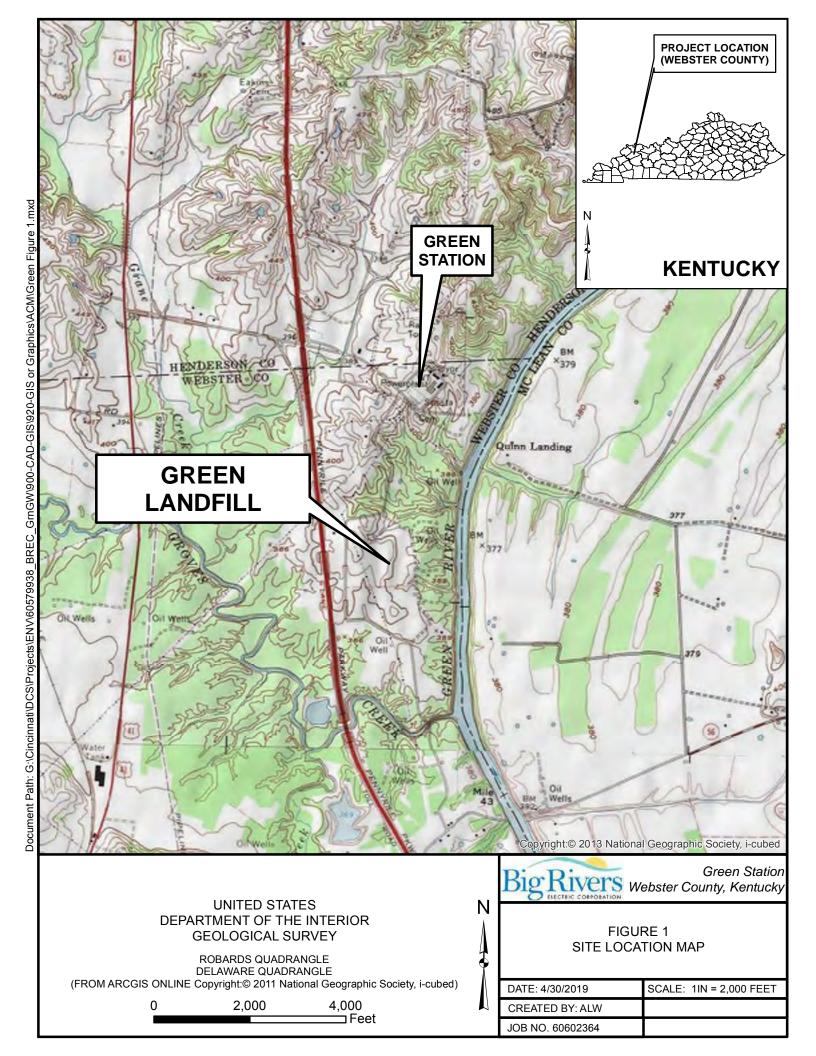
As required under the CCR Rule, source control is a first line of corrective measures. In adherence with the BREC's permit conditions, the Site will continue to operate as a solid waste disposal facility through its life cycle and will be closed in accordance with the requirements of the permit. Source control through landfill closure will include installation of final cover that will prevent infiltration and contribute to groundwater quality restoration. Control of groundwater impacts associated with the Green Landfill is also planned and is described in a separate, concurrent ACM.

The identification of potentially applicable supplemental corrective measures technologies for the subject seeps impacted by CCR at the Green Landfill is presented in **Table 4** below.

Table 4 - Potential Corrective Measures Options Technology Description/Overview

Potentially Applicable Technology	Status	Description/Overview
No Action	Not retained as stand-alone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because by itself, it will not meet the established CAOs.
Hydraulic Containment	Retained	Hydraulic containment in the form of pumping of vertical or horizontal wells would potentially be used to provide spot control of seepage if the interim corrective measures are unable to fully capture the seepage.
Physical Containment	Retained	Physical containment in the form of a cutoff wall would potentially be used to re-direct or otherwise intercept seepage that was not adequately captured by the interim corrective measures.
Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment is retained as a potential supplement to the interim corrective measures in the event that discharge via the station's KPDES permit is not possible.
In-situ Physical/Chemical Treatment	Retained	In-situ treatment is retained in the form of spot treatment or fixation of seepage areas in the event that the interim corrective measures do not adequately address all seepage areas.
Permeable Reactive Barriers (PRB)	Retained	The use of PRBs is retained in the form of a reactive cell in the event that interim measures result in seepage concentrations that require pre-treatment in-situ prior to discharge.
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.

Potentially Applicable Technology	Status	Description/Overview
Other Source Control Technologies	Retained	Control of source area non-groundwater releases is being implemented as interim corrective measures but is retained in the event that interim measures need to be evaluated for expansion.


If the interim corrective measures currently under way are not adequate to meet the corrective action objectives, then an assessment of additional potential technologies that follows the requirements of 40 CFR 257.96 will be revisited.

- 40 CFR 257.96(c) requires an ACM (if/when performed) to include an analysis of the effectiveness of potential corrective measures in meeting the objectives for remedies identified under Section 257.97(b), by addressing at least the following:
- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

5.0 REFERENCES

- AECOM, 2018. Annual Groundwater Monitoring and Corrective Action Report, 2016-2017; Green Station CCR Landfill, Webster County, Kentucky.
- AECOM, 2019. Annual Groundwater Monitoring and Corrective Action Report, 2018; Green Station CCR Landfill, Webster County, Kentucky.
- EPA, 40 CFR Part 257. [EPA-HQ-RCRA-2015-0331; FRL-9928-44-OSWER]. RIN-2050-AE81. Technical Amendments to the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities—Correction of the Effective Date. Federal Register / Vol. 80, No. 127 / Thursday, July 2, 2015 / Rules and Regulations.
- EPA, 40 CFR Part 257. [EPA-HQ-OLEM-2017-0286; FRL-9973-31-OLEM]. RIN-2050-AG88. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Amendments to the National Minimum Criteria (Phase One); Proposed Rule. Federal Register / Vol. 83, No. 51 / Thursday, March 15, 2018 / Proposed Rules.

Appendix A

Technical Memorandum – River and Seep Sampling and Analysis, September 6, 2018

Technical Memorandum

Date: September 6, 2018

Mr. Tom Shaw, Ph.D., Big Rivers Electric Corporation

To: Managing Director Environmental

From: Dennis Connair, Principal Geologist, AECOM

Subject: River and Seep Sampling and Analysis

Green Landfill Sebree Station

Big Rivers Electric Corporation

Purpose

On behalf of Big Rivers Electric Corporation, AECOM prepared the following technical memorandum to document the activities and results of water sampling conducted along the Green River near the Big Rivers Electric Corporation (BREC) Sebree Station in Webster County, Kentucky. Sampling and analysis was conducted to identify the character of water quality of the river and of water seeping from the river bank in the vicinity of the station's coal combustion residuals (CCR) Green landfill.

ACTIVITIES AND OBSERVATIONS

Water samples were collected on July 12 and July 13, 2018 by AECOM staff Chris Davis and Dennis Connair. Sampling locations were accessed using a johnboat provided by BREC and piloted by BREC staff. Weather conditions at the time of sampling were hot and sunny with little wind. The Green River was near its pool stage at an approximate elevation of 350 feet mean sea level (msl) based on observations on site and data available from the USGS stream gauging station on the Green River at Lock #1 near Spottsville, Kentucky. The river stage had peaked close to 358 feet msl on June 27, 2018 and had steadily declined to July 12, 2018, exposing the river bank and the sampled seepage points.

River Sampling

River samples were collected on July 12, 2018 at four locations identified on Figure 1. Coordinates for each point (Table 1) were measured using a hand-held global positioning system (GPS) unit with submeter accuracy.

- Sample R01 was collected near the west bank of the river upstream of Groves Creek. This location was selected as being outside the potential influence of the landfill.
- Sample R02 was collected near the west bank of the river adjacent to seep number RS07, which is elsewhere referred to as the "Area 6" seep.
- Sample R03 was collected near the west bank of the river adjacent to seep number RS05, which is elsewhere referred to as the "Area 8" seep.

- Sample R04 was collected near the west bank of the river adjacent to the downstream end of the landfill footprint (no adjacent seep).

At each of the four locations, river samples were collected three to five feet from the water line at two depths.

- A shallow sample was collected by dipping a laboratory-supplied clean container and filling the requisite (pre-preserved or unpreserved) sample bottles (see photo #1, Attachment 1).
- A deeper sample was collected from within 12 inches of the river bottom using a "Van Dorn" style sampling device (see photo #2, Attachment 1) and decanting the aliquot to the requisite (pre-preserved or unpreserved) sample bottles.

Field measurements of temperature, pH, specific conductance, and oxidation reduction potential (ORP) were collected from the shallow sample locations and recorded in field notes as reported on Table 1. Field data sheets for the river samples are provided as Attachment 2.

All filled sample containers were appropriately labeled and placed in ice-filled coolers and notes regarding sample time, staff, and conditions were recorded. The samples were later repackaged for shipment and the chain-of-custody form completed prior to shipment by overnight service to the analytical laboratory (TestAmerica in Nashville, Tennessee). All samples were tested for the Appendix III and IV parameters under the federal CCR rule in addition to select ionic constituents used for general chemical characterization (alkalinity, magnesium, potassium, and sodium).

Seep Sampling

River bank seeps were identified at sixteen discrete locations in the vicinity of the station as indicated by the "RS" symbols on Figure 1. Coordinates for each point (Table 1) were measured using a handheld global positioning system (GPS) unit with sub-meter accuracy. Characterization and sampling of the seeps was conducted on July 12 and July 13, 2018. Field data sheets for the river bank seep locations are provided as Attachment 3.

Seeps were recorded at locations on both the east and west banks of the river over two miles upstream of the landfill footprint and over 1.5 miles downstream of the landfill footprint. Some seeps appeared to potentially be associated with a surface water drainage feature, such as RS11 where there appears to be a beaver pond beyond the river bank, but most emanated from otherwise nondescript sections of river bank.

The observed seeps can generally be described as soft, wet areas of river bank sediment between the river water line and three to six feet higher. The seeps occupy between approximately 5 and 150 feet of bank at each location. Some of the seeps had visibly flowing water, but most had a slow enough flow that, if there was free water visible at the surface, the water was not moving. Most of the seeps had some measure of orange-colored iron bacteria growth and some had a green growth. Photographs of the seeps are included as Attachment 1.

The volume of water seeping at each location ranged from imperceptible up to one or two gallons per minute cumulatively. Seep samples were collected using a transfer container (new plastic cup) to fill the laboratory bottles and to collect field measurements of temperature, pH, specific conductance, and ORP. Where sufficient flow was available, the sample was directly dipped from the seep stream. Where flow was insufficient, a shallow trench (1-3 inches deep) in the sediment was excavated to allow water to accumulate so that it could be dipped over a period estimated to be up to 15 minutes.

All filled sample containers were appropriately labeled and placed in ice-filled coolers and notes regarding sample time, staff, and conditions were recorded. The samples were later repackaged for

shipment and the chain-of-custody form completed prior to shipment by overnight service to the analytical laboratory (TestAmerica in Nashville, Tennessee). All samples were tested for the Appendix III and IV parameters under the federal CCR rule in addition to select ionic constituents used for general chemical characterization (alkalinity, magnesium, potassium, and sodium). Laboratory reports are provided as Attachment 4.

FINDINGS

Analytical results for the river and seep sample field and laboratory analyses are summarized on Table 1. The results are organized from upstream to downstream (left to right columns). A chart illustrating the distribution of key Appendix III and Appendix IV concentrations, also organized from upstream to downstream, is presented on Figure 2.

The river samples were all moderately turbid and some of the seep samples were highly turbid due to their collection from the soft sediments, but all laboratory results appear to conform to applicable quality assurance guidelines.

TABLE 1

CCR ANALYTICAL SUMMARY RIVER SEEP AND RIVER SAMPLE EVALUATION

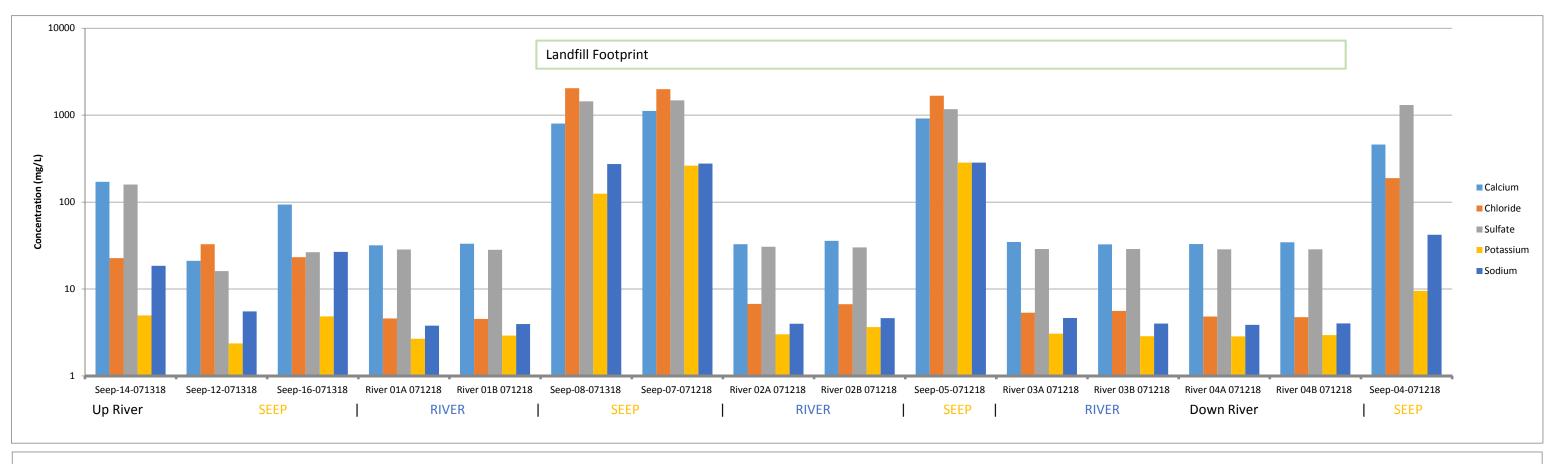
JULY 2018

BIG RIVERS ELECTRIC CORPORATION GREEN STATION LANDFILL WEBSTER COUNTY, KENTUCKY

			Water Qu	ality Criteria	a (mg/L)	River Seep-14-	River Seep-12-	RiverSeep-16-	River 01A	River 01B	RiverSeep-08-	RiverSeep-07-	River 02A	River 02B	RiverSeep-05-	River 03A	River 03B	River 04A	River 04B	River-Seep-04-
	PRIMARY MCL	Human H	lealth	Warm V	Vater Aquatic Habitat	71318	71318	71318	71218	71218	71318	71218	71218	71218	71218	71218	71218	71218	71218	71218
Field Parameters	and CCR LIMITS	Domestic Water Supply Source	Fish	Acute	Chronic	Lat 37.661126 Long -87.4894	Lat 37.61732 Long -87.4936	Lat 37.62167 Long -87.4967	Lat 37.64610 Long -87.5059	Lat 37.64610 Long -87.5059	Lat 37.62860 Long -87.5003	Lat 37.63299 Long -87.5003	Lat 37.63303 Long -87.5002	Lat 37.63303 Long -87.5002	Lat 37.63433 Long -87.5003	Lat 37.63433 Long -87.5002	Lat 37.63433 Long -87.5002	Lat 37.63789 Long -87.5004	Lat 37.63789 Long -87.5004	Lat 37.64122 Long -87.4997
pH (Field Measurement) SU	NA					7.54	7.37	7.46	7.94	7.94	7.09	7.27	7.91	7.91	6.92	7.94	7.94	7.86	7.86	5.13
pH (Lab Measurement) SU	NA					8.14	8.00	8.40	7.64	7.62	8.16	8.01	7.45	7.50	7.95	7.50	7.51	7.52	7.53	5.26
Conductivity (µmhos/cm)	NA					1207	226.2	654	268	268	7674	7715	267.7	267.7	6174	262.2	262.2	265.1	265.1	2545
Temperature (°F)	NA					88.34	84.0	91.58	82.9	82.9	70.52	79.7	84.2	84.2	94.28	84.2	84.2	82.6	82.6	71.6
Oxidation-Reduction Potential	(m NA					-92	-98	-48	131	131	29	-123	98	98	-137	133	133	133	133	125
APPENDIX III CONSTITUENTS	s																			
Boron	NA					0.0694	J 0.0379 J	0.0321	J 0.0281	J 0.0252 J	0.510 J	1.46	0.0323	J 0.0322 J	0.853 J	0.0251 J	0.0235	J 0.0229	J 0.0234 J	2.19
Calcium	NA					171	21.1	93.8	31.8	33.2	801	1120	32.8	35.8	916	34.8	32.6	32.9	34.5	460
Chloride	NA	250	-	1200	600	22.7	32.7	23.2	4.58	B 4.52 B	2040	1990	6.75 E	6.69 B	1670	5.33 B	5.59	B 4.83	B 4.75 B	189
Fluoride	4 mg/L	4	-	-	-	0.144	J 0.0803 J	0.177	J 0.111	J 0.105 J	0.0915 J	0.102 J	0.0958	J 0.0979 J	0.0795 J	0.100 J	0.0954	J 0.0948	J 0.0945 J	0.239 J F
Sulfate	NA	250	-	-	-	159	B 16.1 B	26.5 E	3 28.5	28.3	1440 B	1480 B	30.6	30.1	1170 B	28.8	28.9	28.6	28.6	1310 B
Total Dissolved Solids	NA	250	-	-	-	790	157	504	169	161	5310	6080	173	170	5140	175	170	174	156	2130
APPENDIX IV CONSTITUENTS	s																			
Antimony	0.006 mg/L	0.0056	0.64	-	-	0.000312	J 0.000499 J	0.000270	J 0.000591	JB 0.000476 JB	0.00141 J	ND	0.00276 E	0.00106 JE	0.000366 J	0.000571 JB	0.000514	JB 0.000504	JB 0.000360 JB	0.000200 J
Arsenic	0.01 mg/L	0.01	-	0.340	0.150	0.0173	0.00467 J	0.0247	0.00124	J 0.00137 J	0.000404 J	0.00182 J	0.00131	J 0.00135 J	0.0192	0.00126 J	0.00131	J 0.00118	J 0.00109 J	0.00188 J
Barium	2 mg/L	1	-	-	-	0.242	0.0757 J	0.190	J 0.0330	J 0.0374 J	0.0443 J	0.0605 J	0.0350	J 0.0396 J	0.718	0.0366 J	0.0362	J 0.0382	J 0.0402 J	0.0384 J
Beryllium	0.004 mg/L	0.004	-	-	-	0.000497	J 0.000145 J	0.000211	J ND	ND	ND	ND	ND	ND	0.000545 J	ND	ND	ND	ND	0.00372
Cadmium	0.005 mg/L	0.005	-	0.00235	0.00029	0.000312	J 0.000183 J	0.000196	J ND	ND	ND	ND	ND	ND	0.000563 J	ND	ND	ND	ND	0.00307
Chromium	0.1 mg/L	0.1	-	-	-	0.00969	0.00200 J	0.00383	0.000676	J 0.00143 J	0.000560 J	0.000340 J	0.00111	J 0.00155 J	0.0124	0.00112 J	0.00119	J 0.00134	J 0.00105 J	0.00386
Cobalt	0.006 mg/L					0.0125	0.00581	0.00613	0.000401	J 0.000623 J	0.000691 J	0.0218	0.000730	J 0.000937 J	0.0327	0.000934 J	0.000800	J 0.000841	J 0.000738 J	0.0447
Fluoride	4 mg/L	4	-	-	-	0.144	J 0.0803 J	0.177	J 0.111	J 0.105 J	0.0915 J	0.102 J	0.0958	J 0.0979 J	0.0795 J	0.100 J	0.0954	J 0.0948	J 0.0945 J	0.239 J F
Lead	0.015 mg/L	0.015	-	0.092	0.0036	0.0109	0.00221 J	0.00521	0.000994	JB 0.00600 B	0.000769 J	0.000523 J	0.00125 J	B 0.00199 JE	0.0104	0.00115 JB	0.00166	JB 0.00141	JB 0.00147 JB	0.00507
Lithium	0.040 mg/L					0.0126	J ND	ND	ND	ND	1.80	0.772	ND	ND	0.340	ND	ND	ND	ND	0.0209 J
Mercury	0.002 mg/L	0.002	0.000051	0.0014	0.00077	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Molybdenum	0.1 mg/L					0.00550	J 0.000948 J	0.00878	J 0.00217	J 0.00130 J	0.00296 J	0.00219 J	0.00222	J 0.00145 J	0.00442 J	0.00105 J	0.00103	J 0.00101	J 0.000981 J	ND
Radium 226 Radium 228	5 pCi/L	5 pCi/L				NS	1.17	NS	0.417	0.249 U	1.31	1.4	0.554	0.735	7.64	0.404 U	0.391	U 0.544	0.423 U	1.48
Selenium	0.05 mg/L	0.17	4.2	-	0.005	0.000582	J ND	0.000906	J ND	ND F2	ND	ND	0.000423	J 0.000636 J	0.00121 J	ND	ND	0.000402	J ND	0.00216 J
Thallium	0.002 mg/L	0.00024	0.00047	-	_	0.000126	J ND	ND	0.0000500	J ND	ND	ND	ND	ND	0.000164 J	ND	ND	ND	ND	ND
IONIC CONSTITUENTS					•															
Total Alkalinity	NA					443	38.2	393	85.6	85.6	174	87.7	85.7	85.8	229	86.1	86.4	80.9	85.8	ND
Hardness (as mg/L of CaCO3))** NA					578	74	318	106	110	3198	3010	108	117	2608	115	108	109	114	1411
Magnesium	NA					36.6	5.20	20.3	6.41	6.62	291	51.8	6.32	6.76	77.8	6.87	6.41	6.45	6.73	63.6
Potassium	NA					4.96	2.37	4.85	2.68	2.91	125	262	3.01	3.65	285	3.06	2.87	2.85	2.95	9.51
Sodium	NA					18.5	5.52	26.7	3.79	3.95	274	277	3.98	4 63	285	4.64	4.01	3.87	4.02	42.1

*All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

Na = Not available
pCi/L = picoCuries per Liter
SU = Standards units
purbos/cm = microSiems per centimeter
"F = Degrees Fahrenheit
m/ = millivolts
ND = Not detected above the Method Detection Limit
J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
B = Compound was found in the blank and sample.
F1 = MS and/or MSD Recovery is outside acceptance limits.
NM = Not measured


NM = Not measured
U = Result is less than the sample detection limit

Note: River "A" samples collected from surface River "B" samples collected <1 foot above river bed

** The water hardness is using American degree equivalent to mg/L. Water hardness(mg/L)=Ca(mg/L)×2.497 + Mg(mg/L)×4.118

		Hardness	Hardness**		
		(mg/L CaCO ₃)	(mg/L CaCO ₃)		
Constituent	KY Acute Warm Water Habitat Equation	50	110		
		Criterion	Criterion		
		(ug/L)	(ug/L)		
Cadmium	Criterion = e(1.0166 (In Hard*)-3.924)	1.05	2.35		
Lead	Criterion = e(1.273 (In Hard*)-1.460)	34	92		
		Hardness	Hardness**		
	KY Chronic Warm Water Habitat	(mg/L CaCO ₃)	(mg/L CaCO ₃)		
Constituent	Equation	50	110		
	Equation	Criterion	Criterion		
		(ug/L)	(ug/L)		
Cadmium	Criterion = e(0.7409 (In Hard*)-4.719)	0.16	0.29		
Lead	Criterion = e(1.273 (In Hard*)-4.705)	1.3	3.6		
	*Hard = Hardness as mg/L CaCO ₃	**Average hardne	ess concentration	from collected River S	amnles (7/12/18)

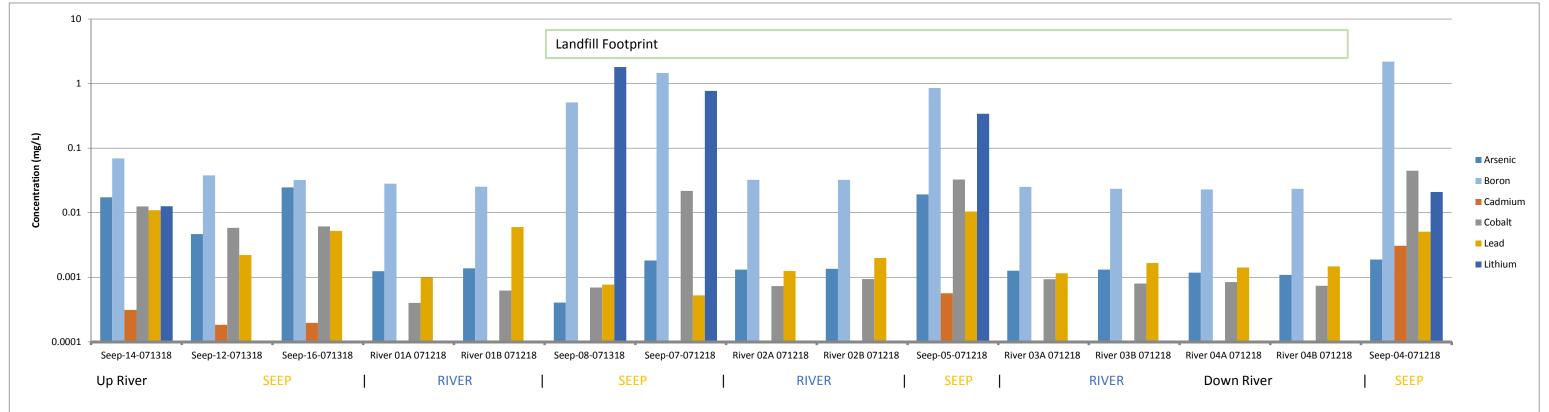


FIGURE 2 CCR ANALYTICAL SUMMARY - GREEN STATION LANDFILL RIVER SEEP AND RIVER SAMPLE EVALUATION, JULY 2018

Facility Name: Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No. 1

Date: 07/12/18

Direction Photo

Taken:

West

Description:

R02 location – River surface water sample.

Photo No.

Date: 07/12/18

Direction Photo

Taken:

West

Description:

R01 location – "Van Dom" style sampling device

Facility Name: Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No.

3

Date: 07/12/18

Direction Photo Taken:

Southeast

Description:

RS01 - River Seep 01

No sample collected due to insufficient volume

Photo No.

4

Date: 07/12/18

Direction Photo Taken:

Description:

RS02 - River Seep 02

No sample collected due to insufficient volume

Facility Name:

Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No.

Date: 07/12/18

Direction Photo

Taken:

Southeast

Description:

RS03 - River Seep 03

No sample collected due to insufficient volume

Field parameters collected

Photo No.

No. Date: 07/12/18

Direction Photo

Taken:

West

Description:

RS04 - River Seep 04

Facility Name: Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No.

7

Date: 07/12/18

Direction Photo

Taken:

West

Description:

RS05 - River Seep 05

Sample collected

Photo No.

8

Date: 07/12/18

Direction Photo

Taken:

West

Description:

RS06 - River Seep 06

No sample collected due to insufficient volume

Facility Name: Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No. 9

Date: 07/12/18

Direction Photo

Taken:

West

Description:

RS07 - River Seep 07

Sample collected

Photo No.

10

Date: 07/13/18

Direction Photo

Taken:

North

Description:

RS08 - River Seep 08

Facility Name:

Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No.

Date: 07/13/18

Direction Photo

Taken:

South

Description:

RS09 - River Seep 09

No sample collected due to insufficient volume

Photo No.

Date:

12

07/13/18

Direction Photo

Taken:

West, Southwest

Description:

RS-10 - River Seep 10

No sample collected due to insufficient volume

Facility Name:

Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No.

Date: 07/13/18

Direction Photo Taken:

West, Southwest

Description:

RS11 - River Seep 11

No sample collected due to insufficient volume

Field parameters collected

Photo No.

Date:

07/13/18

Direction Photo Taken:

West, Southwest

Description:

RS12 - River Seep 12

Facility Name: Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No. 15

Date: 07/13/18

Direction Photo

Taken:

West, Southwest

Description:

RS13 - River Seep 13

No sample collected due to insufficient volume

Field parameters collected

Photo No. 16

Date: 07/13/18

Direction Photo Taken:

West, Southwest

Description:

RS14 - River Seep 14

Facility Name: Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No. **17**

Date: 08/07/18

Direction Photo

Taken:

East, Northeast

Description:

RS15 - River Seep 15

No sample collected due to insufficient volume

Photo No.

Date:

07/13/18 18

Direction Photo

Taken:

Northwest

Description:

RS16 - River Seep 16

Attachment 2

Field Data Sheets – River Sample Locations

Surface SPRING/SEEP WATER DATA SHEET

Job Name:	6 cen	l ocation description and the second
Sample Identification:	610 A10-1	Sampling Orders 1
SAMPLE DATA		Date Time: 7/12/18 11/0
		Measured By COD DPC
Calibration of pH meter in Field	J 4pH J	7pH 10pH not done
Feld pH (units)	7.94	
Feld Conductivity (µmhos cm)	268	
Feld Temperature (1)	83.9	
URP (mV)	131	
Dissolved Oxygen (mg/L)	- Allering	
Furbidity (NTU)		
Sample Odor		
Sample Color	davdig	
Sample Sediment Content	low to mad	
Weather Conditions	Sun 40.	
Sampling Splits or Duplicate	No	
Samples Shipped To	Nochrile	Date Samples were shipped 7/12/18
Method of Shipment Feder		Hand Delivered Other
Parameters Collected Apill	IV Anions	
COMMENTS .V =0 A	at surfura	
River-OIB	Heat whos	e bottom, 2A drep
		1

Surface Springseep water data sheet

Job Name:	Lista	Location:	e.t,
Sample Identification: River -	02A, 01B	Sampling Order:	3
SAMPLE DATA		e Fime 7/12/18	
Calibration of pH meter in Field	<u>√</u> 4pH <u>√</u> 7pH	✓10p1f	not done
Field pH (units)	7.91		
Field Conductivity (µmhos cm)	267.7		
Field Temperature (1)	84 a		
ORP (mV)	95		
Dissolved Oxygen (m 1)	-		
Turbidity (N FIII)			
Sample Odor Sample Color Sample Color	in.		
	on to mod		THE THE STREET STREET STREET STREET STREET
Sampling Splits or Duplicates	0		
Samples Shipped Fo	halle	Date Samples were sh	ipped 7/12/18
Method of Shipment Fedex	Hand D	efivered	Other
Parameters Collected App III	IV, Anions		
COMMENTS OAA allect Let OAB LA			

Suffice Spring/seep water data sheet

Job Name:	BARC-Green Location Solver Ky
Sample Identification:	River-03A, 03B Sampling Order: 3
SAMPLE DATA	Date Time. <u>Halis</u> 13.15 Measured By: <u>CDD</u> DQC
Calibration of pH meter in	a Field 4p11 4 p11 10p11 not done
Field pH (units)	7.94
Field Conductivity (µmho	cm) 267.1
Field Lemperature (1)	84.3
ORP (mV)	(33
Dissolved Oxygen (mg/l	
Turbidity (NFU)	_
Sample Odor	Loron none
Sample Color	sit brong
Sample Sediment Conten	low to mod
Weather Conditions	5m 805
Sampling Splits or Duplic	tates
Samples Shipped To	Date Samples were shipped 7/13/18
Method of Shipment	edo s Hand Delivered Other
Parameters Collected A	pp till tu
	at surfue = frombant If ambottom 4 do depth

Surface SPRING/SEEP WATER DATA SHEET

Job Name:	ck Green	Location
Sample Identification:	r-04A,04B	Sampling Order: 4
SAMPLE DATA		Date Time: 7/2/18 12.40 Measured By:
Calibration of pH meter in I reld	√ 4pH ✓	7p11 1111 not done
Field pH (units)	7.%	
Field Conductivity (µmhos cm)	265.1	
Field Temperature (T)	83.6	
ORP (mV)	133	
Dissolved Oxygen (mg/L)	.=	
Turbidity (NTU)	_	
Sample Odor		
Sample Color	11w	
Sample Sediment Content	lan to mad	
Weather Conditions	5 n 80s	
Sampling Splits or Duplicates	No	
Samples Shipped To	allinten	Date Samples were shipped 7/6/18
Method of Shipment	lex .	Hand Delwered Other
Parameters Collected App T	I, D, Anons	
COMMENTS		
River 04A	- collected of	- surface
Kiver 04B	- 214 bolow	suffice, 1st above bottom

Attachment 3

Field Data Sheets – River Bank Seep Locations

Job Name: BREC Green	Tocation:
Sample Identification: River Seve - 01	Sampling Order; S
SAMPLE DATA	Date I fine: 7/12/18 311 Measured By: 400 00
Calibration of pH meter in Field4pH	7pH ✓ 10pHnot done
	到的1996年,我们是关系的"美"的"
Pield pH (units)	residues dubtin
Field Conductivity (µmhos/cm)	Proposition of the component and the component of the component of the component of the component of the compo
Field Temperature (T)	
ORP (mV)	
Dissolved Oxygen (nix 1-)	
Larbidity (NTU)	
Sample Odor	
Sample Color	
Sample Sediment Content	
Weather Conditions	ene annual tennia in a annua annua annua annua agus i inn annua annua annua annua annua annua annua annua annu
Sampling Splits or Duplicates	el estre la la ciente estructura de la companya de
Samples Shipped To	
Method of Shipment F	
Parameters Collected	
COMMENTS East bank , crange stand	

Job Name:	BREC - Green	Location Sobree ty
Sample Identification:	Rier Seop 02	Sampling Order:
SAMPLE DATA		Date Time: 7/10/ 9 13/7
		Measured By: CW WC
Calibration of pH mete	r in Lield 4p11	7pH √ 10pH not done
Field pH (units)	insufficient v	rolume
Field Conductivity (µm	ihos cm)	
Field Temperature (F)		
ORP (mV)		
Dissolved Oxygen (mg	(L)	
Turbidity (NTU)		
Sample Odor		
Sample Color		
Sample Sediment Cont	ent	
Weather Conditions		
Sampling Splits or Dup	dicates	
Samples Shipped To	MA AM	Date Samples were shipped
Method of Shipment	4	Hand Delivered Other
Parameters Collected	None	
COMMENTS	white law flow	n stain

Job Name	C Goon	Location: Sobt on Ky
Sample Identification:	ver Soop 03	Samplin Order: 7
SAMPLE DATA		Date fime: 7/12/18 1331
		Measured By: CDD, DRC
Calibration of pH meter in Field	d / _4pH	7pH V 10pHnot done
field pH (units)	7.14	
Field Conductiv ty (µmhos/cm)	804.35	
Field Temper ture (F)	77.18	
ORP (mV)	. 73	
Dissolved Oxy en (mg/L)	-	
Furbidity (NTT)		
Sample Odor	-	
Sample Color	Ų	
Sample Sediment Content	~	
Weather Conditions	4un 80s	
Sampling Splits or Duplicates	~	
Samples Shipped To		Date Samples were shipped
Method of Shipment		Hand Delivered Other
Parameters offected	/LE	
COMMENTS \[\langle 1\langle \langle \l	for to s	unple, Est Bak, crony stains

Job Name: BREC -	61289	l ocation:	
Sample Identification: Q. Jer	Seo, 04	Sampling (
SAMPLE DATA		Date/Fime 7	112/16 1350 COD, OPC
Calibration of pH meter in Field	√ 4pH	7pH - 10pi	I not done
Field pH (units)	Sil3		
Field Conductivity (µmhos em)	2545		
Field Lemperature (1)	766		
ORP (mV)	125		
Dissolved Oxygen (mg/L)	-		
Turbidity (NTT)			
Sample Odor	norte.		
Sample Color Cecr	w orange	stainy	
	lon	•	
Weather Conditions	5m 80s	·	
Sampling Splits or Duplicates	NO		
Samples Shipped To	solute	Date Sample	were shipped 7/13/18
Method of Shipment Fedex		Hand Delivered	Other
Parameters Collected App_ 111	TV, Amons		
COMMENTS	n bengoil 1	1-2 6 m cu	mulative

Job Name:	BREC-Gleen	Location Solve
Sample Identification:	Rier Seep-05	Sampling Order:
SAMPLE DATA		Date Time. 1/12/18 1425
		Measured By.
Calibration of pH meter	in Field 4p11 Y	pHf10pHnot done
Field pH (units)	642	
Field Conductivity (µm	hos cm) 617	
Field Temperature (1)	44,28	
ORP (mV)	(37	
Dissolved Oxygen (mg/	1)	
Turbidity (NTU)	4-	
Sample Odor	hont	
Sample Color	bown	
Sample Sediment Conto	ena hish	
Weather Conditions	5m 803	
Sampling Splits or Dup	licates No	
Samples Shipped To	7A Northwile	Date Samp es - 7/13/18
Method of Shipment	Feden	Hand Delivered
Parameters Collected	April IV Amen	
COMMENTS	agen, and	Acon 8"
Ylew E		

Job Name:	FARL-GOOM	Location
Sample Identification	River Seep Ob	Samplin @Order: 10
SAMPLE DATA		Date Time: 7/12/18 K439
		Measured By San Agents
		Measured 6)
Calibration of pH meter	in Field 4pH	7pH J. 10pH not done
Field pH (units)		
. f.ield Conductivity (µm)	10% cm)	
Field Lemperature (*13:	and the state of the	
ORP (mV)		
Dissolved OxygenEme		
Sample Odor		
Sample * ediment Conte		
Weather Conditions	1	
	licatos NA	
		Date Samp & swere shapped
		Hand Delivered Other
the second secon	the control of the co	Transformer exercises Office appropriate
Parameters Collected		un de la companya de
COMMENTS Grand	that flow a	30 Ande insoficent Ar
	· · · · · · · · · · · · · · · · · · ·	
	annana artenaryezezaretetetean	in entre con company terror content and an interference production and a president and an anti-

Job Name: .	BREC - Green	Location	
Sample Identification:	River Sopp-07	Sampling C	
SAMPLE DATA		Date Sime 7/18/18	
		Me wured By	Le constant proposition of the second
Calibration of pH mete	r is field	У 7011 У 1911	not done
Field pH (units)		apangatang mantana na pangapanga panjanga panjang p	este a de servicio de la constanció de la c
Relid Conductivity (un	thos(em)	one and the second of the seco	eren er
	79.7		minima di mandi di m
(美P (mV))			
	t clear 40 5% de		
Sample olor			
	ent lon to mod		
Weaths Conditions	su sik		
Samples Splits or Dup			
	74 - Mashwill*	Date Samples were st	sipped 7/3/11
	Feder		
	energh, Making		e de la companya de
	18		
COMMENTS	ofm sprenchous	100', high on ba	nt oven
		The state of the s	

Job Name:	CARL-Secon	Location
Sample Identification.	River Soep 08	Samplin @Order:
SAMPLE DATA		Date Time: 18 0750
		Measured By:
Calibration of pH mete	r în Field 4p11	7pH 10pH mot done
	\$ 50.00	Nsoep
Field pH (units)	7.09	7.0
	howern)	7800
		653
		anta ang at parting a transportation of the parting and the parting and the parting and the parting and the pa
Sample Odor	die w	
Sample Sediment Cont	ent o w	
Weather Conditions	Land Section 1	
Sampling Sprits or Dup	dicates NQ	
:Samples Shipped To	The Made all	Date Samples were shappe & 113115
		Hand Delivered Assessment State Assessment
	A 1981 AVS 1	
COMMENTS	Mind and And	of st bed out flow
Ann L	den as winder by	on 35 neo 25 tom
	Much som marth in ha	7.7 to 3 to 3 to 5 to 5 to 5 to 5 to 5 to 5
·		

Job Name: BREC - Green	Location:
Sample Identification: River See 09	Samplin Order: 13
SAMPLE DATA	Date time: 7/13/18 0835 Me i e By C
Calibration of pH meter in Field 4pH V	p11 10p11 not done
Field pH (units)	ival volume for guranetors
Field Conductivity (µmhos cm)	
Field Temperature (1)	
ORP (mV)	
Dissolved Oxygen (m 1)	
Furbidity (NTL)	
Sample Odor	
Sample Color	
Sample Sediment Content	
Weather Conditions	
Sampling Splits or Duplicates	
Samples Shipped to MA	Date Sample were shipped
Method of Shipment	Hand Defivered Other
Parameters Collected	
COMMENTS COMMENTS	ge staing, no vis flow

Job Name.	BREC-Grown	Location: Sebroe, Ky
Sample Identification:	Riger Soeg 10	Sampling Order: 14
SAMPLE DATA		Date Fime: 7/13/16 0652
		Measured By: COV, DPC
Calibration of pH meter	in Field 4 4pt1	✓ 7pH <u> </u>
Field pH (units)	1 Αβι	circt Volume
Field Conductivity (µmh	ios/cm)	1
Field Temperature (1)		
ORP (mV)		
Dissolved Oxygen (m. 1	.)	
Lurbidity (NTU)		
Sample Odor		
Sample Color		
Sample Sediment Conter	ni	4
Weather Conditions	5 w 8	05
Sampling Splits or Dupli	icates N	
Samples Shipped To	M	Date Samples were shipped
Method of Shipment	NA	Hand Delivered Other
Parameters Collected	M	
COMMENTS		1
MA (Se	erage wounde	strong

0.	Location: Stee C
Sample Identification: Kier	Sampling Order: 15
SAMPLE DATA	Date Time: 7/13/18 0857 Measured By: (DD) DC
Calibration of pH meter in Field	4pH 7pH √ 10pH not done
Field pH (units)	735
Lield Conductivity (µmhos cm)	364
1 ield Temperature (1)	im
ORP (mV)	85
Dissolved Oxygen (mg/1)	
Furbidity (NTL)	
Sample Odor —	
Sample Color -	
Sample Sediment Content	
Weather Conditions 5w	왕() 스
Sampling Splits or Duplicates N	
Samples Shipped To	Date Samples were shipped
Method of Shipment	Hand Delivered Other
Parameters Collected Nove	
COMMENTS Pond wen above, Not Singled	flow from high on bank

Job Name: BREC-Great	Location: Sebtee Ky
Sample Identification: River Goeq 12	
SAMPLE DATA	Date Lime: 7/13/18 09/5 Measured By: COO, DPC
Calibration of pl I meter in Field	7pH10pHnor done
Field pH (units) 7.37	
Field Conductivity (µmhos/cm) 226.2	
Field Comperature (°F) 84.0	
ORP (mV) -qg	
Dissolved Oxygen (mg/L)	
Furbidity (N11)	
Sample Odor Nov	
Sample Color Cloudy to 614 br	>
Sample Sediment Content low to mei	
Weather Conditions 4	
Sampling Splits or Duplicates	
Samples Shipped To TA - 1 3 11	Date Samples were shipped 7(131
Method of Shipment Fedox	Hand Delivered Other
Parameters Collected App 18 1 TV Anions	
COMMENTS LA OIM HOW	
	\$ ·:

Job Name: BREC - Graph	Location: Sebtee, Ky
Sample Identification: River Seep 13	Sampling Order.
SAMPLE DATA	Date Time: 7/13/18 063C Measured By. CUA, DC
Calibration of pH meter in Field4pH	7pH V 10pH not done
Lield pH (units)	16c 7.0
Field Conductivity (µmhos/cm)	7019
Field Temperature (°F)	\$4.0
ORP (mV)	-152
Dissolved Oxygen (m L)	_
Turbidity (NTU)	
Sample Odor	-
Sample Color	
Sample Sediment Content	<i></i>
Weather Conditions	
Sampling Splits or Duplicates	
Samples Shipped 1o	Date Samples were shipped
Method of Shipment NA	Hand Delivered Ot le
Parameters Collected	
COMMENTS Ins ACCION W to	•

Job Name.	SEL Green	Location: Sobleo, ku
Sample Identification:	River Soep 14	Sampling Order: 18
SAMPLE DATA		Date Time: 7/13/18 10/10 Measured By: COO, DRC
Calibration of pl1 meter in I	Field V 4pH ✓	7pH 10pH not done
Field pFI (units)	7.4	
Lield Conductivity		
Field Lempcrature		
ORP (mV)	-92	
Dissolved Oxygen (m. 1)		
Furbidity (NTL)	-	
Sample Odor	_	
Sample Color	close	
Sample Sediment Content	low	
Weather Condition	sun 80s	
Sampling Splits or Duplicat	tes	
Samples Shipped To	TA Nushville	Date Samples were shipped 7/13/18
Method o Shipment	edex	Hand Delivered Other
Parameters Co ected	MIL III AMIENS	- No Radino
COMMENTS		
0.5	turny pooled	on 5.4 ank led

Job Name: SIEL - Cate	Location: Sebles, Ky
Sample Identification: River Soco 15	Sampling Order: 19
SAMPLE DATA	Date Time. 7/13/14 1033
	Measured By: COD DEC
Calibration of pH meter in Field 4pH 4pH	√ 7pH 10pH not done
Field pH (units) Just OCC	cent Volum
Field Conductivity (µmhos cm)	
Field I emperature (F)	
ORP (mV)	
Dissolved Oxygen (mg/L)	
Turbidity (NTC)	
Sample Odor	
Sample Color	
Sample Sediment Content	
Weather Conditions Sn. 805	
Sampling Splits or Duplicates	
Samples Shipped To	Date Samples were shipped M
Method of Shipment	Hand Delivered Other
Parameters Collected No Sande	
COMMENTS	
	, some orange staining I no flow

Measured By: Chill DPC Calibration of pH meter in Field	ob Name:	Location: Sporce Ky
Measured By:	iample Identification: Rec Seep 16	Sampling Order: 20
Calibration of pH meter in Field 4pH 7pH 10pH not done Field pH (units) 7t 46 Field Conductivity (µmhos cm) 6 Field I emperature (1) 15 ORP (mV) 4 Dissolved Oxygen (mv1) 7 Turbidity (NTU) 5 Sample Odor 5 Sample Color 5 Sample Sediment Content 4 10 10 10 10 10 10 10 10 10 10 10 10 10	SAMPLE DATA	Date/Time: 7/13/18
Field pH (units) Field Conductivity (µmhos cm) Field I emperature (1) ORP (mV) Dissolved Oxygen (m; 1) Turbidity (NTU) Sample Odor Sample Color Sample Sediment Content Weather Conditions Sampling Splits or Duplicates Samples Shipped To Date Samples were shipped Aprill IV Anions No Beachium COMMENTS COMMENTS		Measured By: CON DPC
Field Conductivity (µmhos cm) Field I emperature (1) ORP (mV) Dissolved Oxygen (m·1) Furbidity (NTU) Sample Odor Sample Color Sample Sediment Content Weather Conditions Sampling Splits or Duplicates Samples Shipped To Date Samples were shipped Parameters Collected April 144 Anions No Realism COMMENTS COMMENTS	Calibration of pH meter in Field 4pH V	7p11not done
Field Lemperature (1) ORP (mV) Dissolved Oxygen (mv L) Furbidity (NTU) Sample Odor Sample Color Sample Sediment Content Weather Conditions Sampling Splits or Duplicates Samples Shipped To Date Samples were shipped 7 13118 Method of Shipment Parameters Collected April IV, Anions No Residues COMMENTS COMMENTS	rield pH (units) 7,46	
Dissolved Oxygen (m · 1) Furbidity (NTU) Sample Odor Sample Color Sample Sediment Content Weather Conditions Sampling Splits or Duplicates Sampling Splits or Duplicates Method of Shipment Feder Hand Delivered Other Parameters Collected April IV Anions No Readium COMMENTS	field Conductivity (µmhos cm)	
Dissolved Ovygen (m+1) Turbidity (NTU) Sample Odor Sample Color Sample Sediment Content Weather Conditions Sampling Splits or Duplicates	rield Lemperature (1) 91.58	
Turbidity (NTU) Sample Odor Sample Color Sample Sediment Content Weather Conditions Sampling Splits or Duplicates Samples Shipped To Date Samples were shipped 7 13/18 Method of Shipment Feder Hand Delivered Other Parameters Collected April IV, Anions No Redium COMMENTS description of the Collected Collec	ORP (mV) - 4	
Sample Color Sample Sediment Content Weather Conditions Sampling Splits or Duplicates Samples Shipped To Date Samples were shipped Method of Shipment Feder Hand Delivered Other Parameters Collected App T Anions Anions COMMENTS A Samples Very for Flory Collected Other Collected C	Dissolved Oxygen (m · 1)	
Sample Color Sample Sediment Content Weather Conditions Sampling Splits or Duplicates	urbidity (NTU)	
Sample Sediment Content Weather Conditions Sampling Splits or Duplicates	Sample Odor	
Weather Conditions Sampling Splits or Duplicates	Sample Color	
Sampling Splits or Duplicates	Sample Sediment Content	dern
Samples Shipped To T Date Samples were shipped 7 13/18 Method of Shipment Fedex Hand Delivered Other Parameters Collected App TI TV Anions No Redium COMMENTS d 6004 1 Very low floy 0,17 apm , colle ci	Veather Conditions	
Method of Shipment Fedex Hand Delivered Other Parameters Collected App TI , IV , Anions No Redium COMMENTS d 6004 1 , Very low floy 0,1 7 apm , colle ci	Sampling Splits or Duplicates	
Parameters Collected App TI, IV, Anions No Redison COMMENTS d 6000 1 very low floy 0,1 7 apm, colle ci	samples Shipped To	Date Samples were shipped 7 13118
comments d book , very low flow 0,1 7 gpm, colle c)	Method of Shipment Fedex	Hand Delivered Other
Id book in very low flow 0.1 Japan, collect	Parameters Collected App 10 , TV , Anion	s No Radium
Id book , very low flow 0.1 Japan, collect	COMMENTS	
	ld book very !	on flow O,1 Japan, collectel

Attachment 4

LABORATORY REPORTS

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-155625-1 Client Project/Site: Green Landfill

For:

Big Rivers Electric Corporation PO BOX 24 Henderson, Kentucky 42419

Attn: Greg Dick

Roxanne Cisneros

Authorized for release by: 8/16/2018 3:18:48 PM

Roxanne Cisneros, Senior Project Manager (615)301-5761

roxanne.cisneros@testamericainc.com

LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	22
QC Association	30
Chronicle	34
Method Summary	38
Certification Summary	39
Chain of Custody	41
Receipt Checklists	45
Tracer Carrier Summary	46

3

4

R

9

11

12

4

Sample Summary

Client: Big Rivers Electric Corporation Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-155625-1	River 01A 071218	Water	07/12/18 11:10	07/13/18 10:10
490-155625-2	River 01B 071218	Water	07/12/18 11:30	07/13/18 10:10
490-155625-3	River 02A 071218	Water	07/12/18 11:50	07/13/18 10:10
490-155625-4	River 02B 071218	Water	07/12/18 12:00	07/13/18 10:10
490-155625-5	River 03A 071218	Water	07/12/18 12:15	07/13/18 10:10
490-155625-6	River 03B 071218	Water	07/12/18 12:20	07/13/18 10:10
490-155625-7	River 04A 071218	Water	07/12/18 12:45	07/13/18 10:10
490-155625-8	River 04B 071218	Water	07/12/18 12:55	07/13/18 10:10

Case Narrative

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Job ID: 490-155625-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-155625-1

Comments

Revised Report 8/07/2018 to add Potassium and Total Alkalinity per request.

Receipt

The samples were received on 7/13/2018 10:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.5° C and 1.3° C.

HPLC/IC

Method(s) 9056A: The method blank for analytical batch 490-529755 contained Chloride above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6020A: The matrix spike / matrix spike duplicate / sample duplicate (MS/MSD/DUP) precision for 250895 was outside control limits for selenium. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Narrative

Job Narrative 490-155625-2

Comments

No additional comments.

Receipt

The samples were received on 7/13/2018 10:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.5° C and 1.3° C.

RAD

Method(s) PrecSep_0: Radium 228 Prep Batch 160-376424: Sample aliquots reduced due to potential matrix interference. Samples were yellow, murky, and contained heavy amounts of sediment: River 01A 071218 (490-155625-1), River 01B 071218 (490-155625-2), River 02A 071218 (490-155625-3), River 02B 071218 (490-155625-4), River 03A 071218 (490-155625-5), River 03B 071218 (490-155625-6), River 04A 071218 (490-155625-7) and River 04B 071218 (490-155625-8)

Method(s) PrecSep-21: Radium 226 Prep Batch 160-376411: Sample aliquots reduced due to potential matrix interference. Samples were yellow, murky, and contained heavy amounts of sediment: River 01A 071218 (490-155625-1), River 01B 071218 (490-155625-2), River 02A 071218 (490-155625-3), River 02B 071218 (490-155625-4), River 03A 071218 (490-155625-5), River 03B 071218 (490-155625-6), River 04A 071218 (490-155625-7) and River 04B 071218 (490-155625-8)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TestAmerica Nashville 8/16/2018 2

3

Λ

5

6

10

12

13

Definitions/Glossary

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals	

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F2	MS/MSD RPD exceeds control limits
Rad	
Qualifier	Qualifier Description
Ū	Result is less than the sample detection limit.

Glossary

Ciossaiy	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TestAmerica Nashville

Page 5 of 46

Client: Big Rivers Electric Corporation

Client Sample ID: River 01A 071218

Project/Site: Green Landfill

Ba Carrier

Date Collected: 07/12/18 11:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-1

Matrix: Water

Method: 9056A - Anions, Ion						_			
Analyte	4.58	Qualifier	- RL 3.00		Unit	_ D	Prepared	Analyzed 07/19/18 02:20	Dil Fa
Chloride		_	1.00	0.200 0.0100	•			07/19/18 02:20	
Fluoride	0.111	J	5.00	0.0100	ū			07/19/18 02:20	
Sulfate	28.5		5.00	0.0300	mg/L			07/19/16 02.20	
Method: 6010C - Metals (ICP) Analyte		overable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	mg/L		07/18/18 12:28	07/24/18 14:09	-
Mathadi COOOA - Matala (ICD)	MC) Total I		hla						
Method: 6020A - Metals (ICP/I Analyte	•	Recovera Qualifier	DIE RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.000591		0.00200	0.0000213			07/18/18 12:33		
Arsenic	0.00124		0.00500	0.000118	•			07/24/18 20:31	
Barium	0.0330		0.200	0.000270	•			07/24/18 20:31	
Beryllium	ND		0.00200	0.000102				07/24/18 20:31	· · · · · .
Boron	0.0281	1	1.00	0.00339	O			07/24/18 20:31	1
Cadmium	ND	•	0.00100	0.000152	J			07/24/18 20:31	
Calcium	31.8		1.00	0.0412	U			07/24/18 20:31	· · · · · .
Chromium	0.000676	1	0.00300	0.000339	-			07/24/18 20:31	
Cobalt	0.000401		0.00500	0.0000333	ū			07/24/18 20:31	
_ead	0.000401		0.00500	0.0000210				07/24/18 20:31	
	6.41	JB	1.00	0.000073	ū			07/24/18 20:31	
Magnesium Molybdenum	0.00217		0.0100	0.000873	ū			07/24/18 20:31	
-			1.00	0.136				07/24/18 20:31	· · · · · .
Potassium Selenium	2.68 ND		0.0100	0.000348	•			07/24/18 20:31	
					ū				
Sodium	3.79	<mark>.</mark>	1.00	0.251	.			07/24/18 20:31	
Thallium	0.0000500	J	0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 20:31	1
Method: EPA 7470A - Mercury									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/19/18 07:20	07/20/18 10:03	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.64		0.100	0.100	SU			07/18/18 10:03	
Temperature	19.1		0.100		Degrees C			07/18/18 10:03	
Alkalinity	85.6		10.0		mg/L			07/24/18 12:48	
Total Dissolved Solids	169		10.0		mg/L			07/13/18 21:20	,
	0550								
Method: 903.0 - Radium-226 (GFPC)	Count	Total						
		Uncert.	Uncert.						
Analyte Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fac
Radium-226 0.392		0.137	0.142	1.00 0	.119 pCi/L			08/09/18 06:09	1
Carrior 0/Viald	Oualifier	l imita					Droporod	Analyzad	Dil Ec
Carrier %Yield	Quaimer	Limits					Prepared	Analyzed	Dil Fac

07/18/18 09:53 08/09/18 06:09

40 - 110

90.9

Client: Big Rivers Electric Corporation

Client Sample ID: River 01A 071218

Project/Site: Green Landfill

Date Collected: 07/12/18 11:10

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-1

Matrix: Water

adium-228	(GFPC)								
		Count	Total						
		Officert.	Officert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.0258	U	0.229	0.229	1.00	0.411	pCi/L	07/18/18 10:47	08/01/18 16:50	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
90.9		40 - 110					07/18/18 10:47	08/01/18 16:50	1
90.1		40 - 110					07/18/18 10:47	08/01/18 16:50	1
	Result		Count Uncert.	Count Uncert. Uncert. Uncert. (2σ+/-) (2σ+/-) (Count Uncert. Uncert.	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared	Count Uncert. Uncert. Variety Variety

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.417		0.267	0.269	5.00	0.411	pCi/L		08/16/18 13:40	1

Client: Big Rivers Electric Corporation

Client Sample ID: River 01B 071218

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-2

Matrix: Water

Date Collected: 07/12/18 11:30 Date Received: 07/13/18 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	4.52	В	3.00	0.200	mg/L			07/19/18 03:15	
Fluoride	0.105	J	1.00	0.0100	mg/L			07/19/18 03:15	
Sulfate	28.3		5.00	0.0300	mg/L			07/19/18 03:15	
Method: 6010C - Metal	s (ICP) - Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	ND		0.0500	0.00959	mg/L		07/18/18 12:28	07/24/18 14:30	
Method: 6020A - Metal	s (ICP/MS) - Total F	Recoverabl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Antimony	0.000476	JB	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 20:35	
Arsenic	0.00137	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 20:35	
Barium	0.0374	J	0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 20:35	
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 20:35	
Boron	0.0252	J	1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 20:35	
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 20:35	
Calcium	33.2		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 20:35	
Chromium	0.00143	J	0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 20:35	
Cobalt	0.000623	J	0.00500	0.0000218	mg/L		07/18/18 12:33	07/24/18 20:35	
Lead	0.00600	В	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 20:35	
Magnesium	6.62		1.00	0.0152	mg/L		07/18/18 12:33	07/24/18 20:35	
Molybdenum	0.00130	J	0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 20:35	
Potassium	2.91		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 20:35	
Selenium	ND	F2	0.0100	0.000348	mg/L		07/18/18 12:33	07/24/18 20:35	
Sodium	3.95		1.00	0.251	mg/L		07/18/18 12:33	07/24/18 20:35	
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 20:35	

Method: EPA /4/UA - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/19/18 07:20	07/20/18 10:04	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.62		0.100	0.100	SU			07/18/18 10:03	1
Temperature	19.1		0.100	0.100	Degrees C			07/18/18 10:03	1
Alkalinity	85.6		10.0	5.00	mg/L			07/24/18 12:55	1
Total Dissolved Solids	161		10.0	7.00	mg/L			07/13/18 21:20	1

Method: 903.0 -	Radium-226	(GFPC)								
		` ,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.249		0.112	0.114	1.00	0.115	pCi/L	07/18/18 09:53	08/09/18 06:10	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.7		40 - 110					07/18/18 09:53	08/09/18 06:10	1

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-2

Client Sample ID: River 01B 071218 Date Collected: 07/12/18 11:30

Matrix: Water

Date Received: 07/13/18 10:10

Method: 904.0	- Radium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.00993	U	0.274	0.274	1.00	0.489	pCi/L	07/18/18 10:47	08/01/18 16:50	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.7		40 - 110					07/18/18 10:47	08/01/18 16:50	1
Y Carrier	90.1		40 - 110					07/18/18 10:47	08/01/18 16:50	1

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228										
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.249	U	0.296	0.297	5.00	0.489	pCi/L		08/16/18 13:40	1

+ 228

Client: Big Rivers Electric Corporation

Client Sample ID: River 02A 071218

Project/Site: Green Landfill

Date Collected: 07/12/18 11:50

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.75	В	3.00	0.200	mg/L			07/19/18 03:33	
Fluoride	0.0958	J	1.00	0.0100	mg/L			07/19/18 03:33	•
Sulfate	30.6		5.00	0.0300	mg/L			07/19/18 03:33	1
Method: 6010C - Met	tals (ICP) - Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	ma/L		07/18/18 12:28	07/24/18 14:35	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.00276	В	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 20:58	1
Arsenic	0.00131	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 20:58	1
Barium	0.0350	J	0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 20:58	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 20:58	1
Boron	0.0323	J	1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 20:58	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 20:58	1
Calcium	32.8		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 20:58	1
Chromium	0.00111	J	0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 20:58	1
Cobalt	0.000730	J	0.00500	0.0000218	mg/L		07/18/18 12:33	07/24/18 20:58	1
Lead	0.00125	JB	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 20:58	1
Magnesium	6.32		1.00	0.0152	mg/L		07/18/18 12:33	07/24/18 20:58	1
Molybdenum	0.00222	J	0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 20:58	1
Potassium	3.01		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 20:58	1
Selenium	0.000423	J	0.0100	0.000348	mg/L		07/18/18 12:33	07/24/18 20:58	1
Sodium	3.98		1.00	0.251	mg/L		07/18/18 12:33	07/24/18 20:58	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 20:58	1

Method: EPA 7470A - Mercury (Analyte Mercury	(CVAA) Result Qualifier ND	RL 0.200	MDL 0.0653	Unit ug/L	D	Prepared 07/19/18 07:20	Analyzed 07/20/18 10:05	Dil Fac
General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.45		0.100	0.100	SU			07/18/18 10:21	1
Temperature	19.8		0.100	0.100	Degrees C			07/18/18 10:21	1
Alkalinity	85.7		10.0	5.00	mg/L			07/24/18 13:02	1
Total Dissolved Solids	173		10.0	7.00	mg/L			07/13/18 21:20	1

Method: 903.0 -	Radium-226	(GFPC)								
		(22.2.2)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.336		0.133	0.136	1.00	0.128	pCi/L	07/18/18 09:53	08/09/18 06:10	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.3		40 - 110					07/18/18 09:53	08/09/18 06:10	1

TestAmerica Nashville

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-3

Client Sample ID: River 02A 071218 Date Collected: 07/12/18 11:50

Matrix: Water

Method: 904.0 - R	Radium-228	(GFPC)	Count	Total						
Amalusta	Danulé	O. alifian	Uncert.	Uncert.	DI.	MDO	11:4	Duamanad	A a b a d	D:: F
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.218	U	0.288	0.289	1.00	0.480	pCi/L	07/18/18 10:47	08/01/18 16:51	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.3		40 - 110					07/18/18 10:47	08/01/18 16:51	1
Y Carrier	90.1		40 - 110					07/18/18 10:47	08/01/18 16:51	1

Method: Ra226_Ra	228 - Con	ibined Rac	dium-226 a	nd Radium	1-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.554		0.317	0.319	5.00	0.480	pCi/L		08/16/18 13:40	1
226 + 228										

TestAmerica Nashville

Client: Big Rivers Electric Corporation

Client Sample ID: River 02B 071218

Project/Site: Green Landfill

Date Collected: 07/12/18 12:00

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.69	В	3.00	0.200	mg/L			07/19/18 03:51	1
Fluoride	0.0979	J	1.00	0.0100	mg/L			07/19/18 03:51	1
Sulfate	30.1		5.00	0.0300	mg/L			07/19/18 03:51	1
Method: 6010C - Metals	(ICP) - Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	mg/L		07/18/18 12:28	07/24/18 14:41	1
Method: 6020A - Metals	(ICP/MS) - Total F	Recoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.00106	JB -	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 21:03	1
Arsenic	0.00135	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 21:03	1
Barium	0.0396	J	0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 21:03	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 21:03	1
Boron	0.0322	J	1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 21:03	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 21:03	1
Calcium	35.8		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 21:03	1
Chromium	0.00155	J	0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 21:03	1
Cobalt	0.000937	J	0.00500	0.0000218	mg/L		07/18/18 12:33	07/24/18 21:03	1
Lead	0.00199	JB	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 21:03	1
Magnesium	6.76		1.00	0.0152	mg/L		07/18/18 12:33	07/24/18 21:03	1
Molybdenum	0.00145	J	0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 21:03	1
Potassium	3.65		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 21:03	1
Selenium	0.000636	J	0.0100	0.000348	mg/L		07/18/18 12:33	07/24/18 21:03	1
Sodium	4.63		1.00	0.251	mg/L		07/18/18 12:33	07/24/18 21:03	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 21:03	1
Method: EPA 7470A - Mo	ercury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ua/L		07/19/18 07:20	07/20/18 10:06	

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.50		0.100	0.100	SU			07/18/18 10:21	1
Temperature	19.5		0.100	0.100	Degrees C			07/18/18 10:21	1
Alkalinity	85.8		10.0	5.00	mg/L			07/24/18 13:09	1
Total Dissolved Solids	170		10.0	7.00	mg/L			07/13/18 21:20	1
_									

Method: 903.0 -	Radium-226	(GFPC)								
		(-)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.318		0.123	0.126	1.00	0.115	pCi/L	07/18/18 09:53	08/09/18 06:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.7		40 - 110					07/18/18 09:53	08/09/18 06:11	1

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-4

Matrix: Water

Client Sample ID: River 02B 071218 Date Collected: 07/12/18 12:00

Method: 904.0 - R	adium-228	(GFPC)								
		` ,	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.417		0.268	0.271	1.00	0.409	pCi/L	07/18/18 10:47	08/01/18 16:51	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.7		40 - 110					07/18/18 10:47	08/01/18 16:51	1
Y Carrier	90.1		40 - 110					07/18/18 10:47	08/01/18 16:51	1

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.735		0.295	0.299	5.00	0.409	pCi/L		08/16/18 13:40	1

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-5

Matrix: Water

Client Sample ID: River 03A 07121	8
Data Callagrad, 07/42/49 42:45	

Date Collected: 07/12/18 12:15 Date Received: 07/13/18 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.33	В	3.00	0.200	mg/L			07/19/18 04:09	1
Fluoride	0.100	J	1.00	0.0100	mg/L			07/19/18 04:09	1
Sulfate	28.8		5.00	0.0300	mg/L			07/19/18 04:09	1
- Method: 6010C - Met	tals (ICP) - Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	ma/l		07/19/19 12:29	07/24/18 14:56	- 1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000571	JB	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 21:21	1
Arsenic	0.00126	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 21:21	1
Barium	0.0366	J	0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 21:21	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 21:21	1
Boron	0.0251	J	1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 21:21	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 21:21	1
Calcium	34.8		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 21:21	1
Chromium	0.00112	J	0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 21:21	1
Cobalt	0.000934	J	0.00500	0.0000218	mg/L		07/18/18 12:33	07/24/18 21:21	1
Lead	0.00115	JB	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 21:21	1
Magnesium	6.87		1.00	0.0152	mg/L		07/18/18 12:33	07/24/18 21:21	1
Molybdenum	0.00105	J	0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 21:21	1
Potassium	3.06		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 21:21	1
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:33	07/24/18 21:21	1
Sodium	4.64		1.00	0.251	mg/L		07/18/18 12:33	07/24/18 21:21	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 21:21	1

Method: EPA 7470A - Mercury (CVAA)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Mercury	ND		0.200	0.0653	ug/L		07/19/18 07:20	07/20/18 10:07	1		

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.50		0.100	0.100	SU			07/18/18 10:21	1
Temperature	19.3		0.100	0.100	Degrees C			07/18/18 10:21	1
Alkalinity	86.1		10.0	5.00	mg/L			07/24/18 13:16	1
Total Dissolved Solids	175		10.0	7.00	mg/L			07/13/18 23:45	1

Method: 903.0 -	Radium-226	(GFPC)								
		(22.2.2)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.338		0.126	0.130	1.00	0.110	pCi/L	07/18/18 09:53	08/09/18 06:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	91.4		40 - 110					07/18/18 09:53	08/09/18 06:11	1

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-5

Matrix: Water

Client Sample ID: River 03A 071218 Date Collected: 07/12/18 12:15

Method: 904.0 - F	Radium-228	(GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0661	U .	0.244	0.245	1.00	0.429	pCi/L	07/18/18 10:47	08/01/18 16:51	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	91.4		40 - 110					07/18/18 10:47	08/01/18 16:51	1
Y Carrier	90.8		40 - 110					07/18/18 10:47	08/01/18 16:51	1

Method: Ra226_Ra2	228 - Con	bined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.404	U	0.275	0.277	5.00	0.429	pCi/L		08/16/18 13:40	1

Client: Big Rivers Electric Corporation

Client Sample ID: River 03B 071218

Project/Site: Green Landfill

Date Collected: 07/12/18 12:20

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.59	В	3.00	0.200	mg/L			07/19/18 04:27	1
Fluoride	0.0954	J	1.00	0.0100	mg/L			07/19/18 04:27	1
Sulfate	28.9		5.00	0.0300	mg/L			07/19/18 04:27	1

Method: 6010C - Metals (ICP) -	Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	mg/L		07/18/18 12:28	07/24/18 15:02	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000514	JB	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 21:25	1
Arsenic	0.00131	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 21:25	1
Barium	0.0362	J	0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 21:25	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 21:25	1
Boron	0.0235	J	1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 21:25	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 21:25	1
Calcium	32.6		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 21:25	1
Chromium	0.00119	J	0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 21:25	1
Cobalt	0.000800	J	0.00500	0.0000218	mg/L		07/18/18 12:33	07/24/18 21:25	1
Lead	0.00166	JB	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 21:25	1
Magnesium	6.41		1.00	0.0152	mg/L		07/18/18 12:33	07/24/18 21:25	1
Molybdenum	0.00103	J	0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 21:25	1
Potassium	2.87		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 21:25	1
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:33	07/24/18 21:25	1
Sodium	4.01		1.00	0.251	mg/L		07/18/18 12:33	07/24/18 21:25	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 21:25	1

Method: EPA 7470A - Mercury	(CVAA)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.200	0.0653 ug/L		07/19/18 07:20	07/20/18 10:08	1

General Chemistry Analyte	Result Qualit	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.51	0.100	0.100	SU			07/18/18 10:21	1
Temperature	19.4	0.100	0.100	Degrees C			07/18/18 10:21	1
Alkalinity	86.4	10.0	5.00	mg/L			07/24/18 13:29	1
Total Dissolved Solids	170	10.0	7.00	mg/L			07/13/18 23:45	1

Method: 903.0 -	Radium-226	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.391		0.146	0.150	1.00	0.123	pCi/L	07/18/18 09:53	08/09/18 06:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.9		40 - 110					07/18/18 09:53	08/09/18 06:11	

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-6

Client Sample ID: River 03B 071218 Date Collected: 07/12/18 12:20 Matrix: Water

Date Received: 07/13/18 10:10

Method: 904.0 - F	Radium-228	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.197	U	0.229	0.230	1.00	0.449	pCi/L	07/18/18 10:47	08/01/18 16:51	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.9		40 - 110					07/18/18 10:47	08/01/18 16:51	1
Y Carrier	90.8		40 - 110					07/18/18 10:47	08/01/18 16:51	1

Method: Ra226_Ra	228 - Con	nbined Ra	adium-226 a	nd Radiur	m-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.391	U	0.272	0.275	5.00	0.449	pCi/L		08/16/18 13:40	1

+ 228

Client: Big Rivers Electric Corporation

Client Sample ID: River 04A 071218

Project/Site: Green Landfill

Carrier

Ba Carrier

%Yield Qualifier

95.3

Limits

40 - 110

Date Collected: 07/12/18 12:45

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-7

Matrix: Water

Method: 9056A - Anions, Ion						_			
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fa
Chloride	4.83	_	3.00	0.200	•			07/19/18 04:45	
Fluoride	0.0948	J	1.00	0.0100	ū			07/19/18 04:45	
Sulfate	28.6		5.00	0.0300	mg/L			07/19/18 04:45	•
Method: 6010C - Metals (ICP) Analyte		overable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	mg/L		07/18/18 12:28	07/24/18 15:07	
Method: 6020A - Metals (ICP/I	MS) - Total F	Recovera	ble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.000504	JB	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 21:30	1
Arsenic	0.00118	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 21:30	1
Barium	0.0382	J	0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 21:30	
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 21:30	· · · · · · · ·
Boron	0.0229	J	1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 21:30	
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 21:30	
Calcium	32.9		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 21:30	· · · · · · .
Chromium	0.00134	J	0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 21:30	
Cobalt	0.000841	J	0.00500	0.0000218	-		07/18/18 12:33	07/24/18 21:30	
Lead	0.00141	JB	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 21:30	• • • • • • • •
Magnesium	6.45		1.00	0.0152	•		07/18/18 12:33	07/24/18 21:30	
Molybdenum	0.00101	J	0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 21:30	1
Potassium	2.85		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 21:30	,
Selenium	0.000402	J	0.0100	0.000348	ū		07/18/18 12:33	07/24/18 21:30	1
Sodium	3.87		1.00	0.251	-		07/18/18 12:33	07/24/18 21:30	
Thallium	ND		0.00100	0.0000360				07/24/18 21:30	1
Method: EPA 7470A - Mercury	(CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/19/18 07:20	07/20/18 10:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.52		0.100	0.100	SU			07/18/18 10:21	
Temperature	19.4		0.100	0.100	Degrees C			07/18/18 10:21	1
Alkalinity	80.9		10.0	5.00	mg/L			07/24/18 13:36	•
Total Dissolved Solids	174		10.0	7.00	mg/L			07/13/18 23:45	1
Method: 903.0 - Radium-226 (GFPC)								
	,	Count	Total						
		Uncert.	Uncert.						
Analyte Result	Qualifier	(2σ+/-)	(2σ+/-)	RL N	MDC Unit		Prepared	Analyzed	Dil Fac

Analyzed

Prepared

07/18/18 09:53 08/09/18 06:11

Dil Fac

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

226 + 228

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-7

Client Sample ID: River 04A 071218 Date Collected: 07/12/18 12:45

Matrix: Water

Method: 904.0 - F	Radium-228	(GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Posult	Qualifier	(2σ+/-)	(2σ+/-)	RL	мрс	Unit	Prepared	Analyzed	Dil Fac
										Dil Fac
Radium-228	0.236	U	0.276	0.277	1.00	0.456	pCi/L	07/18/18 10:47	08/01/18 16:51	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.3		40 - 110					07/18/18 10:47	08/01/18 16:51	1
Y Carrier	86.7		40 - 110					07/18/18 10:47	08/01/18 16:51	1

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radiur	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.544		0.300	0.302	5.00	0.456	pCi/L		08/16/18 13:40	1

Client: Big Rivers Electric Corporation

Client Sample ID: River 04B 071218

Project/Site: Green Landfill

Date Collected: 07/12/18 12:55

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-8

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4.75	В	3.00	0.200	mg/L			07/19/18 05:03	1
Fluoride	0.0945	J	1.00	0.0100	mg/L			07/19/18 05:03	1
Sulfate	28.6		5.00	0.0300	mg/L			07/19/18 05:03	1
Method: 6010C - Met	tals (ICP) - Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	ma/l		07/18/18 12:28	07/24/18 15:12	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000360	JB	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 21:35	1
Arsenic	0.00109	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 21:35	1
Barium	0.0402	J	0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 21:35	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 21:35	1
Boron	0.0234	J	1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 21:35	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 21:35	1
Calcium	34.5		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 21:35	1
Chromium	0.00105	J	0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 21:35	1
Cobalt	0.000738	J	0.00500	0.0000218	mg/L		07/18/18 12:33	07/24/18 21:35	1
Lead	0.00147	JB	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 21:35	1
Magnesium	6.73		1.00	0.0152	mg/L		07/18/18 12:33	07/24/18 21:35	1
Molybdenum	0.000981	J	0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 21:35	1
Potassium	2.95		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 21:35	1
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:33	07/24/18 21:35	1
Sodium	4.02		1.00	0.251	mg/L		07/18/18 12:33	07/24/18 21:35	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 21:35	1

Method: EPA 7470A - Mercury (CANALIVIE)	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/19/18 07:20	07/20/18 10:10	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.53	0.100	0.100	SU			07/18/18 10:21	1
Temperature	19.4	0.100	0.100	Degrees C			07/18/18 10:21	1
Alkalinity	85.8	10.0	5.00	mg/L			07/24/18 13:43	1
Total Dissolved Solids	156	10.0	7.00	mg/L			07/13/18 23:45	1

Method: 903.0 -	Radium-226	(GFPC)								
		(-)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.423		0.157	0.162	1.00	0.123	pCi/L	07/18/18 09:53	08/09/18 06:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.3		40 - 110					07/18/18 09:53	08/09/18 06:11	1

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-8

Client Sample ID: River 04B 071218 Date Collected: 07/12/18 12:55 Matrix: Water

Date Received: 07/13/18 10:10

Method: 904.0 - F	Radium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.277	U	0.249	0.250	1.00	0.502	pCi/L	07/18/18 10:47	08/01/18 16:51	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.3		40 - 110					07/18/18 10:47	08/01/18 16:51	1
Y Carrier	89.0		40 - 110					07/18/18 10:47	08/01/18 16:51	1

Method: Ra226 Ra	228 - Con	nbined Ra	dium-226 a	nd Radiur	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.423	U	0.294	0.298	5.00	0.502	pCi/L	_	08/16/18 13:40	1

+ 228

07/19/18 01:26

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 490-529755/3

Matrix: Water

Analyte

Chloride

Fluoride

Sulfate

Analysis Batch: 529755

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 3.00 0.200 mg/L 0.2299 J 07/19/18 01:26 ND 1.00 0.0100 mg/L 07/19/18 01:26

0.0300 mg/L

Lab Sample ID: LCS 490-529755/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

ND

Analysis Batch: 529755

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec l imits Chloride 10.0 9.340 mg/L 93 80 - 120 Fluoride 1.00 0.9436 J mg/L 94 80 - 120 Sulfate 10.0 9.177 mg/L 92 80 - 120

5.00

Lab Sample ID: LCSD 490-529755/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 529755

LCSD LCSD %Rec. **RPD** Spike Added Result Qualifier Limits **RPD** Analyte Unit D %Rec Limit Chloride 10.0 9.258 mg/L 92 80 - 120 20 Fluoride 1.00 0.9306 J mg/L 93 80 - 120 20 10.0 mg/L 80 - 120 Sulfate 9.183 92 O 20

Lab Sample ID: 490-155625-1 MS Client Sample ID: River 01A 071218 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 529755

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	4.58	В	10.0	15.84		mg/L		112	80 - 120	
Fluoride	0.111	J	1.00	1.158		mg/L		105	80 - 120	
Sulfate	28.5		10.0	39.82		ma/L		113	80 - 120	

Lab Sample ID: 490-155625-1 MSD Client Sample ID: River 01A 071218 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 529755

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	4.58	В	10.0	14.00		mg/L		94	80 - 120	12	20
Fluoride	0.111	J	1.00	0.9991	J	mg/L		89	80 - 120	15	20
Sulfate	28.5		10.0	38.02		mg/L		95	80 - 120	5	20

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 180-250893/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 251527

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Lithium $\overline{\mathsf{ND}}$ 0.0500 0.00959 mg/L 07/18/18 12:28 07/24/18 13:59

TestAmerica Nashville

Prep Batch: 250893

Page 22 of 46

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 180-250893/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 251527 **Prep Batch: 250893** Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits 1.00 80 - 120 Lithium 1.022 mg/L 102

Lab Sample ID: 490-155625-1 MS Client Sample ID: River 01A 071218 **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 251527 Prep Batch: 250893** Sample Sample Spike MS MS %Rec. Result Qualifier Added Limits Analyte Result Qualifier Unit %Rec

1.00

Lab Sample ID: 490-155625-1 MSD Client Sample ID: River 01A 071218 **Prep Type: Total Recoverable**

1.007

mg/L

101

75 - 125

Prep Batch: 250895

Matrix: Water

Lithium

Analysis Batch: 251527

 $\overline{\mathsf{ND}}$

Prep Batch: 250893 Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Lithium ND 1.00 0.9816 mg/L 98 75 - 125

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-250895/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 251631

, , , , , , , , , , , , , , , , , , , ,	MD	MD							
Analyte	MB	MB Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
							<u> </u>		Dii Fac
Antimony	0.00006100	J	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 20:21	1
Arsenic	ND		0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 20:21	1
Barium	ND		0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 20:21	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 20:21	1
Boron	ND		1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 20:21	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 20:21	1
Calcium	ND		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 20:21	1
Chromium	ND		0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 20:21	1
Cobalt	ND		0.00500	0.0000218	mg/L		07/18/18 12:33	07/24/18 20:21	1
Lead	0.0001510	J	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 20:21	1
Magnesium	ND		1.00	0.0152	mg/L		07/18/18 12:33	07/24/18 20:21	1
Molybdenum	ND		0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 20:21	1
Potassium	ND		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 20:21	1
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:33	07/24/18 20:21	1
Sodium	ND		1.00	0.251	mg/L		07/18/18 12:33	07/24/18 20:21	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 20:21	1

Lab Sample ID: LCS 180-250895/2-A

Matrix: Water

Analysis Batch: 251631					•		Prep Batch: 250895
•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.500	0.4898		mg/L		98	80 - 120
Arsenic	0.0400	0.03842		mg/L		96	80 - 120
Barium	2.00	1.925		mg/L		96	80 - 120
Beryllium	0.0500	0.04875		mg/L		98	80 - 120

TestAmerica Nashville

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Page 23 of 46

Project/Site: Green Landfill

Client: Big Rivers Electric Corporation

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 180-250895/2-A

Matrix: Water

Analysis Batch: 251631

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Batch: 250895

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit %Rec Limits Boron 1.00 0.8867 J 89 80 - 120 mg/L Cadmium 0.0500 0.05068 mg/L 101 80 - 120 Calcium 50.0 45.32 mg/L 91 80 - 120 Chromium 0.200 0.1705 mg/L 85 80 - 120 Cobalt 0.500 0.4476 mg/L 90 80 - 120 Lead 0.0200 0.02129 mg/L 106 80 - 120 50.0 46.73 mg/L 93 80 - 120 Magnesium Molybdenum mg/L 97 80 - 120 1.00 0.9723 Potassium 50.0 46.91 mg/L 94 80 - 120 Selenium 0.0100 101 80 - 120 0.01009 mg/L Sodium 45.47 mg/L 91 80 - 120 50.0 Thallium 0.0500 0.04991 mg/L 100 80 - 120

Lab Sample ID: 490-155625-2 MS

Matrix: Water

Analysis Batch: 251631

Client Sample ID: River 01B 071218

Prep Type: Total Recoverable

Prep Batch: 250895

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Unit %Rec Analyte D Antimony 0.000476 JB 0.500 0.5115 mg/L 102 75 - 125 Arsenic 0.00137 J 0.0400 0.03802 mg/L 92 75 - 125 Barium 0.0374 J 100 75 - 125 2.00 2.033 mg/L Beryllium ND 0.0500 0.05153 mg/L 103 75 - 125 Boron 0.0252 J 1.00 0.9333 J mg/L 91 75 - 125 Cadmium ND 0.0500 0.05330 mg/L 107 75 - 125 105 75 - 125 Calcium 33.2 50.0 85.40 mg/L Chromium 0.00143 0.200 0.1788 89 75 - 125 mg/L Cobalt 0.000623 J 0.500 0.4717 mg/L 94 75 - 125 Lead 0.00600 B 0.0200 0.02673 mg/L 104 75 - 125 50.0 53.36 93 75 - 125 Magnesium 6.62 mg/L Molybdenum 0.00130 1.00 1.007 mg/L 101 75 - 125 Potassium 2.91 50.0 50.11 mg/L 94 75 - 125 Selenium ND F2 0.0100 0.01048 mg/L 105 75 - 125Sodium 3.95 50.0 49.36 mg/L 91 75 - 125

0.0500

Lab Sample ID: 490-155625-2 MSD

ND

Matrix: Water

Thallium

Analysis Batch: 251631									Prep Ba	atch: 2	50895
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	0.000476	JB	0.500	0.5014		mg/L		100	75 - 125	2	20
Arsenic	0.00137	J	0.0400	0.03845		mg/L		93	75 - 125	1	20
Barium	0.0374	J	2.00	2.037		mg/L		100	75 - 125	0	20
Beryllium	ND		0.0500	0.05205		mg/L		104	75 - 125	1	20
Boron	0.0252	J	1.00	0.9436	J	mg/L		92	75 - 125	1	20
Cadmium	ND		0.0500	0.05239		mg/L		105	75 - 125	2	20
Calcium	33.2		50.0	86.42		mg/L		107	75 - 125	1	20
Chromium	0.00143	J	0.200	0.1794		mg/L		89	75 - 125	0	20
Cobalt	0.000623	J	0.500	0.4642		mg/L		93	75 - 125	2	20

0.05030

mg/L

101

75 - 125

Prep Type: Total Recoverable

Client Sample ID: River 01B 071218

TestAmerica Nashville

2

4

0

10

12

13

Client: Big Rivers Electric Corporation Project/Site: Green Landfill

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 490-155625 Matrix: Water	5-2 MSD								ID: River be: Total F		
Analysis Batch: 251631	Sample	Sample	Spike	MSD	MSD				Prep Ba		
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	0.00600	В	0.0200	0.02698		mg/L		105	75 - 125	1	20
Magnesium	6.62		50.0	54.66		mg/L		96	75 - 125	2	20
Molybdenum	0.00130	J	1.00	0.9933		mg/L		99	75 - 125	1	20
Potassium	2.91		50.0	50.03		mg/L		94	75 - 125	0	20
Selenium	ND	F2	0.0100	0.008497	J F2	mg/L		85	75 - 125	21	20
Sodium	3.95		50.0	50.61		mg/L		93	75 - 125	3	20
Thallium	ND		0.0500	0.04967		mg/L		99	75 - 125	1	20

Method: EPA 7470A - Mercury (CVAA)

Lab Sample ID: MB 180-250921 Matrix: Water Analysis Batch: 251171							•	ole ID: Method Prep Type: To Prep Batch:	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/19/18 07:20	07/20/18 09:44	1

Lab Sample ID: LCS 180-250921/2-A				Clie	nt Saı	mple ID	: Lab Cont	rol Sample
Matrix: Water							Prep Type	e: Total/NA
Analysis Batch: 251171							Prep Bat	ch: 250921
•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	2.50	2.427	-	ug/L		97	80 - 120	

Lab Sample ID: 180-79763-	CI		•	Matrix Spike						
Matrix: Water									Prep Type	e: Dissolved
Analysis Batch: 251171									Prep Ba	tch: 250921
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	ND		1.00	0.8990		ug/L		90	75 - 125	

Lab Sample ID: 180-79763-F-6-D MSD Matrix: Water Analysis Batch: 251171 Sample Sample Spike MSD MSD								Samp		latrix Spil Prep Type Prep Ba	e: Diss	olved
	7 maryolo Batom 20117	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Mercury	ND		1.00	0.9260		ug/L		93	75 - 125	3	20

Method: 9040C - pH

Lab Sample ID: LCS 490-529671/1 Matrix: Water Analysis Batch: 529671				Clie	nt Sar	nple ID	: Lab Control Sample Prep Type: Total/NA
-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
pH	7.00	6.970		SU		100	98 - 103

TestAmerica Nashville

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Client Sample ID: Lab Control Sample

Client Sample ID: River 02A 071218

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: 9040C - pH (Continued)

Lab Sample ID: 490-155638-D-10 DU **Client Sample ID: Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 529671

randigote Batom 62001 :	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
pH	5.78		 5.750		SU	_	 0.5	20
Temperature	18.9		18.50		Degrees C		2	20

Lab Sample ID: LCS 490-529685/1

Matrix: Water

Analysis Batch: 529685

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits SU pН 7.00 6.970 100 98 - 103

Lab Sample ID: 490-155625-3 DU

Matrix: Water Prep Type: Total/NA **Analysis Batch: 529685** DU DU RPD Sample Sample

Analyte Result Qualifier Result Qualifier Unit RPD Limit SU pН 7 45 7.490 0.5 20 19.8 19.80 Temperature Degrees C 20

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 490-531384/13

Matrix: Water

Analysis Batch: 531384

MR MR Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 10.0 **Alkalinity** $\overline{\mathsf{ND}}$ 5.00 mg/L 07/24/18 11:54

Lab Sample ID: LCS 490-531384/14

Matrix: Water

Analysis Batch: 531384

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 100 102.9 Alkalinity mg/L 103 90 - 110

Lab Sample ID: LCSD 490-531384/36

Matrix: Water

Analysis Batch: 531384

Spike LCSD LCSD %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Alkalinity 100 96.04 mg/L 96 90 - 110

Lab Sample ID: 490-155625-5 DU

Matrix: Water

Analysis Batch: 531384 Sample Sample DU DU **RPD** Result Qualifier RPD **Analyte** Result Qualifier Unit D Limit **Alkalinity** 86.1 86.60 mg/L

TestAmerica Nashville

8/16/2018

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: River 03A 071218

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 490-525387/1 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 525387

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Total Dissolved Solids 10.0 07/13/18 23:45 ND 7.00 mg/L

Lab Sample ID: LCS 490-525387/2 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 525387

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Total Dissolved Solids 100 107.0 mg/L 107 90 - 110

Lab Sample ID: 490-155592-A-1 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 525387

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Limit Analyte Unit Total Dissolved Solids 291.0 305.0 mg/L 20

Lab Sample ID: 490-155625-5 DU Client Sample ID: River 03A 071218 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 525387

DU DU Sample Sample RPD Result Qualifier Result Qualifier Unit **RPD** Limit Total Dissolved Solids 175 170.0 20 mg/L

Lab Sample ID: MB 490-525388/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 525388

MR MR

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Total Dissolved Solids ND 10.0 7.00 mg/L 07/13/18 21:20

Lab Sample ID: LCS 490-525388/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 525388

Spike LCS LCS %Rec. Added Result Qualifier Unit Analyte %Rec Limits **Total Dissolved Solids** 100 107.0 mg/L 107 90 - 110

Lab Sample ID: 490-155300-J-1 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 525388

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Analyte Unit Limit Total Dissolved Solids 256 255.0 mg/L 0.4 20

Lab Sample ID: 490-155625-4 DU Client Sample ID: River 02B 071218 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 525388

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier Analyte Unit D RPD Limit Total Dissolved Solids 170 167.0 mg/L

TestAmerica Nashville

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-376411/23-A

Lab Sample ID: LCS 160-376411/1-A

Matrix: Water

Matrix: Water

Analysis Batch: 381214

Analysis Batch: 381214

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 376411

	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.3070		0.119	0.122	1.00	0.128	pCi/L	07/18/18 09:53	08/09/18 08:07	1

Total

Count

MB MB

Carrier %Yield Qualifier I imits Ba Carrier 104 40 - 110

Client Sample ID: Lab Control Sample

<u>07/18/18 09:53</u> <u>08/09/18 08:07</u>

Prep Type: Total/NA

Prep Batch: 376411

Analyzed

			Total				•	
	Spike	LCS LCS	Uncert.				%Rec.	
Analyte	Added	Result Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	
Radium-226	15.1	14.12	1.45	1.00	0.135 pCi/L	93	68 - 137	

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 97.9 40 - 110

Lab Sample ID: 600-169201-B-1-A DU **Client Sample ID: Duplicate**

Matrix: Water

Analysis Batch: 381214

Prep Type: Total/NA

Prepared

Prep Batch: 376411

					Total						
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Radium-226	0.203		0.2067		0.0859	1.00	0.0785	pCi/L		0.02	1
	DU I	DU									

Carrier %Yield Qualifier

Limits Ba Carrier 100 40 - 110

Method: 904.0 - Radium-228 (GFPC)

Lab Sample ID: MB 160-376424/23-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 379713 Prep Batch: 376424

Alialysis Datell. 31	31 13							r rep Daten.	010727
_			Count	Total					
	MB	MB	Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	it Prepared	Analyzed	Dil Fac
Radium-228	0.1873	U	0.219	0.220	1.00	0.362 pCi/	/L 07/18/18 10:47	08/01/18 16:54	1

	IVID IVID			
Carrier	%Yield Quar	lifier Limits	Prepared Anal	lyzed Dil Fac
Ba Carrier	104	40 - 110	07/18/18 10:47 08/01/1	8 16:54 1
Y Carrier	89.0	40 - 110	07/18/18 10:47 08/01/1	8 16:54 1

TestAmerica Nashville

8/16/2018

Dil Fac

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-376424/1-A **Matrix: Water**

Analysis Batch: 379720

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 376424

Spike LCS LCS Uncert. %Rec. Added **Analyte** Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-228 14.9 1.48 1.00 0.437 pCi/L 90 56 - 140

13.44

DU DU

Result Qual

-0.06516 U

LCS LCS %Yield Qualifier

Carrier I imits Ba Carrier 97.9 40 - 110 Y Carrier 93.8 40 - 110

Lab Sample ID: 600-169201-B-1-B DU

Matrix: Water

Analyte

Radium-228

Analysis Batch: 379720

Client Sample ID: Duplicate Prep Type: Total/NA

Prep Batch: 376424

Total

Uncert. $(2\sigma + / -)$

0.160

Total

RL **MDC** Unit

0.300 pCi/L

1.00

RER RER Limit

0.06

-0.0457 U DU DU

Sample Sample

Result Qual

Carrier %Yield Qualifier Limits 100

Ba Carrier 40 - 110 Y Carrier 92.7 40 - 110

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Lab Sample ID: 180-78050-A-1 DU

Matrix: Water

Analysis Batch: 382940

Client Sample ID: Duplicate

Prep Type: Total/NA

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL MDC Unit Limit RER 0.193 U 0.3728 U 0.293 Combined 5.00 0.454 pCi/L 0.33

Radium 226 +

228

TestAmerica Nashville

Client: Big Rivers Electric Corporation Project/Site: Green Landfill

HPLC/IC

Analysis Batch: 529755

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total/NA	Water	9056A	
490-155625-2	River 01B 071218	Total/NA	Water	9056A	
490-155625-3	River 02A 071218	Total/NA	Water	9056A	
490-155625-4	River 02B 071218	Total/NA	Water	9056A	
490-155625-5	River 03A 071218	Total/NA	Water	9056A	
490-155625-6	River 03B 071218	Total/NA	Water	9056A	
490-155625-7	River 04A 071218	Total/NA	Water	9056A	
490-155625-8	River 04B 071218	Total/NA	Water	9056A	
MB 490-529755/3	Method Blank	Total/NA	Water	9056A	
LCS 490-529755/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 490-529755/5	Lab Control Sample Dup	Total/NA	Water	9056A	
490-155625-1 MS	River 01A 071218	Total/NA	Water	9056A	
490-155625-1 MSD	River 01A 071218	Total/NA	Water	9056A	

Metals

Prep Batch: 250893

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total Recoverable	Water	3005A	
490-155625-2	River 01B 071218	Total Recoverable	Water	3005A	
490-155625-3	River 02A 071218	Total Recoverable	Water	3005A	
490-155625-4	River 02B 071218	Total Recoverable	Water	3005A	
490-155625-5	River 03A 071218	Total Recoverable	Water	3005A	
490-155625-6	River 03B 071218	Total Recoverable	Water	3005A	
490-155625-7	River 04A 071218	Total Recoverable	Water	3005A	
490-155625-8	River 04B 071218	Total Recoverable	Water	3005A	
MB 180-250893/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-250893/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
490-155625-1 MS	River 01A 071218	Total Recoverable	Water	3005A	
490-155625-1 MSD	River 01A 071218	Total Recoverable	Water	3005A	

Prep Batch: 250895

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total Recoverable	Water	3005A	
490-155625-2	River 01B 071218	Total Recoverable	Water	3005A	
490-155625-3	River 02A 071218	Total Recoverable	Water	3005A	
490-155625-4	River 02B 071218	Total Recoverable	Water	3005A	
490-155625-5	River 03A 071218	Total Recoverable	Water	3005A	
490-155625-6	River 03B 071218	Total Recoverable	Water	3005A	
490-155625-7	River 04A 071218	Total Recoverable	Water	3005A	
490-155625-8	River 04B 071218	Total Recoverable	Water	3005A	
MB 180-250895/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-250895/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
490-155625-2 MS	River 01B 071218	Total Recoverable	Water	3005A	
490-155625-2 MSD	River 01B 071218	Total Recoverable	Water	3005A	

Prep Batch: 250921

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total/NA	Water	7470A	
490-155625-2	River 01B 071218	Total/NA	Water	7470A	

TestAmerica Nashville

Page 30 of 46 8/16/2018

Client: Big Rivers Electric Corporation Project/Site: Green Landfill

Metals (Continued)

Prep Batch: 250921 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-3	River 02A 071218	Total/NA	Water	7470A	<u> </u>
490-155625-4	River 02B 071218	Total/NA	Water	7470A	
490-155625-5	River 03A 071218	Total/NA	Water	7470A	
490-155625-6	River 03B 071218	Total/NA	Water	7470A	
490-155625-7	River 04A 071218	Total/NA	Water	7470A	
490-155625-8	River 04B 071218	Total/NA	Water	7470A	
MB 180-250921/1-A	Method Blank	Total/NA	Water	7470A	
LCS 180-250921/2-A	Lab Control Sample	Total/NA	Water	7470A	
180-79763-F-6-C MS	Matrix Spike	Dissolved	Water	7470A	
180-79763-F-6-D MSD	Matrix Spike Duplicate	Dissolved	Water	7470A	

Analysis Batch: 251171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total/NA	Water	EPA 7470A	250921
490-155625-2	River 01B 071218	Total/NA	Water	EPA 7470A	250921
490-155625-3	River 02A 071218	Total/NA	Water	EPA 7470A	250921
490-155625-4	River 02B 071218	Total/NA	Water	EPA 7470A	250921
490-155625-5	River 03A 071218	Total/NA	Water	EPA 7470A	250921
490-155625-6	River 03B 071218	Total/NA	Water	EPA 7470A	250921
490-155625-7	River 04A 071218	Total/NA	Water	EPA 7470A	250921
490-155625-8	River 04B 071218	Total/NA	Water	EPA 7470A	250921
MB 180-250921/1-A	Method Blank	Total/NA	Water	EPA 7470A	250921
LCS 180-250921/2-A	Lab Control Sample	Total/NA	Water	EPA 7470A	250921
180-79763-F-6-C MS	Matrix Spike	Dissolved	Water	EPA 7470A	250921
180-79763-F-6-D MSD	Matrix Spike Duplicate	Dissolved	Water	EPA 7470A	250921

Analysis Batch: 251527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total Recoverable	Water	6010C	250893
490-155625-2	River 01B 071218	Total Recoverable	Water	6010C	250893
490-155625-3	River 02A 071218	Total Recoverable	Water	6010C	250893
490-155625-4	River 02B 071218	Total Recoverable	Water	6010C	250893
490-155625-5	River 03A 071218	Total Recoverable	Water	6010C	250893
490-155625-6	River 03B 071218	Total Recoverable	Water	6010C	250893
490-155625-7	River 04A 071218	Total Recoverable	Water	6010C	250893
490-155625-8	River 04B 071218	Total Recoverable	Water	6010C	250893
MB 180-250893/1-A	Method Blank	Total Recoverable	Water	6010C	250893
LCS 180-250893/2-A	Lab Control Sample	Total Recoverable	Water	6010C	250893
490-155625-1 MS	River 01A 071218	Total Recoverable	Water	6010C	250893
490-155625-1 MSD	River 01A 071218	Total Recoverable	Water	6010C	250893

Analysis Batch: 251631

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total Recoverable	Water	6020A	250895
490-155625-2	River 01B 071218	Total Recoverable	Water	6020A	250895
490-155625-3	River 02A 071218	Total Recoverable	Water	6020A	250895
490-155625-4	River 02B 071218	Total Recoverable	Water	6020A	250895
490-155625-5	River 03A 071218	Total Recoverable	Water	6020A	250895
490-155625-6	River 03B 071218	Total Recoverable	Water	6020A	250895
490-155625-7	River 04A 071218	Total Recoverable	Water	6020A	250895
490-155625-8	River 04B 071218	Total Recoverable	Water	6020A	250895

TestAmerica Nashville

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Metals (Continued)

Analysis Batch: 251631 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 180-250895/1-A	Method Blank	Total Recoverable	Water	6020A	250895
LCS 180-250895/2-A	Lab Control Sample	Total Recoverable	Water	6020A	250895
490-155625-2 MS	River 01B 071218	Total Recoverable	Water	6020A	250895
490-155625-2 MSD	River 01B 071218	Total Recoverable	Water	6020A	250895

General Chemistry

Analysis Batch: 525387

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-5	River 03A 071218	Total/NA	Water	SM 2540C	_
490-155625-6	River 03B 071218	Total/NA	Water	SM 2540C	
490-155625-7	River 04A 071218	Total/NA	Water	SM 2540C	
490-155625-8	River 04B 071218	Total/NA	Water	SM 2540C	
MB 490-525387/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 490-525387/2	Lab Control Sample	Total/NA	Water	SM 2540C	
490-155592-A-1 DU	Duplicate	Total/NA	Water	SM 2540C	
490-155625-5 DU	River 03A 071218	Total/NA	Water	SM 2540C	

Analysis Batch: 525388

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total/NA	Water	SM 2540C	
490-155625-2	River 01B 071218	Total/NA	Water	SM 2540C	
490-155625-3	River 02A 071218	Total/NA	Water	SM 2540C	
490-155625-4	River 02B 071218	Total/NA	Water	SM 2540C	
MB 490-525388/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 490-525388/2	Lab Control Sample	Total/NA	Water	SM 2540C	
490-155300-J-1 DU	Duplicate	Total/NA	Water	SM 2540C	
490-155625-4 DU	River 02B 071218	Total/NA	Water	SM 2540C	

Analysis Batch: 529671

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
2	190-155625-1	River 01A 071218	Total/NA	Water	9040C	
4	190-155625-2	River 01B 071218	Total/NA	Water	9040C	
l	_CS 490-529671/1	Lab Control Sample	Total/NA	Water	9040C	
4	490-155638-D-10 DU	Duplicate	Total/NA	Water	9040C	

Analysis Batch: 529685

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-3	River 02A 071218	Total/NA	Water	9040C	_
490-155625-4	River 02B 071218	Total/NA	Water	9040C	
490-155625-5	River 03A 071218	Total/NA	Water	9040C	
490-155625-6	River 03B 071218	Total/NA	Water	9040C	
490-155625-7	River 04A 071218	Total/NA	Water	9040C	
490-155625-8	River 04B 071218	Total/NA	Water	9040C	
LCS 490-529685/1	Lab Control Sample	Total/NA	Water	9040C	
490-155625-3 DU	River 02A 071218	Total/NA	Water	9040C	

Analysis Batch: 531384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total/NA	Water	SM 2320B	

TestAmerica Nashville

8/16/2018

Page 32 of 46

QC Association Summary

Client: Big Rivers Electric Corporation Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

General Chemistry (Continued)

Analysis Batch: 531384 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-2	River 01B 071218	Total/NA	Water	SM 2320B	
490-155625-3	River 02A 071218	Total/NA	Water	SM 2320B	
490-155625-4	River 02B 071218	Total/NA	Water	SM 2320B	
490-155625-5	River 03A 071218	Total/NA	Water	SM 2320B	
490-155625-6	River 03B 071218	Total/NA	Water	SM 2320B	
490-155625-7	River 04A 071218	Total/NA	Water	SM 2320B	
490-155625-8	River 04B 071218	Total/NA	Water	SM 2320B	
MB 490-531384/13	Method Blank	Total/NA	Water	SM 2320B	
LCS 490-531384/14	Lab Control Sample	Total/NA	Water	SM 2320B	
LCSD 490-531384/36	Lab Control Sample Dup	Total/NA	Water	SM 2320B	
490-155625-5 DU	River 03A 071218	Total/NA	Water	SM 2320B	

Rad

Prep Batch: 376411

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total/NA	Water	PrecSep-21	
490-155625-2	River 01B 071218	Total/NA	Water	PrecSep-21	
490-155625-3	River 02A 071218	Total/NA	Water	PrecSep-21	
490-155625-4	River 02B 071218	Total/NA	Water	PrecSep-21	
490-155625-5	River 03A 071218	Total/NA	Water	PrecSep-21	
490-155625-6	River 03B 071218	Total/NA	Water	PrecSep-21	
490-155625-7	River 04A 071218	Total/NA	Water	PrecSep-21	
490-155625-8	River 04B 071218	Total/NA	Water	PrecSep-21	
MB 160-376411/23-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-376411/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
600-169201-B-1-A DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 376424

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total/NA	Water	PrecSep_0	
490-155625-2	River 01B 071218	Total/NA	Water	PrecSep_0	
490-155625-3	River 02A 071218	Total/NA	Water	PrecSep_0	
490-155625-4	River 02B 071218	Total/NA	Water	PrecSep_0	
490-155625-5	River 03A 071218	Total/NA	Water	PrecSep_0	
490-155625-6	River 03B 071218	Total/NA	Water	PrecSep_0	
490-155625-7	River 04A 071218	Total/NA	Water	PrecSep_0	
490-155625-8	River 04B 071218	Total/NA	Water	PrecSep_0	
MB 160-376424/23-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-376424/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
600-169201-B-1-B DU	Duplicate	Total/NA	Water	PrecSep_0	

Page 33 of 46

Date Collected: 07/12/18 11:10

Date Received: 07/13/18 10:10

Client Sample ID: River 01A 071218

Lab Sample ID: 490-155625-1

381214

376424

379720

382940

1.0 g

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			529755	07/19/18 02:20	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 14:09	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 20:31	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:03	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529671	07/18/18 10:03	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 12:48	ВМС	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525388	07/13/18 21:20	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			750.47 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL

750.47 mL

1

Client Sample ID: River 01B 071218

Analysis

Analysis

Analysis

Prep

903.0

904.0

PrecSep_0

Ra226_Ra228

Date Collected: 07/12/18 11:30 Date Received: 07/13/18 10:10

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID: 490-155625-2

08/09/18 06:09 RTM

07/18/18 10:47 JLC

08/01/18 16:50 RTM

08/16/18 13:40 RTM

Matrix: Water

TAL SL

TAL SL

TAL SL

TAL SL

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			529755	07/19/18 03:15	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 14:30	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 20:35	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:04	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529671	07/18/18 10:03	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 12:55	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525388	07/13/18 21:20	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			749.80 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL
Total/NA	Analysis	903.0		1			381227	08/09/18 06:10	RTM	TAL SL
Total/NA	Prep	PrecSep_0			749.80 mL	1.0 g	376424	07/18/18 10:47	JLC	TAL SL
Total/NA	Analysis	904.0		1			379720	08/01/18 16:50	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			382940	08/16/18 13:40	RTM	TAL SL

Lab Sample ID: 490-155625-3

Lab Sample ID: 490-155625-4

Matrix: Water

Client Sample ID: River 02A 071218

Date Collected: 07/12/18 11:50 Date Received: 07/13/18 10:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			529755	07/19/18 03:33	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 14:35	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 20:58	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:05	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529685	07/18/18 10:21	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 13:02	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525388	07/13/18 21:20	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			750.09 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL
Total/NA	Analysis	903.0		1			381227	08/09/18 06:10	RTM	TAL SL
Total/NA	Prep	PrecSep_0			750.09 mL	1.0 g	376424	07/18/18 10:47	JLC	TAL SL
Total/NA	Analysis	904.0		1			379720	08/01/18 16:51	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			382940	08/16/18 13:40	RTM	TAL SL

Client Sample ID: River 02B 071218

Date Collected: 07/12/18 12:00

Date Received: 07/13/18 10:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			529755	07/19/18 03:51	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 14:41	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 21:03	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:06	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529685	07/18/18 10:21	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 13:09	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525388	07/13/18 21:20	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			750.19 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL
Total/NA	Analysis	903.0		1			381227	08/09/18 06:11	RTM	TAL SL
Total/NA	Prep	PrecSep_0			750.19 mL	1.0 g	376424	07/18/18 10:47	JLC	TAL SL
Total/NA	Analysis	904.0		1			379720	08/01/18 16:51	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			382940	08/16/18 13:40	RTM	TAL SL

Matrix: Water

Date Collected: 07/12/18 12:15

Date Received: 07/13/18 10:10

Client Sample ID: River 03A 071218

Lab Sample ID: 490-155625-5

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1		-	529755	07/19/18 04:09	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 14:56	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 21:21	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:07	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529685	07/18/18 10:21	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 13:16	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525387	07/13/18 23:45	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			750.13 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL
Total/NA	Analysis	903.0		1			381227	08/09/18 06:11	RTM	TAL SL
Total/NA	Prep	PrecSep_0			750.13 mL	1.0 g	376424	07/18/18 10:47	JLC	TAL SL
Total/NA	Analysis	904.0		1			379720	08/01/18 16:51	RTM	TAL SL

382940

08/16/18 13:40 RTM

Lab Sample ID: 490-155625-6

Client Sample ID: River 03B 071218

Analysis

Ra226_Ra228

Date Collected: 07/12/18 12:20

Date Received: 07/13/18 10:10

Total/NA

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			529755	07/19/18 04:27	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 15:02	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 21:25	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:08	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529685	07/18/18 10:21	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 13:29	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525387	07/13/18 23:45	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			749.72 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL
Total/NA	Analysis	903.0		1			381227	08/09/18 06:11	RTM	TAL SL
Total/NA	Prep	PrecSep_0			749.72 mL	1.0 g	376424	07/18/18 10:47	JLC	TAL SL
Total/NA	Analysis	904.0		1			379720	08/01/18 16:51	RTM	TAL SL
Total/NA	Analysis	Ra226 Ra228		1			382940	08/16/18 13:40	RTM	TAL SL

TAL SL

Matrix: Water

Client Sample ID: River 04A 071218

Date Collected: 07/12/18 12:45 Date Received: 07/13/18 10:10

Lab Sample ID: 490-155625-7

Lab Sample ID: 490-155625-8

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A	_	1			529755	07/19/18 04:45	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 15:07	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 21:30	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:09	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529685	07/18/18 10:21	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 13:36	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525387	07/13/18 23:45	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			749.76 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL
Total/NA	Analysis	903.0		1			381227	08/09/18 06:11	RTM	TAL SL
Total/NA	Prep	PrecSep_0			749.76 mL	1.0 g	376424	07/18/18 10:47	JLC	TAL SL
Total/NA	Analysis	904.0		1			379720	08/01/18 16:51	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			382940	08/16/18 13:40	RTM	TAL SL

Client Sample ID: River 04B 071218

Date Collected: 07/12/18 12:55

Date Received: 07/13/18 10:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A	_	1			529755	07/19/18 05:03	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 15:12	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 21:35	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:10	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529685	07/18/18 10:21	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 13:43	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525387	07/13/18 23:45	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			750.03 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL
Total/NA	Analysis	903.0		1			381227	08/09/18 06:11	RTM	TAL SL
Total/NA	Prep	PrecSep_0			750.03 mL	1.0 g	376424	07/18/18 10:47	JLC	TAL SL
Total/NA	Analysis	904.0		1			379720	08/01/18 16:51	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			382940	08/16/18 13:40	RTM	TAL SL

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Matrix: Water

TestAmerica Nashville

Method Summary

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	TAL NSH
6010C	Metals (ICP)	SW846	TAL PIT
6020A	Metals (ICP/MS)	SW846	TAL PIT
EPA 7470A	Mercury (CVAA)	SW846	TAL PIT
9040C	рН	SW846	TAL NSH
SM 2320B	Alkalinity	SM	TAL NSH
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL NSH
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT
7470A	Preparation, Mercury	SW846	TAL PIT

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

-

3

4

5

10

11

12

13

| | 4

Accreditation/Certification Summary

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date
Kentucky (UST)	State Pro	gram	4	19	06-30-19
The following analytes	s are included in this repo	ort, but accreditation/	certification is not off	ered by the governing author	ority:
Analysis Method	Prep Method	Matrix	Analyt	е	
9040C		Water	pH		
9040C		Water	Tempe	erature	
9056A		Water	Chloric	de	
9056A		Water	Fluorio	le	
9056A		Water	Sulfate	•	
SM 2320B		Water	Alkalin	ity	
SM 2540C		Water	Total [Dissolved Solids	

Laboratory: TestAmerica Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State Program	6	88-0690	06-27-19
California	State Program	9	2891	04-30-19
Connecticut	State Program	1	PH-0688	09-30-18
Florida	NELAP	4	E871008	06-30-19
Illinois	NELAP	5	200005	06-30-19
Kansas	NELAP	7	E-10350	01-31-19
Louisiana	NELAP	6	04041	06-30-19
Nevada	State Program	9	PA00164	07-31-19
New Hampshire	NELAP	1	2030	04-04-19
New Jersey	NELAP	2	PA005	06-30-19
New York	NELAP	2	11182	03-31-19
North Carolina (WW/SW)	State Program	4	434	12-31-18
Oregon	NELAP	10	PA-2151	01-28-19
Pennsylvania	NELAP	3	02-00416	04-30-19
South Carolina	State Program	4	89014	04-30-18 *
Texas	NELAP	6	T104704528-15-2	03-31-19
US Fish & Wildlife	Federal		LE94312A-1	07-31-19
USDA	Federal		P330-16-00211	06-26-19
Utah	NELAP	8	PA001462015-4	05-31-19
Virginia	NELAP	3	460189	09-14-18 *
West Virginia DEP	State Program	3	142	01-31-19
Wisconsin	State Program	5	998027800	08-31-18

Laboratory: TestAmerica St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	MO00054	06-30-19
ANAB	DoD ELAP		L2305	04-06-19
Arizona	State Program	9	AZ0813	12-08-18
California	State Program	9	2886	06-30-19
Connecticut	State Program	1	PH-0241	03-31-19
Florida	NELAP	4	E87689	06-30-19
Illinois	NELAP	5	200023	11-30-18
Iowa	State Program	7	373	12-01-18

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Nashville

8/16/2018

Page 39 of 46

Accreditation/Certification Summary

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Laboratory: TestAmerica St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Kansas	NELAP	7	E-10236	10-31-18
Kentucky (DW)	State Program	4	90125	12-31-18
Louisiana	NELAP	6	04080	06-30-19
Louisiana (DW)	NELAP	6	LA180017	12-31-18
Maryland	State Program	3	310	09-30-18 *
Michigan	State Program	5	9005	06-30-18 *
Missouri	State Program	7	780	06-30-18 *
Nevada	State Program	9	MO000542018-1	07-31-18 *
New Jersey	NELAP	2	MO002	06-30-19
New York	NELAP	2	11616	03-31-19
North Dakota	State Program	8	R207	06-30-19
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-18 *
Pennsylvania	NELAP	3	68-00540	02-28-19
South Carolina	State Program	4	85002001	06-30-18 *
Texas	NELAP	6	T104704193-18-12	07-31-19
US Fish & Wildlife	Federal		058448	07-31-19
USDA	Federal		P330-17-0028	02-02-20
Utah	NELAP	8	MO000542016-8	07-31-18 *
Virginia	NELAP	3	460230	06-14-19
Washington	State Program	10	C592	08-30-18 *
West Virginia DEP	State Program	3	381	08-31-18 *

•

4

5

9

10

13

14

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

COOLER RECEIPT FORM

Cooler Received/Opened On 7/13/2018 @ 1010	
Time Samples Removed From Cooler 1909 Time Samples Placed in Storage	(2 Hour Window)
1. Tracking # 9869 (last 4 digits, FedEx) Courier: FedEx	
IR Gun ID 17960357 pH Strip Lot A Chlorine Strip Lot A	
2. Temperature of rep. sample or temp blank when opened: #S Degrees Celsius	_
 If Item #2 temperature is θ°C or less, was the representative sample or temp blank frozen? 	YES NO.
4. Were custody seals on outside of cooler?	YES NO NA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	(YESNONA
certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES (NO) and Intact	YESNO(NA
Were these signed and dated correctly?	YESNO(NA
8. Packing mat'i used? Bubbiewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	or Other None
9. Cooling process: (ice) Ice-pack Ice (direct contact) Dry Ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YENONA
11. Were all container labels complete (#, date, signed, pres., etc)?	NONA
12. Did all container labels and tags agree with custody papers?	YES NONA
13a, Were VOA vials received?	YES. (NO.).NA
b. Was there any observable headspace present in any VOA vial?	YESNO.LNA
	V
Larger than this.	
14. Was there a Trip Blank in this cooler? YES. NO. NA If multiple coolers, sequence	e#
certify that I unloaded the cooler and answered questions 7-14 (intial)	6H
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO.
b. Did the bottle labels indicate that the correct preservatives were used	YES NONA
16. Was residual chlorine present?	YESNO (NA)
t certify that t checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	\ <u>\</u>
17. Were custody papers properly filled out (ink, signed, etc)?	YESNONA
18. Did you sign the custody papers In the appropriate place?	YEST.NONA
19. Were correct containers used for the analysis requested?	(YES)NONA
20. Was sufficient amount of sample sent in each container?	YES)NONA
I certify that I entered this project into LIMS and answered questions 17-20 (initial)	
certify that I attached a label with the unique LIMS number to each container (Intial) 5H	
21. Were there Non-Conformance issues at login? YESNO Was a NCM generated? YESNO	#

5

7

9

12

14

COOLER RECEIPT FORM

Cooler Received/Opened On 7/13/2018 @1010	
Time Samples Removed From Cooler 10 Time Samples Placed In Storage 1990	(2 Hour Window)
1. Tracking # 760 (last 4 digits, FedEx) Courier: FedEx	Λ
IR Gun ID 17960358 pH Strip Lot Chlorine Strip Lot 7	+
2. Temperature of rep. sample or temp blank when opened: Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NONA
4. Were custody seals on outside of cooler?	YESNONA
if yes, how many and where:/	Frant
5. Were the seals intact, signed, and dated correctly?	(ESNONA
6. Were custody papers inside cooler?	YES(10)NA
I certify that I opened the cooler and answered questions 1-6 (intial)	a- 0
7. Were custody seals on containers: YES NO and Intact	YESNOWA
Were these signed and dated correctly?	YESNONO
8. Packing mat'l used? Bubblewrip Plastic bag Peanuts Vermiculite Foam Insert Pape	r Other None
9. Cooling process: (Ice lice-pack lice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YES NO NA
11. Were all container labels complete (#, date, signed, pres., etc)?	VESNONA
12. Did all container labels and tags agree with custody papers?	YES NONA
13a. Were VOA vials received?	YESNO)NA
b. Was there any observable headspace present in any VOA vial?	YESNOWA
	~
Larger than this.	
14. Was there a Trio Blank in this cooler? YES NO INA if multiple coolers, sequence	. #
14. Was there a Trip Blank in this cooler? YES NO. I.NA If multiple coolers, sequence I certify that I unloaded the cooler and answered questions 7-14 (initial)	⊭ # <u></u>
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YES NO NA
b. Did the bottle labels indicate that the correct preservatives were used	(YES.)NONA
16. Was residual chlorine present?	YESNOJA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	54
17. Were custody papers properly filled out (ink, signed, etc)?	YES. NONA
18. Did you sign the custody papers in the appropriate place?	YES NONA
19. Were correct containers used for the analysis requested?	YESNONA
20. Was sufficient amount of sample sent in each container?	(YES),NONA
t certify that Lentered this project into LIMS and answered questions 17-20 (inflat)	
I certify that I attached a label with the unique LIMS number to each container (Intial)	
21. Were there Non-Conformance issues at login? YES, NO Was a NCM generated? YES, NO.,	
21. 1160 hors hors only mande at logary 120, feet was a from generated; 120, 110.	"·····

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

TestAmerica Nashville			
2960 Foster Creighton Drive	Chain of Custody Becord	בייסטפע >	
Nashville, TN 37204	Origin of Ouston	y record	
Phone (615) 726-0177 Fax (615) 726-3404	-		
	Sampler	Lab pM;	Camer Tracking No(s):
Client information	たてる シレイン	Cisneros, Roxanne	11

Clent information	Sampler: Chris	2.230	ņ	Cisner	 .08, Rox	sune sune					Carrier Tracking No(s):	;; 중		COC No: 490-86693-25173.	3.2	
	Prone:	1	-/664	E-Meil:	le cisner	et@so	etamer.	E-Mail: roxanne cisneros@testamericaino com	F	<u>a</u>	10000			Page. 1 1		Т
Company.)								30° # 30°		Т
Big Rivers Electric Corporation								Analysis Requested	s Req	Jeste(-		
Address: PO BOX 24	Due Date Requested	Traferon	-\ <u>\</u>											Preservation Codes	es:	
	TAT Requested (days)		- Jo							···-			. \$6 mig.	A - HCL B - NaOH C - Za Acesate	M - Hexane N - None O - Askado	
	1	Ì	-										Page 1	D - Nithe Agid E - NaHSO4	P - Na204\$ Q - Na2503	
)10(Tel)	Po#: Purchase Order -	- see DOCs												. F - MeCH . G - Amchlor . H - Ascorbic Acid	R - Na2S2O3 S - H2SC4 T - TSP Dodecahydrate	
	#O₩				. Jon										U - Acetone V - MGAA	
Project Name: Big Rivers Electric Corp - Henderson KY	Project #. 49002917				jo se		iae e j	ste)						N-EDA L-EDA	VV - PH - S Z - othe - secify)	
Sie: Green Landfill	S5OW#:			Ĭ	X) osi			n 00			·····	···		Other:		
		ojomoj.		Matrix (v=v-ster, S-xodd,	d Filtered orm MSA B, 90400,	A014T, B	- bə(a),))	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				<u></u>	төстий і	200ch	ۍ-	
Sample Identification	Sample Date	Time	Gegrab) Braffeson, And Preservation Code:	±	m Ž	ے eo.io				59) 76)	7/3			1 1	Special Instructions/Note:	
River #1 A CTIZIY	3-21-6	11:10	છ	Water	VM	1	1 2						ŀς	AH: 7.44	Loc: 490	Γ.
ø i B	7-12-18	11:30	ტ	Water	7. 2	,	7 /						b		15562	ŭ
Ø2 #	7-12-18	被 ltsc	ঙ	Water	<u></u>	~	, 2							S 18: 7.91		
	7-12-18	(2)00	v	Water	ر ح			궈		_			42	ی ،		
	7-12-18	12.15	৩	Water	Ĭ.	~		~					<u> </u>	0H: 7.94		1
RN5 038 671218	7-12-18	07:70	Ŀ	Water	٠ ٢	-	~						90	* *		
Q Y R	7-12-18	12:45	৬	Water	2	7	7						r.0	BH: 7.86		
Rixer #4 B 071218	7-12-18	12:55	ც	Water	Z	-	7						حي	•		
				Water	-183											T
						_			-	-		+				
									_	-		_	· · ·			T
Possible Hazard Identification	on B X Unknown		Rediological		Semi	e Disp Retum	To Cit	4 ree ma		sposal	n r sam By Lab	ples a	Te retai	Sample Disposal (A fee may be assessed it samples are retained longer than 1 month: Return To Client Disposal By Lab Archive For Won	montr: Montr:	
Deliverable Requested: I, II, III, IV, Other (specify)					Specie	ส โทธนา	ctions/	ac Requ	iremen	.:						
Empty Kit Relinquished by:		Date:			іте:					Me	Method of Shipment	ipment;				П
W Mg persentunes	Detertione 21/8	2)		FECT	~ -	Received by		Ž			<u> </u>	Date/Time:	3	8/1010	TX-NAS	
Refinquished by:	Date/Time:		<u>ŏ</u>	Company		Received by		נ			<u></u>	DateVilme	v	}_	Соптрвлу	
1	Date/Time:		ŭ	Company	R _S	Received by.	, i					Оа:е/Тіте:	`		Company	
Custody Seals Intact: Custody Seal No.: △ Yes △ No					Ç	tier Tem	perature	Cotiler Temperature(s) °C and Other Remarks.	Other Re	narks.	Ô	5	/	5.1		
						!					ĺ				Ver; 08/04/2016	ĺ

THE LEADER IN ENVIRONMENTAL TESTING

Chain of Custody Record

Login Sample Receipt Checklist

Client: Big Rivers Electric Corporation

Job Number: 490-155625-2

Login Number: 155625
List Number: 3
List Source: TestAmerica St. Louis
List Creation: 07/17/18 03:18 PM

Creator: McBride, Mike

Answer	Comment
True	
True	
N/A	
True	
N/A	Thermal preservation not required.
True	
N/A	Received project as a subcontract.
True	
N/A	
True	
True	
N/A	
	True N/A True N/A True True True True True True True True

2

4

5

7

a

10

12

13

14

Client: Big Rivers Electric Corporation Project/Site: Green Landfill

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)	
		Ba Carrier		
Lab Sample ID	Client Sample ID	(40-110)		
490-155625-1	River 01A 071218	90.9		
490-155625-2	River 01B 071218	94.7		
490-155625-3	River 02A 071218	87.3		
490-155625-4	River 02B 071218	94.7		
490-155625-5	River 03A 071218	91.4		
490-155625-6	River 03B 071218	92.9		
490-155625-7	River 04A 071218	95.3		
490-155625-8	River 04B 071218	82.3		
600-169201-B-1-A DU	Duplicate	100		
LCS 160-376411/1-A	Lab Control Sample	97.9		
MB 160-376411/23-A	Method Blank	104		
Tracer/Carrier Legend	d			

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ba Carrier	Y Carrier	
Lab Sample ID	Client Sample ID	(40-110)	(40-110)	
490-155625-1	River 01A 071218	90.9	90.1	
490-155625-2	River 01B 071218	94.7	90.1	
490-155625-3	River 02A 071218	87.3	90.1	
490-155625-4	River 02B 071218	94.7	90.1	
490-155625-5	River 03A 071218	91.4	90.8	
490-155625-6	River 03B 071218	92.9	90.8	
490-155625-7	River 04A 071218	95.3	86.7	
490-155625-8	River 04B 071218	82.3	89.0	
600-169201-B-1-B DU	Duplicate	100	92.7	
LCS 160-376424/1-A	Lab Control Sample	97.9	93.8	
MB 160-376424/23-A	Method Blank	104	89.0	

Ba Carrier = Ba Carrier

Y Carrier = Y Carrier

TestAmerica Nashville

Page 46 of 46

2

4

5

7

9

10

12

IR

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-155661-1

Client Project/Site: Sebree-Green Landfill

Revision: 3

For:

Big Rivers Electric Corporation PO BOX 24 Henderson, Kentucky 42419

Attn: Greg Dick

Roxanne Cisneros

Authorized for release by: 9/6/2018 12:40:51 PM

Roxanne Cisneros, Senior Project Manager (615)301-5761

roxanne.cisneros@testamericainc.com

LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	6
Client Sample Results	7
QC Sample Results	19
QC Association	26
Chronicle	29
Method Summary	33
Certification Summary	34
Chain of Custody	36
Receipt Checklists	43
Tracer Carrier Summary	44

3

4

6

8

9

11

12

4 /

Sample Summary

Water

Water

Water

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID

River Seep-08-071318

River Seep-12-071318

River Seep-16-071318

River Seep-14-071318

River Seep-04-071218

River Seep-07-071218

River Seep-05-071218

Lab Sample ID

490-155661-1

490-155661-2

490-155661-3

490-155661-4

490-155661-5

490-155661-6 490-155661-7

TestAmerica Job ID: 490-155661-1

07/12/18 13:50 07/14/18 10:50

07/12/18 14:50 07/14/18 10:50

07/12/18 14:25 07/14/18 10:50

Matrix	Collected	Received
Water	07/13/18 07:50	07/14/18 10:50
Water	07/13/18 09:15	07/14/18 10:50
Water	07/13/18 11:00	07/14/18 10:50
Water	07/13/18 10:10	07/14/18 10:50

Case Narrative

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Job ID: 490-155661-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-155661-1

Comments

Revised Report 9/06/2018 to correct sample ID for River Seep-04-071218 (490-155661-5).

Revised Report 8/24/2018 to includes only the data for the River Seeps per client request.

Revised Report 8/10/2018 to add Potassium per client request.

Receipt

The samples were received on 7/14/2018 10:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 1.0° C, 3.1° C and 5.7° C.

HPLC/IC

Method(s) 9056A: The method blank for analytical batch 490-531256 contained Sulfate above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

Method(s) 9056A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 490-531256 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 9056A: The method blank for analytical batch 490-531256 contained Fluoride and Sulfate above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

Method(s) 9056A: The following samples were diluted due to the nature of the sample matrix: River Seep-08-071318 (490-155661-1), River Seep-14-071318 (490-155661-4), River Seep-04-071218 (490-155661-5), River Seep-07-071218 (490-155661-6), River Seep-05-071218 (490-155661-7), Elevated reporting limits (RLs) are provided.

Method(s) 9056A: The method blank as well as the continuing calibration blanks for analytical batch 490-531368 contained sulfate above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Narrative

Job Narrative 490-155661-2

Comments

Revised Report 9/06/2018 to correct sample ID for River Seep-04-071218 (490-155661-5).

Revised Report 8/24/2018 to includes only the data for the River Seeps per client request.

Receipt

TestAmerica Nashville 9/6/2018 (Rev. 3) 2

3

4

_

8

9

1 1

12

13

Case Narrative

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Job ID: 490-155661-1 (Continued)

Laboratory: TestAmerica Nashville (Continued)

The samples were received on 7/14/2018 10:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 1.0° C, 3.1° C and 5.7° C.

RAD

Method(s) 904.0: Ra-228 Prep Batch 160-376750: The following sample did not meet the requested limit (RL) due to the reduced sample volume attributed to the presence of matrix interferences (see prep NCM 160-144167). The sample was brown, opaque and contained heavy amounts of sediment. The data have been reported with this narrative. River Seep-05-071218 (490-155661-7)

Method(s) PrecSep 0: Radium 228 Prep Batch 160-376750:

Sample aliquot 490-155661-2 reduced due to potential matrix interference. Sample was yellow, murky, and contained heavy amounts of sediment.

Sample aliquots 490-155661-5 and 490-155661-7 reduced due to potential matrix interference. Samples were brown, opaque, and contained heavy amounts of sediment.

River Seep-12-071318 (490-155661-2), River Seep-04-071218 (490-155661-5), River Seep-05-071218 (490-155661-7)

Method(s) PrecSep_0: Radium 228 Prep Batch 160-376750: Insufficient sample volume was available to perform a sample duplicate (DUP) for the following samples: River Seep-08-071318 (490-155661-1), River Seep-12-071318 (490-155661-2), River Seep-04-071218 (490-155661-5), River Seep-07-071218 (490-155661-6), and River Seep-05-071218 (490-155661-7). A laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method(s) PrecSep-21: Radium 226 Prep Batch 160-376745: Insufficient sample volume was available to perform a sample duplicate (DUP) for the following samples: River Seep-08-071318 (490-155661-1), River Seep-12-071318 (490-155661-2), River Seep-04-071218 (490-155661-5), River Seep-07-071218 (490-155661-6), and River Seep-05-071218 (490-155661-7). A laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method(s) PrecSep-21: Radium 226 Prep Batch 160-376745:

Sample aliquot 490-155661-2 reduced due to potential matrix interference. Sample was yellow, murky, and contained heavy amounts of sediment.

Sample aliquots 490-155661-5 and 490-155661-7 reduced due to potential matrix interference. Samples were brown, opaque, and contained heavy amounts of sediment.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

6

0

10

11

13

14

Definitions/Glossary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Qualifiers

HPLC/IC

Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
В	Compound was found in the blank and sample.	
F1	MS and/or MSD Recovery is outside acceptance limits.	

Metals	
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Rad	
Qualifier	Qualifier Description
G	The Sample MDC is greater than the requested RL.

Glossary

QC

RER

RPD TEF

TEQ

RL

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

Client: Big Rivers Electric Corporation

TestAmerica Job ID: 490-155661-1

Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-08-071318 Lab Sample ID: 490-155661-1

Date Collected: 07/13/18 07:50 Matrix: Water

Date Received: 07/14/18 10:50

Method: 9056A - Anic Analyte	· · · · · · · · · · · · · · · · · · ·	aphy Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2040		300	20.0	mg/L		<u> </u>	07/25/18 21:00	100
Fluoride	0.0915	J	1.00	0.0100	mg/L			07/24/18 16:22	1
Sulfate	1440	В	250	1.50	mg/L			07/25/18 20:45	50

Method: 6010C - Metals (ICP)	- Total Recoverable							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	1.80	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:24	1

Method: 6020A - Meta Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.00141	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:35	1
Arsenic	0.000404	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:35	1
Barium	0.0443	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 19:35	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:35	1
Boron	0.510	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:35	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:35	1
Calcium	801		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:35	1
Chromium	0.000560	J	0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 19:35	1
Cobalt	0.000691	J	0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 19:35	1
Lead	0.000769	J	0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 19:35	1
Magnesium	291		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 19:35	1
Molybdenum	0.00296	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 19:35	1
Potassium	125		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 19:35	1
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 19:35	1
Sodium	274		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 19:35	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 19:35	1

Method: EPA 7470A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:04	1

General Chemistry Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.16		0.100	0.100	SU			07/24/18 17:55	1
Temperature	21.8		0.100	0.100	Degrees C			07/24/18 17:55	1
Alkalinity	174		10.0	5.00	mg/L			07/24/18 20:55	1
Total Dissolved Solids	5310		40.0	28.0	mg/L			07/18/18 08:50	1

Method: 903.0 -	Radium-226	(GFPC)								
		(22.2.2)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.332		0.108	0.112	1.00	0.0893	pCi/L	07/19/18 15:20	08/10/18 16:41	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.3		40 - 110					07/19/18 15:20	08/10/18 16:41	1

TestAmerica Nashville

_

3

5

7

0

10

12

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-08-071318

Lab Sample ID: 490-155661-1 Date Collected: 07/13/18 07:50

Matrix: Water

Date Received: 07/14/18 10:50

ım-228	(GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.983		0.295	0.309	1.00	0.370	pCi/L	07/19/18 15:49	08/02/18 09:20	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
87.3		40 - 110					07/19/18 15:49	08/02/18 09:20	1
90.5		40 - 110					07/19/18 15:49	08/02/18 09:20	1
_	Result 0.983	Result Qualifier 0.983 %Yield Qualifier 87.3	Result 0.983 Qualifier Qualifier Qualifier (2σ+/-) (2σ+/-) (2σ+/-) (2π) %Yield Qualifier R7.3 40 - 110	Result 0.983 Qualifier Qualifier (2σ+/-) (2σ	Result 0.983 Qualifier Qualifier (2σ+/-) (2σ	Count Uncert. Uncert. Vincert. Vincer	Count Uncert. Uncert. Count Uncert. Cou	Result 0.983 Qualifier 0.295 Count Uncert. Uncert. Uncert. (2σ+/-) (Count Uncert. Prepared Analyzed O7/19/18 15:49 O8/02/18 09:20 WYield Qualifier Limits Uncert. Uncert. Uncert. Prepared O7/19/18 15:49 O8/02/18 09:20 WYield Qualifier Limits Uncert. U

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.31		0.314	0.329	5.00	0.370	pCi/L		08/21/18 03:20	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-12-071318

Date Collected: 07/13/18 09:15

Date Received: 07/14/18 10:50

Matrix: Water

Method: 9056A - Anions, Ion Chromatography											
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Chloride	32.7	3.00	0.200	mg/L			07/24/18 16:37	1			
Fluoride	0.0803 J	1.00	0.0100	mg/L			07/24/18 16:37	1			
Sulfate	16.1 B	5.00	0.0300	mg/L			07/24/18 16:37	1			
_ Method: 6010C - Metals (ICP) - Total Recoverable										
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			

Method: 6010C - Metals (ICP) - Total Recoverable										
	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Lithium	ND	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:29	1	

Method: 6020A - Meta Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000499	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:40	1
Arsenic	0.00467	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:40	1
Barium	0.0757	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 19:40	1
Beryllium	0.000145	J	0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:40	1
Boron	0.0379	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:40	1
Cadmium	0.000183	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:40	1
Calcium	21.1		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:40	1
Chromium	0.00200	J	0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 19:40	1
Cobalt	0.00581		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 19:40	1
Lead	0.00221	J	0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 19:40	1
Magnesium	5.20		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 19:40	1
Molybdenum	0.000948	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 19:40	1
Potassium	2.37		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 19:40	1
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 19:40	1
Sodium	5.52		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 19:40	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 19:40	1

Method: EPA 7470A - Mercury (CVAA)												
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
	Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:05	1		

General Chemistry Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.00		0.100	0.100	SU			07/24/18 17:55	1
Temperature	21.7		0.100	0.100	Degrees C			07/24/18 17:55	1
Alkalinity	38.2		10.0	5.00	mg/L			07/24/18 21:02	1
Total Dissolved Solids	157		10.0	7.00	mg/L			07/18/18 08:50	1

Method: 903.0 -	Radium-226	(GFPC)								
		(-)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.542		0.153	0.161	1.00	0.105	pCi/L	07/19/18 15:20	08/10/18 16:41	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.9		40 - 110					07/19/18 15:20	08/10/18 16:41	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-12-071318

Lab Sample ID: 490-155661-2 Date Collected: 07/13/18 09:15

Matrix: Water

Date Received: 07/14/18 10:50

adium-228	(GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.629		0.351	0.356	1.00	0.527	pCi/L	07/19/18 15:49	08/02/18 09:21	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
92.9		40 - 110					07/19/18 15:49	08/02/18 09:21	1
85.6		40 - 110					07/19/18 15:49	08/02/18 09:21	1
	Result	%Yield Qualifier	Count Uncert.	Count Uncert. Uncert.	Count Uncert. Uncert.	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared 0.629 0.351 0.356 1.00 0.527 pCi/L 07/19/18 15:49	Count Uncert. Uncert. Variety Variety

Method: Ra226_Ra	a228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.17		0.383	0.391	5.00	0.527	pCi/L		08/21/18 03:20	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 11:00

Client Sample ID: River Seep-16-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-3

3

A

Matrix: Water

6

8

11 12

14

Method: 9056A - Anions, Ion Chron	natogr	aphy							
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	23.2		3.00	0.200	mg/L			07/24/18 16:52	1
Fluoride	0.177	J	1.00	0.0100	mg/L			07/24/18 16:52	1
Sulfate	26.5	В	5.00	0.0300	mg/L			07/24/18 16:52	1
- Method: 6010C - Metals (ICP) - Tota	al Reco	overable							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:35	1
Method: 6020A - Metals (ICP/MS) -	Total F	Recoverabl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony 0.	000270	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:44	1
Arsenic	0.0247		0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:44	1
Barium	0.190	J	0.200	0.000270	•		07/18/18 12:44	07/28/18 19:44	1
Beryllium 0.	000211	J	0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:44	1
Boron	0.0321	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:44	1
Cadmium 0.	000196	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:44	1
Calcium	93.8		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:44	1
Chromium	0.00383		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 19:44	1
Cobalt	0.00613		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 19:44	1
Lead	0.00521		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 19:44	1
Magnesium	20.3		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 19:44	1
Molybdenum	0.00878	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 19:44	1
Potassium	4.85		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 19:44	1
Selenium 0.	000906	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 19:44	1
Sodium	26.7		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 19:44	1
Thallium -	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 19:44	1
Method: EPA 7470A - Mercury (CV	AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:06	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fac
рН	8.40		0.100	0.100	SU	_		07/24/18 17:55	1
Temperature	21.7		0.100	0.100	Degrees C			07/24/18 17:55	1
Alkalinity	393		10.0	5.00	mg/L			07/24/18 21:09	1
Total Dissolved Solids	504		20.0	14.0	mg/L			07/18/18 08:50	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 10:10

Client Sample ID: River Seep-14-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-4

Matrix: Water

Date Received: 07/14/18 10:50									
Method: 9056A - Anions, Ion (_	aphy Qualifier	RL	MDI	Unit	D	Prepared	Analyzad	Dil Fac
Chloride	22.7	Quaimer	3.00	0.200				Analyzed 07/24/18 17:07	1
	0.144		1.00		•			07/24/18 17:07	1
Fluoride		_	50.0	0.0100	· ·			07/25/18 21:15	10
Sulfate -	159	В	50.0	0.300	mg/L			07/25/16 21.15	10
Method: 6010C - Metals (ICP)	- Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0126	J	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:50	1
- Method: 6020A - Metals (ICP/N	MS) - Total F	Recoverabl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000312	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:49	1
Arsenic	0.0173		0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:49	1
Barium	0.242		0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 19:49	1
Beryllium	0.000497	J	0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:49	1
Boron	0.0694	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:49	1
Cadmium	0.000312	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:49	1
Calcium	171		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:49	1
Chromium	0.00969		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 19:49	1
Cobalt	0.0125		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 19:49	1
Lead	0.0109		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 19:49	1
Magnesium	36.6		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 19:49	1
Molybdenum	0.00550	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 19:49	1
Potassium	4.96		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 19:49	1
Selenium	0.000582	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 19:49	1
Sodium	18.5		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 19:49	1
Thallium	0.000126	J	0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 19:49	1
- Method: EPA 7470A - Mercury	(CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:07	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.14		0.100	0.100	SU			07/24/18 17:55	1
Temperature	21.8		0.100	0.100	Degrees C			07/24/18 17:55	1
Alkalinity	443		10.0	5.00	mg/L			07/24/18 21:17	1
Total Dissolved Solids	790		20.0	14.0	mg/L			07/18/18 08:50	1

Client Sample ID: River Seep-04-071218

Date Collected: 07/12/18 13:50 Date Received: 07/14/18 10:50 Lab Sample ID: 490-155661-5

Matrix: Water

Method: 9056A - Anions, Ior	Chromatogr	aphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	189		30.0	2.00	mg/L			07/25/18 21:59	10
Fluoride	0.239	J F1	1.00	0.0100	mg/L			07/24/18 17:51	1
Sulfate	1310	В	250	1.50	mg/L			07/25/18 22:14	50
Method: 6010C - Metals (ICP) - Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0209	J	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000200	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 20:06	1
Arsenic	0.00188	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 20:06	1
Barium	0.0384	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 20:06	1
Beryllium	0.00372		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 20:06	1
Boron	2.19		1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 20:06	1
Cadmium	0.00307		0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 20:06	1
Calcium	460		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 20:06	1
Chromium	0.00386		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 20:06	1
Cobalt	0.0447		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:06	1
Lead	0.00507		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:06	1
Magnesium	63.6		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:06	1
Molybdenum	ND		0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:06	1
Potassium	9.51		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 20:06	1
Selenium	0.00216	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 20:06	1
Sodium	42.1		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 20:06	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 20:06	1

Method: EPA 7470A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:08	1
General Chemistry									

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	5.26	0.100	0.100	SU			07/24/18 17:55	1
Temperature	21.7	0.100	0.100	Degrees C			07/24/18 17:55	1
Alkalinity	ND	10.0	5.00	mg/L			07/24/18 21:21	1
Total Dissolved Solids	2130	20.0	14.0	mg/L			07/18/18 08:50	1

Method: 903.0 -	Radium-226	(GFPC)								
		(-)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.665		0.213	0.221	1.00	0.167	pCi/L	07/19/18 15:20	08/10/18 16:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	89.4		40 - 110					07/19/18 15:20	08/10/18 16:40	1

3

4

6

R

9

10

12

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-04-071218

Date Collected: 07/12/18 13:50 Date Received: 07/14/18 10:50 Lab Sample ID: 490-155661-5

Matrix: Water

Method: 904.0 -	Radium-220	(0110)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.810		0.520	0.525	1.00	0.796	pCi/L	07/19/18 15:49	08/02/18 09:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	89.4		40 - 110					07/19/18 15:49	08/02/18 09:22	1
Y Carrier	87.1		40 - 110					07/19/18 15:49	08/02/18 09:22	1

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.48		0.562	0.570	5.00	0.796	pCi/L		08/21/18 03:20	1

1

12

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-07-071218

Date Collected: 07/12/18 14:50

Date Received: 07/14/18 10:50

Lab Sa	mple ID:	490-15	55661-6

Matrix: Water

Method: 9056A - Anions, Id	on Chromatogra	phy							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1990		300	20.0	mg/L			07/25/18 22:29	100
Fluoride	0.102 J	J	1.00	0.0100	mg/L			07/24/18 18:21	1
Sulfate	1480 E	3	500	3.00	mg/L			07/25/18 22:29	100

Method: 6010C - Metals (ICP) -	· Total Recoverable						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.772	0.0500	0.00959 mg/L		07/18/18 12:42	07/24/18 18:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 20:11	1
Arsenic	0.00182	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 20:11	1
Barium	0.0605	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 20:11	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 20:11	1
Boron	1.46		1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 20:11	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 20:11	1
Calcium	1120		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 20:11	1
Chromium	0.000340	J	0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 20:11	1
Cobalt	0.0218		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:11	1
Lead	0.000523	J	0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:11	1
Magnesium	51.8		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:11	1
Molybdenum	0.00219	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:11	1
Potassium	262		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 20:11	1
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 20:11	1
Sodium	277		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 20:11	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 20:11	1

Method: EPA 7470A - Mercury	(CVAA)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.200	0.0653 ug/L		07/18/18 15:06	07/20/18 11:09	1

General Chemistry Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.01	0.100	0.100	SU			07/24/18 17:55	1
Temperature	21.7	0.100	0.100	Degrees C			07/24/18 17:55	1
Alkalinity	87.7	10.0	5.00	mg/L			07/24/18 21:28	1
Total Dissolved Solids	6080	40.0	28.0	mg/L			07/18/18 08:50	1

Method: 903.0 -	Radium-226	(GFPC)								
		` ,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.566		0.144	0.152	1.00	0.0969	pCi/L	07/19/18 15:20	08/10/18 16:39	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	79.4		40 - 110					07/19/18 15:20	08/10/18 16:39	1

TestAmerica Nashville

2

4

5

7

10

10

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-07-071218

Lab Sample ID: 490-155661-6

Matrix: Water

Date Collected: 07/12/18 14:50 Date Received: 07/14/18 10:50

Method: 904.0 - F	Radium-228	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.831		0.318	0.327	1.00	0.434	pCi/L	07/19/18 15:49	08/02/18 09:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	79.4		40 - 110					07/19/18 15:49	08/02/18 09:22	1
Y Carrier	87.1		40 - 110					07/19/18 15:49	08/02/18 09:22	1

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.40		0.349	0.361	5.00	0.434	pCi/L		08/21/18 03:20	1

TestAmerica Nashville

3

4

6

9

40

11

2

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-05-071218

Method: 9056A - Anions, Ion Chromatography

Date Collected: 07/12/18 14:25 Date Received: 07/14/18 10:50 Lab Sample ID: 490-155661-7

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1670		300	20.0	mg/L			07/25/18 22:44	100
Fluoride	0.0795	J	1.00	0.0100	mg/L			07/24/18 18:36	1
Sulfate	1170	В	500	3.00	mg/L			07/25/18 22:44	100
Method: 6010C - Meta	ls (ICP) - Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.340		0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 18:07	1
Method: 6020A - Meta	ls (ICP/MS) - Total F	Recoverabl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000366	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 20:16	1
Arsenic	0.0192		0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 20:16	1
Barium	0.718		0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 20:16	1
Beryllium	0.000545	J	0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 20:16	1
Boron	0.853	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 20:16	1
Cadmium	0.000563	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 20:16	1
Calcium	916		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 20:16	1
Chromium	0.0124		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 20:16	1
Cobalt	0.0327		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:16	1
Lead	0.0104		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:16	1
Magnesium	77.8		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:16	1
Molybdenum	0.00442	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:16	1
Potassium	238		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 20:16	1
Selenium	0.00121	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 20:16	1
Sodium	285		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 20:16	1
Thallium	0.000164		0.00100	0.0000360			07/18/18 12:44	07/28/18 20:16	1

Method: EPA /4/UA - Mercury Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:12	1
Conoral Chamiatry									

General Chemistry Analyte	Result Qualifi	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.95	0.100	0.100	SU			07/24/18 17:55	1
Temperature	21.7	0.100	0.100	Degrees C			07/24/18 17:55	1
Alkalinity	229	10.0	5.00	mg/L			07/24/18 21:41	1
Total Dissolved Solids	5140	40.0	28.0	mg/L			07/18/18 08:50	1

Method: 903.0 -	Radium-226	(GFPC)								
		(2::-)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	3.81		0.503	0.609	1.00	0.187	pCi/L	07/19/18 15:20	08/10/18 16:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.9		40 - 110					07/19/18 15:20	08/10/18 16:40	1

3

4

6

Q

9

11

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-05-071218

Lab Sample ID: 490-155661-7 Date Collected: 07/12/18 14:25

Matrix: Water

Date Received: 07/14/18 10:50

Method: 904.0 -	Radium-228	(GFPC)								
Aughdo	Do ovilé.	Ovalitia.	Count Uncert.	Total Uncert.	DI	MDC	11-4	Dunnand	Analomad	Dil Foo
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	3.83	G	0.871	0.940	1.00	1.07	pCi/L	07/19/18 15:49	08/02/18 09:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.9		40 - 110					07/19/18 15:49	08/02/18 09:22	1
Y Carrier	83.0		40 - 110					07/19/18 15:49	08/02/18 09:22	1

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	7.64		1.01	1.12	5.00	1.07	pCi/L		08/21/18 03:20	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 490-531256/3

Matrix: Water

Analysis Batch: 531256

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 3.00 0.200 mg/L ND 07/24/18 13:54 Fluoride ND 1.00 0.0100 mg/L 07/24/18 13:54 Sulfate 0.3643 J 5.00 0.0300 mg/L 07/24/18 13:54

Lab Sample ID: LCS 490-531256/4

Matrix: Water

Analysis Batch: 531256

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client Sample ID: River Seep-04-071218

Prep Type: Total/NA

Prep Type: Total/NA

	Бріке	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.350		mg/L		93	80 - 120	
Fluoride	1.00	0.9781	J	mg/L		98	80 - 120	
Sulfate	10.0	9.696		mg/L		97	80 - 120	

Lab Sample ID: LCSD 490-531256/5

Matrix: Water

Analysis Batch: 531256

_	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.374		mg/L		94	80 - 120	0	20
Fluoride	1.00	0.9558	J	mg/L		95	80 - 120	2	20
Sulfate	10.0	9.589		mg/L		96	80 - 120	1	20

Lab Sample ID: 490-155661-5 MS

Matrix: Water

Analysis Batch: 531256

7 maryolo Batom co 1200	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoride	0.239	J F1	1.00	1.702	F1	mg/L	_	146	80 - 120	

Analysis Batch: 531368

	·
Lab Sample ID: MB 490-531368/3	Client Sample ID: Method Blank
Matrix: Water	Pren Tyne: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		3.00	0.200	mg/L			07/25/18 18:18	1
Fluoride	ND		1.00	0.0100	mg/L			07/25/18 18:18	1
Sulfate	0.3720	J	5.00	0.0300	mg/L			07/25/18 18:18	1

Lab Sample ID: MB 490-531368/30

Matrix: Water

Analysis Batch: 531368

i many one Datem of 1000									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		3.00	0.200	mg/L			07/26/18 00:57	1
Fluoride	ND		1.00	0.0100	mg/L			07/26/18 00:57	1
Sulfate	0.3740	J	5.00	0.0300	mg/L			07/26/18 00:57	1

TestAmerica Nashville

Prep Type: Total/NA

Client Sample ID: Method Blank

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 490-531368/31 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531368

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 10.0	9.348		mg/L		93	80 - 120	
Fluoride	1.00	0.9475	J	mg/L		95	80 - 120	
Sulfate	10.0	9 314		ma/l		93	80 120	

Lab Sample ID: LCS 490-531368/4 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 531368

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 10.0	9.348		mg/L		93	80 - 120	
Fluoride	1.00	0.9854	J	mg/L		98	80 - 120	
Sulfate	10.0	9.495		mg/L		95	80 - 120	

Lab Sample ID: LCSD 490-531368/32 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531368

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.368		mg/L		94	80 - 120	0	20
Fluoride	1.00	0.9513	J	mg/L		95	80 - 120	0	20
Sulfate	10.0	9.447		mg/L		94	80 - 120	1	20

Lab Sample ID: LCSD 490-531368/5 **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531368

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.296		mg/L		93	80 - 120	1	20
Fluoride	1.00	0.9931	J	mg/L		99	80 - 120	1	20
Sulfate	10.0	9.710		mg/L		97	80 - 120	2	20

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 180-250902/1-A

Matrix: Water

Analysis Batch: 251527

MR MR

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	mg/L			07/18/18 12:42	07/24/18 16:47	1

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 180-250902/2-A **Matrix: Water Prep Type: Total Recoverable Prep Batch: 250902 Analysis Batch: 251527**

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Lithium 1 00 1.028 mg/L 103 80 - 120

TestAmerica Nashville

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Batch: 250902

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 490-155660-A-5-B MS

Matrix: Water

Analysis Batch: 251527

Client Sample ID: Matrix Spike Prep Type: Total Recoverable Prep Batch: 250902 Sample Sample Spike MS MS %Rec.

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 1.00 75 - 125 Lithium 0.0132 J 1.082 mg/L 107

Lab Sample ID: 490-155660-A-5-C MSD

Matrix: Water

Analysis Batch: 251527 Prep Batch: 250902 Sample Sample Spike MSD MSD %Rec. Result Qualifier Added Analyte Result Qualifier Unit Limits RPD Limit D %Rec Lithium 0.0132 J 1.00 1.090 mg/L 108 75 - 125 20

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-250903/1-A

Matrix: Water

Analysis Batch: 252059

Client Sample ID: Method Blank **Prep Type: Total Recoverable** Prep Batch: 250903

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total Recoverable

Analysis batch: 252059								Prep batch:	250903
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 18:53	1
Arsenic	ND		0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 18:53	1
Barium	ND		0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 18:53	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 18:53	1
Boron	ND		1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 18:53	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 18:53	1
Calcium	ND		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 18:53	1
Chromium	ND		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 18:53	1
Cobalt	ND		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 18:53	1
Lead	ND		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 18:53	1
Magnesium	ND		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 18:53	1
Molybdenum	ND		0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 18:53	1
Potassium	ND		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 18:53	1
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 18:53	1
Sodium	ND		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 18:53	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 18:53	1
<u></u>									

Lab Sample ID: LCS 180-250903/2-A

Matrix: Water

Analysis Batch: 252059

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 250903

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.500	0.4729		mg/L		95	80 - 120	
Arsenic	0.0400	0.03658		mg/L		91	80 - 120	
Barium	2.00	1.840		mg/L		92	80 - 120	
Beryllium	0.0500	0.05027		mg/L		101	80 - 120	
Boron	1.00	0.8897	J	mg/L		89	80 - 120	
Cadmium	0.0500	0.05029		mg/L		101	80 - 120	
Calcium	50.0	45.70		mg/L		91	80 - 120	
Chromium	0.200	0.1649		mg/L		82	80 - 120	
Cobalt	0.500	0.4321		mg/L		86	80 - 120	
Lead	0.0200	0.01998		mg/L		100	80 - 120	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 180-250903/2-A Matrix: Water				Client Sample ID: Lab Control S Prep Type: Total Reco							
Analysis Batch: 252059	Spike	LCS	LCS				Prep Batch: 250903 %Rec.				
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits				
Magnesium	50.0	45.74		mg/L		91	80 - 120				
Molybdenum	1.00	0.9327		mg/L		93	80 - 120				
Potassium	50.0	46.09		mg/L		92	80 - 120				
Selenium	0.0100	0.009085	J	mg/L		91	80 - 120				
Sodium	50.0	44.98		mg/L		90	80 - 120				
Thallium	0.0500	0.04846		mg/L		97	80 - 120				

Lab Sample ID: 490-155660-A-6-C MS Client Sample ID: Matrix Spike **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 252059 Prep Batch: 250903** MS MS %Rec. Sample Sample Spike Result Qualifier Result Qualifier Added Limits **Analyte** Unit D %Rec Antimony ND 0.500 0.4679 mg/L 94 75 - 125 ND 0.0400 Arsenic 0.03692 mg/L 92 75 - 125 Barium ND 2.00 1.839 mg/L 92 75 - 125 75 - 125 Beryllium ND 0.0500 0.04768 95 mg/L Boron 0.00422 1.00 0.8456 J mg/L 84 75 - 125 Cadmium ND 0.0500 0.04723 mg/L 94 75 - 125 Calcium ND 50.0 45.39 mg/L 91 75 - 125 75 - 125 Chromium ND 0.200 0.1840 mg/L 92 Cobalt 0.500 75 - 125 ND 0.4386 mg/L 88 Lead 0.000399 J 0.0200 0.01986 mg/L 97 75 - 125 Magnesium 0.0156 J 50.0 46.32 mg/L 93 75 - 125 Molybdenum ND 1.00 0.9262 mg/L 93 75 - 125 Potassium 0.0680 50.0 92 75 - 125 46.15 mg/L Selenium ND 0.0100 0.01006 mg/L 101 75 - 125 Sodium ND 50.0 45.34 mg/L 91 75 - 125

0.0500

0.04726

mg/L

95

Client Sample ID: Matrix Spike Duplicate

75 - 125

Prep Type: Total Recoverable

Lab Sample ID: 490-155660-A-6-D MSD

ND

Matrix: Water

Thallium

Analysis Batch: 252059									Prep Ba	tch: 2	50903
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		0.500	0.4680		mg/L		94	75 - 125	0	20
Arsenic	ND		0.0400	0.03704		mg/L		93	75 - 125	0	20
Barium	ND		2.00	1.847		mg/L		92	75 - 125	0	20
Beryllium	ND		0.0500	0.04801		mg/L		96	75 - 125	1	20
Boron	0.00422	J	1.00	0.8557	J	mg/L		85	75 - 125	1	20
Cadmium	ND		0.0500	0.04852		mg/L		97	75 - 125	3	20
Calcium	ND		50.0	44.91		mg/L		90	75 - 125	1	20
Chromium	ND		0.200	0.1875		mg/L		94	75 - 125	2	20
Cobalt	ND		0.500	0.4400		mg/L		88	75 - 125	0	20
Lead	0.000399	J	0.0200	0.01961		mg/L		96	75 - 125	1	20
Magnesium	0.0156	J	50.0	45.89		mg/L		92	75 - 125	1	20
Molybdenum	ND		1.00	0.9301		mg/L		93	75 - 125	0	20
Potassium	0.0680	J	50.0	45.93		mg/L		92	75 - 125	0	20
Selenium	ND		0.0100	0.01030		mg/L		103	75 - 125	2	20
Sodium	ND		50.0	45.17		mg/L		90	75 - 125	0	20

TestAmerica Nashville

Page 22 of 44

9/6/2018 (Rev. 3)

Client Sample ID: Method Blank

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 490-155660	Client Sample ID: Matrix Spike Duplicate										
Matrix: Water				Р	rep Typ	oe: Total F	Recove	rable			
Analysis Batch: 252059						Prep Ba	itch: 2	50903			
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Thallium	ND		0.0500	0.04752		mg/L		95	75 - 125	1	20

Method: EPA 7470A - Mercury (CVAA)

Lab Sample ID: MB 180-250943/1-A

Matrix: Water Analysis Batch: 251171							·	Prep Type: To Prep Batch:	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 10:52	

21.7

Lab Sample ID: LCS 180-250943/2-A				Clie	nt Sar	nple ID	: Lab Control Sam	nple
Matrix: Water							Prep Type: Total	/NA
Analysis Batch: 251171							Prep Batch: 250)943
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	2.50	2.486		ug/L		99	80 - 120	

Lab Sample ID: 180-79800-	·G-1-E MS						CI	ient Sa	imple ID: Matrix Spike	
Matrix: Water									Prep Type: Total/NA	
Analysis Batch: 251171									Prep Batch: 250943	
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	ND		1.00	0.9270		ug/L		93	75 - 125	

Lab Sample ID: 180-79800-G-1-F MSD							Client Sample ID: Matrix Spike Duplicate						
Matrix: Water									Prep Ty	pe: Tot	al/NA		
Analysis Batch: 251171									Prep Ba	atch: 2!	50943		
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
Mercury	ND		1.00	0.9210		ug/L		92	75 - 125	1	20		

Method: 9040C - pH

Temperature

Lab Sample ID: LCS 490-531203/1 Matrix: Water Analysis Batch: 531203				Clie	nt Sar	mple ID	: Lab Control Sample Prep Type: Total/NA
7 manyolo Zatom co 1200	Spike	LCS	LCS				%Rec.
Analyte	Added 7.00	7.000	Qualifier	Unit SU	D	%Rec 100	Limits

Lab Sample ID: 490-155660)-D-5 DU					Cli	ent Sample ID: Du	ıpl	icate
Matrix: Water							Prep Type: T	ota	al/NA
Analysis Batch: 531203									
_	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RP	D	Limit
pH	8.11		8.110		SU			0	20

21.70

Degrees C

TestAmerica Nashville

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 9040C - pH (Continued)

Lab Sample ID: LCS 490-531204/1 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 531204

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 7.00 7.000 SU рН 100 98 - 103

Client Sample ID: Landfill Seep-01-071318-DUP Lab Sample ID: 490-155661-9 DU Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531204

Analysis Batch: 531204	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
рН	10.0		10.03		SU	_	 0	20
Temperature	21.9		21.90		Degrees C		0	20

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 490-531384/73 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 531384

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	ND		10.0	5.00	ma/L			07/24/18 20:09	

Lab Sample ID: LCS 490-531384/74 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531384

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity	 	100	95.45		mg/L		95	90 - 110	

Lab Sample ID: LCSD 490-531384/95 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531384

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Alkalinity	 100	95.67		ma/L		96	90 - 110		20

Lab Sample ID: 490-155661-6 DU Client Sample ID: River Seep-07-071218 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531384									
•	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Alkalinity	87.7		 88.85		mg/L	_		1	20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 490-529395/1 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 529395

MB MB Analyte Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed Total Dissolved Solids ND 10.0 7.00 mg/L 07/18/18 08:50

QC Sample Results

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Lab Sample ID: 490-155661-5 DU

TestAmerica Job ID: 490-155661-1

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 490-529395/2			Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 529395			
•	Spike	LCS LCS	%Rec.

Analyte Added Result Qualifier Unit D %Rec Limits 100 Total Dissolved Solids 103.0 mg/L 103 90 - 110

Client Sample ID: River Seep-04-071218 **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 529395** DU DU Sample Sample **RPD** Result Qualifier Result Qualifier RPD Analyte Unit Limit Total Dissolved Solids 2130 2194 mg/L 20

Lab Sample ID: 490-155661-13 DU Client Sample ID: Landfill Seep-04-071318 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 529395

Sample Sample DU DU **RPD** RPD Analyte Result Qualifier Result Qualifier Limit Unit **Total Dissolved Solids** 10100 10080 mg/L 20

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

HPLC/IC

Analysis Batch: 531256

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	9056A	
490-155661-2	River Seep-12-071318	Total/NA	Water	9056A	
490-155661-3	River Seep-16-071318	Total/NA	Water	9056A	
490-155661-4	River Seep-14-071318	Total/NA	Water	9056A	
490-155661-5	River Seep-04-071218	Total/NA	Water	9056A	
490-155661-6	River Seep-07-071218	Total/NA	Water	9056A	
490-155661-7	River Seep-05-071218	Total/NA	Water	9056A	

Analysis Batch: 531368

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	9056A	_
490-155661-1	River Seep-08-071318	Total/NA	Water	9056A	
490-155661-4	River Seep-14-071318	Total/NA	Water	9056A	
490-155661-5	River Seep-04-071218	Total/NA	Water	9056A	
490-155661-5	River Seep-04-071218	Total/NA	Water	9056A	
490-155661-6	River Seep-07-071218	Total/NA	Water	9056A	
490-155661-7	River Seep-05-071218	Total/NA	Water	9056A	

Metals

Prep Batch: 250902

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	3005A	_
490-155661-2	River Seep-12-071318	Total Recoverable	Water	3005A	
490-155661-3	River Seep-16-071318	Total Recoverable	Water	3005A	
490-155661-4	River Seep-14-071318	Total Recoverable	Water	3005A	
490-155661-5	River Seep-04-071218	Total Recoverable	Water	3005A	
490-155661-6	River Seep-07-071218	Total Recoverable	Water	3005A	
490-155661-7	River Seep-05-071218	Total Recoverable	Water	3005A	

Prep Batch: 250903

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	3005A	
490-155661-2	River Seep-12-071318	Total Recoverable	Water	3005A	
490-155661-3	River Seep-16-071318	Total Recoverable	Water	3005A	
490-155661-4	River Seep-14-071318	Total Recoverable	Water	3005A	
490-155661-5	River Seep-04-071218	Total Recoverable	Water	3005A	
490-155661-6	River Seep-07-071218	Total Recoverable	Water	3005A	
490-155661-7	River Seep-05-071218	Total Recoverable	Water	3005A	

Prep Batch: 250943

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	7470A	_
490-155661-2	River Seep-12-071318	Total/NA	Water	7470A	
490-155661-3	River Seep-16-071318	Total/NA	Water	7470A	
490-155661-4	River Seep-14-071318	Total/NA	Water	7470A	
490-155661-5	River Seep-04-071218	Total/NA	Water	7470A	
490-155661-6	River Seep-07-071218	Total/NA	Water	7470A	
490-155661-7	River Seep-05-071218	Total/NA	Water	7470A	

Page 26 of 44

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Metals (Continued)

Analysis Batch: 251171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	EPA 7470A	250943
490-155661-2	River Seep-12-071318	Total/NA	Water	EPA 7470A	250943
490-155661-3	River Seep-16-071318	Total/NA	Water	EPA 7470A	250943
490-155661-4	River Seep-14-071318	Total/NA	Water	EPA 7470A	250943
490-155661-5	River Seep-04-071218	Total/NA	Water	EPA 7470A	250943
490-155661-6	River Seep-07-071218	Total/NA	Water	EPA 7470A	250943
490-155661-7	River Seep-05-071218	Total/NA	Water	EPA 7470A	250943

Analysis Batch: 251527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	6010C	250902
490-155661-2	River Seep-12-071318	Total Recoverable	Water	6010C	250902
490-155661-3	River Seep-16-071318	Total Recoverable	Water	6010C	250902
490-155661-4	River Seep-14-071318	Total Recoverable	Water	6010C	250902
490-155661-5	River Seep-04-071218	Total Recoverable	Water	6010C	250902
490-155661-6	River Seep-07-071218	Total Recoverable	Water	6010C	250902
490-155661-7	River Seep-05-071218	Total Recoverable	Water	6010C	250902

Analysis Batch: 252059

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	6020A	250903
490-155661-2	River Seep-12-071318	Total Recoverable	Water	6020A	250903
490-155661-3	River Seep-16-071318	Total Recoverable	Water	6020A	250903
490-155661-4	River Seep-14-071318	Total Recoverable	Water	6020A	250903
490-155661-5	River Seep-04-071218	Total Recoverable	Water	6020A	250903
490-155661-6	River Seep-07-071218	Total Recoverable	Water	6020A	250903
490-155661-7	River Seep-05-071218	Total Recoverable	Water	6020A	250903

General Chemistry

Analysis Batch: 529395

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	SM 2540C	
490-155661-2	River Seep-12-071318	Total/NA	Water	SM 2540C	
490-155661-3	River Seep-16-071318	Total/NA	Water	SM 2540C	
490-155661-4	River Seep-14-071318	Total/NA	Water	SM 2540C	
490-155661-5	River Seep-04-071218	Total/NA	Water	SM 2540C	
490-155661-6	River Seep-07-071218	Total/NA	Water	SM 2540C	
490-155661-7	River Seep-05-071218	Total/NA	Water	SM 2540C	

Analysis Batch: 531203

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	9040C	
490-155661-2	River Seep-12-071318	Total/NA	Water	9040C	
490-155661-3	River Seep-16-071318	Total/NA	Water	9040C	
490-155661-4	River Seep-14-071318	Total/NA	Water	9040C	
490-155661-5	River Seep-04-071218	Total/NA	Water	9040C	
490-155661-6	River Seep-07-071218	Total/NA	Water	9040C	
490-155661-7	River Seep-05-071218	Total/NA	Water	9040C	

TestAmerica Nashville

Page 27 of 44

QC Association Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

3

General Chemistry (Continued)

Analysis Batch: 531384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	SM 2320B	
490-155661-2	River Seep-12-071318	Total/NA	Water	SM 2320B	
490-155661-3	River Seep-16-071318	Total/NA	Water	SM 2320B	
490-155661-4	River Seep-14-071318	Total/NA	Water	SM 2320B	
490-155661-5	River Seep-04-071218	Total/NA	Water	SM 2320B	
490-155661-6	River Seep-07-071218	Total/NA	Water	SM 2320B	
490-155661-7	River Seep-05-071218	Total/NA	Water	SM 2320B	

-

Rad

Prep Batch: 376745

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	PrecSep-21	
490-155661-2	River Seep-12-071318	Total/NA	Water	PrecSep-21	
490-155661-5	River Seep-04-071218	Total/NA	Water	PrecSep-21	
490-155661-6	River Seep-07-071218	Total/NA	Water	PrecSep-21	
490-155661-7	River Seep-05-071218	Total/NA	Water	PrecSep-21	

Prep Batch: 376750

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	PrecSep_0	
490-155661-2	River Seep-12-071318	Total/NA	Water	PrecSep_0	
490-155661-5	River Seep-04-071218	Total/NA	Water	PrecSep_0	
490-155661-6	River Seep-07-071218	Total/NA	Water	PrecSep_0	
490-155661-7	River Seep-05-071218	Total/NA	Water	PrecSep_0	

4

6

8

0

10

11

1 0

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-08-071318 Lab Sample ID: 490-155661-1

Date Collected: 07/13/18 07:50 **Matrix: Water**

Date Received: 07/14/18 10:50

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 16:22	SW1	TAL NSH
Total/NA	Analysis	9056A		50			531368	07/25/18 20:45	JHS	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/25/18 21:00	JHS	TAL NSH
Total Recoverable Total Recoverable	Prep Analysis	3005A 6010C		1	50 mL	50 mL	250902 251527	07/18/18 12:42 07/24/18 17:24		TAL PIT TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 19:35	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:04	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 20:55	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			999.94 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381568	08/10/18 16:41	RTM	TAL SL
Total/NA	Prep	PrecSep_0			999.94 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379945	08/02/18 09:20	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Lab Sample ID: 490-155661-2 Client Sample ID: River Seep-12-071318

Date Collected: 07/13/18 09:15 **Matrix: Water** Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 16:37	SW1	TAL NSF
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:29	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 19:40	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:05	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:02	ВМС	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	529395	07/18/18 08:50	ВМС	TAL NSH
Total/NA	Prep	PrecSep-21			750.37 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381568	08/10/18 16:41	RTM	TAL SL
Total/NA	Prep	PrecSep_0			750.37 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:21	CDR	TAL SL
Total/NA	Analysis	Ra226 Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Lab Sample ID: 490-155661-3

Client Sample ID: River Seep-16-071318 Date Collected: 07/13/18 11:00 **Matrix: Water** Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 16:52	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:35	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 19:44	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:06	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:09	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH

Client Sample ID: River Seep-14-071318 Lab Sample ID: 490-155661-4

Date Collected: 07/13/18 10:10

Matrix: Water

Date Received: 07/14/18 10:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 17:07	SW1	TAL NSH
Total/NA	Analysis	9056A		10			531368	07/25/18 21:15	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:50	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 19:49	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:07	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:17	вмс	TAL NSH
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH

Client Sample ID: River Seep-04-071218 Lab Sample ID: 490-155661-5 **Matrix: Water**

Date Collected: 07/12/18 13:50 Date Received: 07/14/18 10:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 17:51	SW1	TAL NSH
Total/NA	Analysis	9056A		10			531368	07/25/18 21:59	JHS	TAL NSH
Total/NA	Analysis	9056A		50			531368	07/25/18 22:14	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:56	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:06	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:08	RJR	TAL PIT

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-04-071218

Date Collected: 07/12/18 13:50 Date Received: 07/14/18 10:50

Lab Sample ID: 490-155661-5

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9040C		1		-	531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:21	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	529395	07/18/18 08:50	ВМС	TAL NSH
Total/NA	Prep	PrecSep-21			500.17 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381569	08/10/18 16:40	RTM	TAL SL
Total/NA	Prep	PrecSep_0			500.17 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:22	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Client Sample ID: River Seep-07-071218 Lab Sample ID: 490-155661-6

Matrix: Water

Date Collected: 07/12/18 14:50 Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 18:21	SW1	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/25/18 22:29	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:01	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:11	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:09	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:28	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			999.84 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381569	08/10/18 16:39	RTM	TAL SL
Total/NA	Prep	PrecSep_0			999.84 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:22	CDR	TAL SL
Total/NA	Analysis	Ra226 Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Lab Sample ID: 490-155661-7 Client Sample ID: River Seep-05-071218 Date Collected: 07/12/18 14:25

Date Received: 07/14/18 10:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 18:36	SW1	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/25/18 22:44	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:07	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:16	WTR	TAL PIT

TestAmerica Nashville

Page 31 of 44

Lab Chronicle

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/12/18 14:25

Date Received: 07/14/18 10:50

Client Sample ID: River Seep-05-071218

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-7

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A	<u> </u>		50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:12	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:41	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			499.95 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381569	08/10/18 16:40	RTM	TAL SL
Total/NA	Prep	PrecSep_0			499.95 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:22	CDR	TAL SL
Total/NA	Analysis	Ra226 Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Method Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	TAL NSH
6010C	Metals (ICP)	SW846	TAL PIT
6020A	Metals (ICP/MS)	SW846	TAL PIT
EPA 7470A	Mercury (CVAA)	SW846	TAL PIT
9040C	pH	SW846	TAL NSH
SM 2320B	Alkalinity	SM	TAL NSH
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL NSH
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT
7470A	Preparation, Mercury	SW846	TAL PIT

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

3

4

5

8

9

10

4.0

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date
Kentucky (UST)	State Program		4	19	06-30-19
The following analytes	are included in this repo	ort, but accreditation/	certification is not off	ered by the governing author	ority:
Analysis Method	Prep Method	Matrix	Analyt	te	
9040C		Water	pH		
9040C		Water	Temp	erature	
9056A		Water	Chlori	de	
9056A		Water	Fluorio	de	
9056A		Water	Sulfat	е	
SM 2320B		Water	Alkalir	nity	
SM 2540C		Water	Total I	Dissolved Solids	

Laboratory: TestAmerica Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State Program	6	88-0690	06-27-19
California	State Program	9	2891	04-30-19
Connecticut	State Program	1	PH-0688	09-30-18
Florida	NELAP	4	E871008	06-30-19
Illinois	NELAP	5	200005	06-30-19
Kansas	NELAP	7	E-10350	01-31-19
Louisiana	NELAP	6	04041	06-30-19
Nevada	State Program	9	PA00164	07-31-19
New Hampshire	NELAP	1	2030	04-04-19
New Jersey	NELAP	2	PA005	06-30-19
New York	NELAP	2	11182	03-31-19
North Carolina (WW/SW)	State Program	4	434	12-31-18
Oregon	NELAP	10	PA-2151	01-28-19
Pennsylvania	NELAP	3	02-00416	04-30-19
South Carolina	State Program	4	89014	04-30-19
Texas	NELAP	6	T104704528-15-2	03-31-19
US Fish & Wildlife	Federal		LE94312A-1	07-31-19
USDA	Federal		P330-16-00211	06-26-19
Utah	NELAP	8	PA001462015-4	05-31-19
Virginia	NELAP	3	460189	09-14-18 *
West Virginia DEP	State Program	3	142	01-31-19
Wisconsin	State Program	5	998027800	08-31-18 *

Laboratory: TestAmerica St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	MO00054	06-30-19
ANAB	DoD ELAP		L2305	04-06-19
Arizona	State Program	9	AZ0813	12-08-18
California	State Program	9	2886	06-30-19
Connecticut	State Program	1	PH-0241	03-31-19
Florida	NELAP	4	E87689	06-30-19
Illinois	NELAP	5	200023	11-30-18
Iowa	State Program	7	373	12-01-18

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Nashville

2

3

4

6

9

11

Accreditation/Certification Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Laboratory: TestAmerica St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Kansas	NELAP	7	E-10236	10-31-18
Kentucky (DW)	State Program	4	90125	12-31-18
Louisiana	NELAP	6	04080	06-30-19
Louisiana (DW)	NELAP	6	LA180017	12-31-18
Maryland	State Program	3	310	09-30-19
Michigan	State Program	5	9005	06-30-18 *
Missouri	State Program	7	780	06-30-18 *
Nevada	State Program	9	MO000542018-1	07-31-19
New Jersey	NELAP	2	MO002	06-30-19
New York	NELAP	2	11616	03-31-19
North Dakota	State Program	8	R207	06-30-19
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-19
Pennsylvania	NELAP	3	68-00540	02-28-19
South Carolina	State Program	4	85002001	06-30-19
Texas	NELAP	6	T104704193-18-12	07-31-19
US Fish & Wildlife	Federal		058448	07-31-19
USDA	Federal		P330-17-0028	02-02-20
Utah	NELAP	8	MO000542016-8	07-31-18 *
Virginia	NELAP	3	460230	06-14-19
Washington	State Program	10	C592	08-30-18 *
West Virginia DEP	State Program	3	381	10-31-18 *

4

Q

9

11

12

13

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Nashville

490-155661 Chain of Custos

COOLER RECEIPT FORM

Cooler Received On 114/2018 @ 1030	
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking # (last 4 digits, FedEx) Courier: FedEx	
IR Gun ID_ 17969357_ pH Strip Lot Chlorine Strip Lot	
2. Temperature of rep. sample or temp blank when opened: 5 1 Degrees Celsius	`
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. NA
4. Were custody seals on outside of cooler?	ES.MONA
If yes, how many and where: Front	
5. Were the seals intact, signed, and dated correctly?	(YES).NONA
6. Were custody papers inside cooler?	res. NoNA
I certify that I opened the cooler and answered questions 1-6 (Initial)	<u> </u>
7. Were custody seals on containers: YES NO and Intact	YESNO.(NA)
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam insert Pape	er Other None
9. Cooling process: Ice-pack Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YES2.NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	BESNONA
12. Did all container labels and tags agree with custody papers?	VES NONA
13a. Were VOA vials received?	YES NO NA
b. Was there any observable headspace present in any VOA vial?	YESNOKA
Larger than this.	
4	
14. Was there a Trip Blank in this cooler? YES. NO.: NA If multiple coolers, sequence	e#
Certify that unloaded the cooler and answered questions 7-14 (initial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNOCHA
b. Did the bottle labels indicate that the correct preservatives were used	WESNONA
16. Was residual chlorine present?	YESNO NA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (Intial)	4)11
17. Were custody papers properly filled out (ink, signed, etc)?	VES NONA
18. Dld you sign the custody papers in the appropriate place?	χЕ9NОNA
19. Were correct containers used for the analysis requested?	XESP.NONA
20. Was sufficient amount of sample sent in each container?	YES NO NA
certify that entered this project into LIMS and answered questions 17-20 (Intial))
Leertify that I attached a label with the unique LIMS number to each container (intial)	71
21. Were there Non-Conformance Issues at login? YES(NO) Was a NCM generated? YES	#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

Loc: 490 155661

TestAmerica
THE LEADER IN ENVIRONMENTAL YESTING

Nashville, TN

COOLER RECEIPT FORM

Cooler Received/Opened On_7/14/2018 @ 10:50	
Time Samples Removed From Cooter Time Samples Placed In Storage	(2 Hour Window)
f. Tracking #(last 4 digits, FedEx) Courier: _FedEx	
JR Gun ID_17960353pH Strip Lot // Chlorine Strip Lot //4	<u> </u>
2. Temperature of rep. sample or temp blank when opened: . Degrees Celsius	
3. If item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO (NA)
t. Were custody seals on outside of cooler?	YESNO NA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	YES.(NO).NA
certify that I opened the cooler and answered questions 1-6 (initial)	
7. Were custody seals on containers: YES NO and Intact	YESNO (NA)
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	er Other None
9. Cooling process: (ice lice-pack lice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	(YEBNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	MESNONA
12. Did all container labels and tags agree with custody papers?	WESNONA
13a. Were VOA vials received?	YES. ONONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
Larger than this.	
14. Was there a Trip Blank in this cooler? YES NONA If multiple coolers sequence	e #
t certify that I unloaded the cooler and answered guestions 7-14 (initial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNOCNA)
b. Oid the bottle labels indicate that the correct preservatives were used	YESZNONA
16. Was residual chlorine present?	YESNOMA
certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	20/
17. Were custody papers properly filled out (ink, signed, etc)?	YESNONA
18. Did you sign the custody papers in the appropriate place?	YES NONA
19. Were correct containers used for the analysis requested?	HES Z.NONA
20. Was sufficient amount of sample sent in each container?	YES >.NONA
certify that I entered this project into LIMS and answered questions 17-20 (Intial)	
certify that I attached a label with the unique LIMS number to each container (intial))21
21. Were there Non-Conformance issues at login? YES (NO Was a NCM generated? YES (NO).	#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

Loc: 490 155661

COOLER RECEIPT FORM

Cooler Received/Opened On 7/14/2018 @1050	
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking # 2 (alost 4 digits, FedEx) Courier: FedEx	
IR Gun ID 14740456 pH Strip Lot A Chilorine Strip Lot	
2. Temporature of rep. sample or temp blank when opened: 3, Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NONA
4. Were custody seals on outside of cooler?	YESNONA
If yes, how many and where:	an
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	YESNONA
I certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES NO and Intact	YESNO.NA
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Subbleweap Plastic bag Peanuts Vermiculite Foam Insert Pape	er Other None
9. Cooling process: (Ice Ice-pack Ice (direct contact) Dry ice	Other None
10. Did ail containers arrive in good condition (unbroken)?	CYES NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	RESNONA
12. Did all container labels and tags agree with custody papers?	PESNONA
13a. Were VOA vials received?	YES (NONA
b. Was there any observable headspace present in any VOA viai?	YESNONA
Larger than this.	
14. Was there a Trip Blank in this cooler? YES_NONA If multiple copiers, sequence	è#
I certify that I unloaded the cooler and answered questions 7-14 (initial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	CYESNUNA
16. Was residual chlorine present?	YESNO. THA
certify that I checked for chiorine and pH as per SOP and answered questions 15-16 (intial)	
17. Were custody papers properly filled out (lnk, signed, etc.)?	CresNONA
18. Did you sign the custody papers in the appropriate place?	WESNONA
19. Were correct containers used for the analysis requested?	(YES).NONA
20. Was sufficient amount of sample sent in each container?	(YES).NONA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	\
I certify that I attached a label with the unique LIMS number to each container (Intial)	V
21. Were there Non-Conformance issues at login? YES, NO Was a NCM generated? YES, No.).	#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204	Chain of	Chain of Custody Record	scord			O1
Phone (615) 726-0177 Fax (615) 726-3404	Cain Best	1 ah #8		To a region of the contract of	THE LEADER IN ENVIRONMENTS	Sover 1
Client Information	Chris Days	Cisne	Cisneros, Roxanne	Capital States	490-86893-25173.1	
Chent Contact. Greg Dick		E-Mail: TOXAD	E-Mais: roxanne.clsneros@testamericainc.com	C.COM Sector	 Υ	<u> </u>
Сопрану. Big Rivers Electric Corporation			Ana	Requested	_	
Address PO BOX 24	Due Date Requested: Starting				1 10	Ī
িন্দু Henderson	TAT Requested (days): The referred	T.	450		A - HC), M - Hexane B - NaCH N - None C - 20 Acetate O - Astrant	
Siake, Zip. KY, 42419					D - Nitric Acid E - NeHSO4	
Phone: 270-844-6016(Tel)	PO#. Purchase Order - see DOCs		ņės:	OF CONTRACT		
Email Gregory. Dick@bigrivers.com	.wo#:		(ON		1 - 10 Wester V - MCA-	<u> </u>
Project Name. Big River's Electric Corp - Handerson KY	Page Crees	Land \$111	es ot		X-E0TA L-60A	
sie Setroe Geer Ladfill			n (C))		····	
	Sample (C*	Sample Matrix Type (wmater, Cacoms, cases)	- poped 500		SI CCC Ap II II + AIK, plu, M	E)
Samole Identification	-	BT-THEE, 8-AT)	252 Z		Special Instructions/Note:	
R. J. Sept 08-07/214	2513	G Water	×		2 + 1. C	-
River Scept - 13 - 0713.8		Water	ス × × ム		:	1
River Soap -16-071718	2/18/16 1100	Water	×××		Z	5.
RIVE 5000-14-071318	2/13/18 1010	Water	X			
: 1	7/18/18 1350	Water	メイナメ		5.03	~
ŀ		Water	XXXX		727	
, o	7/12/13 1925	Water	х Х Х			
15000 - 01	7/113/18 1220	Water	× V V		10.64	
JENNA Seep -01 - 071318-120		Water	× × X X		49.01	
		Water	XXXX		5 10.30	
(Jun/4) 50-0-05-071314	7/13/18 1330	Water	XXXX		S 8,03	
Possible Hazard foehulfcation Skin mitant Poison B	Unknown []	Radiological	Sample Disposal (A fee	Sample Disposal (A fee may be assessed if samples are retained longer than —— Return To Cilent	e retained longer than 1 month) Archive For	· · · ·
(Apr			Special Instructions/QC Requirements:	Зедиігетеліs:	1	
Empty Kif Relinquished by:	Date:		lime:	ny Marycalot Shument		Ι.,
Felinquisted by. [MM]	JA18/10 1630	Company AECON		Mary Mary	V+15 0501 8/151	3
Relinquished by:	⊇ate/Time.	Compagny	Received by:	Date/Time		
Retinquished by	Dete,Time:	Company	Received by:	Oate/Lime	Сопрвлу	
Custody Seafs Intact: Custody Seal No.:		-	Codler Temporature(s) ^a C and Other Remarks:	and Other Remarks:	7.10 21	Ī
OK: 17 07 17 17 17 17 17 17 17 17 17 17 17 17 17					(/ / * * / * / * / * / * / * / * / * / 	7

TestAmerica Nashville					TectAmerica
2960 Foster Creighton Drive	Chain of C	Chain of Custody Record			ノンコンニアニカン
Nashwile, 1N 37204 Phone (615) 726-0177 Fax (615) 726-3404	:	_			THE LEADER IN ENVIRONMENTAL TO STA
	/-	Lab PM: Ciscoente Royanne		Camer Tracking Nots):	CDC No: 490-86693-25173-1
	Phone:	E-Mall:		77007	aBa:
Greg Dick	C12-337-1188	roxanne.clsneros@	roxanne.clsneros@testamericainc.com	5000ers	Page 1 of 2
Company: Big Rivers Electric Corporation			Analysis Requested	quested	:⊭ gor
	Due Date Requested:	23/4			Codes:
	TAT Requested (daye):				B - NaCH N - Name B - NaCH N - Name C - Zo Asstate O - Asstate
ANALYSIS AND ANALY	7 seese				
Phone: [270-844-6010(Tel)	Po#: Purchase Order - see DOCs		₽o?		C. America S-H2SO4 H - Ascordic Acid T - TSF Debecarydrate
Gregory.Dick@bigrivers.com	.# OM.	Q8Z	8°C		I - Ice 2 - Ot Water 7 - GOTA
Project Name: Big Rivers Electric Corp - Hendorson KY	Sobre Grean Landfill	le (Ye	2 (A)		
SIR. Stoe Goon Landfill	SSOVÆ.	dwes dwes	801 GE		፬ _ [
		Matrix et (www. (www.) March	- bolod_0		NUMBER CCC APPER 12+
Sample Identification	Sample (C=comp.	Orwanielen, Orwanielen, Arake H. P.	7d y		ŝ
		allon Cookin	ž		
Paro -012-671318	9 058/ 8/18/1/2	× ?≥	インメ		E 7.95
1 my 14:11 Spen - 04-0713 18	7118/18/15/6	Water 17 7	メイメ		1 to 10.71
83		- Aparter			
		Water			
		Water			
		water			Loc: 490
		Water			155661
		Water			
Possible Hazard Identification	on B		isposal (A fee may be un To Client	assessed if samples at	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Months
			structions/QC Requireme	nts.	
inguished by:	Date:	: Ime:	1 6	Medical of Shipment	
	Duty/fyne: 1630	Company Received as	Section of the sectio	Men Date/Time	1.4/14/14 1050 Detal
	Date/Time:		d by:	Chaleffine	Conspany
	Date/Time;	Company Received by:	d by:	Dete/Tine:	Сопрату
Custody Seals Infact: Custody Seal No.:		Coaler F	Cooler Femperature(s) "C and Other Remarks:	emarks: 57.	15.0.
2 150 C W					Ver. UB/04/2016

Testanological de l'Americanological de l'Am

Chain of Custody Record

TestAmerica Nashville

2960 Foster Creighton Drive Nashville, TN 37264

Phone (615) 726-0177 Fax (615) 726-3404				
	Sample:		Certer Tracking Mots):	COCNe
Client Information (Sub Contract Lab)		Cisnerós, Roxanhe		490.75463.1
Clash Contact	:\$10016:	(C. 10.00)	State of Order.	Page
Shipping/Receiving		roxanne cisneros@lestamericainc.com	Kentucky	Page 1 of 2
		Accreditations Required [See note):		John F.
TestAmerica Laboratories, Inc.		State Program - Kentucky (UST)		490-155661-1
Address:	Due Date Requested:			Preservation Codes:
301 Alpha Drive, RIDC Park,	7/26/2018	Analysis Requested		A. F.F.

Client Information (Sub Contract Lab)	Sampler	·		Cisner	Cisneros, Roxanhe	a)te		Certier Tracking Mots.	reores.	490.75463.1	
Cieni Confact Shipping/Receiving	Phone:			E-May roxann	cisnero	si@tes	c-Ma) roxanne cisneros@leslamericainc coin	State of Organ Kentucky		Page 1 of 2	
Ceneany: TestAmérica Laboratories, Inc.				S	crestlation ate Prog	s Requir	Acceptations Required (See note): State Program - Kentucky (UST)			Jahr. 490-155661-1	
Address: 301 Alpha Drive, RIDC Park,	Due Date Requested 7/26/2018	3 q:					Analysis Requested	equested		Preservation Codes:	dos: MHoveno
Ces. Patsbugh	TAT Requested (days):	(5/4			2/000					8 - NaOH C - Zn Acetate	N None O - Ashao2
Ssate, Zp PA, 15238				80,00						D. Nier Acid	P - NaZO48 O - NaZ8O3 D - NaZ8O3
Phone 412-963-7058(Tel) 412-963-2468(Fax)	# Oa		***************************************							G - Anchies H - Ascerbic Acid	S - H2SOc T - 3SP Dodecabydcate
###38.	40 a			N AU S		Motals					U - Acetone V - MCAA
Project Name: Big Rivers Electric Corp - CCR & SemilAnn	Propert #: 49010431			8X1 8	JO 60		scouey.			mieir - 804 - 1	Z - other (specify)
544. Big Rivers CCR	SSDW#.			omes	Y) OSI	·····	off gar		***************************************	of co Other	
Sample Ideniification - Citent ID (Lab ID)	Sample Date	Sample Time	Sample W Type (www.[C=comp, o-	Matrix E	MSM moba9 () Azeecioerea	t) A2005\A0508	1_A0T&T\A0T&T			York Winnow York Special i	Special instructions/Note:
		\bigvee	Preservation Code	Code	X						
River Seep-06-071318 (490-155661-1)	7/13/18	O7:50 Central	A	Water	×	×	×			Metais - run once, upipad together	, upload together
River Seep-12-071318 (490-155661-2)	7/13/18	Op. 15 Central	^	Water	×	×	×			Metals - run once	Metals - run once, upload together
River Seep-16-071318 (490-155661-3)	7/13/18	11.00 Central	>	Water	×	×	×	1905		Metals - run once	Metals - run once, upload together.
River Seep. 14-071319 (490-155661-4)	7/13/18	10.10 Central	^	Water	×	×	////// ×	10 15		Metals - run once	Metals - run once, upload together
River Seep.09-071218 (490-155661-5)	7/12/18	13:50 Central	>	Water	×	×	//////////////////////////////////////	45		Metals - run once	Metals - un croe, uphad together
River Seep-07-071218 (490-155661-6)	7/12/18	14:50 Central	,	Waler	×	×	/// 	9999		Metals - run onco	Metals - run once, tipload together
River Seep 45-071218 (490-155661-7)	7/12/18	1425 Central		Water	×	×	// 	1-08		Metals - run onco	Metals - run once, upload together.
Landfill Seep-01-071318 (490-155661-8)	7/13/18	12:20 Central		Water	×	×		A		Wetals - run once	Metals - rurt onco, upload together
Landta Seep-01-071318-DDP (490-155651-9)	7713/18	12.20	7	Water	×	×	×			Metals - run once, upload together	2. upload together

works are increased to a second to a secon

Possible Hazard Identification		Samp	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	imples are retained fonger tha	i 1 month)
Unconfirmed		j	Return To Crient Disposal By Lab	b Archive For	Months
Deliverable Requested 1. II. III. IV. Other (specify)	Primary Deliverable Rank: 2	Specia	Special instructions/QC Requirements:		
Empty Kit Relanguished by:	Date:	Time:	Institute of Stupment	Stipment	
Redinguished by Markey	C/18 (45C	Conspary - MS F	The Wille	15 IS 120 FROH	作作的分
Rejensulating by:	Date: York:	Company	seved by	Oswitung /	Company
Remonsteen by.	Date/Time.	Company	Recieved try.	Date/Time:	Company
Custody Seals Intact: Custody Seal No.:		Co	Coolet Temperature(s) "C and Other Remarks;		
					Ver. 09 20/2016

Unconfirmed Deliverable Requested 1, 1, 11, 1V, Other (specify) Primary Deliverable Rank: 2 Empty Kit Relinquished by: Relinq	Special Instructions/OC Requirements: Netrod of Shipmont Netrod of	ve For Months
Deliverable Rank: 2 Date: (1) (4 S 145 C	Method of Shipment	
Marchenia Date:	6/14	
Marchenic Date Tray 16 18 145 6 Date Tray.	1	
DataTring		
DatisTring:	Received by:	Сетрану
	Касенчей by:	Contrary
Custody Seals Mact: Custody Seal No.:	Coaler Temperature(s) 'C and Other Ramarks:	
		Ner; 09/20/26

· ~	3
7	5
ū	
netody	j
£ 7.10	?)
C	5
Chain	3
_)

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Phone (615) 725-0177 Fax (615) 725-3404

TestAmerica Market Mark

•									-									
••	Client Information (Sub Contract Lab)	Sampler			Cigner Cigner	cab PM Cisnetos, Poxanne	anne			<u> </u>	acij milis	Camer Tracking No(s)	<i>2</i> 2	요 송	COC No 490-75463.2			
	Ckent Contact: Shipping/Receiving	Phone:			E-Mail	E-Mail roxanne-cishercs@lestamencainc.com	eres@te	stamenc	anc.com		State of Origin Kentlucky	Sale:		ឌីចំ	Page 2 of 2			
	Company: TestAmerica Laboratories, Inc.					Accredial State Pr	ons Regu Ogram -	Arcrediblions Required (See note) State Program - Kenlucky (UST)	(TSU) y					\$ 6	Job #. 490-155661-1	,		
	Address: 301 Alpha Drive, RIDC Park,	Due Date Requested: 7/26/2018	ij					₹	Analysis Requested	Requ	ested			å.	Preservation Codes:	ğ	29	
	City. Pittsbuigh	TAT Requested (days)	ys):									-		000	R - NaOH G - Ze Aostair C - Ze Aostair	220	N Nove O ASNath	
	State. Zin. PA, 15238											***********		O.ώ'	D - Nario Acid	1.0	P.Na2045 O-Na2503	
	Proce. (4)2.965-7058(1#) 412-963-2465(Fax)	10 a				{c							*	LUI	F - MRCHO! G - Ametho! H - Astorbit Acid	- 1	K - Nacional S - H2SO4 T - TSP Dodecandra	21k12
•	្រុក្សេះ	WO F.					sirion		······						1- ke 3-Di Waler		U - Acetone V - MCAA	
	Project Name. Big Rivers Electric Corp - CCR & SemilAnn	Project #. 49010431				10 50		Astron	.,				************	i de la constante	K.EDIA I.EDA	# 6 % X	Winh 48 Zielher (specify)	****
	Sae. Big Rivers COR	SSOWE	-			A) as		app deal					<u>-</u>	*******	Other:			······································
			Sample	Sample Type (C=cemp,	Matrix (Wante, Second	beratlist ble AlcM miche	10C/3002V (v	4_A0141401.					·	19dmuN lass				
	Sample (destrictation - Chent ID (Lab ID)	Sample Date) 	G=grab) Preservs	Gegrab) Brother And	2	- 2	74		20 20 30 30 30				1>	Specia	Insiruc	Special instructions/Note:	
Pad	Landill Seep-02-071318 (490-155661-10)	7113/18	13:10		Water		×	×						Ž	Meters - run once, upload together	ce upload	i together	Ι
je 4:	Landill Seep.03-071318 (490-155661-11)	7/13/18	13.30		Water		×	×				-	<u> </u>	ž G	Metals - run once, upposed together	ce, upload	together.	
2 of	Pond-012-071318 (490-155661-12)	7/13/18	13.58		Water		×	×		-		_		ž	Metais - run ence, uplaad together	co uplasa	together.	
44	Landill Sepp-04-071318 (490-155661-13)	7/13/18	14:15 Central		Water		×	×						ž	Metals - run once, upland together	ice, uplase	together.	
				-														
					-		Ľ			-		-	L					Γ

Client: Big Rivers Electric Corporation

Job Number: 490-155661-1

Login Number: 155661
List Source: TestAmerica Pittsburgh
List Number: 2
List Creation: 07/17/18 12:54 PM

Creator: DiNardo, Nicholas J

Orcator: Dirtardo, Monoida o		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Tracer/Carrier Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ba Carrier	
Lab Sample ID	Client Sample ID	(40-110)	
490-155661-1	River Seep-08-071318	87.3	
490-155661-2	River Seep-12-071318	92.9	
490-155661-5	River Seep-04-071218	89.4	
490-155661-6	River Seep-07-071218	79.4	
490-155661-7	River Seep-05-071218	82.9	
Tracer/Carrier Leg	gend		
Ba Carrier = Ba Ca	rrier		

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ba Carrier	Y Carrier	
Lab Sample ID	Client Sample ID	(40-110)	(40-110)	
490-155661-1	River Seep-08-071318	87.3	90.5	
490-155661-2	River Seep-12-071318	92.9	85.6	
490-155661-5	River Seep-04-071218	89.4	87.1	
490-155661-6	River Seep-07-071218	79.4	87.1	
490-155661-7	River Seep-05-071218	82.9	83.0	

Ba Carrier = Ba Carrier
Y Carrier = Y Carrier

TestAmerica Nashville

2

3

5

6

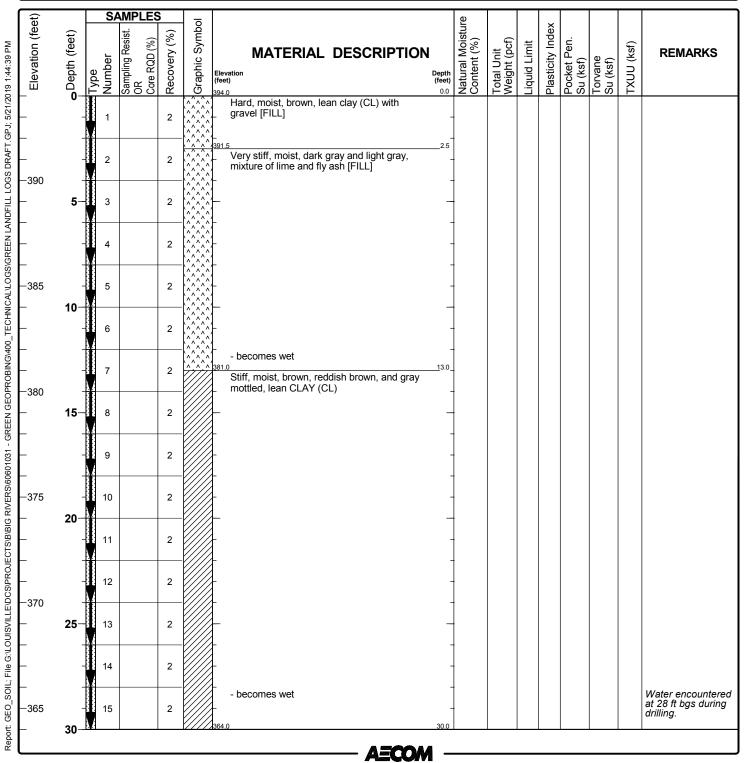
8

11

4.0

11

Appendix B

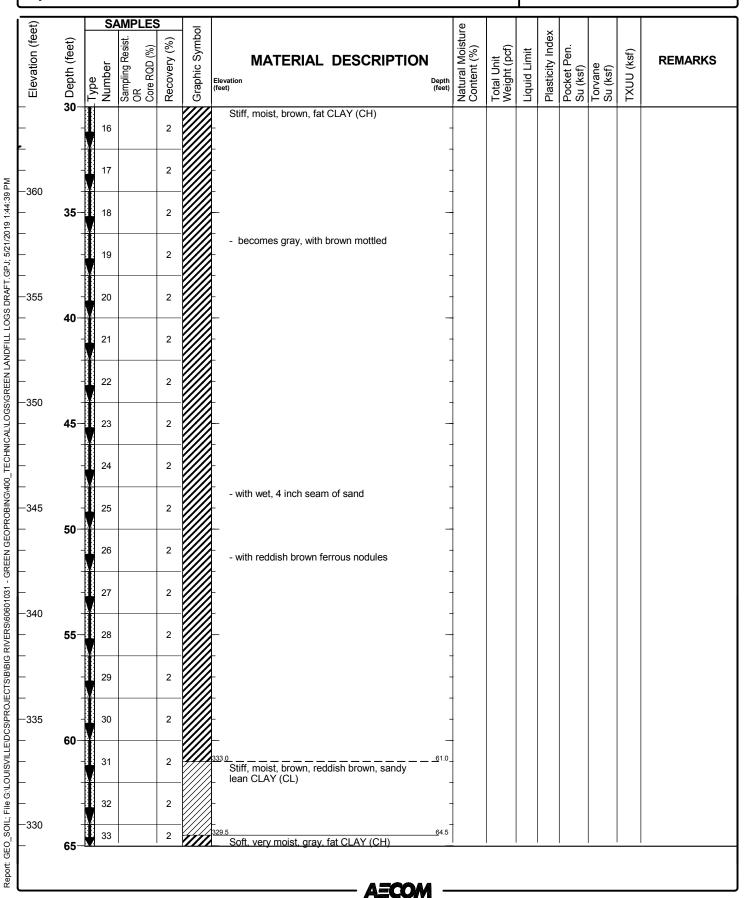

Supplemental Boring Logs and Cross-Sections

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-01

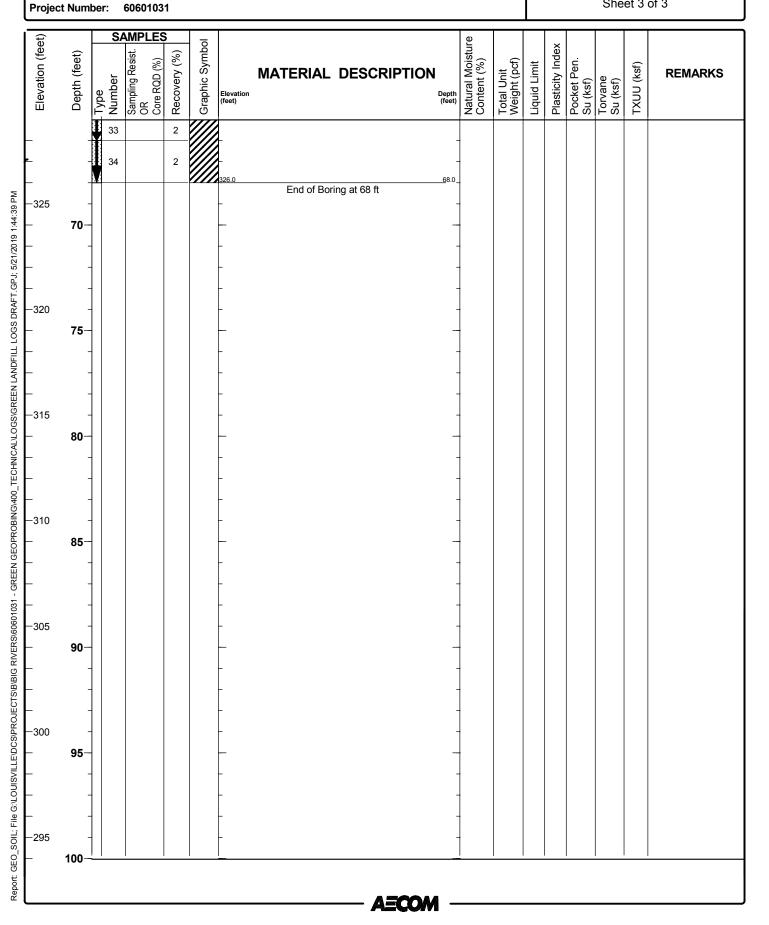
Date(s) Drilled	04/23/2019 12:00 AM to 04/24/2019 12:00 AM	Logged By	A. Burke	Checked By	M. Keown
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	68.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 1250 (ft NAD83)	Groundwater Level(s)	28 ft on 4/23/2019		



Project Location: Webster County, Kentucky

Project Location. Webster County, Rentuci

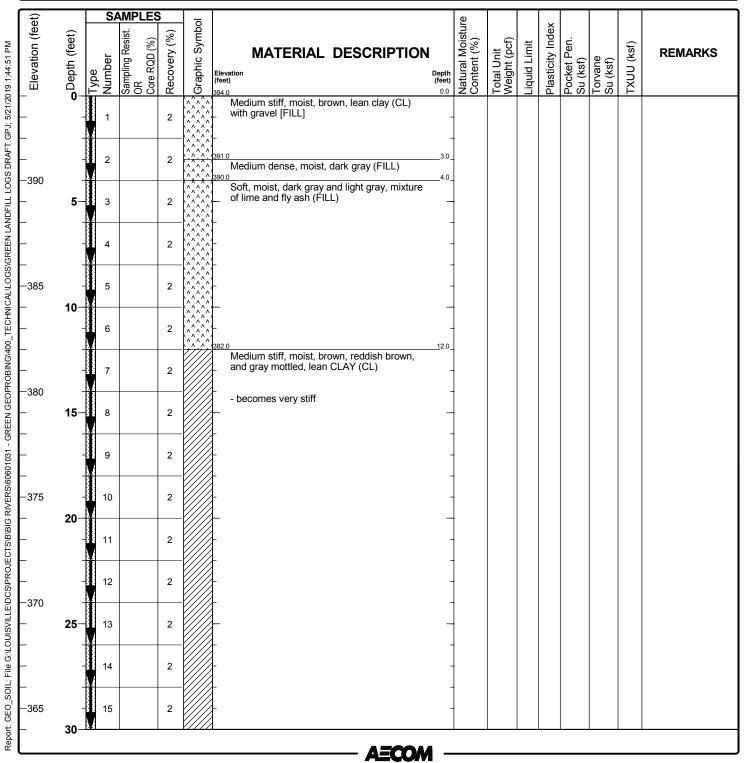
Project Number: 60601031


Log of Boring GESB-01

Project Location: Webster County, Kentucky

Log of Boring GESB-01

Sheet 3 of 3



Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-02


Date(s) Drilled	04/25/2019 12:00 AM to 04/25/2019 12:00 AM	Logged By	A. Burke	Checked By	M. Keown
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	50.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 1200 (ft NAD83)	Groundwater Level(s)	42 ft on 4/25/2019		

Project Location: Webster County, Kentucky

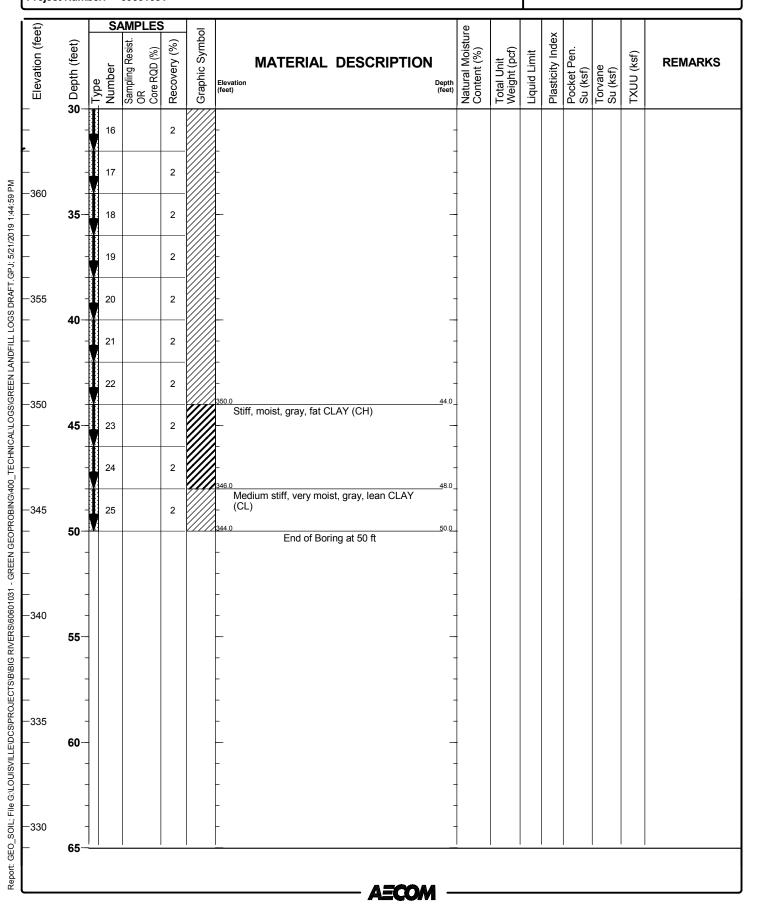
60601031

Log of Boring GESB-02

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-03


Date(s) Drilled	04/25/2019 12:00 AM to 04/25/2019 12:00 AM	Logged By	A. Burke	Checked By	M. Keown
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	50.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 1150 (ft NAD83)	Groundwater Level(s)	9 ft on 4/25/2019		

eet)			MPLES		- <u> 5</u> 5 8 8 8 <u> 8</u> <u> 8</u> <u> 8</u> <u> 9</u> <u>9</u> <u>9</u>	
 Elevation (feet)	Depth (feet)	Type Number	Sampling Resist. OR Core RQD (%)	Recovery (%)	Graphic Symbol Graphic Symbol Ontent (%) Total Unit Weight (pcf) Liquid Limit Plasticity Index Pocket Pen. Su (ksf) TXUU (ksf) TXUU (ksf) TXUU (ksf) TXUU (ksf) TXUU (ksf) TXUU (ksf)	3
_	-	1		2	\(\frac{\capa_{\chi^{\chi_{\chi}}}}{\chi_{\chi^{\chi_{\chi}}}}\) Very stiff, moist, brown, yellowish brown, \(\frac{\chi_{\chi}}{\chi_{\chi}}\) 383.0 and gray lean clay (CL) with gravel [FILL] \(\frac{\chi_{\chi}}{\chi_{\chi}}\) 382.5 Medium dense, moist, dark gray (FILL) \(\frac{\chi_{\chi}}{\chi_{\chi}}\) 1.5	
_	-	2		2	Medium stiff, moist, dark gray and light AAAA gray, mixture of lime and fly ash (FILL) AAAA 390.5 AAAA Very stiff, moist, brown, brown, yellowish	
-390 -	5-	3		2	brown, lean CLAY (CL) [FILL] ^^^_ ^388.5 ^^_ Medium stiff, moist, dark gray and light	
_	-	4		2	gray, mixture of lime and fly ash (FILL)	
- -385	-	5		2	-[^^^^^] -[^^^^] -[^^^^] -[^^^] -[^^^] -[^] -[
_	10- -	6		2	Medium stiff, very moist, black, brown, silty 382.0 CLAY (CL-ML) with organics	
_	-	7		2	Very stiff, moist, yellowish brown, brown, gray, lean CLAY (CL)	
-380 -	15-	8		2		
_	-	9		2		
- -375	-	10		2		
_	20-	11		2		
_ _ _370	-	12		2		
	25-	13		2		
_	_	14		2		
-365 -	30-	15		2		
_	30-				AECOM -	_

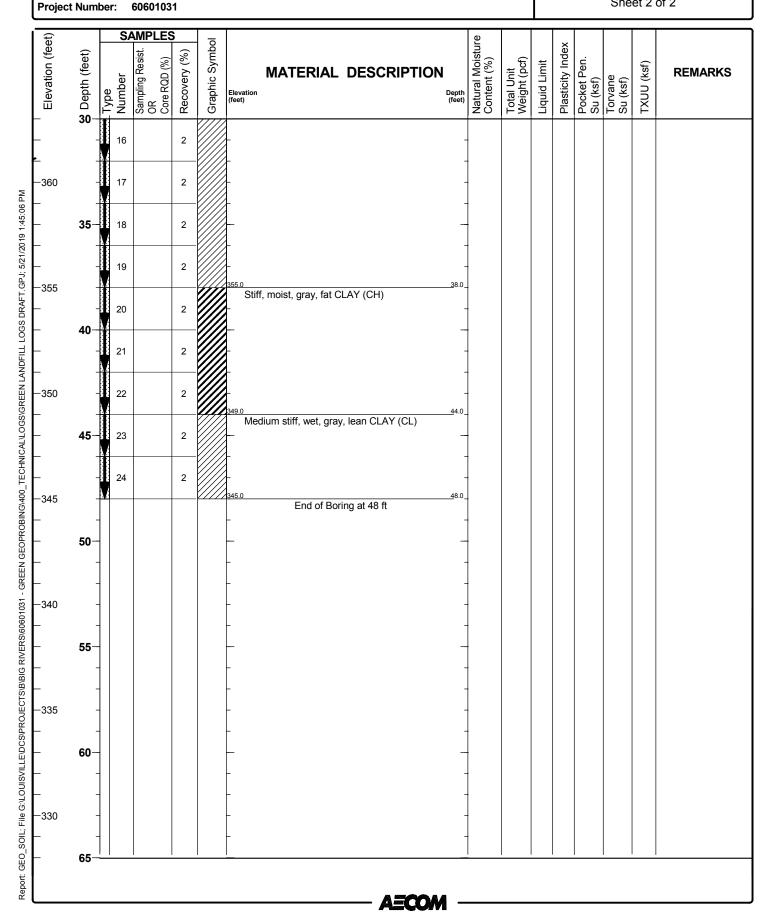
Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-03

Project Location: Webster County, Kentucky

Project Number: 60601031


Log of Boring GESB-04

Date(s) Drilled	04/25/2019 12:00 AM to 04/25/2019 12:00 AM	Logged By	A. Burke	Checked By	M. Keown
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	48.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	393 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 1100 (ft NAD83)	Groundwater Level(s)	4.25 ft on 1/31/2018		

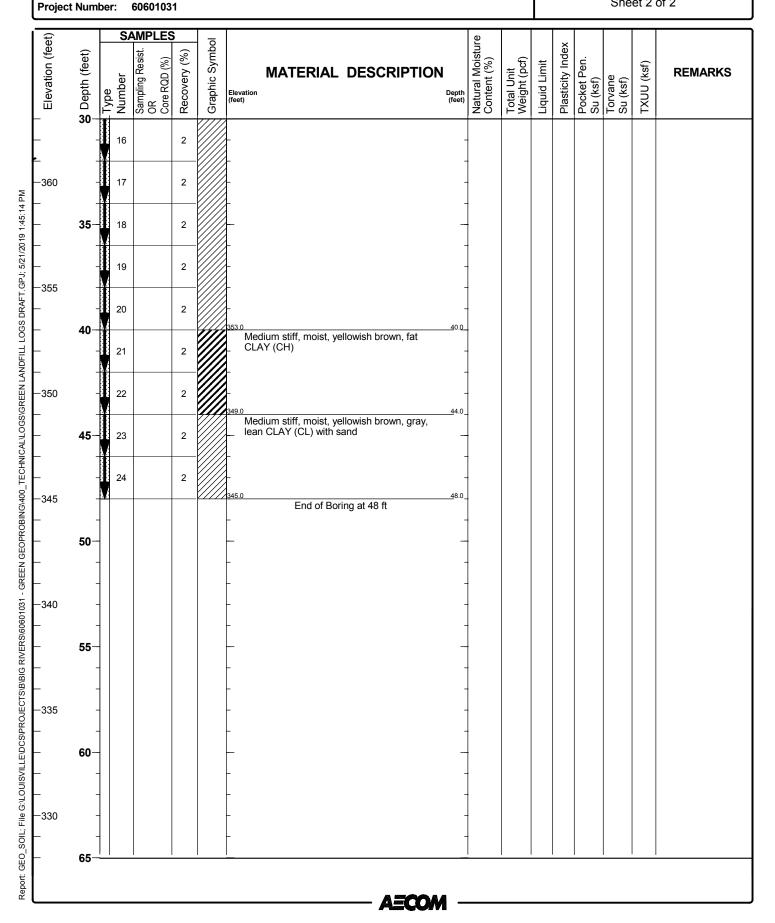
et)		S	AMPLES	}	- 0			ē			×				
Elevation (feet)	Depth (feet)	Type Number	Sampling Resist. OR Core RQD (%)	Recovery (%)	Graphic Symbol	MATERIAL DESCRIPTION Elevation (feet) 393.0	Depth (feet)		Total Unit Weight (pcf)	Liquid Limit	Plasticity Index	Pocket Pen. Su (ksf)	Torvane Su (ksf)	TXUU (ksf)	REMARKS
-	-	1		2		Very stiff, moist, yellowish brown, lean clay (CL) with gravel [FILL]	2.0								
-390	-	2		2		Soft, moist, dark gray and light gray, mixture of lime and fly ash (FILL)									
-	5-	3		2		- becomes wet	_								
-	-	4		2	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Medium stiff, moist, dark gray and light	6.0								
·385 ·	-	5		2		gray, mixture of lime and fly ash (FILĽ) 384.0 Loose, wet, black (FILL)	9.0								
	10-	6		2		Medium stiff, moist, dark gray and light	<u>1</u> 1.0_								
380	-	7		2		gray, mixture of lime and fly ash (FILL) 380.0 Very stiff, moist, yellowish brown, brown,	<u>1</u> 3.0								
	15-	8		2		_ gray, lean CLAY (CL) _	_								
	-	9		2		-									
·375 ·	-	10		2		-									
-	20-	11		2		-	-								
370	-	12		2		-									
	25-	13		2		_	_								
-265	-	14		2		-									
-365 -	30-	15		2		-	-								
						AEÇON									

Project Location: Webster County, Kentucky

Log of Boring GESB-04

Project Location: Webster County, Kentucky

Project Number: 60601031


Log of Boring GESB-05

Date(s) Drilled	04/25/2019 12:00 AM to 04/25/2019 12:00 AM	Logged By	A. Burke	Checked By	M. Keown
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	48.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	393 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 1050 (ft NAD83)	Groundwater Level(s)	16 ft on 4/25/2019		

_	et)		AMPLES		mbol			isture)	()		yapı	-			
Elevation (feet)	Depth (feet)	Type Number	Sampling Resist. OR Core RQD (%)	Recovery (%)	Graphic Symbol	MATERIAL DESCRIPTIO	Depth (feet)		Total Unit Weight (pcf)	Liquid Limit	Plasticity Index	Pocket Pen. Su (ksf)	Torvane Su (ksf)	TXUU (ksf)	REMARKS
-	U-	1		2	\^^^^	Very stiff, moist, yellowish brown, lean clay _ (CL) with gravel [FILL]	2.0								
- -390	-	2		2		Loose, wet, dark gray, black (FILL) 390.0 Medium stiff, moist, dark gray and light gray, mixture of lime and fly ash (FILL)	3.0								
-	5-	3		2		gray, mixture or lime and my asm (FILL)	_	1							
-	-	4		2		Medium stiff, moist, dark gray and light gray, mixture of lime and fly ash (FILL)	6.0								
-385 -	-	5		2		-		1							
_	10-	6		2		-	-								
- -380	-	7		2		- 380.0 Loose, wet, black (FILL)	13.0 14.0								
-	15-	8		2		Medium stiff, moist, dark gray and light gray, mixture of lime and fly ash (FILL)									
- - -375	-	9		2		Loose, wet, black (FILL) 376.0 Very stiff, moist, yellowish brown, brown, gray, lean CLAY (CL)	17.0								
-	20-	10		2		- -									
_	-	11 V		2		- -									
-370 -	-	12		2		- -									
-	25-	13		2		-	-								
- −365	-	14		2		-									
-	30	15		2		-									

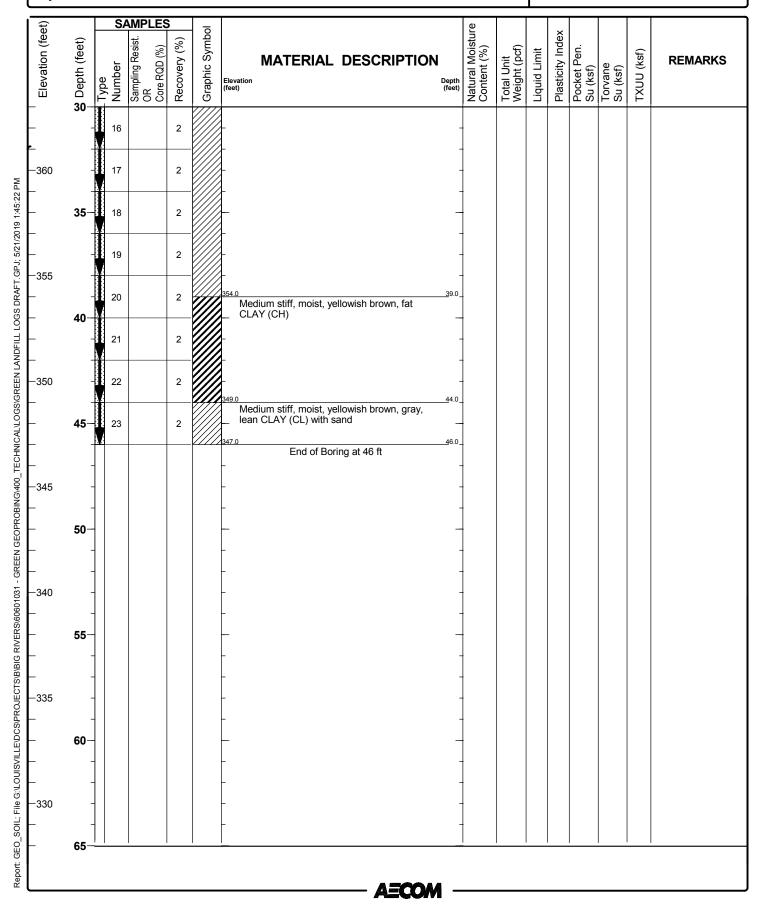
Project Location: Webster County, Kentucky

Log of Boring GESB-05

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-06

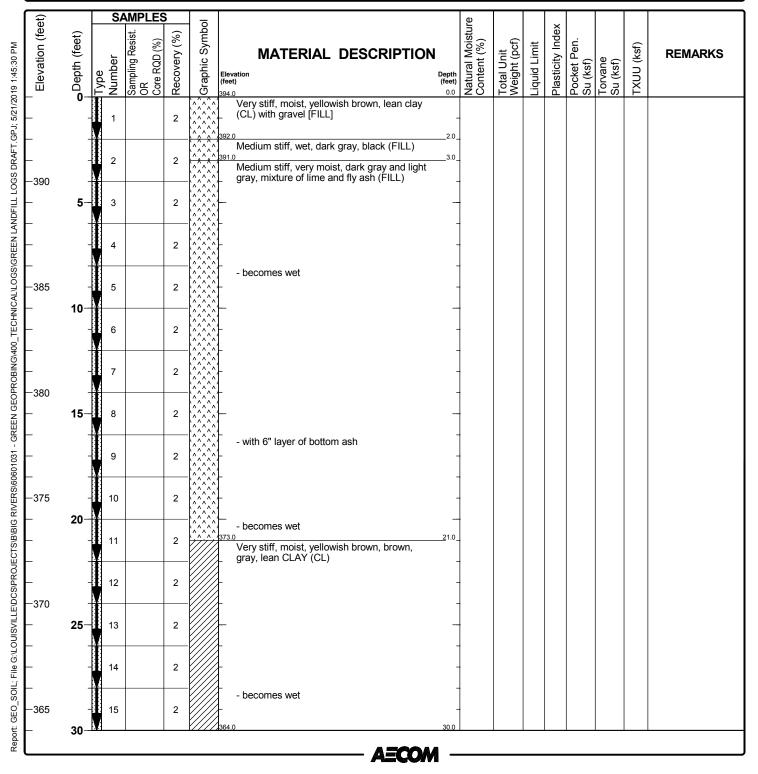

Date(s) Drilled	04/26/2019 12:00 AM to 04/26/2019 12:00 AM	Logged By	A. Burke	Checked By	M. Keown
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	46.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	393 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 1000 (ft NAD83)	Groundwater Level(s)	24 ft on 4/25/2019		

et)		SAMP	LEŞ] _			ė,							
Elevation (feet)	Depth (feet)	Number Sampling Resist.	Core RQD (%) Recovery (%)		MATERIAL DESCRIPTION Elevation (feet) 393.0	Depth (feet)	Natural Moisture Content (%)	Total Unit Weight (pcf)	Liquid Limit	Plasticity Index	Pocket Pen. Su (ksf)	Torvane Su (ksf)	TXUU (ksf)	REMARKS
_	_	1	2	\^^^^	(02) mai gravor [r 122]	2.0_								
-390	-	2	2	\^^^^	Medium stiff, wet, dark gray, black (FILL) 390.0 Medium stiff, moist, dark gray and light	3.0								
_	5-	3	2	_\^^^^ \^^^^	- becomes wet	-								
-	-	4	2		1005.0	8.0_								
-385 -	-	5	2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Medium stiff, moist, dark gray and light	9.0								
-	10	6	2	_\^^^^	gray, mixture or lime and my asm (FILL)	_								
-380	-	7	2											
-	15-	8	2	_\^^^^ \^^^^ \^^^^		_								
-	_	9	2	- ^^^^ \^^^^ \^^^^	-									
-375 -	-	10	2	_ `^^^^ `^^^^	373.0	20.0_								
-	20	11	2	\^^^^	Loose, wet, black (FILL) 372.0 Medium stiff, moist, dark gray and light gray, mixture of fly ash and lime (FILL)	21.0								
- -370	-	12	2	_\^^^^ \^^^^	3 - 7,									
-	25-	13	2	_\^^^^ \^^^^	- becomes wet	26.0								Water encountere at 24 ft bgs
- - -365		14	2		Very stiff, moist, yellowish brown, brown, gray, lean CLAY (CL)									
-365 - -	30	15	2			-								

Project Location: Webster County, Kentucky

Project Number: 60601031

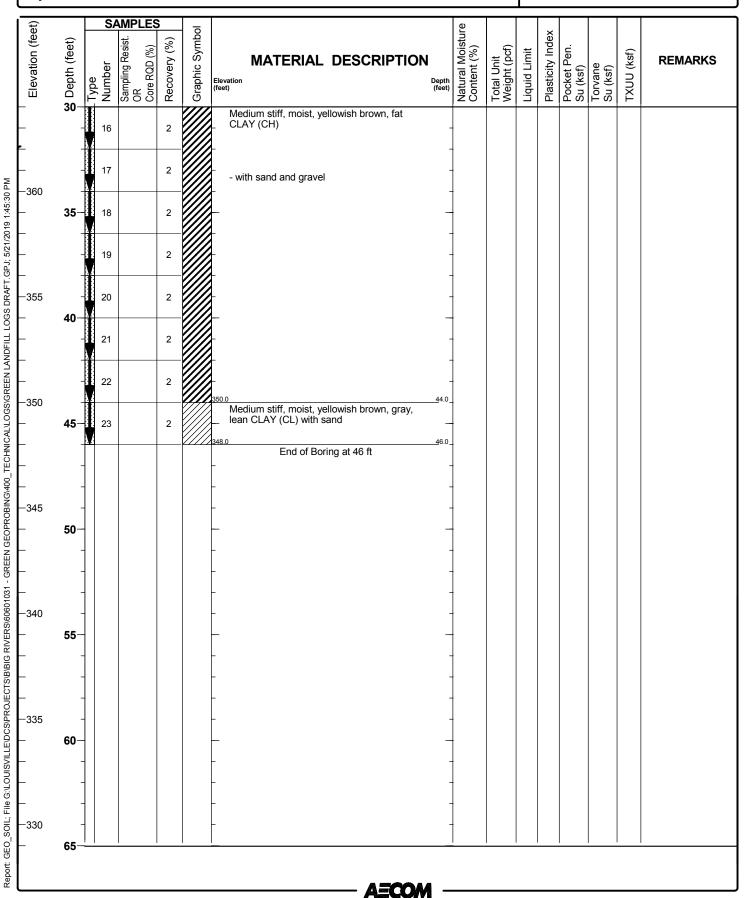
Log of Boring GESB-06



Project Location: Webster County, Kentucky

Project Number: 60601031

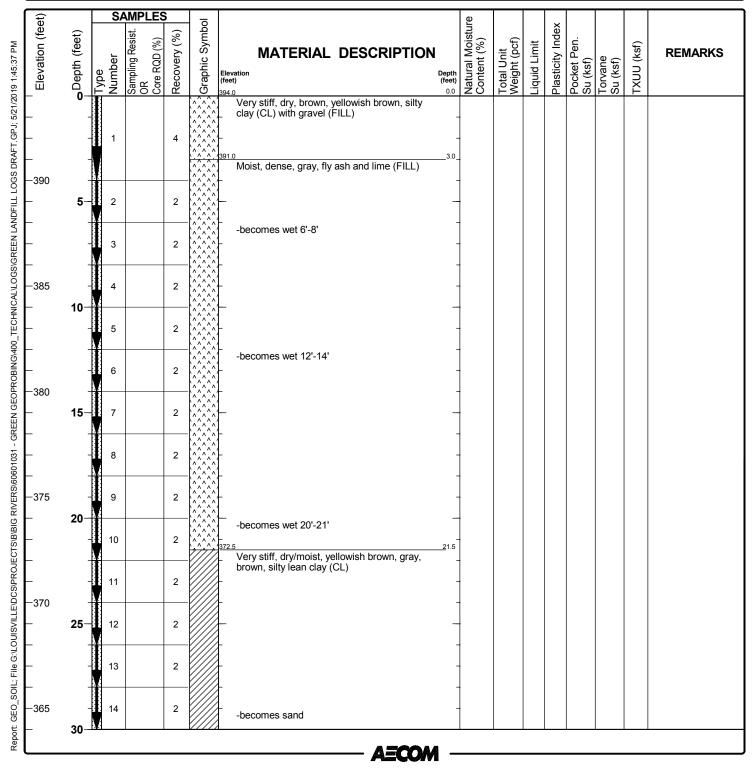
Log of Boring GESB-07


Date(s) Drilled	04/26/2019 12:00 AM to 04/26/2019 12:00 AM	Logged By	A. Burke	Checked By	M. Keown
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	46.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 950 (ft NAD83)	Groundwater Level(s)	28 ft on 4/25/2019		

Project Location: Webster County, Kentucky

Project Number: 60601031

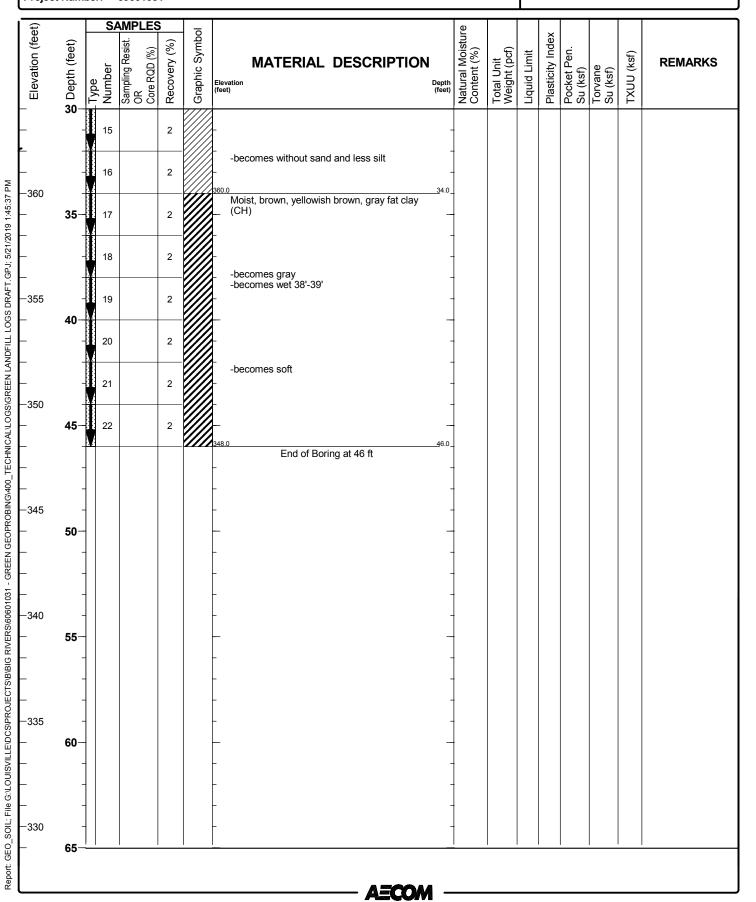
Log of Boring GESB-07



Project Location: Webster County, Kentucky

Project Number: 60601031

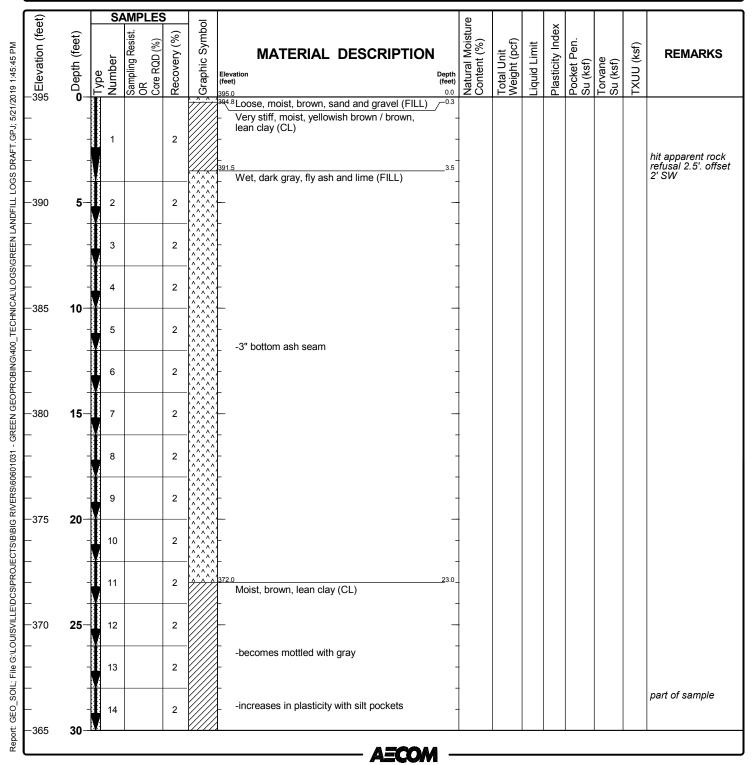
Log of Boring GESB-08


Date(s) Drilled	04/29/2019 12:00 AM to 04/29/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	46.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 900 (ft NAD83)	Groundwater Level(s)	30 ft on 4/29/2019		

Project Location: Webster County, Kentucky

Project Number: 60601031

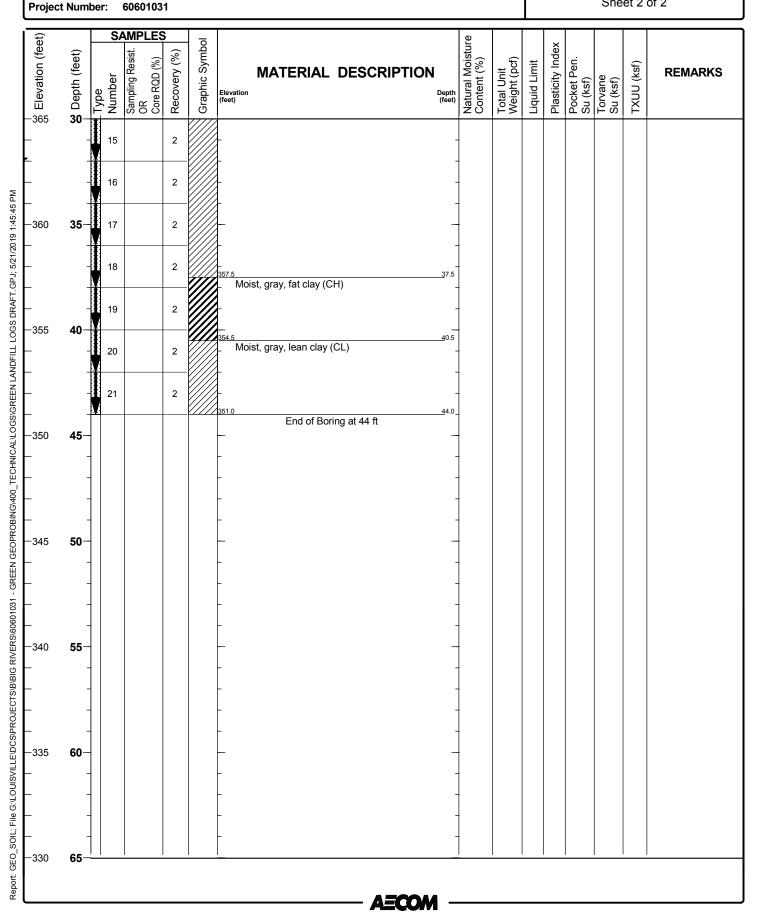
Log of Boring GESB-08



Project Location: Webster County, Kentucky

Project Number: 60601031

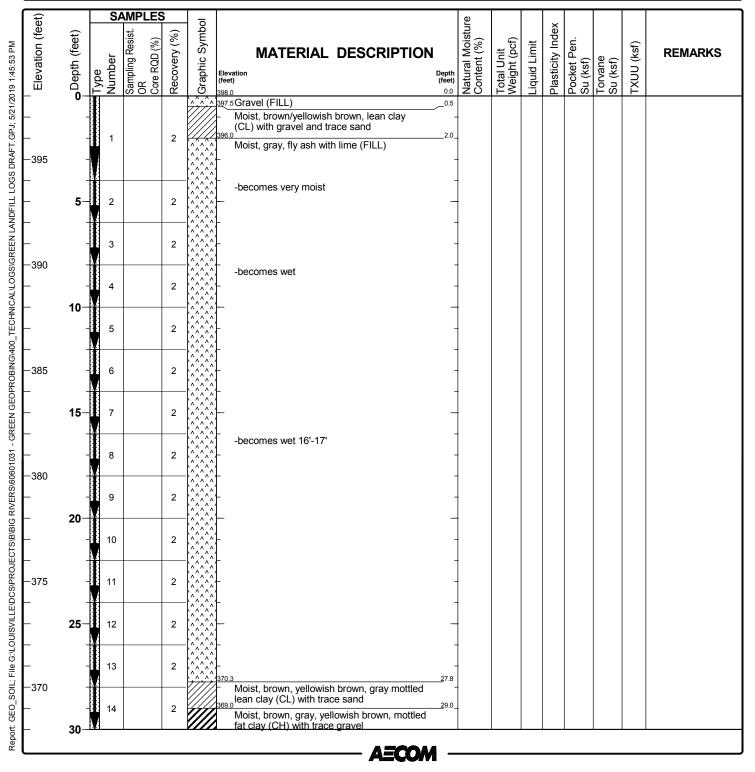
Log of Boring GESB-09


Date(s) Drilled	04/29/2019 12:00 AM to 04/29/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	395 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 850 (ft NAD83)	Groundwater Level(s)	ft on 4/29/2019		

Project Location: Webster County, Kentucky

60601031

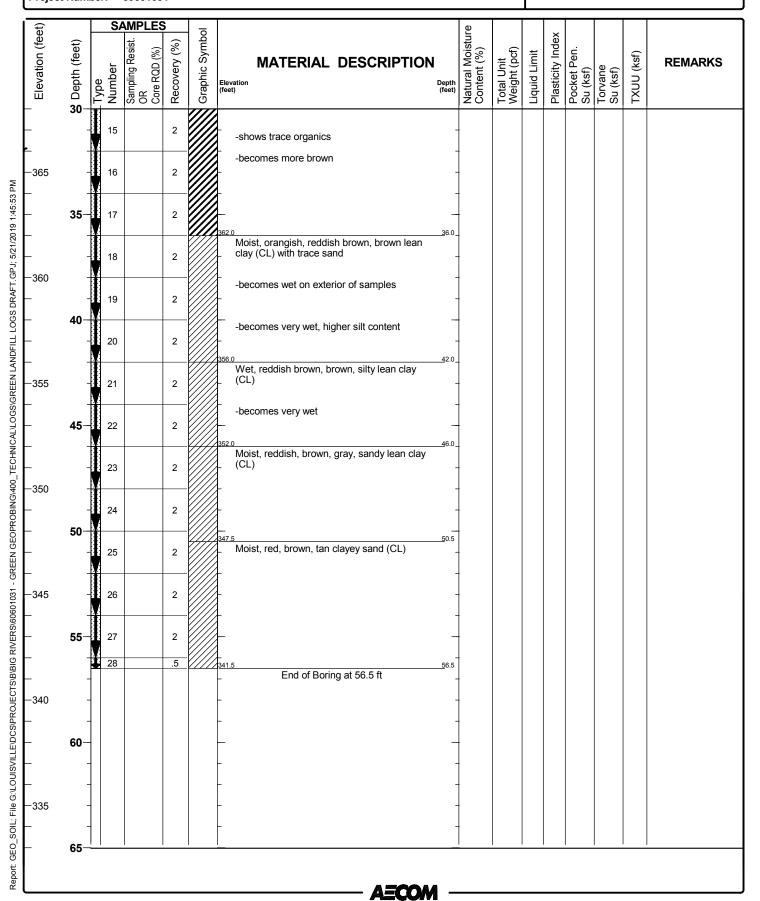
Log of Boring GESB-09



Project Location: Webster County, Kentucky

Project Number: 60601031

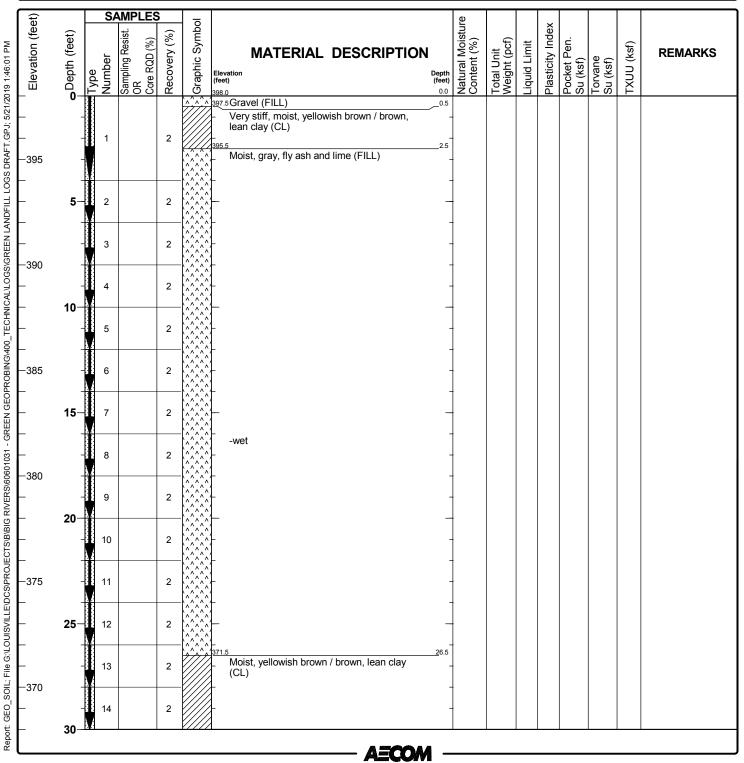
Log of Boring GESB-11


Date(s) Drilled	04/29/2019 12:00 AM to 04/30/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	56.5 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	398 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 800 (ft NAD83)	Groundwater Level(s)	40 ft on 4/29/2019		

Project Location: Webster County, Kentucky

Project Number: 60601031

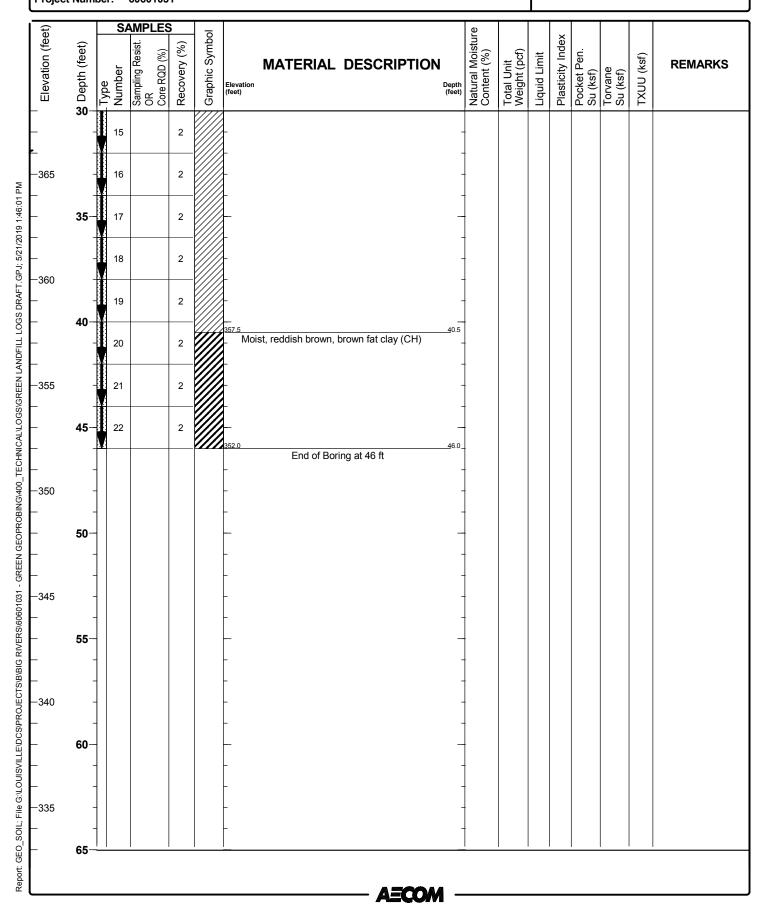
Log of Boring GESB-11



Project Location: Webster County, Kentucky

Project Number: 60601031

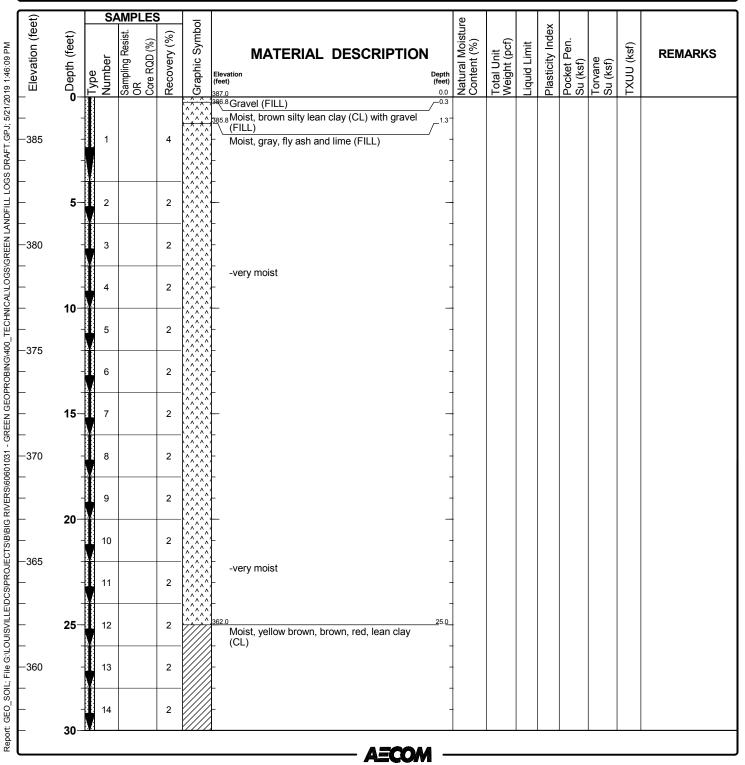
Log of Boring GESB-12


Date(s) Drilled	04/30/2019 12:00 AM to 04/30/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	46.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	398 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 750 (ft NAD83)	Groundwater Level(s)	ft on		

Project Location: Webster County, Kentucky

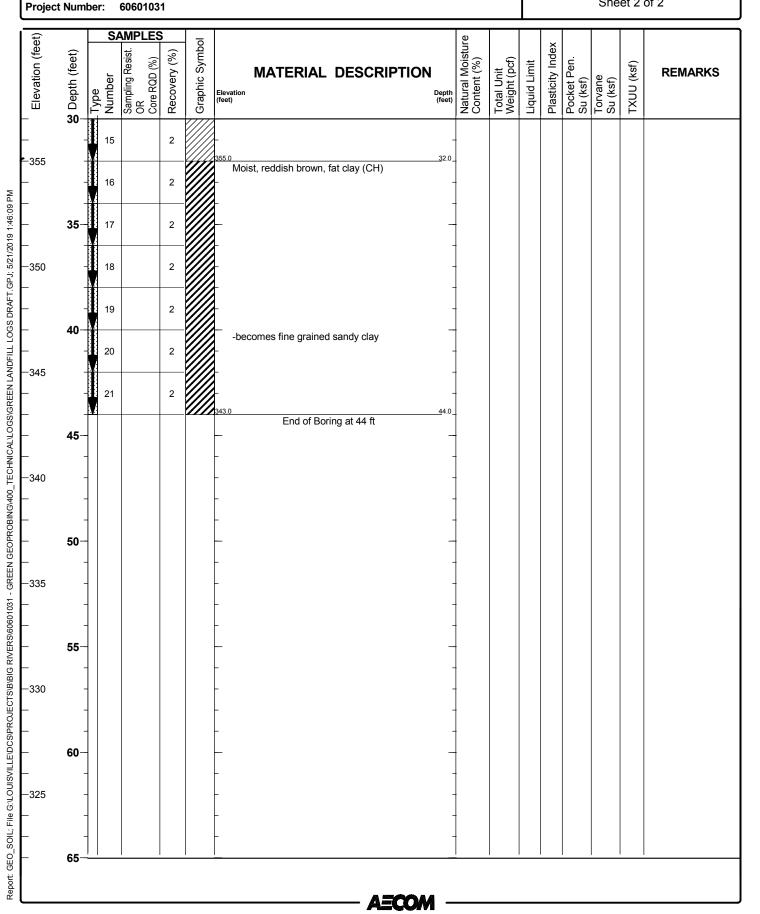
Project Number: 60601031

Log of Boring GESB-12



Project Location: Webster County, Kentucky

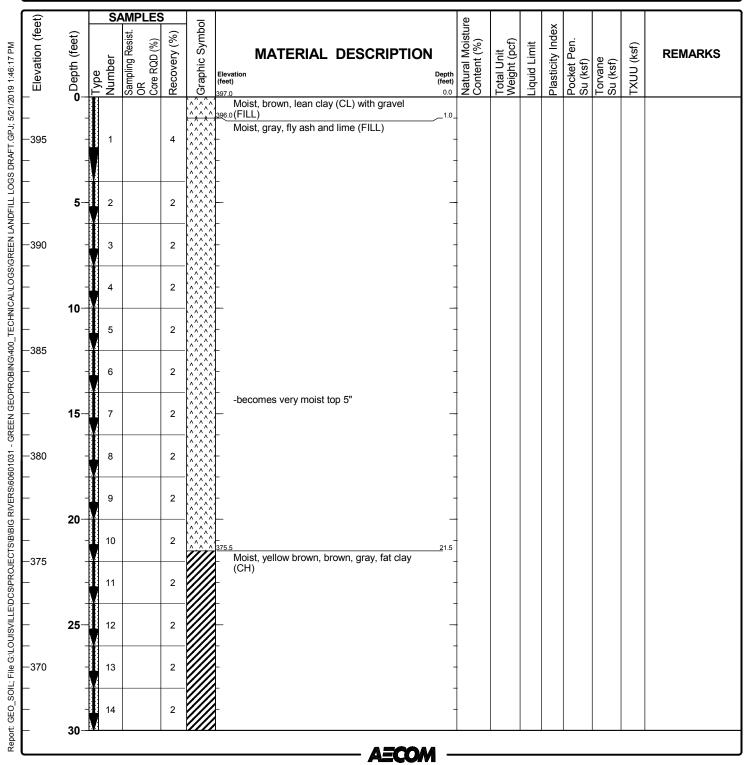
Project Number: 60601031


Log of Boring GESB-13

Date(s) Drilled	04/30/2019 12:00 AM to 04/30/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	387 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 700 (ft NAD83)	Groundwater Level(s)	ft on		

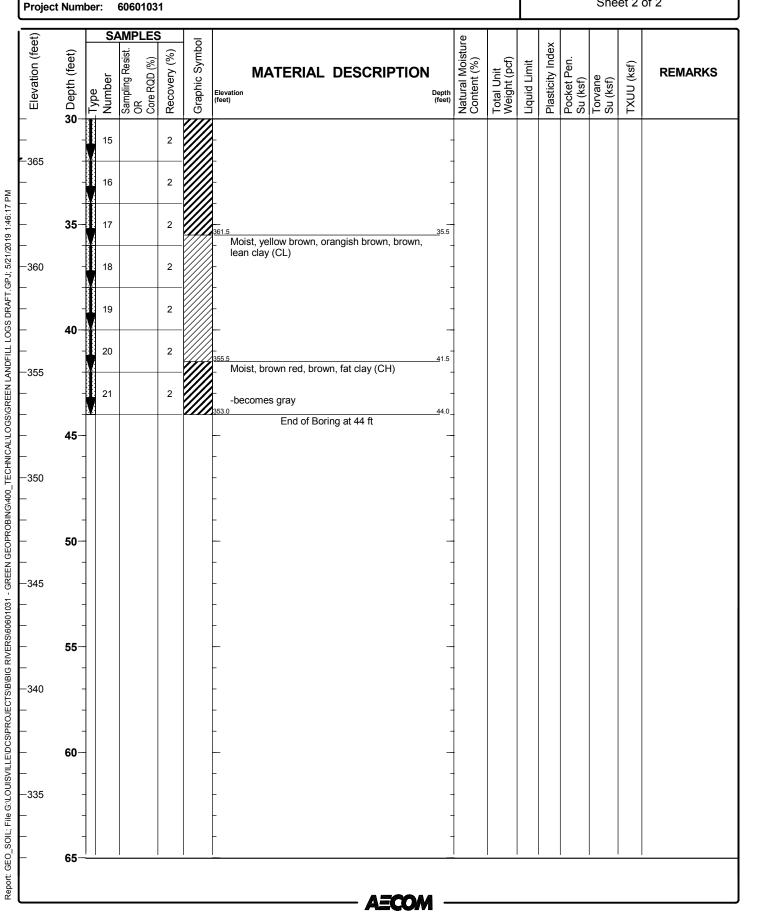
Project Location: Webster County, Kentucky

Log of Boring GESB-13



Project Location: Webster County, Kentucky

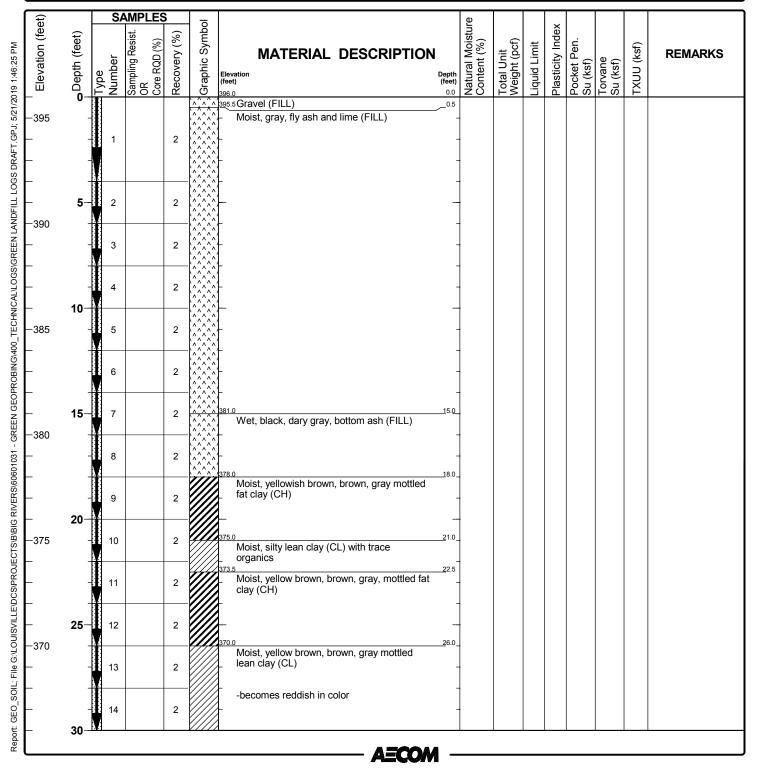
Project Number: 60601031


Log of Boring GESB-14

Date(s) Drilled	04/30/2019 12:00 AM to 04/30/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	397 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 650 (ft NAD83)	Groundwater Level(s)	ft on		

Project Location: Webster County, Kentucky

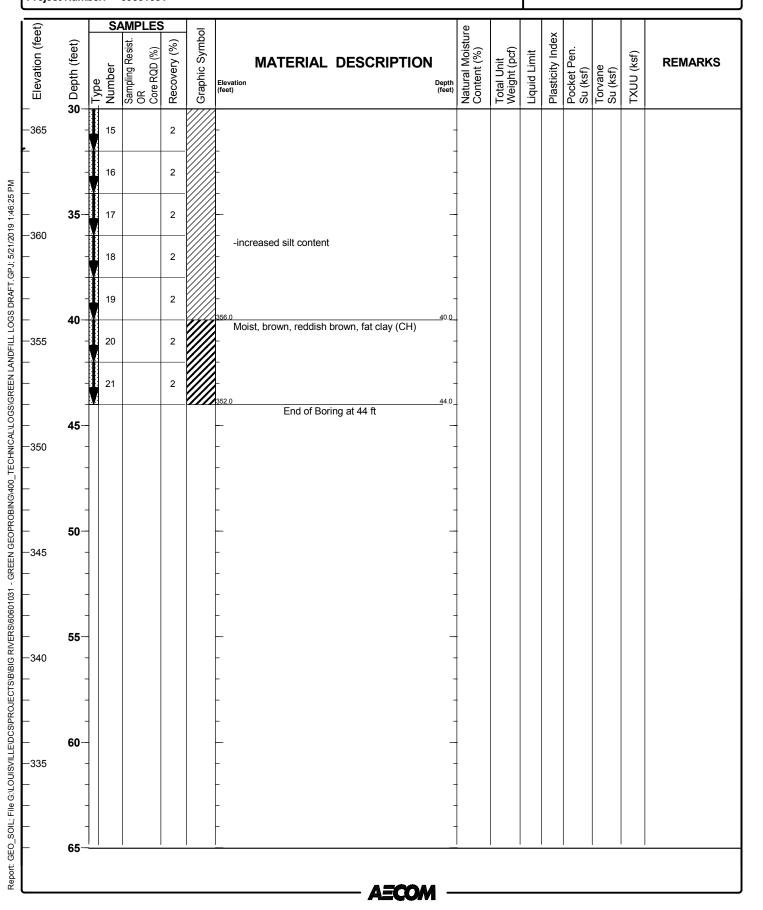
Log of Boring GESB-14



Project Location: Webster County, Kentucky

Project Number: 60601031

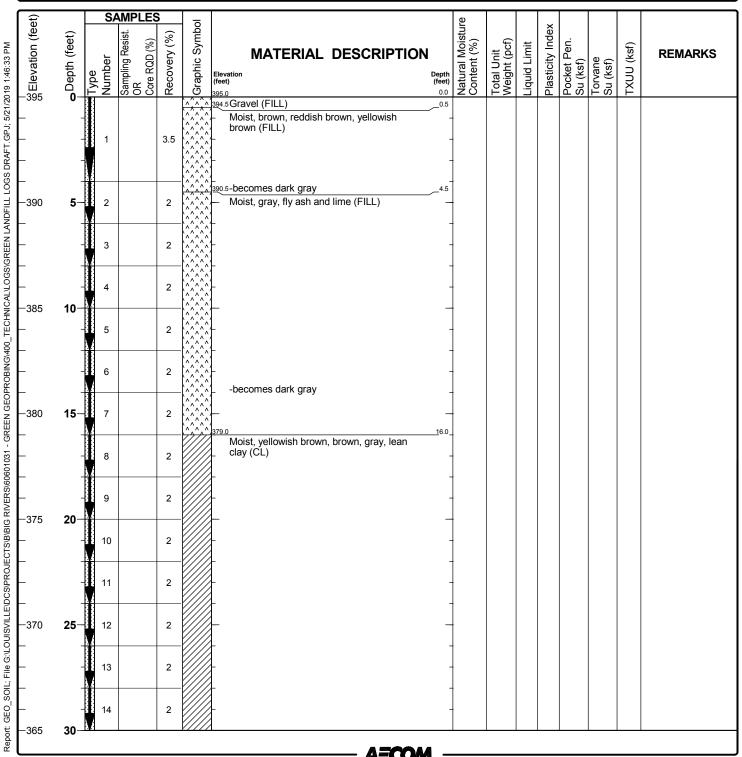
Log of Boring GESB-15


Date(s) Drilled	05/01/2019 12:00 AM to 05/01/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	396 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 600 (ft NAD83)	Groundwater Level(s)	ft on		

Project Location: Webster County, Kentucky

Project Number: 60601031

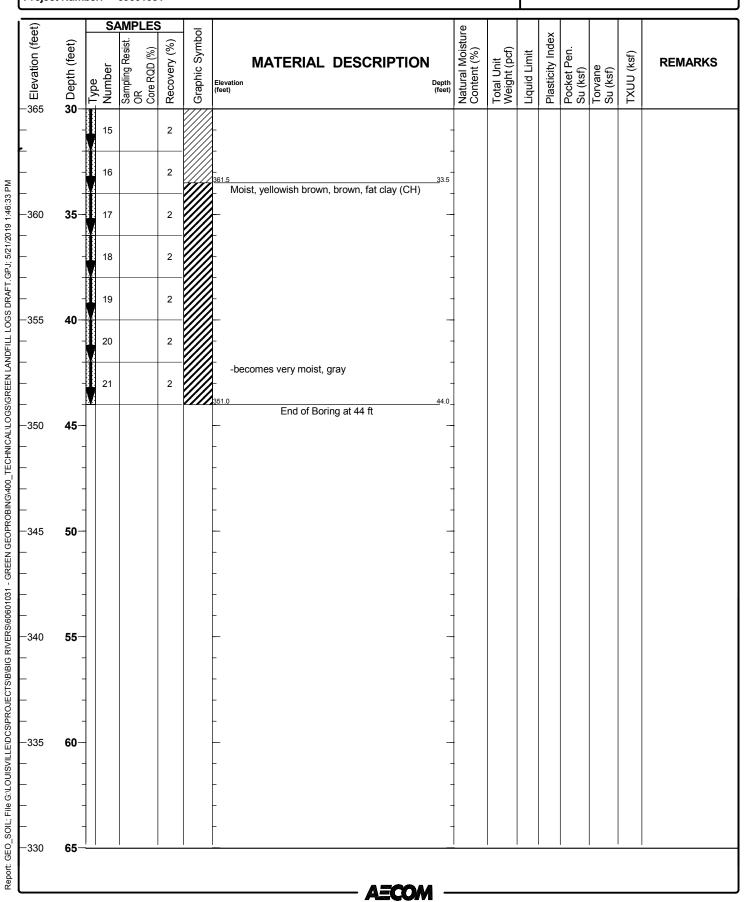
Log of Boring GESB-15



Project Location: Webster County, Kentucky

Project Number: 60601031

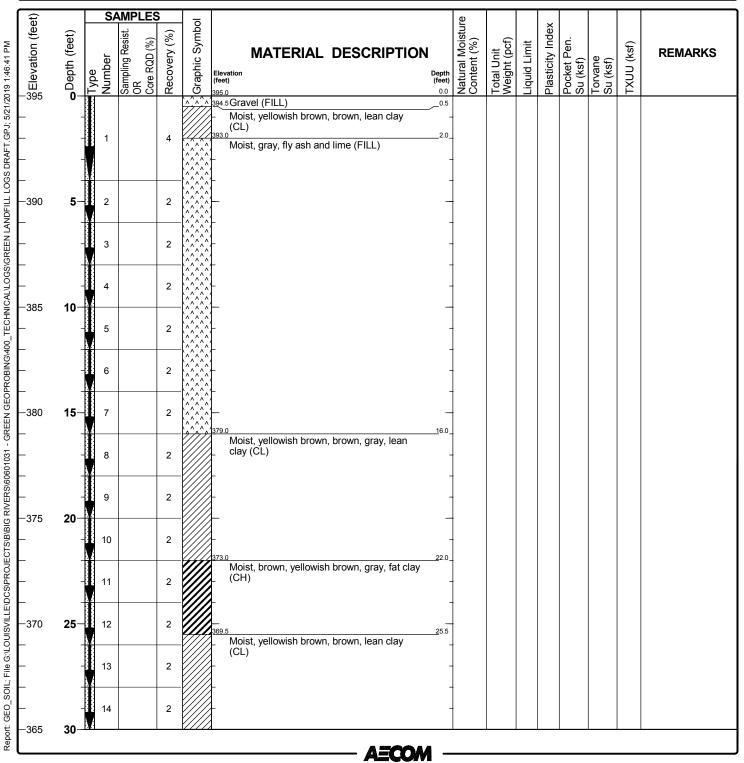
Log of Boring GESB-16


Date(s) Drilled	05/01/2019 12:00 AM to 05/01/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	395 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 550 (ft NAD83)	Groundwater Level(s)	42 ft on 5/1/2019		

Project Location: Webster County, Kentucky

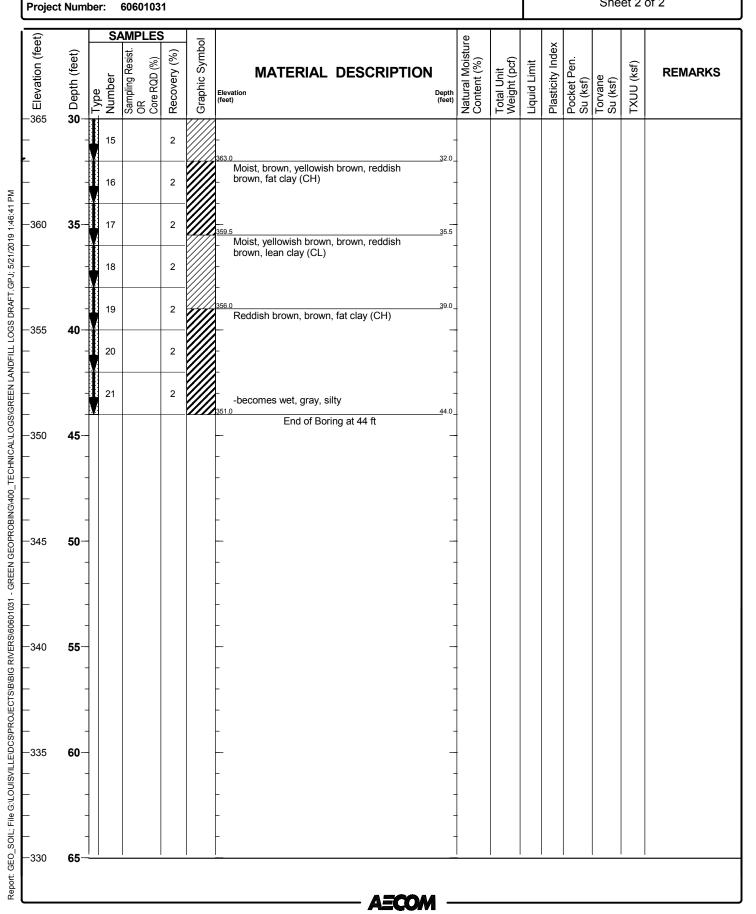
Project Number: 60601031

Log of Boring GESB-16



Project Location: Webster County, Kentucky

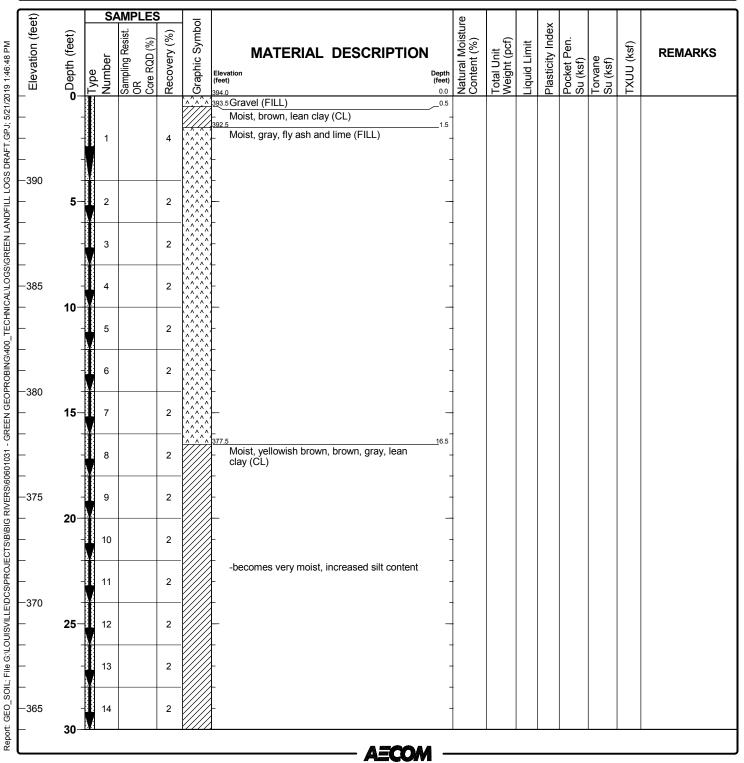
Project Number: 60601031


Log of Boring GESB-17

Date(s) Drilled	05/02/2019 12:00 AM to 05/02/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	395 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 500 (ft NAD83)	Groundwater Level(s)	43 ft on 5/2/2019		

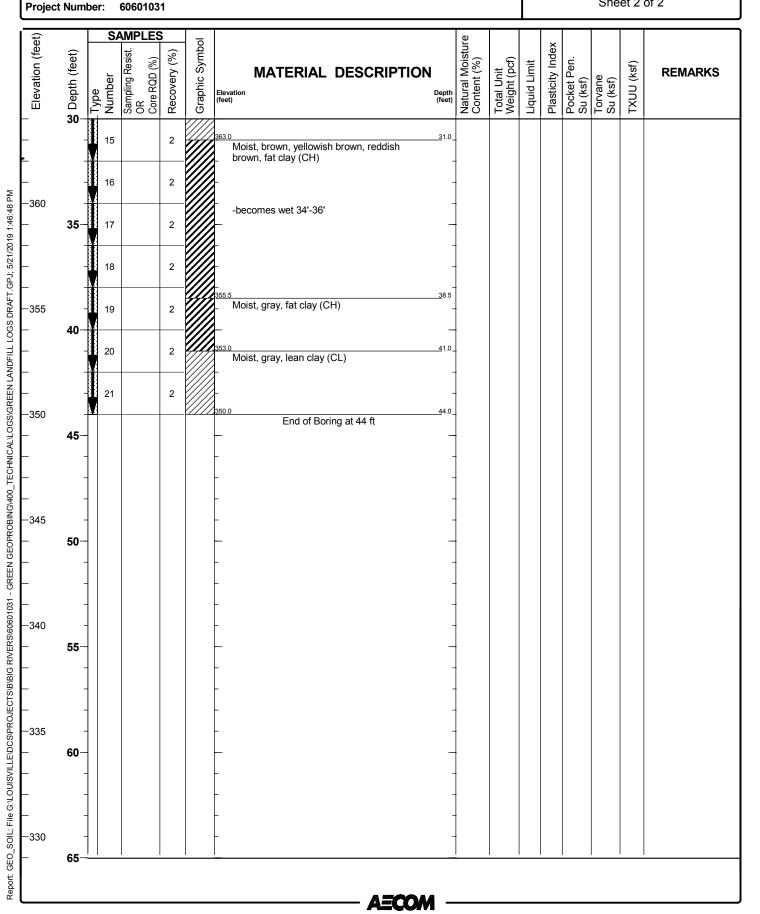
Project Location: Webster County, Kentucky

Log of Boring GESB-17



Project Location: Webster County, Kentucky

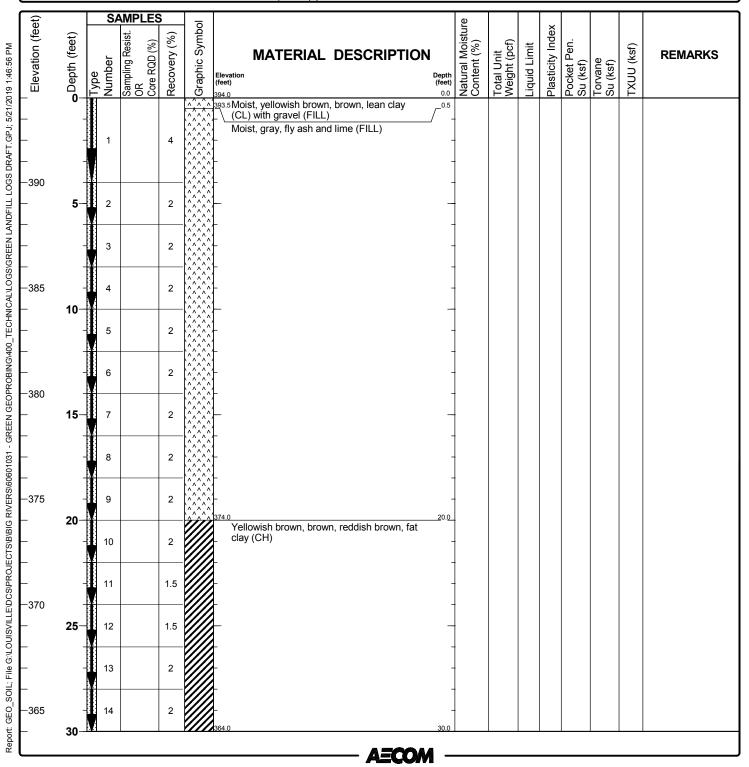
Project Number: 60601031


Log of Boring GESB-18

Date(s) Drilled	05/02/2019 12:00 AM to 05/02/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 400 (ft NAD83)	Groundwater Level(s)	34 ft on 5/2/2019		

Project Location: Webster County, Kentucky

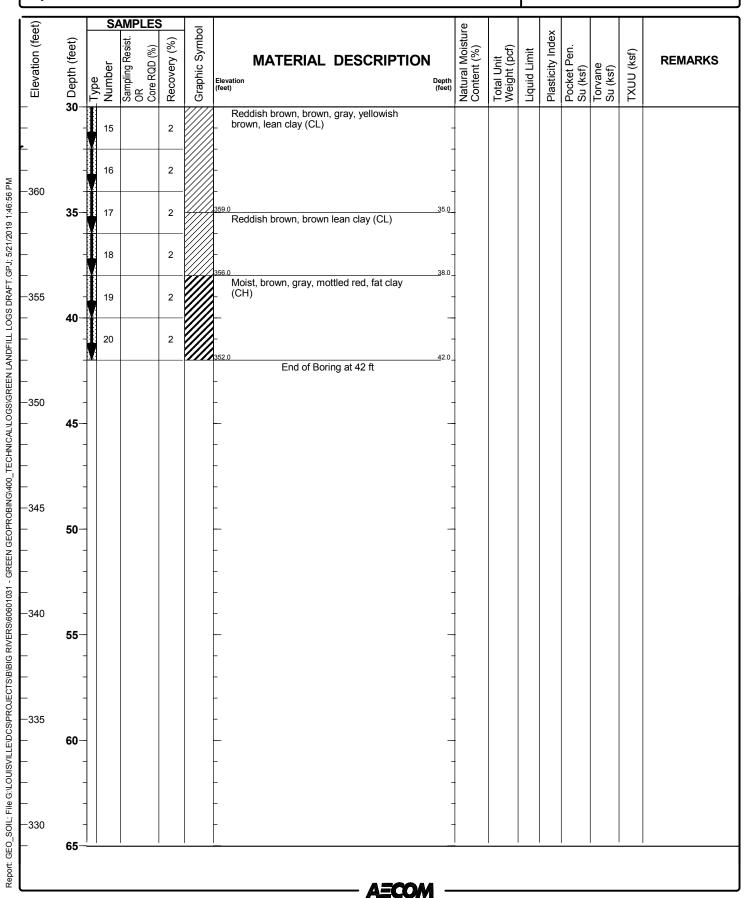
Log of Boring GESB-18



Project Location: Webster County, Kentucky

Project Number: 60601031

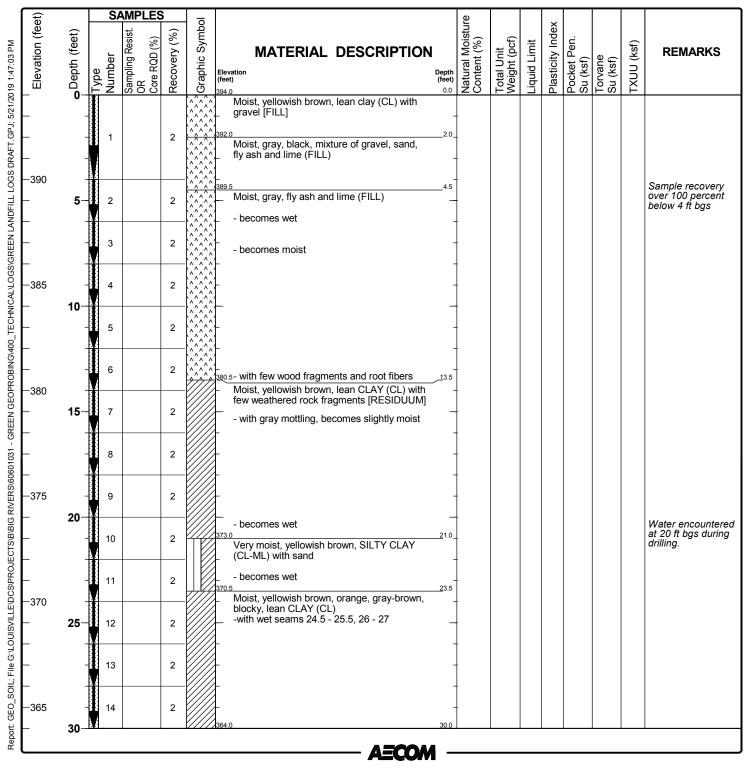
Log of Boring GESB-19


Date(s) Drilled	05/02/2019 12:00 AM to 05/02/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	42.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 300 (ft NAD83)	Groundwater Level(s)	ft on		

Project Location: Webster County, Kentucky

Project Number: 60601031

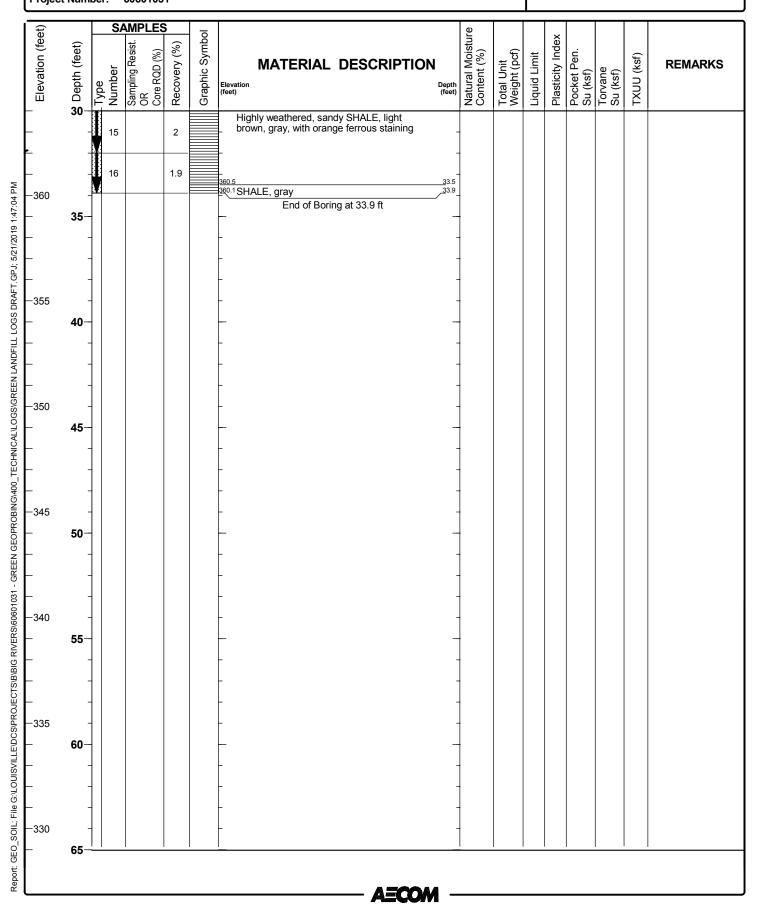
Log of Boring GESB-19



Project Location: Webster County, Kentucky

Project Number: 60601031

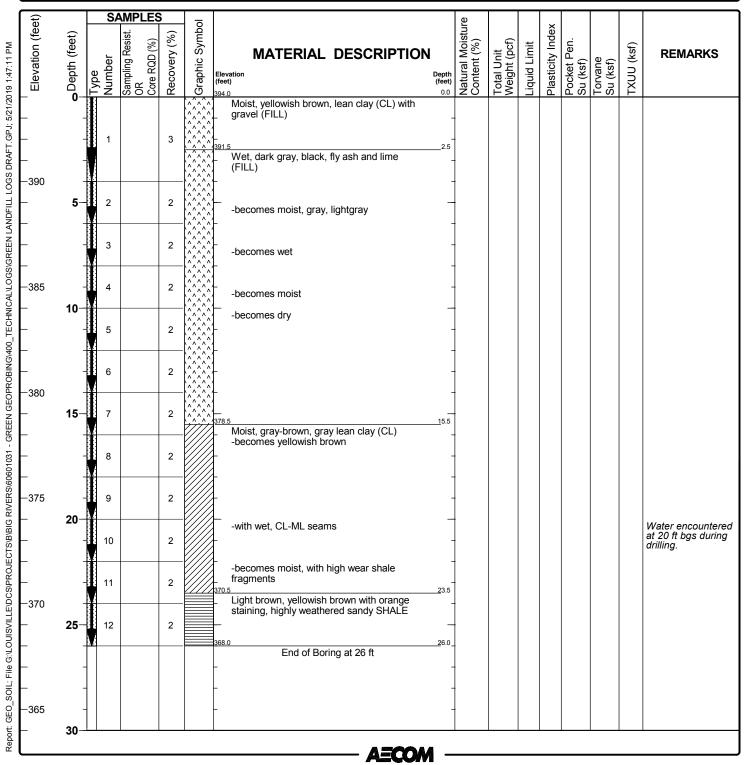
Log of Boring GESB-20


Date(s) Drilled	05/06/2019 12:00 AM to 05/06/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	33.9 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 200 (ft NAD83)	Groundwater Level(s)	20 ft on 5/6/2019		

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-20


Project Location: Webster County, Kentucky

Project Number: 60601031

Troject Location. Webster County, Rentucky

Log of Boring GESB-21

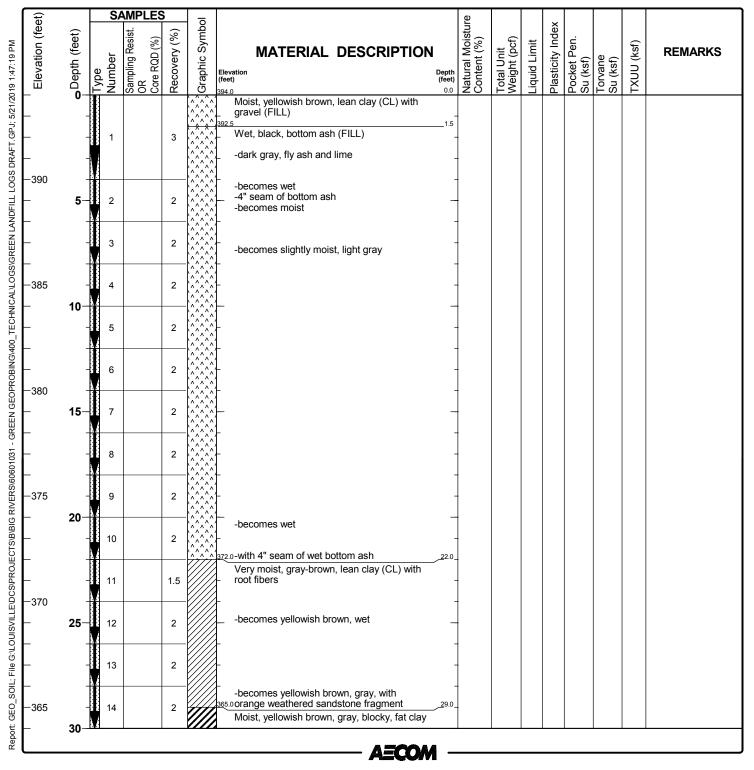
Date(s) Drilled	05/06/2019 12:00 AM to 05/06/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	26.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 100 (ft NAD83)	Groundwater Level(s)	20 ft on 5/6/2019		

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-22

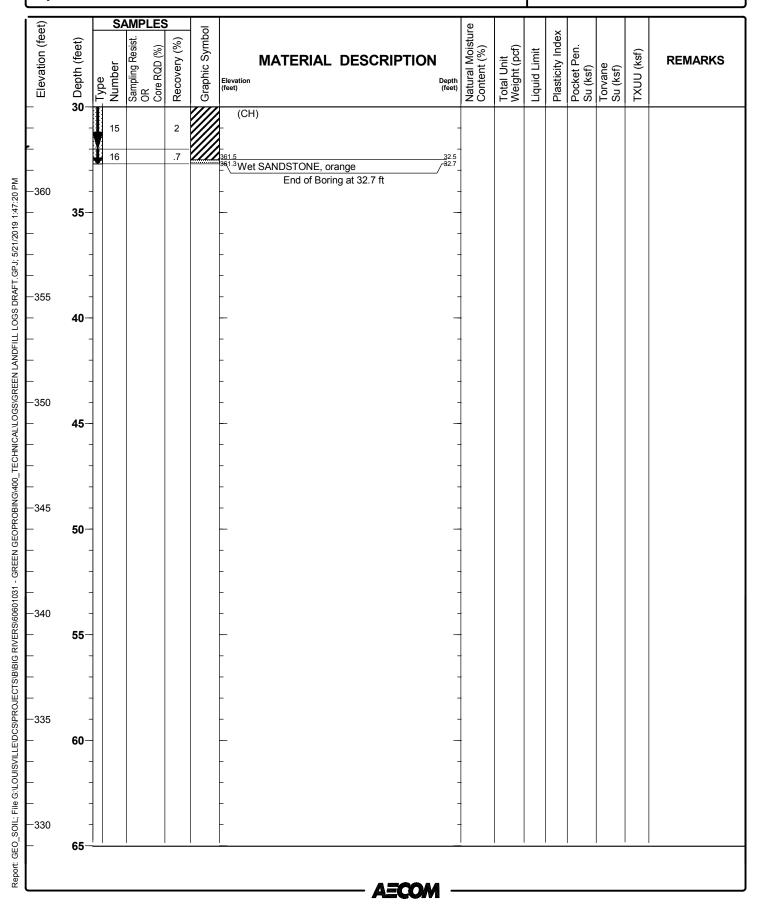
Date(s) Drilled	05/06/2019 12:00 AM to 05/06/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	27.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E (ft NAD83)	Groundwater Level(s)	20 ft on 5/6/2019		


£		SA	MPL	ES		_			ф							
Elevation (feet)	Type	Number	Sampling Resist. OR	Core RQD (%)	Recovery (%)	Graphic Symbol	MATERIAL DESCRIPTIO Elevation (feet) 394.0	Depth (feet)		Total Unit Weight (pcf)	Liquid Limit	Plasticity Index	Pocket Pen. Su (ksf)	Torvane Su (ksf)	TXUU (ksf)	REMARKS
- - - -390	-	1			4		Moist, yellowish brown, lean clay (CL) with gravel (FILL) 392.0 Wet, black, gray, mixture of bottom ash, fly ash and lime (FILL)	2.0								
	5-1	2			2		-becomes very moist	_	_							
-	-	3			2		-becomes wet -becomes slightly moist		1							
- -385		4			2				1							
- 1(-		5			2	\^^^/ \^^^/ \^^^/	-becomes very moist becomes very moist 	_ 11.5	-							
-		6			2		Moist, yellowish brown, gray, lean clay (CL)		-							
-380 - 1 !	5-1	7			2		-becomes slightly moist	_	_							
-		8			2		- -becomes very moist									
- -375		9			2		-becomes moist -wet 19-19.5'	20. <u>0</u>								
- 20 -) 	10			2		Wet, yellowish brown, gray silty clay (CL-ML)	22.0	-							Water encounter at 20 ft bgs durin drilling.
-	-	11			2		Moist, yellowish brown, gray, lean clay (CL) -becomes slightly moist	<u></u>								
-370 - 2 !	5-1	12			2		369.0-becomes wet Moist, gray, orange-brown, sand silty clay 368.0 (CL-ML)	25.0 26.0								
_		13			1		367.0 Highly weathered sandy SHALE, lightly yellowish gray End of Boring at 27 ft	27.0								
- -365 - 3 0	\coprod						-		-							

Project Location: Webster County, Kentucky

Project Number: 60601031

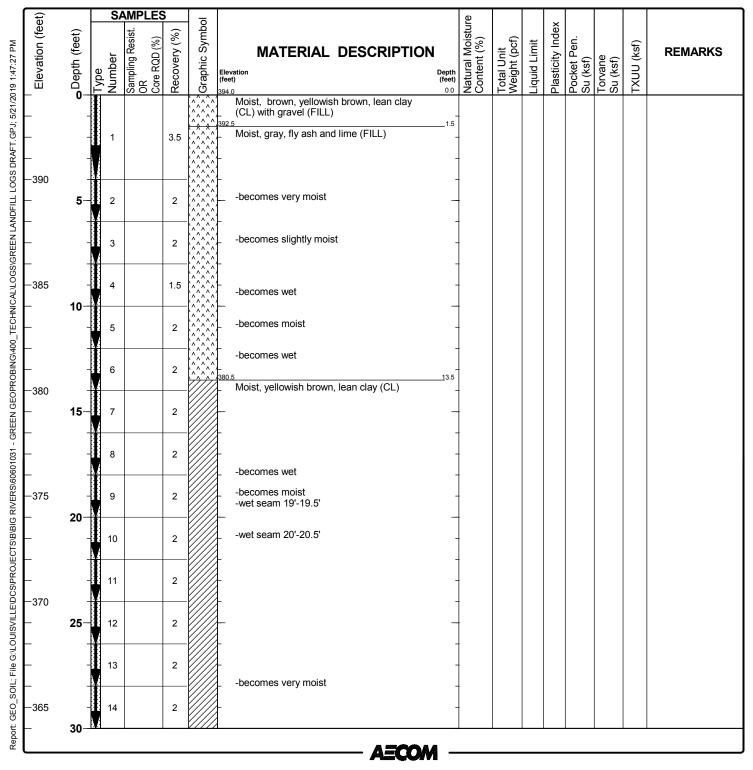
Log of Boring GESB-23


Date(s) Drilled	05/06/2019 12:00 AM to 05/06/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	32.7 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E -150 (ft NAD83)	Groundwater Level(s)	ft on		

Project Location: Webster County, Kentucky

60601031 Project Number:

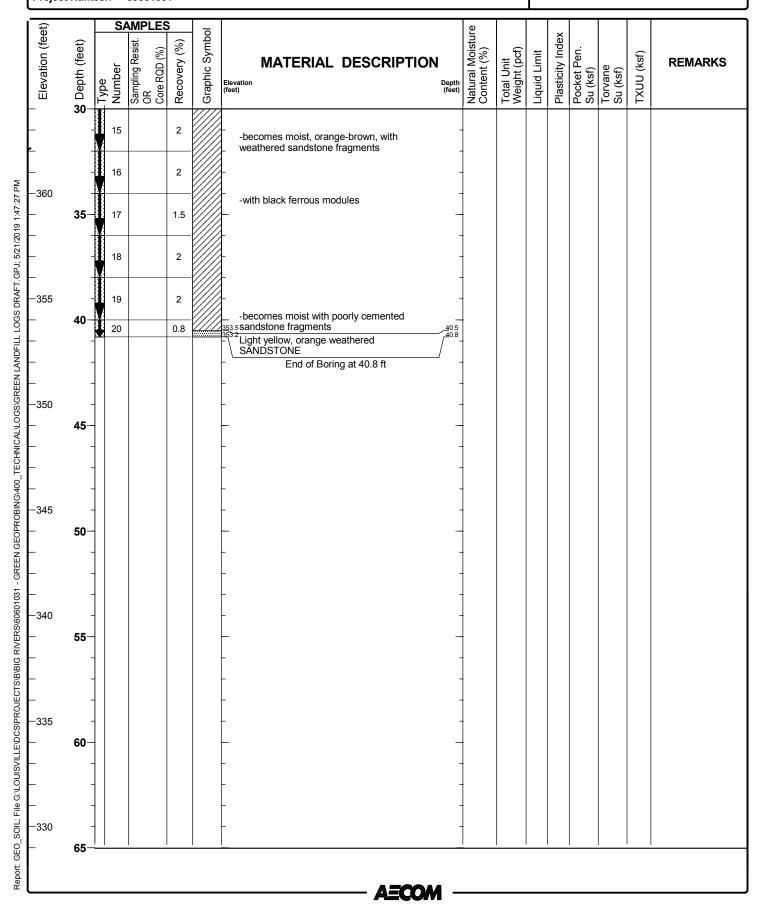
Log of Boring GESB-23



Project Location: Webster County, Kentucky

Project Number: 60601031

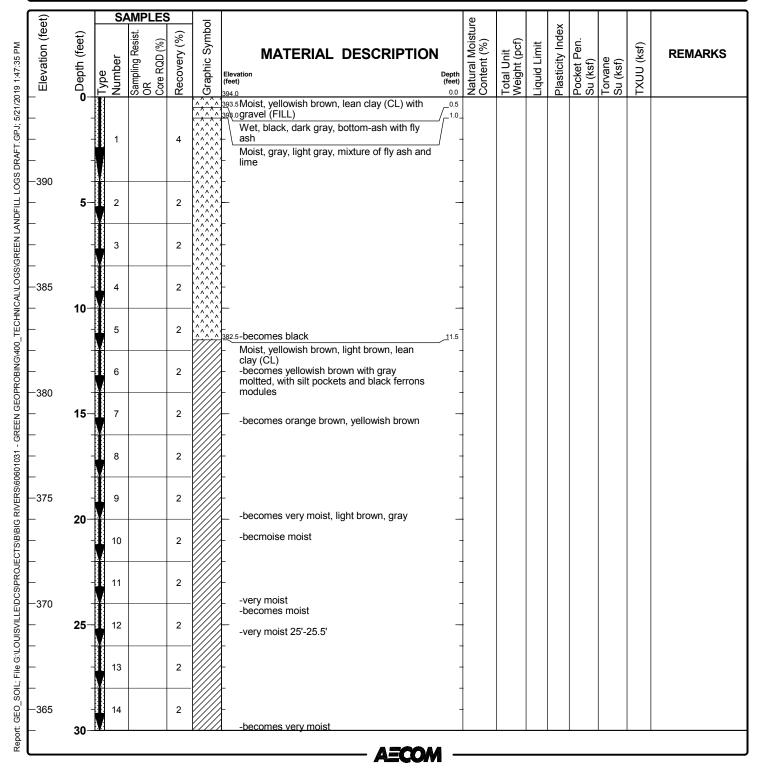
Log of Boring GESB-24


Date(s) Drilled	05/06/2019 12:00 AM to 05/06/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	40.8 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E -300 (ft NAD83)	Groundwater Level(s)	ft on		

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-24

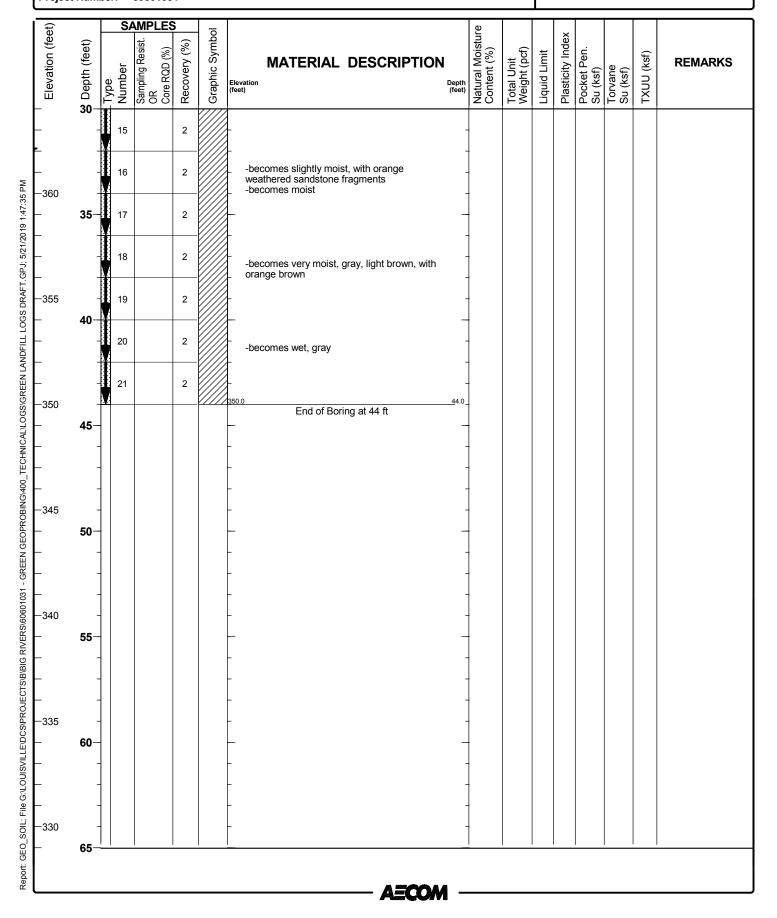


Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-25

Date(s) Drilled	05/07/2019 12:00 AM to 05/07/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E -450 (ft NAD83)	Groundwater Level(s)	ft on		



Project Location: Webster County, Kentucky

Sheet 2 of

Project Number: 60601031

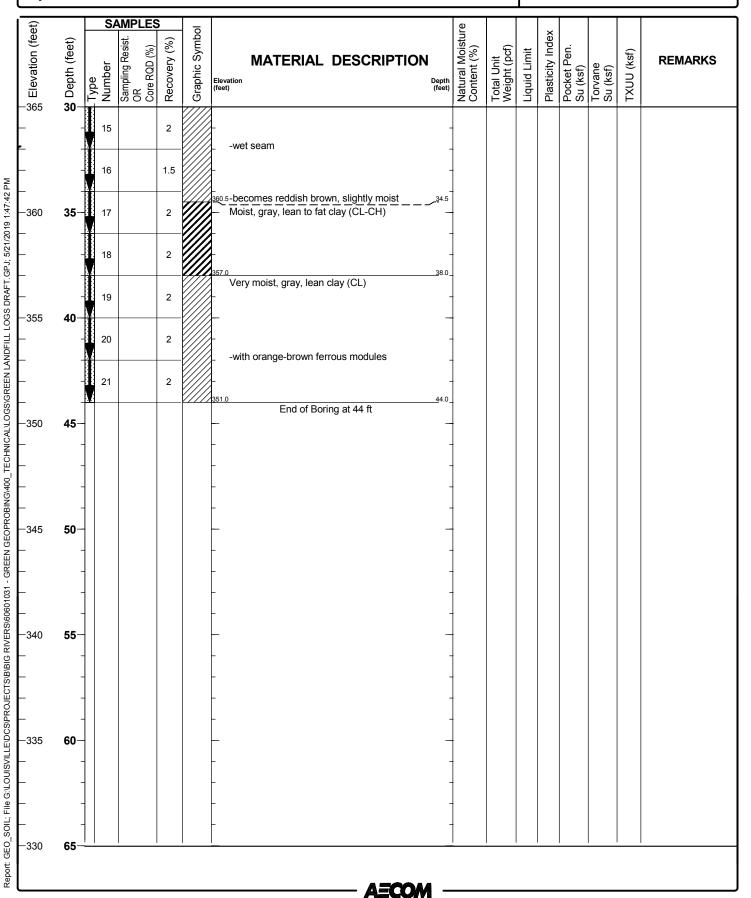
Log of Boring GESB-25
Sheet 2 of 2

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-26

Date(s) Drilled	05/07/2019 12:00 AM to 05/07/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	395 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E -600 (ft NAD83)	Groundwater Level(s)	10 ft on 5/7/2019		


£		SA	MPLES	3					മ			.,				
 ଜୁElevation (feet)	Depth (feet)	Type Number	Sampling Resist. OR Core RQD (%)	Recovery (%)	Gra	levation eet)	DESCRIPTION	Depth (feet)	Natural Moisture Content (%)	Total Unit Weight (pcf)	Liquid Limit	Plasticity Index	Pocket Pen. Su (ksf)	Torvane Su (ksf)	TXUU (ksf)	REMARKS
— —	-	1		3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Moist, yellowish brown (CL) with sand and gra		2.0								
—390 —	5-	2		2		Moist, gray, light gray, lime	mixture of fly ash and	_								
_ _	_	3		2				-								
− −385	10-	4		2		-becomes very moist		-								
_		5		1.5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	33.5 Moist, dark grayish gre 22.5with root fragments (R	een, lean clay (CL)	11.5	•							Water encountered at 10 ft bgs during drilling.
_	_	6		2	34	Moist, yellowish brown mottled, lean clay (CL)	n with light brown	<u>1</u> 2.5 - -								
—380 —	15-	7		2		-		-	·							
-	- -	8		2		-with gray mottled		-								
_ −375	20	9		2		-		-								
_ _	_ 	10		2		-becomes slightly mois	st	-								
_	-	11		2		3000 molet		-								
−370 −	25	12		2		-becomes very moist		-								
_	_	13		2		-becomes moist -becomes slightly mois	st	-								
_ _365	30	14		2		-becomes moist		-								

Project Location: Webster County, Kentucky

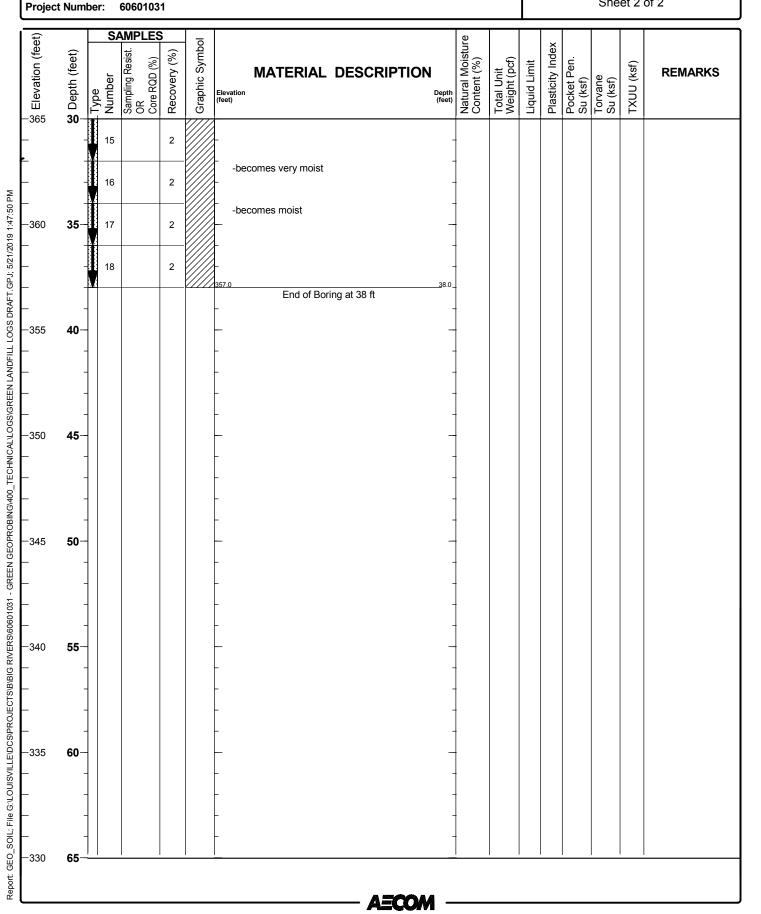
Project Location. Webster County, Rentuck

Project Number: 60601031

Log of Boring GESB-26

Project Location: Webster County, Kentucky

Project Number: 60601031

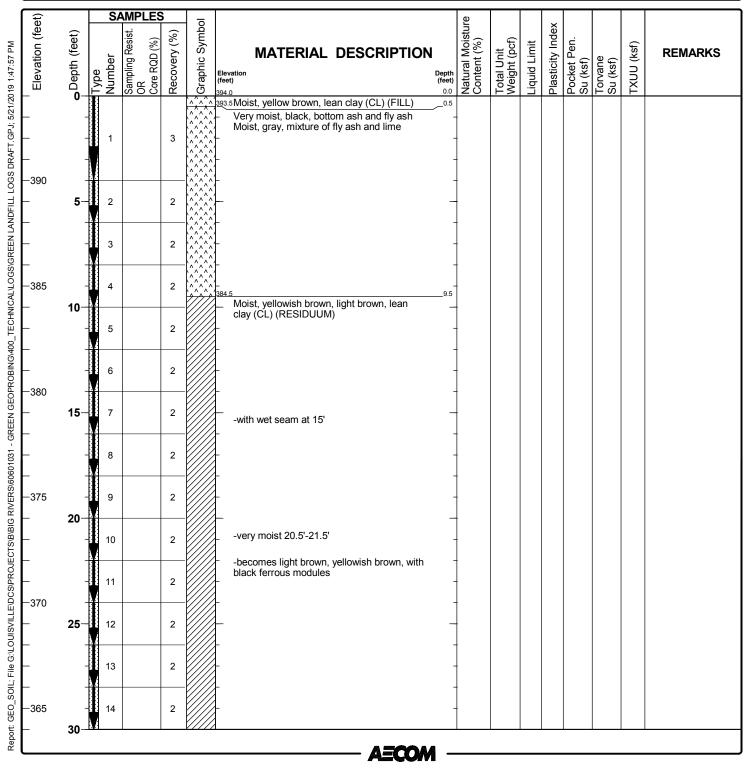

Log of Boring GESB-27

Date(s) Drilled	05/07/2019 12:00 AM to 05/07/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	38.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	395 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E -750 (ft NAD83)	Groundwater Level(s)	1.5 ft on 5/7/2019		

et)		S	AMP		3	_			ē			J				
୍ର GElevation (feet)	Depth (feet)	Type Number	Sampling Resist.	Core RQD (%)	Recovery (%)	ΙŌΙ	MATERIAL DESCRIPT Elevation (feet) 995.0	Depth (feet		Total Unit Weight (pcf)	Liquid Limit	Plasticity Index	Pocket Pen. Su (ksf)	Torvane Su (ksf)	TXUU (ksf)	REMARKS
- -	-	1			4	· · · · · · · · · · · · · · · · · · ·	Moist, yellowish brown, lean clay (CL) w gravel (FILL) Wet, dark gray, mixture of bottom ash a fly ash Moist, gray, mixture of fly ash and lime	1.3								
- -390 -	5-	2			2		· -	-								
_	-	3			2											
- −385	10	4			2		hoopman light grou	-								
_	-	5			2		-becomes light gray									
_	-	6			2	·[^^^^]	_{. 881.5} . Moist, yellowish brown, light brown, gray (FILL)	13.5								
-380 -	15-	7			2		Moist, greenish gray, with organics, lear clay (CL) -becomes very moist, yellowish brown, l									
- -	-	8			2		brown and gray mottled	3.4								
- −375	20-	9			2		-	-								
_	-	10			2		-becomes very moist -becomes moist									
_	-	11 V			2											
-370 -	25-	12			2		-very moist 25'-25.5	-								
_	- -	13			2											
- -365	30	14			2		-wet seam at 29'									

Project Location: Webster County, Kentucky

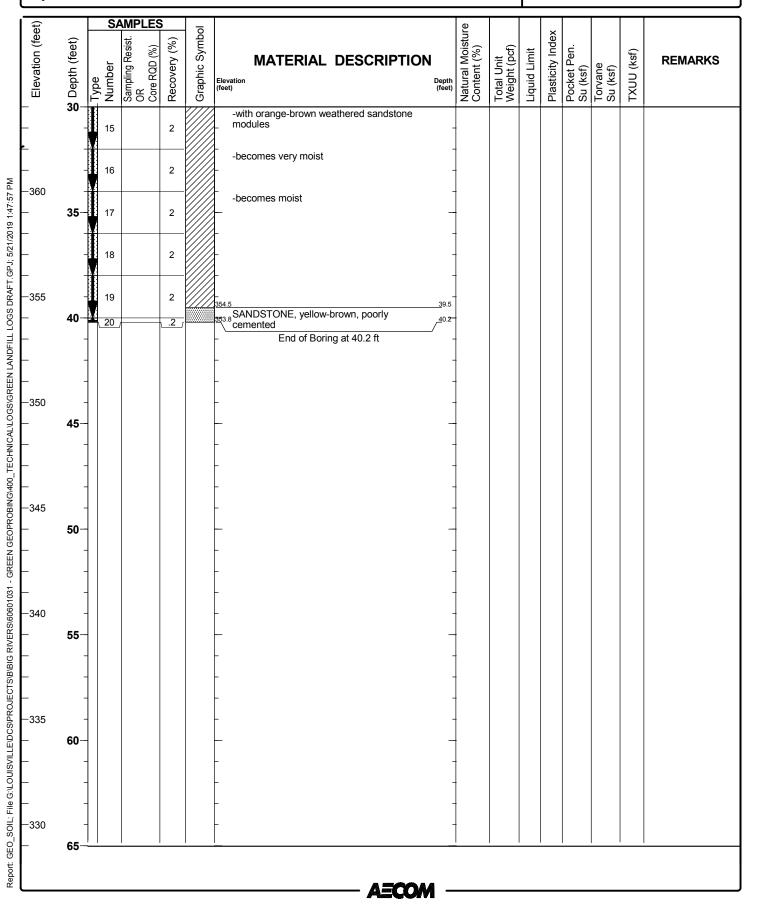
Log of Boring GESB-27



Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-28


Date(s) Drilled	05/07/2019 12:00 AM to 05/07/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	40.2 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E -900 (ft NAD83)	Groundwater Level(s)	ft on		

Project Location: Webster County, Kentucky

Project Number: 60601031

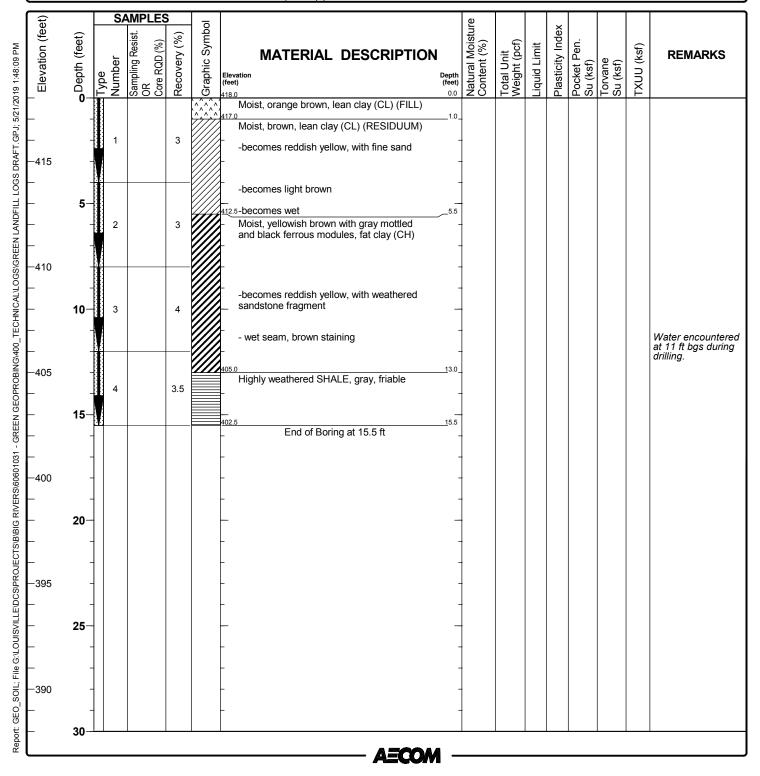
Log of Boring GESB-28

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-29

Date(s) Drilled	05/08/2019 12:00 AM to 05/08/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	25.2 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	393 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E -1050 (ft NAD83)	Groundwater Level(s)	ft on		

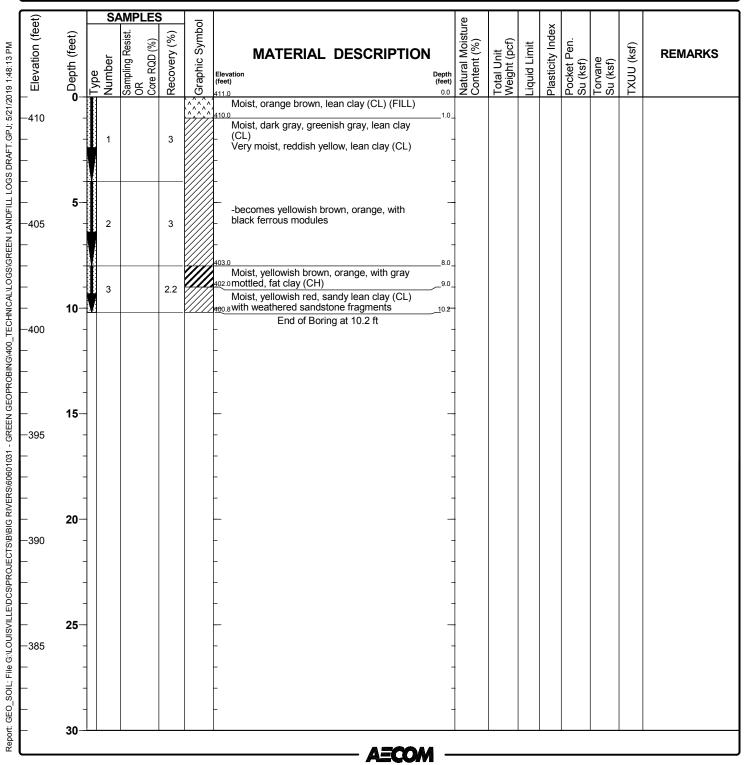

Project Location: Webster County, Kentucky

Project Number: 60601031

Sheet 1 of 1

Log of Boring GNWSB-1

Date(s) Drilled	05/08/2019 12:00 AM to 05/08/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	15.5 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	418 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N 1500 E 1000 (ft NAD83)	Groundwater Level(s)	11 ft on 5/8/2019		

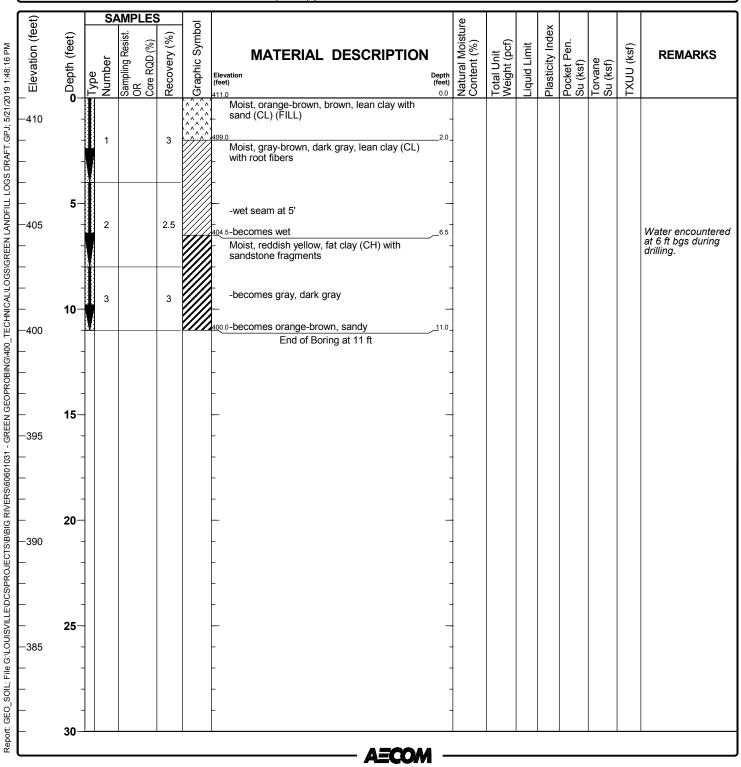


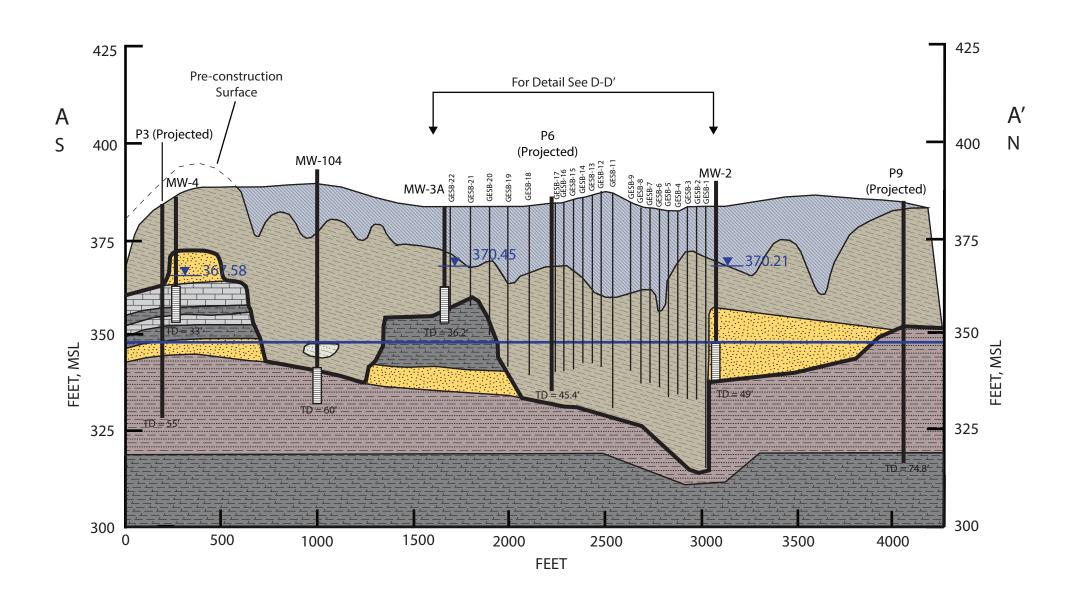
Project Location: Webster County, Kentucky

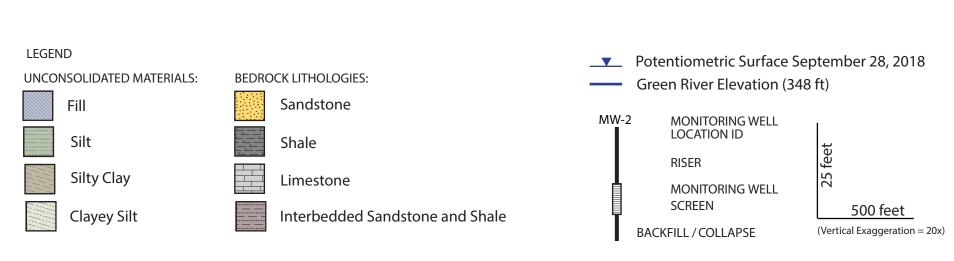
Project Number: 60601031

Log of Boring GNWSB-2

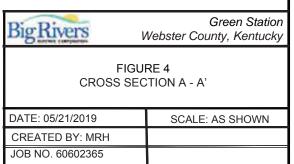
Date(s) Drilled	05/08/2019 12:00 AM to 05/08/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	10.2 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	411 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N 1450 E 1000 (ft NAD83)	Groundwater Level(s)	ft on		




Project Location: Webster County, Kentucky


Project Number: 60601031

Log of Boring GNWSB-3


Date(s) Drilled	05/08/2019 12:00 AM to 05/08/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	11.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	411 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N 1500 E 1050 (ft NAD83)	Groundwater Level(s)	6 ft on 5/8/2019		

Appendix C

Northwest Seep Laboratory Analytical Results

Pikeville, KY 606.432.3104

812.696.5076 Paducah, KY

Farmersburg, IN

Lexington, KY 859.299.7775

270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Certificate of Analysis 9042044

Chad Phillips Big Rivers Electric Corporation Reid/Green Station PO Box 24 Henderson KY, 42419

Customer ID: Report Printed:

44-102032 04/16/2019 10:36

Project Name: Reid/Green/Sebree Station Workorder: 9042044

Dear Chad Phillips

Enclosed are the analytical results for samples received at one of our laboratories on 04/03/2019 12:12.

McCoy & McCoy Laboratories, Inc. is a commercial laboratory accredited by various state and national authorities, including Indiana, Kentucky, Tennessee, and Virginia's National Environmental Laboratory Accreditation Program (NELAP). With the NELAP accreditation, applicable test results are certified to meet the requirements of the National Environmental Laboratory Accreditation Program.

If you have any questions concerning this report please contact the individual listed below.

Please visit our website at www.mccoylabs.com for a listing of the NELAP accreditations and Scope of Work, as well as, links to other scientific organizations.

This certificate of analysis may not be reproduced without the written consent of McCoy & McCoy Laboratories, Inc.

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Rob Whittington, Project Manager

Farmersburg, IN 812.696.5076 606.432.3104 Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Pikeville, KY

SAMPLE SUMMARY

Lab ID	Client Sample ID/Alias	Matrix	Date Collected	Date Received	Sampled By
9042044-01	RS1/Green Landfill Site	Water	04/02/2019 15:45	04/03/2019 12:12	Gregory Dick
9042044-02	SW-CULVERT-1/Green Landfill Site	Water	04/02/2019 13:43	04/03/2019 12:12	Gregory Dick

Pikeville, KY Farmersburg, IN 812.696.5076 606.432.3104

Paducah, KY

Lexington, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

ANALYTICAL RESULTS

Sample Collection Date Time: 04/02/2019 15:45 Lab Sample ID: 9042044-01 Description: RS1 Green Landfill Site Sample Received Date Time: 04/03/2019 12:12

Volatile Organic Compounds

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
1,1,1-Trichloroethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,1,2,2-Tetrachloroethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,1,2-Trichloroethane	ND	U	ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,1-Dichloroethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,1-Dichloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,2,4-Trichlorobenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,2,4-Trimethylbenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,2-Dichlorobenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,2-Dichloroethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,2-Dichloropropane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,3,5-Trimethylbenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,3-Dichlorobenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,3-Dichloropropane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,4-Dichlorobenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
2-Butanone	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
2-Chloroethylvinyl Ether	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
2-Hexanone	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
2-Nitropropane	ND	U	ug/L	10	5	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
4-Methyl-2-pentanone	ND	U	ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Acetone	ND	U	ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Acrolein	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Acrylonitrile	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Benzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Bromodichloromethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Bromoform	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Bromomethane	ND	U	ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Carbon disulfide	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Carbon tetrachloride	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Chlorobenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Chloroethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Chloroform	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Chloromethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
cis-1,2-Dichloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
cis-1,3-Dichloropropene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Dibromochloromethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Dichlorodifluoromethane	ND	U	ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Diethyl ether	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Ethylbenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Hexachloroethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Isopropylbenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
m,p-Xylene	ND	U	ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Methyl tert-Butyl Ether	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Methylene Chloride	2	J	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Volatile Organic Compounds

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Nitrobenzene	ND	U	ug/L	10	5	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
o-Xylene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Styrene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Tetrachloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Tetrahydrofuran	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Toluene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
trans-1,2-Dichloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
trans-1,3-Dichloropropene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Trichloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Trichlorofluoromethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Vinyl Acetate	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Vinyl chloride	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM

Surrogate: Bromofluorobenzene 94.3 % 85.1-114.2 04/03/2019 16:52 04/04/2019 16:02 HEM SW846-8260 B

Base Neutral and Acid Extractable Organics

Analyte	Result	Flag	Units	MRL	MDL Method	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
1,2-Dichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
1,2-Diphenylhydrazine	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
1,3-Dichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
1,4-Dichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,2'-oxybis-(1-Chloropropane)	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,4,5-Trichlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,4,6-Trichlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,4-Dichlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,4-Dimethylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,4-Dinitrophenol	ND	L2, V7,	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,4-Dinitrotoluene	ND	U L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,6-Dinitrotoluene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2-Chloronaphthalene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2-Chlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2-Methylnaphthalene	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2-Methylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2-Nitroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2-Nitrophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
3,3'-Dichlorobenzidine	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
3-Nitroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4,6-Dinitro-2-methylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4-Bromophenyl-phenylether	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4-Chloro-3-methylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4-Chloroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4-Chlorophenyl-phenylether	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4-Methylphenol	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4-Nitroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4-Nitrophenol	ND	V7, L2,	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
Acenaphthene	ND	U L2. U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
e contract		, •	- J -					

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Base Neutral and Acid Extractable Organics

Analyte	Result	Flag	Units	MRL	MDL	Method		Prepared		Analyze	ed	Analyst
alpha-Terpineol	ND	V7, U	ug/L	5		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Anthracene	ND	L2, U	ug/L	15		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Benzidine	ND	U	ug/L	10		SW846-8270 C		04/03/2019 17:00	1	04/08/2019	15:37	JDR
Benzo(a)anthracene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Benzo(a)pyrene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Benzo(b)fluoranthene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Benzo(g,h,i)perylene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Benzo(k)fluoranthene	ND	L1, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Benzoic acid	ND	V7, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Benzyl alcohol	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Bis(2-chloroethoxy)methane	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Bis(2-chloroethyl) ether	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Bis(2-ethylhexyl)phthalate	ND	L2, U	ug/L	40		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Butylbenzylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Carbazole	ND	V7, U	ug/L	11		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Chrysene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Dibenzo(a,h)anthracene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Dibenzofuran	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Diethylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Dimethylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Di-n-butylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Di-n-octylphthalate	ND	V7, L2,	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Fluoranthene	ND	U L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00	ı	04/08/2019	15:37	JDR
Fluorene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
Hexachlorobenzene	ND	L2, U	ug/L	13		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
Hexachlorobutadiene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
Hexachlorocyclopentadiene	ND	V7, L2,	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
		U,, L2,	-9. –									
Hexachloroethane	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Indeno(1,2,3-cd)pyrene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Isophorone	ND	U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Naphthalene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Nitrobenzene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
N-Nitrosodimethylamine	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
N-Nitroso-di-n-propylamine	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
N-Nitrosodiphenylamine	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Pentachlorophenol	ND	V7, L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Phenanthrene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Phenol	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Pyrene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Pyridine	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Surrogate: 2,4,6-Tribromophenol			59.2 %	45-8	35	04/03/2019	17:00	04/08/2019	15:37	JDR	SW846-8	3270 C
Surrogate: 2-Fluorobiphenyl			59.8 %	16-9		04/03/2019		04/08/2019			SW846-8	
Surrogate: 2-Fluorophenol			39.0 %	30-7		04/03/2019		04/08/2019			SW846-8	
Surrogate: Nitrobenzene-d5			49.6 %	25-1		04/03/2019		04/08/2019			SW846-8	
Surrogate: Phenol-d6			48.5 %	21-9		04/03/2019		04/08/2019		JDR	SW846-8	
Surrogate: Terphenyl-d14			74.6 %	30-1		04/03/2019		04/08/2019			SW846-8	
Canagato. Torphonyi ara			/0	30 1	_•	5 50, 20 10		5 55, 25 15		ושט		

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Metals by EPA 200 Series Methods

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Aluminum	0.27	D2, J	mg/L	0.40	0.14	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Antimony	ND	U	mg/L	0.005	0.002	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 11:59	DMH
Arsenic	ND	D3, U	mg/L	0.0100	0.0020	EPA 200.8 REV	04/05/2019 11:19	04/10/2019 19:54	DMH
Barium	0.098		mg/L	0.004	0.001	5.4 EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 11:59	DMH
Beryllium	ND	D2, U	mg/L	0.0200	0.0100	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Boron	1.15	D2	mg/L	1.00	1.00	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:13	AKB
Cadmium	0.0005	J	mg/L	0.0010	0.0001	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 11:59	DMH
Calcium	1150	D1	mg/L	400	130	EPA 200.7 REV 4.4	04/05/2019 11:19	04/09/2019 11:29	AKB
Chromium	ND	D2, U	mg/L	0.0200	0.0060	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Cobalt	ND	D2, U	mg/L	0.040	0.040	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Copper	ND	D2, U	mg/L	0.030	0.010	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Iron	18.1	D2	mg/L	1.20	0.500	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:13	AKB
Lead	0.002		mg/L	0.002	0.0005	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 11:59	DMH
Lithium	0.06	D2, J	mg/L	0.20	0.05	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Magnesium	49.6	D2	mg/L	2.00	0.900	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:13	AKB
Manganese	20.5	D1	mg/L	0.400	0.200	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:16	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 11:59	DMH
Molybdenum	ND	D2, U	mg/L	0.10	0.02	5.4 EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Nickel	ND	D2, U	mg/L	0.030	0.010	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Potassium	301	D1, L1	mg/L	50.0	22.0	EPA 200.7 REV	04/05/2019 11:19	04/09/2019 11:26	AKB
Selenium	ND	D2, U	mg/L	0.030	0.010	4.4 EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Silver	ND	U	mg/L	0.0010	0.0004		04/05/2019 11:19	04/10/2019 11:59	DMH
Sodium	277	D1	mg/L	26.0	10.0	EPA 200.7 REV	04/05/2019 11:19	04/09/2019 11:26	AKB
Thallium	ND	U	mg/L	0.0020	0.0001	4.4 EPA 200.8 REV	04/05/2019 11:19	04/10/2019 11:59	DMH
Vanadium	ND	D2, U	mg/L	0.040	0.020	5.4 EPA 200.8 REV	04/05/2019 11:19	04/10/2019 19:54	DMH
Zinc	ND	D2, U	mg/L	0.20	0.20	5.4 EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag Un	ts MRL	MDL	Method	Prepared	Analyzed	Analyst
Total Dissolved Solids	6770	mg	L 50	50	2540 C-1997	04/04/2019 17:06	04/05/2019 16:24	JTL
Total Suspended Solids	336	mg	L 10.0	10.0	2540 D-2011	04/04/2019 16:10	04/04/2019 16:10	ARC

Ion Chromatography Madisonville

Analyte	Result Flag	Units	MRL	MDL Method	Prepared	Analyzed	Analyst

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	4090	D	mg/L	200	128	EPA 300.0 REV 2.1	04/04/2019 09:33	04/04/2019 09:33	CSC
Fluoride	ND	U	mg/L	0.2		EPA 300.0 REV 2.1	04/04/2019 09:17	04/04/2019 09:17	CSC
Sulfate	3040	D	mg/L	100	50.0	EPA 300.0 REV 2.1	04/04/2019 09:17	04/04/2019 09:17	CSC

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

ANALYTICAL RESULTS

Lab Sample ID: **9042044-02**Description: **SW-CULVERT-1 Green Landfill Site**Sample Collection Date Time: 04/02/2019 13:43
Sample Received Date Time: 04/03/2019 12:12

Volatile Organic Compounds

Analyte Resi	ult f	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
1,1,1-Trichloroethane	ID ι	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,1,2,2-Tetrachloroethane	IDι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,1,2-Trichloroethane	IDι	∪ ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,1-Dichloroethane	IDι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,1-Dichloroethene	ID ι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,2,4-Trichlorobenzene	IDι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,2,4-Trimethylbenzene	ID ι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,2-Dichlorobenzene	IDι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,2-Dichloroethane	IDι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,2-Dichloropropane	IDι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,3,5-Trimethylbenzene	ID ι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,3-Dichlorobenzene	IDι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,3-Dichloropropane	IDι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,4-Dichlorobenzene	IDι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
2-Butanone N	ID ι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
2-Chloroethylvinyl Ether	ID ι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
2-Hexanone	ID ι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
2-Nitropropane	ID ι	∪ ug/L	10	5	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
4-Methyl-2-pentanone	ID ι	∪ ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Acetone	ID ι	∪ ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Acrolein	ID ι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Acrylonitrile	ID ι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Benzene N	ID ι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Bromodichloromethane N	ID ι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Bromoform	IDι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Bromomethane	IDι	∪ ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Carbon disulfide N	IDι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Carbon tetrachloride N	ID ι	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Chlorobenzene	ID ι	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Chloroethane	ID ι	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Chloroform	ID ι	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Chloromethane	IDι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
cis-1,2-Dichloroethene	ID ι	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
cis-1,3-Dichloropropene	IDι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Dibromochloromethane N	IDι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Dichlorodifluoromethane N	IDι	∪ ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Diethyl ether N	ID ι	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Ethylbenzene N	ID ι	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Hexachloroethane N	ID ι	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Isopropylbenzene	ID ι	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
m,p-Xylene N	ID ι	ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Methyl tert-Butyl Ether	ID ι	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Methylene Chloride	ID ι	∪ ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Volatile Organic Compounds

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Nitrobenzene	ND	U	ug/L	10	5	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
o-Xylene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Styrene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Tetrachloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Tetrahydrofuran	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Toluene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
trans-1,2-Dichloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
trans-1,3-Dichloropropene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Trichloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Trichlorofluoromethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Vinyl Acetate	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Vinyl chloride	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM

Surrogate: Bromofluorobenzene 92.4 % 85.1-114.2 04/03/2019 16:52 04/04/2019 16:33 HEM SW846-8260 B

Base Neutral and Acid Extractable Organics

Analyte	Result	Flag	Units	MRL	MDL Method	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
1,2-Dichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
1,2-Diphenylhydrazine	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
1,3-Dichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
1,4-Dichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2,2'-oxybis-(1-Chloropropane)	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2,4,5-Trichlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2,4,6-Trichlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2,4-Dichlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2,4-Dimethylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2,4-Dinitrophenol	ND	V7, L2,	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
0.4.0: 11.4.1	N.D.	U		40	014/04/0.0070.0	0.4/0.0/0.40, 47.00	0.4/0.0/0.40	100
2,4-Dinitrotoluene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2,6-Dinitrotoluene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2-Chloronaphthalene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2-Chlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2-Methylnaphthalene	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2-Methylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2-Nitroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2-Nitrophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
3,3'-Dichlorobenzidine	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
3-Nitroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4,6-Dinitro-2-methylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4-Bromophenyl-phenylether	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4-Chloro-3-methylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4-Chloroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4-Chlorophenyl-phenylether	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4-Methylphenol	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4-Nitroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4-Nitrophenol	ND	V7, L2,	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
Acananhthana	ND	U	/1	10	CW046 0270 C	04/02/2010 17:00	04/09/2010 10:00	IDD
Acenaphthene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
Acenaphthylene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Base Neutral and Acid Extractable Organics

Analyte	Result	Flag	Units	MRL	MDL	Method		Prepared		Analyz	ed	Analyst
alpha-Terpineol	ND	V7, U	ug/L	5		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Anthracene	ND	L2, U	ug/L	15		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Benzidine	ND	U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Benzo(a)anthracene	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Benzo(a)pyrene	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Benzo(b)fluoranthene	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Benzo(g,h,i)perylene	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Benzo(k)fluoranthene	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Benzoic acid	ND	V7, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Benzyl alcohol	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Bis(2-chloroethoxy)methane	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00		04/08/2019		JDR
Bis(2-chloroethyl) ether	ND	L2, U	ug/L	10		SW846-8270 C		/03/2019 17:00		04/08/2019		JDR
Bis(2-ethylhexyl)phthalate	105	J, L2	ug/L	40		SW846-8270 C		/03/2019 17:00		04/08/2019		JDR
Butylbenzylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		/03/2019 17:00		04/08/2019		JDR
Carbazole	ND	V7, U	ug/L	11		SW846-8270 C		/03/2019 17:00		04/08/2019		JDR
Chrysene	ND	L2, U	ug/L	10		SW846-8270 C		/03/2019 17:00		04/08/2019		JDR
Dibenzo(a,h)anthracene	ND	L2, U	ug/L	10		SW846-8270 C		/03/2019 17:00		04/08/2019		JDR
Dibenzofuran	ND	L2, U	ug/L	10		SW846-8270 C		/03/2019 17:00		04/08/2019		JDR
Diethylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		/03/2019 17:00 /03/2019 17:00		04/08/2019		JDR
Dimethylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		/03/2019 17:00 /03/2019 17:00		04/08/2019		JDR
Di-n-butylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		/03/2019 17:00 /03/2019 17:00		04/08/2019		JDR
Di-n-octylphthalate	ND		-	10		SW846-8270 C		/03/2019 17:00 /03/2019 17:00		04/08/2019		JDR
Di-fi-Octylphinalate	ND	L2, V7, U	ug/L	10		377040-0270 C	04	703/2019 17.00	,	04/00/2013	9 10.00	JUIN
Fluoranthene	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Fluorene	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Hexachlorobenzene	ND	L2, U	ug/L	13		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Hexachlorobutadiene	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Hexachlorocyclopentadiene	ND	L2, V7,	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
		U										
Hexachloroethane	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Indeno(1,2,3-cd)pyrene	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Isophorone	ND	U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Naphthalene	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Nitrobenzene	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
N-Nitrosodimethylamine	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
N-Nitroso-di-n-propylamine	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
N-Nitrosodiphenylamine	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Pentachlorophenol	ND	V7, L2,	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR
Dharashara	ND	U		40		014/04/0.0070.0	0.4	10010010 17.00		04/00/004	2 40 00	IDD
Phenanthrene		L2, U	ug/L	10		SW846-8270 C		/03/2019 17:00		04/08/2019		JDR
Phenol		L2, U	ug/L	10		SW846-8270 C		/03/2019 17:00		04/08/2019		JDR
Pyrene		L2, U	ug/L	10		SW846-8270 C		/03/2019 17:00		04/08/2019		JDR
Pyridine	ND	L2, U	ug/L	10		SW846-8270 C	04	/03/2019 17:00)	04/08/2019	9 16:06	JDR ——
Surrogate: 2,4,6-Tribromophenol			58.3 %	45-8	5	04/03/2019	17:00	04/08/2019	16:06	JDR	SW846-8	3270 C
Surrogate: 2-Fluorobiphenyl			64.0 %	16-9	9	04/03/2019	17:00	04/08/2019	16:06	JDR	SW846-8	3270 C
Surrogate: 2-Fluorophenol			39.7 %	30-7	7	04/03/2019	17:00	04/08/2019	16:06	JDR	SW846-8	3270 C
Surrogate: Nitrobenzene-d5			59.8 %	25-18	57	04/03/2019	17:00	04/08/2019	16:06	JDR	SW846-8	3270 C
Surrogate: Phenol-d6			46.8 %	21-9	3	04/03/2019	17:00	04/08/2019	16:06	JDR	SW846-8	3270 C
Surrogate: Terphenyl-d14			73.7 %	30-12	25	04/03/2019	17:00	04/08/2019	16:06	JDR	SW846-8	3270 C

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Metals by EPA 200 Series Methods

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Aluminum	ND	U, D2	mg/L	0.40	0.14	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Antimony	ND	U	mg/L	0.005	0.002	EPA 200.8 REV	04/05/2019 11:19	04/10/2019 12:06	DMH
Arsenic	ND	D3, U	mg/L	0.0100	0.0020	5.4 EPA 200.8 REV	04/05/2019 11:19	04/10/2019 20:01	DMH
Barium	0.043		mg/L	0.004	0.001	5.4 EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 12:06	DMH
Beryllium	ND	D2, U	mg/L	0.0200	0.0100	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Boron	ND	D2, U	mg/L	1.00	1.00	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:19	AKB
Cadmium	ND	U	mg/L	0.0010	0.0001	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 12:06	DMH
Calcium	203	D1	mg/L	40.0	13.0	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:23	AKB
Chromium	ND	D2, U	mg/L	0.0200	0.0060	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Cobalt	ND	D2, U	mg/L	0.040	0.040	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Copper	ND	D2, U	mg/L	0.030	0.010	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Iron	ND	D2, U	mg/L	1.20	0.500	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:19	AKB
Lead	ND	U	mg/L	0.002	0.0005	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 12:06	DMH
Lithium	0.11	D2, J	mg/L	0.20	0.05	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Magnesium	37.8	D2	mg/L	2.00	0.900	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:19	AKB
Manganese	0.227	D2	mg/L	0.040	0.020	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:19	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 12:06	DMH
Molybdenum	ND	D2, U	mg/L	0.10	0.02	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Nickel	ND	D2, U	mg/L	0.030	0.010	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Potassium	21.1	D2, L1	mg/L	5.00	2.20	EPA 200.7 REV 4.4	04/05/2019 11:19	04/09/2019 11:32	AKB
Selenium	ND	D2, U	mg/L	0.030	0.010	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Silver	ND	U	mg/L	0.0010	0.0004	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 12:06	DMH
Sodium	49.9	D2	mg/L	2.60	1.00	EPA 200.7 REV	04/05/2019 11:19	04/09/2019 11:32	AKB
Thallium	0.0001	J	mg/L	0.0020	0.0001	4.4 EPA 200.8 REV	04/05/2019 11:19	04/10/2019 12:06	DMH
Vanadium	ND	D2, U	mg/L	0.040	0.020	5.4 EPA 200.8 REV	04/05/2019 11:19	04/10/2019 20:01	DMH
Zinc	ND	D2, U	mg/L	0.20	0.20	5.4 EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH

Conventional Chemistry Analyses Madisonville

Analyte	Result Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Specific Conductance	1630	umhos/cm	1	1	2510 B-2011	04/04/2019 16:31	04/04/2019 16:31	TLB
(Lah)								

Ion Chromatography Madisonville

Analyte	Result Flag U	nits MRL	MDL Method	Prepared	Analyzed	Analyst

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Bromide	ND	U	mg/L	4.0		EPA 300.1	04/15/2019 23:29	04/15/2019 23:29	CSC
Chloride	344	D	mg/L	40.0	25.6	EPA 300.0 REV 2.1	04/04/2019 10:23	04/04/2019 10:23	CSC
Fluoride	ND	M1, U	mg/L	0.2		EPA 300.0 REV 2.1	04/04/2019 10:23	04/04/2019 10:23	CSC
Sulfate	401	D, M1	mg/L	20.0	10.0	EPA 300.0 REV 2.1	04/04/2019 10:23	04/04/2019 10:23	CSC

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Notes for work order 9042044

- Samples collected by MMLI personnel are done so in accordance with procedures set forth in MMLI field services SOPs.
- Results contained in this report are only representative of the samples received.
- MMLI does not provide interpretation of these results unless otherwise stated.
- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.
- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra.
 Concentrations reported are estimated values.

Qualifiers

U

D	Results reported from dilution.
D1	Sample required dilution due to high concentration of target analyte.
D2	Sample required dilution due to matrix interference.
D3	Sample dilution required due to insufficient sample.
E	Concentration exceeds calibration range

J5 Concentration estimated. Internal standard recoveries did not meet method acceptance criteria.

L1 The associated blank spike recovery was above method acceptance limits.

L2 The associated blank spike recovery was below method acceptance limits.

M1 Matrix spike recovery was high; the method control sample recovery was acceptable.

M2 Matrix spike recovery was low; the method control sample recovery was acceptable.

M3 The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is

 $\ \ \text{disproportionate to spike level}. \ \ \text{The method control sample recovery was acceptable}.$

M4 The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the

reporting limit. The method control sample recovery was acceptable.

S2 Surrogate recovery was below method acceptance limits.

Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the

laboratory method detection limit in our LIMS system).

V7 CCV was below the method control limit for this analyte; however the average % difference or % drift for all the

analytes met method criteria.

Y1 Sample RPD exceeded the method control limit.

Y2 MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.

Standard Quallifiers/Acronymns

MDL Method Detection Limit
MRL Minimum Reporting Limit

ND Not Detected

LCS Laboratory Control Sample

MS Matrix Spike

MSD Matrix Spike Duplicate
DUP Sample Duplicate
% Rec Percent Recovery

RPD Relative Percent Difference

Greater than Less than

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Certified Analyses included in this Report

Analyte	Certifications
2510 B-2011 in Water	IOV Diction With Mile (2000)
Specific Conductance (Lab)	KY Drinking Water Mdv (00030)
2540 C-1997 in Water	
Total Dissolved Solids	KY Drinking Water Mdv (00030)
2540 D-2011 in Water	
EPA 200.7 REV 4.4 in Water	
Iron	KY Wastewater Mdv (00030)
EPA 200.8 REV 5.4 in Water	
Mercury	KY Drinking Water Mdv (00030)
EPA 300.0 REV 2.1 in Water	
Chloride	KY Drinking Water Mdv (00030)
Fluoride	KY Drinking Water Mdv (00030)
Sulfate	KY Drinking Water Mdv (00030)
EPA 300.1 in Water	
Bromide	KY Drinking Water Mdv (00030)

SW846-8260 B in Water

SW846-8270 C in Water

C III VVater	
	Sample Acceptance Checklist for Work Order 9042044
Shipped By: Client	Temperature: 0.90° Celcius
Condition	
Check if custody seals were present/intact.	
Check if any containers were received damaged.	
Check if COC was submitted and complete.	☑
Check if COC agreed with sample labels.	
Check if all containers on COC were received	
Check if all samples had appropriate containers.	
Check if all samples had appropriate volumes.	
Check if collection methods were recorded on COC.	
Check if flow units were recorded on COC.	
Check if any headspace issues with volatile sample	
Check if holding times were acceptable.	
Check if all containers were preserved properly.	

Page 1 of 2

Time

Date

Received By (Signature)

Time

Date

Relinquished By (Signature)

BIG RIVERS ELECTRIC CORP. CHAIN OF CUSTODY RECORD

No. 1 of 2

Sampling Location: (Steen Louffill

							HOCHOL HON	44	
Plant ID. Sample Number	Date Time	Central Lab ID. Sample Number	Station Description	Sampling n Method	ing Sample od Size	Type of Preservation	Analysis Requested	puested	
1	4/2/2019		, DC4		522	707 31111		, 7	
١.	3:45 PM	١	TCN	<u>ی</u>	700 WX	NONE, T'	Chlorida, Sultate Ittooraa	101.04	
	412/219		:					•	
`	3.45 pm	`	RSI	9	250 ml	11. 4.con#	Total Metals (see attentions)	Heshad)	
	4/2/2014	١	٦						
•	3.45 PM		K51	G	250 mg	HN03, 40C	Total Metals (See ethubud)	ahad)	
,	4/2/2018								
1	3.45 PM	1	RS1.	6	-t	NONE, 4°C	s//oC		H
	4/2/2018								
1	3:45 pm	ı	"RSI"	9	500 €	NONE, 4ºC	705, 755	•	
,	412/2018		7	1					1
\	3.45 PM	١	KSI	6	40 mg	40C, HCI	1000		ď
Samplers (Signatures)	gnatures)								
Relinquished	Relinquished By (Signature)		Date 4/3/2019	Time 1212	Receiped By (Signature)	nature	14-3-19	Time (2:12	
Relinquished	Relinquished 🗗 (Signature)		Date		Received By (Signature)	nature	Date	Тте	
Relinquished	Relinquished By (Signature)		Date	Time	Received By (Signature)	nature)	Date	Time	

ξ. 0

White Copy - Central Lab Yellow Copy - Plant (Final Copy) Pink Copy - Plant Env. Contact Gold Copy - Plant Lab

Page 1 of 2

BIG RIVERS ELECTRIC CORP. CHAIN OF CUSTODY RECORD

Green Lauffill

Sampling Location:

)RD NO. 2 of 2

								WO#9042044	1.
Plant ID. Sample Number	Date Time	Central Lab ID. Sample Number	Station D	Station Description	Sampling Method	g Sample Size	Type of Preservation	Analysis Requested	
į	4/2/2019 1343	(5w-Culvert - 1		9	500 mg	7.h ' 310N	Conductivity Solfate, Chloride	lor; de
ł	4/2/2019	,	Sw-60 ver+-		9	yoml	Hoc, HCl	70/	
ţ	4 2/2014 6KE1	1	5W- (when + -)		9	11	7.4	3/0/2	W
١	4/2/100(9	į	1 - 4290F7-MS,	*	Ğ	250 ml	4W05 .4.C	Total Metals (See attended)	
\$	6/2/2/4 8/5/14/4	١	Sw-culvert - 1		9	250 ml	7.h 'EONH	Tobel Medels (see checked)	
1									
Samplers (Signatures	gnatures)				-				
Relinquished	Relinquished By (Signature)			Date 4/3/2019		Received By Sighatore)	atore)	Date 12 17 17 12 12 12 12 12 12 12 12 12 12 12 12 12	Time 12:12
Relinquished	Relinquished By(Signature))		Date	Time	Received By (Signature)	фина		Time
Relinquished	Relinquished By (Signature)	(Date	Time	Received By (Signature)	ature)	Date	Time
Relinquished	Relinquished By (Signature))		Date	Time	Received By (Signature)	ature)	Date	Time

White Copy - Central Lab Yellow Copy - Plant (Final Copy) Pink Copy - Plant Erv. Cortact Gold Copy - Plant Lab

60# 9042044

Green Landfill -Constituent List

Antimony

Aluminum

Arsenic

Barium

Beryllium

Boron

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Lithium

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Sodium

Silver

Thallium

Vanadium

Zinc

My Dink BAEC 4/3/2019

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

Laboratory Job ID: 490-172013-1

Laboratory Sample Delivery Group: Sebree Station

Client Project/Site: Sebree Station

For:

Big Rivers Electric Corporation PO BOX 24 Henderson, Kentucky 42419

Attn: Mark Bertram

Roxanne Cisneros

Authorized for release by: 4/24/2019 3:38:21 PM

Roxanne Cisneros, Senior Project Manager (615)301-5761

roxanne.cisneros@testamericainc.com

LINKS

results through
Total Access

Review your project

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

6

Ω

9

10

12

Laboratory Job ID: 490-172013-1 SDG: Sebree Station

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	7
QC Association	12
Chronicle	14
Method Summary	15
Certification Summary	16
Chain of Custody	17
Receipt Checklists	

4

Δ

R

9

11

12

Sample Summary

Client: Big Rivers Electric Corporation

Project/Site: Sebree Station

Job ID: 490-172013-1 SDG: Sebree Station

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 490-172013-1
 023
 Water
 04/11/19 11:25
 04/12/19 09:55

3

Λ

5

6

8

11

12

Case Narrative

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Job ID: 490-172013-1

Laboratory: Eurofins TestAmerica, Nashville

Narrative

Job Narrative 490-172013-1

Comments

No additional comments.

Receipt

The sample was received on 4/12/2019 9:55 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.6° C.

HPLC/IC

Method(s) 9056A: The following sample was diluted due to the nature of the sample matrix: 023 (490-172013-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Qualifiers

HPLC/IC Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
F1	MS and/or MSD Recovery is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NO	

IVIL	IVI
NC	N

lot Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

4/24/2019

Client Sample Results

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Client Sample ID: 023 Lab Sample ID: 490-172013-1

Date Collected: 04/11/19 11:25 **Matrix: Water**

Mothodi OCECA Ariona	lan Chramatan	anh.							
Method: 9056A - Anions, Analyte		apny Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	864		600	40.0	mg/L			04/16/19 12:06	20
Fluoride	0.0356	J	1.00	0.0100	mg/L			04/15/19 15:10	
Sulfate	548	В	100	0.600	mg/L			04/16/19 11:33	2
Method: 6010C - Metals (I	CP) - Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Lithium	0.766		0.0500	0.00959	mg/L		04/16/19 11:19	04/22/19 16:56	
Method: 6020A - Metals (I									
Analyte		Qualifier	RL_	MDL		D	Prepared	Analyzed	Dil Fa
Antimony	0.0000690		0.00200	0.0000213	•	_	04/16/19 11:17	04/17/19 11:26	
Arsenic	0.000759	J	0.00500	0.000118	•		04/16/19 11:17	04/17/19 11:26	
Barium	0.0557	JB	0.200	0.000270				04/17/19 11:26	
Beryllium	ND		0.00200	0.000102	mg/L		04/16/19 11:17	04/17/19 11:26	
Boron	0.626	JB	1.00	0.00339	mg/L		04/16/19 11:17	04/17/19 11:26	
Cadmium	0.000411	J	0.00100	0.000152	mg/L		04/16/19 11:17	04/17/19 11:26	
Calcium	488		1.00	0.0412	mg/L		04/16/19 11:17	04/17/19 11:26	
Chromium	0.00281	J	0.00300	0.000339	mg/L		04/16/19 11:17	04/17/19 11:26	
Cobalt	0.000450	J	0.00500	0.0000218	mg/L		04/16/19 11:17	04/17/19 11:26	
Lead	0.000140	J	0.00500	0.0000675	mg/L		04/16/19 11:17	04/17/19 11:26	
Molybdenum	0.0110		0.0100	0.000873	mg/L		04/16/19 11:17	04/17/19 11:26	
Potassium	69300		1000	147	ug/L		04/16/19 11:17	04/17/19 11:26	
Selenium	ND		0.0100	0.000348	mg/L		04/16/19 11:17	04/17/19 11:26	
Thallium	0.0000670	J	0.00100	0.0000360	mg/L		04/16/19 11:17	04/17/19 11:26	
Method: 7470A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.000200	0.000100	mg/L		04/18/19 12:23	04/18/19 17:30	
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
рН	7.13		0.100	0.100	SU			04/18/19 18:32	
Temperature	22.8		0.100	0.100	Degrees C			04/18/19 18:32	
Total Dissolved Solids	2850		100	28.0	mg/L			04/15/19 16:11	

4/24/2019

Job ID: 490-172013-1 SDG: Sebree Station

Project/Site: Sebree Station

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 490-588042/3

Matrix: Water

Analysis Batch: 588042

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		3.00	0.200	mg/L			04/15/19 11:18	1
Fluoride	ND		1.00	0.0100	mg/L			04/15/19 11:18	1
Sulfate	0.2213	J	5.00	0.0300	mg/L			04/15/19 11:18	1

Lab Sample ID: LCS 490-588042/4

Matrix: Water

Analysis Batch: 588042

Client Sample ID: Lab Control Sample Prep Type: Total/NA

7 , 6.6 26 666	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.265		mg/L		93	80 - 120	
Fluoride	1.00	0.9279	J	mg/L		93	80 - 120	
Sulfate	10.0	9.611		mg/L		96	80 - 120	

Lab Sample ID: LCSD 490-588042/5

Matrix: Water

Analysis Batch: 588042

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Sp	ike LCSI	D LCSD				%Rec.		RPD
Analyte	Add	led Resu	lt Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride		0.0 9.37	3	mg/L	_	94	80 - 120	1	20
Fluoride	1	.00 0.970	0 J	mg/L		97	80 - 120	4	20
Sulfate	1	0.0 9.66	1	mg/L		96	80 - 120	1	20

Lab Sample ID: 490-172052-B-1 MS

Matrix: Water

Analysis Batch: 588042

Client Sample ID: Matrix Spike Prep Type: Total/NA

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	2.12	J	10.0	14.02		mg/L		119	80 - 120	
Fluoride	0.0156	J F1	1.00	1.417	F1	mg/L		140	80 - 120	
Sulfate	0.601	JBF1	10.0	13.20	F1	mg/L		126	80 - 120	

Lab Sample ID: 490-172052-B-1 MSD

Matrix: Water

Analysis Batch: 588042

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	2.12	J	10.0	13.02		mg/L		109	80 - 120	7	20
Fluoride	0.0156	J F1	1.00	1.338	F1	mg/L		132	80 - 120	6	20
Sulfate	0.601	JBF1	10.0	12.63		mg/L		120	80 - 120	4	20

Lab Sample ID: MB 490-588250/3

Matrix: Water

Analysis Batch: 588250

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		3.00	0.200	mg/L			04/16/19 10:10	1
Fluoride	ND		1.00	0.0100	mg/L			04/16/19 10:10	1
Sulfate	0.2110	J	5.00	0.0300	mg/L			04/16/19 10:10	1

Eurofins TestAmerica, Nashville

4/24/2019

Page 7 of 23

Job ID: 490-172013-1

Client: Big Rivers Electric Corporation Project/Site: Sebree Station SDG: Sebree Station

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 490-588250/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 588250

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 10.0 93 80 - 120 9.351 mg/L Fluoride 1.00 0.9880 J mg/L 99 80 - 120 Sulfate 10.0 9.710 mg/L 97 80 - 120

Lab Sample ID: LCSD 490-588250/5 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 588250

Prep Type: Total/NA

Spike LCSD LCSD %Rec. **RPD** Added RPD Limit Analyte Result Qualifier Unit D %Rec Limits Chloride 10.0 9.359 93 80 - 120 20 mg/L 0 Fluoride 1.00 0.9895 J mg/L 99 80 - 120 20 0 Sulfate 10.0 9.756 97 80 - 120 20 mg/L n

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 180-275853/1-A

Matrix: Water

Matrix: Water

Analysis Batch: 276485

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Lithium $\overline{\mathsf{ND}}$ 0.0500 0.00959 mg/L 04/16/19 11:19 04/22/19 15:56

Lab Sample ID: LCS 180-275853/2-A

Analysis Batch: 276485

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits

Analyte Lithium 1.00 1.006 101 80 - 120 mg/L

Lab Sample ID: 490-172010-A-3-C MS

Matrix: Water

Analysis Batch: 276485

Prep Batch: 275853 Sample Sample Spike MS MS %Rec. Added Result Qualifier Result Qualifier Limits **Analyte** Unit D %Rec

75 - 125 Lithium 0.0313 J 1.00 1.065 103 mg/L

Lab Sample ID: 490-172010-A-3-D MSD

Matrix: Water

Analysis Batch: 276485

Prep Batch: 275853 MSD MSD Sample Sample Spike %Rec. **RPD Analyte** Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Lithium 0.0313 J 1.00 1.090 mg/L 106 75 - 125 20

4/24/2019

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total Recoverable

Prep Type: Total Recoverable

Client Sample ID: Matrix Spike

Prep Type: Total Recoverable

Prep Type: Total Recoverable

Prep Batch: 275853

Prep Batch: 275853

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-275852/1-A

Matrix: Water

Analysis Batch: 276092

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 275852

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.00002800	J	0.00200	0.0000213	mg/L		04/16/19 11:17	04/17/19 11:54	1
ND		0.00500	0.000118	mg/L		04/16/19 11:17	04/17/19 11:54	1
0.0007190	J	0.200	0.000270	mg/L		04/16/19 11:17	04/17/19 11:54	1
ND		0.00200	0.000102	mg/L		04/16/19 11:17	04/17/19 11:54	1
0.02478	J	1.00	0.00339	mg/L		04/16/19 11:17	04/17/19 11:54	1
ND		0.00100	0.000152	mg/L		04/16/19 11:17	04/17/19 11:54	1
ND		1.00	0.0412	mg/L		04/16/19 11:17	04/17/19 11:54	1
ND		0.00300	0.000339	mg/L		04/16/19 11:17	04/17/19 11:54	1
ND		0.00500	0.0000218	mg/L		04/16/19 11:17	04/17/19 11:54	1
ND		0.00500	0.0000675	mg/L		04/16/19 11:17	04/17/19 11:54	1
ND		0.0100	0.000873	mg/L		04/16/19 11:17	04/17/19 11:54	1
ND		1000	147	ug/L		04/16/19 11:17	04/17/19 11:54	1
ND		0.0100	0.000348	mg/L		04/16/19 11:17	04/17/19 11:54	1
ND		0.00100	0.0000360	mg/L		04/16/19 11:17	04/17/19 11:54	1
	Result 0.00002800 ND 0.0007190 ND 0.02478 ND ND ND ND ND ND ND ND ND N	0.0007190 J ND 0.02478 J ND	Result Qualifier RL 0.00002800 J 0.00200 ND 0.00500 0.0007190 J 0.200 ND 0.00200 ND 0.00100 ND 0.00100 ND 0.00300 ND 0.00500 ND 0.00500 ND 0.0100 ND 0.0100 ND 0.0100 ND 0.0100 ND 0.0100	Result Qualifier RL MDL 0.00002800 J 0.00200 0.0000213 ND 0.00500 0.000118 0.0007190 J 0.200 0.000270 ND 0.00200 0.000102 0.02478 J 1.00 0.00339 ND 0.00100 0.00412 ND 0.00300 0.000339 ND 0.00500 0.0000218 ND 0.00500 0.0000675 ND 0.0100 0.000873 ND 1000 147 ND 0.0100 0.000348	Result Qualifier RL MDL Unit 0.00002800 J 0.00200 0.0000213 mg/L ND 0.00500 0.000118 mg/L 0.0007190 J 0.200 0.000270 mg/L ND 0.00200 0.000102 mg/L ND 0.00100 0.000339 mg/L ND 0.00300 0.000339 mg/L ND 0.00500 0.0000339 mg/L ND 0.00500 0.0000218 mg/L ND 0.00500 0.0000675 mg/L ND 0.0100 0.000873 mg/L ND 1000 147 ug/L ND 0.0100 0.000348 mg/L	Result Qualifier RL MDL Unit D 0.00002800 J 0.00200 0.0000213 mg/L ND 0.00500 0.000118 mg/L 0.0007190 J 0.200 0.000270 mg/L ND 0.00200 0.000102 mg/L ND 0.00100 0.00339 mg/L ND 0.00412 mg/L ND 0.00300 0.000339 mg/L ND 0.00500 0.0000218 mg/L ND 0.00500 0.0000675 mg/L ND 0.0100 0.000873 mg/L ND 1000 147 ug/L ND 0.0100 0.000348 mg/L	Result Qualifier RL MDL Unit D Prepared 0.00002800 J 0.00200 0.0000213 mg/L 04/16/19 11:17 ND 0.00500 0.000118 mg/L 04/16/19 11:17 0.0007190 J 0.200 0.000270 mg/L 04/16/19 11:17 ND 0.00200 0.000102 mg/L 04/16/19 11:17 0.02478 J 1.00 0.00339 mg/L 04/16/19 11:17 ND 0.00100 0.00152 mg/L 04/16/19 11:17 ND 1.00 0.0412 mg/L 04/16/19 11:17 ND 0.00300 0.000339 mg/L 04/16/19 11:17 ND 0.00500 0.0000218 mg/L 04/16/19 11:17 ND 0.00500 0.0000675 mg/L 04/16/19 11:17 ND 0.0100 0.000873 mg/L 04/16/19 11:17 ND 0.0100 0.000873 mg/L 04/16/19 11:17 ND 0.0100 0.00088	Result Qualifier RL MDL Unit D Prepared Analyzed 0.00002800 J 0.00200 0.0000213 mg/L 04/16/19 11:17 04/17/19 11:54 ND 0.00500 0.000118 mg/L 04/16/19 11:17 04/17/19 11:54 0.0007190 J 0.200 0.000270 mg/L 04/16/19 11:17 04/17/19 11:54 ND 0.00200 0.000102 mg/L 04/16/19 11:17 04/17/19 11:54 ND 0.002478 J 1.00 0.00339 mg/L 04/16/19 11:17 04/17/19 11:54 ND 0.00100 0.00152 mg/L 04/16/19 11:17 04/17/19 11:54 ND 1.00 0.0412 mg/L 04/16/19 11:17 04/17/19 11:54 ND 0.00300 0.000339 mg/L 04/16/19 11:17 04/17/19 11:54 ND 0.00500 0.0000218 mg/L 04/16/19 11:17 04/17/19 11:54 ND 0.00500 0.0000675 mg/L 04/16/19 11:17 04/17/19 11:54

Lab Sample ID: LCS 180-275852/2-A

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Analysis Batch: 276092 **Prep Batch: 275852** LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Antimony 0.500 0.5151 mg/L 103 80 - 120 Arsenic 0.0400 0.03629 mg/L 91 80 - 120 Barium 2.00 2.120 mg/L 106 80 - 120 Beryllium 0.0500 0.05131 mg/L 103 80 - 120 1.006 Boron 1.00 101 80 - 120 mg/L 0.0500 Cadmium 0.05263 mg/L 105 80 - 120 Calcium 50.0 50.60 101 80 - 120 mg/L Chromium 0.200 0.2148 mg/L 107 80 - 120 Cobalt 0.500 0.4481 mg/L 90 80 - 120 Lead 0.0200 0.02088 mg/L 104 80 - 120 Molybdenum 1.00 0.9910 mg/L 99 80 - 120 Potassium 50000 48340 ug/L 97 80 - 120 Selenium 0.0100 0.01029 mg/L 103 80 - 120 0.0500 Thallium 0.05310 106 80 - 120 mg/L

Lab Sample ID: 490-172010-A-1-B MS

Matrix: Water

Analysis Batch: 276092

Client Sample ID: Matrix Spike Prep Type: Total Recoverable Prep Batch: 275852

_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.000119	JB	0.500	0.5292		mg/L		106	75 - 125	
Arsenic	0.00208	J	0.0400	0.03945		mg/L		93	75 - 125	
Barium	0.0216	JB	2.00	2.197		mg/L		109	75 ₋ 125	
Beryllium	ND		0.0500	0.05176		mg/L		104	75 - 125	
Boron	0.271	JB	1.00	1.297		mg/L		103	75 ₋ 125	
Cadmium	ND		0.0500	0.05279		mg/L		106	75 ₋ 125	
Calcium	502		50.0	557.9	4	mg/L		111	75 ₋ 125	
Chromium	0.00360		0.200	0.2213		mg/L		109	75 ₋ 125	
Cobalt	0.00522		0.500	0.4645		mg/L		92	75 - 125	

Eurofins TestAmerica, Nashville

Page 9 of 23 4/24/2019

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 490-172010-A-1-B MS

Matrix: Water

Analysis Batch: 276092

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable**

Prep Batch: 275852 %Rec

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lead	0.000233	J	0.0200	0.02146		mg/L		106	75 - 125	
Molybdenum	0.00104	J	1.00	1.043		mg/L		104	75 - 125	
Potassium	1660		50000	48970		ug/L		95	75 - 125	
Selenium	ND		0.0100	0.01059		mg/L		106	75 - 125	
Thallium	ND		0.0500	0.05541		mg/L		111	75 - 125	

Lab Sample ID: 490-172010-A-1-C MSD

Matrix: Water

Client Sample ID: Matrix Spike Duplicate Prep Type: Total Recoverable

Analysis Batch: 276092	Sample	Sample	Spike	MSD	MSD				Prep Ba	atch: 27	75852 RPD
Analyte	Result	•	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	0.000119	J B	0.500	0.5401		mg/L		108	75 - 125	2	20
Arsenic	0.00208	J	0.0400	0.03954		mg/L		94	75 ₋ 125	0	20
Barium	0.0216	JB	2.00	2.231		mg/L		110	75 ₋ 125	2	20
Beryllium	ND		0.0500	0.05116		mg/L		102	75 - 125	1	20
Boron	0.271	JB	1.00	1.238		mg/L		97	75 ₋ 125	5	20
Cadmium	ND		0.0500	0.05362		mg/L		107	75 - 125	2	20
Calcium	502		50.0	566.9	4	mg/L		129	75 - 125	2	20
Chromium	0.00360		0.200	0.2201		mg/L		108	75 - 125	1	20
Cobalt	0.00522		0.500	0.4630		mg/L		92	75 - 125	0	20
Lead	0.000233	J	0.0200	0.02185		mg/L		108	75 - 125	2	20
Molybdenum	0.00104	J	1.00	1.061		mg/L		106	75 - 125	2	20
Potassium	1660		50000	50080		ug/L		97	75 - 125	2	20
Selenium	ND		0.0100	0.01045		mg/L		105	75 - 125	1	20
Thallium	ND		0.0500	0.05523		mg/L		110	75 - 125	0	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 490-588899/1-A

Matrix: Water

Analysis Batch: 589024

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 588899**

Analyte Result Qualifier RL MDL Unit **Prepared** Analyzed Mercury ND 0.000200 0.000100 mg/L 04/18/19 12:23 04/18/19 17:25

Lab Sample ID: LCS 490-588899/2-A

Matrix: Water

Analysis Batch: 589024

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 588899**

mg/L

%Rec.

Limits

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec 0.00100 0.001058 106 80 - 120 Mercury mg/L

0.00100

MB MB

ND

Lab Sample ID: 490-172013-1 MS

Mercury

Client Sample ID: 023 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 589024 **Prep Batch: 588899** MS MS Sample Sample Spike %Rec. Analyte Added Result Qualifier Result Qualifier Unit D %Rec Limits

0.001196

Eurofins TestAmerica, Nashville

75 - 125

120

Page 10 of 23

4/24/2019

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: 490-172013-1 MSD Client Sample ID: 023 Prep Type: Total/NA **Matrix: Water** Analysis Batch: 589024 **Prep Batch: 588899**

Sample Sample Spike MSD MSD **RPD** %Rec. %Rec Analyte Result Qualifier Added Result Qualifier Limits RPD Limit Unit Mercury ND 0.00100 0.001191 119 75 - 125 0 20 mg/L

Method: 9040C - pH

Lab Sample ID: LCS 490-589003/1 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 589003

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Analyte 7.00 SU рН 7.040 101 98 - 103

Lab Sample ID: 490-171598-A-10 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 589003

RPD Sample Sample DU DU Analyte Result Qualifier Result Qualifier Unit D **RPD** Limit SU pH 6.94 6.940 20 n Temperature 23.0 23.00 Degrees C 20 O

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 490-586704/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 586704

MB MB RL **MDL** Unit Analyte Result Qualifier

Prepared Analyzed Dil Fac Total Dissolved Solids $\overline{\mathsf{ND}}$ 2.50 0.700 mg/L 04/15/19 16:11

Lab Sample ID: LCS 490-586704/2 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 586704

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits **Total Dissolved Solids** 10.0 9.800 mg/L 90 - 110

Lab Sample ID: 490-172007-E-1 DU **Client Sample ID: Duplicate** Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 586704

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit Total Dissolved Solids 3370 3384 mg/L 0.4 20

Lab Sample ID: 490-172013-1 DU Client Sample ID: 023 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 586704

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit D **RPD** Limit **Total Dissolved Solids** 2850 2772 mg/L

Eurofins TestAmerica, Nashville

QC Association Summary

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

HPLC/IC

Analysis Batch: 588042

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total/NA	Water	9056A	
MB 490-588042/3	Method Blank	Total/NA	Water	9056A	
LCS 490-588042/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 490-588042/5	Lab Control Sample Dup	Total/NA	Water	9056A	
490-172052-B-1 MS	Matrix Spike	Total/NA	Water	9056A	
490-172052-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	9056A	

Analysis Batch: 588250

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total/NA	Water	9056A	_
490-172013-1	023	Total/NA	Water	9056A	
MB 490-588250/3	Method Blank	Total/NA	Water	9056A	
LCS 490-588250/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 490-588250/5	Lab Control Sample Dup	Total/NA	Water	9056A	

Metals

Prep Batch: 275852

Lab Sample ID 490-172013-1	Client Sample ID	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
	Method Blank				
MB 180-275852/1-A		Total Recoverable	Water	3005A	
LCS 180-275852/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
490-172010-A-1-B MS	Matrix Spike	Total Recoverable	Water	3005A	
490-172010-A-1-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Prep Batch: 275853

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total Recoverable	Water	3005A	
MB 180-275853/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-275853/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
490-172010-A-3-C MS	Matrix Spike	Total Recoverable	Water	3005A	
490-172010-A-3-D MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Analysis Batch: 276092

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total Recoverable	Water	6020A	275852
MB 180-275852/1-A	Method Blank	Total Recoverable	Water	6020A	275852
LCS 180-275852/2-A	Lab Control Sample	Total Recoverable	Water	6020A	275852
490-172010-A-1-B MS	Matrix Spike	Total Recoverable	Water	6020A	275852
490-172010-A-1-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	6020A	275852

Analysis Batch: 276485

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total Recoverable	Water	6010C	275853
MB 180-275853/1-A	Method Blank	Total Recoverable	Water	6010C	275853
LCS 180-275853/2-A	Lab Control Sample	Total Recoverable	Water	6010C	275853
490-172010-A-3-C MS	Matrix Spike	Total Recoverable	Water	6010C	275853
490-172010-A-3-D MSD	Matrix Spike Duplicate	Total Recoverable	Water	6010C	275853

Eurofins TestAmerica, Nashville

4/24/2019

Page 12 of 23

QC Association Summary

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Metals

Prep Batch: 588899

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total/NA	Water	7470A	
MB 490-588899/1-A	Method Blank	Total/NA	Water	7470A	
LCS 490-588899/2-A	Lab Control Sample	Total/NA	Water	7470A	
490-172013-1 MS	023	Total/NA	Water	7470A	
490-172013-1 MSD	023	Total/NA	Water	7470A	

Analysis Batch: 589024

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total/NA	Water	7470A	588899
MB 490-588899/1-A	Method Blank	Total/NA	Water	7470A	588899
LCS 490-588899/2-A	Lab Control Sample	Total/NA	Water	7470A	588899
490-172013-1 MS	023	Total/NA	Water	7470A	588899
490-172013-1 MSD	023	Total/NA	Water	7470A	588899

General Chemistry

Analysis Batch: 586704

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total/NA	Water	SM 2540C	
MB 490-586704/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 490-586704/2	Lab Control Sample	Total/NA	Water	SM 2540C	
490-172007-E-1 DU	Duplicate	Total/NA	Water	SM 2540C	
490-172013-1 DU	023	Total/NA	Water	SM 2540C	

Analysis Batch: 589003

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total/NA	Water	9040C	
LCS 490-589003/1	Lab Control Sample	Total/NA	Water	9040C	
490-171598-A-10 DU	Duplicate	Total/NA	Water	9040C	

Lab Chronicle

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Client Sample ID: 023 Lab Sample ID: 490-172013-1

Matrix: Water

Date Collected: 04/11/19 11:25 Date Received: 04/12/19 09:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			588042	04/15/19 15:10	S00	TAL NSH
Total/NA	Analysis	9056A		20			588250	04/16/19 11:33	SOO	TAL NSH
Total/NA	Analysis	9056A		200			588250	04/16/19 12:06	SOO	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	275853	04/16/19 11:19	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			276485	04/22/19 16:56	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	275852	04/16/19 11:17	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			276092	04/17/19 11:26	RSK	TAL PIT
Total/NA	Prep	7470A			30 mL	30 mL	588899	04/18/19 12:23	CSL	TAL NSH
Total/NA	Analysis	7470A		1			589024	04/18/19 17:30	EHS	TAL NSH
Total/NA	Analysis	9040C		1			589003	04/18/19 18:32	MXX	TAL NSH
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	586704	04/15/19 16:11	BMC	TAL NSH

Laboratory References:

TAL NSH = Eurofins TestAmerica, Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Method Summary

Client: Big Rivers Electric Corporation

Project/Site: Sebree Station SDG: Sebree Station

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	TAL NSH
6010C	Metals (ICP)	SW846	TAL PIT
6020A	Metals (ICP/MS)	SW846	TAL PIT
7470A	Mercury (CVAA)	SW846	TAL NSH
9040C	pH	SW846	TAL NSH
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL NSH
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT
7470A	Preparation, Mercury	SW846	TAL NSH

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = Eurofins TestAmerica, Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

4

5

7

8

10

1 1

12

Accreditation/Certification Summary

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Laboratory: Eurofins TestAmerica, Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	1	EPA Region	Identification Number	Expiration Date
Kentucky (UST)	State Pro	ogram	4	19	06-30-19
The following analytes the agency does not do		ort, but the laboratory	is not certified by th	e governing authority. Thi	s list may include analytes for whic
Analysis Method	Prep Method	Matrix	Analy	te	
9040C		Water	pH		
9040C		Water	Temp	erature	
9056A		Water	Chlori	de	
9056A		Water	Fluori	de	
9056A		Water	Sulfat	е	
SM 2540C		Water	-	Dissolved Solids	

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State Program	6	88-0690	06-27-19
California	State Program	9	2891	04-30-19 *
Connecticut	State Program	1	PH-0688	09-30-20
Florida	NELAP	4	E871008	06-30-19
Illinois	NELAP	5	200005	06-30-19
Kansas	NELAP	7	E-10350	01-31-20
Louisiana	NELAP	6	04041	06-30-19
Nevada	State Program	9	PA00164	07-31-19
New Hampshire	NELAP	1	2030	04-04-20
New Jersey	NELAP	2	PA005	06-30-19
New York	NELAP	2	11182	03-31-20
North Carolina (WW/SW)	State Program	4	434	12-31-19
Oregon	NELAP	10	PA-2151	02-06-20
Pennsylvania	NELAP	3	02-00416	04-30-19
South Carolina	State Program	4	89014	04-30-19 *
Texas	NELAP	6	T104704528-15-2	03-31-20
US Fish & Wildlife	Federal		LE94312A-1	07-31-19
USDA	Federal		P330-16-00211	06-26-19
Utah	NELAP	8	PA001462015-4	05-31-19 *
Virginia	NELAP	3	460189	09-14-19
West Virginia DEP	State Program	3	142	01-31-20
Wisconsin	State Program	5	998027800	08-31-19

Eurofins TestAmerica, Nashville

4/24/2019

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Nashville, TN

COOLER RECEIPT FORM

Cooler Received/Opened On 4/12/2019 @ 0955 Time Samples Placed In Storage 14:55 Time Samples Removed From Cooler 14:50 (last 4 digits, FedEx) Courier: FedEx 1. Tracking # pH Strip Lot IR Gun ID__ 17960357__ Chlorine Strip Lot 2. Temperature of rep. sample or temp blank when opened: 016 3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen? 4. Were custody seals on outside of cooler? If yes, how many and where: 5. Were the seals intact, signed, and dated correctly? ..NO...NA 6. Were custody papers inside cooler? AN...ON. I certify that I opened the cooler and answered questions 1-6 (initial) 7. Were custody seals on containers: and Intact YES...NO. (NÃ Were these signed and dated correctly? YES...NO..(NA Bubblewap Plastic bag Peanuts Vermiculite Foam Insert Paper Other None 8. Packing mat'l used? 9. Cooling process: (Tce) Ice-pack Ice (direct contact) Dry Ice Other None 16. Did all containers arrive in good condition (unbroken)? (YE)...NO...NA 11. Were all container labels complete (#, date, signed, pres., etc)? ∕∕**(ES,..**NO...NA KEŠI..NO...NA 12. Did all container labels and tags agree with custody papers? YES..(NO.).NA 13a. Were VOA vials received? b. Was there any observable headspace present in any VOA vial? YES...NO..(NA Larger than this. 14. Was there a Trip Blank in this cooler? If multiple coolers, sequence #_ certify that I unloaded the cooler and answered questions 7-14 (initial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YES...NO., NA b. Did the bottle labels indicate that the correct preservatives were used **√E9**...NO...NA 16. Was residual chlorine present? I certify that I checked for chlorine and phi as per SOP and answered questions 15-16 (intial) YES...NO...NA 17. Were custody papers properly filled out (ink, signed, etc)? 18. Did you sign the custody papers in the appropriate place? ..NO...NA 19. Were correct containers used for the analysis requested? YES:>NO...NA 20. Was sufficient amount of sample sent in each container? YES.).NO...NA I certify that i entered this project into LIMS and answered guestions 17-20 (intial) I certify that I attached a label with the unique LIMS number to each container (intial) 21. Were there Non-Conformance issues at login? YES. (NO) Was a NCM generated? YES

299400

Testamenco

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.

4/11/2019

Constituent List:

40 C.F.R. 257 Appendix III

Boron Calcium Fluoride рΗ

Suifate

Total Dissolved Solids (TDS)

40 C.F.R. 257 Appendix IV

Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Fluoride Lead Lithium Mercury Molybdenum Selenium Thallium

Radium 226 & 228 combined

They Dink BREC 4/11/2019

1605

Loc: 490 172013

£x Saturday Delivery

N 10:RNCG (615) 726-0177 NG MGR NS TESTAMERICA OSTER (RETGATON

STATES US

PPING/RECEIVING TAMERICA LABORATORIES, INC. ALPHA DRIVE C PARK SBURGH PA 15238

20 8844 2647

SATURDAY 12:00P PRIORITY OVERNIGHT

Chain of Custody Record

Scurofins Engloweri Tusting Tusting

Eurofins TestAmerica, Nashville

Cloud Information (Sub Contract Lab)						:										
CHEST HAIGHHERICH SOME CONTINUED CONTINUED	Samplen		0	Lan Ptal: Cisneros, Roxanne	oxanne				Š	ier Track	Caeler Tracking Nigst		<u> </u>	COC No.		
	Phone		3	E-Mail roxanne cisneros@lestamericaloc.com	neros@	Bestan	ericain	COTT.		State of Organ Kentucky	ii.		e c	Page 1 of 1		
Compary. TestAmerica Laboratories, Inc.				State	Jrogran	Accrediators Required (See note) State Program - Kentucky (UST)	See note tucky (L	ST)					¥.4	Job #. 490.172013.1		
Address: 301 Aprile Brive RIDC Park, 47,	Due Date Requested: 4/24/2019						Anal	Analysis Requested	edne	sted			α	Preservation Codes.	Codos:	
CAY Pittsburgh	TAY Requested (days).						-	L	-		-			A HGL B NaCH Su Amino	M - Hexane N - None	ane.
State, Zist PA, 15238								- 	·				((((((((((((((((((((((((((((((((((((((D - Nitric Acid E - NaHSO4	P - NazD4S	50% SO3
Profes 412-963-7058(Teil) 412-963-2468(Fax)	PO #:			(0										F - MeOH G - Amchier H - Aecodic Act		R - Na2S703 S - H2SO4 T - TSD 12xdembedatala
W. Brasil	WO #,				~1×4×14	Sipinm			_,					1-fce 3-Diwate:		one A
Propert Name: Sebree Station 49	Power #:					¢w/ar			······					K-EDTA L-EDA	## N	W - pH 4.5 Z · other (apecify)
Sie. Big Rivers COR	SSOW#,		***************************************			71 12521			····					Other:		:
		Sai	Sample Matrix	p.0.40		n) rec				······································		·······	194n		***************************************	
	νδ 	T) Sample (C≃	Type (M-445)	Miot Miot	00/300 00/300	DOE/VO							ou le			
Sample Identification - Client ID (Lab ID)	Sample Date		G=grab) al : Heve A-25	613		, ne							101	Specia	Special Instructions/Note:	ns/Note:
		X	Preservation Code	$\stackrel{\times}{\times}$								900) 200)	X			
923 (490-172013-1)	4/11/19	11:25 Eastern	Water		×	×							2	Metals - run once, upioad logestw	ice, upioad i	rkıpatk
									-							
								ļ		<u></u>	_					
									-							
									<u> </u>							
									<u> </u>	= 0						
							<u> </u>		[Ď	2	2	TOTALIS CHEIN OF CURIODY	Plody		
							<u> </u>					<u> </u>				

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return to Client Disposal By Lab Achive For Mant Possible Hazard Identification

Primary Deliyerable Rank: 2

Emply Kit Kelinguished by:	Date	Time	C postpage	hadred of Shipmen).	
Redominated by	500 0 bi-21-7.	Company	Recoived by C.C.A.C.2.27	Date/Ime 7 / 5	1 Company
Fokspulshed by	SaleCline	Company	Received by 7	Oziertking:	S Company
	Data/Tene.	Codipany	Received by:	DateTrate	Company
Custody Seals finlaci Custody Seal No.			Coder Temperature(s) 'C and Other Remarks:		
					Ver.01/16/2019

Ver: 01/36/2019

Chain of Custody Record

Eurofins TestAmerica, Nashville

2960 Foster Creighton Drive Nashville, TN 37204

🔆 curofins | Environment Testing

3 TextAmerica

1 - TSP Occeptable Special Instructions/Note: (Appads) zago - 2 Metals - run once, upload togethan P - Na2045 O - Na2045 R - Na25203 S - 82504 V - MCAA W - 5H 4-5 O - AsNaOZ U - Acetone Preservation Codes 14 - Astorbic Acid Page 1 of 1 Joh 4: 490-172013-1 COC No: 430-88697.1 A - HCL B - NaOH C - Zn Aretate D - Natic Acid E - NaESO4 F - MeOH G - Amehica 1. Ice J. Di Water K. EDTA L. EDA Total Number of containers Janies Tracking Mots State of Origin. Kentucky Analysis Requested Lab PM Cisreros. Roxanne E-Mai: Ioxanne.cisneros@leslamericainc.com Accedations Required (See note). State Program - Kentucky (UST) × SINTOW SWIED) (COM) ASDREADED × W01487 (GOW) V500E/20109 (ON 10 eay) OSMISM mitohag Preservation Code. Matrix Water (Cacomb. G=grab) Sample Type Sample 11:25 Eastern Time (AT Requested (days) Due Date Requested: 4/24/2019 Sample Date 4/11/19 Project #. 49010431 SSOWE Physics: 34.O.M Client Information (Sub Contract Lab) Phone (615) 726-0177 Fax (615) 726-3404 Sample Identification - Client ID (Lab ID) 412-963-7058(Tel) 412-963-2468(Fax) RIDC Park 'estAmerica Laboratories, Inc 323 (490-172013-1) Ckent Contact: Shipping:Receiving 301 Alpha Drive, Big Rivers CCR Sebree Station State, 2tr. P.A., 15236 prect Name; Pittsburgh

Vote Since blustalary accidinates an electronia Laboratorias. Inc. places the ownership of meltiod, analyse & aicreptation upson complement talcontents. This sample stranges that candidate transfer analysis less analysis that analysis the sample of that analysis the sample of that analysis the sample of that a sample of the sample of that are also allowed to that analysis that analysis that are a sample of that analysis the samp of that are a completely. If the other analysis of that analysis of the samp of that are a completely to the other analysis of the sample of the samp of the samp of that are a completely that analysis are current to call, return the samp of that are a completely to the other analysis are completely that are a completely that are sampled to the samp of the sample of Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification

490-172013 Chain of Custody

			-		The state of the s	
Unconfirmed	-			Frehm to Client Disposal By Lab	L"-Archive For	Moniths
Deliverable Requested:	Deliverable Requested: 1, It, III, IV, Other (specify)	Primary Deliverable Rank: 2	or Spirit	Special Instructions/OC Requirements:		
Empty Kit Relinquished by		Date:	Time:	Method of Shpment		
Reimquished try		Date-Turp: 4-72-1967 1855	Company	Roceined by Charles Try	Develored 1 - 1 - 1 dec	M. J. K. L. Kriedwood L
Retinguished by:		Date/Jirlag:	Company	Received by	Date/Tine:	กรรดารุร์
Relacionshed by		Date Time.	Conpany	Received by:	Oate/Time:	Somoany
Custody Seals Intact. Custody Seal No.	Custody Seal No.			Coder Tenperature(s) 12 and Other Formans.		

Job Number: 490-172013-1 SDG Number: Sebree Station

Login Number: 172013 List Source: Eurofins TestAmerica, Pittsburgh List Number: 2

List Creation: 04/13/19 01:27 PM

Creator: Watson, Debbie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Appendix D

Landfill Perimeter Seeps Laboratory Analytical Results

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-155661-1

Client Project/Site: Sebree-Green Landfill

For:

Big Rivers Electric Corporation PO BOX 24 Henderson, Kentucky 42419

Attn: Greg Dick

Roxanne Cisneros

Authorized for release by: 8/21/2018 10:53:38 AM

Roxanne Cisneros, Senior Project Manager (615)301-5761

roxanne.cisneros@testamericainc.com

LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	7
Client Sample Results	8
QC Sample Results	32
QC Association	43
Chronicle	49
Method Summary	56
Certification Summary	57
Chain of Custody	59
Receipt Checklists	66
Tracer Carrier Summary	67

3

4

6

8

9

10

12

13

Sample Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Lab Sample ID	Client Sample ID	Matrix	Collected Receive
490-155661-1	River Seep-08-071318	Water	07/13/18 07:50 07/14/18 1
490-155661-2	River Seep-12-071318	Water	07/13/18 09:15 07/14/18 1
490-155661-3	River Seep-16-071318	Water	07/13/18 11:00 07/14/18 1
490-155661-4	River Seep-14-071318	Water	07/13/18 10:10 07/14/18 1
490-155661-5	River Seep-09-071218	Water	07/12/18 13:50 07/14/18 1
490-155661-6	River Seep-07-071218	Water	07/12/18 14:50 07/14/18 1
490-155661-7	River Seep-05-071218	Water	07/12/18 14:25 07/14/18 1
490-155661-8	Landfill Seep-01-071318	Water	07/13/18 12:20 07/14/18 1
490-155661-9	Landfill Seep-01-071318-DUP	Water	07/13/18 12:20 07/14/18 1
490-155661-10	Landfill Seep-02-071318	Water	07/13/18 13:10 07/14/18 1
490-155661-11	Landfill Seep-03-071318	Water	07/13/18 13:30 07/14/18 1
490-155661-12	Pond-012-071318	Water	07/13/18 13:50 07/14/18 1
490-155661-13	Landfill Seep-04-071318	Water	07/13/18 14:15 07/14/18 1

_

4

5

7

Ö

9

10

12

13

Case Narrative

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Job ID: 490-155661-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-155661-1

Comments

Revised Report 8/10/2018 to add Potassium per client request.

Receipt

The samples were received on 7/14/2018 10:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 1.0° C, 3.1° C and 5.7° C.

HPLC/IC

Method(s) 9056A: The method blank for analytical batch 490-531256 contained Sulfate above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

Method(s) 9056A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 490-531256 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 9056A: The method blank for analytical batch 490-531256 contained Fluoride and Sulfate above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

Method(s) 9056A: The following samples were diluted due to the nature of the sample matrix: River Seep-08-071318 (490-155661-1), River Seep-14-071318 (490-155661-4), River Seep-09-071218 (490-155661-5), River Seep-07-071218 (490-155661-6), River Seep-05-071218 (490-155661-7), Landfill Seep-01-071318 (490-155661-8), Landfill Seep-01-071318 (490-155661-10), Landfill Seep-02-071318 (490-155661-10), Landfill Seep-03-071318 (490-155661-11), Pond-012-071318 (490-155661-12) and Landfill Seep-04-071318 (490-155661-13). Elevated reporting limits (RLs) are provided.

Method(s) 9056A: The method blank as well as the continuing calibration blanks for analytical batch 490-531368 contained sulfate above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6020A: The following samples were diluted to bring the concentration of calcium within the linear range: Landfill Seep-03-071318 (490-155661-11) and Landfill Seep-04-071318 (490-155661-13). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Narrative

Job Narrative 490-155661-2

Comments

No additional comments.

Receipt

The samples were received on 7/14/2018 10:50 AM; the samples arrived in good condition, properly preserved and, where required, on

TestAmerica Nashville 8/21/2018

K

Job ID: 490-155661-1 (Continued)

Laboratory: TestAmerica Nashville (Continued)

ice. The temperatures of the 3 coolers at receipt time were 1.0° C, 3.1° C and 5.7° C.

RAD

Method(s) 904.0: Ra-228 Prep Batch 160-376750: The following sample did not meet the requested limit (RL) due to the reduced sample volume attributed to the presence of matrix interferences (see prep NCM 160-144167). The sample was brown, opaque and contained heavy amounts of sediment. The data have been reported with this narrative. River Seep-05-071218 (490-155661-7)

Method(s) 904.0: Radium-228 Prep Batch 260-377705: The detection goal was not met for the following samples due to the presence of matrix interferences: Landfill Seep-03-071318 (490-155661-11). The samples were reduced due to potential matrix interferences. Sample 440-216184-1 was brown, opaque and contained floating debris. Sample 490-155661-11's crystallized precipitation interferes with the method's chemistry. Analytical results are reported with the detection limit achieved.

Method(s) PrecSep 0: Radium 228 Prep Batch 160-376750:

Sample aliquot 490-155661-2 reduced due to potential matrix interference. Sample was yellow, murky, and contained heavy amounts of sediment.

Sample aliquots 490-155661-5 and 490-155661-7 reduced due to potential matrix interference. Samples were brown, opaque, and contained heavy amounts of sediment.

Sample aliquot 490-155661-8 reduced due to potential matrix interference. Samples were yellow, opaque, and had a strong odor similar to that of sulfur.

River Seep-12-071318 (490-155661-2), River Seep-09-071218 (490-155661-5), River Seep-05-071218 (490-155661-7) and Landfill Seep-01-071318 (490-155661-8)

Method(s) PrecSep_0: Radium 228 Prep Batch 160-376750: Insufficient sample volume was available to perform a sample duplicate (DUP) for the following samples: River Seep-08-071318 (490-155661-1), River Seep-12-071318 (490-155661-2), River Seep-09-071218 (490-155661-5), River Seep-07-071218 (490-155661-6), River Seep-05-071218 (490-155661-7) and Landfill Seep-01-071318 (490-155661-8). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method(s) PrecSep_0: Radium 228 Prep Batch 160-376805:

Sample aliquots 490-155661-9, 490-155661-12, and 490-155661-13 reduced due to potential matrix interference. Samples were yellow, opaque, and had strong odors similar to that of sulfur.

Sample aliquot 490-155661-10 reduced due to potential matrix interference. Sample was brown, opaque, and contained heavy sediment levels.

Sample aliquot 160-29589-1 reduced due to potential matrix interference. Samples were brown, murky, and contained floating debris.

Landfill Seep-01-071318-DUP (490-155661-9), Landfill Seep-02-071318 (490-155661-10), Pond-012-071318 (490-155661-12) and Landfill Seep-04-071318 (490-155661-13)

Method(s) PrecSep_0: Radium 228 Prep Batch 160-377705:

Sample aliquot reduced due to matrix interference during the initial preparation of the sample. Crystallized precipitation interferes with chemistry of the method. Landfill Seep-03-071318 (490-155661-11)

Method(s) PrecSep-21: Radium 226 Prep Batch 160-376745: Insufficient sample volume was available to perform a sample duplicate (DUP) for the following samples: River Seep-08-071318 (490-155661-1), River Seep-12-071318 (490-155661-2), River Seep-09-071218 (490-155661-5), River Seep-07-071218 (490-155661-6), River Seep-05-071218 (490-155661-7) and Landfill Seep-01-071318 (490-155661-8). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method(s) PrecSep-21: Radium 226 Prep Batch 160-376745:

4

O

7

8

10

13

14

Case Narrative

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Job ID: 490-155661-1 (Continued)

Laboratory: TestAmerica Nashville (Continued)

Sample aliquot 490-155661-2 reduced due to potential matrix interference. Sample was yellow, murky, and contained heavy amounts of sediment.

Sample aliquots 490-155661-5 and 490-155661-7 reduced due to potential matrix interference. Samples were brown, opaque, and contained heavy amounts of sediment.

Sample aliquot 490-155661-8 reduced due to potential matrix interference. Samples were yellow, opaque, and had a strong odor similar to that of sulfur.

Method(s) PrecSep-21: Radium 226 Prep Batch 160-376796:

Sample aliquots 490-155661-9, 490-155661-12, and 490-155661-13 reduced due to potential matrix interference. Samples were yellow, opaque, and had strong odors similar to that of sulfur.

Sample aliquots 490-155661-10 and 160-29566-2 reduced due to potential matrix interference. Samples were brown, opaque, and contained heavy sediment levels.

Sample aliquot 160-29589-1 reduced due to potential matrix interference. Samples were brown, murky, and contained floating debris.

Landfill Seep-01-071318-DUP (490-155661-9), Landfill Seep-02-071318 (490-155661-10), Pond-012-071318 (490-155661-12) and Landfill Seep-04-071318 (490-155661-13)

Method(s) PrecSep-21: Radium 226 Prep Batch 160-377701:

Sample aliquot reduced due to matrix interference during the initial preparation of the sample. Crystallized precipitation interferes with chemistry of the method.

Landfill Seep-03-071318 (490-155661-11)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

4

5

0

8

9

1 0

12

13

1 4

Definitions/Glossary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Qualifiers

HPLC/IC

Qualitier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
F1	MS and/or MSD Recovery is outside acceptance limits.

Metals

Qualifier

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Rad	
Qualifier	Qualifier Description

U	Result is less than the sample detection limit.
G	The Sample MDC is greater than the requested RL.

Qualifier Description

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

ML Minimum Level (Dioxin) NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown) PQL **Practical Quantitation Limit**

QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

RLReporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Nashville

8/21/2018

Page 7 of 68

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 07:50

Date Received: 07/14/18 10:50

Client Sample ID: River Seep-08-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	2040		300	20.0	mg/L			07/25/18 21:00	10
Fluoride	0.0915	J	1.00	0.0100	mg/L			07/24/18 16:22	
Sulfate	1440	В	250	1.50	mg/L			07/25/18 20:45	5
Method: 6010C - Metals (I	CP) - Total Reco	overable							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Lithium	1.80		0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:24	
Method: 6020A - Metals (I	CP/MS) - Total F	Recovera	ble						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.00141	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:35	
Arsenic	0.000404	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:35	
Barium	0.0443	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 19:35	
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:35	
Boron	0.510	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:35	
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:35	
Calcium	801		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:35	
Chromium	0.000560	J	0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 19:35	
Cobalt	0.000691	j	0.00500	0.0000218	•		07/18/18 12:44	07/28/18 19:35	
Lead	0.000769		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 19:35	
Magnesium	291		1.00	0.0153	_			07/28/18 19:35	
Molybdenum	0.00296	J	0.0100	0.000873	-		07/18/18 12:44	07/28/18 19:35	
Potassium	125		1.00	0.0596				07/28/18 19:35	
Selenium	ND		0.0100	0.000348	-			07/28/18 19:35	
Sodium	274		1.00	0.155	•			07/28/18 19:35	
Thallium	ND		0.00100	0.0000360				07/28/18 19:35	
					-				
Method: EPA 7470A - Mer Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND ND	-	0.200	0.0653	ug/L		07/18/18 15:06		
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
ρΗ	8.16		0.100	0.100	SU			07/24/18 17:55	
Temperature	21.8		0.100	0.100	Degrees C	;		07/24/18 17:55	
Alkalinity	174		10.0	5.00	mg/L			07/24/18 20:55	
Total Dissolved Solids	5310		40.0	28.0	mg/L			07/18/18 08:50	
Method: 903.0 - Radium-2	26 (GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Analyte Res	ult Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226 0.3	32	0.108	0.112	1.00 0.0	0893 pCi/L		07/19/18 15:20	08/10/18 16:41	
Carrier %Yi	eld Qualifier	Limits					Prepared	Analyzed	Dil Fa

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-08-071318

Lab Sample ID: 490-155661-1 Date Collected: 07/13/18 07:50

Matrix: Water

Date Received: 07/14/18 10:50

Method: 904.0 -	Radium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.983		0.295	0.309	1.00	0.370	pCi/L	07/19/18 15:49	08/02/18 09:20	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.3		40 - 110					07/19/18 15:49	08/02/18 09:20	1
Y Carrier	90.5		40 - 110					07/19/18 15:49	08/02/18 09:20	1

_			Count	nd Radium Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.31		0.314	0.329	5.00	0.370	pCi/L		08/21/18 03:20	1
226 + 228										

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 09:15

Date Received: 07/14/18 10:50

Client Sample ID: River Seep-12-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	32.7		3.00	0.200	mg/L			07/24/18 16:37	
Fluoride	0.0803	J	1.00	0.0100	mg/L			07/24/18 16:37	
Sulfate	16.1	В	5.00	0.0300	mg/L			07/24/18 16:37	
Method: 6010C - Metals (IC	CP) - Total Rec	overable							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Lithium	ND	-	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:29	
Method: 6020A - Metals (IC	CP/MS) - Total I	Recovera	ble						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.000499	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:40	
Arsenic	0.00467	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:40	
3arium	0.0757	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 19:40	
Beryllium	0.000145	J	0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:40	
Boron	0.0379	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:40	
Cadmium	0.000183	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:40	
Calcium	21.1		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:40	
Chromium	0.00200	J	0.00300	0.000339	-			07/28/18 19:40	
Cobalt	0.00581		0.00500	0.0000218	ū			07/28/18 19:40	
.ead	0.00221		0.00500	0.0000675	ū			07/28/18 19:40	
lagnesium	5.20	3	1.00	0.0153	-			07/28/18 19:40	
Molybdenum	0.000948		0.0100	0.000873	-			07/28/18 19:40	
			1.00					07/28/18 19:40	
Potassium	2.37 ND		0.0100	0.0596 0.000348	-			07/28/18 19:40	
Selenium					Ū				
Sodium	5.52		1.00	0.155				07/28/18 19:40	
Γhallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 19:40	
Method: EPA 7470A - Merc	• •	Ovelifier	RL	MDI	Unit	_	Duamanad	Amalumad	Dile
Analyte		Qualifier				_ D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:05	
General Chemistry Analyte	Pocult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzod	Dil Fa
oH	8.00	- Guainiei	0.100	0.100				Analyzed 07/24/18 17:55	
	8.00 21.7		0.100		Degrees C			07/24/18 17:55	
Temperature	21.7 38.2		10.0		mg/L			07/24/18 17:55	
Alkalinity									
Total Dissolved Solids	157		10.0	7.00	mg/L			07/18/18 08:50	
Method: 903.0 - Radium-22	26 (GFPC)	Count	Total						
		Count							
Amalusta		Uncert.	Uncert.	ы .	MDC Use		Duence	A mal:!	D: F
	ult Qualifier	(2σ+/-)	(2σ+/-)		MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226 0.54	42	0.153	0.161	1.00 0	.105 pCi/L		07/19/18 15:20	08/10/18 16:41	
	ld Qualifier	Limits					Prepared	Analyzed	Dil Fa
Ba Carrier 92	2.9	40 - 110						08/10/18 16:41	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-12-071318

Lab Sample ID: 490-155661-2 Date Collected: 07/13/18 09:15 Matrix: Water

Date Received: 07/14/18 10:50

adium-228	(GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.629		0.351	0.356	1.00	0.527	pCi/L	07/19/18 15:49	08/02/18 09:21	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
92.9		40 - 110					07/19/18 15:49	08/02/18 09:21	1
85.6		40 - 110					07/19/18 15:49	08/02/18 09:21	1
	Result	%Yield Qualifier	Count Uncert.	Count Uncert. Uncert.	Count Uncert. Uncert.	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared 0.629 0.351 0.356 1.00 0.527 pCi/L 07/19/18 15:49	Count Uncert. Uncert. Variety Variety

Method: Ra226_Ra	1228 - Con	nbined Rad	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.17		0.383	0.391	5.00	0.527	pCi/L		08/21/18 03:20	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 11:00

Client Sample ID: River Seep-16-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-3

Method: 9056A - Anions, I	on Chromatogr	anhy							
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	23.2		3.00	0.200	mg/L			07/24/18 16:52	
Fluoride	0.177	J	1.00	0.0100	mg/L			07/24/18 16:52	
Sulfate	26.5	В	5.00	0.0300	mg/L			07/24/18 16:52	
Method: 6010C - Metals (I	CP) - Total Reco	overable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	ND		0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:35	
Method: 6020A - Metals (I	CP/MS) - Total F	Recoverabl	e						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.000270	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:44	
Arsenic	0.0247		0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:44	
Barium	0.190	J	0.200	0.000270	J		07/18/18 12:44	07/28/18 19:44	
Beryllium	0.000211	J	0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:44	
Boron	0.0321	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:44	
Cadmium	0.000196	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:44	
Calcium	93.8		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:44	
Chromium	0.00383		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 19:44	
Cobalt	0.00613		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 19:44	
Lead	0.00521		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 19:44	
Magnesium	20.3		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 19:44	
Molybdenum	0.00878	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 19:44	
Potassium	4.85		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 19:44	
Selenium	0.000906	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 19:44	
Sodium	26.7		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 19:44	
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 19:44	
Method: EPA 7470A - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:06	
General Chemistry									
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fa
pH	8.40	_	0.100	0.100				07/24/18 17:55	
Temperature	21.7		0.100		Degrees C			07/24/18 17:55	
Alkalinity	393		10.0		mg/L			07/24/18 21:09	
Total Dissolved Solids	504		20.0	14.0	mg/L			07/18/18 08:50	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 10:10

Client Sample ID: River Seep-14-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-4

Method: 9056A - Anions, Ion	Chromatogr	anhy							
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	22.7		3.00	0.200	mg/L			07/24/18 17:07	1
Fluoride	0.144	J	1.00	0.0100	mg/L			07/24/18 17:07	1
Sulfate	159	В	50.0	0.300	mg/L			07/25/18 21:15	10
Method: 6010C - Metals (ICP)	- Total Reco	overable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0126	J	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:50	1
- Method: 6020A - Metals (ICP/	MS) - Total F	Recoverabl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000312	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:49	1
Arsenic	0.0173		0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:49	1
Barium	0.242		0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 19:49	1
Beryllium	0.000497	J	0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:49	1
Boron	0.0694	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:49	1
Cadmium	0.000312	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:49	1
Calcium	171		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:49	1
Chromium	0.00969		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 19:49	1
Cobalt	0.0125		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 19:49	1
Lead	0.0109		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 19:49	1
Magnesium	36.6		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 19:49	1
Molybdenum	0.00550	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 19:49	1
Potassium	4.96		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 19:49	1
Selenium	0.000582	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 19:49	1
Sodium	18.5		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 19:49	1
Thallium	0.000126	J	0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 19:49	1
Method: EPA 7470A - Mercur	y (CVAA)								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:07	1
General Chemistry									
Analyte		Qualifier	RL_		Unit	_ D	Prepared	Analyzed	Dil Fac
рН	8.14		0.100	0.100				07/24/18 17:55	1
Temperature	21.8		0.100		Degrees C			07/24/18 17:55	1
Alkalinity	443		10.0		mg/L			07/24/18 21:17	1
Total Dissolved Solids	790		20.0	14.0	mg/L			07/18/18 08:50	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/12/18 13:50

Date Received: 07/14/18 10:50

Client Sample ID: River Seep-09-071218

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-5

Method: 9056A - Anions, Io Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	189		30.0	2.00	mg/L			07/25/18 21:59	10
Fluoride	0.239	J F1	1.00	0.0100	mg/L			07/24/18 17:51	
Sulfate	1310	В	250	1.50	mg/L			07/25/18 22:14	50
Method: 6010C - Metals (IC	P) - Total Rec	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	0.0209	J	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:56	
Method: 6020A - Metals (IC	P/MS) - Total I	Recovera	ble						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.000200	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 20:06	
Arsenic	0.00188	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 20:06	
3arium	0.0384	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 20:06	
Beryllium	0.00372		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 20:06	
Boron	2.19		1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 20:06	
Cadmium	0.00307		0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 20:06	
Calcium	460		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 20:06	
Chromium	0.00386		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 20:06	
Cobalt	0.0447		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:06	
_ead	0.00507		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:06	
Magnesium	63.6		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:06	
Molybdenum	ND		0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:06	
Potassium	9.51		1.00	0.0596	ma/L		07/18/18 12:44	07/28/18 20:06	
Selenium	0.00216	J	0.0100	0.000348	-		07/18/18 12:44	07/28/18 20:06	
Sodium	42.1		1.00	0.155	J		07/18/18 12:44	07/28/18 20:06	
Thallium	ND		0.00100	0.0000360				07/28/18 20:06	
Method: EPA 7470A - Merc	urv (CVAA)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:08	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
oH .	5.26		0.100	0.100	SU			07/24/18 17:55	
Temperature Temperature	21.7		0.100	0.100	Degrees C			07/24/18 17:55	
Alkalinity	ND		10.0	5.00	mg/L			07/24/18 21:21	
Total Dissolved Solids	2130		20.0	14.0	mg/L			07/18/18 08:50	
Method: 903.0 - Radium-22	6 (GFPC)								
		Count	Total						
		Uncert.	Uncert.						
	It Qualifier	(2σ+/-)	(2σ+/-)		MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226 0.66	5	0.213	0.221	1.00 0	.167 pCi/L	_	07/19/18 15:20	08/10/18 16:40	
	d Qualifier	Limits					Prepared	Analyzed	Dil Fa
Ba Carrier 89.		40 - 110						08/10/18 16:40	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-5

Client Sample ID: River Seep-09-071218

Date Collected: 07/12/18 13:50 Date Received: 07/14/18 10:50

Method: 904.0 -	Radium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.810		0.520	0.525	1.00	0.796	pCi/L	07/19/18 15:49	08/02/18 09:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	89.4		40 - 110					07/19/18 15:49	08/02/18 09:22	1
Y Carrier	87.1		40 - 110					07/19/18 15:49	08/02/18 09:22	1

			Count	nd Radium Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.48		0.562	0.570	5.00	0.796	pCi/L		08/21/18 03:20	1
226 + 228										

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/12/18 14:50

Date Received: 07/14/18 10:50

Client Sample ID: River Seep-07-071218

%Yield Qualifier

79.4

Limits

40 - 110

Carrier

Ba Carrier

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-6

Matrix: Water

Method: 9056A - Anions, Ion Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1990	Qualifier	300		mg/L		Frepareu	07/25/18 22:29	100
Fluoride	0.102		1.00	0.0100	-			07/24/18 18:21	100
	1480		500		mg/L			07/25/18 22:29	100
Sulfate	1460	В	500	3.00	IIIg/L			07/25/16 22.29	100
Method: 6010C - Metals (ICP)									
Analyte		Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fa
Lithium	0.772		0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 18:01	
Method: 6020A - Metals (ICP)	MS) - Total I	Recoveral	ble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	ND		0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 20:11	
Arsenic	0.00182	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 20:11	
Barium	0.0605	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 20:11	
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 20:11	
Boron	1.46		1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 20:11	
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 20:11	
Calcium	1120		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 20:11	
Chromium	0.000340	J	0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 20:11	
Cobalt	0.0218		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:11	
Lead	0.000523	J	0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:11	
Magnesium	51.8		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:11	
Molybdenum	0.00219	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:11	
Potassium	262		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 20:11	
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 20:11	
Sodium	277		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 20:11	
Thallium	ND		0.00100	0.000360	mg/L		07/18/18 12:44	07/28/18 20:11	
: Method: EPA 7470A - Mercui	n/ (C\/ A A \								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:09	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
рН	8.01		0.100	0.100	SU			07/24/18 17:55	
Temperature	21.7		0.100	0.100	Degrees C			07/24/18 17:55	
Alkalinity	87.7		10.0	5.00	mg/L			07/24/18 21:28	
Total Dissolved Solids	6080		40.0	28.0	mg/L			07/18/18 08:50	
Method: 903.0 - Radium-226	(GFPC)								
	,	Count	Total						
		Uncert.	Uncert.						
Analyte Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226 0.566		0.144	0.152	1.00 0.0	0969 pCi/L		07/10/10 15:20	08/10/18 16:39	

Analyzed

Prepared

<u>07/19/18 15:20</u> <u>08/10/18 16:39</u>

Dil Fac

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-6

Matrix: Water

Client Sample ID: River Seep-07-071218 Date Collected: 07/12/18 14:50

Date Received: 07/14/18 10:50

adium-228	(GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.831		0.318	0.327	1.00	0.434	pCi/L	07/19/18 15:49	08/02/18 09:22	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
79.4		40 - 110					07/19/18 15:49	08/02/18 09:22	1
87.1		40 - 110					07/19/18 15:49	08/02/18 09:22	1
	Result 0.831	%Yield Qualifier	Count Uncert. (2σ+/-) 0.831	Count Uncert. Uncert.	Count Uncert. Uncert. Count Uncert. Uncert. Count Uncert. Uncert. Count Uncert.	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety

Method: Ra226 Ra	228 - Combin	ned Radium-226	and Radiu	m-228				
_		Count	Total					
		Uncert.	Uncert.					
Analyte	Result Qua	alifier (2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.40	0.349	0.361	5.00	0.434 pCi/L		08/21/18 03:20	1

TestAmerica Nashville

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/12/18 14:25

Client Sample ID: River Seep-05-071218

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-7

Method: 9056A - Anions, Id									
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fa
Chloride	1670		300		mg/L			07/25/18 22:44	10
Fluoride	0.0795		1.00	0.0100	J			07/24/18 18:36	
Sulfate	1170	В	500	3.00	mg/L			07/25/18 22:44	100
Method: 6010C - Metals (IC Analyte		overable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	0.340		0.0500	0.00959				07/24/18 18:07	
					· ·				
Method: 6020A - Metals (IC						_			
Analyte		Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fa
Antimony	0.000366	J	0.00200	0.0000213	-			07/28/18 20:16	
Arsenic	0.0192		0.00500	0.000118	•			07/28/18 20:16	
Barium	0.718		0.200	0.000270				07/28/18 20:16	
Beryllium	0.000545	J	0.00200	0.000102	· ·		07/18/18 12:44	07/28/18 20:16	
Boron	0.853	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 20:16	
Cadmium	0.000563	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 20:16	
Calcium	916		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 20:16	
Chromium	0.0124		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 20:16	
Cobalt	0.0327		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:16	
Lead	0.0104		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:16	
Magnesium	77.8		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:16	
Molybdenum	0.00442	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:16	
Potassium	238		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 20:16	
Selenium	0.00121	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 20:16	
Sodium	285		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 20:16	
Thallium	0.000164	J	0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 20:16	
Method: EPA 7470A - Merc	urv (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:12	-
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
pH	7.95		0.100	0.100	SU			07/24/18 17:55	
Temperature	21.7		0.100	0.100	Degrees C			07/24/18 17:55	
Alkalinity	229		10.0	5.00	mg/L			07/24/18 21:41	
Total Dissolved Solids	5140		40.0	28.0	mg/L			07/18/18 08:50	
					-				
Method: 903.0 - Radium-22	6 (GFPC)	Count	Total						
		Count	Total						
Analista =	It Own I'm	Uncert.	Uncert.	B1 -	4D0 11 11		5	A 1	D.: -
	It Qualifier	(2σ+/-)	(2σ+/-)		MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226 3.8	1	0.503	0.609	1.00 0	.187 pCi/L		07/19/18 15:20	08/10/18 16:40	
•		Limits					Dunnanad	A a l a al	Dil Fa
Carrier %Yie Ba Carrier 82	ld Qualifier	LIIIIII					Prepared	Analyzed	Dil Fa

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-7

Client Sample ID: River Seep-05-071218

Date Collected: 07/12/18 14:25 Date Received: 07/14/18 10:50 Matrix: Water

Method: 904.0 - F	Radium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	3.83	G	0.871	0.940	1.00	1.07	pCi/L	07/19/18 15:49	08/02/18 09:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.9		40 - 110					07/19/18 15:49	08/02/18 09:22	1
Y Carrier	83.0		40 - 110					07/19/18 15:49	08/02/18 09:22	1

_			Count	nd Radium Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	7.64		1.01	1.12	5.00	1.07	pCi/L		08/21/18 03:20	1
226 + 228										

1

11

13

14

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 12:20

Date Received: 07/14/18 10:50

Client Sample ID: Landfill Seep-01-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-8

Method: 9056A - Ani Analyte	•	ılt Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	209		600		mg/L			07/25/18 23:13	200
Fluoride	1.0		1.00	0.0100	-			07/24/18 18:51	200
Sulfate		30 B	250		mg/L			07/25/18 22:58	50
-	100	,	200	1.00	g/.L			07720710 22:00	
Method: 6010C - Met	als (ICP) - Total Re	coverable							
Analyte	Resu	ılt Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Lithium	3.	11	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 18:12	
Mathadi COOOA - Mat	ele (ICD/MC) Tete	l Danassana	bla						
Method: 6020A - Met Analyte		I Recovera ılt Qualifier	IDIE RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.004		0.00200	0.0000213			07/18/18 12:44		- Dill a
Arsenic	0.004		0.00500	0.000118	•			07/28/18 20:20	,
Barium	0.06		0.200	0.000110	ū			07/28/18 20:20	
Beryllium		ID	0.00200	0.000102				07/28/18 20:20	
Boron	1.1		1.00	0.00339	ū			07/28/18 20:20	
Cadmium		ID	0.00100	0.000152	J			07/28/18 20:20	
Calcium			1.00	0.0412				07/28/18 20:20	
Chromium		ID	0.00300	0.000339	J			07/28/18 20:20	
Cobalt	0.000037		0.00500	0.0000218	-			07/28/18 20:20	
Lead	0.0002		0.00500	0.0000675	Ū			07/28/18 20:20	
Magnesium		90 J	1.00	0.0153	-			07/28/18 20:20	
Molybdenum	0.092		0.0100	0.000873	-		07/18/18 12:44	07/28/18 20:20	
Potassium		7 9	10.0		mg/L			08/07/18 12:06	10
Selenium	0.0078		0.0100	0.000348	-		07/18/18 12:44	07/28/18 20:20	
Sodium		17	1.00		mg/L		07/18/18 12:44	07/28/18 20:20	
Thallium		ID	0.00100	0.0000360				07/28/18 20:20	
- -									
Method: EPA 7470A						_	_		
Analyte		ılt Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fac
Mercury	0.37	/2	0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:13	•
General Chemistry									
Analyte	Resu	ılt Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	9.9	96	0.100	0.100	SU			07/24/18 17:55	
Temperature	21	.7	0.100	0.100	Degrees C			07/24/18 17:55	•
Alkalinity	82	28	10.0	5.00	mg/L			07/24/18 21:50	
Total Dissolved Solids	850		100	70.0	mg/L			07/18/18 08:50	
• • 									
Method: 903.0 - Radi	um-226 (GFPC)	0	T -4 *						
		Count	Total						
Ameliate	D	Uncert.	Uncert.	D	MD0 11 11		B	A	D.: -
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)		MDC Unit		Prepared	Analyzed	Dil Fac
Radium-226	0.656	0.222	0.229	1.00	0.200 pCi/L		07/19/18 15:20	08/10/18 16:38	•
Carrier	%Yield Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.6	40 - 110					07/19/18 15:20	•	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: Landfill Seep-01-071318

Lab Sample ID: 490-155661-8

Date Collected: 07/13/18 12:20 Date Received: 07/14/18 10:50 Matrix: Water

Method: 904.0 - R	adium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.851	U	0.577	0.582	1.00	0.889	pCi/L	07/19/18 15:49	08/02/18 09:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.6		40 - 110					07/19/18 15:49	08/02/18 09:22	1
Y Carrier	75.9		40 - 110					07/19/18 15:49	08/02/18 09:22	1

_			Count	nd Radium Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.51		0.618	0.625	5.00	0.889	pCi/L		08/21/18 03:20	1
226 + 228										

9

9

12

13

14

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 12:20

Client Sample ID: Landfill Seep-01-071318-DUP

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-9

Matrix: Water

07/20/18 08:40 08/13/18 06:34

	s, Ion Chromatogi								
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fac
Chloride	2080		600	40.0	mg/L			07/25/18 23:43	200
Fluoride	1.90		1.00	0.0100	mg/L			07/24/18 19:06	
Sulfate	1700	В	250	1.50	mg/L			07/25/18 23:28	50
Method: 6010C - Metals Analyte	· /	overable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	3.13		0.0500	0.00959	mg/L		•	07/24/18 18:18	
Mothodi 6020A - Motolo	(ICD/MC) Total I	Dogovoro	hlo						
Method: 6020A - Metals Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	0.00463	Quanner	0.00200	0.0000213	mg/L	- –	•	07/28/18 20:25	Dilla
Antimony			0.00200		J			07/28/18 20:25	
Arsenic	0.393			0.000118	•				•
Barium	0.0690		0.200	0.000270	•			07/28/18 20:25	
Beryllium	ND		0.00200	0.000102	J			07/28/18 20:25	•
Boron	1.21		1.00	0.00339	ū			07/28/18 20:25	•
Cadmium	ND		0.00100	0.000152	•			07/28/18 20:25	
Calcium	1230		1.00	0.0412	-			07/28/18 20:25	•
Chromium	ND		0.00300	0.000339	O			07/28/18 20:25	•
Cobalt	0.0000570	J	0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:25	
Lead	0.000254	J	0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:25	•
Magnesium	0.335	J	1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:25	•
Molybdenum	0.0981		0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:25	•
Potassium	37.3		10.0	0.596	mg/L		07/18/18 12:44	08/07/18 12:09	10
Selenium	0.00913	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 20:25	
Sodium	362		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 20:25	
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 20:25	1
Method: EPA 7470A - M	ercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.388		0.200	0.0653	ug/L	_	07/18/18 15:06	07/20/18 11:14	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
	40.0		0.400	0.100	SU			07/24/18 17:58	•
рН	10.0		0.100	0.100					
•	10.0 21.9		0.100		Degrees C			07/24/18 17:58	•
Temperature				0.100					
Temperature Alkalinity	21.9		0.100	0.100 5.00	Degrees C			07/24/18 17:58	
Temperature Alkalinity Total Dissolved Solids	21.9 841 7880		0.100 10.0	0.100 5.00	Degrees C mg/L			07/24/18 17:58 07/24/18 21:59	
Temperature Alkalinity Total Dissolved Solids	21.9 841 7880	Count	0.100 10.0	0.100 5.00	Degrees C mg/L			07/24/18 17:58 07/24/18 21:59	
Temperature Alkalinity Total Dissolved Solids	21.9 841 7880	Count Uncert.	0.100 10.0 100	0.100 5.00	Degrees C mg/L			07/24/18 17:58 07/24/18 21:59	
Temperature Alkalinity Total Dissolved Solids Method: 903.0 - Radium	21.9 841 7880	Uncert.	0.100 10.0 100 Total	0.100 5.00 70.0	Degrees C mg/L		Prepared	07/24/18 17:58 07/24/18 21:59 07/18/18 08:50	
Temperature Alkalinity Total Dissolved Solids Method: 903.0 - Radium Analyte	21.9 841 7880 -226 (GFPC)		0.100 10.0 100 Total Uncert.	0.100 5.00 70.0	Degrees C mg/L mg/L		Prepared 07/20/18 08:40	07/24/18 17:58 07/24/18 21:59 07/18/18 08:50 Analyzed	Dil Fac
Alkalinity Total Dissolved Solids Method: 903.0 - Radium Analyte R Radium-226	21.9 841 7880 -226 (GFPC)	Uncert. (2σ+/-)	0.100 10.0 100 Total Uncert. (2σ+/-)	0.100 5.00 70.0	Degrees C mg/L mg/L			07/24/18 17:58 07/24/18 21:59 07/18/18 08:50 Analyzed	Dil Fac

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: Landfill Seep-01-071318-DUP

Lab Sample ID: 490-155661-9

Matrix: Water

Date Collected: 07/13/18 12:20 Date Received: 07/14/18 10:50

Method: 904.0 -	Radium-228	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0841	U	0.488	0.488	1.00	0.874	pCi/L	07/20/18 09:30	08/02/18 09:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.4		40 - 110					07/20/18 09:30	08/02/18 09:25	1
Y Carrier	94.6		40 - 110					07/20/18 09:30	08/02/18 09:25	1

Method: Ra226 Ra	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.564	U	0.532	0.534	5.00	0.874	pCi/L		08/21/18 03:20	1
_+ 228										

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 13:10

Date Received: 07/14/18 10:50

Client Sample ID: Landfill Seep-02-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-10

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride		1710		150		mg/L			07/25/18 23:58	5
Fluoride		1.19		1.00	0.0100	mg/L			07/24/18 19:20	
Sulfate		1500	В	250	1.50	mg/L			07/25/18 23:58	5
Method: 6010C - Meta	ls (ICP)	- Total Reco	overable							
Analyte		_	Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fa
Lithium		2.85		0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 18:24	
Method: 6020A - Meta	ls (ICP	MS) - Total F	Recovera	ble						
Analyte		Result	Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fa
Antimony		0.00218		0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 20:30	
Arsenic		0.126		0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 20:30	
Barium		0.0627	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 20:30	
Beryllium		ND		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 20:30	
Boron		2.92		1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 20:30	
Cadmium		0.000464	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 20:30	
Calcium		1030		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 20:30	
Chromium		ND		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 20:30	
Cobalt		0.000115	J	0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:30	
Lead		0.000247		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:30	
Magnesium		0.804	J	1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:30	
Molybdenum		1.78		0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:30	
Potassium		228		10.0	0.596	mg/L		07/18/18 12:44	08/07/18 12:12	10
Selenium		0.0103		0.0100	0.000348	•		07/18/18 12:44	07/28/18 20:30	
Sodium		315		1.00	0.155	Ū		07/18/18 12:44	07/28/18 20:30	
Thallium		ND		0.00100	0.0000360				07/28/18 20:30	
Method: EPA 7470A -	Mercur	v (CVAA)								
Analyte	morour	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury		0.167	J	0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:15	
General Chemistry										
Analyte		Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
рН		9.02		0.100	0.100	SU			07/24/18 17:58	
Temperature		21.8		0.100	0.100	Degrees C			07/24/18 17:58	
Alkalinity		178		10.0	5.00	mg/L			07/24/18 22:08	
Total Dissolved Solids		7080		100	70.0	mg/L			07/18/18 08:50	
Method: 903.0 - Radiu	m-226	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226	0.658		0.203	0.211	1.00 0	.168 pCi/L		07/20/18 08:40	08/13/18 06:34	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fa
								-	08/13/18 06:34	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: Landfill Seep-02-071318

Lab Sample ID: 490-155661-10

Date Collected: 07/13/18 13:10 Date Received: 07/14/18 10:50

Method: 904.0 - R	adium-228	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.507	U	0.520	0.522	1.00	0.848	pCi/L	07/20/18 09:30	08/02/18 09:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.8		40 - 110					07/20/18 09:30	08/02/18 09:25	1
Y Carrier	85.6		40 - 110					07/20/18 09:30	08/02/18 09:25	1

Method: Ra226 Ra	a228 - Combined R	Radium-226 a	ınd Radiun	n- 228					
_		Count	Total						
		Uncert.	Uncert.						
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.16	0.558	0.563	5.00	0.848	pCi/L		08/21/18 03:20	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 13:30

Date Received: 07/14/18 10:50

Client Sample ID: Landfill Seep-03-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-11

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloride	4370		1500	100	mg/L			07/26/18 01:56	500
Fluoride	0.269	J	1.00	0.0100	mg/L			07/24/18 19:35	
Sulfate	2080	В	500	3.00	mg/L			07/26/18 01:41	100
Method: 6010C - Metals (IC	CP) - Total Rec	overable							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Lithium	7.19		0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 18:29	
Method: 6020A - Metals (IC Analyte		Recovera Qualifier	ble RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.0000610		0.00200	0.0000213			07/18/18 12:44		
Arsenic	0.00176		0.00500	0.000118	-		07/18/18 12:44	07/28/18 20:34	
Barium	0.140		0.200	0.000270	J			07/28/18 20:34	
Beryllium	ND		0.00200	0.000102	•			07/28/18 20:34	
Boron	2.49		1.00	0.00339	-			07/28/18 20:34	
Cadmium	0.000279	1	0.00100	0.000152	-			07/28/18 20:34	
Calcium	2250		10.0	0.412	ū			07/31/18 01:20	<u>.</u> 1(
Chromium	ND.		0.00300	0.000339	-			07/28/18 20:34	•
Cobalt	0.000321	1	0.00500	0.0000218	J			07/28/18 20:34	
Lead	0.00021		0.00500	0.0000675				07/28/18 20:34	
Magnesium	12.6	•	1.00	0.0153	J			07/28/18 20:34	
Molybdenum	0.792		0.0100	0.000873	J			07/28/18 20:34	
Potassium	1140		10.0	0.596				07/31/18 01:20	<u>.</u> 10
Selenium	0.00163	1	0.0100	0.000348	J			07/28/18 20:34	•
Sodium	566	•	1.00	0.155	ū			07/28/18 20:34	
Thallium	ND		0.00100	0.0000360				07/28/18 20:34	
			0.00100	0.0000000	9/ _		07710710 12:11	01720710 20.01	
Method: EPA 7470A - Mero Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.200	0.0653			07/18/18 15:06		
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
pH	8.04		0.100	0.100	SU			07/24/18 17:58	
Temperature	21.7		0.100	0.100	Degrees C			07/24/18 17:58	
Alkalinity	93.9		10.0	5.00	mg/L			07/24/18 22:15	
Total Dissolved Solids	12400		100	70.0	mg/L			07/18/18 08:50	
Method: 903.0 - Radium-22	26 (GFPC)								
		Count	Total						
		Uncert.	Uncert.						
-	ult Qualifier	(2σ+/-)	(2σ+/-)		MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226 1.	41	0.418	0.437	1.00 0	0.322 pCi/L		07/24/18 13:57	08/16/18 05:35	
Carrier %Yie	eld Qualifier	Limits					Prepared	Analyzed	Dil Fa
Ba Carrier 89	9.7	40 - 110					07/24/18 13:57	08/16/18 05:35	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: Landfill Seep-03-071318

Lab Sample ID: 490-155661-11

Date Collected: 07/13/18 13:30 Date Received: 07/14/18 10:50

adium-228	(GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.136	UG	0.846	0.846	1.00	1.50	pCi/L	07/24/18 14:24	08/02/18 16:23	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
89.7		40 - 110					07/24/18 14:24	08/02/18 16:23	1
92.7		40 - 110					07/24/18 14:24	08/02/18 16:23	1
	Result 0.136 %Yield 89.7		Count Uncert.	Count Uncert. Uncert.	Count Uncert. Uncert. Vincert. Vincer	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Uncert. Count Uncer

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.54		0.944	0.952	5.00	1.50	pCi/L		08/21/18 03:20	1

RL

300

1.00

500

RL

RL

0.00200

0.00500

0.00200

0.00100

0.00300

0.00500

0.200

1.00

1.00

0.0500

MDL Unit

20.0 mg/L

3.00 mg/L

MDL Unit

MDL Unit

0.0000213 mg/L

0.000118 mg/L

0.000270 mg/L

0.000102 mg/L

0.00339 mg/L

0.000152 mg/L

0.000339 mg/L

0.0000218 mg/L

0.0412 mg/L

0.00959 mg/L

0.0100 mg/L

D

Prepared

Prepared

Prepared

07/18/18 12:42 07/24/18 18:35

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 13:50

Date Received: 07/14/18 10:50

Analyte

Chloride

Fluoride

Sulfate

Analyte

Lithium

Analyte

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Boron

Antimony

Client Sample ID: Pond-012-071318

Method: 9056A - Anions, Ion Chromatography

Method: 6010C - Metals (ICP) - Total Recoverable

Method: 6020A - Metals (ICP/MS) - Total Recoverable

Result Qualifier

Result Qualifier

Result Qualifier

1640

0.266 J

1920 B

2.52

0.00302

0.278

0.0854

ND

2.12

1050

0.000203 J

ND

ND

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-12

Analyzed

07/26/18 02:11

07/24/18 19:50

07/26/18 02:11

Analyzed

Analyzed

Matrix: Water

Dil Fac

100

100

Dil Fac

Dil Fac

1

6

Ba Carrier	93.2	Quaiiiier	40 - 110					Prepared 07/20/18 08:40	Analyzed 08/13/18 06:34	DII Fac
Carrier		Qualifier	Limits				-	Propared	Analyzod	Dil Fac
Radium-226	0.962		0.258	0.272	1.00	0.223	pCi/L	07/20/18 08:40	08/13/18 06:34	1
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC	Unit	Prepared	Analyzed	Dil Fac
			Uncert.	Uncert.						
		()	Count	Total						
- Method: 903.0 - F	Radium-226	(GFPC)								
Total Dissolved Soli	ds	7180		100	70.0	mg/L			07/18/18 08:50	1
Alkalinity		7.24	J	10.0		mg/L			07/24/18 22:22	
Temperature		21.7		0.100		Degr			07/24/18 17:58	1
pH		6.90		0.100	0.100				07/24/18 17:58	1
Analyte			Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
General Chemist	ry									
Mercury		0.0840	J	0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:17	1
Analyte			Qualifier	RL		Unit	D		Analyzed	Dil Fac
Method: EPA 747	OA - Mercui		0	D.				Dogwood	A a la a . d	D!! F
Thallium -		ND		0.00100	0.0000360	mg/L	-	07/18/18 12:44	07/28/18 20:39	1
Sodium		316		1.00		mg/L			07/28/18 20:39	1
Selenium		0.00201	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 20:39	1
Potassium		231		10.0	0.596	mg/L		07/18/18 12:44	08/07/18 12:15	10
Molybdenum		0.133		0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:39	1
Magnesium		11.9		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:39	1
						•				

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: Pond-012-071318

Date Collected: 07/13/18 13:50 Date Received: 07/14/18 10:50

226 + 228

Lab Sample ID: 490-155661-12

Method: 904.0 - Ra	adium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.505	U	0.599	0.600	1.00	0.988	pCi/L	07/20/18 09:30	08/02/18 09:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.2		40 - 110					07/20/18 09:30	08/02/18 09:25	1
Y Carrier	77.8		40 - 110					07/20/18 09:30	08/02/18 09:25	1

Method: Ra226 Ra	a228 - Con	nbined Rad	dium-226 a	nd Radiur	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.47		0.652	0.659	5.00	0.988	pCi/L		08/21/18 03:20	1

RL

300

1.00

500

RL

RL

0.00200

0.00500

0.00200

0.00100

0.00300

0.00500

0.00500

1.00

10.0

1.00

RL

RL

0.100

0.100

10.0

100

RL

1.00

Total Uncert.

 $(2\sigma + / -)$

0.248

0.200

0.0100

0.0100

0.00100

0.200

1.00

10.0

0.0500

Result Qualifier

Result Qualifier

Result Qualifier

2710

1.53

4.07

0.00470

0.300

0.101

0.000161

0.0000730

ND

0.799 J

1750

ND

ND

0.347

0.214

0.0103

899

397

0.539

10.1

21.7

1060

10100

Result Qualifier

%Yield Qualifier

0.897

97.6

ND

Result Qualifier

Result Qualifier

Count

Uncert.

 $(2\sigma + / -)$

Limits

40 - 110

0.234

1490 B

MDL Unit

20.0 mg/L

3.00 mg/L

MDL Unit

MDL Unit

mg/L

mg/L

mg/L

mg/L

0.0000213 mg/L

0.000102 mg/L

0.00339 mg/L

0.000152 mg/L

0.000339 mg/L

0.0000218 mg/L

0.0000675 mg/L

0.000873 mg/L

0.000348 mg/L

0.0000360 mg/L

0.0653

0.100

0.155 mg/L

MDL Unit

MDL Unit

5.00 mg/L

70.0 mg/L

ug/L

SU

0.100 Degrees C

MDC Unit

0.171 pCi/L

0.596

0.0153

0.412 mg/L

0.000118

0.000270

0.00959 mg/L

0.0100 mg/L

D

D

D

ח

Prepared

Prepared

Prepared

07/18/18 12:42 07/24/18 18:41

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/31/18 01:47

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/31/18 01:47

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 15:06 07/20/18 11:18

07/20/18 08:40 08/13/18 06:35

07/20/18 08:40 08/13/18 06:35

Analyzed

Analyzed

07/24/18 17:58

07/24/18 17:58

07/25/18 09:02

07/18/18 08:50

Analyzed

Analyzed

Prepared

Prepared

Prepared

Prepared

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 14:15

Date Received: 07/14/18 10:50

Analyte

Chloride

Fluoride

Sulfate

Analyte

Lithium

Analyte

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Magnesium

Potassium

Selenium

Sodium

Thallium

Analyte

Mercury

Analyte

Temperature

Alkalinity

Analyte

Carrier

Ba Carrier

Radium-226

pН

General Chemistry

Total Dissolved Solids

Molybdenum

Method: EPA 7470A - Mercury (CVAA)

Method: 903.0 - Radium-226 (GFPC)

Cobalt

Lead

Boron

Antimony

Client Sample ID: Landfill Seep-04-071318

Method: 9056A - Anions, Ion Chromatography

Method: 6010C - Metals (ICP) - Total Recoverable

Method: 6020A - Metals (ICP/MS) - Total Recoverable

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-13

Analyzed

07/26/18 02:26

07/24/18 20:05

07/26/18 02:26

Analyzed

Analyzed

Matrix: Water

Dil Fac

100

100

Dil Fac

Dil Fac

1

1

1

1

10

1

10

Dil Fac

Dil Fac

Dil Fac

Dil Fac

1

1

6

TestAmerica Nashville

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-13

Client Sample ID: Landfill Seep-04-071318

Date Collected: 07/13/18 14:15 Date Received: 07/14/18 10:50

Method: 904.0 -	Radium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.873		0.524	0.530	1.00	0.799	pCi/L	07/20/18 09:30	08/02/18 09:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.6		40 - 110					07/20/18 09:30	08/02/18 09:25	1
Y Carrier	86.4		40 - 110					07/20/18 09:30	08/02/18 09:25	1

Method: Ra226 Ra	228 - Com	bined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.77		0.574	0.585	5.00	0.799	pCi/L		08/21/18 03:20	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 490-531256/3

Matrix: Water

Analysis Batch: 531256

Client Sample ID: Method Blank Prep Type: Total/NA

MR MR

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		3.00	0.200	mg/L			07/24/18 13:54	1
Fluoride	ND		1.00	0.0100	mg/L			07/24/18 13:54	1
Sulfate	0.3643	J	5.00	0.0300	mg/L			07/24/18 13:54	1
	Chloride Fluoride	Chloride ND Fluoride ND	Chloride ND Fluoride ND	Chloride ND 3.00 Fluoride ND 1.00	Chloride ND 3.00 0.200 Fluoride ND 1.00 0.0100	Chloride ND 3.00 0.200 mg/L Fluoride ND 1.00 0.0100 mg/L	Chloride ND 3.00 0.200 mg/L Fluoride ND 1.00 0.0100 mg/L	Chloride ND 3.00 0.200 mg/L Fluoride ND 1.00 0.0100 mg/L	Chloride ND 3.00 0.200 mg/L 07/24/18 13:54 Fluoride ND 1.00 0.0100 mg/L 07/24/18 13:54

Lab Sample ID: LCS 490-531256/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531256

	Spi	ke LCS	LCS				%Rec.	
Analyte	Adde	ed Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10	.0 9.350		mg/L		93	80 - 120	
Fluoride	1.	0.9781	J	mg/L		98	80 - 120	
Sulfate	10	.0 9.696	i	mg/L		97	80 - 120	

Lab Sample ID: LCSD 490-531256/5 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531256

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Unit Limits RPD Limit Analyte D %Rec Chloride 10.0 9.374 mg/L 94 80 - 120 0 20 Fluoride 1.00 0.9558 J mg/L 95 80 - 120 20 Sulfate 10.0 9.589 mg/L 80 - 120 96

Lab Sample ID: 490-155661-5 MS Client Sample ID: River Seep-09-071218 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531256

7 , 0.0	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoride	0.239	J F1	1.00	1.702	F1	ma/L	_	146	80 - 120	

Lab Sample ID: MB 490-531368/3 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 531368

	INIB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		3.00	0.200	mg/L			07/25/18 18:18	1
Fluoride	ND		1.00	0.0100	mg/L			07/25/18 18:18	1
Sulfate	0.3720	J	5.00	0.0300	mg/L			07/25/18 18:18	1

Lab Sample ID: MB 490-531368/30 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531368

	MB	MB						
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND	3.00	0.200	mg/L			07/26/18 00:57	1
Fluoride	ND	1.00	0.0100	mg/L			07/26/18 00:57	1
Sulfate	0.3740	J 5.00	0.0300	mg/L			07/26/18 00:57	1

Page 32 of 68

TestAmerica Nashville

8/21/2018

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 490-531368/31 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531368

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 	10.0	9.348		mg/L		93	80 - 120	
Fluoride		1.00	0.9475	J	mg/L		95	80 - 120	
Sulfate		10.0	9.314		mg/L		93	80 - 120	

Lab Sample ID: LCS 490-531368/4 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 531368

7, 6.16	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	10.0	9.348		mg/L		93	80 - 120		
Fluoride	1.00	0.9854	J	mg/L		98	80 - 120		
Sulfate	10.0	9.495		mg/L		95	80 - 120		
	Analyte Chloride Fluoride	Analyte Added Chloride 10.0 Fluoride 1.00	Analyte Added Chloride Result 10.0 9.348 Fluoride 1.00 0.9854	Analyte Added Chloride Result Possible Qualifier Fluoride 1.00 0.9854 J	Analyte Added Chloride Result Pluoride Qualifier mg/L Unit mg/L Fluoride 1.00 0.9854 J mg/L	Analyte Added Chloride Result 99.348 Qualifier mg/L Unit mg/L D Fluoride 1.00 0.9854 J mg/L	Analyte Added Chloride Result 10.0 Qualifier 9.348 Unit mg/L D mg/L %Rec mg/L 93 Fluoride 1.00 0.9854 J mg/L 98	Analyte Added Chloride Result 10.0 Qualifier 9.348 Unit mg/L D mg/L %Rec. Limits 20.0 Limits 20.0 Eluoride 10.0 9.348 J mg/L mg/L 98 80 - 120	Analyte Added Chloride Result 10.0 Qualifier 9.348 Unit mg/L D mg/L %Rec. Limits 20.0 Limits 20.0 Eluoride Fluoride 1.00 0.9854 J mg/L 98 80 - 120

Lab Sample ID: LCSD 490-531368/32 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531368

		Spike	LCSD	LCSD				%Rec.		RPD	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride		10.0	9.368		mg/L		94	80 - 120	0	20	
Fluoride		1.00	0.9513	J	mg/L		95	80 - 120	0	20	
Sulfate		10.0	9.447		mg/L		94	80 - 120	1	20	

Lab Sample ID: LCSD 490-531368/5 **Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Matrix: Water**

Analysis Batch: 531368

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.296		mg/L		93	80 - 120	1	20
Fluoride	1.00	0.9931	J	mg/L		99	80 - 120	1	20
Sulfate	10.0	9.710		mg/L		97	80 - 120	2	20

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 180-250902/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 251527 MB MB

Analyte	Result Qualifi	er RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Lithium	ND	0.0500	0.00959	ma/L			07/18/18 12:42	07/24/18 16:47	

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 180-250902/2-A **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 251527 **Prep Batch: 250902**

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Lithium 1 00 1.028 mg/L 103 80 - 120

TestAmerica Nashville

Prep Batch: 250902

Client Sample ID: Matrix Spike

Prep Type: Total Recoverable

Client Sample ID: Matrix Spike Duplicate

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 490-155660-A-5-B MS

Matrix: Water

Analysis Batch: 251527

Prep Type: Total Recoverable Prep Batch: 250902 Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits

Analyte 1.00 75 ₋ 125 Lithium 0.0132 J 1.082 mg/L 107

Lab Sample ID: 490-155660-A-5-C MSD

Matrix: Water

Analysis Batch: 251527

Prep Batch: 250902 Sample Sample Spike MSD MSD **RPD** %Rec. Result Qualifier Added **Analyte** Result Qualifier Unit Limits **RPD** Limit %Rec Lithium 0.0132 J 1.00 1.090 mg/L 108 75 - 125 20

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-250903/1-A

Matrix: Water

Analysis Batch: 252059

Client Sample ID: Method Blank **Prep Type: Total Recoverable** Prep Batch: 250903

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 07/18/18 12:44 07/28/18 18:53 Antimony $\overline{\mathsf{ND}}$ 0.00200 0.0000213 mg/L 0.000118 mg/L 07/18/18 12:44 07/28/18 18:53 Arsenic ND 0.00500 Barium ND 0.200 0.000270 mg/L 07/18/18 12:44 07/28/18 18:53 Beryllium ND 0.000102 mg/L 07/18/18 12:44 07/28/18 18:53 0.00200 Boron ND 1.00 0.00339 mg/L 07/18/18 12:44 07/28/18 18:53 Cadmium ND 0.00100 0.000152 mg/L 07/18/18 12:44 07/28/18 18:53 Calcium ND 0.0412 mg/L 07/18/18 12:44 07/28/18 18:53 1.00 Chromium ND 0.00300 0.000339 mg/L 07/18/18 12:44 07/28/18 18:53 Cobalt 0.00500 0.0000218 mg/L 07/18/18 12:44 07/28/18 18:53 ND ND 0.00500 0.0000675 mg/L 07/18/18 12:44 07/28/18 18:53 Lead Magnesium ND 1.00 0.0153 mg/L 07/18/18 12:44 07/28/18 18:53 ND 0.0100 0.000873 mg/L Molybdenum 07/18/18 12:44 07/28/18 18:53 Potassium ND 1.00 0.0596 mg/L 07/18/18 12:44 07/28/18 18:53 Selenium ND 0.0100 0.000348 mg/L 07/18/18 12:44 07/28/18 18:53 Sodium ND 1.00 0.155 mg/L 07/18/18 12:44 07/28/18 18:53 Thallium ND 0.00100 0.0000360 mg/L 07/18/18 12:44 07/28/18 18:53

Lab Sample ID: LCS 180-250903/2-A

Matrix: Water

Analysis Batch: 252059

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 250903

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.500	0.4729		mg/L		95	80 - 120	
Arsenic	0.0400	0.03658		mg/L		91	80 - 120	
Barium	2.00	1.840		mg/L		92	80 - 120	
Beryllium	0.0500	0.05027		mg/L		101	80 - 120	
Boron	1.00	0.8897	J	mg/L		89	80 - 120	
Cadmium	0.0500	0.05029		mg/L		101	80 - 120	
Calcium	50.0	45.70		mg/L		91	80 - 120	
Chromium	0.200	0.1649		mg/L		82	80 - 120	
Cobalt	0.500	0.4321		mg/L		86	80 - 120	
Lead	0.0200	0.01998		mg/L		100	80 - 120	

TestAmerica Nashville

Page 34 of 68

8/21/2018

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 180-250903/2-A Matrix: Water	atrix: Water							
Analysis Batch: 252059	Spike	LCS	LCS				Prep Batch: 250903 %Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Magnesium	50.0	45.74	-	mg/L		91	80 - 120	
Molybdenum	1.00	0.9327		mg/L		93	80 - 120	
Potassium	50.0	46.09		mg/L		92	80 - 120	
Selenium	0.0100	0.009085	J	mg/L		91	80 - 120	
Sodium	50.0	44.98		mg/L		90	80 - 120	
Thallium	0.0500	0.04846		mg/L		97	80 - 120	

Lab Sample ID: 490-155660 Matrix: Water Analysis Batch: 252059									
-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	ND	-	0.500	0.4679		mg/L		94	75 - 125
Arsenic	ND		0.0400	0.03692		mg/L		92	75 - 125
Barium	ND		2.00	1.839		mg/L		92	75 - 125
Beryllium	ND		0.0500	0.04768		mg/L		95	75 - 125
Boron	0.00422	J	1.00	0.8456	J	mg/L		84	75 - 125
Cadmium	ND		0.0500	0.04723		mg/L		94	75 - 125
Calcium	ND		50.0	45.39		mg/L		91	75 - 125
Chromium	ND		0.200	0.1840		mg/L		92	75 - 125
Cobalt	ND		0.500	0.4386		mg/L		88	75 - 125
Lead	0.000399	j	0.0200	0.01986		mg/L		97	75 - 125
Magnesium	0.0156	J	50.0	46.32		mg/L		93	75 - 125
Molybdenum	ND		1.00	0.9262		mg/L		93	75 - 125
Potassium	0.0680	J	50.0	46.15		mg/L		92	75 - 125
Selenium	ND		0.0100	0.01006		mg/L		101	75 - 125
Sodium	ND		50.0	45.34		mg/L		91	75 - 125
Thallium	ND		0.0500	0.04726		mg/L		95	75 - 125

Lab Sa	mple ID:	490-1	155660- <i>F</i>	4-6-D MSD

Matrix: Water

Analysis Batch: 252059									Prep Ba	itch: 2	50903
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		0.500	0.4680		mg/L		94	75 - 125	0	20
Arsenic	ND		0.0400	0.03704		mg/L		93	75 - 125	0	20
Barium	ND		2.00	1.847		mg/L		92	75 - 125	0	20
Beryllium	ND		0.0500	0.04801		mg/L		96	75 - 125	1	20
Boron	0.00422	J	1.00	0.8557	J	mg/L		85	75 - 125	1	20
Cadmium	ND		0.0500	0.04852		mg/L		97	75 - 125	3	20
Calcium	ND		50.0	44.91		mg/L		90	75 - 125	1	20
Chromium	ND		0.200	0.1875		mg/L		94	75 - 125	2	20
Cobalt	ND		0.500	0.4400		mg/L		88	75 - 125	0	20
Lead	0.000399	J	0.0200	0.01961		mg/L		96	75 - 125	1	20
Magnesium	0.0156	J	50.0	45.89		mg/L		92	75 - 125	1	20
Molybdenum	ND		1.00	0.9301		mg/L		93	75 - 125	0	20
Potassium	0.0680	J	50.0	45.93		mg/L		92	75 - 125	0	20
Selenium	ND		0.0100	0.01030		mg/L		103	75 - 125	2	20
Sodium	ND		50.0	45.17		mg/L		90	75 - 125	0	20

TestAmerica Nashville

8/21/2018

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total Recoverable

Page 35 of 68

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: Method Blank

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 490-15566	0-155660-A-6-D MSD Client Sample ID: Matrix Spike Du							ke Dup	licate		
Matrix: Water							P	rep Ty	pe: Total I	Recove	rable
Analysis Batch: 252059									Prep Ba	atch: 2	50903
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Thallium	ND		0.0500	0.04752		mg/L		95	75 - 125	1	20

Method: EPA 7470A - Mercury (CVAA)

Lab Sample ID: MB 180-250943/1-A

Matrix: Water Analysis Batch: 251171								Prep Type: To Prep Batch: 2	
-	MB	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 10:52	1

Lab Sample ID: LCS 180-250943/2-A				Clie	nt Sar	nple ID	: Lab Con	trol Sample
Matrix: Water							Prep Typ	e: Total/NA
Analysis Batch: 251171							Prep Ba	tch: 250943
•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	2.50	2.486		ug/L		99	80 - 120	

Lab Sample ID: 180-79800-	·G-1-E MS						CI	ient Sa	impie iu: Matrix Spike	•
Matrix: Water									Prep Type: Total/NA	1
Analysis Batch: 251171									Prep Batch: 250943	3
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	ND		1.00	0.9270		ug/L		93	75 - 125	-

Lab Sample ID: 180-79800-	G-1-F MSD)				Client	Samp	le ID: N	latrix Spi	ke Dup	licate
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 251171									Prep Ba	atch: 2	50943
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	ND		1.00	0.9210		ua/L		92	75 - 125		20

Method: 9040C - pH

Lab Sample ID: LCS 490-531203/1 Matrix: Water Analysis Batch: 531203			Client Sample ID: Lab Control Sample Prep Type: Total/NA					
Analyte pH	Spike Added 7.00	 LCS Qualifier	Unit SU	D	%Rec 100	%Rec. Limits 98 - 103		

Lab Sample ID: 490-155660-D-5 DU							Client Sample ID: Duplica					
Matrix: Water							Prep Type: Tot	al/NA				
Analysis Batch: 531203												
_	Sample	Sample	DU	DU				RPD				
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit				
nH	8 11		8 110		SII			20				

8.11 Temperature 21.7 21.70 Degrees C 20

TestAmerica Nashville

Page 36 of 68

8/21/2018

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 9040C - pH (Continued)

Lab Sample ID: LCS 490-531204/1 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 531204

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 7.00 7.000 SU рН 100 98 - 103

Client Sample ID: Landfill Seep-01-071318-DUP Lab Sample ID: 490-155661-9 DU Prep Type: Total/NA

Matrix: Water

Analysis Ratch: 531204

Analysis Batch: 531204	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
рН	10.0		10.03		SU	_	 0	20
Temperature	21.9		21.90		Degrees C		0	20

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 490-531384/73 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531384

	мв мв							
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	ND	10.0	5.00	mg/L			07/24/18 20:09	1

Lab Sample ID: LCS 490-531384/74 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531384

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity	 100	95.45		mg/L	_	95	90 - 110	

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 490-531384/95 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 531384

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Alkalinity 100 95.67 mg/L 96 90 - 110

Lab Sample ID: 490-155661-6 DU Client Sample ID: River Seep-07-071218 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531384

Analysis Baton, 001004	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Alkalinity	87.7		88.85		mg/L			1	20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 490-529395/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 529395

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 7.00 mg/L 07/18/18 08:50

TestAmerica Nashville

8/21/2018

Page 37 of 68

Client Sample ID: River Seep-09-071218

Client Sample ID: Landfill Seep-04-071318

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 490-529395/2 **Client Sample ID: Lab Control Sample Matrix: Water**

Analysis Batch: 529395

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 100 **Total Dissolved Solids** 103.0 mg/L 103 90 - 110

Lab Sample ID: 490-155661-5 DU

Matrix: Water

Analysis Batch: 529395

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier **RPD** Analyte Limit Unit D **Total Dissolved Solids** 2130 2194 mg/L 20

Lab Sample ID: 490-155661-13 DU

Matrix: Water

Analysis Batch: 529395

Sample Sample DU DU **RPD** RPD Result Qualifier Result Qualifier Limit Analyte Unit D Total Dissolved Solids 10100 10080 mg/L 20

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-376745/23-A

Matrix: Water

Analysis Batch: 381568

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 376745** Count Total

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL MDC Unit Prepared Analyzed Dil Fac Radium-226 07/19/18 15:20 08/10/18 16:41 0.2502 0.100 0.103 1.00 0.106 pCi/L MB MB

Carrier Limits %Yield Qualifier Ba Carrier 40 - 110 97.1

Lab Sample ID: LCS 160-376745/1-A

Matrix: Water

Analysis Batch: 381577

Client Sample ID: Lab Control Sample

07/19/18 15:20 08/10/18 16:41

Prepared

Prep Batch: 376745

Analyzed

Total Spike LCS LCS Uncert. %Rec. Analyte Added $(2\sigma + / -)$ RL MDC Unit Result Qual %Rec Limits Radium-226 11.4 11.66 1.20 1.00 0.0735 pCi/L 103 68 - 137

LCS LCS Carrier %Yield Qualifier Limits 40 - 110 Ba Carrier 100

Lab Sample ID: LCSD 160-376745/2-A

Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 381577 Prep Batch: 376745** Total

Spike LCSD LCSD Uncert. %Rec. **RFR** Analyte Added Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits RER Limit Radium-226 11.4 10.89 1.13 1.00 0.109 pCi/L 96 68 - 137 0.33

TestAmerica Nashville

8/21/2018

Page 38 of 68

Dil Fac

Prep Type: Total/NA

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 903.0 - Radium-226 (GFPC) (Continued)

Lab Sample ID: LCSD 160-376745/2-A

Matrix: Water

Matrix: Water

Carrier

Analysis Batch: 381577

LCSD LCSD

Carrier %Yield Qualifier Limits Ba Carrier 100 40 - 110

Lab Sample ID: MB 160-376796/18-A

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 376745

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 376796

Analysis Batch: 381804 Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.2016 0.0795 0.0816 1.00 0.0804 pCi/L 07/20/18 08:40 08/13/18 06:36 MB MB

Ba Carrier 102

Lab Sample ID: LCS 160-376796/1-A

Matrix: Water

Analysis Batch: 381803

Client Sample ID: Lab Control Sample

07/20/18 08:40 08/13/18 06:36

Prepared

Prep Type: Total/NA

Analyzed

Prep Batch: 376796

Total

%Yield Qualifier

Limits

40 - 110

LCS LCS %Rec. Spike Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits 68 - 137 Radium-226 11.79 1.21 11.4 1.00 0.0688 pCi/L 104

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 99.7 40 - 110

Lab Sample ID: 400-156511-B-1-B DU

Matrix: Water

Analysis Batch: 381803

Client Sample ID: Duplicate

Prep Type: Total/NA

Prep Batch: 376796

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual RL **MDC** Unit RER Limit Result Qual $(2\sigma + / -)$ Radium-226 0.266 0.2898 0.103 1.00 0.0896 pCi/L 0.12

DU DU Carrier %Yield Qualifier Limits Ba Carrier 90.3 40 - 110

Lab Sample ID: MB 160-377701/16-A

Matrix: Water

Analysis Batch: 382769

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 377701

Count Total MB MB Uncert. Uncert. Analyte $(2\sigma + / -)$ RL **MDC** Unit Result Qualifier $(2\sigma + / -)$ Prepared Analyzed Dil Fac Radium-226 0.0970 0.0993 1.00 0.0872 pCi/L 07/24/18 13:57 08/16/18 05:31 0.2320

> ΜB ΜB

Carrier Qualifier Limits Prepared Dil Fac %Yield Analyzed 40 - 110 07/24/18 13:57 08/16/18 05:31 Ba Carrier 94.7

TestAmerica Nashville

Page 39 of 68

Dil Fac

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 903.0 - Radium-226 (GFPC) (Continued)

Lab Sample ID: LCS 160-377701/1-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 382767** Total

Prep Batch: 377701

Spike LCS LCS Uncert. %Rec. Added **Analyte** Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-226 15.1 13.45 1.00 0.0919 pCi/L 89 68 - 137 1.40

LCS LCS %Yield Qualifier Carrier I imits Ba Carrier 94.1 40 - 110

Client Sample ID: Duplicate

Lab Sample ID: 600-169468-C-1-A DU **Matrix: Water** Prep Type: Total/NA Analysis Batch: 382767

Prep Batch: 377701

Total DU DU **RER** Sample Sample Uncert. Analyte Result Qual Result Qual $(2\sigma + / -)$ RL**MDC** Unit RER Limit Radium-226 0.394 0.3673 0.110 1.00 0.0820 pCi/L 0.12

DU DU Carrier %Yield Qualifier Limits Ba Carrier 94.4 40 - 110

Method: 904.0 - Radium-228 (GFPC)

Lab Sample ID: MB 160-376750/23-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 379784** Prep Batch: 376750

Total

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ RL **MDC** Unit $(2\sigma + / -)$ Prepared Analyzed Dil Fac Radium-228 Ū 0.206 0.206 1.00 0.387 pCi/L 07/19/18 15:49 08/02/18 09:22 -0.1002

MR MR Qualifier Dil Fac Carrier %Yield Limits Prepared Analyzed Ba Carrier 97.1 40 - 110 <u>07/19/18 15:49</u> <u>08/02/18 09:22</u> 85.6 07/19/18 15:49 08/02/18 09:22 Y Carrier 40 - 110

Lab Sample ID: LCS 160-376750/1-A **Client Sample ID: Lab Control Sample**

Count

Matrix: Water Prep Type: Total/NA **Analysis Batch: 379945 Prep Batch: 376750**

Total LCS LCS Spike %Rec. Uncert. Analyte Added RL **MDC** Unit %Rec Result Qual $(2\sigma + / -)$ Limits Radium-228 1.23 1.00 11.2 11.05 0.352 pCi/L 99 56 - 140

LCS LCS Carrier %Yield Qualifier Limits 100 Ba Carrier 40 - 110 Y Carrier 86.4 40 - 110

TestAmerica Nashville

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCSD 160-376750/2-A **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA Analysis Batch: 379945 **Prep Batch: 376750** Total

			iotai						
	Spike	LCSD LCSD	Uncert.				%Rec.		RER
Analyte	Added	Result Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	RER	Limit
Radium-228	11.2	11.70	1.29	1.00	0.336 pCi/L	105	56 - 140	0.26	1

LCSD LCSD Carrier %Yield Qualifier Limits Ba Carrier 100 40 - 110 87.5 Y Carrier 40 - 110

Lab Sample ID: MB 160-376805/18-A Client Sample ID: Method Blank **Prep Type: Total/NA Matrix: Water Prep Batch: 376805** Analysis Batch: 379949 Total

Count

			Journe	· Otal						
	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.4979		0.255	0.259	1.00	0.379	pCi/L	07/20/18 09:30	08/02/18 09:27	1

	MB	MB			
Carrier	%Yield	Qualifier	Limits	Prepared Analyzed	Dil Fac
Ba Carrier	102		40 - 110	07/20/18 09:30 08/02/18 09:27	,
Y Carrier	91.6		40 - 110	07/20/18 09:30 08/02/18 09:27	' 1

Lab Sample ID: LCS 160-376805/1-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 379784 **Prep Batch: 376805** Total

%Rec.
%Rec Limits
102 56 - 140

	LCS	LCS	
Carrier	%Yield	Qualifier	Limits
Ba Carrier	99.7		40 - 110
Y Carrier	91.2		40 - 110

Lab Sample ID: 400-156511-B-1-D DU **Client Sample ID: Duplicate**

Matrix: Water Prep Type: Total/NA Analysis Batch: 379784 **Prep Batch: 376805**

					Total						
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Radium-228	0.131	U	0.2403	U	0.319	1.00	0.528	pCi/L		0.20	1

Radium-228	0.131 U		0.2403 U	0.319	1.00	0.528 pCi/L	0.20	1
	DU DU							
Carrier	%Yield Qualifier	Limits						
Ba Carrier	90.3	40 - 110						
Y Carrier	84.5	40 - 110						

TestAmerica Nashville

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 904.0 - Radium-228 (GFPC) (Continued)

LCS LCS

90.8

Y Carrier

Client Sample ID: Method Blank Lab Sample ID: MB 160-377705/16-A **Matrix: Water** Prep Type: Total/NA Analysis Batch: 380015 **Prep Batch: 377705** Count Total

	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.3838	U	0.431	0.433	1.00	0.707	pCi/L	07/24/18 14:24	08/02/18 20:52	1
	МВ	MB								

	MB	МВ				
Carrier	%Yield	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Ba Carrier	94.7		40 - 110	07/24/18 14:24	08/02/18 20:52	1
Y Carrier	90.1		40 - 110	07/24/18 14:24	08/02/18 20:52	1

Lab Sample ID: LCS 160-377705/1-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA **Prep Batch: 377705** Analysis Batch: 380015

				Total				
	Spike	LCS	LCS	Uncert.				%Rec.
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits
Radium-228	14.9	14.45		1.62	1.00	0.461 pCi/L	. 97	56 - 140

Carrier	%Yield	Qualifier	Limits
Ba Carrier	94.1		40 - 110
Y Carrier	88.6		40 - 110
Camer	00.0		40-110

40 - 110

Lab Sample ID: 600-169468-C-1-B DU **Client Sample ID: Duplicate Matrix: Water** Prep Type: Total/NA **Analysis Batch: 380015 Prep Batch: 377705**

					Total							
	Sample	Sample	DU	DU	Uncert.							RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit			RER	Limit
Radium-228	0.0185	U	 0.1918	U	0.201	1.00	0.325	pCi/L	_	-	0.43	

Analyte	Result Qual		Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	L
Radium-228	0.0185 U		0.1918	U	0.201	1.00	0.325	pCi/L		0.43	
	DU DU										
Carrier	%Yield Qualifier	Limits									
Ba Carrier	94.4	40 - 110									

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

HPLC/IC

Analysis Batch: 531256

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
490-155661-1	River Seep-08-071318	Total/NA	Water	9056A	
490-155661-2	River Seep-12-071318	Total/NA	Water	9056A	
490-155661-3	River Seep-16-071318	Total/NA	Water	9056A	
490-155661-4	River Seep-14-071318	Total/NA	Water	9056A	
490-155661-5	River Seep-09-071218	Total/NA	Water	9056A	
490-155661-6	River Seep-07-071218	Total/NA	Water	9056A	
490-155661-7	River Seep-05-071218	Total/NA	Water	9056A	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	9056A	
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	9056A	
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	9056A	
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	9056A	
490-155661-12	Pond-012-071318	Total/NA	Water	9056A	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	9056A	
MB 490-531256/3	Method Blank	Total/NA	Water	9056A	
LCS 490-531256/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 490-531256/5	Lab Control Sample Dup	Total/NA	Water	9056A	
490-155661-5 MS	River Seep-09-071218	Total/NA	Water	9056A	

Analysis Batch: 531368

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	9056A	
490-155661-1	River Seep-08-071318	Total/NA	Water	9056A	
490-155661-4	River Seep-14-071318	Total/NA	Water	9056A	
490-155661-5	River Seep-09-071218	Total/NA	Water	9056A	
490-155661-5	River Seep-09-071218	Total/NA	Water	9056A	
490-155661-6	River Seep-07-071218	Total/NA	Water	9056A	
490-155661-7	River Seep-05-071218	Total/NA	Water	9056A	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	9056A	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	9056A	
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	9056A	
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	9056A	
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	9056A	
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	9056A	
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	9056A	
490-155661-12	Pond-012-071318	Total/NA	Water	9056A	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	9056A	
MB 490-531368/3	Method Blank	Total/NA	Water	9056A	
MB 490-531368/30	Method Blank	Total/NA	Water	9056A	
LCS 490-531368/31	Lab Control Sample	Total/NA	Water	9056A	
LCS 490-531368/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 490-531368/32	Lab Control Sample Dup	Total/NA	Water	9056A	
LCSD 490-531368/5	Lab Control Sample Dup	Total/NA	Water	9056A	

Metals

Prep Batch: 250902

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	3005A	
490-155661-2	River Seep-12-071318	Total Recoverable	Water	3005A	
490-155661-3	River Seep-16-071318	Total Recoverable	Water	3005A	

TestAmerica Nashville

8/21/2018

Page 43 of 68

2

2

6

6

0

9

10

19

13

1 *A*

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Metals (Continued)

Prep Batch: 250902 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-4	River Seep-14-071318	Total Recoverable	Water	3005A	
490-155661-5	River Seep-09-071218	Total Recoverable	Water	3005A	
490-155661-6	River Seep-07-071218	Total Recoverable	Water	3005A	
490-155661-7	River Seep-05-071218	Total Recoverable	Water	3005A	
490-155661-8	Landfill Seep-01-071318	Total Recoverable	Water	3005A	
490-155661-9	Landfill Seep-01-071318-DUP	Total Recoverable	Water	3005A	
490-155661-10	Landfill Seep-02-071318	Total Recoverable	Water	3005A	
490-155661-11	Landfill Seep-03-071318	Total Recoverable	Water	3005A	
490-155661-12	Pond-012-071318	Total Recoverable	Water	3005A	
490-155661-13	Landfill Seep-04-071318	Total Recoverable	Water	3005A	
MB 180-250902/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-250902/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
490-155660-A-5-B MS	Matrix Spike	Total Recoverable	Water	3005A	
490-155660-A-5-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Prep Batch: 250903

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	3005A	
490-155661-2	River Seep-12-071318	Total Recoverable	Water	3005A	
490-155661-3	River Seep-16-071318	Total Recoverable	Water	3005A	
490-155661-4	River Seep-14-071318	Total Recoverable	Water	3005A	
490-155661-5	River Seep-09-071218	Total Recoverable	Water	3005A	
490-155661-6	River Seep-07-071218	Total Recoverable	Water	3005A	
490-155661-7	River Seep-05-071218	Total Recoverable	Water	3005A	
490-155661-8	Landfill Seep-01-071318	Total Recoverable	Water	3005A	
490-155661-9	Landfill Seep-01-071318-DUP	Total Recoverable	Water	3005A	
490-155661-10	Landfill Seep-02-071318	Total Recoverable	Water	3005A	
490-155661-11	Landfill Seep-03-071318	Total Recoverable	Water	3005A	
490-155661-12	Pond-012-071318	Total Recoverable	Water	3005A	
490-155661-13	Landfill Seep-04-071318	Total Recoverable	Water	3005A	
MB 180-250903/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-250903/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
490-155660-A-6-C MS	Matrix Spike	Total Recoverable	Water	3005A	
490-155660-A-6-D MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Prep Batch: 250943

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	7470A	
490-155661-2	River Seep-12-071318	Total/NA	Water	7470A	
490-155661-3	River Seep-16-071318	Total/NA	Water	7470A	
490-155661-4	River Seep-14-071318	Total/NA	Water	7470A	
490-155661-5	River Seep-09-071218	Total/NA	Water	7470A	
490-155661-6	River Seep-07-071218	Total/NA	Water	7470A	
490-155661-7	River Seep-05-071218	Total/NA	Water	7470A	
190-155661-8	Landfill Seep-01-071318	Total/NA	Water	7470A	
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	7470A	
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	7470A	
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	7470A	
490-155661-12	Pond-012-071318	Total/NA	Water	7470A	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	7470A	
MB 180-250943/1-A	Method Blank	Total/NA	Water	7470A	

TestAmerica Nashville

8/21/2018

Page 44 of 68

2

-

5

7

ŏ

10

11

40

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Metals (Continued)

Prep Batch: 250943 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 180-250943/2-A	Lab Control Sample	Total/NA	Water	7470A	
180-79800-G-1-E MS	Matrix Spike	Total/NA	Water	7470A	
180-79800-G-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Analysis Batch: 251171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	EPA 7470A	250943
490-155661-2	River Seep-12-071318	Total/NA	Water	EPA 7470A	250943
490-155661-3	River Seep-16-071318	Total/NA	Water	EPA 7470A	250943
490-155661-4	River Seep-14-071318	Total/NA	Water	EPA 7470A	250943
490-155661-5	River Seep-09-071218	Total/NA	Water	EPA 7470A	250943
490-155661-6	River Seep-07-071218	Total/NA	Water	EPA 7470A	250943
490-155661-7	River Seep-05-071218	Total/NA	Water	EPA 7470A	250943
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	EPA 7470A	250943
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	EPA 7470A	250943
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	EPA 7470A	250943
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	EPA 7470A	250943
490-155661-12	Pond-012-071318	Total/NA	Water	EPA 7470A	250943
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	EPA 7470A	250943
MB 180-250943/1-A	Method Blank	Total/NA	Water	EPA 7470A	250943
LCS 180-250943/2-A	Lab Control Sample	Total/NA	Water	EPA 7470A	250943
180-79800-G-1-E MS	Matrix Spike	Total/NA	Water	EPA 7470A	250943
180-79800-G-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	EPA 7470A	250943

Analysis Batch: 251527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	6010C	250902
490-155661-2	River Seep-12-071318	Total Recoverable	Water	6010C	250902
490-155661-3	River Seep-16-071318	Total Recoverable	Water	6010C	250902
490-155661-4	River Seep-14-071318	Total Recoverable	Water	6010C	250902
490-155661-5	River Seep-09-071218	Total Recoverable	Water	6010C	250902
490-155661-6	River Seep-07-071218	Total Recoverable	Water	6010C	250902
490-155661-7	River Seep-05-071218	Total Recoverable	Water	6010C	250902
490-155661-8	Landfill Seep-01-071318	Total Recoverable	Water	6010C	250902
490-155661-9	Landfill Seep-01-071318-DUP	Total Recoverable	Water	6010C	250902
490-155661-10	Landfill Seep-02-071318	Total Recoverable	Water	6010C	250902
490-155661-11	Landfill Seep-03-071318	Total Recoverable	Water	6010C	250902
490-155661-12	Pond-012-071318	Total Recoverable	Water	6010C	250902
490-155661-13	Landfill Seep-04-071318	Total Recoverable	Water	6010C	250902
MB 180-250902/1-A	Method Blank	Total Recoverable	Water	6010C	250902
LCS 180-250902/2-A	Lab Control Sample	Total Recoverable	Water	6010C	250902
490-155660-A-5-B MS	Matrix Spike	Total Recoverable	Water	6010C	250902
490-155660-A-5-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	6010C	250902

Analysis Batch: 252059

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	6020A	250903
490-155661-2	River Seep-12-071318	Total Recoverable	Water	6020A	250903
490-155661-3	River Seep-16-071318	Total Recoverable	Water	6020A	250903
490-155661-4	River Seep-14-071318	Total Recoverable	Water	6020A	250903
490-155661-5	River Seep-09-071218	Total Recoverable	Water	6020A	250903

Page 45 of 68

TestAmerica Nashville

8/21/2018

3

4

6

10

11

13

Client: Big Rivers Electric Corporation

TestAmerica Job ID: 490-155661-1

Metals (Continued)

Analysis Batch: 252059 (Continued)

Project/Site: Sebree-Green Landfill

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-6	River Seep-07-071218	Total Recoverable	Water	6020A	250903
490-155661-7	River Seep-05-071218	Total Recoverable	Water	6020A	250903
490-155661-8	Landfill Seep-01-071318	Total Recoverable	Water	6020A	250903
490-155661-9	Landfill Seep-01-071318-DUP	Total Recoverable	Water	6020A	250903
490-155661-10	Landfill Seep-02-071318	Total Recoverable	Water	6020A	250903
490-155661-11	Landfill Seep-03-071318	Total Recoverable	Water	6020A	250903
490-155661-12	Pond-012-071318	Total Recoverable	Water	6020A	250903
490-155661-13	Landfill Seep-04-071318	Total Recoverable	Water	6020A	250903
MB 180-250903/1-A	Method Blank	Total Recoverable	Water	6020A	250903
LCS 180-250903/2-A	Lab Control Sample	Total Recoverable	Water	6020A	250903
490-155660-A-6-C MS	Matrix Spike	Total Recoverable	Water	6020A	250903
490-155660-A-6-D MSD	Matrix Spike Duplicate	Total Recoverable	Water	6020A	250903

Analysis Batch: 252316

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-11	Landfill Seep-03-071318	Total Recoverable	Water	6020A	250903
490-155661-13	Landfill Seep-04-071318	Total Recoverable	Water	6020A	250903

Analysis Batch: 253104

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-8	Landfill Seep-01-071318	Total Recoverable	Water	6020A	250903
490-155661-9	Landfill Seep-01-071318-DUP	Total Recoverable	Water	6020A	250903
490-155661-10	Landfill Seep-02-071318	Total Recoverable	Water	6020A	250903
490-155661-12	Pond-012-071318	Total Recoverable	Water	6020A	250903

General Chemistry

Analysis Batch: 529395

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
490-155661-1	River Seep-08-071318	Total/NA	Water	SM 2540C	-
490-155661-2	River Seep-12-071318	Total/NA	Water	SM 2540C	
490-155661-3	River Seep-16-071318	Total/NA	Water	SM 2540C	
490-155661-4	River Seep-14-071318	Total/NA	Water	SM 2540C	
490-155661-5	River Seep-09-071218	Total/NA	Water	SM 2540C	
490-155661-6	River Seep-07-071218	Total/NA	Water	SM 2540C	
490-155661-7	River Seep-05-071218	Total/NA	Water	SM 2540C	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	SM 2540C	
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	SM 2540C	
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	SM 2540C	
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	SM 2540C	
490-155661-12	Pond-012-071318	Total/NA	Water	SM 2540C	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	SM 2540C	
MB 490-529395/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 490-529395/2	Lab Control Sample	Total/NA	Water	SM 2540C	
490-155661-5 DU	River Seep-09-071218	Total/NA	Water	SM 2540C	
490-155661-13 DU	Landfill Seep-04-071318	Total/NA	Water	SM 2540C	

Analysis Batch: 531203

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	9040C	

TestAmerica Nashville

Page 46 of 68 8/21/2018

2

5

6

8

4.0

11

12

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

General Chemistry (Continued)

Analysis Batch: 531203 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-2	River Seep-12-071318	Total/NA	Water	9040C	
490-155661-3	River Seep-16-071318	Total/NA	Water	9040C	
490-155661-4	River Seep-14-071318	Total/NA	Water	9040C	
490-155661-5	River Seep-09-071218	Total/NA	Water	9040C	
490-155661-6	River Seep-07-071218	Total/NA	Water	9040C	
490-155661-7	River Seep-05-071218	Total/NA	Water	9040C	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	9040C	
LCS 490-531203/1	Lab Control Sample	Total/NA	Water	9040C	
490-155660-D-5 DU	Duplicate	Total/NA	Water	9040C	

Analysis Batch: 531204

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	9040C	_
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	9040C	
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	9040C	
490-155661-12	Pond-012-071318	Total/NA	Water	9040C	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	9040C	
LCS 490-531204/1	Lab Control Sample	Total/NA	Water	9040C	
490-155661-9 DU	Landfill Seep-01-071318-DUP	Total/NA	Water	9040C	

Analysis Batch: 531384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
490-155661-1	River Seep-08-071318	Total/NA	Water	SM 2320B	
490-155661-2	River Seep-12-071318	Total/NA	Water	SM 2320B	
490-155661-3	River Seep-16-071318	Total/NA	Water	SM 2320B	
490-155661-4	River Seep-14-071318	Total/NA	Water	SM 2320B	
490-155661-5	River Seep-09-071218	Total/NA	Water	SM 2320B	
490-155661-6	River Seep-07-071218	Total/NA	Water	SM 2320B	
490-155661-7	River Seep-05-071218	Total/NA	Water	SM 2320B	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	SM 2320B	
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	SM 2320B	
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	SM 2320B	
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	SM 2320B	
490-155661-12	Pond-012-071318	Total/NA	Water	SM 2320B	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	SM 2320B	
MB 490-531384/73	Method Blank	Total/NA	Water	SM 2320B	
LCS 490-531384/74	Lab Control Sample	Total/NA	Water	SM 2320B	
LCSD 490-531384/95	Lab Control Sample Dup	Total/NA	Water	SM 2320B	
490-155661-6 DU	River Seep-07-071218	Total/NA	Water	SM 2320B	

Rad

Prep Batch: 376745

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	PrecSep-21	-
490-155661-2	River Seep-12-071318	Total/NA	Water	PrecSep-21	
490-155661-5	River Seep-09-071218	Total/NA	Water	PrecSep-21	
490-155661-6	River Seep-07-071218	Total/NA	Water	PrecSep-21	
490-155661-7	River Seep-05-071218	Total/NA	Water	PrecSep-21	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	PrecSep-21	

TestAmerica Nashville

Page 47 of 68 8/21/2018

2

3

4

6

8

9

10

12

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Rad (Continued)

Prep Batch: 376745 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 160-376745/23-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-376745/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
LCSD 160-376745/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep-21	

Prep Batch: 376750

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	PrecSep_0	
490-155661-2	River Seep-12-071318	Total/NA	Water	PrecSep_0	
490-155661-5	River Seep-09-071218	Total/NA	Water	PrecSep_0	
490-155661-6	River Seep-07-071218	Total/NA	Water	PrecSep_0	
490-155661-7	River Seep-05-071218	Total/NA	Water	PrecSep_0	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	PrecSep_0	
MB 160-376750/23-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-376750/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
LCSD 160-376750/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep_0	

Prep Batch: 376796

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	PrecSep-21	
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	PrecSep-21	
490-155661-12	Pond-012-071318	Total/NA	Water	PrecSep-21	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	PrecSep-21	
MB 160-376796/18-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-376796/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-156511-B-1-B DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 376805

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	PrecSep_0	
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	PrecSep_0	
490-155661-12	Pond-012-071318	Total/NA	Water	PrecSep_0	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	PrecSep_0	
MB 160-376805/18-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-376805/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-156511-B-1-D DU	Duplicate	Total/NA	Water	PrecSep_0	

Prep Batch: 377701

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	PrecSep-21	
MB 160-377701/16-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-377701/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
600-169468-C-1-A DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 377705

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	PrecSep_0	
MB 160-377705/16-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-377705/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
600-169468-C-1-B DU	Duplicate	Total/NA	Water	PrecSep_0	

TestAmerica Nashville

8/21/2018

Page 48 of 68

9

3

6

8

10

12

13

2

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Lab Sample ID: 490-155661-1

Lab Sample ID: 490-155661-2

Matrix: Water

Date Collected: 07/13/18 07:50 Date Received: 07/14/18 10:50

Client Sample ID: River Seep-08-071318

Bron Type	Batch	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared	Analyst	Lab
Prep Type Total/NA	Type Analysis	9056A	Kuii	1	Amount	Amount	531256	or Analyzed 07/24/18 16:22	Analyst SW1	TAL NSH
Total/NA	Analysis	9056A		50			531368	07/25/18 20:45		TAL NSH
Total/NA	Analysis	9056A		100			531368	07/25/18 21:00	JHS	TAL NSH
Total Recoverable Total Recoverable	Prep Analysis	3005A 6010C		1	50 mL	50 mL	250902 251527	07/18/18 12:42 07/24/18 17:24		TAL PIT TAL PIT
Total Recoverable Total Recoverable	Prep Analysis	3005A 6020A		1	50 mL 1.0 mL	50 mL 1.0 mL	250903 252059	07/18/18 12:44 07/28/18 19:35		TAL PIT TAL PIT
Total/NA Total/NA	Prep Analysis	7470A EPA 7470A		1	50 mL	50 mL	250943 251171	07/18/18 15:06 07/20/18 11:04		TAL PIT TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 20:55	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA Total/NA	Prep Analysis	PrecSep-21 903.0		1	999.94 mL	1.0 g	376745 381568	07/19/18 15:20 08/10/18 16:41		TAL SL TAL SL
Total/NA Total/NA	Prep Analysis	PrecSep_0 904.0		1	999.94 mL	1.0 g	376750 379945	07/19/18 15:49 08/02/18 09:20		TAL SL TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Client Sample ID: River Seep-12-071318

Date Collected: 07/13/18 09:15 Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 16:37	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:29	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 19:40	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:05	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:02	ВМС	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			750.37 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381568	08/10/18 16:41	RTM	TAL SL
Total/NA	Prep	PrecSep_0			750.37 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:21	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

8/21/2018

Page 49 of 68

2

4

O

8

9

11

13

Matrix: Water

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-16-071318

Date Collected: 07/13/18 11:00

Date Received: 07/14/18 10:50

Lab Sample ID: 490-155661-3

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 16:52	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:35	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 19:44	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:06	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:09	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	529395	07/18/18 08:50	вмс	TAL NSH

Client Sample ID: River Seep-14-071318

Date Collected: 07/13/18 10:10 Date Received: 07/14/18 10:50

Lab Sample ID: 490-155661-4

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 17:07	SW1	TAL NSF
Total/NA	Analysis	9056A		10			531368	07/25/18 21:15	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:50	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 19:49	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:07	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NS
Γotal/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:17	BMC	TAL NSI
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSI

Date Collected: 07/12/18 13:50

Date Received: 07/14/18 10:50

Client Sample	D: Riv	er Seep-09-071218				La	b Sample II	D: 490	-155661-5
Total/NA	Analysis	SM 2540C	1	50 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Analysis	SM 2320B	1	35 mL	35 mL	531384	07/24/18 21:17	BMC	TAL NSH
Total/NA	Analysis	9040C	1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	EPA 7470A	1			251171	07/20/18 11:07	RJR	TAL PIT
Total/NA	Prep	7470A		50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total Recoverable	Analysis	6020A	1	1.0 mL	1.0 mL	252059	07/28/18 19:49	WTR	TAL PIT
Total Recoverable	Prep	3005A		50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 17:51	SW1	TAL NSH
Total/NA	Analysis	9056A		10			531368	07/25/18 21:59	JHS	TAL NSH
Total/NA	Analysis	9056A		50			531368	07/25/18 22:14	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:56	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:06	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:08	RJR	TAL PIT

TestAmerica Nashville

Page 50 of 68

8/21/2018

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-09-071218 Lab Sample ID: 490-155661-5

Date Collected: 07/12/18 13:50 **Matrix: Water** Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9040C		1		-	531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:21	ВМС	TAL NSH
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			500.17 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381569	08/10/18 16:40	RTM	TAL SL
Total/NA	Prep	PrecSep_0			500.17 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:22	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Lab Sample ID: 490-155661-6 Client Sample ID: River Seep-07-071218

Date Collected: 07/12/18 14:50 **Matrix: Water** Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 18:21	SW1	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/25/18 22:29	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:01	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:11	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:09	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:28	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			999.84 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381569	08/10/18 16:39	RTM	TAL SL
Total/NA	Prep	PrecSep_0			999.84 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:22	CDR	TAL SL
Total/NA	Analysis	Ra226 Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Lab Sample ID: 490-155661-7 Client Sample ID: River Seep-05-071218 Date Collected: 07/12/18 14:25 **Matrix: Water**

Date Received: 07/14/18 10:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 18:36	SW1	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/25/18 22:44	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:07	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:16	WTR	TAL PIT

Page 51 of 68

Client: Big Rivers Electric Corporation

Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-05-071218

Date Collected: 07/12/18 14:25 Date Received: 07/14/18 10:50

Lab Sample ID: 490-155661-7

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:12	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:41	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			499.95 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381569	08/10/18 16:40	RTM	TAL SL
Total/NA	Prep	PrecSep_0			499.95 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:22	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Client Sample ID: Landfill Seep-01-071318

Date Collected: 07/13/18 12:20 Date Received: 07/14/18 10:50

Lab Sample ID: 490-155661-8

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 18:51	SW1	TAL NSF
Total/NA	Analysis	9056A		50			531368	07/25/18 22:58	JHS	TAL NSF
Total/NA	Analysis	9056A		200			531368	07/25/18 23:13	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:12	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		10			253104	08/07/18 12:06	RSK	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:20	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:13	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSF
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:50	BMC	TAL NSF
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSF
Total/NA	Prep	PrecSep-21			500.48 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381577	08/10/18 16:38	RTM	TAL SL
Total/NA	Prep	PrecSep_0			500.48 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:22	CDR	TAL SL
Total/NA	Analysis	Ra226 Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Client Sample ID: Landfill Seep-01-071318-DUP

Date Collected: 07/13/18 12:20

Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 19:06	SW1	TAL NSH

TestAmerica Nashville

Page 52 of 68

Lab Sample ID: 490-155661-9 **Matrix: Water**

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Lab Sample ID: 490-155661-9

Matrix: Water

Date Collected: 07/13/18 12:20 Date Received: 07/14/18 10:50

Client Sample ID: Landfill Seep-01-071318-DUP

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		50			531368	07/25/18 23:28	JHS	TAL NSH
Total/NA	Analysis	9056A		200			531368	07/25/18 23:43	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:18	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		10			253104	08/07/18 12:09	RSK	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:25	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:14	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531204	07/24/18 17:58	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:59	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			500.28 mL	1.0 g	376796	07/20/18 08:40	JLC	TAL SL
Total/NA	Analysis	903.0		1			381803	08/13/18 06:34	CDR	TAL SL
Total/NA	Prep	PrecSep_0			500.28 mL	1.0 g	376805	07/20/18 09:30	JLC	TAL SL
Total/NA	Analysis	904.0		1	1.0 mL	1.0 mL	379784	08/02/18 09:25	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Client Sample ID: Landfill Seep-02-071318 Lab Sample ID: 490-155661-10

Date Collected: 07/13/18 13:10 **Matrix: Water** Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 19:20	SW1	TAL NSH
Total/NA	Analysis	9056A		50			531368	07/25/18 23:58	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:24	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		10			253104	08/07/18 12:12	RSK	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:30	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:15	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531204	07/24/18 17:58	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 22:08	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			500.14 mL	1.0 g	376796	07/20/18 08:40	JLC	TAL SL
Total/NA	Analysis	903.0		1			381803	08/13/18 06:34	CDR	TAL SL
Total/NA	Prep	PrecSep_0			500.14 mL	1.0 g	376805	07/20/18 09:30	JLC	TAL SL
Total/NA	Analysis	904.0		1	1.0 mL	1.0 mL	379784	08/02/18 09:25	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

TestAmerica Nashville

Page 53 of 68

8/21/2018

Lab Sample ID: 490-155661-11

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: Landfill Seep-03-071318

Date Collected: 07/13/18 13:30

Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 19:35	SW1	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/26/18 01:41	JHS	TAL NSH
Total/NA	Analysis	9056A		500			531368	07/26/18 01:56	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:29	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:34	WTR	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		10	1.0 mL	1.0 mL	252316	07/31/18 01:20	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:16	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531204	07/24/18 17:58	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 22:15	вмс	TAL NSH
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	529395	07/18/18 08:50	вмс	TAL NSH
Total/NA	Prep	PrecSep-21			250.40 mL	1.0 g	377701	07/24/18 13:57	JLC	TAL SL
Total/NA	Analysis	903.0		1			382767	08/16/18 05:35	ALS	TAL SL

Client Sample ID: Pond-012-071318

Prep

Analysis

Analysis

PrecSep_0

Ra226_Ra228

904.0

Total/NA

Total/NA

Total/NA

Client Sample ID: Pond-012-071318	Lab Sample ID: 490-155661-12
Date Collected: 07/13/18 13:50	Matrix: Water
Date Received: 07/14/18 10:50	

1

1

250.40 mL

377705

380015

384175

07/24/18 14:24 JLC

08/02/18 16:23 CDR

08/21/18 03:20 RTM

1.0 g

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 19:50	SW1	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/26/18 02:11	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:35	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		10			253104	08/07/18 12:15	RSK	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:39	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:17	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531204	07/24/18 17:58	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 22:22	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			500.18 mL	1.0 g	376796	07/20/18 08:40	JLC	TAL SL
Total/NA	Analysis	903.0		1			381803	08/13/18 06:34	CDR	TAL SL
Total/NA	Prep	PrecSep_0			500.18 mL	1.0 g	376805	07/20/18 09:30	JLC	TAL SL
Total/NA	Analysis	904.0		1	1.0 mL	1.0 mL	379784	08/02/18 09:25	CDR	TAL SL

TestAmerica Nashville

Page 54 of 68

Matrix: Water

TAL SL

TAL SL

TAL SL

Lab Chronicle

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: Pond-012-071318

Date Collected: 07/13/18 13:50 Date Received: 07/14/18 10:50

Lab Sample ID: 490-155661-12

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Client Sample ID: Landfill Seep-04-071318 Lab Sample ID: 490-155661-13

Date Collected: 07/13/18 14:15 **Matrix: Water**

Date Received: 07/14/18 10:50

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 20:05		TAL NSH
Total/NA	Analysis	9056A		100			531368	07/26/18 02:26	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:41	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:43	WTR	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		10	1.0 mL	1.0 mL	252316	07/31/18 01:47	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:18	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531204	07/24/18 17:58	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/25/18 09:02	вмс	TAL NSH
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	529395	07/18/18 08:50	вмс	TAL NSH
Total/NA	Prep	PrecSep-21			500.06 mL	1.0 g	376796	07/20/18 08:40	JLC	TAL SL
Total/NA	Analysis	903.0		1			381803	08/13/18 06:35	CDR	TAL SL
Total/NA	Prep	PrecSep_0			500.06 mL	1.0 g	376805	07/20/18 09:30	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:25	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Method Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	TAL NSH
6010C	Metals (ICP)	SW846	TAL PIT
6020A	Metals (ICP/MS)	SW846	TAL PIT
EPA 7470A	Mercury (CVAA)	SW846	TAL PIT
040C	рН	SW846	TAL NSH
SM 2320B	Alkalinity	SM	TAL NSH
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL NSH
005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT
470A	Preparation, Mercury	SW846	TAL PIT

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater" SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date	
Kentucky (UST)	State Pro	gram	4	19	06-30-19	
The following analytes	s are included in this repo	ort, but accreditation/	certification is not off	ered by the governing author	ority:	
Analysis Method	Prep Method	Matrix	Analyt	e		
9040C		Water	pH			
9040C		Water	Tempe	Temperature		
9056A		Water	Chloric	de		
9056A		Water	Fluorio	de		
9056A		Water	Sulfate	е		
SM 2320B		Water	Alkalin	nity		
SM 2540C		Water	Total [Dissolved Solids		

Laboratory: TestAmerica Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State Program	6	88-0690	06-27-19
California	State Program	9	2891	04-30-19
Connecticut	State Program	1	PH-0688	09-30-18
Florida	NELAP	4	E871008	06-30-19
Illinois	NELAP	5	200005	06-30-19
Kansas	NELAP	7	E-10350	01-31-19
Louisiana	NELAP	6	04041	06-30-19
Nevada	State Program	9	PA00164	07-31-19
New Hampshire	NELAP	1	2030	04-04-19
New Jersey	NELAP	2	PA005	06-30-19
New York	NELAP	2	11182	03-31-19
North Carolina (WW/SW)	State Program	4	434	12-31-18
Oregon	NELAP	10	PA-2151	01-28-19
Pennsylvania	NELAP	3	02-00416	04-30-19
South Carolina	State Program	4	89014	04-30-19
Texas	NELAP	6	T104704528-15-2	03-31-19
US Fish & Wildlife	Federal		LE94312A-1	07-31-19
USDA	Federal		P330-16-00211	06-26-19
Utah	NELAP	8	PA001462015-4	05-31-19
Virginia	NELAP	3	460189	09-14-18 *
West Virginia DEP	State Program	3	142	01-31-19
Wisconsin	State Program	5	998027800	08-31-18

Laboratory: TestAmerica St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	MO00054	06-30-19
ANAB	DoD ELAP		L2305	04-06-19
Arizona	State Program	9	AZ0813	12-08-18
California	State Program	9	2886	06-30-19
Connecticut	State Program	1	PH-0241	03-31-19
Florida	NELAP	4	E87689	06-30-19
Illinois	NELAP	5	200023	11-30-18
Iowa	State Program	7	373	12-01-18

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Nashville

9

9

4

6

9

11

Accreditation/Certification Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Laboratory: TestAmerica St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Kansas	NELAP	7	E-10236	10-31-18
Kentucky (DW)	State Program	4	90125	12-31-18
Louisiana	NELAP	6	04080	06-30-19
Louisiana (DW)	NELAP	6	LA180017	12-31-18
Maryland	State Program	3	310	09-30-18 *
Michigan	State Program	5	9005	06-30-18 *
Missouri	State Program	7	780	06-30-18 *
Nevada	State Program	9	MO000542018-1	07-31-19
New Jersey	NELAP	2	MO002	06-30-19
New York	NELAP	2	11616	03-31-19
North Dakota	State Program	8	R207	06-30-19
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-18 *
Pennsylvania	NELAP	3	68-00540	02-28-19
South Carolina	State Program	4	85002001	06-30-18 *
Texas	NELAP	6	T104704193-18-12	07-31-19
US Fish & Wildlife	Federal		058448	07-31-19
USDA	Federal		P330-17-0028	02-02-20
Utah	NELAP	8	MO000542016-8	07-31-18 *
Virginia	NELAP	3	460230	06-14-19
Washington	State Program	10	C592	08-30-18 *
West Virginia DEP	State Program	3	381	08-31-18 *

TestAmerica Nashville

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

COOLER RECEIPT FORM

90-155661 Chain of Custody

Cooler Received/Opened On 7/14/2018 @ 1050	·
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking # a G90 (last 4 digits, FedEx) Courier: FedEx	
IR Gun ID_ 17960357_ pH Strip Lot	
2. Temperature of rep. sample or temp blank when opened: 5 1 Degrees Celsius	_
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. NA
4. Were custody seals on outside of cooler?	(ES):NONA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	(YES).NONA
6. Were custody papers inside cooler?	res. NONA
I certify that I opened the cooler and answered questions 1-6 (Initial)	<u> </u>
7. Were custody seals on containers: YES NO and Intact	YESNO.(NA)
Were these signed and dated correctly?	YESNO. NA
8. Packing mat'l used? Bubblewap Plastic bag Peanuts Vermiculite Foam insert Pape	er Other None
9. Cooling process: CE Ice-pack Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YESZ.NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	PESNONA
12. Did all container labels and tags agree with custody papers?	YES NO NA
13a. Were VOA vials received?	YES. NA
b. Was there any observable headspace present in any VOA vial?	YESNOA
Larger than this.	
AA Waa than a Tota Blank to Wall and the same of the the S	
14. Was there a Trip Blank in this cooler? YES NO. NA if multiple coolers, sequence	e #
Certify that I unloaded the cooler and answered questions 7-14 (initial)	YCO 2500
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNOCHA
Did the bottle labels indicate that the correct preservatives were used Was residual ablasina present?	VEG. HONA
16. Was residual chlorine present?	ATT
i certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (Initial)	
17. Were custody papers properly filled out (ink, signed, etc)?	(VES./NONA
18. Did you sign the custody papers in the appropriate place?	ZESNONA
19. Were correct containers used for the analysis requested?	XESZ.NONA
20. Was sufficient amount of sample sent in each container?	YESZNONA
certify that entered this project into LIMS and answered questions 17-20 (intial)	54
Lestify that i attached a label with the unique LIMS number to each container (intial)	/
21. Were there Non-Conformance Issues at login? YESNO, Was a NCM generated? YEST.Ng	#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

COOLER RECEIPT FORM

Cooler Received/Opened On_7/14/2018 @ 10:50	
Time Samples Removed From CoolerTime Samples Placed In Storage	(2 Hour Window)
(last 4 digits, FedEx) Courier: FedEx	(- ,
IR Gun ID_17960353 pH Strip Lot NA Chlorine Strip Lot NA	<u>2_</u>
2. Temperature of rep. sample or temp blank when opened:	
3. If item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO.(NA)
t. Were custody seals on outside of cooler?	YES NO NA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YES NONA
5. Were custody papers inside cooler?	YES.(NO).NA
certify that I opened the cooler and answered questions 1-6 (initial)	
7. Were custody seals on containers: YES NO and Intact	YESNO (NA)
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	er Other None
9. Cooling process: (ice lice-pack lice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	(YEBNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	MESNONA
12. Did all container labels and tags agree with custody papers?	WESNONA
13a. Were VOA vials received?	YES. ONONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
Larger than this.	
	_
14. Was there a Trip Blank in this cooler? YES NONA If multiple coolers, sequence	:e #
t certify that I unloaded the cooler and answered guestions 7-14 (initial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNOC.NA
b. Oid the bottle labels indicate that the correct preservatives were used	(YES NONA
16. Was residual chlorine present?	YESNOMA
certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	20/1
17. Were custody papers properly filled out (ink, signed, etc)?	YES NONA
18. Did you sign the custody papers in the appropriate place?	YES NONA
19. Were correct containers used for the analysis requested?	#E\$ 2.NONA
20. Was sufficient amount of sample sent in each container?	YES D.NONA
certify that I entered this project into LIMS and answered questions 17-20 (Intial)	57
certify that I attached a label with the unique LIMS number to each container (intial))Z-[
21. Were there Non-Conformance issues at login? YES. (NO Was a NCM generated? YES. (NO)	#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

Loc: 490 155661

COOLER RECEIPT FORM

Cooler Received/Opened On 7/14/2018 @1050	
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking # 2 (alast 4 digits, FedEx) Courier: FedEx	
IR Gun ID 14740456 pH Strip Lot AA Chilorine Strip Lot NA	
2. Temperature of rep. sample or temp blank when opened: 3. Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO NA
4. Were custody seals on outside of cooler?	YES NONA
If yes, how many and where:	rand
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	YESNONA
I certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES NO and Intact	YESNO.NA
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Subblewasp Plastic bag Peanuts Vermiculite Foam Insert Pape	er Other None
9. Cooling process: (Ice, Ice-pack Ice (direct contact) Dry ice	Other None
10. Did ail containers arrive in good condition (unbroken)?	CYES NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	XYESNONA
12. Did all container labels and tags agree with custody papers?	PESNONA
13a. Were VOA vials received?	YES (MORNA
b. Was there any observable headspace present in any VOA viai?	YESNONA
Larger than this.	
14. Was there a Trip Blank in this cooler? YES NO. NA If multiple coplers, sequence	:e#
certify that I unloaded the cooler and answered questions 7-14 (intial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	CYESNONA
16. Was residual chlorine present?	YESNO.SNA
certify that I checked for chiorine and pH as per SOP and answered questions 15-16 (initial)	ASI
17. Were custody papers properly filled out (lnk, signed, etc)?	ATES NONA
18. Did you sign the custody papers in the appropriate place?	MESNONA
19. Were correct containers used for the analysis requested?	JESZ.NONA
20. Was sufficient amount of sample sent in each container?	(YES).NONA
I certify that I entered this project into LIMS and answered questions 17-20 (initial)) <u>+</u>
I certify that I attached a label with the unique LIMS number to each container (Intial)	Dt
21. Were there Non-Conformance issues at login? YES. NO Was a NCM generated? YES. GO.	#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

TestAmerica Nashville 2966 Foster Creighton Brive Nashville, TN 37204 Phone (615) 726-0177 Fax (615) 726-3404	Chain of Custody Record	Sustody R	ecord			TestAmerica	Ö 🍇
Client Information	Sample	Lab Pa	Lab #3/ Cisneros, Roxanne	Carrier 7 factong tvo(s	No(s);	COC No: 490-86893-25173 1	
Client Contact. Greg Dick	L CY	E-Mail TOXAL	E-Mail: roxanne.cisneros@testamericainc.com	Series -	Sedor	Page Page 1 of 2	T
Company. Big Rivers Electric Corporation			Analysis	Requested		Jeb 11.	
Adness PO BOX 24	Due Date Requested: Starter					ķ	
ីត្វេ Henderson	TAT Requested (days): That referred	r,				A - HCl, M - Mexans B - NaOH N - Nuns C - Zn Acetate O - Astra02	
Siele, Zp. KY, 42419							·
Phane [270-844-6010(Tel)	Po≄. Purchase Order - see DOCs		tés:	30.00 P 30.10		ъ	hodrale -
Email Gregory Dick@bigrivers.com	WC#:		(on	155661	EJ.		
Project Name. Big River's Electric Corp - Handerson KY	in Green	Lax of \$1.81	96 ог Окоги		atiejt	X - EOIA W - pH 4-5 L - EOA Z - otter (specity)	 2÷
sie Sekroe Geen La-Afili			Y) (181 0_8500		οί εσι	Other:	
	Sащрle	Sample Matrix Type Secure.	400 C2(cq -		sadresM (s)	CCRAPITE, IT + AIK, N'1,M	Mirk
Sample Identification	Sample Date Time G=9		92 N 09 CO 22 N 24 X		61 X	Special Instructions/Note:	ie.
R. S. Sept 08-07/3/4	7/13/18 0750 G	Water	イメメ		10	# 6	7.09
River Scep - 1.3 - 0713,8	_	Water	X X X A		5		7.37
RIVET SOOD -16-071718	0011 N/81/2	Water	×××		W		17.
River 5800-14-071318	8	Water	XXX		m		といこ
See, -04	7/13/18 1350	Water	メイメメ		8		S. C.
	_	Water	× × × ×		S		727
. 1	7/12/18 1925	Water	× × ×		3		6.92
1/4mf/11 Seen - 01 -071318	7/13/18 1220	Water	× X X Y		OV.	10.64	·
1 contail Sees - 01 - 071315-17,00	7/13/16 1330	Water	× × × ×		2	+9.01	4.0
- 071319	7/13/18 13/0	Water	ス×× × ×		J.O	0K.01	3.0
12 Langes 20-03-1071314	7/13 /18 1330	Water	XXXX		7	&0.€	ග්
Possible Hazard Idehtification Such Hazard Childrenton Skir trium Poison B	ison B	odical	Sample Disposal (A fee	may be assessed if san	mples are retaine	Sample Disposal (A fee may be assessed fitsamples are retained longer than 1 month) Helpin To Client Marches March 10 Disposal By Lab	
ļ			Special Instructions/QC Requirements	единетель		The state of the s	
Empty Kif Relinguished by:	Date.		Time:	19 Je Merrocalor	of Shipment		
Reinquisted by. []	Cate/198 1630	Company Affician		Marsh -	S/Jn/Libea	1050 CAD S	145
Reinquerred by:	Gate/Time.	Сапрялу		\	Date/Time,	Complant	
Relinquished by	Uste/Time:	Company	Received by:		Oate/Time.	Company	
Custody Seals Intact: Custody Seal No.:		-	Coaler Temperature(s) ^a C and Other Remarks:	and Other Remarks;	501	126	
יי דרט ביים						WASE A	

TestAmerica Nashville	i	•									<u>(</u>	TestAmerica	Ď
290 i roste krletji kon zulve Vashvite, TV 378-0177 Fax (615) 728-3404		Chain of Custody Record	оау кес	ord							115 LEADS	THE LEADER IN ENWARDHIE WITH	DACES :
Slent Information	Sample Clark		Lab PW: Cisneros, Roxanne	Roxanne			<u> </u>	Tren Tren	Camer Tracking Nots):		CDC No: 490-86693-25173.1	-25173.1	
Vietr Contact. Sheg Dick	6-2	Z.	≛-Mall: roxanne.	E-Mall: roxanne.clsneros@testamericainc.com	gtestamer	icainc.co		W	Coders		Fage: Page 1 of 2	7	
onipary:						Analysis		Requested			:# dol:		-
Adress: PO BOX 24	Due Date Requested: 1	ارم ارم	2127								Preservation Codes:	if Codes:	
Juy. Tenderson	TAT Requested (days):		\$6.50								B-NaOH C-Zn Acetate		
Зав, 7Дс. (Y, 42419	Steelord										D - Nitic Add		
hane. 270-844-6010(Tet)	Purchase Order - see DOCs	OCs	(S) (0		ऽठ∳						G - America H - Ascorbica	ğ	hychate
inail: 3regony: Dick@bigrivers.com	WO #:			Q8Z 1		Q (1)							
^h igled Name. Big Rivers, Electric Corp - Hendorson KY	Sobre Grean Landfill	Landifill		M16#0	20	e/9			.,				<u>. </u>
Ille Stoe Goon Landfill	S\$OV#.			3028 2			1				፬ [
	Cammin	Sample Type	Matrix (number, trooled, d. Eilheite	*30*08 'BI	A0747 (B)	מבווריאט					Someth is	CCE Apple 10+	
Sample identification	Sample Date Time	4:2	N Fiel	zez 🚡	797 Z	24 23 23	7					Special Instructions/Note	ite:
V = 1 (2) = (2) = (2)	1 x 2 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x	<u>.</u>	(13	4					8			707 73	
1020-019-019-0		+-	3	*	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-	-				().0/ 1.1	
Contraction of the Contraction o	+-		7			+	-	\square			7) (a)	2 6 4 7~	
			CALCULATION OF THE PARTY OF THE			#	\				39 10		
			ialea.	_	-			1	-				
y dy ydyndig ddy ddy dd y dd alland o y ddiad a dae a a a a a a a a a a a a a a a a			Water	_				_	1		2	100. 400	
			Water	-			-		-		saleta a	155664	
A de de la constitución de la co			Water						-			1000	
			Water						:-	20.60			
			Water							137.27			
		:	Water								200		
			Water							H-16	6862		
Possible Hazard Identification Skin Inflant Poison B	Unknown	Radiological	\$	ample Di	le Disposal (A f Return To Client	A fee ma	y be ass	be assessed if san	sample.	s are reta	Sample Disposal (A fee may be assessed if samples are retained fonger than 1 morth) Return To Client	han 1 month)	
Other (specify)			(y)	Special Instructions/QC Requirements.	tructions	OC Requ	irements		-				<u> </u>
enpty Kit Relinguished by:	Date:		Time	ŧ }	7	,		or Age	Metrod of Shipment	JL:			
seinquistred by:	089/8/18/16		Company ACCON	Received		12	J.	13	Cate/Time:	HILL	118 11	120 Company	£
telinguished by:	Date/Time:	<u>o</u>	ompany	Reserved by	i, E	1		3	Caterine.	illuse:		Corripany	,
खीतपुर्धितिक by:	Date/Time;	<u> </u>	Company	Received by:	ſby:				Oatte/Time:	::##		Сопрапу	
Custody Seals Intect. Custody Seal No.:				Cooler	Cooler Temperature(s) "C and Other Remarks:	(s) "Cand	फिथ्न सिर्ध्याव		1/	0,	18		
												Ver. 08/04/2016	9

2960 Foster Creighton Drive Nashvilte: TN 37204 Phone (615) 726-0177 Fax (615) 726-3404

TestAmerica Nashville

Chain of Custody Record

		and Other Remarks: 18-52	ď	Caolox Temperature(s)	Caole					Custody Seats Infact: Custody Seat No.;
Campany	Date/Time:			tecewed by:	Race	Company:	Cor		Date/fune: :	<u> </u>
095 Company	Data/Times	***************************************	1/2	(eceived by)	Received	Countaining	Caust 70.51	8	Dates/Tarnes	Resoration of the Alles of State of Sta
	Meltoll of Shipment:	Melboilo			ੜੀ '	Time:		Date:	Transition &	Empty Kit Reinquished by:
			ns/OC Requirements;	Special Instructions/O	Special		2		Primary Deliverable Rank:	Denversore Requested: (II, III, IV, Officer (specify)
ree may be assessed if samples are retained longer than 1 month) Archive For Months	amples are retain	be assessed if sam Disposal By Lab		Sample Disposal (A.	Sample					Possible Hazard Identification Uncontinued
nkast laborallories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not the instructions will be provided. Any changes to approblation storus should be brought to festAmerica vidories, Inc.	stripment is forwarded Any changes to accre	xies. This sample s is will be gravided.		a upon outs a lattorator festAmerico	iompliance leasArpesic licence to 3	& accradilation a od back to the T og to said compli	method, analyte les must be shipp of Gustody aftersh	ia ownership of yzed, the samp i signed Chain i	oralojies, Inc. places l Jests/marks being ana Irrais to date, return th	Note: Since laboratory accreditations are subject to change, TestAmerica Laboratorials, the places the ownership of method, analyte & accreditation compliance upon but subcontrast laboratorial manages accreditation in the State of Chign listed above for onalysis tests/matrix being analyted, the samples must be shipped back to the TestAmerica laboratory or other instruction to the Chair of the Instruction in the State of Chign listed above for onalysis tests/matrix being analyted, the samples must be shipped back to the TestAmerica Laboratories, Inc. Laboratories, Inc., alteritor, introductery, if all requested accreditations are current to date, return the signed Chair of Custody affecting to said complicance to TestAmerica Laboratories, Inc.
run ance - epidad data (wice	2			×	×	Water		13:30 Central	7/13/18	Landfill Seep-03-071318 (490-155661-11)
run oace - oploed data twice	2			×	×	Water		13:10 Central	7/13/18	Landfill Seep-02-071318 (490-155661-10)
run once - upload data twice				×	×	Water		12:20 Central	7/13/16	Landfill Seep-01-071318-DUP (490-155661-9)
run ence - upload data twice:	N			×	×	Water		12:20 Central	7/13/18	Landfil Seep-01-071318 (-190-155661-8).
run orace - upload data (wice:	N.			×	×	Water		14:25 Central	7/12/18	River Seep-05-071218 (490-155661-7)
ron once - upload data twice	N			×	×	Water		14,50 Central	7/12/18	River Seep-07-071218 (490-155661-6)
run once - upload data (wice:	N 2			×	×	Waler		13:50 Central	7/12/18	River Seep-09-071218 (490-155661-5)
run once - upload data (wise)	· NO			×	×	Water		09:15 Central	7/13/18	River Seep-12-071318 (490-155661-2)
หนก ยาжю - upRoad data (wice:	2			×	×	Water		07:50 Central	7/13/18	River Seep-08-071318 (490-155661-1):
	×				×	Code	Preservation Code	X		
Special instructions/Note:	Tota			1	1	1	G=grab) er-	Time	Sample Date	Sample Identification - Client ID (Lab ID)
	i Numbe			O/PrecSep 26Ra228_	orm MS/ D/PrecSej	Matrix We water, sealer of Filteres		A service of the serv		
Oner:	ref co			·		Same			SSOW#:	Big Rivers CCR
	ntaine			ndard 1		te (Ye			Project #; 49010431	Big Rivers Electric Corp - CCR & SemiAnn
1-lea J-DiWater	rs			arget (***********	s or N			WO#:	Einad).
G - America Add T - TSP Opdershyddala			·····	.ist	List	o)			₽O #	314-298-8566(Tel) 314-298-8757(Fax)
										State, Zip. MO. 6:1045
B - NaOH N - None C - Zn Acetate: Q - AsNaO2								ays):	TAT Requested (days):	Oly. Earth City
ation Code		Requested	ıalysis					ed:	One Dato Requested: 8/13/2018	13715 Rider Trait North.
10b #: 490-155661-2			see note): ucky (UST)	Accrediations Required (See note): State Program - Kentucky (US	redialions da Progr	۸ _{csa} Sla				Company: TestAmerica Laboratories, Inc.
Page: Page 1 of 2		Sale of Origina Kentucky	E-Mail: roxanne cisneros@lestamericainc.com	netaal@s	cisneros	E-Mant.			Phone:	Chen Coract: Shipping/Receiving
COC No: 490-75464.1	g No(s);	Carrier Tracking No(s);		ne .	s, Roxan	Lao PW: Cisneros, Roxanno			Samples	Client Information (Sub Contract Lab)

上のののう

December Contract Lab December Chain of Custody Record A90 - 15566 Analysis Requested December Contract Lab December Decemb	# Accords Act I - TSP Dispessive Links Lin	Reseived by:	Сопрану	Oale/ (me:	Relinquisined by:
No. Chain of Custody Record A90-155661 Annual A	Total Number of contained in the may be assessed if samples are retained in Disposal By Lab Requirements: Method of Shapments: Data/Time: Data/Time: Data	Received by:	Company	-	
National Sub-Contract Lab	Total Number of Contained indeed to the may be assessed if samples are retained to the Disposal By Lah Method of Shapment: H. A. H. Archive F. Requirements. H. A. H. Archive F. Requirements. H. A. Archive F. A. Archive F. A	J. M. W. W. W. S.		ICA	Will Hall
March Sub Contract Lab Supple Contract Lab Supple Contract Lab Supple Contract Lab Supple Contract Lab Contract Lab Supple Contract Lab Contract Lab Contract Lab Contract Research Contract Res	Total Number of Containers 2. runo 2. runo 3. runo 3. runo 4. containers 4. containers 5. runo 6. runo 7. runo 8. runo 8. runo 9. runo 1. runo 1. runo 1. runo 1. runo 1. runo 2. runo 3. runo 3. runo 4. runo 6. runo 6. runo 6. runo 6. runo 7. runo 8. runo 8. runo 9. run	Time:			inquisited by:
1,17,204. 1,17	Total Number of Cohen at habitatives. The sample sure retained to Disposition of Cohen Archive For		2 .	ाताअरy Deliverable Rank:	
Application Contract Lab Contr	Total Number of containers. 2. Total Number of containers. 2. Total Number of containers. 2. Total Number of containers.	Sample Disposal (A fee			
1713 1725	IN. N. Total Number of containers.	tion compliance upon out subcontra	method, anarwa & arcradila	ies, inc. pisces the byinesship o	dte: Since laboratory асстебівають ате subject to shange. Тезь/Апенса Laboratori
Analysis Requested Control Clastody Record Analysis Requested An	IN IN X Total Number of containers				
Chairmont Chai	10 10 Number of containers				7
Chain of Custody Record A90 55661 Trail North Chain of Custody Record A90 55661 Trail North Chain of Canadam	13. 15. X Total Number of containers.				THE PROPERTY OF THE PROPERTY O
Trail North Contract Lab Contract Lab Contract Lab	10. N. X Total Number of containers				A STATE OF THE PROPERTY OF THE
N.3728.4 Chain of Custody Record A90	Total Number of containers 1. A. C.				TABLE 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Chair of Custody Record 190	Total Number of containers 1. 20				
CR 1726-1717 Fax (615) 726-340-4 Sample Canal Of Custody Record Sample Canal Custody Record Sample Canal Custody Record Sample Canal	Total Number of containers H. Ag. War on on				
Chair of Custody Record Sample Chair of Custody Record Sample Chair of Custody Record Sample Can Pict Can	Total Number of containers L Res C. ED Other C. ED	×	Water	_	andfill Seep-04-071318 (490-155861-13):
Milikation - Citent ID (Lab ID) Sample Date Time Sample (G-2004) Sample Contract Lab (Carring Sub-Contract Lab) From Citerton 204-266-82757(Fax) Sample Date Sample (G-2004) Sample G-2010 Sample (G-2004) Sample G-2010 Sample (G-2004) Sample G-2010 Sample (G-2004) Sample G-2010 Sample (G-2004) Total Number of containers Contract Lab (D) Sample Date Time Sample (G-2004) Sample G-2010 Sample (G-2004) Total Number of containers Total Number of containers Total Number of containers	Total Number of containers On The Containers Fig. 100	×	Water		ond-012-071318 (490-155661-12)
Train North. (Fig.) 214-280-8757(Fax) (Fig.) (CR & Sem)Anni (Fig.) 235-3404 Sample: CR & Sem)Anni (Fig.) (CR	Total Number of containers		1:20	\	
Train North Sub Contract Lab) Sample: Chair of Custody Record Sample: Chair of Custody Record Sample: Chair Pax Chair	Number of containers	Pert o 903.0 904.0			
Train North. Frain North. Fr	r of containers	orm MS/ PrecSep PrecSep	****	· · · · · · · · · · · · · · · · · · ·	
Trail North. Frail North. Fr	ntainers	MSD () _21 Sta _0 Star		QW# ₁	Rivers CCR
N 37204 (615) 726-3404 Chair of Custody Record 726-0177 Fax (615) 726-3404 Lan Pax Cisneros, Roxanns	ns	(es or Indard)010431)010431	
Trail North Total 137204 Trail North Trai	H- A60	No) Targe		0#:	
N 37204 Chain of Custody Record 726-0177 Fax (615) 726-3404 Sample: Uah PVK Cisheros: Roxanns: E-Mark: Colving: Royanne disheros@lestamericainc.com Laboratories, Inc.: Due Date Requested: Reguested: Analysis Requested Trail North. Rayansted (daya): TAX Requested (daya): TAX Requested (daya): Rayansted (daya): Raya	G - America	t List		1	98-8566(Tel) 314-298-8757(Fax)
Fax (615) 726-3404 Sample: Lah PM: Claneros, RóxAnns. (Sub Contract Lab) Phone: Foxanne distance distance distance di Rentucky Foxanne distance di Rentucky Acceediations Requiest (Set note): State Program - Kentucky (UST) Due Date Requested (daya): Analysis Requested TAX Requested (daya):	D - Nific Acid E - Napisoa				86, 27p: 10, 630.15:
Fax (615) 726-3404. Samples: Chain of Custody Record Construct Lab) Claneros, Roxánnis, Roxánnis, Recordance (Sameros@lesslamericainic.com Kentucky (1951) Chain of Requested Chain of Custody (1951) Chain of Cu				T Requested (days):	h Civ
Fax (615) 726-3404 Samples: Chair of Custody Record Lan PAx (Sub Contract Lab) Claneros, Roxanns E.Mark: Foxanne distreros@lestamericainc.com Kentucky Bes. Inc.: State Program - Kentucky (UST)	lysis Requested	Anal		e Date Requested: 13/2018	
Fax (615) 738-3404 Samples: Uan PM: Cisneros, Roxanne. (Sub Contract Lab) Phone: E-Mark: Coxanne cisneros@lessamericainc.com Kentucky		Accreditations Required (See note) State Program - Kentucky (U			
Fax (615) 726-3404. Chain of Custody Record 490-155661	Kentucky	र nne.cisneros@lestamericaino	E-Ma/	(APC.	
Eax (6.15) 726-3404. Chain of Custody Record 190-15565	750 VS 484.3		Cisn Cisn	ingles:	(Sub Contract Lab)
	The Land of the Country of the Count	ecord	of Custody R	Chain c	Nashville. TN 37204 Phone (615) 726-0177 Fax (615) 726-3404

Client: Big Rivers Electric Corporation

Job Number: 490-155661-2

Login Number: 155661
List Number: 3
List Source: TestAmerica St. Louis
List Creation: 07/17/18 05:06 PM

Creator: McBride, Mike

Creator: MCBride, Mike		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ba Carrier	
Lab Sample ID	Client Sample ID	(40-110)	
400-156511-B-1-B DU	Duplicate	90.3	
490-155661-1	River Seep-08-071318	87.3	
490-155661-2	River Seep-12-071318	92.9	
490-155661-5	River Seep-09-071218	89.4	
490-155661-6	River Seep-07-071218	79.4	
490-155661-7	River Seep-05-071218	82.9	
490-155661-8	Landfill Seep-01-071318	87.6	
490-155661-9	Landfill Seep-01-071318-DUP	94.4	
490-155661-10	Landfill Seep-02-071318	96.8	
490-155661-11	Landfill Seep-03-071318	89.7	
490-155661-12	Pond-012-071318	93.2	
490-155661-13	Landfill Seep-04-071318	97.6	
600-169468-C-1-A DU	Duplicate	94.4	
LCS 160-376745/1-A	Lab Control Sample	100	
LCS 160-376796/1-A	Lab Control Sample	99.7	
LCS 160-377701/1-A	Lab Control Sample	94.1	
LCSD 160-376745/2-A	Lab Control Sample Dup	100	
MB 160-376745/23-A	Method Blank	97.1	
MB 160-376796/18-A	Method Blank	102	
	Method Blank	94.7	

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ba Carrier	Y Carrier	
Lab Sample ID	Client Sample ID	(40-110)	(40-110)	
400-156511-B-1-D DU	Duplicate	90.3	84.5	
490-155661-1	River Seep-08-071318	87.3	90.5	
490-155661-2	River Seep-12-071318	92.9	85.6	
490-155661-5	River Seep-09-071218	89.4	87.1	
490-155661-6	River Seep-07-071218	79.4	87.1	
490-155661-7	River Seep-05-071218	82.9	83.0	
490-155661-8	Landfill Seep-01-071318	87.6	75.9	
490-155661-9	Landfill Seep-01-071318-DUP	94.4	94.6	
490-155661-10	Landfill Seep-02-071318	96.8	85.6	
490-155661-11	Landfill Seep-03-071318	89.7	92.7	
490-155661-12	Pond-012-071318	93.2	77.8	
490-155661-13	Landfill Seep-04-071318	97.6	86.4	
600-169468-C-1-B DU	Duplicate	94.4	90.8	
LCS 160-376750/1-A	Lab Control Sample	100	86.4	
LCS 160-376805/1-A	Lab Control Sample	99.7	91.2	
LCS 160-377705/1-A	Lab Control Sample	94.1	88.6	
LCSD 160-376750/2-A	Lab Control Sample Dup	100	87.5	
MB 160-376750/23-A	Method Blank	97.1	85.6	
MB 160-376805/18-A	Method Blank	102	91.6	

TestAmerica Nashville

Page 67 of 68

Tracer/Carrier Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Y Carrier = Y Carrier

TestAmerica Job ID: 490-155661-1

2

Method: 904.0 - Radium-228 (GFPC) (Continued)

Matrix: Water Prep Type: Total/NA

matrix: Trator				1 Top Typo: Totaliiti
				Percent Yield (Acceptance Limits)
		Ba Carrier	Y Carrier	
Lab Sample ID	Client Sample ID	(40-110)	(40-110)	
MB 160-377705/16-A	Method Blank	94.7	90.1	
Tracer/Carrier Legend	i			
Ba Carrier = Ba Carrier	-			

1

5

7

10

12

13

July 11, 2019

Re: Big Rivers Electric Corporation

Reid/ Green/HMP&L Station II (Sebree Station AI 4196)

Assessment of Corrective Measures Reports

An Assessment of Corrective Measures (ACM) for groundwater was initiated by Big Rivers Electric Corporation at the Green Station Landfill and Reid/HMP&L Station II Surface Impoundment on January 14, 2019. The ACM was initiated based on the Green Station Landfill and Reid-HMP&L Surface Impoundment having one (1) constituent from Appendix IV of Part 257 that was detected at a statistically significant level (SSL) above the Regional Screening Level (RSL) for lithium. Regional Screening Levels were used in lieu of Maximum Contaminant Levels (MCL), since an MCL has not been established for the constituent of concern (i.e. Lithium) associated with the Green Landfill and the Reid-HMP&L Surface Impoundment.

The Coal Combustion Residuals Rule found at 40 CFR Part 257.96(a) requires that a facility initiate an ACM within 90 days of finding that any constituent listed in Appendix IV of Part 257 has been detected at a SSL exceeding the groundwater protection standard defined under 257.95(h). The ACM must be completed within 90 days. The 90-day deadline to complete the ACM may be extended for no longer than 60 days.

The documents contained herein fulfill the requirements of 40 CFR Part 257.96(a), (c) and (d).

Furthermore, pursuant to 40 CFR 257.90(d) and 257.84(b)(5), Big Rivers initiated design of containment systems at the Green Station Landfill intended to control sources of landfill surface seeps to reduce or eliminate, to the maximum extent feasible, further non-groundwater releases of contaminants to surface waters. An ACM report for the non-groundwater releases from the Green Station Landfill, in light of the remedial measures initiated pursuant to 40 CFR 257.90(d) and 257.84(b)(5), has also been completed and is made available herein.

Assessment of Corrective Measures Under the CCR Rule

CCR SURFACE IMPOUNDMENT REID/HMP&L STATION WEBSTER COUNTY, KENTUCKY

June 13, 2019

Prepared For:

Big Rivers Electric Corporation Sebree Generating Station 9000 Highway 2096 Robards, Kentucky 42452

Prepared by:

AECOM Technical Services

525 Vine Street Suite 1800 Cincinnati, Ohio 45202 Phone: (513) 651-3440 Fax: (877) 660-7727

Job Number: 60602365

CONTENTS

Section	on			Page	
ACRO	NYMS .				
EXEC	UTIVE	SUMMAF	RY	1	
1.0	INTRO	DDUCTIO	DN	4	
2.0			NOF CURRENT CONDITIONS		
2.0	2.1		ackground		
	2.2		vestigation and Interim Measures		
	2.3	Conce	ptual Site Model (CSM)	6	
		2.3.1	Physical Setting	6	
		2.3.2	Geology		
		2.3.3	Hydrogeology		
		2.3.4	Constituents of Concern (COCs)		
		2.3.5	Impacted Media		
		2.3.6 2.3.7	COCs Distribution		
		2.3.7	Potential Receptors / Pathways		
3.0	CORF	RECTIVE	ACTION OBJECTIVE (CAO)	10	
4.0	TECH	NOLOG'	Y IDENTIFICATION AND SCREENING	11	
5.0	CORF		ACTION ALTERNATIVES ASSEMBLY		
	5.1		ptions for Corrective Measure Alternatives Development		
	5.2		dwater Corrective Measures Alternatives Overview		
		5.2.1	Alternative #1 – No Action and Groundwater Monitoring		
		5.2.2	Alternative #2a – CIP, ICs, and Groundwater Monitoring		
		5.2.3 5.2.4	Alternative #2b – CbR, ICs, and Groundwater Monitoring	14	
		5.2.4	Groundwater Monitoring	15	
		5.2.5	Alternative #4 – CiP, ICs, Physical Containment, Ex-Situ Treatment, and	13	
		0.2.0	Groundwater Monitoring	16	
6.0	ALTE	RNATIVE	EVALUATION	17	
	6.1	Potent	ial Data Gaps	17	
7.0	REFE	REFERENCES18			

List of Tables

- 1. Reid/HMP&L Station Surface Impoundment Constituents of Concern (COCs)
- 2. Reid/HMP&L Station Surface Impoundment Characterization Sample Results
- 3. Potential Corrective Measures Options Technology Description/Overview
- 4. Corrective Measures Alternative Summary

List of Figures

- 1. Site Location Map
- 2. Well Location Map
- 3. Site Geologic Map
- 4. Cross-Section A-A'
- 5. Cross Section B-B'
- 6. Contaminants of Concern Distribution

List of Appendices

A. Corrective Measures Technologies and Alternatives Evaluation Process

ACRONYMS

ACM Assessment of Corrective Measures
AECOM AECOM Technical Services, Inc.

ARARs Applicable or Relevant and Appropriate Requirements

BREC Big Rivers Electric Corporation

°C Degrees Celsius

CAO Corrective Action Objectives

CbR Closure by Removal

CCR Coal Combustion Residuals

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act of 1980

CFR Code of Federal Regulations

CiP Closure in Place

cm/sec Centimeters per second
COCs Constituents of Concern
CSM Conceptual Site Model
DO Dissolved Oxygen

ft., amsl Feet above mean sea level

GWPS Groundwater Protection Standards

ICs Institutional Controls

KGS Kentucky Geological Survey

KPDES Kentucky Pollution Discharge Elimination System

Li Lithium

μS/cm MicroSiemens per centimeter
MCL Maximum Contaminant Level

mg/L Milligrams per liter

mV Millivolt

O&M Operation and Maintenance
ORP Oxidation Reduction Potential
PRB Permeable Reactive Barrier

RCRA Resource Conservation and Recovery Act

Sebree Station Sebree Generating Station

SSI Statistically Significant Increase SSL Statistically Significant Level

TDS Total Dissolved Solids
UPL Upper Prediction Limit

USEPA United States Environmental Protection Agency

EXECUTIVE SUMMARY

AECOM Technical Services, Inc. (AECOM) was retained by Big Rivers Electric Corporation (BREC) to prepare an Assessment of Corrective Measures (ACM) to identify appropriate corrective measures for groundwater impacted by coal combustion residuals (CCR). The subject groundwater impacts are associated with the CCR that has been historically managed within the Reid/HMP&L Station CCR Surface Impoundment (Reid/HMP&L Station Surface Impoundment) at the Sebree Generating Station (Sebree Station), located near Sebree, Kentucky (Site).

Groundwater monitoring was conducted for the CCR management unit in accordance with the United States Environmental Protection Agency's (USEPA) CCR Rule (40 Code of Federal Regulations (CFR) Section 257.90 through Section 257.95). Detection and Assessment groundwater monitoring are complete at the Reid/HMP&L Station Surface Impoundment, and one constituent of concern (COC), lithium (Li), has been identified based on exceedance of the applicable Groundwater Protection Standard (GWPS) at a statistically significant level (SSL).

Section 257.96(c) requires this assessment to include an analysis of the effectiveness of potential corrective measures in meeting the objectives for remedies identified under Section 257.97(b), by addressing at least the following:

- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

Several potential corrective measures technologies were evaluated to identify which ones could be carried forward as components of corrective measures alternatives. The results of the corrective measures technology evaluation are presented below:

Potentially Applicable Technology	Status	Description/Overview	
No Action	Not retained as standalone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because it will not meet the established CAOs.	
Institutional Controls (ICs)	Retained as supplement to corrective measures alternatives	The use of ICs (i.e., Environmental Covenants, groundwater use restrictions, etc.) is retained as a useful technology. However, it is noted the ICs are not anticipated to be used as a stand-alone technology. Environmental Covenants, groundwater use restrictions, etc., are expected to be combined with other applicable technologies as part of corrective measures alternatives.	

Groundwater Monitoring (Assessment and Detection modes)	Retained as supplement to corrective measures alternatives	The use of groundwater monitoring (Assessment and/or Detection modes as appropriate) when combined with other applicable technologies as part of any proposed corrective measures alternative is retained to address the CAO and to track the effectiveness of the overall remedy. However, it is not retained as a stand-alone technology.
Hydraulic Containment	Retained	The use of hydraulic containment is retained because it is an effective means of preventing off-site migration of soluble contaminants. Hydraulic containment requires management and potential ex-situ treatment of extracted groundwater, so it is not a stand-alone technology. The Conceptual Site Model (CSM) will guide the design of any groundwater extraction system to optimize the total discharge of groundwater needed to provide hydraulic containment.
Physical Containment	Retained	The use of physical containment is retained because it can be an effective means of managing groundwater flow. Physical containment often requires pairing with hydraulic containment and/or in-situ treatment (funnel and gate style) to manage the flux of groundwater flow into the system. The CSM will guide the design of any physical barrier system, but technology limitations may increase implementation difficulty with scale.
Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment technologies are retained as a way of removing contaminants from extracted groundwater from a hydraulic containment system. Ex-situ treatment may be paired with wastewater treatment, non-groundwater release treatment systems, or with permitted discharge to manage groundwater contamination. The CSM and data gaps investigations will guide the design of any ex-situ treatment.
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment
Other Source Control Technologies	Retained	Control of source area non-groundwater related releases. For the purposes of this groundwater ACM, management of non-groundwater releases are not included in the alternatives evaluation. Engineering measures, including leachate collection, lining of trenches and/or ponds, and other isolation methods are regarded as part of closure technologies selected by other means.

Note: Technologies that were retained may be used as components of a corrective action alternative, but when evaluated in conjunction with other available technologies, any single technology may not be utilized.

Preliminary assembly of corrective measures alternatives was performed based on site-specific and regional geology and groundwater conditions. For the Reid/HMP&L Station Surface Impoundment, five corrective measures alternatives were developed from this list of applicable corrective measures technologies:

- Alternative #1 No Action, and Groundwater Monitoring
- Alternative #2a Closure in Place (CiP), Institutional Controls (ICs), and Groundwater Monitoring

- Alternative #2b Closure by Removal (CbR), ICs, and Groundwater Monitoring
- Alternative #3 CiP, ICs, Hydraulic Containment, Other Source Control, Ex-Situ Treatment, and Groundwater Monitoring
- Alternative #4 CiP, ICs, Physical Containment, Ex-Situ Treatment, and Groundwater Monitoring

The assembly of corrective measures alternatives is preliminary and could be revised at a later date following detailed analysis during the remedy selection process and/or following comment from the regulatory community and public. Specifically, a public meeting is required under Section 257.96(e) at least 30 days prior to the selection of remedy so that the owner or operator may discuss the results of the corrective measures assessment with interested and affected parties.

Following submittal of the ACM, the Site will begin the remedy selection process that is set forth in Section 257.97. The selected remedy must:

- Meet the requirements of Section 257.97(b) of the CCR Rule;
- Consider the standards in Section 257.97(c), and;
- Address the schedule and other factors specified in Section 257.97(d).

Upon remedy selection, a remedy selection report will be prepared that documents details of the selected remedy and how the selected remedy meets Section 257.97 requirements. As needed to accommodate further investigation(s) and/or evaluation, Section 257.97 requires the preparation of a semiannual report that documents progress toward remedy selection and design.

1.0 INTRODUCTION

The following report presents the Assessment of Corrective Measures (ACM) for groundwater impact identified at the Reid/HMP&L Station CCR Surface Impoundment (Reid/HMP&L Station Surface Impoundment), which is a coal combustion residuals (CCR) management unit located at the Big Rivers Electric Corporation (BREC) at the Sebree Generating Station (Sebree Station), located near Sebree, Kentucky (Site).

Groundwater monitoring was conducted for the unit in accordance with the United States Environmental Protection Agency's (USEPA) CCR Rule (40 Code of Federal Regulations [CFR] Section 257.90 through Section 257.95). The results of Detection Monitoring (per Section 257.94) identified the presence of one or more indicator constituents (Appendix III to Section 257) with downgradient concentrations representing a statistically significant increase(s) (SSI) over background or upgradient conditions. The detection of one or more SSI required the implementation of Assessment Monitoring following the requirements of Section 257.95, which was initiated in April 2018. Assessment Monitoring results indicated the downgradient presence of one or more constituents of concern [COCs] (Appendix IV to Section 257) at concentrations that represent an SSI over background concentration, and that represent a statistically significant level (SSL) over the groundwater protection standard(s) established in accordance with to Section 257.95(h).

For the Reid/HMP&L Station Surface Impoundment unit, the following SSL was identified:

Lithium (Li) in MW-10

The identification of the SSL requires characterization of the nature and extent of impact (sufficient to support the ACM) in accordance with Section 257.95(g)(1) and the initiation of an ACM following the requirements of Section 257.96. Notice of ACM initiation dated January 14, 2019 was posted to BREC's publicly-accessible CCR reporting website.

Section 257.96(c) requires this ACM to include an analysis of the effectiveness of potential corrective measures in meeting the objectives for remedies identified under Section 257.97(b), by addressing at least the following:

- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

This report presents the ACM evaluation in the following five sections, along with their associated appendices and attachments.

2.0 DESCRIPTION OF CURRENT CONDITIONS

This section provides information related to the current use of the site, as well as the history of activities relevant to the ACM for the Reid/HMP&L Station Surface Impoundment at the Sebree Station.

2.1 Site Background

BREC owns and operates the Sebree Station, which is a coal-fired power generating facility located on the Green River northeast of Sebree, Kentucky. Sebree Station is composed of Green Station and Reid/HMP&L Station. The Sebree Station is bounded by Interstate-69 to the west and the Green River to the east (see **Figure 1**). Reid Unit 1 (66 Megawatts) began commercial operation in 1966 and it will be converted from coal to natural gas in the future. The Reid Combustion Turbine (72 MW) was commercialized in 1976. HMP&L Station 2, Units 1 (167 MW) and 2 (168 MW) began commercial operation in 1973 and 1974 respectively. Both HMP&L units were retired as of February 1, 2019. Green Station Units 1 (242 MW) and 2 (242 MW) began commercial operation in 1979 and 1981, respectively.

The location of the Reid/HMP&L Station Surface Impoundment is illustrated in **Figure 2**. The CCR Surface Impoundment has been in place for more than 40 years and is used for the placement of CCR material. As stated in the published CCR monitoring well network certification, available on the BREC website, the Reid/HMP&L Station Surface Impoundment is a combined incised/dike earthen embankment structure. It is diked on the west, south and east sides, while the north side is incised. The south dike has the greatest height, reaching approximately 20 feet. The original ground surface within the pond footprint was irregular and the dominant features were small stream valleys draining eastward to the Green River. Most of the central portion of the south dike was constructed on a subdued ridge.

2.2 Site Investigation and Interim Measures

Monitoring wells were installed in the vicinity of the Reid/HMP&L Station Surface Impoundment in December 2015 prior to the implementation of the CCR Rule. These wells meet the requirements of §257.90 of the CCR Rule for installation of a groundwater monitoring system. These requirements are that wells must adequately represent the quality of background groundwater and groundwater representing the downgradient waste boundary. The wells are located along the perimeter of the footprint for the Reid/HMP&L Station Surface Impoundment. One upgradient monitoring well (MW-7) and three downgradient monitoring wells (MW-8, MW-9, and MW-10) were installed adjacent to the Reid/HMP&L Station Surface Impoundment to determine the general direction of groundwater movement and to monitor groundwater at the Site. The monitoring wells were installed in the uppermost saturated portion of the sandstone bedrock aquifer.

Hydraulic testing (slug tests) was performed in April 2019, and nine rounds of Baseline groundwater sampling for Appendix III constituents was conducted between March 2016 and October 2017. Statistical evaluation for Detection monitoring indicated that SSIs over background have occurred, and therefore, Assessment monitoring was triggered. Detection monitoring activities and data are presented in the annual reports that have been prepared to date, (AECOM 2018 and 2019. Annual Groundwater Monitoring).

As part of Assessment monitoring, upgradient and downgradient wells for the CCR Surface Impoundment were sampled for Appendix IV constituents in April, July, and September 2018. GWPSs were established for Assessment monitoring of the Appendix IV constituents, and statistical evaluation indicated exceedances of GWPSs at SSLs.

For the purposes of this ACM, the COC that exceeds GWPSs at SSLs is Li (see Table 1).

Table 1 – Reid/HMP&L Station Surface Impoundment Constituents of Concern (COCs)

Monitoring Well (Date)	Parameter
	Lithium UPL 0.008 GWPS 0.04
	(mg/L)
MW-10 (Apr 2018)	0.694
MW-10 (Jul 2018)	0.630
MW-10 (Sep 2018)	0.570

NOTES:

GWPSs are the greater of the site-specific background concentrations, the USEPA primary drinking water standard maximum contaminant limits (MCL), or GWPS provided in 40 CFR 257.95(3)(h)(2) **Bold** red values exceed the GWPS by direct comparison; yellow shaded indicates an SSL above the GWPS (i.e., 95 LCL > GWPS) UPL = Upper Prediction Limit; mg/L = milligrams per liter; < = constituent concentration is less than laboratory reporting limit.

No formal interim corrective measures have been performed at the Reid/HMP&L Station Surface Impoundment but waste is no longer placed in the unit and closure activities have been initiated.

2.3 Conceptual Site Model (CSM)

The main purpose of a CSM is to support the decision-making process for groundwater corrective action at the Reid/HMP&L Station Surface Impoundment.

2.3.1 Physical Setting

The Site is mapped within the Interior Low Plateaus physiographic province (https://www.nps.gov/subjects/geology/physiographic-provinces.htm). The province is part of the Interior Plains division of the United States. Characteristic features of the province include unglaciated rolling limestone plains with alluvial valleys and entrenched rivers and streams. Several large rivers are in the region, including the Green, the Ohio, the Kentucky, the Tennessee, and the Cumberland Rivers. The geology underlying the Site consists of unconsolidated materials, including loess and alluvial deposits, underlain by Upper to Middle Pennsylvanian-age clastics and carbonates consisting primarily of sandstone and shale. The unconsolidated material also include fill, silty and clayey residuum, and minor amounts of sandy, clayey channel fill alluvium.

The Reid/HMP&L Station Surface Impoundment is located on upland adjacent to the west bank of the Green River at an elevation of approximately 389 feet, above mean sea level [ft., amsl] (at the west corner) and 400 ft., amsl (at the northeast corner). Although the Green River is located less than 0.5 miles from the site, the structure does not extend significantly into the floodplain. Underlying preconstruction soils consisted of Loring-Grenada, Loring-Zanesville-Wellston (Henderson County) and Loring-Wellston-Zanesville (Webster County) soil associations which are generally characterized as well drained to moderately well drained soils on nearly level to sloping uplands (Associated Engineers 2016, Hydrologic and Hydraulic Capacity Assessment and Initial Inflow Design Flood Control System Plan). The immediate watershed that drains to the unit, and in which the unit is considered to be located, is unnamed and 25.45 acres in size. The unnamed watershed discharges from the Reid/HMP&L Station Surface Impoundment outflow structure and is routed, under a Kentucky Pollution Discharge and Elimination System (KPDES) permit, to the Green River.

2.3.2 Geology

Figure 3 presents a geologic map of the site and vicinity. The site lies in the Western Kentucky Coalfields, characterized by rolling uplands underlain by coal-bearing bedrock of the Pennsylvanian Period. In the vicinity of the site, maximum topographic relief is on the order of 80 feet. The geologic quadrangle (Geologic map of the Robards quadrangle, Henderson and Webster Counties, Kentucky, 1973) for the Site vicinity published by the Kentucky Geological Survey (KGS) shows the surficial material to be unconsolidated loess representing the Pleistocene and Holocene geologic epoch. The loess consists of sandy and clayey silt. The unconsolidated surficial materials, which include silty and sandy clay units, are approximately 25 feet in thickness.

The unconsolidated surficial materials are underlain by bedrock of the Upper Pennsylvanian Shelburn Formation (formerly identified as the Lisman Formation [Fairer, 1973]) and the Middle Pennsylvanian Carbondale Formation. At the base of the Shelburn Formation is the Providence Limestone Member, consisting of limestone and interbedded shale, but this unit is absent in much of the area due to erosional channeling. Due to its discontinuous character and the presence of interbedded shale, hydrologically significant karst features are not present in the Providence Limestone Member. The underlying Carbondale Formation consists of cyclic sequences of sandstones, shales, siltstones and coals. The Carbondale sediments were deposited in a fluvial-deltaic system. As a result of this depositional environment, the lithologic units of the Carbondale tend to be lenticular bodies rather than continuous sheet-like strata. Gradational and abrupt horizontal changes in lithology are often encountered.

Cross-sections were prepared during development of this ACM, and cross-section locations are shown on **Figure 2**. The individual cross-sections are presented on **Figures 4** and **5**. These sections illustrate the sequence of geologic units present under the Reid/HMP&L Station Surface Impoundment as evidenced by the currently available data.

2.3.3 Hydrogeology

For purposes of compliance with the CCR Rule groundwater monitoring requirements, the interbedded sandstone and shale of the Carbondale Formation is considered to be the uppermost aquifer underlying the Reid/HMP&L Station Surface Impoundment. The uppermost aquifer is unconfined and first encountered at an elevation of approximately 413.4 ft., amsl at the northeast end (at MW-7), and 341.6 ft. amsl at the west end of the Surface Impoundment (at MW-8). Flow direction beneath the site is typically to the southwest towards an unnamed tributary to Groves Creek located west/southwest of the impoundment.

Slug tests were performed between April 24, 2019 and April 25, 2019 at monitoring wells MW-10, and MW-110 to assess the hydraulic characteristics of the uppermost aquifer. The estimated hydraulic conductivity of the monitoring wells tested ranged from 3×10^{-6} to 5×10^{-4} centimeters per second (cm/sec).

Although previous site-specific investigations have noted the presence of perched zones of saturation in the overlying unconsolidated materials, these discontinuous zones do not qualify as an uppermost aquifer under the CCR Rule because they do not produce usable quantities of groundwater.

2.3.4 Constituents of Concern (COCs)

As described in Section 2.2, a single Appendix IV constituent, Li, was detected at concentrations exceeding GWPS at one monitoring well location: Li was detected at SSLs above the GWPS at the monitoring well MW-10 location.

2.3.5 Impacted Media

Groundwater is the sole impacted media of concern addressed by this ACM.

2.3.6 COCs Distribution

Groundwater analytical data from the site investigations through 2018 indicate that COC concentrations above GWPSs are present in the vicinity of the Reid/HMP&L Station Surface Impoundment along the southwest edge (**Figure 6**). COC concentrations at MW-7, MW-8, and MW-9 were not above GWPSs at SSLs. Due to this, the area of projected corrective measures is confined to the area at and adjacent to MW-10.

An additional characterization well, MW-110, was subsequently installed to estimate the downgradient extent of impacted groundwater. Sample collection for Appendix III and IV parameters took place in March and April 2019. The analytical results for Li were below the GWPS. The characterization data are summarized in **Table 2**.

Table 2 – Reid/HMP&L Station Surface Impoundment Characterization Sample Results

Monitoring Well (Date)	Parameter
	Lithium UPL 0.008 GWPS 0.04
	(mg/L)
MW-110 (March 2019)	0.0299
MW-110 (April 2019)	0.0303

The two sampling event results from the characterization well helps confirm the downgradient (southwestern) extent of COC impacts above the GWPS at the Reid/HMP&L Station Surface Impoundment.

2.3.7 Groundwater Quality

In addition to the presence of COCs above GWPSs, other geochemical characteristics of the uppermost aquifer consist of the following:

- The temperature of the samples taken at the downgradient wells during the September 2018 sampling event ranged from 18.53 degrees Celsius (°C) to 18.62 °C.
- Specific conductance ranged from 0.534 to 2.64 microSiemens (μS/cm).
- Dissolved Oxygen (DO) concentration ranged from 0.41 to 0.44 mg/L.
- Oxidation Reduction Potential (ORP) ranged from -74 to -95 milliVolts (mV).
- The pH of the samples ranged from 6.69 to 8.98.
- Total Dissolved Solids (TDS) concentration of the samples ranged from 293 to 1,990 mg/L.

2.3.8 Potential Receptors / Pathways

Contact with water (e.g., shallow groundwater or surface water) impacted by COCs at levels above GWPS is regarded as the potential pathway for exposure of potential receptors. Based on data published by KGS, there are no known groundwater wells used for drinking water within a 1-mile radius of the Reid/HMP&L Station, thus limiting the potential receptors to the surface water, i.e., tributaries to the Green River. The pathways to these receptors include seepage of water from the Reid/HMP&L Station Surface Impoundment through manmade and natural hydraulic barriers.

Other potential exposure pathways (e.g., soil or vapor) are not considered complete as the CCR material is isolated in the unit. This isolation prevents direct access by individuals that might result in direct contact or ingestion. In addition, the inherent non-volatile nature of the unit-specific COCs eliminates the potential for a complete vapor pathway (i.e., vapor intrusion to indoor air). Therefore, soil and vapor pathways will not be considered within the context of this ACM.

3.0 Corrective Action Objective (CAO)

For CCR units, 40 CFR Parts 257.90 through 257.98 outlines the groundwater monitoring programs (Detection and Assessment) and the corrective action evaluation process, which provide the basis for the development of the site-specific CAO. Detection and Assessment groundwater monitoring are complete at the Reid/HMP&L Station Surface Impoundment, and the COC Li has been identified based on exceedance of the GWPS.

Section 257.96(c) requires this assessment to include an analysis of the effectiveness of potential corrective measures to meet the objectives for remedies identified under Section 257.97(b), by addressing at least the following:

- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

The subsequent remedy selection process will evaluate the following objectives for remedies, as required under Section 257.97(b):

- Protect human health and the environment;
- Attain the COC-specific GWPS as specified pursuant to Section 257.95(h);
- Control the source(s) of releases to reduce or eliminate, to the maximum extent feasible, further releases of Appendix III and IV constituents into the environment;
- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, considering factors such as avoiding inappropriate disturbance of sensitive ecosystems (applicable to material releases only); and
- Comply with standards for management of wastes as specified in Section 257.98(d).

Together, these requirements comprise the site-specific CAO that will be used during the remedy selection process.

4.0 TECHNOLOGY IDENTIFICATION AND SCREENING

As required under Section 257.97(b), source control is one element of the CAO that is intended to prevent further releases from the source, i.e., the Reid/HMP&L Surface Impoundment. In adherence with the BREC's permit conditions, the Site will continue to operate through the end of its life cycle and will be closed in accordance with the requirements of the permit. Source control through pond closure will include installation of final cover that will prevent infiltration and contribute to groundwater quality restoration.

The identification and screening of potentially applicable corrective measures technologies for groundwater downgradient of the Reid/HMP&L Surface Impoundment is presented in **Appendix A** to this report. The findings of that screening are summarized in the table below.

Table 3 - Potential Corrective Measures Options Technology Description/Overview

Potentially Applicable Technology	Status	Description/Overview
No Action	Not retained as standalone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because it will not meet the established CAOs.
Institutional Controls (ICs)	Retained as supplement to corrective measures alternatives	The use of ICs (i.e., Environmental Covenants, groundwater use restrictions, etc.) is retained as a useful technology. However, it is noted the ICs are not anticipated to be used as a stand-alone technology. Environmental Covenants, groundwater use restrictions, etc., are expected to be combined with other applicable technologies as part of corrective measures alternatives.
Groundwater Monitoring (Assessment and Detection modes)	Retained as supplement to corrective measures alternatives	The use of groundwater monitoring (Assessment and/or Detection modes as appropriate) when combined with other applicable technologies as part of any proposed corrective measures alternative is retained to address the CAO and to track the effectiveness of the overall remedy. However, it is not retained as a stand-alone technology.
Hydraulic Containment	Retained	The use of hydraulic containment is retained because it is an effective means of preventing off-site migration of soluble contaminants. Hydraulic containment requires management and potential ex-situ treatment of extracted groundwater, so it is not a stand-alone technology. The CSM will guide the design of any groundwater extraction system to optimize the total discharge of groundwater needed to provide hydraulic containment.

Potentially Applicable Technology	Status	Description/Overview
Physical Containment	Retained	The use of physical containment is retained because it can be an effective means of managing groundwater flow. Physical containment often requires pairing with hydraulic containment and/or in-situ treatment (funnel and gate style) to manage the flux of groundwater flow into the system. The CSM will guide the design of any physical barrier system, but technology limitations may increase implementation difficulty with scale.
Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment technologies are retained as a way of removing contaminants from extracted groundwater from a hydraulic containment system. Ex-situ treatment may be paired with wastewater treatment, non-groundwater release treatment systems, or with permitted discharge to manage groundwater contamination. The CSM and data gaps investigations will guide the design of any ex-situ treatment.
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.
Other Source Control Technologies	Retained	Control of source area non-groundwater related releases. For the purposes of this groundwater ACM, management of non-groundwater releases are not included in the alternatives evaluation. Engineering measures, including leachate collection, lining of trenches and/or ponds, and other isolation methods are regarded as part of closure technologies selected by other means.

References: Technology descriptions referenced from 1) FRTR: Federal Remediation Technologies Roundtable, CLU-IN, and/or AECOM reference materials.

5.0 Corrective Action Alternatives Assembly

Applicable corrective measures technologies identified in Section 4.0 above were assembled into corrective measures alternatives for evaluation (see Section 6.0). Each corrective measures alternative consists of one or more corrective measures technologies assembled into a strategy for the groundwater remedy. Five corrective measures alternatives for the Reid/HMP&L Station Surface Impoundment were assembled and are described below:

- Alternative #1 No Action, and Groundwater Monitoring
- Alternative #2a Closure in Place (CiP), Institutional Controls (ICs), and Groundwater Monitoring
- Alternative #2b Closure by Removal (CbR), ICs, and Groundwater Monitoring
- Alternative #3 CiP, ICs, Hydraulic Containment, Other Source Control, Ex-Situ Treatment, and Groundwater Monitoring
- Alternative #4 CiP, ICs, Physical Containment, Ex-Situ Treatment, and Groundwater Monitoring

5.1 Assumptions for Corrective Measure Alternatives Development

In developing the corrective measures alternatives, a number of assumptions have been made based on the data available to AECOM at the time of this report and operational plans as reported by the owner/operator. The specific assumptions include:

- The currently observed dissolved-phase groundwater impacts are limited to the area adjacent to monitoring well location MW-10 along the southeastern corner of the Reid/HMP&L Station Surface Impoundment; groundwater impacts do not extend offsite from the Sebree Station property.
- Groundwater impacts are limited to the saturated zone between the observed water table at approximate elevation 390 feet mean sea level (ft-msl) and an assumed depth below the MW-10 well screen of approximately 325 ft-msl.
- Ex-situ treatment of groundwater may involve physical/chemical methods and/or discharge to a permitted National Pollution Discharge and Elimination System (NPDES) outfall.
- Groundwater corrective measures will be conducted until the CAOs are met. The objectives may be met at an earlier date, but the alternatives analysis is based on the conservative assumption that corrective measures and the associated monitoring of groundwater conditions will be required for up to 30 years following the initiation of the corrective measures.

5.2 Groundwater Corrective Measures Alternatives Overview

The developed groundwater corrective measures alternatives, outlined above, are detailed in the following sections.

5.2.1 Alternative #1 - No Action and Groundwater Monitoring

Alternative #1 consists of taking no action to remedy the CCR impacts observed in the Reid/HMP&L Station Surface Impoundment groundwater monitoring system. Under the No Action alternative, no corrective measures would be implemented to remove, control, mitigate, or minimize exposure to

impacted groundwater. Groundwater monitoring (Assessment) is required by the CCR Rule during the nominal performance period of 30 years to track the effectiveness of the alternative and to identify conditions that allow the return to Detection monitoring. The No Action alternative establishes a baseline, or reference point against which each of the developed corrective measures alternatives may be compared.

5.2.2 Alternative #2a - CIP, ICs, and Groundwater Monitoring

Alternative #2a employs a combination of three of the retained corrective measures technologies:

- CiP source control, which consists of planned Reid/HMP&L Station Surface Impoundment closure activities:
- Implementation of ICs designed to restrict the property to industrial use and to prohibit groundwater use for potable purposes; and
- Groundwater Monitoring (Assessment) to track the effectiveness of the corrective measures and to identify conditions that allow the return to Detection monitoring and ultimately to cessation of corrective measures.

CiP was selected as the source control technology because the site's operational planning includes closure-related activities that will eventually result in placement of an engineered cap. CiP via CCR stabilization and capping would serve to control the source of constituents of concern (COCs) and thereby reduce contaminant loading to the surrounding environment.

Implementation of ICs is employed to help maintain the CiP and associated corrective measures by limiting the accessibility of the unit to unauthorized users and restricting future use of the property to those activities that may result in exposure potentials.

Groundwater monitoring of the unit is required by 40 CFR Section 257.90 through .98. The unit triggered Assessment-mode monitoring by the detection of indicator parameters (Appendix III of 40 CFR 257) in downgradient monitoring wells at concentrations representing a SSI over background. Continued groundwater monitoring is required under 40 CFR 257.95 until the CAOs are met. The CAOs are anticipated to be met as the effect of source control technologies are realized and as natural attenuation mechanisms (advection, dilution and dispersion) take effect.

5.2.3 Alternative #2b – CbR, ICs, and Groundwater Monitoring

Alternative #2b is similar to Alternative #2a except that CiP is replaced by CbR, which consists of excavation and removal of the Reid/HMP&L Station Surface Impoundment, implementation of ICs and an Environmental Covenant intended to restrict the unit to industrial use and prohibit groundwater use for potable purposes. The excavation of impacted CCR material would typically be completed using standard construction equipment (e.g., backhoe, excavator, wheel loader, dump trucks). The excavated materials are then placed directly into dump trucks for transport/disposal or beneficial use. Excavation limits would typically be verified with confirmation sampling to demonstrate that the underlying soil is not impacted above applicable standards.

Groundwater monitoring of the unit is required by 40 CFR 257.90 through .98. The unit triggered Assessment-mode monitoring by the detection of indicator parameters (Appendix III of 40 CFR 257) in downgradient monitoring wells at concentrations representing a SSI over background. Continued groundwater monitoring is required under 40 CFR 257.95 until the CAOs are met. The CAOs are

anticipated to be met as the effect of source control technologies are realized and as natural attenuation mechanisms (advection, dilution and dispersion) take effect.

5.2.4 Alternative #3 - CiP, Hydraulic Containment, Ex-Situ Treatment, ICs, and Groundwater Monitoring

Alternative #3 builds on Alternative #2a to also include the addition of Hydraulic Containment and Ex-Situ Treatment of groundwater:

- CiP source control, which consists of planned Surface Impoundment closure activities;
- Implementation of ICs designed to restrict the property to industrial use and to prohibit groundwater use for potable purposes;
- Hydraulic Containment using one or more vertical wells designed to prevent the movement of impacted groundwater past the limits of the unit to the downgradient groundwater environment and potential points of exposure;
- Ex-Situ Treatment of groundwater extracted for hydraulic containment, which involves aboveground physical/chemical treatment methods and/or permitted discharge until the CAOs are achieved;
- Implementation of ICs designed to restrict the property to industrial use and to prohibit groundwater use for potable purposes; and
- Groundwater Monitoring (Assessment mode) to track the effectiveness of the corrective measures and to identify conditions that allow the return to Detection-mode monitoring and ultimately to cessation of corrective measures.

Vertical groundwater recovery wells for Hydraulic Containment would be installed near the downgradient limit of the unit in the vicinity of MW-10. Due to the low hydraulic conductivity of the uppermost aquifer, Pre-Design Studies are anticipated to be needed to identify the appropriate number, design, and spacing of the extraction well system. For the purposes of this ACM, preliminary specifications are as follows:

- Two vertical groundwater extraction wells;
- Extraction wells would be placed at the southeast corner of the Reid/HMP&L Station Surface Impoundment and upgradient of monitoring well MW-10;
- Wells screen depths would be approximately 50-100 feet-below ground surface (ft-bgs);
- Estimated groundwater extraction rates of 20 gallons per minute (gpm) per well.

Alternative #3 incorporates treatment of extracted groundwater before it can be discharged to an outfall. Treatment will consist of piping the extracted groundwater to an existing surface water impoundment at the Sebree Station, which will allow for compliance with discharge permits through an established NPDES outfall.

The COC concentrations downgradient of the hydraulic containment would also be expected to decrease over time through natural attenuation mechanisms including advection, dilution, and dispersion. As such, groundwater monitoring would be modified to include system performance monitoring, which may require installation of wells at new locations to evaluate the efficacy of hydraulic containment and to identify when CAOs have been achieved.

5.2.5 Alternative #4 - CiP, ICs, Physical Containment, Ex-Situ Treatment, and Groundwater Monitoring

Alternative #4 consists of BREC's planned unit closure activities, physical containment of impacted groundwater via installation of a funnel-gate system, and ex-situ treatment of contained groundwater via an extraction well installed at the containment gate. Impacted groundwater would be contained by grout curtain constructed in a funnel-and-gate arrangement that directs the flow of groundwater to an extraction point. The grout curtain would be installed by drilling two lines of grout injection points that extend northwestward and northeastward from the southeast corner of the unit. The length of each limb of the barrier would be 500 feet, and the target depth would be approximately 325 ft-amsl. A single extraction well would be installed at the "gate" with a screened interval of 50 to 100 ft-bgs and a pumping capacity of up to 20 gpm. Groundwater will be pumped and conveyed to an existing surface water impoundment at the Sebree Station, which will allow for compliance with discharge permits through an established NPDES outfall.

CiP via ash stabilization and capping would control the source of COCs and thereby reduce contaminant loading to the extraction system. Concentrations downgradient of the physical barrier would be expected to decrease over time through several natural attenuation mechanisms including advection, dilution, and dispersion. Groundwater Monitoring (Assessment) would continue to track the effectiveness of the corrective measures and to identify conditions that allow the return to Detection monitoring and ultimately to cessation of corrective measures.

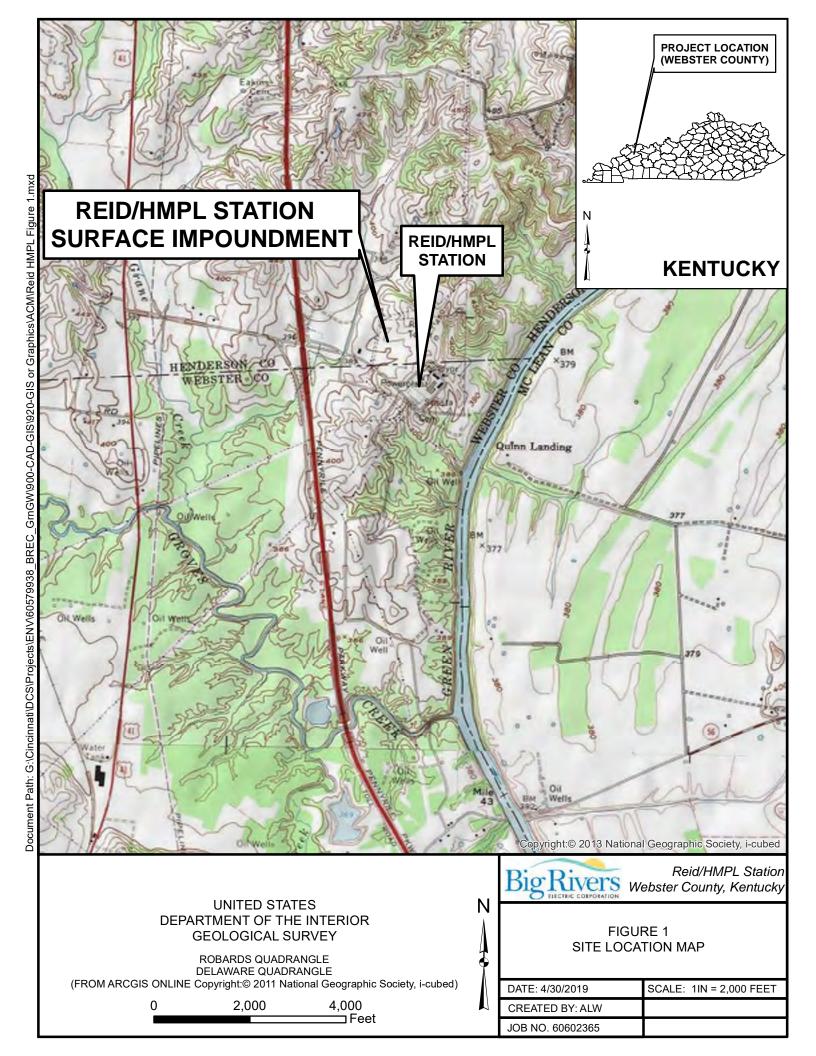
6.0 ALTERNATIVE EVALUATION

The formal remedy selection process, in accordance with the CCR Rule 40 CFR Section 257.97, will begin following submission of the ACM Report. The subsequent remedy selection process will evaluate the following objectives for remedies, as required under Section 257.97(b):

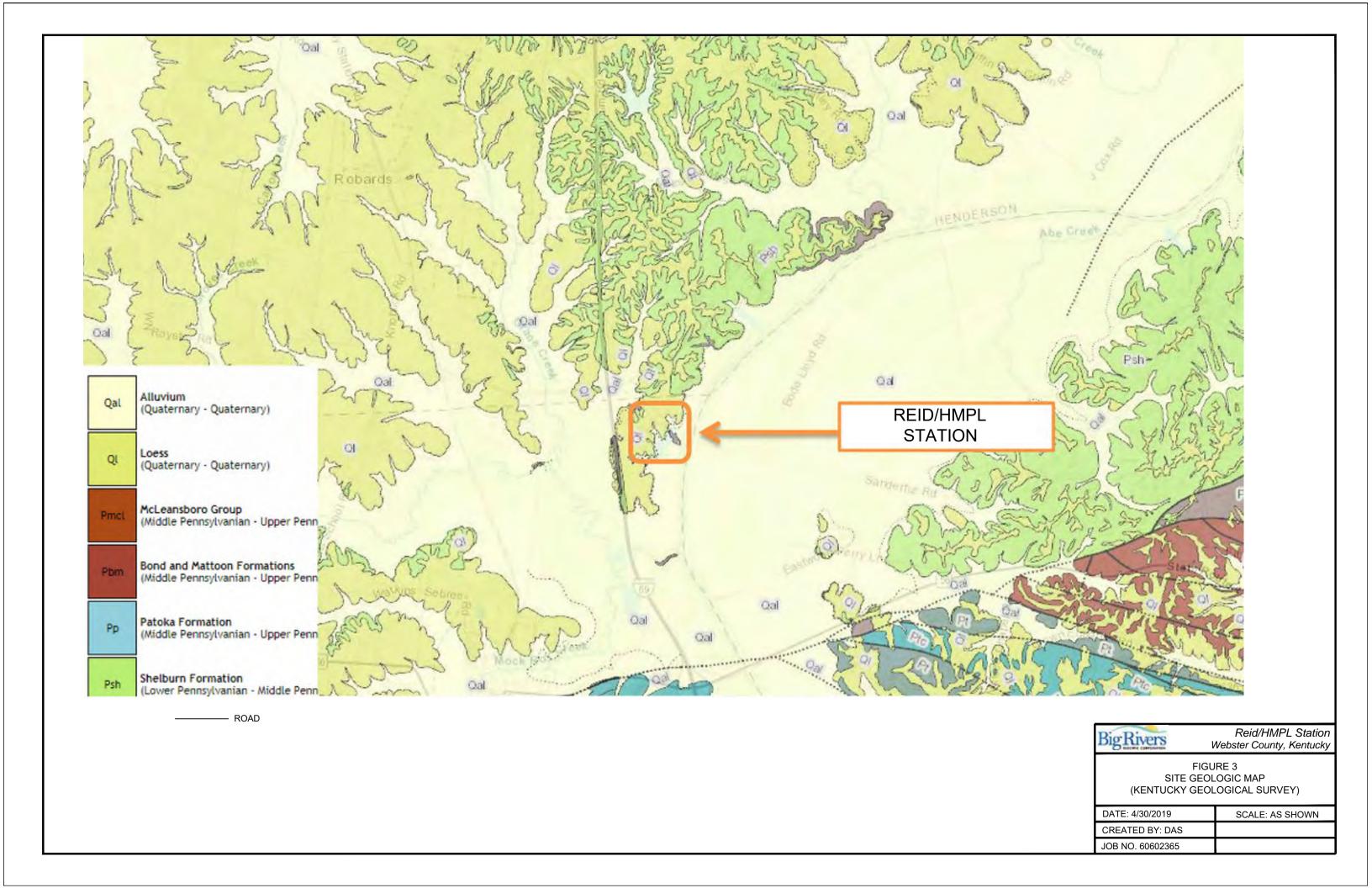
- Protect human health and the environment:
- Attain the COC-specific GWPSs as specified pursuant to Section 257.95(h);
- Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix IV constituents into the environment;
- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems (applicable to material releases only); and
- Comply with standards for management of wastes as specified in Section 257.98(d).

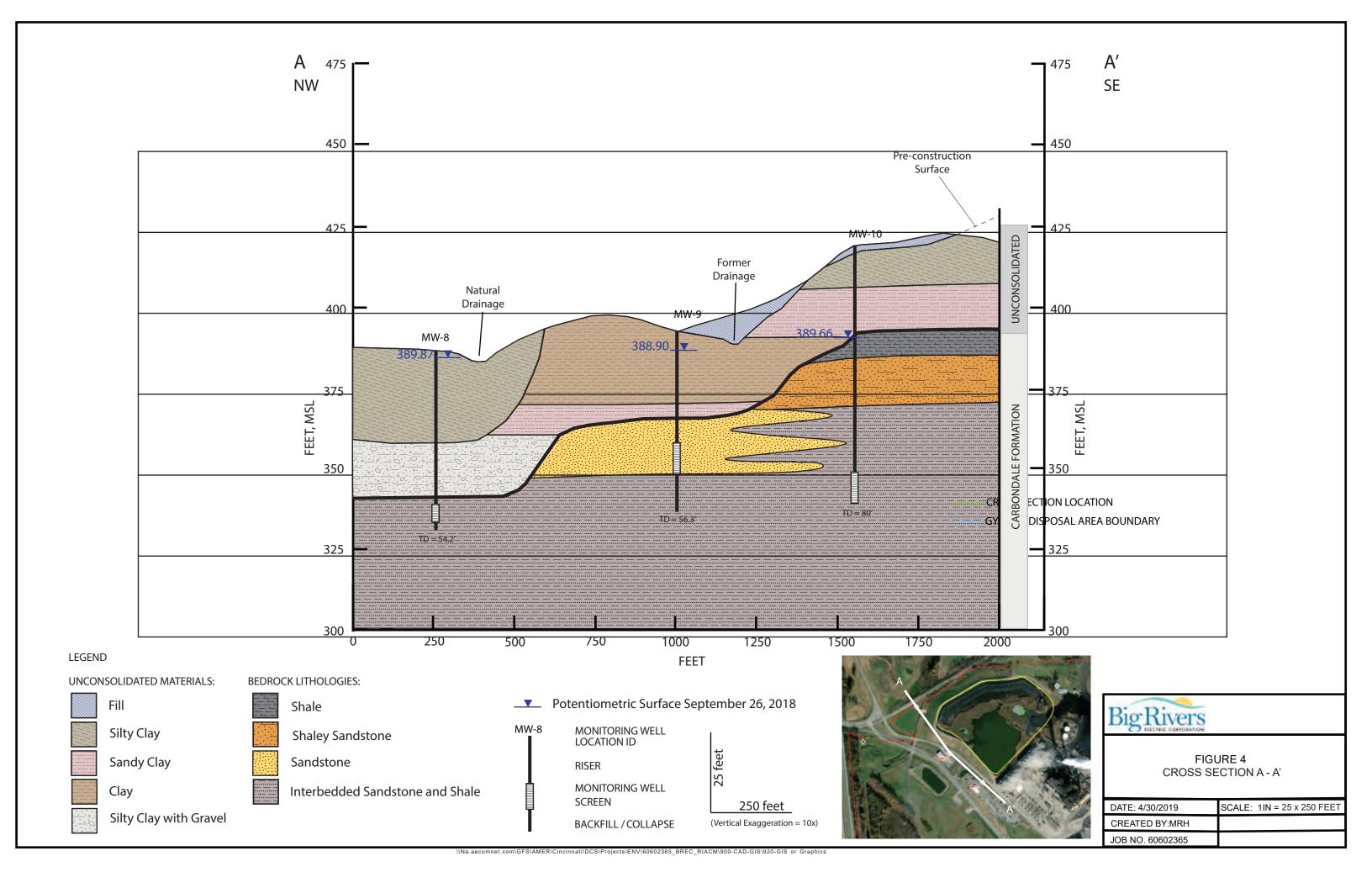
6.1 Potential Data Gaps

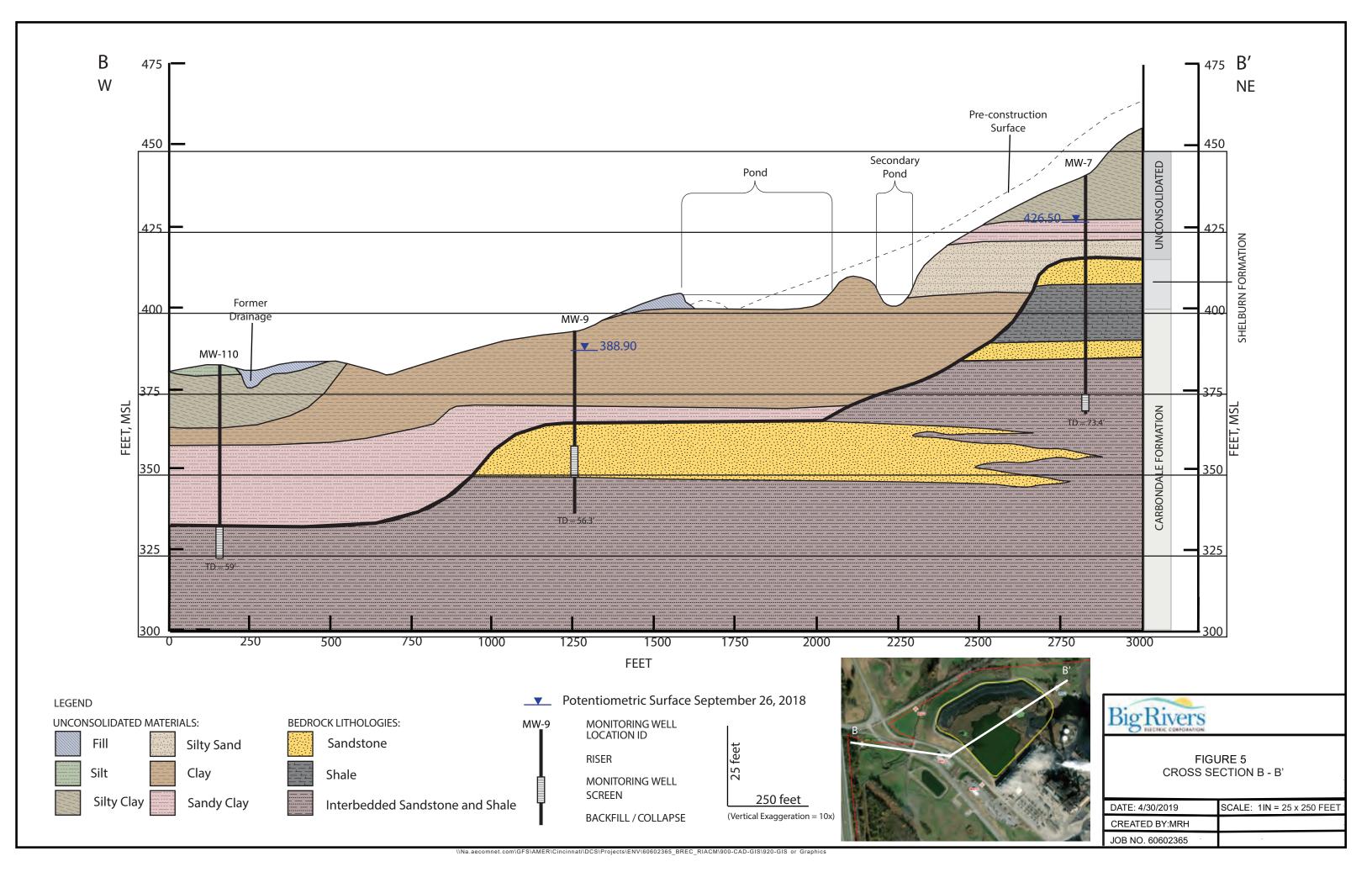
No data gap investigation is projected at this time.


Depending on which alternative is selected, a data gap investigation may be needed to further refine the targeted areas for corrective measures. Potential data gaps may include the following:

- 1) Supplemental Groundwater Investigation This investigation may consist of additional monitoring well installation and sampling to refine the existing CSM as well as to provide data related to the hydraulic characteristics of the subsurface.
- 2) Groundwater Treatment Amendment Evaluation This evaluation may involve the completion of bench-scale testing of potentially applicable treatment amendments to determine their efficacy and loading rates to address the observed groundwater impacts from site-specific COCs. Additionally, testing on the pilot-scale may also be completed in the field to demonstrate that the groundwater treatment system could be successfully installed and operated at the Site.
- 3) Physical Containment Profile Prior to committing to a physical barrier design, it may be necessary to probe the subsurface along the proposed alignment to:
 - Establish the character of the materials through which the barrier would be installed;
 - The depth to confinement where the barrier would terminate;


7.0 REFERENCES


- AECOM, 2018. Annual Groundwater Monitoring and Corrective Action Report, 2016-2017; Reid/HMP&L Station CCR Surface Impoundment, Webster County, Kentucky.
- AECOM, 2018. Placement above the Uppermost Aquifer Demonstration for Coal Combustion Residuals (CCR) Rule. Reid/HMP&L Surface Impoundment, Sebree Station, Sebree, Kentucky.
- AECOM, 2019. Annual Groundwater Monitoring and Corrective Action Report, 2018; Reid/HMP&L Station CCR Surface Impoundment, Webster County, Kentucky.
- Associated Engineers 2016. Hydrologic and Hydraulic Capacity Assessment and Initial Inflow Design Flood Control System Plan.
- EPA, 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA. EPA/540/G-89/004.
- EPA, 40 CFR Part 257. [EPA-HQ-RCRA-2015-0331; FRL-9928-44-OSWER]. RIN-2050-AE81. Technical Amendments to the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities—Correction of the Effective Date. Federal Register / Vol. 80, No. 127 / Thursday, July 2, 2015 / Rules and Regulations.
- Fairer, G.M., Geologic Map of the Robards Quadrangle, Henderson and Webster Counties, Kentucky, U.S. Geological Survey, 1973.



Appendix A

Corrective Measures Technologies and Alternatives Evaluation Process

Appendix A Corrective Measures Technologies and Alternatives Evaluation Process

CONTENTS

Section	on		Page
A1.0	CORR	RECTIVE MEASURES EVALUATION PROCESS	
	A1.1	Potential Remedial Technologies	
	A1.2	Other Source Control Technologies	3
	A1.3	No Action	3
	A1.4	Institutional Controls (ICs)	4
	A1.5	Groundwater Monitoring	
	A1.6	Hydraulic Containment	
	A1.7	Physical Containment	5
	A1.8	Ex-Situ Physical/Chemical/Biological Treatment	6
	A1.9	In-Situ Physical/Chemical/Biological Treatment	6
	A1.10	Permeable Reactive Barriers (PRB)	6
	A1.11	Closure-in-Place (CiP) [of the regulated unit]	7
	A1.12	Closure by Removal (CbR) [of the regulated unit]	7
	A1.13		
A2.0	CORR	RECTIVE MEASURES ALTERNATIVES	9

Tables

Table A1 Potential Remedial Technologies

Table A2 Screened Corrective Measures Technologies

A1.0 CORRECTIVE MEASURES EVALUATION PROCESS

This appendix describes the overall process used in the selection and screening of remedial technologies that are considered potentially applicable to Coal Combustion Residuals (CCR) groundwater impacts at the subject Site. This appendix also describes the process for assembling preliminary corrective measures alternatives from one or more applicable technologies and evaluating these alternatives.

A1.1 Potential Remedial Technologies

Section 257.96(c) requires this assessment to include an analysis of the effectiveness of potential corrective measures to meet the objectives for remedies under Section 257.97(b), addressing at least the following:

- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

The following remedial technologies are regarded as potentially applicable to corrective measures for CCR groundwater impact:

- No Action (Included as a baseline case)
- Institutional Controls (ICs)
- Groundwater Monitoring
- Hydraulic Containment
- Physical Containment
- Ex-situ Physical/Chemical/Biological Treatment
- In-situ Physical/Chemical/Biological Treatment
- Permeable Reactive Barrier (PRB)
- Closure in Place (CiP) (of the regulated unit)
- Closure by Removal (CbR) (of the regulated unit)

A brief overview of these technologies is provided below in **Table A1**.

Table A1 – Potential Remedial Technologies

Potential Technology	Description/Overview
No Action	Default baseline approach against which other options are evaluated. No corrective action would be taken to remove, control, mitigate or minimize exposure to impacted media.
Institutional Controls (ICs)	Non-engineering measures, such as administrative and/or legal controls that help to minimize the potential for human exposure to contamination, and/or to protect the integrity of a remedy by limiting land or resource use (United States Environmental Protection Agency [USEPA), <i>Institutional Control Data Standard</i> EX000015.1, January 6, 2006).
Groundwater Monitoring	Groundwater monitoring (Assessment and/or Detection modes) to assess effectiveness of corrective measures performance, as well as natural subsurface processes such as dilution, adsorption, and chemical reactions that together serve to reduce inorganic COC concentrations to acceptable levels.
Hydraulic Containment	Hydraulic containment is a common method for remediating groundwater impacted with metals and other inorganics. Groundwater is pumped from wells or collection trenches to aboveground discharge point or to a treatment system that removes the contaminants. The extraction network would be designed to provide hydraulic containment of the impacted groundwater, preventing it from flowing downgradient towards surface water or other receptors.
Physical Containment	Physical barriers are walls constructed below the ground surface to control or restrict the flow of groundwater. They are constructed by injection grouting or by the use of excavator or deep trenching equipment to insert and thoroughly mix a selected amendment to create a homogenized impermeable wall that prevents impacted groundwater from flowing downgradient. The bottom of the physical containment structure is typically keyed into a low-permeability soil or bedrock (confining layer) to keep groundwater from seeping beneath the wall. To provide hydraulic control of the impacted groundwater behind (upgradient of) the physical barrier and to prevent impacted water from flowing around the edges of the wall, extraction wells would be installed behind the vertical barrier (VB) and the extracted groundwater processed through a treatment system.
Ex-situ Physical/Chemical/Biological Treatment	Ex-situ treatment requires pumping of groundwater and engineering for equipment, possible permitting, and material handling. Physical/chemical treatment uses the physical properties of the contaminants or the contaminated medium to destroy (i.e., chemically convert), separate, or contain the contamination. Physical/chemical treatment can be completed in short time periods (in comparison with biological treatment). Equipment is readily available. Treatment residuals from separation techniques will require treatment or disposal.

Potential Technology	Description/Overview
In-situ Physical/Chemical Treatment	With in-situ treatment, groundwater is treated without being brought to the surface. In-situ processes, however, generally require longer time periods. Physical/chemical treatment uses the physical properties of the contaminants or the contaminated medium to destroy (i.e., chemically convert), or separate the contamination.
Permeable Reactive Barriers (PRB)	A PRB is a constructed subsurface barrier designed to intercept groundwater flow and react with the entrained COCs. PRBs can be established through trench injection or direct-push injection (on closely spaced grids) of reactive material. PRBs are typically installed to the depth of impacted groundwater (often the bottom of the shallow aquifer) and along the length of the impacted zone. The amendment used to generate the PRB is generally permeable as or more permeable than the surrounding material, encouraging impacted groundwater to flow through the reactive material. The reactive material then causes chemical reactions to occur, resulting in adsorption, precipitation, or degradation of the COC. PRBs are commonly used to control organic contamination in groundwater and have been successfully used to remediate metals.
Closure in Place (CiP) (of the regulated unit)	Landfill caps can be installed to minimize generation of leachate and to minimize infiltration into underlying waste. Landfill caps also may be applied to waste masses that are so large that other treatment is impractical. By providing a suitable base for the establishment of vegetation. In conjunction with water diversion and detention structures, landfill caps may be designed to route surface water away from the waste area while minimizing erosion.
Closure by Removal (CbR) (of the regulated unit)	Removal of contaminated media for disposal in off-site facility or alternate on-site facility. Media would likely require characterization for proper disposal. Pretreatment may be necessary to meet land disposal restrictions (LDRs). Once excavated, confirmatory samples would be collected to verify clean-up criteria have been met; the excavation would then be backfilled and covered.

References: Technology descriptions referenced from 1) FRTR: Federal Remediation Technologies Roundtable, CLU-IN, and/or AECOM reference materials.

A1.2 Other Source Control Technologies

In addition to the groundwater corrective measures technologies summarized above, CCR impacts are also mitigated through a variety of engineering measures, including leachate collection, lining of trenches and/or ponds, and other isolation methods for source control.

A1.3 No Action

No Action is included in the evaluation as a baseline against which other technologies are evaluated. With this option, no corrective action would be taken to remove, control, mitigate or minimize exposure to impacted media. In the event that the other identified alternatives do not offer substantial benefits, No Action is the default baseline approach.

Under this alternative, existing impacted media (i.e., CCR materials and impacted soil/groundwater along the exposure pathway) would remain. No capital costs would be incurred, and no cleanup standards would be considered.

No Action does not meet the performance requirement of attaining the established Corrective Action Objective (CAO). Although implementation would be very easy, the required state approval for "No Action" would likely not occur. Safety impacts, cross-media impacts, and residual CCR exposure control

would be no different from current conditions. Therefore, No Action is not an appropriate standalone technology. However, it is retained for use as a baseline against which other technologies and alternatives are evaluated.

A1.4 Institutional Controls (ICs)

The potential use of ICs is considered the least aggressive corrective action technology for CCR impacts.

ICs would not change the concentration or mobility of COCs and therefore would not meet the performance requirement of attaining the established CAO as a standalone technology unless it can be demonstrated that impacted groundwater is not leaving the facility. ICs would be used in combination with other corrective measures to limit human exposures and would be easy to implement, consisting of preparation and recording of Environmental Restrictive Covenants [ERC(s)]. Safety impacts and crossmedia impacts would be identical to current conditions. Because ICs would control exposure and thus enhance protection of human health and the environment, the use of ICs can be a component of corrective measures alternatives. The use of ICs as a standalone technology will not be considered.

A1.5 Groundwater Monitoring

The use of groundwater monitoring is only applicable for dissolved-phase groundwater impacts, and it will take place in Assessment and/or Detection modes as appropriate for the current phase of CCR activity. Groundwater monitoring is not a standalone technology, but instead will be combined with other remedial technologies in order to track progress of the overall remedy, which also incorporates natural attenuation processes.

The use of groundwater monitoring as a stand-alone remedial technology will not be considered; instead the incorporation of groundwater monitoring in conjunction with other technologies will be used to monitor effectiveness of a given corrective measures alternative to attain the CAO at points immediately downgradient over an extended period of time. Data reliability is controlled by adherence to the site's groundwater monitoring plan. Implementation of the existing groundwater monitoring plan is easy because it is currently underway. Safety impacts are minimized by use of the existing Health and Safety Plan and there are no construction activities required. There are no cross-media impacts or institutional requirements, nor is there any residual CCR exposure control.

A1.6 Hydraulic Containment

The use of hydraulic containment as a potential remedial technology is considered. The use of groundwater extraction can be effective at hydraulically controlling long-term downgradient dissolved phase impacts.

Hydraulic containment through groundwater extraction and subsequent treatment has historically been a common method for management of groundwater impacted with metals and other inorganics. Groundwater is pumped from wells (vertical or horizontal) or collection trenches to a discharge point (e.g., a permitted outfall) or to an aboveground treatment system. The extraction network would be designed, constructed and operated to provide a hydraulic barrier between the impacted groundwater and the migration pathway to potential receptors.

This technology attains the established CAO because hydraulic containment rapidly eliminates the offsite migration of impacted groundwater, thereby eliminating the exposure pathway. Performance and reliability would be controlled by adherence to the operations and maintenance plan prepared for the extraction and treatment systems. Implementation would be difficult because of areas of limited access

for drilling equipment and uneven groundwater flow in the uppermost aquifer materials that consist of interbedded sandstone and shale having hydraulic conductivity values spanning several orders of magnitude. Potential safety impacts during construction, operation, and maintenance of the system would be mitigated by health and safety plans prepared for these tasks. There would be no cross-media impacts. Hydraulic containment will reduce mobility due to COCs capture provided by the groundwater extraction system and treatment to remove COCs from the environment. The time period for CAO attainment may be relatively short, but system operation will need to continue until CCR source loading of COCs to groundwater ceases. For institutional requirements, treated discharge would occur under existing or modified National Pollution Discharge Elimination System (NPDES) permit.

Based on the preliminary screening, hydraulic containment is a potentially viable remedial technology and will be retained for further consideration.

A1.7 Physical Containment

The use of physical containment to isolate the impacted materials associated with a CCR unit is considered. Physical containment typically consists of a barrier or wall (i.e., slurry wall, sheet pile wall, or injection grouting) constructed below the ground surface to control or restrict the flow of groundwater. The barrier is typically constructed by excavators and/or deep trenching equipment that thoroughly mix bentonite/cement slurry to create a homogenized impermeable wall, or by driving sheet pile. The construction of the barrier would prevent impacted groundwater from flowing downgradient. Where possible, the bottom of the barrier would be keyed into the low-permeability soil or bedrock (confining layer) at the bottom of the aquifer, keeping groundwater from seeping beneath it. To provide hydraulic control of the impacted groundwater behind the barrier and prevent impacted water from flowing around the edges, a hydraulic containment system would be installed behind the wall. Extracted groundwater would then be discharged or processed through a groundwater treatment system, as needed. Extraction flow rates for this option will generally be lower than in a standalone hydraulic containment option, because the pumping rates will only need to accommodate natural groundwater flow rates, rather than providing a hydraulic barrier. However, pumping would need to be performed indefinitely to maintain water levels behind the barrier. It is also noted that physical barriers can also be utilized in a funnel-andgate arrangement to direct the flow of groundwater to a small, more permeable area (i.e., the gate) where reactive material can be used to treat the metals in-situ. The "gate" can also be configured as a single extraction point for impacted groundwater directed to it by the "funnel."

This technology attains the established CAO after combined physical and hydraulic containment eliminates the offsite migration of impacted groundwater, thereby eliminating the exposure pathway. In the long term, this technology will maintain compliance with the established CAO after final cover construction at the Green Landfill, which will end the source loading to the groundwater, and groundwater flushes through the aquifer. Performance and reliability would be controlled by adherence to the operations and maintenance plan prepared for the extraction and treatment systems. The technology would pose substantial challenges to the installation and operation of the physical barrier such as areas of limited access and highly variable depths to bedrock. Potential safety impacts during construction, operation, and maintenance of the system would be mitigated by health and safety plans prepared for these tasks. Cross-media impacts include the potential for airborne fugitive dust issues during construction, which would be mitigated by construction contingency planning. The time period for attainment is based on construction of the barrier. For institutional requirements, treated discharge would occur under existing or modified National Pollution Discharge Elimination System (NPDES) permit.

Based on the preliminary screening, physical containment is potentially viable as a potential corrective measures alternative component, when combined with supplemental groundwater extraction and

treatment. However, physical containment does not appear to add value to a stand-alone hydraulic containment approach.

A1.8 Ex-Situ Physical/Chemical/Biological Treatment

Ex-situ treatment requires the use of groundwater extraction with related engineering, equipment, permitting, and material handling necessary to convey the waste stream to above-ground treatment. Treatment technologies would be designed to remove the specific constituents from groundwater to meet regulatory discharge requirements; treatment options for the varied constituents may include pH adjustment, filtration, coagulation/chemical precipitation, membrane filtration, ion exchange, carbon adsorption, reverse osmosis, chemical reduction, and other potential treatment technologies. Multiple treatment technologies would potentially be needed to effectively remove the different types of contaminants. If this technology is incorporated into a corrective action alternative, further detailed evaluation and/or bench- and pilot-scale studies would be necessary to identify technically effective treatment technologies given the inorganic COCs.

This is not a standalone technology, but would be used in combination with hydraulic containment. System reliability would be controlled by adherence to an operation and maintenance plan prepared for the system. Implementation is expected to be straightforward based on well-established water treatment principles and experience. Potential safety impacts during construction, operation, and maintenance of the system would be mitigated by health and safety plans prepared for these tasks. There would be no cross-media impacts, nor would there be exposure to residual CCR materials. The time period for attainment is based on performance of the overall corrective measure, of which ex-situ treatment would be a component. For institutional requirements, treated discharge would occur under existing or modified National Pollution Discharge Elimination System (NPDES) permit.

Based on the preliminary screening, ex-situ treatment is a potentially viable remedial technology and will be retained for further consideration.

A1.9 In-Situ Physical/Chemical/Biological Treatment

For the inorganic COCs at CCR site, in-situ treatment involves enhancement of natural attenuation processes such as dilution, adsorption, and chemical reactions to reduce concentrations to acceptable levels. This technology is appropriate for site in which groundwater flow volumes are low, source controls are effective, and impacted groundwater is not expected to be long-lived.

Lithium (Li) is the sole COC for the ACM at the Reid/HMPL Surface Impoundment, and in-situ treatment methods are ineffective for Li. Therefore, this technology will not meet the performance requirement, and it will not be retained for further consideration.

A1.10 Permeable Reactive Barriers (PRB)

A PRB is an in-situ treatment method consisting of a subsurface trench filled with reactive material installed to intercept and react with impacted groundwater. PRBs can be established through direct-push injection (on closely spaced grids) or emplaced as a continuous trench of reactive material. PRBs are typically installed to the depth of impacted groundwater (often the bottom of the shallow aquifer) and are oriented perpendicular to the flow of impacted groundwater. The amendment used to generate the PRB is generally as permeable as or more permeable than the surrounding material, encouraging impacted groundwater to flow through the reactive material. The reactive material then causes chemical reactions to occur within the PRB, resulting in adsorption, precipitation, or degradation.

PRBs are commonly used to control organic contamination in groundwater, and have been successfully used to remediate some metals. However, because Li is the sole COC for the ACM at the Reid/HMPL Surface Impoundment, and in-situ methods are ineffective for Li, PRB will not meet the performance requirement, and it will not be retained for further consideration.

A1.11 Closure-in-Place (CiP) [of the regulated unit]

CiP would entail capping and restoration of the unit that contains the CCR material. Capping would minimize infiltration into the CCR material, thereby minimizing the potential for leachate to impact underlying soil and shallow groundwater. Capping would reduce potential exposure pathways and thus enhance protection of human health and the environment.

CiP will help attain the established CAO after final cap construction ends the source loading to the groundwater, and impacted groundwater flushes through the aquifer. This technology is easily implemented, as CiP is required by conditions of the solid waste permit. Potential safety impacts during construction, operation, and maintenance of the final cover are governed by conditions of the solid waste permit and are mitigated by health and safety plans prepared for these tasks. There are no cross-media impacts associated with CiP, and it will provide for significant reduction in mobility of COCs upon implementation of the CiP source control. Final cover for the Reid/HMPL Surface Impoundment is anticipated as part of facility operations. Institutional requirements will consist of solid waste permit renewal(s) and state and community acceptance of the final remedy.

Based on the preliminary screening, CiP is retained for further consideration.

A1.12 Closure by Removal (CbR) [of the regulated unit]

CbR is a proven remedy that can effectively remove the source of contamination. The excavation of impacted CCR material would typically be completed using standard construction equipment (e.g., backhoe, excavator, wheel loader, dump trucks). The excavated materials are then placed directly into dump trucks for transport/disposal or beneficial use. Excavation limits would typically be verified with confirmation sampling to demonstrate that the underlying soil is not impacted above applicable standards.

This technology would help attain the established CAO after CCR removal ends and the source loading to groundwater is eliminated. This technology would be difficult to implement, because of the large-scale construction effort required and resulting disruption to station operations and community impact. Potential safety impacts during excavation and backfilling would be mitigated by health and safety planning. However, the volume of truck traffic for waste and fill hauling would be a significant community safety issue. Potential airborne fugitive dust issues during excavation and hauling would be significant, but would be mitigated by construction contingency planning. CbR will eliminate exposure through removal of the CCR. CbR would begin following state and community approvals, and duration of excavation activities is anticipated to be many years. In addition to state and community acceptance of the proposed remedy, excavation and backfilling may require local building permits and local municipality input and approval. Excavation dewatering discharge would occur under existing or modified NPDES permit.

Based on the preliminary screening, CbR is retained for further consideration.

A1.13 Screened Remedial Technologies Summary

A summary of the results of the remedial technologies screening is presented below in **Table A2**. The design and specific application of the retained technologies, either as stand-alone or part of a treatment train, will be crucial in the success of the corrective action.

Table A2 – Screened Corrective Measures Technologies

Potentially Applicable Technology	Status	Description/Overview
No Action	Not retained as standalone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because it will not meet the established CAOs.
Institutional Controls (ICs)	Retained as supplement to corrective measures alternatives	The use of ICs (i.e., Environmental Covenants, groundwater use restrictions, etc.) is retained as a useful technology. However, it is noted the ICs are not anticipated to be used as a stand-alone technology. Environmental Covenants, groundwater use restrictions, etc., are expected to be combined with other applicable technologies as part of corrective measures alternatives.
Groundwater Monitoring (Assessment and Detection modes)	Retained as supplement to corrective measures alternatives	The use of groundwater monitoring (Assessment and/or Detection modes as appropriate) when combined with other applicable technologies as part of any proposed corrective measures alternative is retained to address the CAO and to track the effectiveness of the overall remedy. However, it is not retained as a stand-alone technology.
Hydraulic Containment	Retained	The use of hydraulic containment is retained because it is an effective means of preventing off-site migration of soluble contaminants. Hydraulic containment requires management and potential ex-situ treatment of extracted groundwater, so it is not a stand-alone technology. The CSM will guide the design of any groundwater extraction system to optimize the total discharge of groundwater needed to provide hydraulic containment.
Physical Containment	Retained	The use of physical containment is retained because it can be an effective means of managing groundwater flow. Physical containment often requires pairing with hydraulic containment and/or in-situ treatment (funnel and gate style) to manage the flux of groundwater flow into the system. The CSM will guide the design of any physical barrier system, but technology limitations may increase the difficulty with scale.

Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment technologies are retained as a way of removing contaminants from extracted groundwater from a hydraulic containment system. Ex-situ treatment may be paired with wastewater treatment, non-groundwater release treatment systems, or with permitted discharge to manage groundwater contamination. The CSM and data gaps investigations will guide the design of any ex-situ treatment.
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.
Other Source Control Technologies	Retained	Control of source area non-groundwater related releases. For the purposes of this groundwater ACM, management of non-groundwater releases are not included in the alternatives evaluation. Engineering measures, including leachate collection, lining of trenches and/or ponds, and other isolation methods are regarded as part of closure technologies selected by other means.

Note: Technologies that were retained may be used as components of a corrective action alternative, but when evaluated in conjunction with other available technologies, any single technology may not be utilized.

A2.0 CORRECTIVE MEASURES ALTERNATIVES

Corrective measures technologies from the initial screening and evaluation (see **Table A2**) were utilized to create corrective measures alternatives. Professional judgment was used to assemble technically efficient pairings of technologies for each corrective measures alternative in consideration of the range of site-specific COCs and concentrations.

The corrective measures alternatives typically incorporate the use of technologies that will require additional investigation needed to 1) finalize the alternative selection, 2) delineate the assumed corrective action areas, 3) provide for full-scale cost estimation and design, and 4) demonstrate alternative efficacy. To this end, data gaps will be identified and addressed as needed.

It should be emphasized that the technology screening and alternatives assembly employed for this ACM is qualitative in nature. The formal remedy selection process, in accordance with the CCR Rule 40 CFR Section 257.97, will begin following submission of the ACM Report. The subsequent remedy selection process will evaluate the following objectives for remedies, as required under Section 257.97(b):

- Protect human health and the environment;
- Attain the COC-specific GWPS as specified pursuant to Section 257.95(h);
- Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix IV constituents into the environment;
- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems (applicable to material releases only); and
- Comply with standards for management of wastes as specified in Section 257.98(d).

Assessment of Corrective Measures Under the CCR Rule

GREEN STATION CCR LANDFILL GREEN STATION WEBSTER COUNTY, KENTUCKY

June 13, 2019

Prepared For:

Big Rivers Electric Corporation Sebree Generating Station 9000 Highway 2096 Robards, Kentucky 42452

Prepared by:

AECOM Technical Services

525 Vine Street Suite 1800 Cincinnati, Ohio 45202 Phone: (513) 651-3440 Fax: (877) 660-7727

Job Number: 60602364

CONTENTS

ACRONYMS EXECUTIVE SUMMARY	1555
1.0 INTRODUCTION	4 5 5
	5 5 5
	5 5
2.0 DESCRIPTION OF CURRENT CONDITIONS 2.1 Site Background 2.2 Site Investigation and Interim Measures 2.3 Conceptual Site Model (CSM) 2.3.1 Physical Setting. 2.3.2 Geology. 2.3.3 Hydrogeology. 2.3.4 Constituents of Concern (COCs) 2.3.5 Impacted Media. 2.3.6 COCs Distribution 2.3.7 Groundwater Quality. 2.3.8 Potential Receptors / Pathways.	7 8 8 8
3.0 CORRECTIVE ACTION OBJECTIVE (CAO)	10
4.0 TECHNOLOGY IDENTIFICATION AND SCREENING	11
5.0 CORRECTIVE ACTION ALTERNATIVES ASSEMBLY 5.1 Assumptions for Corrective Measure Alternatives Development 5.2 Groundwater Corrective Measures Alternatives Overview 5.2.1 Alternative #1 – No Action and Groundwater Monitoring 5.2.2 Alternative #2a – CiP, ICs, and Groundwater Monitoring 5.2.3 Alternative #2b – CbR, ICs, and Groundwater Monitoring 5.2.4 Alternative #3 – CiP, Hydraulic Containment, Other Source Control, Ex-Site Treatment, ICs, and Groundwater Monitoring 5.2.5 Alternative #4 – CiP, Physical Containment, Ex-Site Treatment, ICs, and Groundwater Monitoring 5.2.6 Alternative #5 – CiP, Other Source Control, ICs, and Groundwater Monitoring	13 13 14 14 15
6.0 ALTERNATIVE EVALUATION	17 17

List of Tables

- 1. Green Station CCR Landfill Constituents of Concern
- 2. Green Station CCR Landfill Characterization Sample Results
- 3. Potential Corrective Measures Options Technology Description/Overview

List of Figures

- 1. Site Location Map
- 2. Well Location Map
- 3. Site Geologic Map
- 4. Cross-Section A-A'
- 5. Cross Section B-B'
- 6. Cross Section C-C'
- 7. Contaminants of Concern Distribution

List of Appendix

A. Corrective Measures Technologies and Alternatives Evaluation Process

ACRONYMS

ACM Assessment of Corrective Measures
AECOM Technical Services, Inc.
BREC Big Rivers Electric Corporation

°C Degrees Celsius

CAO Corrective Action Objectives

CbR Closure by Removal

CCR Coal Combustion Residuals
CFR Code of Federal Regulations

CiP Closure in Place

cm/sec Centimeters per second
COCs Constituents of Concern
CSM Conceptual Site Model
DO Dissolved Oxygen

ft., amsl Feet above mean sea level

ft., msl Feet mean sea level gpm Gallons per minute

GWPS Groundwater Protection Standards

ICs Institutional Controls

KGS Kentucky Geological Survey

Li Lithium

MCL Maximum Contaminant Level

mg/L Milligrams per liter

mS/cm milliSiemens per centimeter

mV Millivolt MW Megawatts

NPDES National Pollution Discharge Elimination System

NTU Nephelometric Turbidity Unit
ORP Oxidation Reduction Potential

RCRA Resource Conservation and Recovery Act

SSI Statistically Significant Increase
SSL Statistically Significant Level

TDS Total Dissolved Solids
UPL Upper Prediction Limit

USEPA United States Environmental Protection Agency

EXECUTIVE SUMMARY

AECOM Technical Services, Inc. (AECOM) was retained by Big Rivers Electric Corporation (BREC) to prepare an Assessment of Corrective Measures (ACM) to identify appropriate corrective measures for groundwater impacted by coal combustion residuals (CCR). The subject groundwater impacts are associated with the CCR that has been historically managed within the Green Station CCR Landfill (Green Landfill) at the Sebree Generating Station (Sebree Station), located near Sebree, Kentucky (Site). Groundwater monitoring was conducted for the CCR management unit in accordance with the United States Environmental Protection Agency's (USEPA) CCR rule (40 Code of Federal Regulations (CFR) Section 257.90 through Section 257.95). Detection and Assessment groundwater monitoring are complete at the Green Landfill, and one constituent of concern (COC), lithium (Li), has been identified based on exceedance of the applicable groundwater protection standard (GWPS) at a statistically significant level (SSL).

Section 257.96(c) requires this assessment to include an analysis of the effectiveness of potential corrective measures in meeting the objectives for remedies identified under Section 257.97(b), by addressing at least the following:

- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

Several potential corrective measures technologies were evaluated to identify which ones could be carried forward as components of corrective measures alternatives. The results of the corrective measures technology evaluation are presented below:

Potentially Applicable Technology	Status	Description/Overview
No Action	Not retained as standalone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because it will not meet the established Corrective Action Objectives (CAOs).
Institutional Controls (ICs)	Retained as supplement to corrective measures alternatives	The use of ICs (i.e., Environmental Covenant, groundwater use restrictions, etc.) is retained as a useful technology. However, it is noted the ICs are not anticipated to be used as a stand-alone technology. Environmental Covenants, groundwater use restrictions, etc., are expected to be combined with other applicable technologies as part of corrective measures alternatives.
Groundwater Monitoring (Assessment and Detection mode)	Retained as supplement to corrective measures alternatives	The use of groundwater monitoring (Assessment and/or Detection modes as appropriate) when combined with other applicable technologies as part of any proposed corrective measures alternative is retained to address the CAO and to track the effectiveness of the overall remedy. However, it is not retained as a standalone technology.

Potentially Applicable Technology	Status	Description/Overview
Hydraulic Containment	Retained	The use of hydraulic containment is retained because it is an effective means of preventing offsite migration of soluble contaminants. Hydraulic containment requires management and potential ex-situ treatment of extracted groundwater, so it is not a stand-alone technology. The Conceptual Site Model (CSM) will guide the design of any groundwater extraction system to optimize the total discharge of groundwater needed to provide hydraulic containment.
Physical Containment	Retained	The use of physical containment is retained because it can be an effective means of managing groundwater flow. Physical containment often requires pairing with hydraulic containment and/or in-situ treatment (funnel and gate style) to manage the flux of groundwater flow into the system. The CSM will guide the design of any physical barrier system, but technology limitations increase implementation difficulty with scale.
Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment technologies are retained as a way of removing contaminants from extracted groundwater from a hydraulic containment system. Ex-situ treatment may be paired with wastewater treatment, non-groundwater release treatment systems, or with permitted discharge to manage groundwater contamination. The CSM and data gaps investigations will guide the design of any ex-situ treatment
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.
Other Source Control Technologies Note: Technologies that were retained.	Retained	Control of source area non-groundwater related releases. For the purposes of this groundwater ACM, management of non-groundwater releases are not included in the alternatives evaluation. Engineering measures, including leachate collection, lining of trenches and/or ponds, and other isolation methods are regarded as part of closure technologies selected by other means.

Note: Technologies that were retained may be used as components of a corrective action alternative, but when evaluated in conjunction with other available technologies any single technology may not be utilized.

Preliminary assembly of corrective measures alternatives was performed based on site-specific and regional geology and groundwater conditions. For the Green Landfill, six corrective measures alternatives were developed from this list of applicable corrective measures technologies:

- Alternative #1 No Action and Groundwater Monitoring
- Alternative #2a Closure in Place (CiP), Institutional Controls (ICs), and Groundwater Monitoring
- Alternative #2b Closure by Removal (CbR), ICs, and Groundwater Monitoring
- Alternative #3 CiP, Hydraulic Containment, Other Source Control (consisting of seepage collection and treatment), Ex-Situ Treatment, ICs, and Groundwater Monitoring

- Alternative #4 CiP, Physical Containment, Ex-Situ Treatment, ICs, and Groundwater Monitoring
- Alternative #5 CiP, Other Source Control, ICs, and Groundwater Monitoring

The assembly of corrective measures alternatives is preliminary and could be revised at a later date following detailed analysis during the remedy selection process and/or following comment from the regulatory community and public. Specifically, a public meeting is required under Section 257.96(e) at least 30 days prior to the selection of remedy so that the owner or operator may discuss the results of the corrective measures assessment with interested and affected parties.

Following submittal of the ACM, the Site will begin the remedy selection process that is set forth in Section 257.97. The selected remedy must:

- Meet the requirements of Section 257.97(b) of the CCR Rule;
- Consider the standards in Section 257.97(c), and;
- Address the schedule and other factors specified in Section 257.97(d).

Upon remedy selection, a remedy selection report will be prepared that documents details of the selected remedy and how the selected remedy meets Section 257.97 requirements. As needed to accommodate further investigation(s) and/or evaluation, Section 257.97 requires the preparation of a semiannual report that documents progress toward remedy selection and design.

1.0 INTRODUCTION

The following report presents the Assessment of Corrective Measures (ACM) for groundwater impacts identified at the Green Station CCR Landfill (Green Landfill), which is a coal combustion residuals (CCR) management unit located at the Big Rivers Electric Corporation (BREC) Sebree Generating Station (Sebree Station), located near Sebree, Kentucky (Site).

Groundwater monitoring was conducted for the unit in accordance with the United States Environmental Protection Agency's (USEPA) CCR Rule (40 Code of Federal Regulations (CFR) Section 257.90 through Section 257.95). The results of Detection Monitoring (per Section 257.94) identified the presence of one or more indicator constituents (Appendix III to Section 257) with downgradient concentrations representing a statistically significant increase(s) (SSI) over background or upgradient conditions. The detection of one or more SSI required the implementation of Assessment Monitoring following the requirements of Section 257.95, which was initiated in June 2018. Assessment Monitoring results indicated the downgradient presence of one or more constituent of concern [COC] (Appendix IV to Section 257) at concentrations that represent a SSI over background concentration, and that represent a statistically significant level (SSL) over the groundwater protection standard(s) established in accordance with to Section 257.95(h).

For the Green Landfill, the following SSLs were identified:

Lithium (Li) in MW-3A, MW-4, MW-5, and MW-6

The identification of these SSLs requires characterization of the nature and extent of impact (sufficient to support the ACM) in accordance with Section 257.95(g)(1) and the initiation of an ACM following the requirements of Section 257.96. Notice of ACM initiation dated January 14, 2019 was posted to BREC's publicly-accessible CCR reporting website.

Section 257.96(c) requires this ACM to include an analysis of the effectiveness of potential corrective measures in meeting the objectives for remedies identified under Section 257.97(b), by addressing at least the following:

- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

This report presents the ACM evaluation in the following five sections, along with their associated appendices and attachments.

2.0 DESCRIPTION OF CURRENT CONDITIONS

This section provides information related to the current use of the Site, as well as the history of activities relevant to the ACM for the Green Landfill at the Sebree Station.

2.1 Site Background

BREC owns and operates Sebree Station, which is a coal-fired power generating facility located on the Green River northeast of Sebree, Kentucky. Sebree Station is composed of Green Station and Reid/HMP&L Station. The Sebree Station is bounded by Interstate-69 to the west and the Green River to the east (see **Figure 1**). Reid Unit 1 (66 Megawatts [MW]) began commercial operation in 1966 and it will be converted from coal to natural gas in the future. The Reid Combustion Turbine (72 MW) was commercialized in 1976. HMP&L Station 2, Units 1 (167 MW) and 2 (168 MW) began commercial operation in 1973 and 1974 respectively. Both HMP&L units were retired as of February 1, 2019. Green Station Units 1 (242 MW) and 2 (242 MW) began commercial operation in 1979 and 1981, respectively.

The location of the Green Landfill is illustrated on **Figure 2**. The Green Landfill is located directly south of Sebree Station, situated south of the Green Station CCR Surface Impoundment. The Green Landfill is a Kentucky permitted landfill (Permit No. SW11700007) that receives special wastes generated by burning coal (CCRs) from Green and Reid/HMP&L Stations. The landfill began receiving CCR wastes in 1980. The current Green Landfill footprint is approximately 170 acres.

As stated in the published CCR monitoring well network certification, available on the BREC website (http://www.bigrivers.com/), the original ground surface within the landfill footprint was irregular and the dominant features were small stream valleys draining towards the Green River, which is located just east of the landfill; and towards Groves Creek, which is located just south of the landfill. There was also historic oil and gas production at and in the immediate vicinity of the Green Landfill. A review of the records from the Kentucky Geological Survey (KGS) showed that at or immediately adjacent to the Site, there were a number of dry exploratory oil/gas exploration holes, oil production wells, one gas production well, and one secondary recovery injection well. There were also former brine ponds at the Site. Most of these wells were abandoned in accordance with applicable regulations by BREC in 1997 and 1998. The last existing well was decommissioned in 2019.

2.2 Site Investigation and Interim Measures

Monitoring wells were installed in the vicinity of the Green Landfill beginning in November 1996 prior to the implementation of the CCR Rule. However, the existing wells meet the requirements of Section 257.90 of the CCR Rule for installation of a groundwater monitoring system. These requirements are that wells must adequately represent the quality of background groundwater and groundwater representing the downgradient waste boundary. The existing wells are located along the perimeter of the footprint for the Green Landfill (**Figure 2**). One upgradient monitoring well (MW-1) and five downgradient monitoring wells (MW-2, MW-3A, MW-4, MW-5 and MW-6) were installed adjacent to the Green Landfill to determine the general direction of groundwater movement and to monitor groundwater at the Site. The monitoring wells were installed in the uppermost saturated portion of the sandstone bedrock aguifer.

Hydraulic testing (slug tests) was performed in April 2019, and nine rounds of Baseline groundwater sampling for Appendix III constituents were conducted between March 2016 and October 2017. Statistical evaluation for Detection monitoring indicated that SSIs over background had occurred, and therefore, Assessment monitoring was triggered. Detection monitoring activities and data are presented in the annual reports that have been prepared to date, (AECOM 2018 and 2019).

As part of Assessment monitoring, upgradient and downgradient wells for the Landfill were sampled for Appendix IV constituents in June, July, and September 2018. Groundwater Protection Standards (GWPS) were established for Assessment monitoring of the Appendix IV constituents, and statistical evaluation indicated exceedances of GWPSs at SSLs.

For the purposes of this ACM, the COC that exceeds GWPSs at SSLs is Li (see Table 1).

Table 1 Green Station CCR Landfill Constituents of Concern

Monitoring Well (Date)	Parameter Lithium Background UPL 0.008 GWPS 0.04 (mg/L)
MW-3A (Jun 2018)	0.699
MW-3A (Jul 2018)	0.790
MW-3A (Sep 2018)	0.766
MW-4 (Jun 2018)	1.81
MW-4 (Jul 2018)	1.91
MW-4(Sep 2018)	1.81
MW-5(Jun 2018)	0.459
MW-5 (Jul 2018)	0.481
MW-5 (Sep 2018)	0.425
MW-6 (Jun 2018)	0.0650
MW-6 (Jul 2018)	0.0590
MW-6 (Sep 2018)	0.0558

GWPSs are the greater of the site-specific background concentrations, the USEPA primary drinking water standard maximum contaminant limits (MCL), or GWPS provided in 40 CFR 257.95(3)(h)(2)

Bold red values exceed the GWPS by direct comparison; yellow shaded indicates an SSL above the GWPS (i.e., 95 LCL > GWPS) mg/L = milligrams per liter; UPL = Upper Prediction Limit.

No formal interim corrective measures have been performed at the Green Landfill but corrective measures for known non-groundwater releases are underway. The compatibility of those corrective measures with potential groundwater remedies is a consideration in this assessment.

2.3 Conceptual Site Model (CSM)

The main purpose of a CSM is to support the decision-making process for groundwater corrective action at the Green Landfill.

2.3.1 Physical Setting

The Site is mapped within the Interior Low Plateaus physiographic province (https://www.nps.gov/subjects/geology/physiographic-provinces.htm). The province is part of the Interior Plains division of the United States. Characteristic features of the province include unglaciated rolling limestone plains with alluvial valleys and entrenched rivers and streams. Several large rivers are in the region, including the Green, the Ohio, the Kentucky, the Tennessee, and the Cumberland Rivers. The

geology underlying the Site consists of unconsolidated materials, including loess and alluvial deposits, underlain by Upper to Middle Pennsylvanian-age clastics and carbonates consisting primarily of sandstone and shale. The unconsolidated material also include fill, silty and clayey residuum, and minor amounts of sandy, clayey channel fill alluvium.

The Green Landfill is located on an upland adjacent to the west bank of the Green River at an elevation of approximately 436 feet, above mean sea level [ft., amsl] (at the north end of the landfill) and 397 ft., amsl (at the south end of the landfill), with a maximum elevation of 608 ft., amsl at the landfill crest. Precipitation falling within the Green Landfill is directed to ponds in the north and south sides of the unit and then to the river under Kentucky Pollution Discharge and Elimination System (KPDES) permit. Underlying preconstruction soils consisted of Loring-Grenada, Loring-Zanesville-Wellston (Henderson County) and Loring-Wellston-Zanesville (Webster County) soil associations which are generally characterized as well drained to moderately well drained soils on nearly level to sloping uplands (Associated Engineers 2016, Hydrologic and Hydraulic Capacity Assessment and Initial Inflow Design Flood Control System Plan). The Green Landfill does not have an existing leachate collection and management system.

2.3.2 Geology

Figure 3 presents a geologic map of the site and vicinity. The Site lies in the Western Kentucky Coalfields section, characterized by rolling uplands underlain by coal-bearing bedrock of the Pennsylvanian Period. In the vicinity of the site, maximum topographic relief is on the order of 80 feet. The geologic quadrangle (Geologic map of the Robards quadrangle, Henderson and Webster Counties, Kentucky, 1973) for the Site vicinity published by the KGS shows the surficial material to be unconsolidated loess representing the Pleistocene and Holocene geologic epoch. The loess consists of sandy and clayey silt. The unconsolidated surficial materials, which include silty and sandy clay units, are up to approximately 25 feet in thickness.

The unconsolidated materials are shown to be underlain by bedrock of the Upper Pennsylvanian Shelburn Formation (formerly identified as the Lisman Formation (Fairer, 1973)) and the Middle Pennsylvanian Carbondale Formation. At the base of the Shelburn Formation is the Providence Limestone Member, consisting of limestone and interbedded shale, but this unit is absent in much of the area due to erosional channeling. Due to its discontinuous character and the presence of interbedded shale, hydrologically significant karst features are not present in the Providence Limestone Member. The underlying Carbondale Formation consists of cyclic sequences of sandstones, shales, siltstones and coals. The Carbondale sediments were deposited in a fluvial-deltaic system. As a result of this depositional environment, the lithologic units of the Carbondale tend to be lenticular bodies rather than continuous sheet-like strata. Gradational and abrupt horizontal changes in lithology are often encountered.

Cross-sections were prepared during development of this ACM, and cross-section locations are shown on **Figure 2**. The individual cross-sections are presented on **Figures 4**, **5 and 6**. These sections illustrate the sequence of geologic materials present under the Green Landfill as evidenced by the currently available data.

2.3.3 Hydrogeology

For purposes of compliance with the CCR Rule groundwater monitoring requirements the interbedded sandstone and shale of the Carbondale Formation, is considered to be the uppermost aquifer underlying the Green Landfill. The uppermost aquifer is unconfined and first encountered at an elevation of approximately 401 ft., amsl at the northwest end of the landfill, and 367 ft., amsl at the southeast end of

the landfill (AECOM, 2019). Flow direction beneath the Site is typically southeast towards the Green River.

Slug tests were performed on April 25, 2019 at monitoring wells MW-3A, MW-4, MW-6, and MW-104 to assess the hydraulic characteristics of the uppermost aquifer. The estimated hydraulic conductivity of the monitoring wells tested ranged from 2x10⁻⁵ to 3x10⁻³ centimeters per second (cm/sec).

Although previous site-specific investigations have noted the presence of perched zones of saturation in the overlying unconsolidated materials, these discontinuous zones do not qualify as an uppermost aquifer under the CCR Rule because they do not produce usable quantities of groundwater.

2.3.4 Constituents of Concern (COCs)

As described in Section 2.2, a single Appendix IV constituent, Li, was detected at concentrations exceeding GWPS at multiple monitoring well locations. Li was detected at SSLs above the GWPS at the locations of monitoring wells MW-3A, MW-4, MW-5, and MW-6.

2.3.5 Impacted Media

Groundwater is the sole impacted media of concern addressed by this ACM. Non-groundwater releases will be covered under a separate ACM.

2.3.6 COCs Distribution

Groundwater analytical data from the Site investigations through 2018 indicate that COC concentrations above GWPSs are present in the vicinity of the Green Landfill along the south and east edges of the landfill, near the station's property boundary (Figure 7). COC concentrations at MW-1 and MW-2 were not above GWPSs at SSLs. Due to this, the area of projected corrective measures is confined to the area between and adjacent to MW-3A, MW-4, MW-5, and MW-6.

An additional characterization well, MW-104, was subsequently installed to estimate the downgradient extent of impacted groundwater. Sample collection for Appendix III and IV parameters took place in March and April 2019. The analytical results for Li were below the GWPS. The additional characterization data are summarized in **Table 2**.

Table 2 – Green Station CCR Landfill Characterization Sample Results

	Parameter	
Monitoring Well (Date)	Lithium UPL 0.008 GWPS 0.04	
MW-104 (March 2019)	(mg/L) 0.0281	
MW-104 (April 2019)	0.0288	

The two sampling event results from the characterization well help confirm the downgradient (southwestern) extent of COC impacts above the GWPS at the Green Landfill.

2.3.7 Groundwater Quality

In addition to the presence of COCs above GWPSs, other geochemical characteristics of the shallow aquifer zone consist of the following:

- The temperature of the samples taken at the downgradient wells during the September 2018 sampling event ranged from 16.92 degrees Celsius (°C) to 17.54 °C.
- Specific conductance ranged from 1.68 to 8.00 milliSiemens per centimeter (mS/cm).
- Dissolved Oxygen (DO) concentration ranged from 0.42 to 6.36 mg/L.
- Oxidation Reduction Potential (ORP) ranged from -83 to 447 milliVolts (mV). The only monitoring well sample with a negative ORP was collected from monitoring well MW-2.
- Turbidity of the samples ranged from 0.14 to 25.6 Nephelometric Turbidity Units (NTU).
- The pH of the samples ranged from 6.50 to 6.72.
- Total Dissolved Solids (TDS) concentration of the samples ranged from 937 to 5,170 mg/L.

2.3.8 Potential Receptors / Pathways

Contact with water (e.g., shallow groundwater or surface water) impacted by COCs at levels above GWPS is regarded as the potential pathway for exposure of potential receptors. Based on data published by KGS, there are no known groundwater wells used for drinking water within a 1-mile radius of the Green Landfill, thus limiting the potential receptors to the surface water, i.e., the Green River and its tributary, Groves Creek. The pathways to these receptors include seepage of water from the Green Landfill through manmade and natural hydraulic barriers.

Other potential exposure pathways (e.g., soil or vapor) are not considered complete as the CCR material is isolated in the unit. This isolation prevents direct access by individuals that might result in direct contact or ingestion. In addition, the inherent non-volatile nature of the unit-specific COCs eliminates the potential for a complete vapor pathway (i.e., vapor intrusion to indoor air). Therefore, soil and vapor pathways will not be considered within the context of this ACM.

3.0 CORRECTIVE ACTION OBJECTIVE (CAO)

For CCR units, 40 CFR Parts 257.90 through 257.98 outlines the groundwater monitoring programs (Detection and Assessment) and the corrective action evaluation process, which provide the basis for the development of the site-specific CAO. Detection and Assessment groundwater monitoring are complete at the Landfill, and the COC Li has been identified based on exceedance of the GWPS.

Section 257.96(c) requires this assessment to include an analysis of the effectiveness of potential corrective measures to meet the objectives for remedies identified under Section 257.97(b), by addressing at least the following:

- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

The subsequent remedy selection process will evaluate the following objectives for remedies, as required under Section 257.97(b):

- Protect human health and the environment;
- Attain the COC-specific GWPSs as specified pursuant to Section 257.95(h);
- Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix IV constituents into the environment;
- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems (applicable to material releases only); and
- Comply with standards for management of wastes as specified in Section 257.98(d).

Together, these requirements comprise the site-specific CAO that will be used during the remedy selection process.

4.0 TECHNOLOGY IDENTIFICATION AND SCREENING

As required under Section 257.97(b), source control is one element of the CAO that is intended to prevent further releases from the source, i.e., the Green Landfill. In adherence with the BREC's permit conditions, the Site will continue to operate as a solid waste disposal facility through its life cycle and will be closed in accordance with the requirements of the permit. Source control through landfill closure will include installation of final cover that will prevent infiltration and contribute to groundwater quality restoration. Control of non-groundwater sources associated with the Green Landfill are also planned and are described separately.

The identification and screening of potentially applicable corrective measures technologies for groundwater downgradient of the Green Landfill is presented in **Appendix A** to this report. The findings of that screening are summarized in the table below.

Table 3 - Potential Corrective Measures Options Technology Description/Overview

Potentially Applicable Technology	Status	Description/Overview
No Action	Not retained as standalone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because it will not meet the established CAOs.
Institutional Controls (ICs)	Retained as supplement to corrective measures alternatives	The use of ICs (i.e., Environmental Covenant, groundwater use restrictions, etc.) is retained as a useful technology. However, it is noted the ICs are not anticipated to be used as a stand-alone technology. Environmental Covenants, groundwater use restrictions, etc., are expected to be combined with other applicable technologies as part of corrective measures alternatives.
Groundwater Monitoring (Assessment and Detection mode)	Retained as supplement to corrective measures alternatives	The use of groundwater monitoring (Assessment and/or Detection modes as appropriate) when combined with other applicable technologies as part of any proposed corrective measures alternative is retained to address the CAO and to track the effectiveness of the overall remedy. However, it is not retained as a standalone technology.
Hydraulic Containment	Retained	The use of hydraulic containment is retained because it is an effective means of preventing offsite migration of soluble contaminants. Hydraulic containment requires management and potential ex-situ treatment of extracted groundwater, so it is not a stand-alone technology. The CSM will guide the design of any groundwater extraction system to optimize the total discharge of groundwater needed to provide hydraulic containment.
Physical Containment	Retained	The use of physical containment is retained because it can be an effective means of managing groundwater flow. Physical containment often requires pairing with hydraulic containment and/or in-situ treatment (funnel and gate style) to manage the flux of groundwater flow into the system. The CSM will guide the design of any physical barrier system, but technology limitations increase implementation difficulty with scale.

Potentially Applicable Technology	Status	Description/Overview
Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment technologies are retained as a way of removing contaminants from extracted groundwater from a hydraulic containment system. Ex-situ treatment may be paired with wastewater treatment, non-groundwater release treatment systems, or with permitted discharge to manage groundwater contamination. The CSM and data gaps investigations will guide the design of any ex-situ treatment
Closure in Place (CiP) (of the regulated unit)		The use of CiP as a source control technology and is amenable with respect to CAO attainment.
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.
Other Source Control Technologies	Retained	Control of source area non-groundwater related releases. For the purposes of this groundwater ACM, management of non-groundwater releases are not included in the alternatives evaluation. Engineering measures, including leachate collection, lining of trenches and/or ponds, and other isolation methods are regarded as part of closure technologies selected by other means.

References: Technology descriptions referenced from 1) FRTR: Federal Remediation Technologies Roundtable, CLU-IN, and/or AECOM reference materials.

5.0 CORRECTIVE ACTION ALTERNATIVES ASSEMBLY

Applicable corrective measures technologies identified in Section 4.0 above were assembled into corrective measures alternatives for evaluation (see **Appendix A** and Section 6.0). Each corrective measures alternative consists of one or more corrective measures technologies assembled into a strategy for the groundwater remedy. Six corrective measures alternatives for the Green Landfill were assembled and are described below.

- Alternative #1 No Action and Groundwater Monitoring
- Alternative #2a Closure in Place (CiP), Institutional Controls (ICs), and Groundwater Monitoring
- Alternative #2b Closure by Removal (CbR), ICs, and Groundwater Monitoring
- Alternative #3 CiP, Hydraulic Containment, Other Source Control, Ex-Situ Treatment, ICs, and Groundwater Monitoring
- Alternative #4 CiP, Physical Containment, Ex-Situ Treatment, ICs, and Groundwater Monitoring
- Alternative #5 CiP, Other Source Control, ICs, and Groundwater Monitoring

5.1 Assumptions for Corrective Measure Alternatives Development

In developing the corrective measures alternatives, a number of assumptions have been made based on the data available to AECOM at the time of this report and operational plans as reported by the owner/operator. The specific assumptions include:

- The currently observed dissolved phase groundwater impacts are limited to the area between and adjacent to monitoring well locations MW-3A, MW-4, MW-5, and MW-6 along the south and east edges of the landfill.
- Groundwater impacts are limited to the saturated zone between the observed water table at approximate elevation 370 feet mean sea level (ft., msl) and the base of the aquifer at approximately 320 ft-msl.
- Ex-situ treatment of groundwater may involve physical/chemical methods and/or discharge to a permitted National Pollution Discharge and Elimination System (NPDES) outfall.
- Groundwater corrective measures will be conducted until the CAOs are met. The objectives may
 be met at an earlier date, but the alternatives analysis is based on the conservative assumption
 that corrective measures and the associated monitoring of groundwater conditions will be
 required for up to 30 years following the initiation of the corrective measures.
- CiP and Other Source Control are part of planned plant operations.

5.2 Groundwater Corrective Measures Alternatives Overview

The developed groundwater corrective measures alternatives, outlined above, are detailed in the following sections.

5.2.1 Alternative #1 - No Action and Groundwater Monitoring

Alternative #1 consists of taking no action to remedy the CCR impact observed in the Green Landfill groundwater monitoring system. Under the No Action alternative, no corrective measures would be

implemented to remove, control, mitigate, or minimize exposure to impacted groundwater. Groundwater monitoring (Assessment) is required by the CCR rule during the nominal performance period of 30 years to track the effectiveness of the alternative and to identify conditions that allow the return to Detection monitoring. The No Action alternative establishes a baseline, or reference point against which each of the developed corrective measures alternatives may be compared.

5.2.2 Alternative #2a - CiP, ICs, and Groundwater Monitoring

Alternative #2a employs a combination of three of the retained corrective measures technologies:

- CiP source control, which consists of two elements: routine cover management during landfill
 operation, and planned closure activities to be conducted at the end of the landfill's operational
 life cycle;
- Implementation of ICs designed to restrict the property to industrial use and to prohibit groundwater use for potable purposes; and
- Groundwater Monitoring (Assessment) to track the effectiveness of the corrective measures and to identify conditions that allow the return to Detection monitoring and ultimately to cessation of corrective measures.

CiP was selected as the source control technology because the unit is a state-permitted solid waste facility subject to operational and closure controls designed to limit the potential for impact to human health and the environment.

Implementation of ICs is employed to help maintain the CiP and associated corrective measures by limiting the accessibility of the unit to unauthorized users and restricting future use of the property to those activities that may result in exposure potentials. ICs for the landfill are specifically addressed by the facility's solid waste permit, which restricts the use of the property and associated resources (groundwater).

Groundwater monitoring of the unit is required by 40 CFR 257.90 through .98. The unit triggered Assessment mode monitoring by the detection of indicator parameters (Appendix III of 40 CFR 257) in downgradient monitoring wells at concentrations representing a SSI over background. Continued groundwater monitoring is required under 40 CFR 257.95 until the CAOs are met. The CAOs are anticipated to be met as the effect of source control technologies are realized and as natural attenuation mechanisms (advection, dilution and dispersion) take effect.

5.2.3 Alternative #2b – CbR, ICs, and Groundwater Monitoring

Alternative #2b is similar to Alternative #2a except that CiP is replaced by CbR, which consists of excavation and removal of the Green Landfill, implementation of ICs and an Environmental Covenant intended to restrict the unit to industrial use and prohibit groundwater use for potable purposes. The excavation of impacted CCR material would typically be completed using standard construction equipment (e.g., backhoe, excavator, wheel loader, dump trucks). The excavated materials are then placed directly into dump trucks for transport/disposal or beneficial use. Excavation limits would typically be verified with confirmation sampling to demonstrate that the underlying soil is not impacted above applicable standards.

Groundwater monitoring of the unit is required by 40 CFR 257.90 through .98. The unit triggered Assessment mode monitoring by the detection of indicator parameters (Appendix III of 40 CFR 257) in downgradient monitoring wells at concentrations representing a SSI over background. Continued groundwater monitoring is required under 40 CFR 257.95 until the CAOs are met. The CAOs are

anticipated to be met as the effect of source control technologies are realized and as natural attenuation mechanisms (advection, dilution and dispersion) take effect.

5.2.4 Alternative #3 – CiP, Hydraulic Containment, Other Source Control, Ex-Situ Treatment, ICs, and Groundwater Monitoring

Alternative #3 builds on Alternative #2a to also include the addition of Hydraulic Containment, Other Source Control, and Ex-Situ Treatment of groundwater:

- CiP source control, which consists of two elements: routine cover management during landfill operation, and planned closure activities to be conducted at the end of the landfill's operational life cycle;
- Hydraulic Containment using one or more vertical wells designed to prevent the movement of impacted groundwater past the limits of the unit to the downgradient groundwater environment and potential points of exposure;
- Other Source Control in the form of draining and lining the south Leachate Pond, which helps eliminate the potential for additional contaminant migration from the landfill, and managing existing non-groundwater seepages;
- Ex-Situ Treatment of groundwater extracted for hydraulic containment, which involves aboveground physical/chemical treatment methods and/or permitted discharge for until the CAOs are achieved;
- Implementation of ICs designed to restrict the property to industrial use and to prohibit groundwater use for potable purposes; and
- Groundwater Monitoring (Assessment mode) to track the effectiveness of the corrective measures and to identify conditions that allow the return to Detection mode monitoring and ultimately to cessation of corrective measures.

Vertical groundwater recovery wells for Hydraulic Containment would be installed near the downgradient limit of the unit. It is noted that Pre-Design Studies will be needed to identify the appropriate number, design, and spacing of the extraction well system, but for the purposes of this ACM, preliminary specifications are as follows:

- Five vertical groundwater extraction wells;
- The extraction wells would be installed along the south side and the southeast corner of the landfill, equally spaced between MW-6 and MW-3A;
- Well installed to a depth of approximately 50-75 ft-bgs;
- Estimated total groundwater extraction rate of 200 gallons per minute (gpm).

Alternative #3 incorporates treatment of extracted groundwater before it can be discharged to an outfall. Treatment will consist of piping the extracted groundwater to an existing surface water impoundment at the Sebree Station, which will allow for compliance with discharge permits through an established NPDES outfall.

Other Source Control would consist of re-design of the pond located south of Green Landfill by dividing the pond into thirds. The east and west sections of the pond will be designed to collect non-groundwater seepage from around the toe of the unit so that it can be isolated and pumped to a central location for treatment. The middle section of the pond will continue to be used for stormwater collection.

The COC concentrations downgradient of the hydraulic containment would also be expected to decrease over time through natural attenuation mechanisms including advection, dilution, and dispersion. As such, groundwater monitoring would be modified to include system performance monitoring, which may require installation of wells at new locations to evaluate the efficacy of hydraulic containment and to identify when CAOs have been achieved.

5.2.5 Alternative #4 - CiP, Physical Containment, Ex-Situ Treatment, ICs, and Groundwater Monitoring

Alternative #4 is similar to Alternative #2a except for the addition of a Physical Containment barrier such as a slurry wall or grout curtain along the affected downgradient boundary of the unit to contain groundwater flow. Impacted groundwater would be contained by grout curtain constructed in a funnel-and-gate arrangement that directs the flow of groundwater to an extraction point at the gate, from which groundwater is pumped and conveyed to ex-situ treatment. Design of a Physical Containment system is largely driven by the depth and character of the groundwater bearing zone, and the length barrier needed to effect containment. In this case, the aquifer ranges to depths on the order of 75 feet below ground surface near the downgradient limit of the unit. The projected length of a physical barrier is 4,000 feet. Similar to Alternative #3, Treatment will consist of piping the extracted groundwater to an existing surface water impoundment at the Sebree Station, which will allow for compliance with discharge permits through an established NPDES outfall.

5.2.6 Alternative #5 - CiP, Other Source Control, ICs, and Groundwater Monitoring

Alternative #5 builds on Alternative #2a to also include the addition of Other Source Control for non-groundwater releases. Other Source Control would consist of draining and lining the pond located south of Green Landfill with geomembrane, and dividing the pond into sections. The east and west sections of the pond will collect the seepage, where it will be pumped to a central location for treatment. The middle section of the pond will continue to be used for stormwater collection.

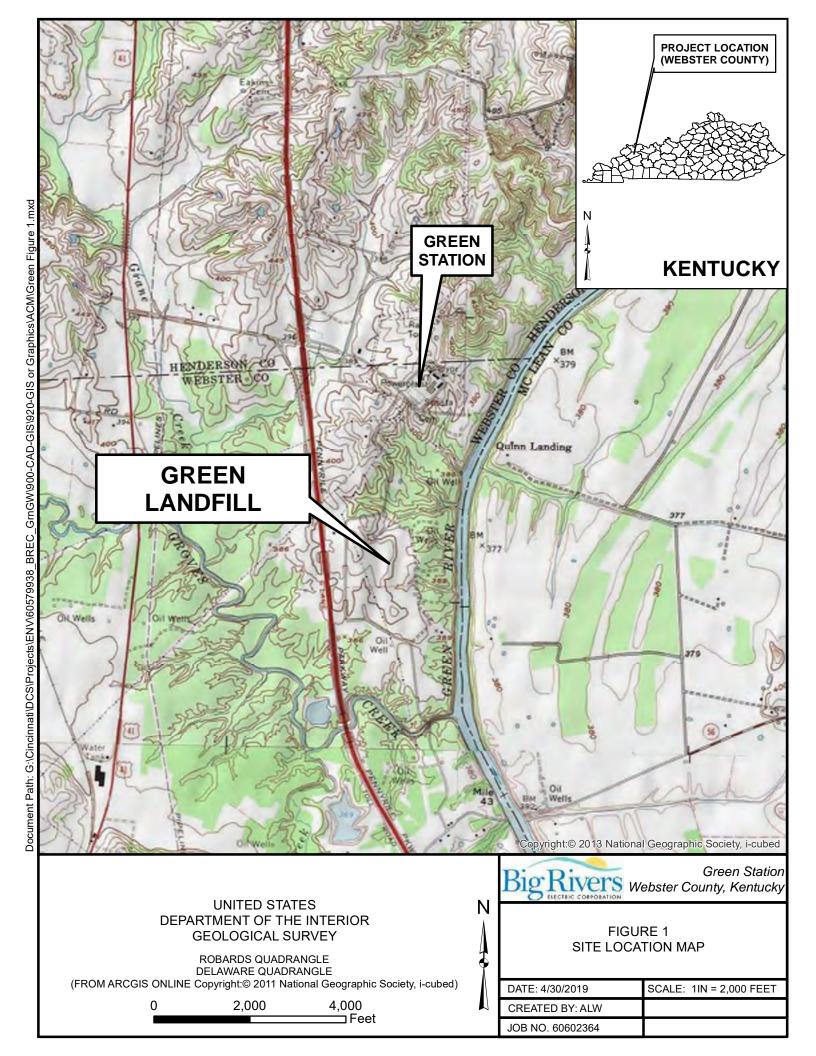
6.0 ALTERNATIVE EVALUATION

The formal remedy selection process, in accordance with the CCR Rule 40 CFR Section 257.97, will begin following submission of the ACM Report. The subsequent remedy selection process will evaluate the following objectives for remedies, as required under Section 257.97(b):

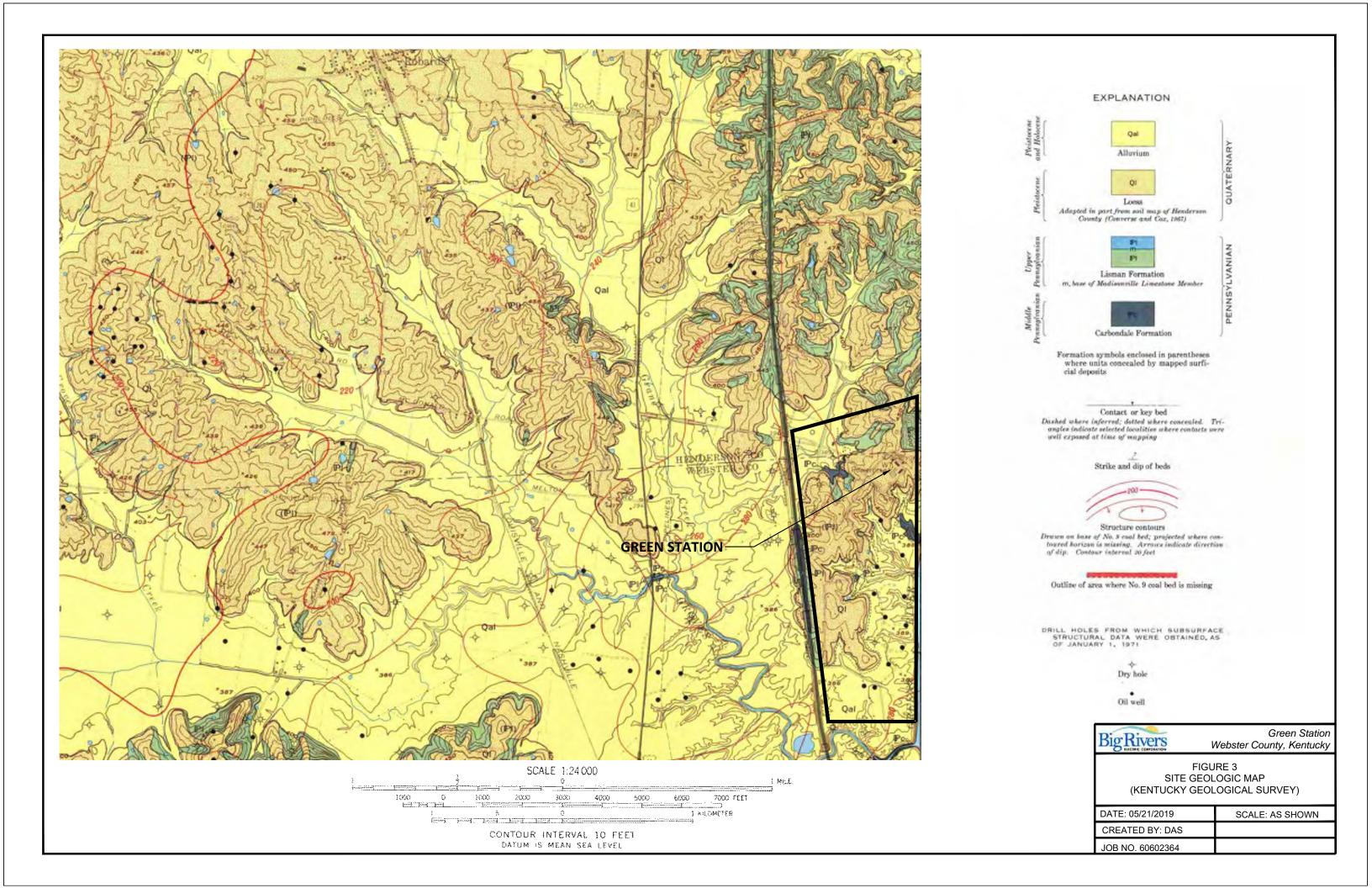
- Protect human health and the environment;
- Attain the COC-specific GWPSs as specified pursuant to Section 257.95(h);
- Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix IV constituents into the environment;
- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems (applicable to material releases only); and
- Comply with standards for management of wastes as specified in Section 257.98(d).

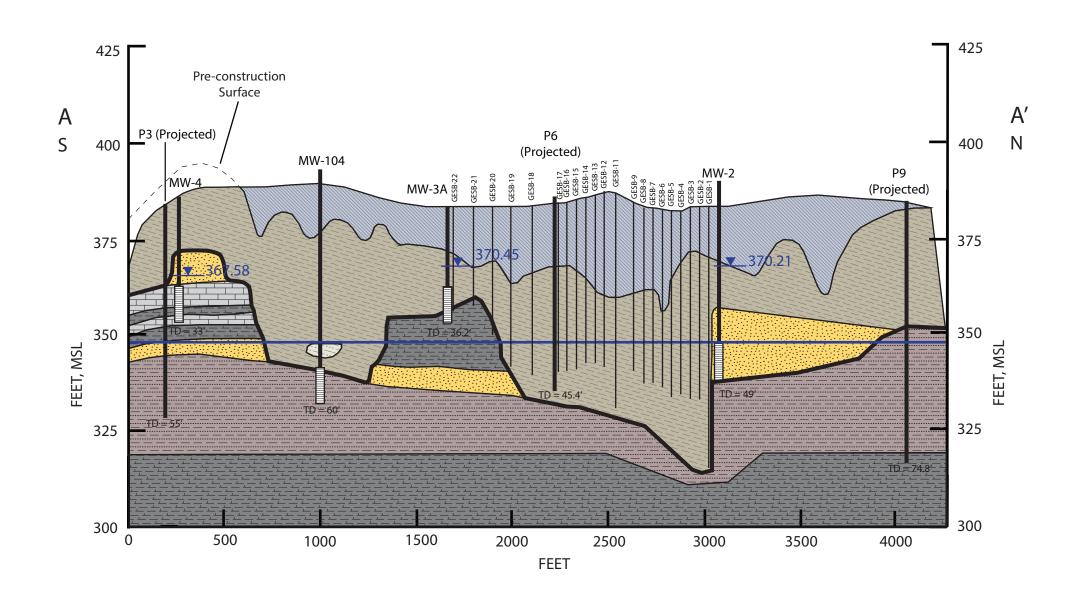
6.1 Potential Data Gaps

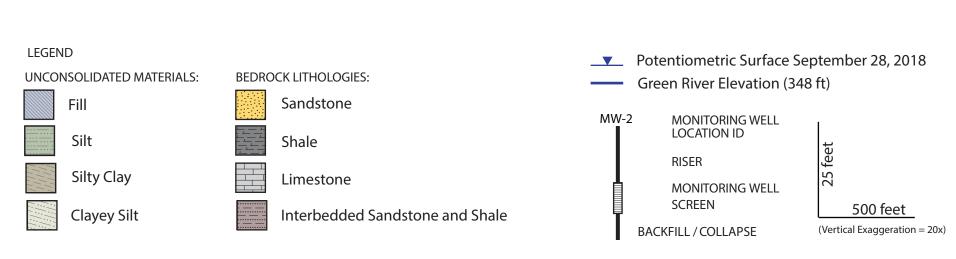
No data gaps investigation is projected at this time.

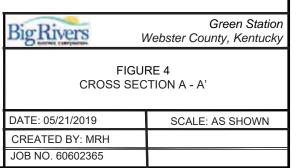

Depending on which alternative is selected, a data gap investigation may be needed to further refine the targeted areas for corrective measures. Potential data gaps may include the following:

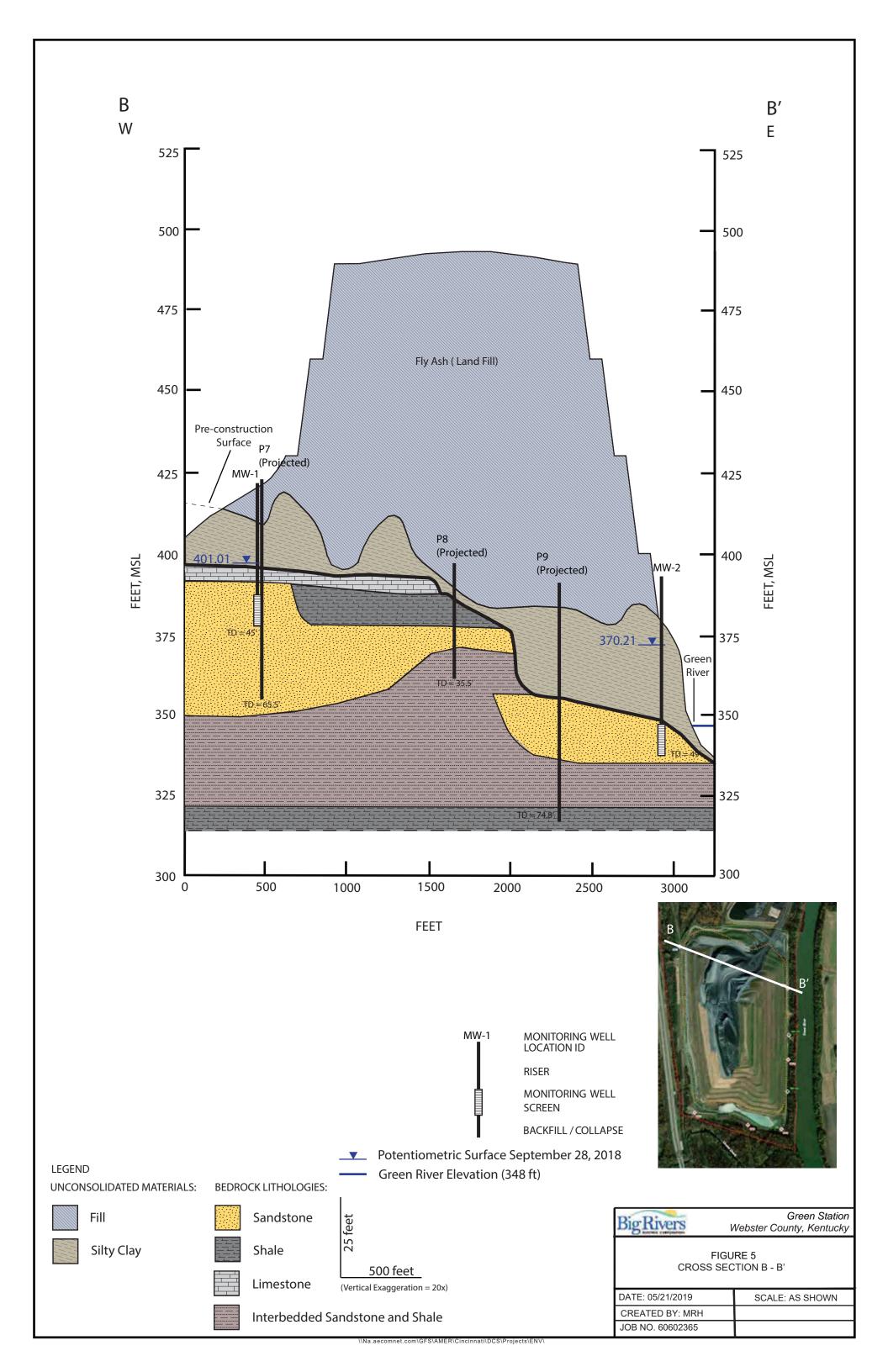
- Supplemental Groundwater Investigation This investigation may consist of additional monitoring well installation and sampling to refine the existing CSM as well as to provide data related to the hydraulic characteristics of the subsurface.
- 2) Physical Containment Profile Prior to committing to a physical barrier design, it may be necessary to probe the subsurface along the proposed alignment to:
 - Establish the character of the materials through which the barrier would be installed,
 - The depth to confinement where the barrier would terminate.

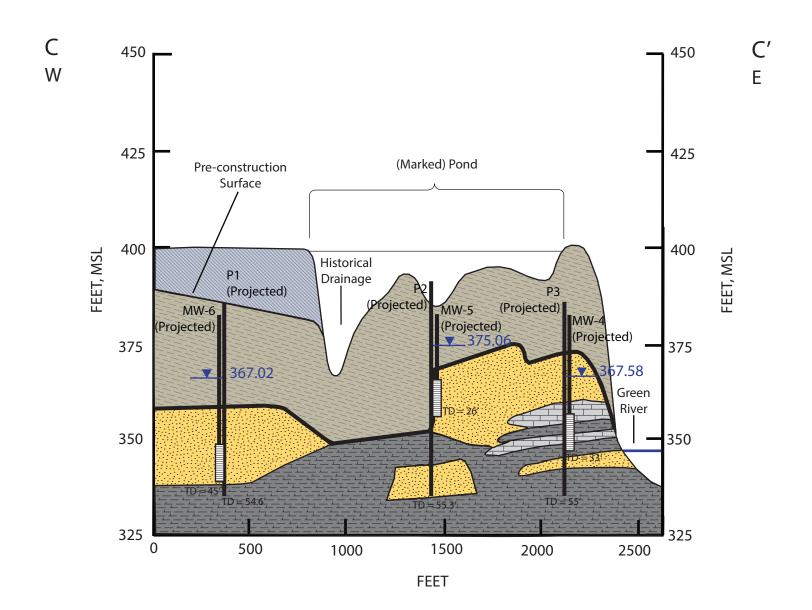

7.0 REFERENCES

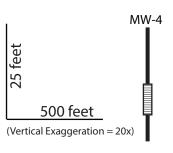

- AECOM, 2018. Annual Groundwater Monitoring and Corrective Action Report, 2016-2017; Green Station CCR Landfill, Webster County, Kentucky.
- AECOM, 2019. Annual Groundwater Monitoring and Corrective Action Report, 2018; Green Station CCR Landfill, Webster County, Kentucky.
- Associated Engineers 2016. Hydrologic and Hydraulic Capacity Assessment and Initial Inflow Design Flood Control System Plan.
- EPA, 40 CFR Part 257. [EPA-HQ-RCRA-2015-0331; FRL-9928-44-OSWER]. RIN-2050-AE81. Technical Amendments to the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities—Correction of the Effective Date. Federal Register / Vol. 80, No. 127 / Thursday, July 2, 2015 / Rules and Regulations.
- Fairer, G.M., Geologic Map of the Robards Quadrangle, Henderson and Webster Counties, Kentucky, U.S. Geological Survey, 1973.
- Federal Remediation Technologies Roundtable (FRTR). Remediation Technologies Screening Matrix and Reference Guide, Version 4.0. URL: https://frtr.gov/scrntools.htm Page last modified on: Tuesday, May 17, 2016
- Interstate Technology Regulatory Council (ITRC), 2009. Evaluating LNAPL Remedial Technologies for Achieving Project Goals. ITRC guidance document LNAPL-2, Washington, DC; 54 pp.





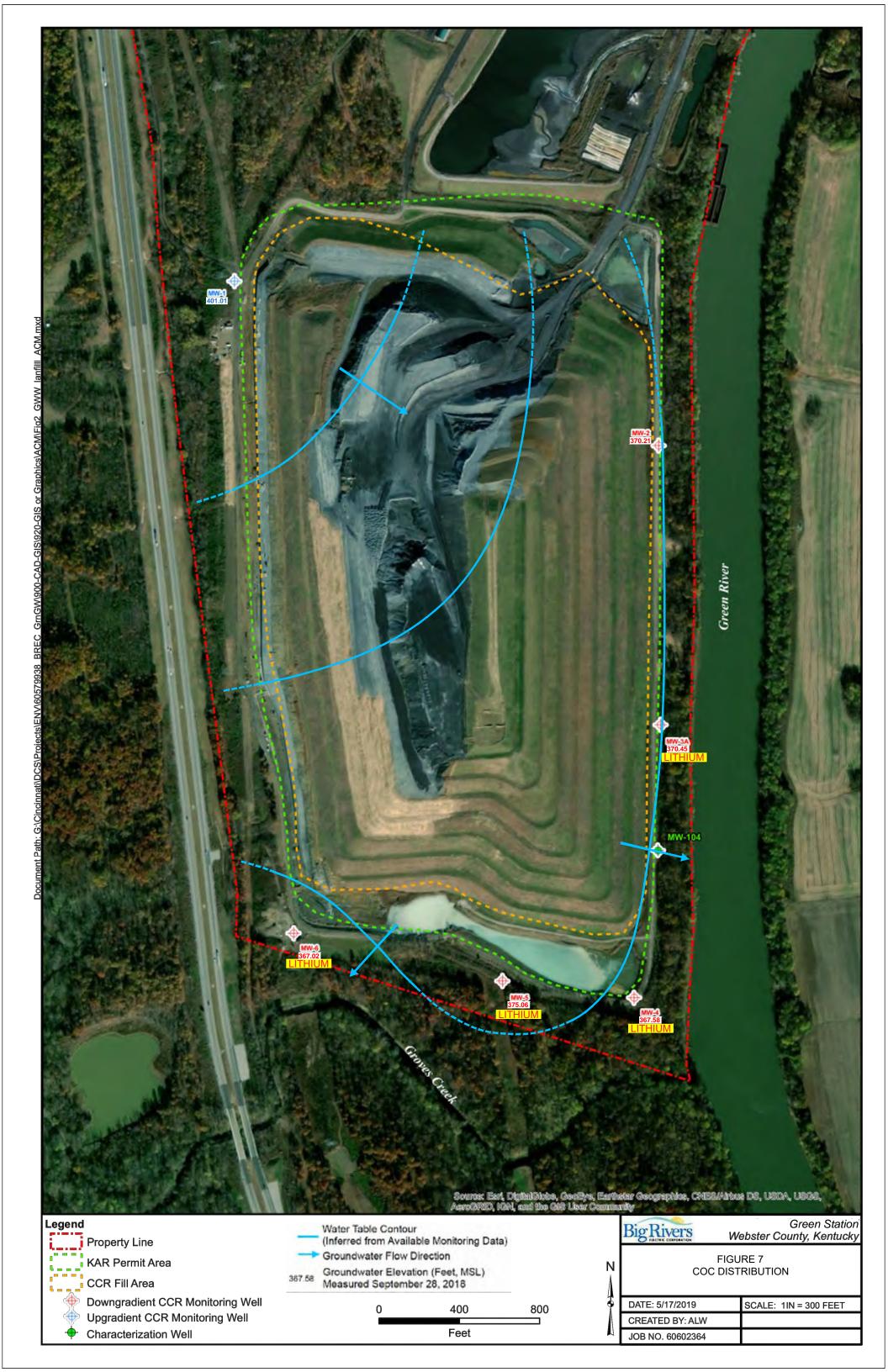






Silty Clay

Sandstone
Shale
Limestone


MONITORING WELL LOCATION ID

RISER

MONITORING WELL SCREEN

BACKFILL / COLLAPSE

BigRivers	Green Station Webster County, Kentucky	
FIGURE 6 CROSS SECTION C - C'		
DATE: 05/21/2019	SCALE: AS SHOWN	
CREATED BY: MRH		
JOB NO. 60602365		

Appendix A

Corrective Measures Technologies and Alternatives Evaluation Process

Appendix A
Corrective Measures Technologies and
Alternatives Screening Process

CONTENTS

Section	on		Page
A1.0	CORR	ECTIVE MEASURES EVALUATION PROCESS	1
	A1.1	Potential Remedial Technologies	
	A1.2	Other Source Control Technologies	3
	A1.3	No Action	3
	A1.4	Institutional Controls (ICs)	4
	A1.5	Groundwater Monitoring	4
	A1.6	Hydraulic Containment	
	A1.7	Physical Containment	5
	A1.8	Ex-Situ Physical/Chemical/Biological Treatment	6
	A1.9	In-Situ Physical/Chemical/Biological Treatment	6
	A1.10	Permeable Reactive Barriers (PRB)	6
	A1.11	Closure-in-Place (CiP) [of the regulated unit]	7
	A1.12	Closure by Removal (CbR) [of the regulated unit]	7
	A1.13		
A2.0	CORR	ECTIVE MEASURES ALTERNATIVES	9

Tables

Table A1 Potential Remedial Technologies

Table A2 Screened Corrective Measures Technologies

A1.0 CORRECTIVE MEASURES EVALUATION PROCESS

This appendix describes the overall process used in the selection and screening of corrective measures technologies that are considered potentially applicable to Coal Combustion Residuals (CCR) groundwater impacts at the subject Site. This appendix also describes the process for assembling preliminary corrective measures alternatives from one or more applicable technologies and evaluating these alternatives.

A1.1 Potential Remedial Technologies

Section 257.96(c) requires this assessment to include an analysis of the effectiveness of potential corrective measures to meet the objectives for remedies under Section 257.97(b), addressing at least the following:

- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

The following corrective measures technologies are regarded as potentially applicable to corrective measures for CCR groundwater impact:

- No Action (Included as a baseline case)
- Institutional Controls (ICs)
- Groundwater Monitoring
- Hydraulic Containment
- Physical Containment
- Ex-situ Physical/Chemical/Biological Treatment
- In-situ Physical/Chemical/Biological Treatment
- Permeable Reactive Barrier (PRB)
- Closure in Place (CiP) (of the regulated unit)
- Closure by Removal (CbR) (of the regulated unit)

A brief overview of these technologies is provided below in **Table A1**.

Table A1 – Potential Remedial Technologies

Potential Technology	Description/Overview
No Action	Default baseline approach against which other options are evaluated. No corrective action would be taken to remove, control, mitigate or minimize exposure to impacted media.
Institutional Controls (ICs)	Non-engineering measures, such as administrative and/or legal controls that help to minimize the potential for human exposure to contamination, and/or to protect the integrity of a remedy by limiting land or resource use (United States Environmental Protection Agency [USEPA), <i>Institutional Control Data Standard</i> EX000015.1, January 6, 2006).
Groundwater Monitoring	Groundwater monitoring (Assessment and/or Detection modes) to assess effectiveness of corrective measures performance, as well as natural subsurface processes such as dilution, adsorption, and chemical reactions that together serve to reduce inorganic constituents of concern (COC) concentrations to acceptable levels.
Hydraulic Containment	Hydraulic containment is a common method for remediating groundwater impacted with metals and other inorganics. Groundwater is pumped from wells or collection trenches to aboveground discharge point or to a treatment system that removes the contaminants. The extraction network would be designed to provide hydraulic containment of the impacted groundwater, preventing it from flowing downgradient towards surface water or other receptors.
Physical Containment	Physical barriers are walls constructed below the ground surface to control or restrict the flow of groundwater. They are constructed by injection grouting or by the use of excavator or deep trenching equipment to insert and thoroughly mix a selected amendment to create a homogenized impermeable wall that prevents impacted groundwater from flowing downgradient. The bottom of the physical containment structure is typically keyed into a low-permeability soil or bedrock (confining layer) to keep groundwater from seeping beneath the wall. To provide hydraulic control of the impacted groundwater behind (upgradient of) the physical barrier and to prevent impacted water from flowing around the edges of the wall, extraction wells would be installed behind the vertical barrier (VB) and the extracted groundwater processed through a treatment system.
Ex-situ Physical/Chemical/Biological Treatment	Ex-situ treatment requires pumping of groundwater and engineering for equipment, possible permitting, and material handling. Physical/chemical treatment uses the physical properties of the contaminants or the contaminated medium to destroy (i.e., chemically convert), separate, or contain the contamination. Physical/chemical treatment can be completed in short time periods (in comparison with biological treatment). Equipment is readily available. Treatment residuals from separation techniques will require treatment or disposal.

Potential Technology	Description/Overview
In-situ Physical/Chemical Treatment	With in-situ treatment, groundwater is treated without being brought to the surface. In-situ processes, however, generally require longer time periods. Physical/chemical treatment uses the physical properties of the contaminants or the contaminated medium to destroy (i.e., chemically convert), or separate the contamination.
Permeable Reactive Barriers (PRB)	A PRB is a constructed subsurface barrier designed to intercept groundwater flow and react with the entrained COCs. PRBs can be established through trench injection or direct-push injection (on closely spaced grids) of reactive material. PRBs are typically installed to the depth of impacted groundwater (often the bottom of the shallow aquifer) and along the length of the impacted zone. The amendment used to generate the PRB is generally permeable as or more permeable than the surrounding material, encouraging impacted groundwater to flow through the reactive material. The reactive material then causes chemical reactions to occur, resulting in adsorption, precipitation, or degradation of the COC. PRBs are commonly used to control organic contamination in groundwater and have been successfully used to remediate metals.
Closure in Place (CiP) (of the regulated unit)	Landfill caps can be installed to minimize generation of leachate and to minimize infiltration into underlying waste. Landfill caps also may be applied to waste masses that are so large that other treatment is impractical. By providing a suitable base for the establishment of vegetation. In conjunction with water diversion and detention structures, landfill caps may be designed to route surface water away from the waste area while minimizing erosion
Closure by Removal (CbR) (of the regulated unit)	Removal of contaminated media for disposal in off-site facility or alternate on-site facility. Media would likely require characterization for proper disposal. Pretreatment may be necessary to meet land disposal restrictions (LDRs). Once excavated, confirmatory samples would be collected to verify clean-up criteria have been met; the excavation would then be backfilled and covered.

References: Technology descriptions referenced from 1) FRTR: Federal Remediation Technologies Roundtable, CLU-IN, and/or AECOM reference materials.

A1.2 Other Source Control Technologies

In addition to the groundwater corrective measures technologies summarized above, CCR impacts are also mitigated through a variety of engineering measures, including leachate collection, lining of trenches and/or ponds, and other isolation methods for source control.

A1.3 No Action

No Action is included in the evaluation as a baseline against which other technologies are evaluated. With this option, no corrective action would be taken to remove, control, mitigate or minimize exposure to impacted media. In the event that the other identified alternatives do not offer substantial benefits, No Action is the default baseline approach.

Under this alternative, existing impacted media (i.e., CCR materials and impacted soil/groundwater along the exposure pathway) would remain. No capital costs would be incurred, and no cleanup standards would be considered.

No Action does not meet the performance requirement of attaining the established Corrective Action Objective (CAO). Although implementation would be very easy, the required state approval for "No Action" would likely not occur. Safety impacts, cross-media impacts, and residual CCR exposure control

would be no different from current conditions. Therefore, No Action is not an appropriate standalone technology. However, it is retained for use as a baseline against which other technologies and alternatives are evaluated.

A1.4 Institutional Controls (ICs)

The potential use of ICs is considered the least aggressive corrective action technology for CCR impacts.

ICs would not change the concentration or mobility of COCs and therefore would not meet the performance requirement of attaining the established CAO as a standalone technology unless it can be demonstrated that impacted groundwater is not leaving the facility. ICs would be used in combination with other corrective measures to limit human exposures and would be easy to implement, consisting of preparation and recording of Environmental Restrictive Covenants [ERC(s)]. Safety impacts and cross-media impacts would be identical to current conditions. Because ICs would control exposure and thus enhance protection of human health and the environment, the use of ICs can be a component of corrective measures alternatives. The use of ICs as a standalone technology will not be considered.

A1.5 Groundwater Monitoring

The use of groundwater monitoring is only applicable for dissolved-phase groundwater impacts, and it will take place in Assessment and/or Detection modes as appropriate for the current phase of CCR activity. Groundwater monitoring is not a standalone technology, but instead will be combined with other remedial technologies in order to track progress of the overall remedy, which also incorporates natural attenuation processes.

The use of groundwater monitoring as a stand-alone remedial technology will not be considered; instead the incorporation of groundwater monitoring in conjunction with other technologies will be used to monitor effectiveness of a given corrective measures alternative to attain the CAO at points immediately downgradient over an extended period of time. Data reliability is controlled by adherence to the site's groundwater monitoring plan. Implementation of the existing groundwater monitoring plan is easy because it is currently underway. Safety impacts are minimized by use of the existing Health and Safety Plan and there are no construction activities required. There are no cross-media impacts or institutional requirements, nor is there any residual CCR exposure control.

A1.6 Hydraulic Containment

The use of hydraulic containment as a potential remedial technology is considered. The use of groundwater extraction can be effective at hydraulically controlling long-term downgradient dissolved phase impacts.

Hydraulic containment through groundwater extraction and subsequent treatment has historically been a common method for management of groundwater impacted with metals and other inorganics. Groundwater is pumped from wells (vertical or horizontal) or collection trenches to a discharge point (e.g., a permitted outfall) or to an aboveground treatment system. The extraction network would be designed, constructed, and operated to provide a hydraulic barrier between the impacted groundwater and the migration pathway to potential receptors.

This technology attains the established CAO because hydraulic containment rapidly eliminates the offsite migration of impacted groundwater, thereby eliminating the exposure pathway. Performance and reliability would be controlled by adherence to the operations and maintenance plan prepared for the extraction and treatment systems. Implementation would be difficult because of areas of limited access for drilling equipment and uneven groundwater flow in the uppermost aquifer materials that consist of interbedded sandstone and shale having hydraulic conductivity values spanning several orders of

magnitude. Potential safety impacts during construction, operation, and maintenance of the system would be mitigated by health and safety plans prepared for these tasks. There would be no cross-media impacts. Hydraulic containment will reduce mobility due to COCs capture provided by the groundwater extraction system and treatment to remove COCs from the environment. The time period for CAO attainment may be relatively short, but system operation will need to continue until CCR source loading of COCs to groundwater ceases. For institutional requirements, treated discharge would occur under existing or modified National Pollution Discharge Elimination System (NPDES) permit.

Based on the preliminary screening, hydraulic containment is a potentially viable remedial technology and will be retained for further consideration.

A1.7 Physical Containment

The use of physical containment to isolate the impacted materials associated with a CCR unit is considered. Physical containment typically consists of a barrier or wall (i.e., slurry wall, sheet pile wall, or injection grouting) constructed below the ground surface to control or restrict the flow of groundwater. The barrier is typically constructed by excavators and/or deep trenching equipment that thoroughly mix bentonite/cement slurry to create a homogenized impermeable wall, or by driving sheet pile. The construction of the barrier would prevent impacted groundwater from flowing downgradient. Where possible, the bottom of the barrier would be keyed into the low-permeability soil or bedrock (confining layer) at the bottom of the aquifer, keeping groundwater from seeping beneath it. To provide hydraulic control of the impacted groundwater behind the barrier and prevent impacted water from flowing around the edges, a hydraulic containment system would be installed behind the wall. Extracted groundwater would then be discharged or processed through a groundwater treatment system, as needed. Extraction flow rates for this option will generally be lower than in a standalone hydraulic containment option, because the pumping rates will only need to accommodate natural groundwater flow rates, rather than providing a hydraulic barrier. However, pumping would need to be performed indefinitely to maintain water levels behind the barrier. It is also noted that physical barriers can also be utilized in a funnel-andgate arrangement to direct the flow of groundwater to a small, more permeable area (i.e., the gate) where reactive material can be used to treat the metals in-situ. The "gate" can also be configured as a single extraction point for impacted groundwater directed to it by the "funnel."

This technology attains the established CAO after combined physical and hydraulic containment eliminates the offsite migration of impacted groundwater, thereby eliminating the exposure pathway. In the long term, this technology will maintain compliance with the established CAO after final cover construction at the Green Landfill, which will end the source loading to the groundwater, and groundwater flushes through the aquifer. Performance and reliability would be controlled by adherence to the operations and maintenance plan prepared for the extraction and treatment systems. The technology would pose substantial challenges to the installation and operation of the physical barrier such as areas of limited access and highly variable depths to bedrock. Potential safety impacts during construction, operation, and maintenance of the system would be mitigated by health and safety plans prepared for these tasks. Cross-media impacts include the potential for airborne fugitive dust issues during construction, which would be mitigated by construction contingency planning. The time period for attainment is based on construction of the barrier. For institutional requirements, treated discharge would occur under existing or modified NPDES permit.

Based on the preliminary screening, physical containment is potentially viable as a potential corrective measures alternative component when combined with supplemental groundwater extraction and treatment. However, physical containment does not appear to add value to a stand-alone hydraulic containment approach.

A1.8 Ex-Situ Physical/Chemical/Biological Treatment

Ex-situ treatment requires the use of groundwater extraction with related engineering, equipment, permitting, and material handling necessary to convey the waste stream to above-ground treatment. Treatment technologies would be designed to remove the specific constituents from groundwater to meet regulatory discharge requirements; treatment options for the varied constituents may include pH adjustment, filtration, coagulation/chemical precipitation, membrane filtration, ion exchange, carbon adsorption, reverse osmosis, chemical reduction, and other potential treatment technologies. Multiple treatment technologies would potentially be needed to effectively remove the different types of contaminants. If this technology is incorporated into a corrective action alternative, further detailed evaluation and/or bench- and pilot-scale studies would be necessary to identify technically effective treatment technologies given the inorganic COCs.

This is not a standalone technology, but would be used in combination with hydraulic containment. System reliability would be controlled by adherence to an operation and maintenance plan prepared for the system. Implementation is expected to be straightforward based on well-established water treatment principles and experience. Potential safety impacts during construction, operation, and maintenance of the system would be mitigated by health and safety plans prepared for these tasks. There would be no cross-media impacts, nor would there be exposure to residual CCR materials. The time period for attainment is based on performance of the overall corrective measure, of which ex-situ treatment would be a component. For institutional requirements, treated discharge would occur under existing or modified NPDES permit.

Based on the preliminary screening, ex-situ treatment is a potentially viable remedial technology and will be retained for further consideration.

A1.9 In-Situ Physical/Chemical/Biological Treatment

For the inorganic COCs at CCR sites, in-situ treatment involves enhancement of natural attenuation processes such as dilution, adsorption, and chemical reactions to reduce concentrations to acceptable levels. This technology is appropriate for sites in which groundwater flow volumes are low, source controls are effective, and impacted groundwater is not expected to be long-lived.

Lithium (Li) is the sole COC for the Assessment of Corrective Measures (ACM) at the Green Landfill, and in-situ treatment methods are ineffective for Li. Therefore, this technology will not meet the performance requirement, and it will not be retained for further consideration.

A1.10 Permeable Reactive Barriers (PRB)

A PRB is an in-situ treatment method consisting of subsurface trench filled with reactive material installed to intercept and react with impacted groundwater. PRBs can be established through direct-push injection (on closely spaced grids) or emplaced as a continuous trench of reactive material. PRBs are typically installed to the depth of impacted groundwater (often the bottom of the shallow aquifer) and are oriented perpendicular to the flow of impacted groundwater. The amendment used to generate the PRB is generally as permeable as or more permeable than the surrounding material, encouraging impacted groundwater to flow through the reactive material. The reactive material then causes chemical reactions to occur within the PRB, resulting in adsorption, precipitation, or degradation.

PRBs are commonly used to control organic contamination in groundwater, and have been successfully used to remediate some metals. However, because Li is the sole COC for the ACM at the Green Landfill,

and in-situ methods are ineffective for Li, PRB will not meet the performance requirement, and it will not be retained for further consideration.

A1.11 Closure-in-Place (CiP) [of the regulated unit]

CiP would entail capping and restoration of the unit that contains the CCR material. Capping would minimize infiltration into the CCR material, thereby minimizing the potential for leachate to impact underlying soil and shallow groundwater. Capping would reduce potential exposure pathways and thus enhance protection of human health and the environment.

CiP will help attain the established CAO after final cover construction ends the source loading to the groundwater, and impacted groundwater flushes through the aquifer. This technology is easily implemented, as CiP is required by conditions of the solid waste permit and re-design of the southern storm water pond requires nominal engineering and construction efforts. Potential safety impacts during construction, operation, and maintenance of the final cover are governed by conditions of the solid waste permit and are mitigated by health and safety plans prepared for these tasks. There are no cross-media impacts associated with CiP, and it will provide for significant reduction in mobility of COCs upon implementation of the CiP source control. Final cover for the Green Landfill is anticipated as part of facility operations. Institutional requirements will consist of solid waste permit renewal(s) and state and community acceptance of the final remedy.

Based on the preliminary screening, CiP is retained for further consideration.

A1.12 Closure by Removal (CbR) [of the regulated unit]

CbR is a proven remedy that can effectively remove the source of contamination. The excavation of impacted CCR material would typically be completed using standard construction equipment (e.g., backhoe, excavator, wheel loader, dump trucks). The excavated materials are then placed directly into dump trucks for transport/disposal or beneficial use. Excavation limits would typically be verified with confirmation sampling to demonstrate that the underlying soil is not impacted above applicable standards.

This technology would help attain the established CAO after CCR removal ends and the source loading to groundwater is eliminated. This technology would be difficult to implement, because of the large-scale construction effort required and resulting disruption to station operations and community impact. Potential safety impacts during excavation and backfilling would be mitigated by health and safety planning. However, the volume of truck traffic for waste and fill hauling would be a significant community safety issue. Potential airborne fugitive dust issues during excavation and hauling would be significant, but would be mitigated by construction contingency planning. CbR will eliminate exposure through removal of the CCR. CbR would begin following state and community approvals, and duration of excavation activities is anticipated to be many years. In addition to state and community acceptance of the proposed remedy, excavation and backfilling may require local building permits and local municipality input and approval. Excavation dewatering discharge would occur under existing or modified NPDES permit.

Based on the preliminary screening, CbR is retained for further consideration.

A1.13 Screened Corrective Measures Technologies Summary

A summary of the results of the corrective measures technologies screening is presented below in **Table A2**. The design and specific application of the retained technologies, either as stand-alone or part of a treatment train, will be crucial in the success of the corrective action.

Table A2 – Screened Corrective Measures Technologies

Potentially Applicable Technology	Status	Description/Overview						
No Action	Not retained as standalone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because it will not meet the established CAOs.						
Institutional Controls (ICs)	Retained as supplement to corrective measures alternatives	The use of ICs (i.e., Environmental Covenant, groundwater use restrictions, etc.) is retained as a useful technology. However, it is noted the ICs are not anticipated to be used as a stand-alone technology. Environmental Covenants, groundwater use restrictions, etc., are expected to be combined with other applicable technologies as part of corrective measures alternatives.						
Groundwater Monitoring (Assessment and Detection mode)	Retained as supplement to corrective measures alternatives	The use of groundwater monitoring (Assessment and/or Detection modes as appropriate) when combined with other applicable technologies as part of any proposed corrective measures alternative is retained to address the CAO and to track the effectiveness of the overall remedy However, it is not retained as a standalone technology.						
Hydraulic Containment	Retained	The use of hydraulic containment is retained because it is an effective means of preventing offsite migration of soluble contaminants. Hydraulic containment requires management and potential ex-situ treatment of extracted groundwater, so it is not a stand-alone technology. The Conceptual Site Model (CSM) will guide the design of any groundwater extraction system to optimize the total discharge of groundwater needed to provide hydraulic containment.						
Physical Containment	Retained	The use of physical containment is retained because it can be an effective means of managing groundwater flow. Physical containment often requires pairing with hydraulic containment and/or in-situ treatment (funnel and gate style) to manage the flux of groundwater flow into the system. The CSM will guide the design of any physical barrier system, but technology limitations increase the difficulty with scale.						
Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment technologies are retained as a way of removing contaminants from extracted groundwater from a hydraulic containment system. Ex-situ treatment may be paired with wastewater treatment, non-groundwater release treatment systems, or with permitted discharge manage groundwater contamination. The CSM and dat gaps investigations will guide the design of any ex-situ treatment						
In-situ Physical/Chemical Treatment	Not Retained	In-situ treatment technologies are ineffective for the Li						

Potentially Applicable Technology	Status	Description/Overview
Permeable Reactive Barriers (PRB)	Not Retained	The use of PRBs is not retained because in-situ treatment technologies are ineffective for Li.
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.
Other Source Control Technologies	Retained	Control of source area non-groundwater related releases. For the purposes of this groundwater ACM, management of non-groundwater releases are not included in the alternatives evaluation. Engineering measures, including leachate collection, lining of trenches and/or ponds, and other isolation methods are regarded as part of closure technologies selected by other means.

References: Technology descriptions referenced from 1) FRTR: Federal Remediation Technologies Roundtable, CLU-IN, and/or AECOM reference materials.

A2.0 CORRECTIVE MEASURES ALTERNATIVES

Corrective measures technologies from the initial screening and evaluation (see **Table A2**) were utilized to create corrective measures alternatives. Professional judgment was used to assemble technically efficient pairings of technologies for each corrective measures alternative in consideration of the range of site-specific COCs and concentrations.

The corrective measures alternatives typically incorporate the use of technologies that will require additional investigation needed to 1) finalize the alternative selection, 2) delineate the assumed corrective action areas, 3) provide for full-scale cost estimation and design, and 4) demonstrate alternative efficacy. To this end, data gaps will be identified and addressed as needed.

It should be emphasized that the technology screening and alternatives assembly employed for this ACM is qualitative in nature. The formal remedy selection process, in accordance with the CCR Rule 40 CFR Section 257.97, will begin following submission of the ACM Report. The subsequent remedy selection process will evaluate the following objectives for remedies, as required under Section 257.97(b):

- Protect human health and the environment;
- Attain the COC-specific GWPS as specified pursuant to Section 257.95(h);
- Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix IV constituents into the environment;
- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems (applicable to material releases only); and
- Comply with standards for management of wastes as specified in Section 257.98(d).

Assessment of Corrective Measures Non-Groundwater Releases Under the CCR Rule

GREEN STATION CCR LANDFILL GREEN STATION WEBSTER COUNTY, KENTUCKY

June 28, 2019

Prepared For:

Big Rivers Electric Corporation Sebree Generating Station 9000 Highway 2096 Robards, Kentucky 42452

Prepared by:

AECOM Technical Services

525 Vine Street Suite 1800 Cincinnati, Ohio 45202 Phone: (513) 651-3440 Fax: (877) 660-7727

Job Number: 60602364

CONTENTS

Secti	tion	Page
ACR	RONYMS	ا
EXEC	CUTIVE SUMMARY	1
1.0	INTRODUCTION	4
2.0	DESCRIPTION OF CURRENT CONDITIONS	5 5
	2.2 Site Investigation and Interim Measures	5
	2.2.2 Perimeter Seeps	
3.0	CORRECTIVE ACTION OBJECTIVE (CAO)	
4.0	TECHNOLOGY IDENTIFICATION	17
5.0	REFERENCES	19

List of Tables

- 1. July 2018 River Seep Sampling Results
- 2. April 2019 Northwest Seep Sampling Results
- 3. July 2018 Perimeter Seep Sampling Results
- 4. Potential Corrective Measures Options Technology Description/Overview

List of Figures

- 1. Site Location Map
- 2. Monitoring Well and Seep Location Map

List of Appendices

- A. Technical Memorandum River and Seep Sampling and Analysis, September 6, 2018
- B. Supplemental Boring Logs and Cross-Sections
- C. Northwest Seep Laboratory Analytical Results
- D. Landfill Perimeter Seeps Laboratory Analytical Results

ACRONYMS

ACM Assessment of Corrective Measures
AECOM AECOM Technical Services, Inc.

As Arsenic

BREC Big Rivers Electric Corporation
CAO Corrective Action Objectives

CbR Closure by Removal

CCR Coal Combustion Residuals
CFR Code of Federal Regulations

CiP Closure in Place

ft. amsl Feet above mean sea level

KAR Kentucky Administrative Regulations

KDoW Kentucky Division of Water

KPDES Kentucky Pollution Discharge Elimination

mg/L Milligrams per liter

PRB Permeable Reactive Barrier
TDS Total Dissolved Solids

USEPA United States Environmental Protection Agency

EXECUTIVE SUMMARY

AECOM Technical Services, Inc. (AECOM) was retained by Big Rivers Electric Corporation (BREC) to prepare an Assessment of Corrective Measures (ACM) to identify appropriate supplemental corrective measures for non-groundwater impacts from coal combustion residuals (CCR). The subject non-groundwater impacts are associated with seeps that are impacted from CCR that has been historically managed within the Green Station CCR Landfill (Green Landfill) at the Sebree Generating Station (Sebree Station), located near Sebree, Kentucky.

Pursuant to Title 40 of the Code of Federal Regulations (CFR) parts 257.90(d) and 257.84(b)(5), BREC initiated design of containment systems intended to reduce and prevent non-groundwater releases from reaching the Green River as an interim corrective measure. Plans for these measures have been submitted to the Kentucky Energy and Environment Cabinet (Cabinet) for review and comment. The Cabinet has adopted the federal CCR Rule by reference in Title 401 of the Kentucky Administrative Regulations (KAR) Chapter 46:110. Contracting for that work is complete and construction is scheduled to commence in 2019. This ACM is considering and evaluating whether additional remedial measures, that would be supplemental to the interim measures already planned, are warranted to address non-groundwater surface seeps. This ACM is also being coordinated with the ACM for groundwater at the facility.

The United States Environmental Protection Agency (USEPA) is in the process of clarifying the extent to which the assessment of corrective measures provisions of 40 CFR 257.96 apply to surface seeps. Specifically, USEPA announced in a litigation settlement it would remand for further comment the provision in the CCR Rule requiring entities to implement the rule's corrective action requirements for non-groundwater "releases" from CCR units. USEPA has proposed, but has not finalized, amendments to the rule to clarify the type and magnitude of non-groundwater releases that would require a facility to comply with some or all of the corrective action procedures in the CCR rule. USEPA confirmed that while the rule's general obligation to respond to releases from CCR units remains in place, the settlement sends a clear message that not all non-groundwater releases are subject to the rule's corrective action provisions and that the scope of non-groundwater releases subject to the rule's corrective action requirements will be resolved in the future rulemaking.

Consistent with USEPA guidance and 40 CFR 257.90(d) and 257.84(b)(5), BREC has, as noted above, proceeded with an initial containment project consisting of collection trenches, which have been designed, with the designs submitted to the Cabinet for review. Following additional seep sampling conducted in December 2018, BREC is also preparing this supplemental ACM to outline the potentially applicable remedial technologies should the interim corrective measures be insufficient to meet the corrective action objectives. This ACM is being presented even though the CCR Rule is not clear as to whether an ACM is required in these circumstances and the reconsideration rule has not been finalized.

Two types of non-groundwater releases have been identified through inspection and investigation of the site: river seeps and perimeter seeps. The occurrence and chemistry of the seeps was evaluated through observation and sampling as reported in memoranda and analytical reports appended herein. The character of the seepage water was compared to Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure identified in 401 KAR 10:031 Section 6. The samples largely exceeded the criteria for chloride, which became the basis for further investigation and corrective measures. Interim corrective measures to eliminate these non-groundwater seeps have been planned and are under way.

Because of their positions along the water ways where access is restricted, the river seep corrective measures involve the installation of interceptor trenches to capture seepage and route it to discharge via Kentucky Pollution Discharge Elimination (KPDES) permit. The river seep areas to be captured cover the

eastern seepage area adjacent to the Green River between monitoring wells MW-2 and MW-3A, and the northwestern seepage area located adjacent to ditch discharging to the Green River. These measures will commence in 2019, and are scheduled to be completed by the end of the year.

Perimeter seeps corrective measures similarly involve the containment and routing of seepage to permitted discharge, but because they are accessible at the surface, they are amenable to simple piping and ditch lining approaches. The perimeter seeps will be routed either to the North Pond, which will then discharge to the Green Surface Impoundment (KPDES Outfall 009), or the South Pond (KPDES Outfall 012), which will also be routed to the Green Surface Impoundment. The corrective measures will include cleaning and re-design of the South Pond to remove residual CCR material and to create lined sumps on either end to manage the seepage water separately from storm water. The corrective measures for the perimeter seeps are being coordinated with corrective measures to address groundwater impacts at the facility, which are discussed under a separate ACM for groundwater impacts (AECOM, June 13, 2019).

If the interim corrective measures currently under way are not adequate to meet the corrective action objectives, then the assessment of potential technologies identified herein, which follows the requirements of 40 CFR 257.96, will be reconsidered. 40 CFR 257.96(c) requires an ACM to include an analysis of the effectiveness of potential corrective measures in meeting the objectives for remedies identified under Section 257.97(b), by addressing at least the following:

- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination:
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

Several potential corrective measures technologies were evaluated in order to identify which ones could be carried forward as components of corrective measures alternatives. The results of the corrective measures technology evaluation are presented below:

Potentially Applicable Technology	Status	Description/Overview
No Action	Not retained as stand-alone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because it will not meet the established CAOs.
Hydraulic Containment	Retained	Hydraulic containment in the form of pumping of vertical or horizontal wells would potentially be used to provide spot control of seepage if the interim corrective measures are unable to fully capture the seepage.
Physical Containment	Retained	Physical containment in the form of a cutoff wall would potentially be used to re-direct or otherwise intercept seepage that was not adequately captured by the interim corrective measures.

Potentially Applicable Technology	Status	Description/Overview						
Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment is retained as a potential supplement to the interim corrective measures in the event that discharge via the station's KPDES permit is not possible.						
In-situ Physical/Chemical Treatment	Retained	In-situ treatment is retained in the form of spot treatment or fixation of seepage areas in the event that the interim corrective measures do not adequately address all seepage areas.						
Permeable Reactive Barriers (PRB)	Retained	The use of PRBs is retained in the form of a reactive cell in the event that interim measures result in seepage concentrations that require pre-treatment in-situ prior to discharge.						
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.						
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.						
Other Source Control Technologies	Retained	Control of source area non-groundwater releases is being implemented as interim corrective measures but is retained in the event that interim measures need to be evaluated for expansion.						

1.0 INTRODUCTION

The following report presents the Assessment of Corrective Measures (ACM) for non-groundwater impacts identified at the Big Rivers Electric Corporation (BREC) Green Station CCR Landfill (Green Landfill) at the Sebree Generating Station (Sebree Station) located near Sebree, Kentucky. The Green Landfill is identified as a coal combustion residuals (CCR) unit under the requirements of the United States Environmental Protection Agency (USEPA) regulations in Title 40 of the Code of Federal Regulations (CFR) Part 257 (CCR rule). The subject non-groundwater impacts are from surface seeps that are impacted by CCR constituents and that are not currently controlled by the station's Kentucky Pollution Discharge Elimination System (KPDES) permit.

Pursuant to 40 CFR 257.90(d) and 257.84(b)(5), BREC initiated design of containment systems intended to reduce and prevent non-groundwater releases from reaching the Green River as an interim corrective measure. Plans for these measures have been submitted to the Kentucky Energy and Environment Cabinet (Cabinet) for review and comment. The Cabinet has adopted the federal CCR Rule by reference in Title 401 of the Kentucky Administrative Regulations (KAR) Chapter 46:110. Contracting for that work is complete and construction is scheduled to commence in 2019. This ACM is considering and evaluating whether additional remedial measures, that would be supplemental to the interim measures already planned, are warranted to address non-groundwater surface seeps. This ACM is also being coordinated with the ACM for groundwater at the facility.

The United States Environmental Protection Agency (USEPA) is in the process of clarifying the extent to which the assessment of corrective measures provisions of 40 CFR 257.96 apply to surface seeps. Specifically, USEPA announced in a litigation settlement it would remand for further comment the provision in the CCR Rule requiring entities to implement the rule's corrective action requirements for non-groundwater "releases" from CCR units. USEPA has proposed, but has not finalized, amendments to the rule to clarify the type and magnitude of non-groundwater releases that would require a facility to comply with some or all of the corrective action procedures in the CCR rule. USEPA confirmed that while the rule's general obligation to respond to releases from CCR units remains in place, the settlement sends a clear message that not all non-groundwater releases are subject to the rule's corrective action provisions and that the scope of non-groundwater releases subject to the rule's corrective action requirements will be resolved in the future rulemaking.

Consistent with USEPA guidance and 40 CFR 257.90(d) and 257.84(b)(5), BREC has, as noted above, proceeded with an initial containment project consisting of collection trenches, which have been designed, with the designs submitted to the Cabinet for review. Following additional seep sampling conducted in December 2018, BREC is also conducting this supplemental ACM to outline the potentially applicable remedial technologies should the interim corrective measures be insufficient to meet the corrective action objectives. This ACM is being presented even though the CCR Rule is not clear as to whether an ACM is required in these circumstances and the reconsideration rule has not been finalized.

As described in Section 2, the character of seeps has been identified through a series of investigations and interim corrective measures have been planned and are underway. Sections 3 provides a description of the corrective action objective (CAO), while Section 4 provide a list of potential technologies. If the interim corrective measures currently under way are not adequate to meet the corrective action objectives, then an assessment of potential technologies that follows the requirements of 40 CFR 257.96 will be performed.

2.0 DESCRIPTION OF CURRENT CONDITIONS

This section provides information related to the current use of the Site, as well as the history of activities relevant to the non-groundwater ACM for the Green Landfill at Sebree Station.

2.1 Site Background

BREC owns and operates Sebree Station, which is a coal-fired power generating facility located on the Green River northeast of Sebree, Kentucky. Sebree Station is composed of Green Station and Reid/HMPL Station. The Sebree Station is bounded by Interstate-69 to the west and the Green River to the east (**Figure 1**). Reid Unit 1 (66 Megawatts) began commercial operation in 1966 and it will be converted from coal to natural gas in the future. The Reid Combustion Turbine (72 MW) was commercialized in 1976. HMPL Station 2, Units 1 (167 MW) and 2 (168 MW) began commercial operation in 1973 and 1974, respectively. Both HMP&L units were retired as of February 1, 2019. Green Station Units 1 (242 MW) and 2 (242 MW) began commercial operation in 1979 and 1981, respectively.

The location of the Green Landfill is illustrated on **Figures 1 and 2**. The Green Station CCR Landfill (Green Landfill) is located directly south of Sebree Station, situated south of the Green Station CCR Surface Impoundment. The Green Landfill is a Kentucky permitted landfill (Permit No. SW11700007) that currently receives special wastes generated by burning coal (CCRs) from Green Station. The landfill began receiving CCR wastes in 1980. The current Green Landfill footprint is approximately 170 acres.

The original ground surface within the landfill footprint was irregular and the dominant features were small stream valleys draining towards the Green River, which is located just east of the landfill; and towards Groves Creek, which is located just south of the landfill. There was also historic oil and gas production at and in the immediate vicinity of the Green Landfill. A review of the records from the Kentucky Geological survey showed that at or immediately adjacent to the Site, there were a number of dry exploratory oil/gas exploration holes, oil production wells, one gas production well, and one secondary recovery injection well. There were also former brine ponds at the Site. Most of these wells were abandoned in accordance with applicable regulations by BREC in 1997 and 1998. The last existing well was decommissioned in 2019.

2.2 Site Investigation and Interim Measures

Two types of non-groundwater releases have been identified through inspection and investigation of the site: river seeps and perimeter seeps as discussed below.

2.2.1 River Seeps

The river seeps are those found along the Green River and its tributary streams. Seeps have been observed on the bank of the river, on the slope between the river and the landfill perimeter road, and adjacent to a tributary stream on the northwest side of the Landfill.

Green River Seeps

An investigation of the river seeps was conducted in July 2018 as reported in a technical memorandum from AECOM to BREC dated September 6, 2018 (**Appendix A**). In this investigation, the banks of the Green River were surveyed by boat for evidence of seepage. Samples of seeps having visible flow were collected and tested for CCR indicator parameters (40 CFR 257 Appendix III), CCR constituents of concern (40 CFR 257 Appendix IV), and general chemistry parameters. The data from these analyses were used to evaluate whether individual seeps were likely associated with the Landfill. Three seeps

(RS-05, RS-07, and RS-08 as illustrated on **Figure 2**) were found to be similar to the chemistry of the Landfill (see **Table 1** below). Seeps RS-05 and -07 are located near the center of the Landfill between monitoring wells MW-2 and MW-3A. This is the same area in which seeps have been observed higher on the slope between the river and the perimeter road, suggesting that they have a similar origin. Seep RS-08 is located adjacent to the South Pond and appears to be tied to that unit.

The results of river seep sample testing were compared to Kentucky Water Quality criteria for warm water aquatic habitat identified in 401 KAR 10:031 Section 6. Where there are no Kentucky Water Quality criteria for a specific constituent, the USEPA Region 4 surface water screening values are listed for comparison. The Region 4 screening values are not compliance criteria, but rather values used to determine whether further evaluation is warranted. Samples from RS-05, -07 and -08 were found to exceed the 600 milligrams per liter (mg/L) limit for chloride. RS-05 also exceeded the current criteria for cadmium (0.00029 mg/L) and lead (0.0036 mg/L), but Kentucky has introduced a new cadmium criteria that may bring RS-05 back into compliance. Follow-up sampling conducted in December 2018 by KDEP and BREC confirmed the exceedance of the chloride criteria. Accordingly, this parameter (chloride) is regarded as the primary basis for further investigation and interim action.

The analytical results for the river seep samples are summarized in **Table 1** below. Presented in parallel with the river seep results are deep instream river samples that were collected immediately adjacent to the river seeps to characterize the river water quality that is most likely to be impacted by seepage. The deep samples were collected within 1 foot of the river bed within 3 to 5 feet of the water line. None of the river sample results exceed the water quality or screening criteria.

Options for interim measures were evaluated based on the site topographic setting, the character of the seepage, jurisdictional restrictions around the waterway, and operational logistics. Interception by french drain was selected as the most feasible and effective solution.

To evaluate the logistics of french drain installation, two investigations were conducted to probe the subsurface along in the area between the landfill and the river, creating a profile of the affected subsurface materials. The results of these investigations are in the form of boring logs and a cross section presented in **Appendix B**. These data indicate that the seepage occurs along a specific horizon 3.5 to 26 feet below the perimeter road surface. Accordingly, the french drain has been designed to intercept that horizon across the area of seepage, which covers roughly 1,000 feet between MW-2 and MW-3A. Contractors capable of installing the trench and appurtenant features have been identified and are being contracted for implementation of this interim measure in 2019. The drain is designed to intercept the seepage, thereby eliminating the source of the non-groundwater release. The intercepted water in the collector pipe at the base of the gravel-filled trench will be pumped to a collection sump and conveyed by underground pipe to the Green Surface Impoundment for disposal under the station's KPDES permit.

Table 1 – July 2018 River Seep Sampling Results

	Water	Laboratory Analytical Results (mg/L or pCi/L where noted)										
Parameter	Quality/Screening Criteria (mg/L) ¹	RS05	R03B	RS07	R02B	RS08	R01B					
Appendix III Con	stituents											
Boron	7.2 ^b	0.853 J	0.0235 J	1.46	0.0322 J	0.510 J	0.0252 J					
Calcium	116 ^b	916	32.6	1120	35.8	801	33.2					
Chloride	600 °	1670	5.59	1990	6.69	2040	4.52					
Fluoride	2.7 ^b	0.0795 J	0.0954 J	0.102J	0.0979 J	0.0915 J	0.105 J					
Sulfate	NE ^e	1170	28.9	1480	30.1	1440	28.3					
TDS ^a	NE ^e	5140	170	6080	170	5310	161					
Appendix IV Con	stituents											
Antimony	0.19 ^b	0.000366 J	0.000514 J	<0.000002	0.00106 J	0.00141 J	0.000476 J					
Arsenic	0.15 ^c	0.0192	0.00131 J	0.00182 J	0.00135 J	0.000404 J	0.00137 J					
Barium	0.22 ^b	0.718	0.0362 J	0.0605 J	0.0396 J	0.0443 J	0.0374 J					
Beryllium	0.011 ^b	0.000545 J	<0.002	<0.000002	<0.002	<0.002	<0.002					
Cadmium	0.00029 ^{d, †}	0.000563 J	<0.001	<0.000001	<0.001	<0.001	<0.001					
Chromium III/VI	0.074/0.011 ^b	0.0124	0.00119 J	0.000340 J	0.00155 J	0.000560 J	0.00143 J					
Cobalt	0.019 ^b	0.0327	0.0008 J	0.0218	0.000937 J	0.000691 J	0.000623 J					
Fluoride	2.7 b	0.0795 J	0.0954 J	0.102 J	0.0979 J	0.0915 J	0.105 J					
Lead	0.0036 ^d	0.0104	0.00166 J	0.000523 J	0.00199 J	0.000769 J	0.006					
Lithium	0.44 ^b	0.340	<0.05	0.772	<0.05	1.80	<0.05					
Mercury	0.00077 ^c	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002					
Molybdenum	0.8 b	0.00442 J	0.00103 J	0.00219 J	0.00145 J	0.00296 J	0.0013 J					

Note: Table continued on the following page

60602364 7 6/28/19

Table 1 - July 2018 River Seep Sampling Results (cont.)

	Water	Laboratory Analytical Results (mg/L or pCi/L where noted)											
Parameter	Quality/Screening Criteria (mg/L) ¹	RS05	R03B	RS07	R02B	RS08	R01B						
Radium 228	NE ^e	3.83 pCi/L	-0.197 pCi/L	0.831 pCi/L	0.417 pCi/L	0.983 pCi/L	-0.00993 pCi/L						
Radium 226+228	Radium 226+228 NE ^e		0.391 pCi/L	1.4 pCi/L	0.735 pCi/L	1.31 pCi/L	0.249 pCi/L						
Selenium	enium 0.005 ° 0.00121 J <0.01 <0.01		0.000636 J	<0.01	<0.01								
Thallium	0.006 ^b	0.000164 J	<0.001	<0.001	<0.001	<0.001	<0.001						

Notes:

- 1. Where a Kentucky Water Quality Criteria has not been adopted for a specific constituent, USEPA Region 4 Surface Water Screening Values are listed for comparison.
- a. TDS = total dissolved solids
- b. USEPA Region 4 Surface Water Screening Values for freshwater chronic exposure, updated August 2015.
- c. Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure (401 KAR 10:031)
- d. Calculated Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure using a water hardness value of 110 mg/L. (401 KAR 10:031)
- e. NE = not established.
- f. The Kentucky Water Quality Criteria for cadmium under 401 KAR 10:031 have been proposed for amendment under the 2018 Triennial Review by KDEP.
- J The analytical result is less than the reporting limit but greater than the method detection limit and is an approximate value.

Shaded cells = A result above Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure

Bold Text = A results above USEPA Region 4 Surface Water Screening Values

60602364 8 6/28/19

Northwest Seep

In April 2019, inspection of the Landfill site by the Kentucky Division of Waste Management and Kentucky Division of Water (KDoW) identified an area of seepage outside the perimeter road on the northwest side of the Landfill (See **Figure 2**). This seepage (herein identified as the NW seep) is adjacent to a ditch that flows eastward to an unnamed outfall for which a KPDES discharge permit has been applied for. The outfall was sampled by KDoW and BREC on April 2, 2019. The laboratory results from the April 2, 2019 sampling event are presented in **Appendix C** and summarized below in **Table 2**. A sample from this seep area (identified as sample 023) was collected by BREC personnel on April 11, 2019. The laboratory results from the April 11, 2019 sampling event are presented in **Appendix C** and summarized below in **Table 2**. The results indicate that the seep sample exceeded Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure for chloride and cadmium (until the proposed cadmium criteria is adopted as noted in Section 2.1 above). Therefore, the area will be subject to interim corrective measures.

The NW seep appears to be emanating from a horizon in or above a natural limestone ledge adjacent to the ditch (see photographs below on the following pages). This conclusion is based on the observation of natural springs of groundwater upstream from the seep that clearly flows from fractures in the ledge. A series of three soil borings drilled between the landfill and the NW seep area in May 2019 further suggest the seepage is controlled by this feature.

A trench drain similar to the interim measure being designed for the east side of the Green Landfill was selected as the most feasible and effective interim solution. Accordingly, the trench drain is being designed for implementation in 2019. The trench will be backfilled with gravel and constructed with a sump to pump the intercepted water for underground conveyance to the Green Surface Impoundment for discharge under the station's KPDES permit. Interception via the drain is expected to eliminate this discharge of impacted seep water.

Table 2 - April 2019 Northwest Seep Sampling Results

	Water	Laboratory Analytical Result	s (mg/L or pCi/L where noted)
Parameter	Quality/Screenin g Criteria (mg/L) ¹	023 April 11, 2019	SW-Culvert-1 April 2, 2019
Appendix III C	onstituents		
Boron	7.2 ^b	0.626 J	<1.0
Calcium	116 ^b	488	203
Chloride	600 ^c	864	344
Fluoride	2.7 ^b	0.0356 J	<0.2
Sulfate	NE ^e	548	401
TDS ¹	NE ^e	2850	Not analyzed
Appendix IV C	onstituents		
Antimony	0.19 ^b	0.0000690 J	<0.005
Arsenic	0.15 ^c	0.000759 J	<0.01
Barium	0.22 ^b	0.0557 J	0.043
Beryllium	0.011 ^b	<0.002	<0.02
Cadmium	0.00029 ^{d, f}	0.000411 J	<0.001
Chromium	0.074/0.011 ^b	0.00281 J	<0.02
Cobalt	0.019 ^b	0.000450 J	<0.04
Fluoride	2.7 ^b	0.0356 J	<0.2
Lead	0.0036 ^d	0.000140 J	<0.002
Lithium	0.44 ^b	0.766	0.11
Mercury	0.00077 ^c	<0.0002	<0.0005
Molybdenum	0.8 ^b	0.0110	<0.1
Radium 226	NE ^e	Not analyzed	Not analyzed
Radium 228	NE ^e	Not analyzed	Not analyzed
Radium 226+228	NE ^e	Not analyzed	Not analyzed
Selenium	0.005 ^c	<0.01	<0.03
Thallium	0.006 ^b	0.0000670 J	0.0001 J

Notes:

- 1. Where a Kentucky Water Quality Criteria has not been adopted for a specific constituent, USEPA Region 4 Surface Water Screening Values are listed for comparison.
- a. TDS = total dissolved solids
- b. USEPA Region 4 Surface Water Screening Values for freshwater chronic exposure, updated August 2015.
- c. Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure (401 KAR 10:031)
- d. Calculated Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure using a water hardness value of 110 mg/L. (401 KAR 10:031)
- e. NE = not established.
- f. The Kentucky Water Quality Criteria for cadmium under 401 KAR 10:031 have been proposed for amendment under the 2018 Triennial Review by KDEP.

J The analytical result is less than the reporting limit but greater than the method detection limit and is an approximate value. Shaded cells = A result above Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure **Bold Text** = A results above USEPA Region 4 Surface Water Screening Values

Photo 1: The NW Seep as observed on April 9, 2019.

Photo 2: Bedrock outcrop located west of the NW Seep as observed on April 9, 2019.

2.2.2 Perimeter Seeps

During the July 2018 investigation of River Seeps, the area inside the Landfill perimeter road was also inspected for seeps. Four areas of seepage were identified (see **Figure 2**): along the west side of the landfill (LS-01), the southwest corner (LS-04), the south end adjacent to the South Pond (LS03), and the east side north of MW-2 vicinity (LS02). LS-01, LS-03, LS-04 are directed to the South Pond. LS-02 is directed to the North Pond.

Samples of a select set of these perimeter seeps were collected in July 2018 and tested for the Appendix III, Appendix IV, and general chemistry parameters. The laboratory analytical results are presented in **Appendix D** and summarized below in **Table 3**. The results indicate that these samples exceed Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure for chloride, arsenic, cadmium, and selenium. These seeps do not directly discharge to surface waters, but have the potential to influence groundwater and non-groundwater releases, so they are being addressed by interim corrective measures to manage those potentials.

Table 3 - July 2018 Perimeter Seep Sampling Results

	Water	L	Laboratory Analytical Results (mg/L)								
Parameter	Quality/Screening Criteria (mg/L) ¹	LS01	LS02	LS03	LS04						
Appendix III Cor	nstituents										
Boron	7.2 ^b	1.15	2.92	2.49	0.799 J						
Calcium	116 ^b	1210	1030	2250	1750						
Chloride	600 ^c	2090	1710	4370	2710						
Fluoride	2.7 ^b	1.68	1.19	0.269 J	1.53						
Sulfate	NE ^e	1580	1500	2080	1490						
TDS ¹	NE ^e	8560	7080	12400	10100						
Appendix IV Cor	nstituents										
Antimony	0.19 ^b	0.00432	0.00218	0.0000610 J	0.00470						
Arsenic	0.15 ^c	0.364	0.126	0.00176 J	0.300						
Barium	0.22 ^b	0.0666 J	0.0627 J	0.140 J	0.101 J						
Beryllium	0.011 ^b	<0.002	<0.002	<0.002	<0.002						
Cadmium	0.00029 d, t	<0.001	0.000464 J	0.000279 J	0.000161 J						
Chromium	0.074/0.011 ^b	<0.003	< 0.003	< 0.003	< 0.003						
Cobalt	0.019 ^b	0.0000370 J	0.000115 J	0.000321 J	<0.005						
Fluoride	2.7 ^b	1.68	1.19	0.269 J	1.53						
Lead	0.0036 ^d	0.000239 J	0.000247 J	0.000215 J	0.0000730 J						
Lithium	0.44 ^b	3.11	2.85	7.19	4.07						
Mercury	0.00077 ^c	0.000372	0.000167 J	<0.0002	0.000539						
Molybdenum	0.8 ^b	0.0925	1.78	0.792	0.214						
Radium 226	NE ^e	0.656 pCi/L	0.658 pCi/L	1.41 pCi/L	0.897 pCi/L						
Radium 228	NE ^e	0.851 pCi/L	0.507 pCi/L	0.136 pCi/L	0.873 pCi/L						
Radium 226+228	NE ^e	1.51 pCi/L	1.16 pCi/L	1.54 pCi/L	1.77 pCi/L						
Selenium	0.005 ^c	0.00781 J	0.0103	0.00163 J	0.0103						
Thallium	0.006 ^b	<0.001	<0.001	<0.001	<0.001						

Notes:

- 1. Where a Kentucky Water Quality Criteria has not been adopted for a specific constituent, USEPA Region 4 Surface Water Screening Values are listed for comparison.
- a. TDS = total dissolved solids
- b. USEPA Region 4 Surface Water Screening Values for freshwater chronic exposure, updated August 2015.
- c. Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure (401 KAR 10:031)
- d. Calculated Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure using a water hardness value of 110 mg/L.
 (401 KAR 10:031)
- e. NE = not established.
- f. The Kentucky Water Quality Criteria for cadmium under 401 KAR 10:031 have been proposed for amendment under the 2018 Triennial Review by KDEP.
- J The analytical result is less than the reporting limit but greater than the method detection limit and is an approximate value.

Shaded cells = A result above Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure **Bold Text** = A results above USEPA Region 4 Surface Water Screening Values

Interim corrective measures for the perimeter seeps are being planned in a phased approach. The first step is to provide conveyance of the seepage to either the South Pond or to the North Pond, both of which are routed to the Green Surface Impoundment. Removing them from stormwater channels will prevent mixing with impounded stormwater. The use of the South Pond requires re-lining so that the seepage does not have the potential to infiltrate to groundwater. Partial re-lining of the South Pond is also proposed in the corrective measures planned for groundwater impact, which is the subject of a separate ACM. The re-design of the South Pond involves removal of any sludge and creation of two lined sump areas, one on the east end to collect the South and East perimeter seeps and one on the west end to collect Southwest corner perimeter seeps.

3.0 CORRECTIVE ACTION OBJECTIVE (CAO)

As noted in Section 2, non-groundwater releases have been identified, characterized, and interim corrective measures are being planned and implemented. The site-specific Corrective Action Objective (CAO) for non-groundwater releases is to meet the following objectives under the CCR Rule:

- Protect human health and the environment:
- Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix III and IV constituents into the environment;
- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems (applicable to material releases only); and
- Comply with standards for management of wastes.

Together, these requirements comprise the site-specific CAO. The interim corrective measures described in Section 2 are expected to meet these objectives. Should any further measures be required, these same objectives will be applied.

3.1 Assessment of Interim Corrective Measure Ability to meet CAO

The Interim Corrective Measure being implemented in 2019 is designed to capture river seepage and divert it to KPDES outfalls, eliminating any potential exposure to public health or the environment. It is anticipated that the Interim Corrective Measure will meet the CAOs by effectively eliminating any future river seepage through source control, and as a result, no supplemental remedies are warranted at this time. Performance monitoring will be performed after the Interim Corrective Measure is constructed to demonstrate source control and evaluate the ability of the measure to meet the CAO. If warranted based on performance monitoring results, additional evaluation of supplemental corrective measures will be performed consistent with 40 CFR 257.98(b).

4.0 TECHNOLOGY IDENTIFICATION

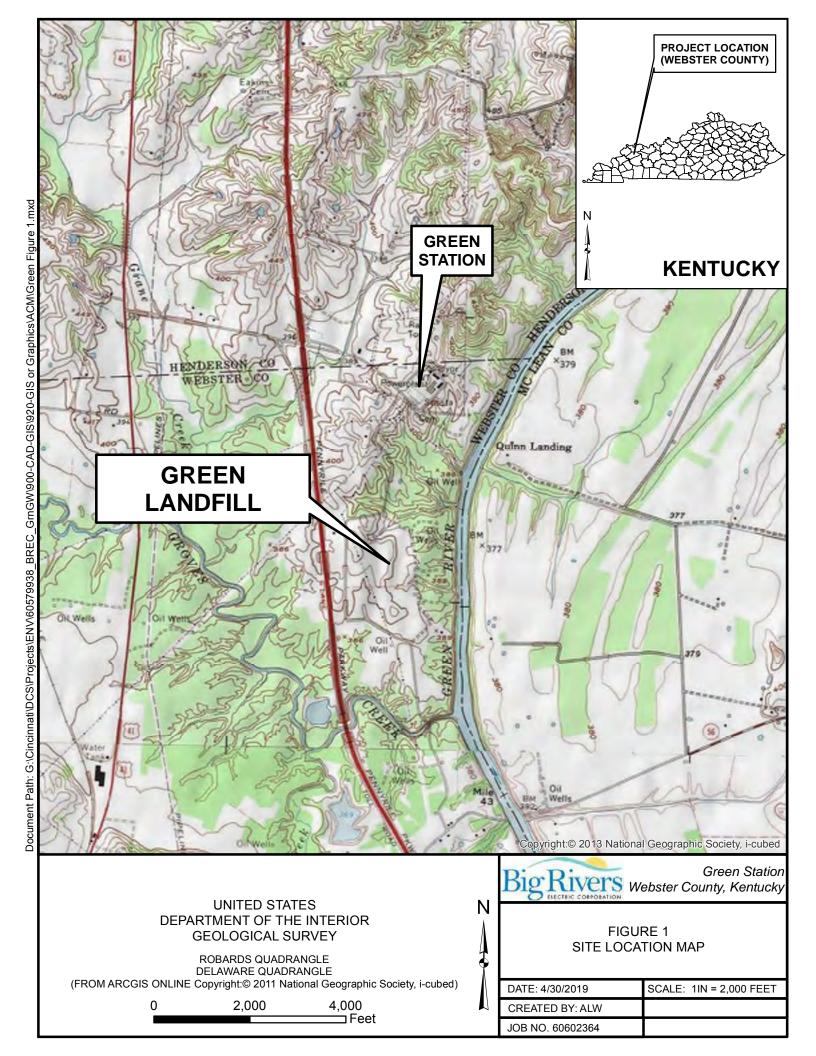
As required under the CCR Rule, source control is a first line of corrective measures. In adherence with the BREC's permit conditions, the Site will continue to operate as a solid waste disposal facility through its life cycle and will be closed in accordance with the requirements of the permit. Source control through landfill closure will include installation of final cover that will prevent infiltration and contribute to groundwater quality restoration. Control of groundwater impacts associated with the Green Landfill is also planned and is described in a separate, concurrent ACM.

The identification of potentially applicable supplemental corrective measures technologies for the subject seeps impacted by CCR at the Green Landfill is presented in **Table 4** below.

Table 4 - Potential Corrective Measures Options Technology Description/Overview

Potentially Applicable Technology	Status	Description/Overview					
No Action	Not retained as stand-alone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because by itself, it will not meet the established CAOs.					
Hydraulic Containment	Retained	Hydraulic containment in the form of pumping of vertical or horizontal wells would potentially be used to provide spot control of seepage if the interim corrective measures are unable to fully capture the seepage.					
Physical Containment	Retained	Physical containment in the form of a cutoff wall would potentially be used to re-direct or otherwise intercept seepage that was not adequately captured by the interim corrective measures.					
Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment is retained as a potential supplement to the interim corrective measures in the event that discharge via the station's KPDES permit is not possible.					
In-situ Physical/Chemical Treatment	Retained	In-situ treatment is retained in the form of spot treatment or fixation of seepage areas in the event that the interim corrective measures do not adequately address all seepage areas.					
Permeable Reactive Barriers (PRB)	Retained	The use of PRBs is retained in the form of a reactive cell in the event that interim measures result in seepage concentrations that require pre-treatment in-situ prior to discharge.					
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.					
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.					

Potentially Applicable Technology	Status	Description/Overview
Other Source Control Technologies	Retained	Control of source area non-groundwater releases is being implemented as interim corrective measures but is retained in the event that interim measures need to be evaluated for expansion.


If the interim corrective measures currently under way are not adequate to meet the corrective action objectives, then an assessment of additional potential technologies that follows the requirements of 40 CFR 257.96 will be revisited.

- 40 CFR 257.96(c) requires an ACM (if/when performed) to include an analysis of the effectiveness of potential corrective measures in meeting the objectives for remedies identified under Section 257.97(b), by addressing at least the following:
- (1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- (2) The time required to begin and complete the remedy;
- (3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

5.0 REFERENCES

- AECOM, 2018. Annual Groundwater Monitoring and Corrective Action Report, 2016-2017; Green Station CCR Landfill, Webster County, Kentucky.
- AECOM, 2019. Annual Groundwater Monitoring and Corrective Action Report, 2018; Green Station CCR Landfill, Webster County, Kentucky.
- EPA, 40 CFR Part 257. [EPA-HQ-RCRA-2015-0331; FRL-9928-44-OSWER]. RIN-2050-AE81. Technical Amendments to the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities—Correction of the Effective Date. Federal Register / Vol. 80, No. 127 / Thursday, July 2, 2015 / Rules and Regulations.
- EPA, 40 CFR Part 257. [EPA-HQ-OLEM-2017-0286; FRL-9973-31-OLEM]. RIN-2050-AG88. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Amendments to the National Minimum Criteria (Phase One); Proposed Rule. Federal Register / Vol. 83, No. 51 / Thursday, March 15, 2018 / Proposed Rules.

Appendix A

Technical Memorandum – River and Seep Sampling and Analysis, September 6, 2018

Technical Memorandum

Date: September 6, 2018

Mr. Tom Shaw, Ph.D., Big Rivers Electric Corporation

To: Managing Director Environmental

From: Dennis Connair, Principal Geologist, AECOM

Subject: River and Seep Sampling and Analysis

Green Landfill Sebree Station

Big Rivers Electric Corporation

Purpose

On behalf of Big Rivers Electric Corporation, AECOM prepared the following technical memorandum to document the activities and results of water sampling conducted along the Green River near the Big Rivers Electric Corporation (BREC) Sebree Station in Webster County, Kentucky. Sampling and analysis was conducted to identify the character of water quality of the river and of water seeping from the river bank in the vicinity of the station's coal combustion residuals (CCR) Green landfill.

ACTIVITIES AND OBSERVATIONS

Water samples were collected on July 12 and July 13, 2018 by AECOM staff Chris Davis and Dennis Connair. Sampling locations were accessed using a johnboat provided by BREC and piloted by BREC staff. Weather conditions at the time of sampling were hot and sunny with little wind. The Green River was near its pool stage at an approximate elevation of 350 feet mean sea level (msl) based on observations on site and data available from the USGS stream gauging station on the Green River at Lock #1 near Spottsville, Kentucky. The river stage had peaked close to 358 feet msl on June 27, 2018 and had steadily declined to July 12, 2018, exposing the river bank and the sampled seepage points.

River Sampling

River samples were collected on July 12, 2018 at four locations identified on Figure 1. Coordinates for each point (Table 1) were measured using a hand-held global positioning system (GPS) unit with submeter accuracy.

- Sample R01 was collected near the west bank of the river upstream of Groves Creek. This location was selected as being outside the potential influence of the landfill.
- Sample R02 was collected near the west bank of the river adjacent to seep number RS07, which is elsewhere referred to as the "Area 6" seep.
- Sample R03 was collected near the west bank of the river adjacent to seep number RS05, which is elsewhere referred to as the "Area 8" seep.

- Sample R04 was collected near the west bank of the river adjacent to the downstream end of the landfill footprint (no adjacent seep).

At each of the four locations, river samples were collected three to five feet from the water line at two depths.

- A shallow sample was collected by dipping a laboratory-supplied clean container and filling the requisite (pre-preserved or unpreserved) sample bottles (see photo #1, Attachment 1).
- A deeper sample was collected from within 12 inches of the river bottom using a "Van Dorn" style sampling device (see photo #2, Attachment 1) and decanting the aliquot to the requisite (pre-preserved or unpreserved) sample bottles.

Field measurements of temperature, pH, specific conductance, and oxidation reduction potential (ORP) were collected from the shallow sample locations and recorded in field notes as reported on Table 1. Field data sheets for the river samples are provided as Attachment 2.

All filled sample containers were appropriately labeled and placed in ice-filled coolers and notes regarding sample time, staff, and conditions were recorded. The samples were later repackaged for shipment and the chain-of-custody form completed prior to shipment by overnight service to the analytical laboratory (TestAmerica in Nashville, Tennessee). All samples were tested for the Appendix III and IV parameters under the federal CCR rule in addition to select ionic constituents used for general chemical characterization (alkalinity, magnesium, potassium, and sodium).

Seep Sampling

River bank seeps were identified at sixteen discrete locations in the vicinity of the station as indicated by the "RS" symbols on Figure 1. Coordinates for each point (Table 1) were measured using a handheld global positioning system (GPS) unit with sub-meter accuracy. Characterization and sampling of the seeps was conducted on July 12 and July 13, 2018. Field data sheets for the river bank seep locations are provided as Attachment 3.

Seeps were recorded at locations on both the east and west banks of the river over two miles upstream of the landfill footprint and over 1.5 miles downstream of the landfill footprint. Some seeps appeared to potentially be associated with a surface water drainage feature, such as RS11 where there appears to be a beaver pond beyond the river bank, but most emanated from otherwise nondescript sections of river bank.

The observed seeps can generally be described as soft, wet areas of river bank sediment between the river water line and three to six feet higher. The seeps occupy between approximately 5 and 150 feet of bank at each location. Some of the seeps had visibly flowing water, but most had a slow enough flow that, if there was free water visible at the surface, the water was not moving. Most of the seeps had some measure of orange-colored iron bacteria growth and some had a green growth. Photographs of the seeps are included as Attachment 1.

The volume of water seeping at each location ranged from imperceptible up to one or two gallons per minute cumulatively. Seep samples were collected using a transfer container (new plastic cup) to fill the laboratory bottles and to collect field measurements of temperature, pH, specific conductance, and ORP. Where sufficient flow was available, the sample was directly dipped from the seep stream. Where flow was insufficient, a shallow trench (1-3 inches deep) in the sediment was excavated to allow water to accumulate so that it could be dipped over a period estimated to be up to 15 minutes.

All filled sample containers were appropriately labeled and placed in ice-filled coolers and notes regarding sample time, staff, and conditions were recorded. The samples were later repackaged for

shipment and the chain-of-custody form completed prior to shipment by overnight service to the analytical laboratory (TestAmerica in Nashville, Tennessee). All samples were tested for the Appendix III and IV parameters under the federal CCR rule in addition to select ionic constituents used for general chemical characterization (alkalinity, magnesium, potassium, and sodium). Laboratory reports are provided as Attachment 4.

FINDINGS

Analytical results for the river and seep sample field and laboratory analyses are summarized on Table 1. The results are organized from upstream to downstream (left to right columns). A chart illustrating the distribution of key Appendix III and Appendix IV concentrations, also organized from upstream to downstream, is presented on Figure 2.

The river samples were all moderately turbid and some of the seep samples were highly turbid due to their collection from the soft sediments, but all laboratory results appear to conform to applicable quality assurance guidelines.

TABLE 1

CCR ANALYTICAL SUMMARY RIVER SEEP AND RIVER SAMPLE EVALUATION

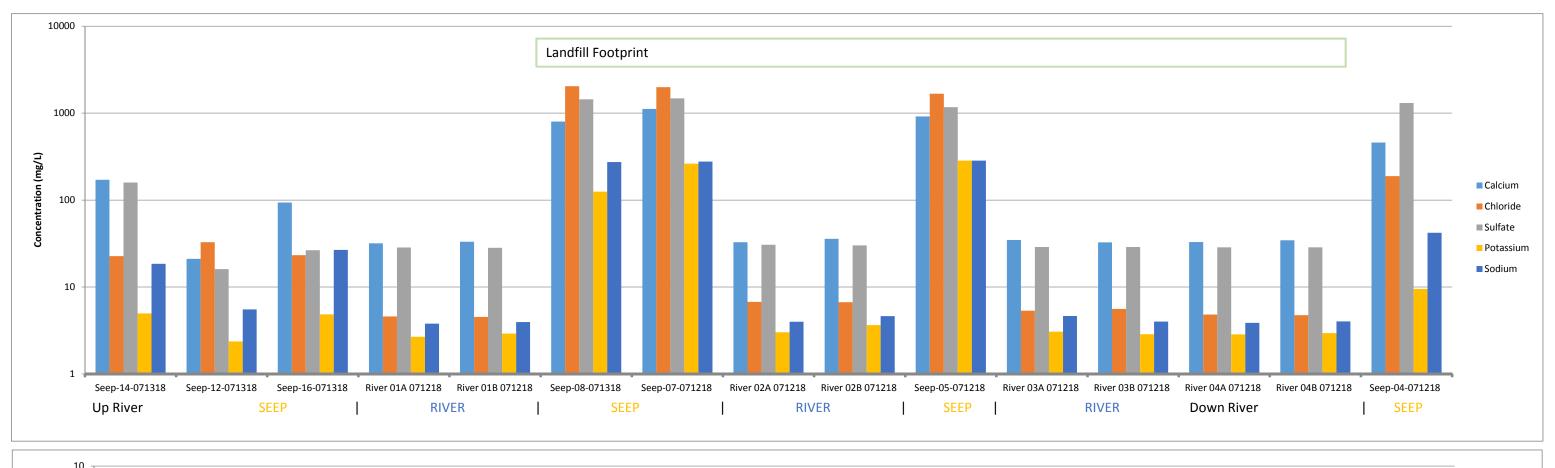
JULY 2018

BIG RIVERS ELECTRIC CORPORATION GREEN STATION LANDFILL WEBSTER COUNTY, KENTUCKY

			Water Qua	ality Criteria ((mg/L)	River Seep-14-	River Seep-12-	RiverSeep-16-	River 01A	River 01B	RiverSeep-08-	RiverSeep-07-	River 02A	River 02B	RiverSeep-05-	River 03A	River 03B	River 04A	River 04B	River-Seep-04-
	PRIMARY MCL	Human H	Health	Warm Wa	ater Aquatic Habitat	71318	71318	71318	71218	71218	71318	71218	71218	71218	71218	71218	71218	71218	71218	71218
Field Parameters	and CCR LIMITS	Domestic Water Supply Source	Fish	Acute	Chronic	Lat 37.661126 Long -87.4894	Lat 37.61732 Long -87.4936	Lat 37.62167 Long -87.4967	Lat 37.64610 Long -87.5059	Lat 37.64610 Long -87.5059	Lat 37.62860 Long -87.5003	Lat 37.63299 Long -87.5003	Lat 37.63303 Long -87.5002	Lat 37.63303 Long -87.5002	Lat 37.63433 Long -87.5003	Lat 37.63433 Long -87.5002	Lat 37.63433 Long -87.5002	Lat 37.63789 Long -87.5004	Lat 37.63789 Long -87.5004	Lat 37.64122 Long -87.4997
pH (Field Measurement) SU	NA					7.54	7.37	7.46	7.94	7.94	7.09	7.27	7.91	7.91	6.92	7.94	7.94	7.86	7.86	5.13
pH (Lab Measurement) SU	NA					8.14	8.00	8.40	7.64	7.62	8.16	8.01	7.45	7.50	7.95	7.50	7.51	7.52	7.53	5.26
Conductivity (µmhos/cm)	NA					1207	226.2	654	268	268	7674	7715	267.7	267.7	6174	262.2	262.2	265.1	265.1	2545
Temperature (°F)	NA					88.34	84.0	91.58	82.9	82.9	70.52	79.7	84.2	84.2	94.28	84.2	84.2	82.6	82.6	71.6
Oxidation-Reduction Potential	I (m NA					-92	-98	-48	131	131	29	-123	98	98	-137	133	133	133	133	125
APPENDIX III CONSTITUENT	rs																			
Boron	NA					0.0694	J 0.0379 J	0.0321	J 0.0281	J 0.0252 J	0.510 J	1.46	0.0323	J 0.0322 J	0.853 J	0.0251 J	0.0235	J 0.0229	J 0.0234 J	2.19
Calcium	NA					171	21.1	93.8	31.8	33.2	801	1120	32.8	35.8	916	34.8	32.6	32.9	34.5	460
Chloride	NA	250	-	1200	600	22.7	32.7	23.2	4.58	B 4.52 B	2040	1990	6.75 E	6.69 B	1670	5.33 B	5.59	B 4.83	B 4.75 B	189
Fluoride	4 mg/L	4	-	-	-	0.144	J 0.0803 J	0.177	J 0.111	J 0.105 J	0.0915 J	0.102 J	0.0958	J 0.0979 J	0.0795 J	0.100 J	0.0954	J 0.0948	J 0.0945 J	0.239 J F1
Sulfate	NA	250	-	-	-	159	B 16.1 B	26.5 E	3 28.5	28.3	1440 B	1480 B	30.6	30.1	1170 B	28.8	28.9	28.6	28.6	1310 B
Total Dissolved Solids	NA	250	-	-	-	790	157	504	169	161	5310	6080	173	170	5140	175	170	174	156	2130
APPENDIX IV CONSTITUENT	rs																			
Antimony	0.006 mg/L	0.0056	0.64	-	-	0.000312	J 0.000499 J	0.000270	J 0.000591	JB 0.000476 JB	0.00141 J	ND	0.00276 E	0.00106 JE	0.000366 J	0.000571 JB	0.000514	JB 0.000504	JB 0.000360 JB	0.000200 J
Arsenic	0.01 mg/L	0.01	-	0.340	0.150	0.0173	0.00467 J	0.0247	0.00124	J 0.00137 J	0.000404 J	0.00182 J	0.00131	J 0.00135 J	0.0192	0.00126 J	0.00131	J 0.00118	J 0.00109 J	0.00188 J
Barium	2 mg/L	1	-	-	-	0.242	0.0757 J	0.190	J 0.0330	J 0.0374 J	0.0443 J	0.0605 J	0.0350	J 0.0396 J	0.718	0.0366 J	0.0362	J 0.0382	J 0.0402 J	0.0384 J
Beryllium	0.004 mg/L	0.004	-	-	-	0.000497	J 0.000145 J	0.000211	J ND	ND	ND	ND	ND	ND	0.000545 J	ND	ND	ND	ND	0.00372
Cadmium	0.005 mg/L	0.005	-	0.00235	0.00029	0.000312	J 0.000183 J	0.000196	J ND	ND	ND	ND	ND	ND	0.000563 J	ND	ND	ND	ND	0.00307
Chromium	0.1 mg/L	0.1	-	-	-	0.00969	0.00200 J	0.00383	0.000676	J 0.00143 J	0.000560 J	0.000340 J	0.00111	J 0.00155 J	0.0124	0.00112 J	0.00119	J 0.00134	J 0.00105 J	0.00386
Cobalt	0.006 mg/L					0.0125	0.00581	0.00613	0.000401	J 0.000623 J	0.000691 J	0.0218	0.000730	J 0.000937 J	0.0327	0.000934 J	0.000800	J 0.000841	J 0.000738 J	0.0447
Fluoride	4 mg/L	4	-	-	-	0.144	J 0.0803 J	0.177	J 0.111	J 0.105 J	0.0915 J	0.102 J	0.0958	J 0.0979 J	0.0795 J	0.100 J	0.0954	J 0.0948	J 0.0945 J	0.239 J F1
Lead	0.015 mg/L	0.015	-	0.092	0.0036	0.0109	0.00221 J	0.00521	0.000994	JB 0.00600 B	0.000769 J	0.000523 J	0.00125 J	B 0.00199 JE	0.0104	0.00115 JB	0.00166	JB 0.00141	JB 0.00147 JB	0.00507
Lithium	0.040 mg/L					0.0126	J ND	ND	ND	ND	1.80	0.772	ND	ND	0.340	ND	ND	ND	ND	0.0209 J
Mercury	0.002 mg/L	0.002	0.000051	0.0014	0.00077	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Molybdenum	0.1 mg/L					0.00550	J 0.000948 J	0.00878	J 0.00217	J 0.00130 J	0.00296 J	0.00219 J	0.00222	J 0.00145 J	0.00442 J	0.00105 J	0.00103	J 0.00101	J 0.000981 J	ND
Radium 226	5 pCi/L	5 pCi/L				NS	1.17	NS	0.417	0.249 U	1.31	1.4	0.554	0.735	7.64	0.404 U	0.391	U 0.544	0.423 U	1 48
Radium 228	3 po//L	3 pc//L				ING	1.17	INS	0.417	0.249 0	1.31	1.4	0.554	0.733	7.04	0.404 0	0.591	0.544	0.423 0	1.40
Selenium	0.05 mg/L	0.17	4.2	-	0.005	0.000582	J ND	0.000906	J ND	ND F2	ND	ND	0.000423	J 0.000636 J	0.00121 J	ND	ND	0.000402	J ND	0.00216 J
Thallium	0.002 mg/L	0.00024	0.00047	-	-	0.000126	J ND	ND	0.0000500	J ND	ND	ND	ND	ND	0.000164 J	ND	ND	ND	ND	ND
IONIC CONSTITUENTS																				
Total Alkalinity	NA					443	38.2	393	85.6	85.6	174	87.7	85.7	85.8	229	86.1	86.4	80.9	85.8	ND
Hardness (as mg/L of CaCO3))** NA					578	74	318	106	110	3198	3010	108	117	2608	115	108	109	114	1411
Magnesium	NA					36.6	5.20	20.3	6.41		291	51.8	6.32	6.76	77.8	6.87	6.41	6.45	6.73	63.6
Potassium	NA					4.96	2.37	4.85	2.68	2.91	125	262	3.01	3.65	285	3.06	2.87	2.85	2.95	9.51
Sodium	NA					18.5	5.52	26.7	3.79	3.95	274	277	3.98	4.63	285	4.64	4.01	3.87	4.02	42.1

*All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

Na = Not available
pCi/L = picoCuries per Liter
SU = Standards units
purbos/cm = microSiems per centimeter
"F = Degrees Fahrenheit
m/ = millivolts
ND = Not detected above the Method Detection Limit
J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
B = Compound was found in the blank and sample.
F1 = MS and/or MSD Recovery is outside acceptance limits.
NM = Not measured


NM = Not measured
U = Result is less than the sample detection limit

Note: River "A" samples collected from surface River "B" samples collected <1 foot above river bed

** The water hardness is using American degree equivalent to mg/L. Water hardness(mg/L)=Ca(mg/L)×2.497 + Mg(mg/L)×4.118

Constituent	KY Acute Warm Water Habitat Equation	Hardness (mg/L CaCO ₃)	Hardness** (mg/L CaCO ₃)	
		50	110	
		Criterion	Criterion	
		(ug/L)	(ug/L)	
Cadmium	Criterion = e(1.0166 (In Hard*)-3.924)	1.05	2.35	
Lead	Criterion = e(1.273 (In Hard*)-1.460)	34	92	
		Handasas	114**	
		Hardness	Hardness**	
Constituent	KY Chronic Warm Water Habitat	(mg/L CaCO ₃)	(mg/L CaCO ₃)	
Constituent	KY Chronic Warm Water Habitat Equation	(mg/L CaCO ₃)	(mg/L CaCO ₃)	
Constituent		(mg/L CaCO ₃) 50 Criterion	(mg/L CaCO ₃) 110 Criterion	
	Equation	(mg/L CaCO ₃) 50 Criterion (ug/L)	(mg/L CaCO ₃) 110 Criterion (ug/L)	
		(mg/L CaCO ₃) 50 Criterion	(mg/L CaCO ₃) 110 Criterion	
Constituent Cadmium Lead	Equation	(mg/L CaCO ₃) 50 Criterion (ug/L)	(mg/L CaCO ₃) 110 Criterion (ug/L)	

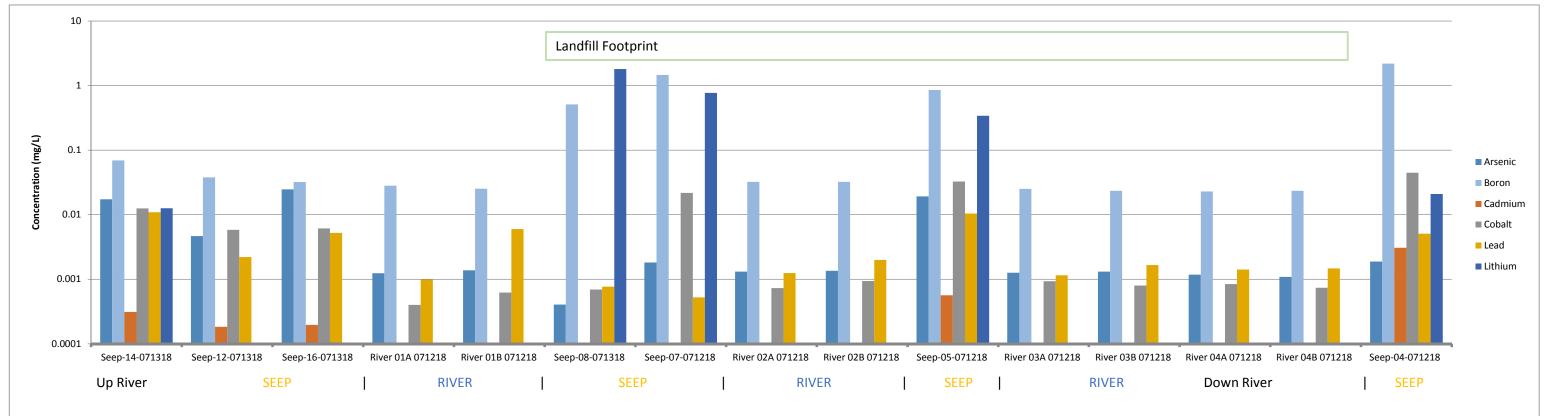


FIGURE 2 CCR ANALYTICAL SUMMARY - GREEN STATION LANDFILL RIVER SEEP AND RIVER SAMPLE EVALUATION, JULY 2018

Facility Name: Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No. 1

Date: 07/12/18

Direction Photo

Taken:

West

Description:

R02 location – River surface water sample.

Photo No.

Date: 07/12/18

Direction Photo

Taken:

West

Description:

R01 location – "Van Dom" style sampling device

Facility Name: Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No.

3

Date: 07/12/18

Direction Photo

Taken:

Southeast

Description:

RS01 - River Seep 01

No sample collected due to insufficient volume

Photo No.

4

Date: 07/12/18

Direction Photo Taken:

Description:

RS02 - River Seep 02

No sample collected due to insufficient volume

Facility Name:

Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No.

Date: 07/12/18

Direction Photo

Taken:

Southeast

Description:

RS03 - River Seep 03

No sample collected due to insufficient volume

Field parameters collected

Photo No.

No. Date: 07/12/18

Direction Photo

Taken:

West

Description:

RS04 - River Seep 04

Facility Name: Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No.

7

Date: 07/12/18

Direction Photo

Taken:

West

Description:

RS05 - River Seep 05

Sample collected

Photo No.

8

Date: 07/12/18

Direction Photo

Taken:

West

Description:

RS06 - River Seep 06

No sample collected due to insufficient volume

Facility Name: Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No. 9

Date: 07/12/18

Direction Photo

Taken:

West

Description:

RS07 - River Seep 07

Sample collected

Photo No.

10

Date: 07/13/18

Direction Photo

Taken:

North

Description:

RS08 - River Seep 08

Facility Name:

Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No.

Date: 07/13/18

Direction Photo

Taken:

South

Description:

RS09 - River Seep 09

No sample collected due to insufficient volume

Photo No.

Date:

12

07/13/18

Direction Photo

Taken:

West, Southwest

Description:

RS-10 - River Seep 10

No sample collected due to insufficient volume

Facility Name:

Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No. 13

Date: 07/13/18

Direction Photo Taken:

West, Southwest

Description:

RS11 - River Seep 11

No sample collected due to insufficient volume

Field parameters collected

Photo No. 14

Date:

07/13/18

Direction Photo Taken:

West, Southwest

Description:

RS12 - River Seep 12

Facility Name: Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No. 15

Date: 07/13/18

Direction Photo Taken:

West, Southwest

Description:

RS13 - River Seep 13

No sample collected due to insufficient volume

Field parameters collected

Photo No. 16

Date: 07/13/18

Direction Photo Taken:

West, Southwest

Description:

RS14 - River Seep 14

Facility Name: Big Rivers - Sebree Station

Site Sampling Location:

Green River, between river marker 41 and 43

Project No. 60579938

Photo No. **17**

Date: 08/07/18

Direction Photo

Taken:

East, Northeast

Description:

RS15 - River Seep 15

No sample collected due to insufficient volume

Photo No. 18

Date:

07/13/18

Direction Photo

Taken:

Northwest

Description:

RS16 - River Seep 16

Attachment 2

Field Data Sheets – River Sample Locations

Surface SPRING/SEEP WATER DATA SHEET

Job Name:	BISC Geen	l ocation)
Sample Identification	River-OIA, OIB	Sampling Order: 1
SAMPLE DATA		Date Lime 7/12/18 1110
		Measured By COD DPC
Calibration of pH meter	in Field J 4pH J	7pH 10pH not done
le eld pH (units)	7.94	
Feld Conductivity (µmh	nos cm) 268	
Feld Temperature (-1)	83.9	
(IRP (mV)	131	
Dissolved Oxygen (mg/l	L)	
Turbidity (NTU)	-	
Sample Odor	None	
Sample Color	St davdy	
Sample Sediment Conte	nt low o mad	
Weather Conditions	Sun 40.	
Sampling Splats or Dupl	icate lo	
Samples Shipped To	TA Noobrile	Date Samples were shipped 7/12/1
Method of Shipment	Fedex	Hand Delivered Other
Parameters Collected	Apill, IV, Anions	
COMMENTS	DIA at surfuce	
River -	OIB 1-8-1-10"	e bottom, 2A drep
The state of the s		

Surface Springseep water data sheet

Job Name:	Lista	Location:	e.t,
Sample Identification: River -	02A, 01B	Sampling Order:	3
SAMPLE DATA		e Fime 7/12/18	
Calibration of pH meter in Field	<u>√</u> 4pH <u>√</u> 7pH	✓10p1f	not done
Field pH (units)	7.91		
Field Conductivity (µmhos cm)	267.7		
Field Temperature (1)	84 a		
ORP (mV)	95		
Dissolved Oxygen (m 1)	-		
Turbidity (N FIII)			
Sample Odor Sample Color Sample Color	in.		
	on to mod		THE THE PARTY AND THE PARTY AN
Sampling Splits or Duplicates	0		
Samples Shipped Fo	halle	Date Samples were sh	ipped 7/12/18
Method of Shipment Fedex	Hand D	efivered	Other
Parameters Collected App III	IV, Anions		
COMMENTS OAA allect Let OAB LA			

Suffice Spring/seep water data sheet

Job Name:	BAEC-GIREN	Location:	Sobree Ky
Sample Identification:	River-03A, 03B		_
SAMPLE DATA		Date Time. 7/13 Measured By: CD	•
Calibration of pH meter	in Field 4p11 4	p11	not done
Field pH (units)	7,94		
Field Conductivity (µm	ho cm) 247.1		
Field Lemperature (1)	84.2		
ORP (mV)	(33		
Dissolved Oxygen (mg/	1)		
Turbidity (NFU)	_		
Sample Odor	ll brown none		
Sample Color	514 brong		
Sample Sediment Conte	ens low to mad		
Weather Conditions	5un 805		
Sampling Splits or Dup	licates <u>No</u>		
Samples Shipped To	Fotos TA Hostonia	Date Samples we	re shipped 7/12/18
Method of Shipment	Fedox	Hand Delivered	Other
Parameters Collected	App TIL, IV		
	at surface = 1	frombont	

Surface SPRING/SEEP WATER DATA SHEET

Job Name:	ck Green	Location
Sample Identification:	r-04A,04B	Sampling Order: 4
SAMPLE DATA		Date Time: 7/2/18 12.40 Measured By:
Calibration of pH meter in I reld	√ 4pH ✓	7p11 1111 not done
Field pH (units)	7.%	
Field Conductivity (µmhos cm)	265.1	
Field Temperature (T)	83.6	
ORP (mV)	133	
Dissolved Oxygen (mg/L)	.=	
Turbidity (NTU)	_	
Sample Odor		
Sample Color	11w	
Sample Sediment Content	lan to mad	
Weather Conditions	5 n 80s	
Sampling Splits or Duplicates	No	
Samples Shipped To	allinten	Date Samples were shipped 7/6/18
Method of Shipment	lex .	Hand Delwered Other
Parameters Collected App T	I, D, Anons	
COMMENTS		
River 04A	- collected of	- surface
Kiver 04B	- 214 bolow	suffice, 1st above bottom

Attachment 3

Field Data Sheets – River Bank Seep Locations

Job Name: BREC Green	Tocation:
Sample Identification: River Seve - 01	Sampling Order; S
SAMPLE DATA	Date I fine: 7/12/18 311 Measured By: 400 00
Calibration of pH meter in Field4pH	7pH ✓ 10pHnot done
	到的1996年,我们是关系的"美"的"
Pield pH (units)	residues dubtin
Field Conductivity (µmhos/cm)	Proposition of the component and the component of
Field Temperature (T)	
ORP (mV)	
Dissolved Oxygen (nix 1-)	
Larbidity (NTC)	
Sample Odor	
Sample Color	
Sample Sediment Content	
Weather Conditions	ene aneate mora a managament and a top a partie of a construction of the construction of the construction of t
Sampling Splits or Duplicates	el estre la tralient estre transcripte para contra con processor con appropriate que qui terrescent
Samples Shipped To	
Method of Shipment F	
Parameters Collected	
COMMENTS East bank , crange stand	

Job Name:	BREC - Green	Location Sobree ty
Sample Identification:	Rier Seop 02	Sampling Order:
SAMPLE DATA		Date Time: 7/10/ 9 13/7
		Measured By: CW WC
Calibration of pH mete	r in Lield 4p11	7pH √ 10pH not done
Field pH (units)	insufficient v	rolume
Field Conductivity (µm	ihos cm)	
Field Temperature (F)		
ORP (mV)		
Dissolved Oxygen (mg	(L)	
Turbidity (NTU)		
Sample Odor		
Sample Color		
Sample Sediment Cont	ent	
Weather Conditions		
Sampling Splits or Dup	dicates	
Samples Shipped To	MA AM	Date Samples were shipped
Method of Shipment	4	Hand Delivered Other
Parameters Collected	None	
COMMENTS	white low flow	n stain

Job Name	C Goon	Location: Sobt on Ky
Sample Identification:	ver Soop 03	Samplin Order: 7
SAMPLE DATA		Date fime: 7/12/18 1331
		Measured By: CDD, DRC
Calibration of pH meter in Field	d / _4pH	7pH V 10pHnot done
field pH (units)	7.14	
Field Conductiv ty (µmhos/cm)	804.35	
Field Temper ture (F)	77.18	
ORP (mV)	. 73	
Dissolved Oxy en (mg/L)	-	
Furbidity (NTT)		
Sample Odor	-	
Sample Color	Ų	
Sample Sediment Content	~	
Weather Conditions	4un 80s	
Sampling Splits or Duplicates	~	
Samples Shipped To		Date Samples were shipped
Method of Shipment		Hand Delivered Other
Parameters offected	/LE	
COMMENTS \[\langle \frac{1}{MS} \frac{1}{Ci \text{Def}} \]	for to s	unple, Est Bak, crony stains

Job Name: BREC -	61289	l ocation:	
Sample Identification: Q. Jer	Seo, 04	Sampling (
SAMPLE DATA		Date/Fime 7	112/16 1350 COD, OPC
Calibration of pH meter in Field	√ 4pH	7pH - 10pi	I not done
Field pH (units)	Sil3		
Field Conductivity (µmhos em)	2545		
Field Lemperature (1)	766		
ORP (mV)	125		
Dissolved Oxygen (mg/L)	-		
Turbidity (NTT)			
Sample Odor	norte.		
Sample Color Cecr	w orange	stainy	
	lon	•	
Weather Conditions	5m 80s	·	
Sampling Splits or Duplicates	NO		
Samples Shipped To	solute	Date Sample	were shipped 7/13/18
Method of Shipment Fedex		Hand Delivered	Other
Parameters Collected App_ 111	TV, Amons		
COMMENTS	n bengoil	1-2 6 m cu	mulative

Job Name:	BREC-Gleen	Location Solve
Sample Identification:	Rier Seep-05	Sampling Order:
SAMPLE DATA		Date Time. 1/12/18 1425
		Measured By.
Calibration of pH meter	in Field 4p11 Y	pHf10pHnot done
Field pH (units)	642	
Field Conductivity (µm	hos cm) 617	
Field Temperature (1)	44,28	
ORP (mV)	(37	
Dissolved Oxygen (mg/	1)	
Turbidity (NTU)	4-	
Sample Odor	hont	
Sample Color	bown	
Sample Sediment Conto	ena hish	
Weather Conditions	5m 803	
Sampling Splits or Dup	licates No	
Samples Shipped To	7A Northwile	Date Samp es - 7/13/18
Method of Shipment	Feden	Hand Delivered
Parameters Collected	April IV Amen	
COMMENTS	agen, and	Acon 8"
Ylew E		

Job Name:	FARL-GOOM	Location
Sample Identification	River Seep Ob	Samplin @Order: 10
SAMPLE DATA		Date Time: 7/12/18 K439
		Measured By San Agents
		Measured 6)
Calibration of pH meter	in Field 4pH	7pH J. 10pH not done
Field pH (units)		
. f.ield Conductivity (µm)	nos em)	
Field Lemperature (*13:	and the state of the	
ORP (mV)		
Dissolved OxygenEme		
Sample Odor		
Sample * ediment Conte		
Weather Conditions	1	
	licatos NA	
		Date Samp & swere shapped
		Hand Delivered Other
the second secon	the control of the co	Transformer exercises Office appropriate
Parameters Collected		un de la companya de
COMMENTS Grand	that flow a	30 Ande insoficent Ar
	· · · · · · · · · · · · · · · · · · ·	
	annana artenaryezezaretetetean	in entre anno an eigen egit en an eigen anno en start eigen fan til an eigen geregte eilen an eigen eilen an e Te legt eilen fan til an eilen eilen eilen eilen eilen e

Job Name: .	BREC - Green	Location	
Sample Identification:	River Sopp-07	Sampling C	
SAMPLE DATA		Date Sime 7/18/18	
		Me wured By	Le constant proposition of the second
Calibration of pH mete	r is field	У 7011 У 1911	not done
Field pH (units)		apangatang mantana na pangapang pangang pangang pangang	et terit e montmen men te de egit egit et et et et et en e
Relid Conductivity (un	thos(em)	one and the second of the seco	eren er
	79.7		minima di mandi di m
(美P (mV))			
	t clear 40 5% de		
Sample olor			
	ent lon to mod		
Weaths Conditions	su sik		
Samples Splits or Dup			
	74 - Mashwill*	Date Samples were st	sipped 7/3/11
	Feder		
	energh, Making		e de la companya de
	18		
COMMENTS 1-2	ofm sprenchous	100', high on ba	nt oven
		The state of the s	

Job Name:	CACL - CHOW	1 ocation	
Sample Identification.	River Soep 08	Samplin sOrder:	·····
SAMPLE DATA		Date Time: 18 5 0750	
		Measured By:	anana T
Calibration of pl I mete	rin Field 4pH	7pH 10pHnot done	
Field off (units)	9 50 09	Nsoep	
	- Charles	7800	
Field Temperature (°F)	and the same of th	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	والمسودون
ORP (mV)		nga ang ang ang ang ang ang ang ang ang	
		Strongerting of strongerting the second	
			aigus-
Sample Odor	die ve	esperiene commisse estimate i promoto promoto a transportante promoto promoto promoto promoto promoto promoto p	
Sample Sediment Cont	ent b v		
Weather Conditions	L. L		
Sampling Sprits or Dup	olicates NS	o operanje	××××××
Samples Shipped To	The Mande AT	Date Samples were shappe & 11313	
Method of Shipment	Felex	Hand Defivered	
	A 201 Ave. 1		nana.
COMMENTS OIX	Pond area top	of 5% bedieve flow	
flow L	dan est mulbe bes	N t	

Job Name: BREC - Gracy	Location S. basa K
Sample Identification: River Seeo 09	Samplin Order: 13
SAMPLE DATA	Date time: 7/13/18 0835 Me 1 e By C
Calibration of pH meter in Field 4pH 4pH 1	pli 10plf not done
Field pH (units)	Picional volume for guranetors
Field Conductivity (µmhos cm)	
Field Temperature (1)	
ORP (mV)	
Dissolved Oxygen (m 1)	
Furbidity (NTL)	
Sample Odor	
Sample Color	
Sample Sediment Content	
Weather Conditions	0.
Sampling Splits or Duplicates	
Samples Shipped To MA	Date Sample were shipped
Method of Shipment	Hand Delivered Other
Parameters Collected	
COMMENTS OF	range storing, no visitle

Job Name.	BREC-Groen	Location: Sebroe, Ky
Sample Identification:	Riger Seep 10	Sampling Order: 14
SAMPLE DATA		Date Time: 7/13/16 0652
		Measured By: COV, DPC
Calibration of pH meter	in Field 4 4pH	✓ 7pH <u>✓ 10pH</u> not done
Field pH (units)	IAD	eirst Volume
Field Conductivity (µmh	nos/cm)	1
Field Temperature (1)		
ORP (mV)		
Dissolved Oxygen (m l	L)	
Turbidity (NTC)		
Sample Odor		
Sample Color		
Sample Sediment Conte	nt	4
Weather Conditions	5 w 8	05
Sampling Splits or Dupl	icates /	
Samples Shipped To	M	Date Samples were shipped
Method of Shipment	NA	Hand Delivered Other
Parameters Collected	WH	
COMMENTS		
MAC Se	blade a ound	Sturry

Job Name: BREL - 61010		Location: Fee &	
Sample Identification: Riec	- Se 11	Sampling Order: 15	
SAMPLE DATA		Date Time: 7/13/18 0857 Measured By: CDD DPC	
Calibration of pH meter in Field	V 4pH	7pH √ 10pH not done	
Lickl pH (units)	7.35		
Liefd Conductivity (µmhos cm)	364		
1 ield 1 emperature (1)	NM		
ORP (mV)	-85		
Dissolved Oxygen (mg/L)			
Furbidity (NTU)			
Sample Odor	~		
Sample Color	+		
Sample Sediment Content	_		
Weather Conditions	5m 80c	***************************************	
Sampling Splits or Duplicates	W		
Samples Shipped To		Date Samples were shipped	
Method of Shipment		Hand Delivered Other	
Parameters Collected			
Pond wen about 5 myled	ne, flow	from high on bank	

Job Name: BREC-Great	Location: Sebtee Ky
Sample Identification: River Goeq 12	
SAMPLE DATA	Date Lime: 7/13/18 09/5 Measured By: COO, DPC
Calibration of pl I meter in Field	7pH10pHnor done
Field pH (units) 7.37	
Field Conductivity (µmhos/cm) 226.2	
Field Comperature (°F) 84.0	
ORP (mV) -qg	
Dissolved Oxygen (mg/L)	
Furbidity (N11)	
Sample Odor Nov	
Sample Color Cloudy to 614 br	>
Sample Sediment Content low to mei	
Weather Conditions 4	
Sampling Splits or Duplicates	
Samples Shipped To TA - 1 3 11	Date Samples were shipped 7(131
Method of Shipment Fedox	Hand Delivered Other
Parameters Collected App 18 1 TV Anions	
COMMENTS LA OIM HOW	
	\$ ·:

Job Name: BREC - Graph	Location: Sebtee, Ky
Sample Identification: River Seep 13	Sampling Order.
SAMPLE DATA	Date Time: 7/13/18 063C Measured By. CUA, DC
Calibration of pH meter in Field4pH	7pH V 10pH not done
Lield pH (units)	16c 7.0
Field Conductivity (µmhos/cm)	7019
Field Temperature (°F)	\$4.0
ORP (mV)	-152
Dissolved Oxygen (m L)	_
Turbidity (NTU)	
Sample Odor	-
Sample Color	
Sample Sediment Content	<i></i>
Weather Conditions	
Sampling Splits or Duplicates	
Samples Shipped 1o	Date Samples were shipped
Method of Shipment NA	Hand Delivered Ot le
Parameters Collected	
COMMENTS Ins ACCION W to	•

Job Name.	SEE Green	Location: Sobleo, ku
Sample Identification:	River Soep 14	Sampling Order: 18
SAMPLE DATA		Date Time: 7/13/18 10/0 Measured By: COO DEC
Calibration of pl1 meter in	Field V 4pH √	7pH 10pH not done
Field pH (units)		
Lield Conductivity	000	
Field Lemperature		
ORP (mV)	-92	
Dissolved Oxygen (m. 1)	4	
Furbidity (NTL)	_	
Sample Odor	-	
Sample Color	close	
Sample Sediment Content	low	
Weather Condition	in 80s	
Sampling Splits or Duplica	ites	
Samples Shipped fo	TA Nushville	Date Samples were shipped 7/13/18
Method o Shipment	edex	Hand Delivered Other
Parameters Co ected A	MILLIV Anions	- No Radison
COMMENTS		on 5.4 bank led w

Job Name: SIEL - Cate	Location: Seble, Ky
Sample Identification: River Soco 15	Sampling Order: 19
SAMPLE DATA	Date Time. 7/13/14 1033
	Measured By: COD DPC
Calibration of pH meter in Field 4pH 4pH	√ 7pH 10pH not done
Field pH (units) Just OCC	cent Volum
Field Conductivity (µmhos cm)	
Field 1 emperature (F)	
ORP (mV)	
Dissolved Oxygen (mg/L)	
Turbidity (NTC)	
Sample Odor	
Sample Color	
Sample Sediment Content	
Weather Conditions Sn. 805	
Sampling Splits or Duplicates	
Samples Shipped To	Date Samples were shipped
Method of Shipment	Hand Delivered Other
Parameters Collected No Sande	
COMMENTS	
	, some orange staining I no flow

tob Name:	GIREN	Location: Selonge Ky
Sample Identification: Lec	Seep 16	Sampling Order: 20
SAMPLE DATA		Date/Time: 7/13/18 Measured By: CALL DRC
Calibration of pH meter in Field	-√ _4pH <u>✓</u>	7p11not done
Field pH (units)	7,46	
Field Conductivity (µmhos cm)	654	
Field Lemperature (1)	91,58	
ORP (mV)	- 4%	
Dissolved Oxygen (m + 1)	***	
Turbidity (NTU)	-	
Sample Odor	_	
Sample Color	~	
Sample Sediment Content	to wood	long
Weather Conditions	ion 60s	
Sampling Splits or Duplicates	vo.	
Samples Shipped To	mile	Date Samples were shipped 7 13/18
Method of Shipment Fedex		Hand Delivered Other
Parameters Collected App 10 +	IV, Anions	No Radium
comments d book 1 con trench d	, very lov	w flow 0.1 7 gpm, collected

Attachment 4

LABORATORY REPORTS

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-155625-1 Client Project/Site: Green Landfill

For:

Big Rivers Electric Corporation PO BOX 24 Henderson, Kentucky 42419

Attn: Greg Dick

Roxanne Cisneros

Authorized for release by: 8/16/2018 3:18:48 PM

Roxanne Cisneros, Senior Project Manager (615)301-5761

roxanne.cisneros@testamericainc.com

LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	22
QC Association	30
Chronicle	34
Method Summary	38
Certification Summary	39
Chain of Custody	41
Receipt Checklists	45
Tracer Carrier Summary	46

3

4

R

9

11

12

4

Sample Summary

Client: Big Rivers Electric Corporation Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-155625-1	River 01A 071218	Water	07/12/18 11:10	07/13/18 10:10
490-155625-2	River 01B 071218	Water	07/12/18 11:30	07/13/18 10:10
490-155625-3	River 02A 071218	Water	07/12/18 11:50	07/13/18 10:10
490-155625-4	River 02B 071218	Water	07/12/18 12:00	07/13/18 10:10
490-155625-5	River 03A 071218	Water	07/12/18 12:15	07/13/18 10:10
490-155625-6	River 03B 071218	Water	07/12/18 12:20	07/13/18 10:10
490-155625-7	River 04A 071218	Water	07/12/18 12:45	07/13/18 10:10
490-155625-8	River 04B 071218	Water	07/12/18 12:55	07/13/18 10:10

Case Narrative

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Job ID: 490-155625-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-155625-1

Comments

Revised Report 8/07/2018 to add Potassium and Total Alkalinity per request.

Receipt

The samples were received on 7/13/2018 10:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.5° C and 1.3° C.

HPLC/IC

Method(s) 9056A: The method blank for analytical batch 490-529755 contained Chloride above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6020A: The matrix spike / matrix spike duplicate / sample duplicate (MS/MSD/DUP) precision for 250895 was outside control limits for selenium. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Narrative

Job Narrative 490-155625-2

Comments

No additional comments.

Receipt

The samples were received on 7/13/2018 10:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.5° C and 1.3° C.

RAD

Method(s) PrecSep_0: Radium 228 Prep Batch 160-376424: Sample aliquots reduced due to potential matrix interference. Samples were yellow, murky, and contained heavy amounts of sediment: River 01A 071218 (490-155625-1), River 01B 071218 (490-155625-2), River 02A 071218 (490-155625-3), River 02B 071218 (490-155625-4), River 03A 071218 (490-155625-5), River 03B 071218 (490-155625-6), River 04A 071218 (490-155625-7) and River 04B 071218 (490-155625-8)

Method(s) PrecSep-21: Radium 226 Prep Batch 160-376411: Sample aliquots reduced due to potential matrix interference. Samples were yellow, murky, and contained heavy amounts of sediment: River 01A 071218 (490-155625-1), River 01B 071218 (490-155625-2), River 02A 071218 (490-155625-3), River 02B 071218 (490-155625-4), River 03A 071218 (490-155625-5), River 03B 071218 (490-155625-6), River 04A 071218 (490-155625-7) and River 04B 071218 (490-155625-8)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TestAmerica Nashville 8/16/2018 2

5

4

6

0

9

11

13

14

Definitions/Glossary

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals	

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F2	MS/MSD RPD exceeds control limits
Rad	
Qualifier	Qualifier Description
Ū	Result is less than the sample detection limit.

Glossary

Ciossaiy	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TestAmerica Nashville

Page 5 of 46

Client: Big Rivers Electric Corporation

Client Sample ID: River 01A 071218

Project/Site: Green Landfill

Ba Carrier

Date Collected: 07/12/18 11:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-1

Matrix: Water

Method: 9056A - Anions, Ion						_			
Analyte	4.58	Qualifier	- RL 3.00		Unit	_ D	Prepared	Analyzed 07/19/18 02:20	Dil Fa
Chloride		_	1.00	0.200 0.0100	•			07/19/18 02:20	
Fluoride	0.111	J	5.00	0.0100	ū			07/19/18 02:20	
Sulfate	28.5		5.00	0.0300	mg/L			07/19/16 02.20	
Method: 6010C - Metals (ICP) Analyte		overable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	mg/L		07/18/18 12:28	07/24/18 14:09	-
Mathadi COOOA - Matala (ICD)	MC) Total I		hla						
Method: 6020A - Metals (ICP/I Analyte	•	Recovera Qualifier	DIE RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.000591		0.00200	0.0000213			07/18/18 12:33		
Arsenic	0.00124		0.00500	0.000118	•			07/24/18 20:31	
Barium	0.0330		0.200	0.000270	•			07/24/18 20:31	
Beryllium	ND		0.00200	0.000102				07/24/18 20:31	· · · · · .
Boron	0.0281	1	1.00	0.00339	O			07/24/18 20:31	1
Cadmium	ND	•	0.00100	0.000152	J			07/24/18 20:31	
Calcium	31.8		1.00	0.0412	U			07/24/18 20:31	· · · · · .
Chromium	0.000676	1	0.00300	0.000339	-			07/24/18 20:31	
Cobalt	0.000401		0.00500	0.0000333	ū			07/24/18 20:31	
_ead	0.000401		0.00500	0.0000210				07/24/18 20:31	
	6.41	JB	1.00	0.000073	ū			07/24/18 20:31	
Magnesium Molybdenum	0.00217		0.0100	0.000873	ū			07/24/18 20:31	
-			1.00	0.136				07/24/18 20:31	· · · · · .
Potassium Selenium	2.68 ND		0.0100	0.000348	•			07/24/18 20:31	
					ū				
Sodium	3.79	<mark>.</mark>	1.00	0.251	.			07/24/18 20:31	
Thallium	0.0000500	J	0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 20:31	1
Method: EPA 7470A - Mercury									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/19/18 07:20	07/20/18 10:03	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.64		0.100	0.100	SU			07/18/18 10:03	
Temperature	19.1		0.100		Degrees C			07/18/18 10:03	
Alkalinity	85.6		10.0		mg/L			07/24/18 12:48	
Total Dissolved Solids	169		10.0		mg/L			07/13/18 21:20	,
	0550								
Method: 903.0 - Radium-226 (GFPC)	Count	Total						
		Uncert.	Uncert.						
Analyte Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fac
Radium-226 0.392		0.137	0.142	1.00 0	.119 pCi/L			08/09/18 06:09	1
Carrior 0/Viald	Oualifier	l imita					Droporod	Analyzad	Dil Ec
Carrier %Yield	Quaimer	Limits					Prepared	Analyzed	Dil Fac

07/18/18 09:53 08/09/18 06:09

40 - 110

90.9

Client: Big Rivers Electric Corporation

Client Sample ID: River 01A 071218

Project/Site: Green Landfill

Date Collected: 07/12/18 11:10

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-1

adium-228	(GFPC)								
		Count	Total						
		Officert.	Officert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.0258	U	0.229	0.229	1.00	0.411	pCi/L	07/18/18 10:47	08/01/18 16:50	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
90.9		40 - 110					07/18/18 10:47	08/01/18 16:50	1
90.1		40 - 110					07/18/18 10:47	08/01/18 16:50	1
	Result 0.0258 %Yield 90.9		Count Uncert.	Count Uncert. Uncert. Uncert. (2σ+/-) (2σ+/-) (Count Uncert. Uncert.	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared 0.0258 U 0.229 0.229 1.00 0.411 pCi/L 07/18/18 10:47	Count Uncert. Uncert. Variety Variety

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.417		0.267	0.269	5.00	0.411	pCi/L		08/16/18 13:40	1

Client: Big Rivers Electric Corporation

Client Sample ID: River 01B 071218

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-2

Matrix: Water

Date Collected: 07/12/18 11:30 Date Received: 07/13/18 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	4.52	В	3.00	0.200	mg/L			07/19/18 03:15	
Fluoride	0.105	J	1.00	0.0100	mg/L			07/19/18 03:15	
Sulfate	28.3		5.00	0.0300	mg/L			07/19/18 03:15	
Method: 6010C - Metal	s (ICP) - Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	ND		0.0500	0.00959	mg/L		07/18/18 12:28	07/24/18 14:30	
Method: 6020A - Metal	s (ICP/MS) - Total F	Recoverabl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Antimony	0.000476	JB	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 20:35	
Arsenic	0.00137	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 20:35	
Barium	0.0374	J	0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 20:35	
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 20:35	
Boron	0.0252	J	1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 20:35	
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 20:35	
Calcium	33.2		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 20:35	
Chromium	0.00143	J	0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 20:35	
Cobalt	0.000623	J	0.00500	0.0000218	mg/L		07/18/18 12:33	07/24/18 20:35	
Lead	0.00600	В	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 20:35	
Magnesium	6.62		1.00	0.0152	mg/L		07/18/18 12:33	07/24/18 20:35	
Molybdenum	0.00130	J	0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 20:35	
Potassium	2.91		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 20:35	
Selenium	ND	F2	0.0100	0.000348	mg/L		07/18/18 12:33	07/24/18 20:35	
Sodium	3.95		1.00	0.251	mg/L		07/18/18 12:33	07/24/18 20:35	
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 20:35	

Method: EPA /4/UA - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/19/18 07:20	07/20/18 10:04	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.62		0.100	0.100	SU			07/18/18 10:03	1
Temperature	19.1		0.100	0.100	Degrees C			07/18/18 10:03	1
Alkalinity	85.6		10.0	5.00	mg/L			07/24/18 12:55	1
Total Dissolved Solids	161		10.0	7.00	mg/L			07/13/18 21:20	1

Method: 903.0 -	Radium-226	(GFPC)								
		` ,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.249		0.112	0.114	1.00	0.115	pCi/L	07/18/18 09:53	08/09/18 06:10	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.7		40 - 110					07/18/18 09:53	08/09/18 06:10	1

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-2

Client Sample ID: River 01B 071218 Date Collected: 07/12/18 11:30

Matrix: Water

Date Received: 07/13/18 10:10

Method: 904.0	- Radium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.00993	U	0.274	0.274	1.00	0.489	pCi/L	07/18/18 10:47	08/01/18 16:50	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.7		40 - 110					07/18/18 10:47	08/01/18 16:50	1
Y Carrier	90.1		40 - 110					07/18/18 10:47	08/01/18 16:50	1

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.249	U	0.296	0.297	5.00	0.489	pCi/L		08/16/18 13:40	1

+ 228

Client: Big Rivers Electric Corporation

Client Sample ID: River 02A 071218

Project/Site: Green Landfill

Date Collected: 07/12/18 11:50

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.75	В	3.00	0.200	mg/L			07/19/18 03:33	
Fluoride	0.0958	J	1.00	0.0100	mg/L			07/19/18 03:33	•
Sulfate	30.6		5.00	0.0300	mg/L			07/19/18 03:33	1
Method: 6010C - Met	tals (ICP) - Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	ma/L		07/18/18 12:28	07/24/18 14:35	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.00276	В	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 20:58	1
Arsenic	0.00131	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 20:58	1
Barium	0.0350	J	0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 20:58	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 20:58	1
Boron	0.0323	J	1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 20:58	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 20:58	1
Calcium	32.8		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 20:58	1
Chromium	0.00111	J	0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 20:58	1
Cobalt	0.000730	J	0.00500	0.0000218	mg/L		07/18/18 12:33	07/24/18 20:58	1
Lead	0.00125	JB	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 20:58	1
Magnesium	6.32		1.00	0.0152	mg/L		07/18/18 12:33	07/24/18 20:58	1
Molybdenum	0.00222	J	0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 20:58	1
Potassium	3.01		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 20:58	1
Selenium	0.000423	J	0.0100	0.000348	mg/L		07/18/18 12:33	07/24/18 20:58	1
Sodium	3.98		1.00	0.251	mg/L		07/18/18 12:33	07/24/18 20:58	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 20:58	1

Method: EPA 7470A - Mercury (Analyte Mercury	(CVAA) Result Qualifier ND	RL 0.200	MDL 0.0653	Unit ug/L	D	Prepared 07/19/18 07:20	Analyzed 07/20/18 10:05	Dil Fac
General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.45		0.100	0.100	SU			07/18/18 10:21	1
Temperature	19.8		0.100	0.100	Degrees C			07/18/18 10:21	1
Alkalinity	85.7		10.0	5.00	mg/L			07/24/18 13:02	1
Total Dissolved Solids	173		10.0	7.00	mg/L			07/13/18 21:20	1

Method: 903.0 -	Radium-226	(GFPC)								
		(22.2.2)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.336		0.133	0.136	1.00	0.128	pCi/L	07/18/18 09:53	08/09/18 06:10	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.3		40 - 110					07/18/18 09:53	08/09/18 06:10	1

TestAmerica Nashville

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-3

Client Sample ID: River 02A 071218 Date Collected: 07/12/18 11:50

Matrix: Water

Method: 904.0 - R	Radium-228	(GFPC)	Count	Total						
Amalusta	Danulé	O. alifian	Uncert.	Uncert.	DI.	MDO	11:4	Duamanad	A a b a d	D:: F
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.218	U	0.288	0.289	1.00	0.480	pCi/L	07/18/18 10:47	08/01/18 16:51	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.3		40 - 110					07/18/18 10:47	08/01/18 16:51	1
Y Carrier	90.1		40 - 110					07/18/18 10:47	08/01/18 16:51	1

Method: Ra226_Ra	228 - Con	ibined Rac	dium-226 a	nd Radium	1-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.554		0.317	0.319	5.00	0.480	pCi/L		08/16/18 13:40	1
226 + 228										

TestAmerica Nashville

Client: Big Rivers Electric Corporation

Client Sample ID: River 02B 071218

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-4

Matrix: Water

Date Collected: 07/12/18 12:00 Date Received: 07/13/18 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.69	В	3.00	0.200	mg/L			07/19/18 03:51	1
Fluoride	0.0979	J	1.00	0.0100	mg/L			07/19/18 03:51	1
Sulfate	30.1		5.00	0.0300	mg/L			07/19/18 03:51	1
Method: 6010C - Met	tals (ICP) - Total Reco	overable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	ma/l		07/18/18 12:28	07/24/18 14:41	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.00106	JB	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 21:03	1
Arsenic	0.00135	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 21:03	1
Barium	0.0396	J	0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 21:03	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 21:03	1
Boron	0.0322	J	1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 21:03	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 21:03	1
Calcium	35.8		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 21:03	1
Chromium	0.00155	J	0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 21:03	1
Cobalt	0.000937	J	0.00500	0.0000218	mg/L		07/18/18 12:33	07/24/18 21:03	1
Lead	0.00199	JB	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 21:03	1
Magnesium	6.76		1.00	0.0152	mg/L		07/18/18 12:33	07/24/18 21:03	1
Molybdenum	0.00145	J	0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 21:03	1
Potassium	3.65		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 21:03	1
Selenium	0.000636	J	0.0100	0.000348	mg/L		07/18/18 12:33	07/24/18 21:03	1
Sodium	4.63		1.00	0.251	mg/L		07/18/18 12:33	07/24/18 21:03	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 21:03	1

Method: EPA 7470A - Mercury (C	VAA)								
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/19/18 07:20	07/20/18 10:06	1
General Chemistry	Popult O)alifiar	DI	MDI	Unit	n	Propared	Analyzod	Dil Esc

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.50		0.100	0.100	SU			07/18/18 10:21	1
Temperature	19.5		0.100	0.100	Degrees C			07/18/18 10:21	1
Alkalinity	85.8		10.0	5.00	mg/L			07/24/18 13:09	1
Total Dissolved Solids	170		10.0	7.00	mg/L			07/13/18 21:20	1

Method: 903.0 -	Radium-226	(GFPC)								
		` ,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.318		0.123	0.126	1.00	0.115	pCi/L	07/18/18 09:53	08/09/18 06:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.7		40 - 110					07/18/18 09:53	08/09/18 06:11	1

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-4

Matrix: Water

Client Sample ID: River 02B 071218 Date Collected: 07/12/18 12:00

Method: 904.0 - R	adium-228	(GFPC)								
		` ,	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.417		0.268	0.271	1.00	0.409	pCi/L	07/18/18 10:47	08/01/18 16:51	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.7		40 - 110					07/18/18 10:47	08/01/18 16:51	1
Y Carrier	90.1		40 - 110					07/18/18 10:47	08/01/18 16:51	1

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.735		0.295	0.299	5.00	0.409	pCi/L		08/16/18 13:40	1

Client: Big Rivers Electric Corporation

Client Sample ID: River 03A 071218

Project/Site: Green Landfill

Date Collected: 07/12/18 12:15

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.33	В	3.00	0.200	mg/L			07/19/18 04:09	1
Fluoride	0.100	J	1.00	0.0100	mg/L			07/19/18 04:09	1
Sulfate	28.8		5.00	0.0300	mg/L			07/19/18 04:09	1
Method: 6010C - Me	tals (ICP) - Total Reco	overable							
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	mg/L		07/18/18 12:28	07/24/18 14:56	1
_ Method: 6020A - Me	tals (ICP/MS) - Total F	Recoverabl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000571	JB	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 21:21	1
Arsenic	0.00126	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 21:21	1
			0.200	0.000270	ma/l		07/18/18 12:33	07/24/18 21:21	1
Barium	0.0366	J	0.200	0.000210	1119/L		01710710 12.00	0172171021.21	•
Barium Beryllium	0.0366 ND	. J	0.00200	0.000102			07/18/18 12:33	07/24/18 21:21	

Anumony	0.000371	JB	0.00200	0.0000213	mg/L	07/10/10 12.33	01/24/10 21.21	
Arsenic	0.00126	J	0.00500	0.000118	mg/L	07/18/18 12:33	07/24/18 21:21	1
Barium	0.0366	J	0.200	0.000270	mg/L	07/18/18 12:33	07/24/18 21:21	1
Beryllium	ND		0.00200	0.000102	mg/L	07/18/18 12:33	07/24/18 21:21	1
Boron	0.0251	J	1.00	0.00339	mg/L	07/18/18 12:33	07/24/18 21:21	1
Cadmium	ND		0.00100	0.000152	mg/L	07/18/18 12:33	07/24/18 21:21	1
Calcium	34.8		1.00	0.0412	mg/L	07/18/18 12:33	07/24/18 21:21	1
Chromium	0.00112	J	0.00300	0.000339	mg/L	07/18/18 12:33	07/24/18 21:21	1
Cobalt	0.000934	J	0.00500	0.0000218	mg/L	07/18/18 12:33	07/24/18 21:21	1
Lead	0.00115	JB	0.00500	0.0000675	mg/L	07/18/18 12:33	07/24/18 21:21	1
Magnesium	6.87		1.00	0.0152	mg/L	07/18/18 12:33	07/24/18 21:21	1
Molybdenum	0.00105	J	0.0100	0.000873	mg/L	07/18/18 12:33	07/24/18 21:21	1
Potassium	3.06		1.00	0.136	mg/L	07/18/18 12:33	07/24/18 21:21	1
Selenium	ND		0.0100	0.000348	mg/L	07/18/18 12:33	07/24/18 21:21	1
Sodium	4.64		1.00	0.251	mg/L	07/18/18 12:33	07/24/18 21:21	1
Thallium	ND		0.00100	0.0000360	mg/L	07/18/18 12:33	07/24/18 21:21	1

Method: EPA 7470A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/19/18 07:20	07/20/18 10:07	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.50		0.100	0.100	SU			07/18/18 10:21	1
Temperature	19.3		0.100	0.100	Degrees C			07/18/18 10:21	1
Alkalinity	86.1		10.0	5.00	mg/L			07/24/18 13:16	1
Total Dissolved Solids	175		10.0	7.00	mg/L			07/13/18 23:45	1

Method: 903.0 -	Radium-226	(GFPC)								
		(22.2.2)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.338		0.126	0.130	1.00	0.110	pCi/L	07/18/18 09:53	08/09/18 06:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	91.4		40 - 110					07/18/18 09:53	08/09/18 06:11	1

TestAmerica Nashville

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-5

Client Sample ID: River 03A 071218 Date Collected: 07/12/18 12:15 Date Received: 07/13/18 10:10

Method: 904.0 -	Radium-228	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0661	U	0.244	0.245	1.00	0.429	pCi/L	07/18/18 10:47	08/01/18 16:51	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	91.4		40 - 110					07/18/18 10:47	08/01/18 16:51	1
Y Carrier	90.8		40 - 110					07/18/18 10:47	08/01/18 16:51	1

Method: Ra226 Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.404	U	0.275	0.277	5.00	0.429	pCi/L		08/16/18 13:40	1

Client: Big Rivers Electric Corporation

Client Sample ID: River 03B 071218

Project/Site: Green Landfill

Date Collected: 07/12/18 12:20

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.59	В	3.00	0.200	mg/L			07/19/18 04:27	1
Fluoride	0.0954	J	1.00	0.0100	mg/L			07/19/18 04:27	1
Sulfate	28.9		5.00	0.0300	mg/L			07/19/18 04:27	1

Method: 6010C - Metals (ICP) -	Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	mg/L		07/18/18 12:28	07/24/18 15:02	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000514	JB	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 21:25	1
Arsenic	0.00131	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 21:25	1
Barium	0.0362	J	0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 21:25	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 21:25	1
Boron	0.0235	J	1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 21:25	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 21:25	1
Calcium	32.6		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 21:25	1
Chromium	0.00119	J	0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 21:25	1
Cobalt	0.000800	J	0.00500	0.0000218	mg/L		07/18/18 12:33	07/24/18 21:25	1
Lead	0.00166	JB	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 21:25	1
Magnesium	6.41		1.00	0.0152	mg/L		07/18/18 12:33	07/24/18 21:25	1
Molybdenum	0.00103	J	0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 21:25	1
Potassium	2.87		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 21:25	1
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:33	07/24/18 21:25	1
Sodium	4.01		1.00	0.251	mg/L		07/18/18 12:33	07/24/18 21:25	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 21:25	1

Method: EPA 7470A - Mercury	(CVAA)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.200	0.0653 ug/L		07/19/18 07:20	07/20/18 10:08	1

General Chemistry Analyte	Result Qualit	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.51	0.100	0.100	SU			07/18/18 10:21	1
Temperature	19.4	0.100	0.100	Degrees C			07/18/18 10:21	1
Alkalinity	86.4	10.0	5.00	mg/L			07/24/18 13:29	1
Total Dissolved Solids	170	10.0	7.00	mg/L			07/13/18 23:45	1

Method: 903.0 -	Radium-226	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.391		0.146	0.150	1.00	0.123	pCi/L	07/18/18 09:53	08/09/18 06:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.9		40 - 110					07/18/18 09:53	08/09/18 06:11	1

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-6

Client Sample ID: River 03B 071218 Date Collected: 07/12/18 12:20

Matrix: Water

Method: 904.0 -	Radium-228	(GFPC)	Count	Tatal						
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.197		0.229	0.230	1.00	0.449		07/18/18 10:47	08/01/18 16:51	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.9		40 - 110					07/18/18 10:47	08/01/18 16:51	1
Y Carrier	90.8		40 - 110					07/18/18 10:47	08/01/18 16:51	1

	228 - Con	bined Ra	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.391	U	0.272	0.275	5.00	0.449	pCi/L		08/16/18 13:40	1

+ 228

Client: Big Rivers Electric Corporation

Client Sample ID: River 04A 071218

Project/Site: Green Landfill

Date Collected: 07/12/18 12:45

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4.83	В	3.00	0.200	mg/L			07/19/18 04:45	1
Fluoride	0.0948	J	1.00	0.0100	mg/L			07/19/18 04:45	1
Sulfate	28.6		5.00	0.0300	mg/L			07/19/18 04:45	1
Method: 6010C - Me	tals (ICP) - Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND ND		0.0500	0.00959	mg/L		07/18/18 12:28	07/24/18 15:07	1
- Method: 6020A - Me	tals (ICP/MS) - Total F	Recoverabl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000504	JB	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 21:30	1
Arsenic	0.00118	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 21:30	1
Barium	0.0382	J	0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 21:30	1
	ND		0.00200	0.000102				07/24/18 21:30	

Analyte	Result	Qualifier	KL	MIDL	Unit	ט	Prepared	Analyzea	DII Fac
Antimony	0.000504	JB	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 21:30	1
Arsenic	0.00118	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 21:30	1
Barium	0.0382	J	0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 21:30	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 21:30	1
Boron	0.0229	J	1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 21:30	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 21:30	1
Calcium	32.9		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 21:30	1
Chromium	0.00134	J	0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 21:30	1
Cobalt	0.000841	J	0.00500	0.0000218	mg/L		07/18/18 12:33	07/24/18 21:30	1
Lead	0.00141	JB	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 21:30	1
Magnesium	6.45		1.00	0.0152	mg/L		07/18/18 12:33	07/24/18 21:30	1
Molybdenum	0.00101	J	0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 21:30	1
Potassium	2.85		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 21:30	1
Selenium	0.000402	J	0.0100	0.000348	mg/L		07/18/18 12:33	07/24/18 21:30	1
Sodium	3.87		1.00	0.251	mg/L		07/18/18 12:33	07/24/18 21:30	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 21:30	1

Method: EPA 7470A - Mercury (C)	/AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/19/18 07:20	07/20/18 10:09	1
General Chemistry	Deculé	Ovalifier	ы	MDI	Unit	D	Droporod	Analyzad	Dil Eco

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.52		0.100	0.100	SU			07/18/18 10:21	1
Temperature	19.4		0.100	0.100	Degrees C			07/18/18 10:21	1
Alkalinity	80.9		10.0	5.00	mg/L			07/24/18 13:36	1
Total Dissolved Solids	174		10.0	7.00	mg/L			07/13/18 23:45	1

Method: 903.0 -	Radium-226	(GFPC)								
		` '	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.309		0.117	0.120	1.00	0.0978	pCi/L	07/18/18 09:53	08/09/18 06:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.3		40 - 110					07/18/18 09:53	08/09/18 06:11	1

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

226 + 228

Date Received: 07/13/18 10:10

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-7

Client Sample ID: River 04A 071218 Date Collected: 07/12/18 12:45

Matrix: Water

Method: 904.0 - F	Radium-228	(GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Posult	Qualifier	(2σ+/-)	(2σ+/-)	RL	мрс	Unit	Prepared	Analyzed	Dil Fac
										Dil Fac
Radium-228	0.236	U	0.276	0.277	1.00	0.456	pCi/L	07/18/18 10:47	08/01/18 16:51	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.3		40 - 110					07/18/18 10:47	08/01/18 16:51	1
Y Carrier	86.7		40 - 110					07/18/18 10:47	08/01/18 16:51	1

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radiur	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.544		0.300	0.302	5.00	0.456	pCi/L		08/16/18 13:40	1

Client: Big Rivers Electric Corporation

Client Sample ID: River 04B 071218

Project/Site: Green Landfill

Total Dissolved Solids

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-8

Matrix: Water

Date Collected: 07/12/18 12:55 Date Received: 07/13/18 10:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	4.75	В	3.00	0.200	mg/L			07/19/18 05:03	
Fluoride	0.0945	J	1.00	0.0100	mg/L			07/19/18 05:03	
Sulfate	28.6		5.00	0.0300	mg/L			07/19/18 05:03	
Method: 6010C - Metals	s (ICP) - Total Reco	overable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	ND ND		0.0500	0.00959	mg/L		07/18/18 12:28	07/24/18 15:12	
Method: 6020A - Metals	s (ICP/MS) - Total F	Recoverabl	le						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.000360	JB	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 21:35	
Arsenic	0.00109	J	0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 21:35	
Barium	0.0402	J	0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 21:35	
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 21:35	
Boron	0.0234	J	1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 21:35	
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 21:35	
Calcium	34.5		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 21:35	
Chromium	0.00105	J	0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 21:35	
Cobalt	0.000738	J	0.00500	0.0000218	mg/L		07/18/18 12:33	07/24/18 21:35	
Lead	0.00147	JB	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 21:35	
Magnesium	6.73		1.00	0.0152	mg/L		07/18/18 12:33	07/24/18 21:35	
Molybdenum	0.000981	J	0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 21:35	
Potassium	2.95		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 21:35	
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:33	07/24/18 21:35	
Sodium	4.02		1.00	0.251	mg/L		07/18/18 12:33	07/24/18 21:35	
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 21:35	
Method: EPA 7470A - N	Mercury (CVAA)								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.200	0.0653	ug/L		07/19/18 07:20	07/20/18 10:10	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
pH	7.53		0.100	0.100	SU	_		07/18/18 10:21	
Temperature	19.4		0.100	0.100	Degrees C			07/18/18 10:21	
Alkalinity	85.8		10.0	5.00	mg/L			07/24/18 13:43	

Method: 903.0 - I	Radium-226	(GFPC)								
		(- ,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.423		0.157	0.162	1.00	0.123	pCi/L	07/18/18 09:53	08/09/18 06:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.3		40 - 110					07/18/18 09:53	08/09/18 06:11	1

10.0

7.00 mg/L

156

TestAmerica Nashville

07/13/18 23:45

2

4

6

8

10

12

13

14

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Lab Sample ID: 490-155625-8

Client Sample ID: River 04B 071218 Date Collected: 07/12/18 12:55 **Matrix: Water**

Date Received: 07/13/18 10:10

Method: 904.0 - F	Radium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.277	U	0.249	0.250	1.00	0.502	pCi/L	07/18/18 10:47	08/01/18 16:51	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.3		40 - 110					07/18/18 10:47	08/01/18 16:51	1
Y Carrier	89.0		40 - 110					07/18/18 10:47	08/01/18 16:51	1

Method: Ra226 Ra	228 - Con	nbined Ra	dium-226 a	nd Radiur	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.423	U	0.294	0.298	5.00	0.502	pCi/L	_	08/16/18 13:40	1

+ 228

07/19/18 01:26

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 490-529755/3

Matrix: Water

Analyte

Chloride

Fluoride

Sulfate

Analysis Batch: 529755

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 3.00 0.200 mg/L 0.2299 J 07/19/18 01:26 ND 1.00 0.0100 mg/L 07/19/18 01:26

0.0300 mg/L

Lab Sample ID: LCS 490-529755/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

ND

Analysis Batch: 529755

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec l imits Chloride 10.0 9.340 mg/L 93 80 - 120 Fluoride 1.00 0.9436 J mg/L 94 80 - 120 Sulfate 10.0 9.177 mg/L 92 80 - 120

5.00

Lab Sample ID: LCSD 490-529755/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 529755

LCSD LCSD %Rec. **RPD** Spike Added Result Qualifier Limits **RPD** Analyte Unit D %Rec Limit Chloride 10.0 9.258 mg/L 92 80 - 120 20 Fluoride 1.00 0.9306 J mg/L 93 80 - 120 20 10.0 mg/L 80 - 120 Sulfate 9.183 92 O 20

Lab Sample ID: 490-155625-1 MS Client Sample ID: River 01A 071218 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 529755

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	4.58	В	10.0	15.84		mg/L		112	80 - 120	
Fluoride	0.111	J	1.00	1.158		mg/L		105	80 - 120	
Sulfate	28.5		10.0	39.82		ma/L		113	80 - 120	

Lab Sample ID: 490-155625-1 MSD Client Sample ID: River 01A 071218 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 529755

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	4.58	В	10.0	14.00		mg/L		94	80 - 120	12	20
Fluoride	0.111	J	1.00	0.9991	J	mg/L		89	80 - 120	15	20
Sulfate	28.5		10.0	38.02		mg/L		95	80 - 120	5	20

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 180-250893/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 251527

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Lithium $\overline{\mathsf{ND}}$ 0.0500 0.00959 mg/L 07/18/18 12:28 07/24/18 13:59

TestAmerica Nashville

Prep Batch: 250893

Page 22 of 46

%Rec.

75 - 125

101

Client: Big Rivers Electric Corporation Project/Site: Green Landfill

Method: 6010C - Metals (ICP) (Continued)

 $\overline{\mathsf{ND}}$

Lab Sample ID: LCS 180-250893/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable Analysis Batch: 251527 Prep Batch: 250893** LCS LCS

Spike Analyte Added Result Qualifier Unit D %Rec Limits 1.00 80 - 120 Lithium 1.022 mg/L 102

Lab Sample ID: 490-155625-1 MS Client Sample ID: River 01A 071218 **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 251527 Prep Batch: 250893** Sample Sample Spike MS MS %Rec. Result Qualifier Limits Added Analyte Result Qualifier Unit %Rec

Lab Sample ID: 490-155625-1 MSD Client Sample ID: River 01A 071218 **Prep Type: Total Recoverable**

1.007

mg/L

1.00

Matrix: Water

Lithium

Analysis Batch: 251527 Prep Batch: 250893 Sample Sample Spike MSD MSD %Rec. **RPD**

Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Lithium ND 1.00 0.9816 mg/L 98 75 - 125

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-250895/1-A **Client Sample ID: Method Blank**

Matrix: Water Prep Type: Total Recoverable Analysis Batch: 251631 Prep Batch: 250895

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.00006100	J	0.00200	0.0000213	mg/L		07/18/18 12:33	07/24/18 20:21	1
Arsenic	ND		0.00500	0.000118	mg/L		07/18/18 12:33	07/24/18 20:21	1
Barium	ND		0.200	0.000270	mg/L		07/18/18 12:33	07/24/18 20:21	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:33	07/24/18 20:21	1
Boron	ND		1.00	0.00339	mg/L		07/18/18 12:33	07/24/18 20:21	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:33	07/24/18 20:21	1
Calcium	ND		1.00	0.0412	mg/L		07/18/18 12:33	07/24/18 20:21	1
Chromium	ND		0.00300	0.000339	mg/L		07/18/18 12:33	07/24/18 20:21	1
Cobalt	ND		0.00500	0.0000218	mg/L		07/18/18 12:33	07/24/18 20:21	1
Lead	0.0001510	J	0.00500	0.0000675	mg/L		07/18/18 12:33	07/24/18 20:21	1
Magnesium	ND		1.00	0.0152	mg/L		07/18/18 12:33	07/24/18 20:21	1
Molybdenum	ND		0.0100	0.000873	mg/L		07/18/18 12:33	07/24/18 20:21	1
Potassium	ND		1.00	0.136	mg/L		07/18/18 12:33	07/24/18 20:21	1
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:33	07/24/18 20:21	1
Sodium	ND		1.00	0.251	mg/L		07/18/18 12:33	07/24/18 20:21	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:33	07/24/18 20:21	1

Lab Sample ID: LCS 180-250895/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total Recoverable Analysis Batch: 251631 Prep Batch: 250895

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.500	0.4898		mg/L		98	80 - 120	
Arsenic	0.0400	0.03842		mg/L		96	80 - 120	
Barium	2.00	1.925		mg/L		96	80 - 120	
Beryllium	0.0500	0.04875		mg/L		98	80 - 120	

TestAmerica Nashville

Page 23 of 46

Project/Site: Green Landfill

Client: Big Rivers Electric Corporation

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 180-250895/2-A

Matrix: Water

Analysis Batch: 251631

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Batch: 250895

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit %Rec Limits Boron 1.00 0.8867 J 89 80 - 120 mg/L Cadmium 0.0500 0.05068 mg/L 101 80 - 120 Calcium 50.0 45.32 mg/L 91 80 - 120 Chromium 0.200 0.1705 mg/L 85 80 - 120 Cobalt 0.500 0.4476 mg/L 90 80 - 120 Lead 0.0200 0.02129 mg/L 106 80 - 120 50.0 46.73 mg/L 93 80 - 120 Magnesium Molybdenum mg/L 97 80 - 120 1.00 0.9723 Potassium 50.0 46.91 mg/L 94 80 - 120 Selenium 0.0100 101 80 - 120 0.01009 mg/L Sodium 45.47 mg/L 91 80 - 120 50.0 Thallium 0.0500 0.04991 mg/L 100 80 - 120

Lab Sample ID: 490-155625-2 MS

Matrix: Water

Analysis Batch: 251631

Client Sample ID: River 01B 071218

Prep Type: Total Recoverable

Prep Batch: 250895

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Unit %Rec Analyte D Antimony 0.000476 JB 0.500 0.5115 mg/L 102 75 - 125 Arsenic 0.00137 J 0.0400 0.03802 mg/L 92 75 - 125 Barium 0.0374 J 100 75 - 125 2.00 2.033 mg/L Beryllium ND 0.0500 0.05153 mg/L 103 75 - 125 Boron 0.0252 J 1.00 0.9333 J mg/L 91 75 - 125 Cadmium ND 0.0500 0.05330 mg/L 107 75 - 125 105 75 - 125 Calcium 33.2 50.0 85.40 mg/L Chromium 0.00143 0.200 0.1788 89 75 - 125 mg/L Cobalt 0.000623 J 0.500 0.4717 mg/L 94 75 - 125 Lead 0.00600 B 0.0200 0.02673 mg/L 104 75 - 125 50.0 53.36 93 75 - 125 Magnesium 6.62 mg/L Molybdenum 0.00130 1.00 1.007 mg/L 101 75 - 125 Potassium 2.91 50.0 50.11 mg/L 94 75 - 125 Selenium ND F2 0.0100 0.01048 mg/L 105 75 - 125Sodium 3.95 50.0 49.36 mg/L 91 75 - 125

0.0500

Lab Sample ID: 490-155625-2 MSD

ND

Matrix: Water

Thallium

Analysis Batch: 251631									Prep Ba	atch: 2	50895
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	0.000476	JB	0.500	0.5014		mg/L		100	75 - 125	2	20
Arsenic	0.00137	J	0.0400	0.03845		mg/L		93	75 - 125	1	20
Barium	0.0374	J	2.00	2.037		mg/L		100	75 - 125	0	20
Beryllium	ND		0.0500	0.05205		mg/L		104	75 - 125	1	20
Boron	0.0252	J	1.00	0.9436	J	mg/L		92	75 - 125	1	20
Cadmium	ND		0.0500	0.05239		mg/L		105	75 - 125	2	20
Calcium	33.2		50.0	86.42		mg/L		107	75 - 125	1	20
Chromium	0.00143	J	0.200	0.1794		mg/L		89	75 - 125	0	20
Cobalt	0.000623	J	0.500	0.4642		mg/L		93	75 - 125	2	20

0.05030

mg/L

101

75 - 125

Prep Type: Total Recoverable

Client Sample ID: River 01B 071218

TestAmerica Nashville

2

4

0

10

12

13

Client: Big Rivers Electric Corporation Project/Site: Green Landfill

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 490-155625 Matrix: Water	5-2 MSD								ID: River be: Total F		
Analysis Batch: 251631	Sample	Sample	Spike	MSD	MSD				Prep Ba		
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	0.00600	В	0.0200	0.02698		mg/L		105	75 - 125	1	20
Magnesium	6.62		50.0	54.66		mg/L		96	75 - 125	2	20
Molybdenum	0.00130	J	1.00	0.9933		mg/L		99	75 - 125	1	20
Potassium	2.91		50.0	50.03		mg/L		94	75 - 125	0	20
Selenium	ND	F2	0.0100	0.008497	J F2	mg/L		85	75 - 125	21	20
Sodium	3.95		50.0	50.61		mg/L		93	75 - 125	3	20
Thallium	ND		0.0500	0.04967		mg/L		99	75 - 125	1	20

Method: EPA 7470A - Mercury (CVAA)

Lab Sample ID: MB 180-250921 Matrix: Water Analysis Batch: 251171							•	ole ID: Method Prep Type: To Prep Batch:	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/19/18 07:20	07/20/18 09:44	1

Lab Sample ID: LCS 180-250921/2-A				Clie	nt Saı	mple ID	: Lab Cont	rol Sample
Matrix: Water							Prep Type	e: Total/NA
Analysis Batch: 251171							Prep Bat	ch: 250921
•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	2.50	2.427	-	ug/L		97	80 - 120	

Lab Sample ID: 180-79763-	F-6-C MS						CI		•	Matrix Spike
Matrix: Water									Prep Type	e: Dissolved
Analysis Batch: 251171									Prep Ba	tch: 250921
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	ND		1.00	0.8990		ug/L		90	75 - 125	

Lab Sample ID: 180-79763- Matrix: Water Analysis Batch: 251171	-F-6-D MSD					Client	Samp		latrix Spik Prep Type Prep Ba	e: Diss	olved
7 maryolo Batom 20117	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	ND		1.00	0.9260		ug/L		93	75 - 125	3	20

Method: 9040C - pH

Lab Sample ID: LCS 490-529671/1 Matrix: Water Analysis Batch: 529671				Clie	nt Sar	nple ID	: Lab Control Sample Prep Type: Total/NA
-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
pH	7.00	6.970		SU		100	98 - 103

TestAmerica Nashville

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Client Sample ID: Lab Control Sample

Client Sample ID: River 02A 071218

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: 9040C - pH (Continued)

Lab Sample ID: 490-155638-D-10 DU **Client Sample ID: Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 529671

randigote Batom 62001 :	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
pH	5.78		 5.750		SU	_	 0.5	20
Temperature	18.9		18.50		Degrees C		2	20

Lab Sample ID: LCS 490-529685/1

Matrix: Water

Analysis Batch: 529685

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits SU pН 7.00 6.970 100 98 - 103

Lab Sample ID: 490-155625-3 DU

Matrix: Water Prep Type: Total/NA **Analysis Batch: 529685** DU DU RPD Sample Sample

Analyte Result Qualifier Result Qualifier Unit RPD Limit SU pН 7 45 7.490 0.5 20 19.8 19.80 Temperature Degrees C 20

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 490-531384/13

Matrix: Water

Analysis Batch: 531384

MR MR Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 10.0 **Alkalinity** $\overline{\mathsf{ND}}$ 5.00 mg/L 07/24/18 11:54

Lab Sample ID: LCS 490-531384/14

Matrix: Water

Analysis Batch: 531384

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 100 102.9 Alkalinity mg/L 103 90 - 110

Lab Sample ID: LCSD 490-531384/36

Matrix: Water

Analysis Batch: 531384

Spike LCSD LCSD %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Alkalinity 100 96.04 mg/L 96 90 - 110

Lab Sample ID: 490-155625-5 DU

Matrix: Water

Analysis Batch: 531384 Sample Sample DU DU **RPD** Result Qualifier RPD **Analyte** Result Qualifier Unit D Limit **Alkalinity** 86.1 86.60 mg/L

TestAmerica Nashville

8/16/2018

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: River 03A 071218

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 490-525387/1 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 525387

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Total Dissolved Solids 10.0 07/13/18 23:45 ND 7.00 mg/L

Lab Sample ID: LCS 490-525387/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 525387

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Total Dissolved Solids 100 107.0 mg/L 107 90 - 110

Lab Sample ID: 490-155592-A-1 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 525387

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Limit Analyte Unit Total Dissolved Solids 291.0 305.0 mg/L 20

Lab Sample ID: 490-155625-5 DU Client Sample ID: River 03A 071218 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 525387

DU DU Sample Sample RPD Result Qualifier Result Qualifier Unit **RPD** Limit Total Dissolved Solids 175 170.0 20 mg/L

Lab Sample ID: MB 490-525388/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 525388

MR MR

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Total Dissolved Solids ND 10.0 7.00 mg/L 07/13/18 21:20

Lab Sample ID: LCS 490-525388/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 525388

Spike LCS LCS %Rec. Added Result Qualifier Unit Analyte %Rec Limits **Total Dissolved Solids** 100 107.0 mg/L 107 90 - 110

Lab Sample ID: 490-155300-J-1 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 525388

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Analyte Unit Limit **Total Dissolved Solids** 256 255.0 mg/L 0.4 20

Lab Sample ID: 490-155625-4 DU Client Sample ID: River 02B 071218 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 525388

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier Analyte Unit D RPD Limit Total Dissolved Solids 170 167.0 mg/L

TestAmerica Nashville

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-376411/23-A

Lab Sample ID: LCS 160-376411/1-A

Matrix: Water

Matrix: Water

Analysis Batch: 381214

Analysis Batch: 381214

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 376411

	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.3070		0.119	0.122	1.00	0.128	pCi/L	07/18/18 09:53	08/09/18 08:07	1

Total

Count

MB MB

Carrier %Yield Qualifier I imits Ba Carrier 104 40 - 110

Client Sample ID: Lab Control Sample

<u>07/18/18 09:53</u> <u>08/09/18 08:07</u>

Prep Type: Total/NA

Prep Batch: 376411

Analyzed

			Total				•	
	Spike	LCS LCS	Uncert.				%Rec.	
Analyte	Added	Result Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	
Radium-226	15.1	14.12	1.45	1.00	0.135 pCi/L	93	68 - 137	

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 97.9 40 - 110

Lab Sample ID: 600-169201-B-1-A DU **Client Sample ID: Duplicate**

Matrix: Water

Analysis Batch: 381214

Prep Type: Total/NA

Prepared

Prep Batch: 376411

					Total						
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Radium-226	0.203		0.2067		0.0859	1.00	0.0785	pCi/L		0.02	1
	DU I	DU									

Carrier %Yield Qualifier

Limits Ba Carrier 100 40 - 110

Method: 904.0 - Radium-228 (GFPC)

Lab Sample ID: MB 160-376424/23-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 379713 Prep Batch: 376424

Alialysis Datell. 31	31 13							r rep Daten.	010727
_			Count	Total					
	MB	MB	Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	it Prepared	Analyzed	Dil Fac
Radium-228	0.1873	U	0.219	0.220	1.00	0.362 pCi/	/L 07/18/18 10:47	08/01/18 16:54	1

	IVID IVID			
Carrier	%Yield Quar	lifier Limits	Prepared Anal	lyzed Dil Fac
Ba Carrier	104	40 - 110	07/18/18 10:47 08/01/1	8 16:54 1
Y Carrier	89.0	40 - 110	07/18/18 10:47 08/01/1	8 16:54 1

TestAmerica Nashville

8/16/2018

Dil Fac

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-376424/1-A **Matrix: Water**

Analysis Batch: 379720

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 376424

Spike LCS LCS Uncert. %Rec. Added **Analyte** Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-228 14.9 1.48 1.00 0.437 pCi/L 90 56 - 140

13.44

DU DU

Result Qual

-0.06516 U

LCS LCS %Yield Qualifier

Carrier I imits Ba Carrier 97.9 40 - 110 Y Carrier 93.8 40 - 110

Lab Sample ID: 600-169201-B-1-B DU

Matrix: Water

Analyte

Radium-228

Analysis Batch: 379720

Client Sample ID: Duplicate Prep Type: Total/NA

Prep Batch: 376424

Total

Uncert. $(2\sigma + / -)$

0.160

Total

RL **MDC** Unit

0.300 pCi/L

1.00

RER RER Limit

0.06

-0.0457 U DU DU

Sample Sample

Result Qual

Carrier %Yield Qualifier Limits 100

Ba Carrier 40 - 110 Y Carrier 92.7 40 - 110

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Lab Sample ID: 180-78050-A-1 DU

Matrix: Water

Analysis Batch: 382940

Client Sample ID: Duplicate

Prep Type: Total/NA

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL MDC Unit Limit RER 0.193 U 0.3728 U 0.293 Combined 5.00 0.454 pCi/L 0.33

Radium 226 +

228

TestAmerica Nashville

Client: Big Rivers Electric Corporation Project/Site: Green Landfill

HPLC/IC

Analysis Batch: 529755

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total/NA	Water	9056A	
490-155625-2	River 01B 071218	Total/NA	Water	9056A	
490-155625-3	River 02A 071218	Total/NA	Water	9056A	
490-155625-4	River 02B 071218	Total/NA	Water	9056A	
490-155625-5	River 03A 071218	Total/NA	Water	9056A	
490-155625-6	River 03B 071218	Total/NA	Water	9056A	
490-155625-7	River 04A 071218	Total/NA	Water	9056A	
490-155625-8	River 04B 071218	Total/NA	Water	9056A	
MB 490-529755/3	Method Blank	Total/NA	Water	9056A	
LCS 490-529755/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 490-529755/5	Lab Control Sample Dup	Total/NA	Water	9056A	
490-155625-1 MS	River 01A 071218	Total/NA	Water	9056A	
490-155625-1 MSD	River 01A 071218	Total/NA	Water	9056A	

Metals

Prep Batch: 250893

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total Recoverable	Water	3005A	
490-155625-2	River 01B 071218	Total Recoverable	Water	3005A	
490-155625-3	River 02A 071218	Total Recoverable	Water	3005A	
490-155625-4	River 02B 071218	Total Recoverable	Water	3005A	
490-155625-5	River 03A 071218	Total Recoverable	Water	3005A	
490-155625-6	River 03B 071218	Total Recoverable	Water	3005A	
490-155625-7	River 04A 071218	Total Recoverable	Water	3005A	
490-155625-8	River 04B 071218	Total Recoverable	Water	3005A	
MB 180-250893/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-250893/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
490-155625-1 MS	River 01A 071218	Total Recoverable	Water	3005A	
490-155625-1 MSD	River 01A 071218	Total Recoverable	Water	3005A	

Prep Batch: 250895

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total Recoverable	Water	3005A	
490-155625-2	River 01B 071218	Total Recoverable	Water	3005A	
490-155625-3	River 02A 071218	Total Recoverable	Water	3005A	
490-155625-4	River 02B 071218	Total Recoverable	Water	3005A	
490-155625-5	River 03A 071218	Total Recoverable	Water	3005A	
490-155625-6	River 03B 071218	Total Recoverable	Water	3005A	
490-155625-7	River 04A 071218	Total Recoverable	Water	3005A	
490-155625-8	River 04B 071218	Total Recoverable	Water	3005A	
MB 180-250895/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-250895/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
490-155625-2 MS	River 01B 071218	Total Recoverable	Water	3005A	
490-155625-2 MSD	River 01B 071218	Total Recoverable	Water	3005A	

Prep Batch: 250921

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total/NA	Water	7470A	
490-155625-2	River 01B 071218	Total/NA	Water	7470A	

TestAmerica Nashville

Page 30 of 46 8/16/2018

Client: Big Rivers Electric Corporation Project/Site: Green Landfill

Metals (Continued)

Prep Batch: 250921 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-3	River 02A 071218	Total/NA	Water	7470A	<u> </u>
490-155625-4	River 02B 071218	Total/NA	Water	7470A	
490-155625-5	River 03A 071218	Total/NA	Water	7470A	
490-155625-6	River 03B 071218	Total/NA	Water	7470A	
490-155625-7	River 04A 071218	Total/NA	Water	7470A	
490-155625-8	River 04B 071218	Total/NA	Water	7470A	
MB 180-250921/1-A	Method Blank	Total/NA	Water	7470A	
LCS 180-250921/2-A	Lab Control Sample	Total/NA	Water	7470A	
180-79763-F-6-C MS	Matrix Spike	Dissolved	Water	7470A	
180-79763-F-6-D MSD	Matrix Spike Duplicate	Dissolved	Water	7470A	

Analysis Batch: 251171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total/NA	Water	EPA 7470A	250921
490-155625-2	River 01B 071218	Total/NA	Water	EPA 7470A	250921
490-155625-3	River 02A 071218	Total/NA	Water	EPA 7470A	250921
490-155625-4	River 02B 071218	Total/NA	Water	EPA 7470A	250921
490-155625-5	River 03A 071218	Total/NA	Water	EPA 7470A	250921
490-155625-6	River 03B 071218	Total/NA	Water	EPA 7470A	250921
490-155625-7	River 04A 071218	Total/NA	Water	EPA 7470A	250921
490-155625-8	River 04B 071218	Total/NA	Water	EPA 7470A	250921
MB 180-250921/1-A	Method Blank	Total/NA	Water	EPA 7470A	250921
LCS 180-250921/2-A	Lab Control Sample	Total/NA	Water	EPA 7470A	250921
180-79763-F-6-C MS	Matrix Spike	Dissolved	Water	EPA 7470A	250921
180-79763-F-6-D MSD	Matrix Spike Duplicate	Dissolved	Water	EPA 7470A	250921

Analysis Batch: 251527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total Recoverable	Water	6010C	250893
490-155625-2	River 01B 071218	Total Recoverable	Water	6010C	250893
490-155625-3	River 02A 071218	Total Recoverable	Water	6010C	250893
490-155625-4	River 02B 071218	Total Recoverable	Water	6010C	250893
490-155625-5	River 03A 071218	Total Recoverable	Water	6010C	250893
490-155625-6	River 03B 071218	Total Recoverable	Water	6010C	250893
490-155625-7	River 04A 071218	Total Recoverable	Water	6010C	250893
490-155625-8	River 04B 071218	Total Recoverable	Water	6010C	250893
MB 180-250893/1-A	Method Blank	Total Recoverable	Water	6010C	250893
LCS 180-250893/2-A	Lab Control Sample	Total Recoverable	Water	6010C	250893
490-155625-1 MS	River 01A 071218	Total Recoverable	Water	6010C	250893
490-155625-1 MSD	River 01A 071218	Total Recoverable	Water	6010C	250893

Analysis Batch: 251631

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total Recoverable	Water	6020A	250895
490-155625-2	River 01B 071218	Total Recoverable	Water	6020A	250895
490-155625-3	River 02A 071218	Total Recoverable	Water	6020A	250895
490-155625-4	River 02B 071218	Total Recoverable	Water	6020A	250895
490-155625-5	River 03A 071218	Total Recoverable	Water	6020A	250895
490-155625-6	River 03B 071218	Total Recoverable	Water	6020A	250895
490-155625-7	River 04A 071218	Total Recoverable	Water	6020A	250895
490-155625-8	River 04B 071218	Total Recoverable	Water	6020A	250895

TestAmerica Nashville

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

Metals (Continued)

Analysis Batch: 251631 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 180-250895/1-A	Method Blank	Total Recoverable	Water	6020A	250895
LCS 180-250895/2-A	Lab Control Sample	Total Recoverable	Water	6020A	250895
490-155625-2 MS	River 01B 071218	Total Recoverable	Water	6020A	250895
490-155625-2 MSD	River 01B 071218	Total Recoverable	Water	6020A	250895

General Chemistry

Analysis Batch: 525387

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-5	River 03A 071218	Total/NA	Water	SM 2540C	_
490-155625-6	River 03B 071218	Total/NA	Water	SM 2540C	
490-155625-7	River 04A 071218	Total/NA	Water	SM 2540C	
490-155625-8	River 04B 071218	Total/NA	Water	SM 2540C	
MB 490-525387/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 490-525387/2	Lab Control Sample	Total/NA	Water	SM 2540C	
490-155592-A-1 DU	Duplicate	Total/NA	Water	SM 2540C	
490-155625-5 DU	River 03A 071218	Total/NA	Water	SM 2540C	

Analysis Batch: 525388

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total/NA	Water	SM 2540C	
490-155625-2	River 01B 071218	Total/NA	Water	SM 2540C	
490-155625-3	River 02A 071218	Total/NA	Water	SM 2540C	
490-155625-4	River 02B 071218	Total/NA	Water	SM 2540C	
MB 490-525388/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 490-525388/2	Lab Control Sample	Total/NA	Water	SM 2540C	
490-155300-J-1 DU	Duplicate	Total/NA	Water	SM 2540C	
490-155625-4 DU	River 02B 071218	Total/NA	Water	SM 2540C	

Analysis Batch: 529671

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
2	190-155625-1	River 01A 071218	Total/NA	Water	9040C	
4	190-155625-2	River 01B 071218	Total/NA	Water	9040C	
l	_CS 490-529671/1	Lab Control Sample	Total/NA	Water	9040C	
4	490-155638-D-10 DU	Duplicate	Total/NA	Water	9040C	

Analysis Batch: 529685

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-3	River 02A 071218	Total/NA	Water	9040C	_
490-155625-4	River 02B 071218	Total/NA	Water	9040C	
490-155625-5	River 03A 071218	Total/NA	Water	9040C	
490-155625-6	River 03B 071218	Total/NA	Water	9040C	
490-155625-7	River 04A 071218	Total/NA	Water	9040C	
490-155625-8	River 04B 071218	Total/NA	Water	9040C	
LCS 490-529685/1	Lab Control Sample	Total/NA	Water	9040C	
490-155625-3 DU	River 02A 071218	Total/NA	Water	9040C	

Analysis Batch: 531384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total/NA	Water	SM 2320B	

TestAmerica Nashville

8/16/2018

Page 32 of 46

QC Association Summary

Client: Big Rivers Electric Corporation Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

General Chemistry (Continued)

Analysis Batch: 531384 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-2	River 01B 071218	Total/NA	Water	SM 2320B	
490-155625-3	River 02A 071218	Total/NA	Water	SM 2320B	
490-155625-4	River 02B 071218	Total/NA	Water	SM 2320B	
490-155625-5	River 03A 071218	Total/NA	Water	SM 2320B	
490-155625-6	River 03B 071218	Total/NA	Water	SM 2320B	
490-155625-7	River 04A 071218	Total/NA	Water	SM 2320B	
490-155625-8	River 04B 071218	Total/NA	Water	SM 2320B	
MB 490-531384/13	Method Blank	Total/NA	Water	SM 2320B	
LCS 490-531384/14	Lab Control Sample	Total/NA	Water	SM 2320B	
LCSD 490-531384/36	Lab Control Sample Dup	Total/NA	Water	SM 2320B	
490-155625-5 DU	River 03A 071218	Total/NA	Water	SM 2320B	

Rad

Prep Batch: 376411

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total/NA	Water	PrecSep-21	
490-155625-2	River 01B 071218	Total/NA	Water	PrecSep-21	
490-155625-3	River 02A 071218	Total/NA	Water	PrecSep-21	
490-155625-4	River 02B 071218	Total/NA	Water	PrecSep-21	
490-155625-5	River 03A 071218	Total/NA	Water	PrecSep-21	
490-155625-6	River 03B 071218	Total/NA	Water	PrecSep-21	
490-155625-7	River 04A 071218	Total/NA	Water	PrecSep-21	
490-155625-8	River 04B 071218	Total/NA	Water	PrecSep-21	
MB 160-376411/23-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-376411/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
600-169201-B-1-A DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 376424

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155625-1	River 01A 071218	Total/NA	Water	PrecSep_0	
490-155625-2	River 01B 071218	Total/NA	Water	PrecSep_0	
490-155625-3	River 02A 071218	Total/NA	Water	PrecSep_0	
490-155625-4	River 02B 071218	Total/NA	Water	PrecSep_0	
490-155625-5	River 03A 071218	Total/NA	Water	PrecSep_0	
490-155625-6	River 03B 071218	Total/NA	Water	PrecSep_0	
490-155625-7	River 04A 071218	Total/NA	Water	PrecSep_0	
490-155625-8	River 04B 071218	Total/NA	Water	PrecSep_0	
MB 160-376424/23-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-376424/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
600-169201-B-1-B DU	Duplicate	Total/NA	Water	PrecSep_0	

Page 33 of 46

Date Collected: 07/12/18 11:10

Date Received: 07/13/18 10:10

Client Sample ID: River 01A 071218

Lab Sample ID: 490-155625-1

381214

376424

379720

382940

1.0 g

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			529755	07/19/18 02:20	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 14:09	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 20:31	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:03	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529671	07/18/18 10:03	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 12:48	ВМС	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525388	07/13/18 21:20	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			750.47 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL

750.47 mL

1

Client Sample ID: River 01B 071218

Analysis

Analysis

Analysis

Prep

903.0

904.0

PrecSep_0

Ra226_Ra228

Date Collected: 07/12/18 11:30 Date Received: 07/13/18 10:10

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID: 490-155625-2

08/09/18 06:09 RTM

07/18/18 10:47 JLC

08/01/18 16:50 RTM

08/16/18 13:40 RTM

Matrix: Water

TAL SL

TAL SL

TAL SL

TAL SL

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			529755	07/19/18 03:15	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 14:30	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 20:35	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:04	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529671	07/18/18 10:03	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 12:55	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525388	07/13/18 21:20	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			749.80 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL
Total/NA	Analysis	903.0		1			381227	08/09/18 06:10	RTM	TAL SL
Total/NA	Prep	PrecSep_0			749.80 mL	1.0 g	376424	07/18/18 10:47	JLC	TAL SL
Total/NA	Analysis	904.0		1			379720	08/01/18 16:50	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			382940	08/16/18 13:40	RTM	TAL SL

Lab Sample ID: 490-155625-3

Lab Sample ID: 490-155625-4

Matrix: Water

Client Sample ID: River 02A 071218

Date Collected: 07/12/18 11:50 Date Received: 07/13/18 10:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			529755	07/19/18 03:33	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 14:35	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 20:58	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:05	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529685	07/18/18 10:21	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 13:02	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525388	07/13/18 21:20	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			750.09 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL
Total/NA	Analysis	903.0		1			381227	08/09/18 06:10	RTM	TAL SL
Total/NA	Prep	PrecSep_0			750.09 mL	1.0 g	376424	07/18/18 10:47	JLC	TAL SL
Total/NA	Analysis	904.0		1			379720	08/01/18 16:51	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			382940	08/16/18 13:40	RTM	TAL SL

Client Sample ID: River 02B 071218

Date Collected: 07/12/18 12:00

Date Received: 07/13/18 10:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			529755	07/19/18 03:51	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 14:41	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 21:03	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:06	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529685	07/18/18 10:21	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 13:09	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525388	07/13/18 21:20	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			750.19 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL
Total/NA	Analysis	903.0		1			381227	08/09/18 06:11	RTM	TAL SL
Total/NA	Prep	PrecSep_0			750.19 mL	1.0 g	376424	07/18/18 10:47	JLC	TAL SL
Total/NA	Analysis	904.0		1			379720	08/01/18 16:51	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			382940	08/16/18 13:40	RTM	TAL SL

Date Collected: 07/12/18 12:15

Date Received: 07/13/18 10:10

Client Sample ID: River 03A 071218

Lab Sample ID: 490-155625-5

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1		-	529755	07/19/18 04:09	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 14:56	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 21:21	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:07	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529685	07/18/18 10:21	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 13:16	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525387	07/13/18 23:45	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			750.13 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL
Total/NA	Analysis	903.0		1			381227	08/09/18 06:11	RTM	TAL SL
Total/NA	Prep	PrecSep_0			750.13 mL	1.0 g	376424	07/18/18 10:47	JLC	TAL SL
Total/NA	Analysis	904.0		1			379720	08/01/18 16:51	RTM	TAL SL

382940

08/16/18 13:40 RTM

Lab Sample ID: 490-155625-6

Client Sample ID: River 03B 071218

Analysis

Ra226_Ra228

Date Collected: 07/12/18 12:20

Date Received: 07/13/18 10:10

Total/NA

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			529755	07/19/18 04:27	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 15:02	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 21:25	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:08	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529685	07/18/18 10:21	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 13:29	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525387	07/13/18 23:45	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			749.72 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL
Total/NA	Analysis	903.0		1			381227	08/09/18 06:11	RTM	TAL SL
Total/NA	Prep	PrecSep_0			749.72 mL	1.0 g	376424	07/18/18 10:47	JLC	TAL SL
Total/NA	Analysis	904.0		1			379720	08/01/18 16:51	RTM	TAL SL
Total/NA	Analysis	Ra226 Ra228		1			382940	08/16/18 13:40	RTM	TAL SL

TAL SL

Client Sample ID: River 04A 071218

Date Collected: 07/12/18 12:45 Date Received: 07/13/18 10:10

Lab Sample ID: 490-155625-7

Lab Sample ID: 490-155625-8

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A	_	1			529755	07/19/18 04:45	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 15:07	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 21:30	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:09	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529685	07/18/18 10:21	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 13:36	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525387	07/13/18 23:45	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			749.76 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL
Total/NA	Analysis	903.0		1			381227	08/09/18 06:11	RTM	TAL SL
Total/NA	Prep	PrecSep_0			749.76 mL	1.0 g	376424	07/18/18 10:47	JLC	TAL SL
Total/NA	Analysis	904.0		1			379720	08/01/18 16:51	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			382940	08/16/18 13:40	RTM	TAL SL

Client Sample ID: River 04B 071218

Date Collected: 07/12/18 12:55

Date Received: 07/13/18 10:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A	_	1			529755	07/19/18 05:03	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250893	07/18/18 12:28	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 15:12	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250895	07/18/18 12:33	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			251631	07/24/18 21:35	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250921	07/19/18 07:20	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 10:10	RJR	TAL PIT
Total/NA	Analysis	9040C		1			529685	07/18/18 10:21	AJK	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 13:43	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	525387	07/13/18 23:45	AEC	TAL NSH
Total/NA	Prep	PrecSep-21			750.03 mL	1.0 g	376411	07/18/18 09:53	JLC	TAL SL
Total/NA	Analysis	903.0		1			381227	08/09/18 06:11	RTM	TAL SL
Total/NA	Prep	PrecSep_0			750.03 mL	1.0 g	376424	07/18/18 10:47	JLC	TAL SL
Total/NA	Analysis	904.0		1			379720	08/01/18 16:51	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			382940	08/16/18 13:40	RTM	TAL SL

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Method Summary

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	TAL NSH
6010C	Metals (ICP)	SW846	TAL PIT
6020A	Metals (ICP/MS)	SW846	TAL PIT
EPA 7470A	Mercury (CVAA)	SW846	TAL PIT
9040C	рН	SW846	TAL NSH
SM 2320B	Alkalinity	SM	TAL NSH
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL NSH
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT
7470A	Preparation, Mercury	SW846	TAL PIT

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

-

3

4

5

10

11

12

13

14

Accreditation/Certification Summary

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date
Kentucky (UST)	State Pro	gram	4	19	06-30-19
The following analytes	s are included in this repo	ort, but accreditation/	certification is not off	ered by the governing author	ority:
Analysis Method	Prep Method	Matrix	Analyt	е	
9040C		Water	pH		
9040C		Water	Tempe	erature	
9056A		Water	Chloric	de	
9056A		Water	Fluorio	le	
9056A		Water	Sulfate	•	
SM 2320B		Water	Alkalin	ity	
SM 2540C		Water	Total [Dissolved Solids	

Laboratory: TestAmerica Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State Program	6	88-0690	06-27-19
California	State Program	9	2891	04-30-19
Connecticut	State Program	1	PH-0688	09-30-18
Florida	NELAP	4	E871008	06-30-19
Illinois	NELAP	5	200005	06-30-19
Kansas	NELAP	7	E-10350	01-31-19
Louisiana	NELAP	6	04041	06-30-19
Nevada	State Program	9	PA00164	07-31-19
New Hampshire	NELAP	1	2030	04-04-19
New Jersey	NELAP	2	PA005	06-30-19
New York	NELAP	2	11182	03-31-19
North Carolina (WW/SW)	State Program	4	434	12-31-18
Oregon	NELAP	10	PA-2151	01-28-19
Pennsylvania	NELAP	3	02-00416	04-30-19
South Carolina	State Program	4	89014	04-30-18 *
Texas	NELAP	6	T104704528-15-2	03-31-19
US Fish & Wildlife	Federal		LE94312A-1	07-31-19
USDA	Federal		P330-16-00211	06-26-19
Utah	NELAP	8	PA001462015-4	05-31-19
Virginia	NELAP	3	460189	09-14-18 *
West Virginia DEP	State Program	3	142	01-31-19
Wisconsin	State Program	5	998027800	08-31-18

Laboratory: TestAmerica St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	MO00054	06-30-19
ANAB	DoD ELAP		L2305	04-06-19
Arizona	State Program	9	AZ0813	12-08-18
California	State Program	9	2886	06-30-19
Connecticut	State Program	1	PH-0241	03-31-19
Florida	NELAP	4	E87689	06-30-19
Illinois	NELAP	5	200023	11-30-18
Iowa	State Program	7	373	12-01-18

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Nashville

8/16/2018

Page 39 of 46

Accreditation/Certification Summary

Client: Big Rivers Electric Corporation

Project/Site: Green Landfill

TestAmerica Job ID: 490-155625-1

Laboratory: TestAmerica St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Kansas	NELAP	7	E-10236	10-31-18
Kentucky (DW)	State Program	4	90125	12-31-18
Louisiana	NELAP	6	04080	06-30-19
Louisiana (DW)	NELAP	6	LA180017	12-31-18
Maryland	State Program	3	310	09-30-18 *
Michigan	State Program	5	9005	06-30-18 *
Missouri	State Program	7	780	06-30-18 *
Nevada	State Program	9	MO000542018-1	07-31-18 *
New Jersey	NELAP	2	MO002	06-30-19
New York	NELAP	2	11616	03-31-19
North Dakota	State Program	8	R207	06-30-19
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-18 *
Pennsylvania	NELAP	3	68-00540	02-28-19
South Carolina	State Program	4	85002001	06-30-18 *
Texas	NELAP	6	T104704193-18-12	07-31-19
US Fish & Wildlife	Federal		058448	07-31-19
USDA	Federal		P330-17-0028	02-02-20
Utah	NELAP	8	MO000542016-8	07-31-18 *
Virginia	NELAP	3	460230	06-14-19
Washington	State Program	10	C592	08-30-18 *
West Virginia DEP	State Program	3	381	08-31-18 *

TestAmerica Nashville

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

COOLER RECEIPT FORM

Cooler Received/Opened On 7/13/2018 @ 1010	
Time Samples Removed From Cooler 1909 Time Samples Placed in Storage	(2 Hour Window)
1. Tracking # 9869 (last 4 digits, FedEx) Courier: FedEx	
IR Gun ID 17960357 pH Strip Lot A Chlorine Strip Lot A	
2. Temperature of rep. sample or temp blank when opened: #S Degrees Celsius	_
 If Item #2 temperature is θ°C or less, was the representative sample or temp blank frozen? 	YES NO.
4. Were custody seals on outside of cooler?	YES NO NA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	(YESNONA
certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES (NO) and Intact	YESNO(NA
Were these signed and dated correctly?	YESNO(NA
8. Packing mat'i used? Bubbiewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	or Other None
9. Cooling process: (ice) Ice-pack Ice (direct contact) Dry Ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YENONA
11. Were all container labels complete (#, date, signed, pres., etc)?	NONA
12. Did all container labels and tags agree with custody papers?	YES NONA
13a, Were VOA vials received?	YES. (NO.).NA
b. Was there any observable headspace present in any VOA vial?	YESNO.LNA
	V
Larger than this.	
14. Was there a Trip Blank in this cooler? YES. NO. NA If multiple coolers, sequence	e#
certify that I unloaded the cooler and answered questions 7-14 (intial)	6H
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO.
b. Did the bottle labels indicate that the correct preservatives were used	YES NONA
16. Was residual chlorine present?	YESNO(NA)
t certify that t checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	\ <u>{</u>
17. Were custody papers properly filled out (ink, signed, etc)?	YESNONA
18. Did you sign the custody papers In the appropriate place?	YEST.NONA
19. Were correct containers used for the analysis requested?	(YES)NONA
20. Was sufficient amount of sample sent in each container?	YES)NONA
I certify that I entered this project into LIMS and answered questions 17-20 (initial)	
certify that I attached a label with the unique LIMS number to each container (Intial) 5H	
21. Were there Non-Conformance issues at login? YESNO Was a NCM generated? YESNO	#

5

7

9

12

COOLER RECEIPT FORM

Cooler Received/Opened On 7/13/2018 @1010	
Time Samples Removed From Cooler 10 Time Samples Placed In Storage 1990	(2 Hour Window)
1. Tracking # 760 (last 4 digits, FedEx) Courier: FedEx	Λ
IR Gun ID 17960358 pH Strip Lot Chlorine Strip Lot 7	+
2. Temperature of rep. sample or temp blank when opened: Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NONA
4. Were custody seals on outside of cooler?	YESNONA
if yes, how many and where:/	Frant
5. Were the seals intact, signed, and dated correctly?	(ESNONA
6. Were custody papers inside cooler?	YES(10)NA
I certify that I opened the cooler and answered questions 1-6 (intial)	a- 0
7. Were custody seals on containers: YES NO and Intact	YESNOWA
Were these signed and dated correctly?	YESNONO
8. Packing mat'l used? Bubblewrip Plastic bag Peanuts Vermiculite Foam Insert Pape	r Other None
9. Cooling process: (Ice lice-pack lice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YES NO NA
11. Were all container labels complete (#, date, signed, pres., etc)?	VESNONA
12. Did all container labels and tags agree with custody papers?	YES NONA
13a. Were VOA vials received?	YESNO)NA
b. Was there any observable headspace present in any VOA vial?	YESNOWA
	~
Larger than this.	
14. Was there a Trio Blank in this cooler? YES NO INA if multiple coolers, sequence	. #
14. Was there a Trip Blank in this cooler? YES NO. I.NA If multiple coolers, sequence I certify that I unloaded the cooler and answered questions 7-14 (initial)	⊭ # <u></u>
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YES NO NA
b. Did the bottle labels indicate that the correct preservatives were used	(YES.)NONA
16. Was residual chlorine present?	YESNOJA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	54
17. Were custody papers properly filled out (ink, signed, etc)?	YES. NONA
18. Did you sign the custody papers in the appropriate place?	YES .NONA
19. Were correct containers used for the analysis requested?	YESNONA
20. Was sufficient amount of sample sent in each container?	(YES),NONA
t certify that Lentered this project into LIMS and answered questions 17-20 (inflat)	
I certify that I attached a label with the unique LIMS number to each container (Intial)	
21. Were there Non-Conformance issues at login? YES, NO Was a NCM generated? YES, NO.,	
21. 1160 hors hors only mande at logary 120, feet was a from generated; 120, 110.	"·····

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

TestAmerica Nashville			
2960 Foster Creighton Drive	Chain of Custody Becord	בייסטפע >	
Nashville, TN 37204	Origin of Ouston	y record	
Phone (615) 726-0177 Fax (615) 726-3404	-		
	Sampler	Lab pM;	Camer Tracking No(s):
Client information	たてる シレイン	Cisneros, Roxanne	11

Clent information	Sampler: Chris	2.230	ņ	Cisner	 .0s, Rox	sune sune					Carrier Tracking No(s):	;; 중		COC No: 490-86693-25173.	3.2	
	Prone:	1	-/664	E-Meil:	le cisner	et@so	etamer.	E-Mail: roxanne cisneros@testamericaino com	F	<u>a</u>	10000			Page. 1 1		Т
Company.)								30° # 30°		Т
Big Rivers Electric Corporation								Analysis Requested	s Req	Jeste(-		
Address: PO BOX 24	Due Date Requested	Traferon	-\ <u>\</u>											Preservation Codes	es:	
	TAT Requested (days)		- Jo							···-			. \$6 mig.	A - HCL B - NaOH C - Za Acesate	M - Hexane N - None O - Askado	
	1	Ì	-										Alley () See M	D - Nithe Agid E - NaHSO4	P - Na204\$ Q - Na2503	
)10(Tel)	Po#: Purchase Order -	- see DOCs												. F - MeCH . G - Amchlor . H - Ascorbic Acid	R - Na2S2O3 S - H2SC4 T - TSP Dodecahydrate	
	#O₩				. Jon										U - Acetone V - MGAA	
Project Name: Big Rivers Electric Corp - Henderson KY	Project #. 49002917				jo se		iae e j	ste)						N-EDA L-EDA	VV - PH - S Z - othe - secify)	
Sie: Green Landfill	S5OW#:			Ĭ	X) osi			n 00			·····	···		Other:		
		ojomoj.		Matrix (v=v-ster, S-xodd,	d Filtered orm MSA B, 90400,	A014T, B	- bə(a),))	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				<u></u>	төстий і	200ch	ۍ-	
Sample Identification	Sample Date	Time	Gegrab) Braffeson, And Preservation Code:	±	m Ž	ے eo.io				59) 76)	7/3			1 1	Special Instructions/Note:	1.0
River #1 A CTIZIY	3-21-6	11:10	છ	Water	VM	1	1 2						ŀς	AH: 7.44	Loc: 490	Γ.
ø i B	7-12-18	11:30	ტ	Water	7. 2	,	7 /						b		15562	ŭ
Ø2 #	7-12-18	被 ltsc	ঙ	Water	<u></u>	~	, 2							S 18: 7.91		
	7-12-18	(2)00	v	Water	ر ح			궈		_			42	ی ،		
	7-12-18	12.15	৩	Water	Ĭ.	~		~					<u> </u>	0H: 7.94		1
RN5 038 671218	7-12-18	07:70	Ŀ	Water	٠ ۲	-	~						90	* *		
Q Y R	7-12-18	12:45	৬	Water	2	7	7						r.0	BH: 7.86		
Rixer #4 B 071218	7-12-18	12:55	ც	Water	Z	-	7						حي	•		
				Water	-183											T
						_			-	-		+				
									_	-		_	· · ·			T
Possible Hazard Identification	on B X Unknown		Rediological		Semi	e Disp Retum	To Cit	4 ree ma		sposal	n r sam By Lab	ples a	Te retai	Sample Disposal (A fee may be assessed it samples are retained longer than 1 month: Return To Client Disposal By Lab Archive For Won	montr: Montr:	
Deliverable Requested: I, II, III, IV, Other (specify)					Specie	ส โทธนา	ctions/	ac Requ	iremen	.:						
Empty Kit Relinquished by:		Date:			іте:					Me	Method of Shipment	ipment;				П
W Mg persentunes	Detertione 21/8	2)		FECT	~ -	Received by		Ž			<u> </u>	Date/Time:	3	8/1010	TX-NAS	
Refinquished by:	Date/Time:		<u>ŏ</u>	Company		Received by		נ			<u></u>	DateVilme	v	}_	Соптрвлу	
1	Date/Time:		ŭ	Company	R _S	Received by.	, i					Оа:е/Тіте:	`		Company	
Custody Seals Intact: Custody Seal No.: △ Yes △ No					Ç	tier Tem	perature	Cotiler Temperature(s) °C and Other Remarks.	Other Re	narks.	Ô	5	/	1.3		
						!					ĺ				Ver; 08/04/2016	ĺ

THE LEADER IN ENVIRONMENTAL TESTING

Chain of Custody Record

Login Sample Receipt Checklist

Client: Big Rivers Electric Corporation

Job Number: 490-155625-2

Login Number: 155625
List Number: 3
List Source: TestAmerica St. Louis
List Creation: 07/17/18 03:18 PM

Creator: McBride, Mike

Answer	Comment
True	
True	
N/A	
True	
N/A	Thermal preservation not required.
True	
N/A	Received project as a subcontract.
True	
N/A	
True	
True	
N/A	
	True N/A True N/A True True True True True True True True

2

4

5

7

a

10

12

13

Client: Big Rivers Electric Corporation Project/Site: Green Landfill

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ba Carrier	
Lab Sample ID	Client Sample ID	(40-110)	
490-155625-1	River 01A 071218	90.9	
490-155625-2	River 01B 071218	94.7	
490-155625-3	River 02A 071218	87.3	
490-155625-4	River 02B 071218	94.7	
490-155625-5	River 03A 071218	91.4	
490-155625-6	River 03B 071218	92.9	
490-155625-7	River 04A 071218	95.3	
490-155625-8	River 04B 071218	82.3	
600-169201-B-1-A DU	Duplicate	100	
LCS 160-376411/1-A	Lab Control Sample	97.9	
MB 160-376411/23-A	Method Blank	104	
Tracer/Carrier Legend	d		

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ba Carrier	Y Carrier	
Lab Sample ID	Client Sample ID	(40-110)	(40-110)	
490-155625-1	River 01A 071218	90.9	90.1	
490-155625-2	River 01B 071218	94.7	90.1	
490-155625-3	River 02A 071218	87.3	90.1	
490-155625-4	River 02B 071218	94.7	90.1	
490-155625-5	River 03A 071218	91.4	90.8	
490-155625-6	River 03B 071218	92.9	90.8	
490-155625-7	River 04A 071218	95.3	86.7	
490-155625-8	River 04B 071218	82.3	89.0	
600-169201-B-1-B DU	Duplicate	100	92.7	
LCS 160-376424/1-A	Lab Control Sample	97.9	93.8	
MB 160-376424/23-A	Method Blank	104	89.0	

Ba Carrier = Ba Carrier

Y Carrier = Y Carrier

TestAmerica Nashville

Page 46 of 46

2

4

5

7

9

10

12

IR

1-

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-155661-1

Client Project/Site: Sebree-Green Landfill

Revision: 3

For:

Big Rivers Electric Corporation PO BOX 24 Henderson, Kentucky 42419

Attn: Greg Dick

Roxanne Cisneros

Authorized for release by: 9/6/2018 12:40:51 PM

Roxanne Cisneros, Senior Project Manager (615)301-5761

roxanne.cisneros@testamericainc.com

LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	6
Client Sample Results	7
QC Sample Results	19
QC Association	26
Chronicle	29
Method Summary	33
Certification Summary	34
Chain of Custody	36
Receipt Checklists	43
Tracer Carrier Summary	44

3

4

6

8

9

11

12

4 /

Sample Summary

Water

Water

Water

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID

River Seep-08-071318

River Seep-12-071318

River Seep-16-071318

River Seep-14-071318

River Seep-04-071218

River Seep-07-071218

River Seep-05-071218

Lab Sample ID

490-155661-1

490-155661-2

490-155661-3

490-155661-4

490-155661-5

490-155661-6 490-155661-7

TestAmerica Job ID: 490-155661-1

07/12/18 13:50 07/14/18 10:50

07/12/18 14:50 07/14/18 10:50

07/12/18 14:25 07/14/18 10:50

Matrix	Collected	Received
Water	07/13/18 07:50	07/14/18 10:50
Water	07/13/18 09:15	07/14/18 10:50
Water	07/13/18 11:00	07/14/18 10:50
Water	07/13/18 10:10	07/14/18 10:50

Case Narrative

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Job ID: 490-155661-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-155661-1

Comments

Revised Report 9/06/2018 to correct sample ID for River Seep-04-071218 (490-155661-5).

Revised Report 8/24/2018 to includes only the data for the River Seeps per client request.

Revised Report 8/10/2018 to add Potassium per client request.

Receipt

The samples were received on 7/14/2018 10:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 1.0° C, 3.1° C and 5.7° C.

HPLC/IC

Method(s) 9056A: The method blank for analytical batch 490-531256 contained Sulfate above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

Method(s) 9056A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 490-531256 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 9056A: The method blank for analytical batch 490-531256 contained Fluoride and Sulfate above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

Method(s) 9056A: The following samples were diluted due to the nature of the sample matrix: River Seep-08-071318 (490-155661-1), River Seep-14-071318 (490-155661-4), River Seep-04-071218 (490-155661-5), River Seep-07-071218 (490-155661-6), River Seep-05-071218 (490-155661-7), Elevated reporting limits (RLs) are provided.

Method(s) 9056A: The method blank as well as the continuing calibration blanks for analytical batch 490-531368 contained sulfate above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Narrative

Job Narrative 490-155661-2

Comments

Revised Report 9/06/2018 to correct sample ID for River Seep-04-071218 (490-155661-5).

Revised Report 8/24/2018 to includes only the data for the River Seeps per client request.

Receipt

TestAmerica Nashville 9/6/2018 (Rev. 3) 2

J

4

6

7

0

10

111

13

Case Narrative

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Job ID: 490-155661-1 (Continued)

Laboratory: TestAmerica Nashville (Continued)

The samples were received on 7/14/2018 10:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 1.0° C, 3.1° C and 5.7° C.

RAD

Method(s) 904.0: Ra-228 Prep Batch 160-376750: The following sample did not meet the requested limit (RL) due to the reduced sample volume attributed to the presence of matrix interferences (see prep NCM 160-144167). The sample was brown, opaque and contained heavy amounts of sediment. The data have been reported with this narrative. River Seep-05-071218 (490-155661-7)

Method(s) PrecSep_0: Radium 228 Prep Batch 160-376750:

Sample aliquot 490-155661-2 reduced due to potential matrix interference. Sample was yellow, murky, and contained heavy amounts of sediment.

Sample aliquots 490-155661-5 and 490-155661-7 reduced due to potential matrix interference. Samples were brown, opaque, and contained heavy amounts of sediment.

River Seep-12-071318 (490-155661-2), River Seep-04-071218 (490-155661-5), River Seep-05-071218 (490-155661-7)

Method(s) PrecSep_0: Radium 228 Prep Batch 160-376750: Insufficient sample volume was available to perform a sample duplicate (DUP) for the following samples: River Seep-08-071318 (490-155661-1), River Seep-12-071318 (490-155661-2), River Seep-04-071218 (490-155661-5), River Seep-07-071218 (490-155661-6), and River Seep-05-071218 (490-155661-7). A laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method(s) PrecSep-21: Radium 226 Prep Batch 160-376745: Insufficient sample volume was available to perform a sample duplicate (DUP) for the following samples: River Seep-08-071318 (490-155661-1), River Seep-12-071318 (490-155661-2), River Seep-04-071218 (490-155661-5), River Seep-07-071218 (490-155661-6), and River Seep-05-071218 (490-155661-7). A laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method(s) PrecSep-21: Radium 226 Prep Batch 160-376745:

Sample aliquot 490-155661-2 reduced due to potential matrix interference. Sample was yellow, murky, and contained heavy amounts of sediment.

Sample aliquots 490-155661-5 and 490-155661-7 reduced due to potential matrix interference. Samples were brown, opaque, and contained heavy amounts of sediment.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

6

4

Ę

6

Q

9

11

12

16

| | 4

Definitions/Glossary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Qualifiers

HPLC/IC

Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
В	Compound was found in the blank and sample.	
F1	MS and/or MSD Recovery is outside acceptance limits.	

Metals	
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Rad	
Qualifier	Qualifier Description
G	The Sample MDC is greater than the requested RL.

Glossary

QC

RER

RPD TEF

TEQ

RL

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Giossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

Client: Big Rivers Electric Corporation

TestAmerica Job ID: 490-155661-1

Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-08-071318 Lab Sample ID: 490-155661-1

Date Collected: 07/13/18 07:50 Matrix: Water

Date Received: 07/14/18 10:50

Method: 9056A - Anic Analyte	· · · · · · · · · · · · · · · · · · ·	aphy Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2040		300	20.0	mg/L		<u> </u>	07/25/18 21:00	100
Fluoride	0.0915	J	1.00	0.0100	mg/L			07/24/18 16:22	1
Sulfate	1440	В	250	1.50	mg/L			07/25/18 20:45	50

Method: 6010C - Metals (ICP)	- Total Recoverable							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	1.80	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:24	1

Method: 6020A - Meta Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.00141	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:35	1
Arsenic	0.000404	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:35	1
Barium	0.0443	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 19:35	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:35	1
Boron	0.510	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:35	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:35	1
Calcium	801		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:35	1
Chromium	0.000560	J	0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 19:35	1
Cobalt	0.000691	J	0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 19:35	1
Lead	0.000769	J	0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 19:35	1
Magnesium	291		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 19:35	1
Molybdenum	0.00296	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 19:35	1
Potassium	125		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 19:35	1
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 19:35	1
Sodium	274		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 19:35	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 19:35	1

Method: EPA 7470A - Mercury (CVAA)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:04	1

General Chemistry Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.16		0.100	0.100	SU			07/24/18 17:55	1
Temperature	21.8		0.100	0.100	Degrees C			07/24/18 17:55	1
Alkalinity	174		10.0	5.00	mg/L			07/24/18 20:55	1
Total Dissolved Solids	5310		40.0	28.0	mg/L			07/18/18 08:50	1

Method: 903.0 -	Radium-226	(GFPC)								
		(22.2.2)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.332		0.108	0.112	1.00	0.0893	pCi/L	07/19/18 15:20	08/10/18 16:41	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.3		40 - 110					07/19/18 15:20	08/10/18 16:41	1

TestAmerica Nashville

_

3

5

7

0

10

12

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-08-071318

Lab Sample ID: 490-155661-1 Date Collected: 07/13/18 07:50

Matrix: Water

Date Received: 07/14/18 10:50

ım-228	(GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.983		0.295	0.309	1.00	0.370	pCi/L	07/19/18 15:49	08/02/18 09:20	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
87.3		40 - 110					07/19/18 15:49	08/02/18 09:20	1
90.5		40 - 110					07/19/18 15:49	08/02/18 09:20	1
_	Result 0.983	Result Qualifier 0.983 %Yield Qualifier 87.3	Result 0.983 Qualifier Qualifier Qualifier (2σ+/-) (2σ+/-) (2σ+/-) (2π) %Yield Qualifier R7.3 Limits 40 - 110	Result 0.983 Qualifier Qualifier (2σ+/-) (2σ	Result 0.983 Qualifier Qualifier (2σ+/-) (2σ	Count Uncert. Uncert. Vincert. Vincer	Count Uncert. Uncert. Count Uncert. Cou	Result 0.983 Qualifier 0.295 Count Uncert. Uncert. Uncert. (2σ+/-) (Count Uncert. Prepared Analyzed O7/19/18 15:49 O8/02/18 09:20 WYield Qualifier Limits Uncert. Uncert. Uncert. Prepared O7/19/18 15:49 O8/02/18 09:20 WYield Qualifier Limits Uncert. U

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.31		0.314	0.329	5.00	0.370	pCi/L		08/21/18 03:20	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-12-071318

Date Collected: 07/13/18 09:15

Date Received: 07/14/18 10:50

Matrix: Water

Method: 9056A - Anions,	Ion Chromatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	32.7	3.00	0.200	mg/L			07/24/18 16:37	1
Fluoride	0.0803 J	1.00	0.0100	mg/L			07/24/18 16:37	1
Sulfate	16.1 B	5.00	0.0300	mg/L			07/24/18 16:37	1
_ Method: 6010C - Metals (ICP) - Total Recoverable							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 6010C - Metals (ICP) -	- Total Recoverable							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:29	1

Method: 6020A - Meta Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000499	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:40	1
Arsenic	0.00467	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:40	1
Barium	0.0757	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 19:40	1
Beryllium	0.000145	J	0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:40	1
Boron	0.0379	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:40	1
Cadmium	0.000183	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:40	1
Calcium	21.1		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:40	1
Chromium	0.00200	J	0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 19:40	1
Cobalt	0.00581		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 19:40	1
Lead	0.00221	J	0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 19:40	1
Magnesium	5.20		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 19:40	1
Molybdenum	0.000948	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 19:40	1
Potassium	2.37		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 19:40	1
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 19:40	1
Sodium	5.52		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 19:40	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 19:40	1

Method: EPA 7470A - Mercury (CVAA)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:05	1		

General Chemistry Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.00		0.100	0.100	SU			07/24/18 17:55	1
Temperature	21.7		0.100	0.100	Degrees C			07/24/18 17:55	1
Alkalinity	38.2		10.0	5.00	mg/L			07/24/18 21:02	1
Total Dissolved Solids	157		10.0	7.00	mg/L			07/18/18 08:50	1

Method: 903.0 -	Radium-226	(GFPC)								
		(-)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.542		0.153	0.161	1.00	0.105	pCi/L	07/19/18 15:20	08/10/18 16:41	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.9		40 - 110					07/19/18 15:20	08/10/18 16:41	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-12-071318

Lab Sample ID: 490-155661-2 Date Collected: 07/13/18 09:15

Matrix: Water

Date Received: 07/14/18 10:50

adium-228	(GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.629		0.351	0.356	1.00	0.527	pCi/L	07/19/18 15:49	08/02/18 09:21	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
92.9		40 - 110					07/19/18 15:49	08/02/18 09:21	1
85.6		40 - 110					07/19/18 15:49	08/02/18 09:21	1
	Result	%Yield Qualifier	Count Uncert.	Count Uncert. Uncert.	Count Uncert. Uncert.	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared 0.629 0.351 0.356 1.00 0.527 pCi/L 07/19/18 15:49	Count Uncert. Uncert. Variety Variety

Method: Ra226_Ra	a228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.17		0.383	0.391	5.00	0.527	pCi/L		08/21/18 03:20	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 11:00

Client Sample ID: River Seep-16-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-3

3

A

Matrix: Water

6

8

11 12

14

Method: 9056A - Anions, Ion Chron	natogr	aphy							
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	23.2		3.00	0.200	mg/L			07/24/18 16:52	1
Fluoride	0.177	J	1.00	0.0100	mg/L			07/24/18 16:52	1
Sulfate	26.5	В	5.00	0.0300	mg/L			07/24/18 16:52	1
- Method: 6010C - Metals (ICP) - Tota	al Reco	overable							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:35	1
Method: 6020A - Metals (ICP/MS) -	Total F	Recoverabl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony 0.	000270	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:44	1
Arsenic	0.0247		0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:44	1
Barium	0.190	J	0.200	0.000270	•		07/18/18 12:44	07/28/18 19:44	1
Beryllium 0.	000211	J	0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:44	1
Boron	0.0321	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:44	1
Cadmium 0.	000196	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:44	1
Calcium	93.8		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:44	1
Chromium	0.00383		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 19:44	1
Cobalt	0.00613		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 19:44	1
Lead	0.00521		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 19:44	1
Magnesium	20.3		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 19:44	1
Molybdenum	0.00878	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 19:44	1
Potassium	4.85		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 19:44	1
Selenium 0.	000906	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 19:44	1
Sodium	26.7		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 19:44	1
Thallium -	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 19:44	1
Method: EPA 7470A - Mercury (CV	AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:06	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fac
рН	8.40		0.100	0.100	SU	_		07/24/18 17:55	1
Temperature	21.7		0.100	0.100	Degrees C			07/24/18 17:55	1
Alkalinity	393		10.0	5.00	mg/L			07/24/18 21:09	1
Total Dissolved Solids	504		20.0	14.0	mg/L			07/18/18 08:50	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 10:10

Client Sample ID: River Seep-14-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-4

Matrix: Water

Date Received: 07/14/18 10:50									
Method: 9056A - Anions, Ion (_	aphy Qualifier	RL	MDI	Unit	D	Prepared	Analyzad	Dil Fac
Chloride	22.7	Quaimer	3.00	0.200				Analyzed 07/24/18 17:07	1
	0.144		1.00		•			07/24/18 17:07	1
Fluoride		_	50.0	0.0100	· ·			07/25/18 21:15	10
Sulfate -	159	В	50.0	0.300	mg/L			07/25/16 21.15	10
Method: 6010C - Metals (ICP)	- Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0126	J	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:50	1
- Method: 6020A - Metals (ICP/N	MS) - Total F	Recoverabl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000312	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:49	1
Arsenic	0.0173		0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:49	1
Barium	0.242		0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 19:49	1
Beryllium	0.000497	J	0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:49	1
Boron	0.0694	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:49	1
Cadmium	0.000312	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:49	1
Calcium	171		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:49	1
Chromium	0.00969		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 19:49	1
Cobalt	0.0125		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 19:49	1
Lead	0.0109		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 19:49	1
Magnesium	36.6		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 19:49	1
Molybdenum	0.00550	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 19:49	1
Potassium	4.96		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 19:49	1
Selenium	0.000582	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 19:49	1
Sodium	18.5		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 19:49	1
Thallium	0.000126	J	0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 19:49	1
- Method: EPA 7470A - Mercury	(CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:07	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.14		0.100	0.100	SU			07/24/18 17:55	1
Temperature	21.8		0.100	0.100	Degrees C			07/24/18 17:55	1
Alkalinity	443		10.0	5.00	mg/L			07/24/18 21:17	1
Total Dissolved Solids	790		20.0	14.0	mg/L			07/18/18 08:50	1

2

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-04-071218

Lab Sample ID: 490-155661-5 Matrix: Water

Date Collected: 07/12/18 13:50 Date Received: 07/14/18 10:50

Method: 9056A - Anion	s, Ion Chromatogr	aphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	189		30.0	2.00	mg/L			07/25/18 21:59	10
Fluoride	0.239	J F1	1.00	0.0100	mg/L			07/24/18 17:51	1
Sulfate	1310	В	250	1.50	mg/L			07/25/18 22:14	50
Method: 6010C - Metals	s (ICP) - Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0209	J	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000200	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 20:06	1
Arsenic	0.00188	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 20:06	1
Barium	0.0384	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 20:06	1
Beryllium	0.00372		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 20:06	1
Boron	2.19		1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 20:06	1
Cadmium	0.00307		0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 20:06	1
Calcium	460		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 20:06	1
Chromium	0.00386		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 20:06	1
Cobalt	0.0447		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:06	1
Lead	0.00507		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:06	1
Magnesium	63.6		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:06	1
Molybdenum	ND		0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:06	1
Potassium	9.51		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 20:06	1
Selenium	0.00216	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 20:06	1
Sodium	42.1		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 20:06	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 20:06	1

Method: EPA 7470A - Mercury Analyte	(CVAA) Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:08	1
General Chemistry					_	_		

General Chemistry Analyte	Result Q	ualifier RI	. MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	5.26	0.100	0.100	SU			07/24/18 17:55	1
Temperature	21.7	0.100	0.100	Degrees C			07/24/18 17:55	1
Alkalinity	ND	10.0	5.00	mg/L			07/24/18 21:21	1
Total Dissolved Solids	2130	20.0	14.0	mg/L			07/18/18 08:50	1

Method: 903.0 -	Radium-226	(GFPC)								
		(-)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.665		0.213	0.221	1.00	0.167	pCi/L	07/19/18 15:20	08/10/18 16:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	89.4		40 - 110					07/19/18 15:20	08/10/18 16:40	1

TestAmerica Nashville

3

4

6

8

9

11

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-04-071218

Date Collected: 07/12/18 13:50 Date Received: 07/14/18 10:50 Lab Sample ID: 490-155661-5

Matrix: Water

Method: 904.0 - I	Radium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.810		0.520	0.525	1.00	0.796	pCi/L	07/19/18 15:49	08/02/18 09:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	89.4		40 - 110					07/19/18 15:49	08/02/18 09:22	1
Y Carrier	87.1		40 - 110					07/19/18 15:49	08/02/18 09:22	1

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radiun	n- 228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.48		0.562	0.570	5.00	0.796	pCi/L		08/21/18 03:20	1
226 + 228										

9

10

11

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-07-071218

Date Collected: 07/12/18 14:50

Date Received: 07/14/18 10:50

Lab Sa	mple ID:	490-15	55661-6

Matrix: Water

Method: 9056A - Anions, Id	on Chromatogra	phy							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1990		300	20.0	mg/L			07/25/18 22:29	100
Fluoride	0.102 J	J	1.00	0.0100	mg/L			07/24/18 18:21	1
Sulfate	1480 E	3	500	3.00	mg/L			07/25/18 22:29	100

Method: 6010C - Metals (ICP) -	· Total Recoverable						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.772	0.0500	0.00959 mg/L		07/18/18 12:42	07/24/18 18:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 20:11	1
Arsenic	0.00182	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 20:11	1
Barium	0.0605	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 20:11	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 20:11	1
Boron	1.46		1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 20:11	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 20:11	1
Calcium	1120		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 20:11	1
Chromium	0.000340	J	0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 20:11	1
Cobalt	0.0218		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:11	1
Lead	0.000523	J	0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:11	1
Magnesium	51.8		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:11	1
Molybdenum	0.00219	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:11	1
Potassium	262		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 20:11	1
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 20:11	1
Sodium	277		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 20:11	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 20:11	1

Method: EPA 7470A - Mercury	(CVAA)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.200	0.0653 ug/L		07/18/18 15:06	07/20/18 11:09	1

General Chemistry Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.01	0.100	0.100	SU			07/24/18 17:55	1
Temperature	21.7	0.100	0.100	Degrees C			07/24/18 17:55	1
Alkalinity	87.7	10.0	5.00	mg/L			07/24/18 21:28	1
Total Dissolved Solids	6080	40.0	28.0	mg/L			07/18/18 08:50	1

Method: 903.0 -	Radium-226	(GFPC)								
		` ,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.566		0.144	0.152	1.00	0.0969	pCi/L	07/19/18 15:20	08/10/18 16:39	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	79.4		40 - 110					07/19/18 15:20	08/10/18 16:39	1

TestAmerica Nashville

2

4

5

7

10

10

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-07-071218

Lab Sample ID: 490-155661-6

Matrix: Water

Date Collected: 07/12/18 14:50 Date Received: 07/14/18 10:50

Method: 904.0 - F	Radium-228	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.831		0.318	0.327	1.00	0.434	pCi/L	07/19/18 15:49	08/02/18 09:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	79.4		40 - 110					07/19/18 15:49	08/02/18 09:22	1
Y Carrier	87.1		40 - 110					07/19/18 15:49	08/02/18 09:22	1

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.40		0.349	0.361	5.00	0.434	pCi/L		08/21/18 03:20	1

TestAmerica Nashville

3

4

6

9

40

11

2

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-05-071218

Method: 9056A - Anions, Ion Chromatography

Date Collected: 07/12/18 14:25 Date Received: 07/14/18 10:50 Lab Sample ID: 490-155661-7

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1670		300	20.0	mg/L			07/25/18 22:44	100
Fluoride	0.0795	J	1.00	0.0100	mg/L			07/24/18 18:36	1
Sulfate	1170	В	500	3.00	mg/L			07/25/18 22:44	100
Method: 6010C - Meta	ls (ICP) - Total Reco	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.340		0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 18:07	1
Method: 6020A - Meta	ls (ICP/MS) - Total F	Recoverabl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000366	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 20:16	1
Arsenic	0.0192		0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 20:16	1
Barium	0.718		0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 20:16	1
Beryllium	0.000545	J	0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 20:16	1
Boron	0.853	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 20:16	1
Cadmium	0.000563	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 20:16	1
Calcium	916		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 20:16	1
Chromium	0.0124		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 20:16	1
Cobalt	0.0327		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:16	1
Lead	0.0104		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:16	1
Magnesium	77.8		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:16	1
Molybdenum	0.00442	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:16	1
Potassium	238		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 20:16	1
Selenium	0.00121	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 20:16	1
Sodium	285		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 20:16	1
Thallium	0.000164		0.00100	0.0000360			07/18/18 12:44	07/28/18 20:16	1

Method: EPA /4/UA - Mercury Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:12	1
Conoral Chamiatry									

General Chemistry Analyte	Result Qualifi	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.95	0.100	0.100	SU			07/24/18 17:55	1
Temperature	21.7	0.100	0.100	Degrees C			07/24/18 17:55	1
Alkalinity	229	10.0	5.00	mg/L			07/24/18 21:41	1
Total Dissolved Solids	5140	40.0	28.0	mg/L			07/18/18 08:50	1

Method: 903.0 -	Radium-226	(GFPC)								
		(2::-)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	3.81		0.503	0.609	1.00	0.187	pCi/L	07/19/18 15:20	08/10/18 16:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.9		40 - 110					07/19/18 15:20	08/10/18 16:40	1

3

4

6

Q

9

11

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-05-071218

Lab Sample ID: 490-155661-7 Date Collected: 07/12/18 14:25

Matrix: Water

Date Received: 07/14/18 10:50

Method: 904.0 -	Radium-228	(GFPC)								
Aughdo	Do ovilé.	Ovalitia.	Count Uncert.	Total Uncert.	DI	MDC	11-4	Dunnanad	Analomad	Dil Foo
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	3.83	G	0.871	0.940	1.00	1.07	pCi/L	07/19/18 15:49	08/02/18 09:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.9		40 - 110					07/19/18 15:49	08/02/18 09:22	1
Y Carrier	83.0		40 - 110					07/19/18 15:49	08/02/18 09:22	1

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	7.64		1.01	1.12	5.00	1.07	pCi/L		08/21/18 03:20	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 490-531256/3

Matrix: Water

Analysis Batch: 531256

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 3.00 0.200 mg/L ND 07/24/18 13:54 Fluoride ND 1.00 0.0100 mg/L 07/24/18 13:54 Sulfate 0.3643 J 5.00 0.0300 mg/L 07/24/18 13:54

Lab Sample ID: LCS 490-531256/4

Matrix: Water

Analysis Batch: 531256

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client Sample ID: River Seep-04-071218

Prep Type: Total/NA

Prep Type: Total/NA

	Бріке	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.350		mg/L		93	80 - 120	
Fluoride	1.00	0.9781	J	mg/L		98	80 - 120	
Sulfate	10.0	9.696		mg/L		97	80 - 120	

Lab Sample ID: LCSD 490-531256/5

Matrix: Water

Analysis Batch: 531256

_	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.374		mg/L		94	80 - 120	0	20
Fluoride	1.00	0.9558	J	mg/L		95	80 - 120	2	20
Sulfate	10.0	9.589		mg/L		96	80 - 120	1	20

Lab Sample ID: 490-155661-5 MS

Matrix: Water

Analysis Batch: 531256

7 maryolo Batom co 1200	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoride	0.239	J F1	1.00	1.702	F1	mg/L	_	146	80 - 120	

Analysis Batch: 531368

	·
Lab Sample ID: MB 490-531368/3	Client Sample ID: Method Blank
Matrix: Water	Pren Tyne: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		3.00	0.200	mg/L			07/25/18 18:18	1
Fluoride	ND		1.00	0.0100	mg/L			07/25/18 18:18	1
Sulfate	0.3720	J	5.00	0.0300	mg/L			07/25/18 18:18	1

Lab Sample ID: MB 490-531368/30

Matrix: Water

Analysis Batch: 531368

i many one Datem of 1000									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		3.00	0.200	mg/L			07/26/18 00:57	1
Fluoride	ND		1.00	0.0100	mg/L			07/26/18 00:57	1
Sulfate	0.3740	J	5.00	0.0300	mg/L			07/26/18 00:57	1

TestAmerica Nashville

Prep Type: Total/NA

Client Sample ID: Method Blank

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 490-531368/31 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531368

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 10.0	9.348		mg/L		93	80 - 120	
Fluoride	1.00	0.9475	J	mg/L		95	80 - 120	
Sulfate	10.0	9 314		ma/l		93	80 120	

Lab Sample ID: LCS 490-531368/4 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 531368

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 10.0	9.348		mg/L		93	80 - 120	
Fluoride	1.00	0.9854	J	mg/L		98	80 - 120	
Sulfate	10.0	9.495		mg/L		95	80 - 120	

Lab Sample ID: LCSD 490-531368/32 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531368

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.368		mg/L		94	80 - 120	0	20
Fluoride	1.00	0.9513	J	mg/L		95	80 - 120	0	20
Sulfate	10.0	9.447		mg/L		94	80 - 120	1	20

Lab Sample ID: LCSD 490-531368/5 **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531368

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.296		mg/L		93	80 - 120	1	20
Fluoride	1.00	0.9931	J	mg/L		99	80 - 120	1	20
Sulfate	10.0	9.710		mg/L		97	80 - 120	2	20

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 180-250902/1-A

Matrix: Water

Analysis Batch: 251527

MR MR

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	mg/L			07/18/18 12:42	07/24/18 16:47	1

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 180-250902/2-A **Matrix: Water Prep Type: Total Recoverable Prep Batch: 250902 Analysis Batch: 251527**

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Lithium 1 00 1.028 mg/L 103 80 - 120

TestAmerica Nashville

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Batch: 250902

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 490-155660-A-5-B MS

Matrix: Water

Analysis Batch: 251527

Client Sample ID: Matrix Spike Prep Type: Total Recoverable Prep Batch: 250902 Sample Sample Spike MS MS %Rec.

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 1.00 75 - 125 Lithium 0.0132 J 1.082 mg/L 107

Lab Sample ID: 490-155660-A-5-C MSD

Matrix: Water

Analysis Batch: 251527 Prep Batch: 250902 Sample Sample Spike MSD MSD %Rec. Result Qualifier Added Analyte Result Qualifier Unit Limits RPD Limit D %Rec Lithium 0.0132 J 1.00 1.090 mg/L 108 75 - 125 20

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-250903/1-A

Matrix: Water

Analysis Batch: 252059

Client Sample ID: Method Blank **Prep Type: Total Recoverable** Prep Batch: 250903

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total Recoverable

Analysis batch: 252059								Prep batch:	250903
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 18:53	1
Arsenic	ND		0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 18:53	1
Barium	ND		0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 18:53	1
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 18:53	1
Boron	ND		1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 18:53	1
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 18:53	1
Calcium	ND		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 18:53	1
Chromium	ND		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 18:53	1
Cobalt	ND		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 18:53	1
Lead	ND		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 18:53	1
Magnesium	ND		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 18:53	1
Molybdenum	ND		0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 18:53	1
Potassium	ND		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 18:53	1
Selenium	ND		0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 18:53	1
Sodium	ND		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 18:53	1
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 18:53	1
<u></u>									

Lab Sample ID: LCS 180-250903/2-A

Matrix: Water

Analysis Batch: 252059

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 250903

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.500	0.4729		mg/L		95	80 - 120	
Arsenic	0.0400	0.03658		mg/L		91	80 - 120	
Barium	2.00	1.840		mg/L		92	80 - 120	
Beryllium	0.0500	0.05027		mg/L		101	80 - 120	
Boron	1.00	0.8897	J	mg/L		89	80 - 120	
Cadmium	0.0500	0.05029		mg/L		101	80 - 120	
Calcium	50.0	45.70		mg/L		91	80 - 120	
Chromium	0.200	0.1649		mg/L		82	80 - 120	
Cobalt	0.500	0.4321		mg/L		86	80 - 120	
Lead	0.0200	0.01998		mg/L		100	80 - 120	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 180-250903/2-A Matrix: Water				Client Sample ID: Lab Control Sam Prep Type: Total Recovera						
Analysis Batch: 252059	Spike	LCS	LCS				Prep Batch: 250903 %Rec.			
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits			
Magnesium	50.0	45.74		mg/L		91	80 - 120			
Molybdenum	1.00	0.9327		mg/L		93	80 - 120			
Potassium	50.0	46.09		mg/L		92	80 - 120			
Selenium	0.0100	0.009085	J	mg/L		91	80 - 120			
Sodium	50.0	44.98		mg/L		90	80 - 120			
Thallium	0.0500	0.04846		mg/L		97	80 - 120			

Lab Sample ID: 490-155660-A-6-C MS **Client Sample ID: Matrix Spike Matrix: Water Prep Type: Total Recoverable Analysis Batch: 252059 Prep Batch: 250903** MS MS %Rec. Sample Sample Spike Result Qualifier Result Qualifier Added Limits **Analyte** Unit D %Rec Antimony ND 0.500 0.4679 mg/L 94 75 - 125 ND 0.0400 Arsenic 0.03692 mg/L 92 75 - 125 Barium ND 2.00 1.839 mg/L 92 75 - 125 75 - 125 Beryllium ND 0.0500 0.04768 95 mg/L Boron 0.00422 1.00 0.8456 J mg/L 84 75 - 125 Cadmium ND 0.0500 0.04723 mg/L 94 75 - 125 Calcium ND 50.0 45.39 mg/L 91 75 - 125 75 - 125 Chromium ND 0.200 0.1840 mg/L 92 Cobalt 0.500 75 - 125 ND 0.4386 mg/L 88 Lead 0.000399 J 0.0200 0.01986 mg/L 97 75 - 125 Magnesium 0.0156 J 50.0 46.32 mg/L 93 75 - 125 Molybdenum ND 1.00 0.9262 mg/L 93 75 - 125 Potassium 0.0680 50.0 92 75 - 125 46.15 mg/L Selenium ND 0.0100 0.01006 mg/L 101 75 - 125 Sodium ND 50.0 45.34 mg/L 91 75 - 125

0.0500

0.04726

mg/L

95

Client Sample ID: Matrix Spike Duplicate

75 - 125

Prep Type: Total Recoverable

Lab Sample ID: 490-155660-A-6-D MSD

ND

Matrix: Water

Thallium

Analysis Batch: 252059									Prep Ba	tch: 2	50903
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		0.500	0.4680		mg/L		94	75 - 125	0	20
Arsenic	ND		0.0400	0.03704		mg/L		93	75 - 125	0	20
Barium	ND		2.00	1.847		mg/L		92	75 - 125	0	20
Beryllium	ND		0.0500	0.04801		mg/L		96	75 - 125	1	20
Boron	0.00422	J	1.00	0.8557	J	mg/L		85	75 - 125	1	20
Cadmium	ND		0.0500	0.04852		mg/L		97	75 - 125	3	20
Calcium	ND		50.0	44.91		mg/L		90	75 - 125	1	20
Chromium	ND		0.200	0.1875		mg/L		94	75 - 125	2	20
Cobalt	ND		0.500	0.4400		mg/L		88	75 - 125	0	20
Lead	0.000399	J	0.0200	0.01961		mg/L		96	75 - 125	1	20
Magnesium	0.0156	J	50.0	45.89		mg/L		92	75 - 125	1	20
Molybdenum	ND		1.00	0.9301		mg/L		93	75 - 125	0	20
Potassium	0.0680	J	50.0	45.93		mg/L		92	75 - 125	0	20
Selenium	ND		0.0100	0.01030		mg/L		103	75 - 125	2	20
Sodium	ND		50.0	45.17		mg/L		90	75 - 125	0	20

TestAmerica Nashville

Page 22 of 44

9/6/2018 (Rev. 3)

Client Sample ID: Method Blank

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 490-155660	Client Sample ID: Matrix Spike Duplicate										
Matrix: Water				Р	rep Typ	oe: Total F	Recove	rable			
Analysis Batch: 252059							Prep Ba	itch: 2	50903		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Thallium	ND		0.0500	0.04752		mg/L		95	75 - 125	1	20

Method: EPA 7470A - Mercury (CVAA)

Lab Sample ID: MB 180-250943/1-A

Matrix: Water Analysis Batch: 251171							·	Prep Type: To Prep Batch:	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 10:52	

21.7

Lab Sample ID: LCS 180-250943/2-A				Clie	nt Sar	nple ID	: Lab Control San	nple
Matrix: Water							Prep Type: Total	/NA
Analysis Batch: 251171							Prep Batch: 250)943
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	2.50	2.486		ug/L		99	80 - 120	

Lab Sample ID: 180-79800-	·G-1-E MS						CI	ient Sa	imple ID: Matrix Spike	
Matrix: Water									Prep Type: Total/NA	
Analysis Batch: 251171									Prep Batch: 250943	
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	ND		1.00	0.9270		ug/L		93	75 - 125	

Lab Sample ID: 180-79800	-G-1-F MSD)				Client	Samp	le ID: N	Matrix Spi	ke Dup	licate
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 251171									Prep Ba	atch: 2!	50943
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	ND		1.00	0.9210		ug/L		92	75 - 125	1	20

Method: 9040C - pH

Temperature

Lab Sample ID: LCS 490-531203/1 Matrix: Water Analysis Batch: 531203				Clie	nt Sar	mple ID	: Lab Control Sample Prep Type: Total/NA
7 manyolo Zatom co 1200	Spike	LCS	LCS				%Rec.
Analyte	Added 7.00	7.000	Qualifier	Unit SU	D	%Rec 100	Limits

Lab Sample ID: 490-155660)-D-5 DU					Cli	ent Sample ID: Du	ıpl	icate
Matrix: Water							Prep Type: T	ota	al/NA
Analysis Batch: 531203									
_	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RP	D	Limit
pH	8.11		8.110		SU			0	20

21.70

Degrees C

TestAmerica Nashville

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 9040C - pH (Continued)

Lab Sample ID: LCS 490-531204/1 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 531204

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 7.00 7.000 SU рН 100 98 - 103

Client Sample ID: Landfill Seep-01-071318-DUP Lab Sample ID: 490-155661-9 DU Prep Type: Total/NA

Matrix: Water

Analysis Ratch: 531204

Analysis Batch: 531204	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
рН	10.0		10.03		SU	_	 0	20
Temperature	21.9		21.90		Degrees C		0	20

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 490-531384/73 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 531384

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	ND		10.0	5.00	ma/L			07/24/18 20:09	

Lab Sample ID: LCS 490-531384/74 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531384

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity	 	100	95.45		mg/L		95	90 - 110	

Lab Sample ID: LCSD 490-531384/95 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531384

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Alkalinity	 100	95.67		ma/L		96	90 - 110		20

Lab Sample ID: 490-155661-6 DU Client Sample ID: River Seep-07-071218 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531384									
•	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Alkalinity	87.7		 88.85		mg/L	_		1	20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 490-529395/1 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 529395

MB MB Analyte Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed Total Dissolved Solids ND 10.0 7.00 mg/L 07/18/18 08:50

QC Sample Results

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Lab Sample ID: 490-155661-5 DU

TestAmerica Job ID: 490-155661-1

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 490-529395/2			Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 529395			
•	Spike	LCS LCS	%Rec.

Analyte Added Result Qualifier Unit D %Rec Limits 100 Total Dissolved Solids 103.0 mg/L 103 90 - 110

Client Sample ID: River Seep-04-071218 **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 529395** DU DU Sample Sample **RPD** Result Qualifier Result Qualifier RPD Analyte Unit Limit Total Dissolved Solids 2130 2194 mg/L 20

Lab Sample ID: 490-155661-13 DU Client Sample ID: Landfill Seep-04-071318 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 529395

Sample Sample DU DU **RPD** RPD Analyte Result Qualifier Result Qualifier Limit Unit **Total Dissolved Solids** 10100 10080 mg/L 20

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

HPLC/IC

Analysis Batch: 531256

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	9056A	
490-155661-2	River Seep-12-071318	Total/NA	Water	9056A	
490-155661-3	River Seep-16-071318	Total/NA	Water	9056A	
490-155661-4	River Seep-14-071318	Total/NA	Water	9056A	
490-155661-5	River Seep-04-071218	Total/NA	Water	9056A	
490-155661-6	River Seep-07-071218	Total/NA	Water	9056A	
490-155661-7	River Seep-05-071218	Total/NA	Water	9056A	

Analysis Batch: 531368

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	9056A	_
490-155661-1	River Seep-08-071318	Total/NA	Water	9056A	
490-155661-4	River Seep-14-071318	Total/NA	Water	9056A	
490-155661-5	River Seep-04-071218	Total/NA	Water	9056A	
490-155661-5	River Seep-04-071218	Total/NA	Water	9056A	
490-155661-6	River Seep-07-071218	Total/NA	Water	9056A	
490-155661-7	River Seep-05-071218	Total/NA	Water	9056A	

Metals

Prep Batch: 250902

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	3005A	_
490-155661-2	River Seep-12-071318	Total Recoverable	Water	3005A	
490-155661-3	River Seep-16-071318	Total Recoverable	Water	3005A	
490-155661-4	River Seep-14-071318	Total Recoverable	Water	3005A	
490-155661-5	River Seep-04-071218	Total Recoverable	Water	3005A	
490-155661-6	River Seep-07-071218	Total Recoverable	Water	3005A	
490-155661-7	River Seep-05-071218	Total Recoverable	Water	3005A	

Prep Batch: 250903

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	3005A	
490-155661-2	River Seep-12-071318	Total Recoverable	Water	3005A	
490-155661-3	River Seep-16-071318	Total Recoverable	Water	3005A	
490-155661-4	River Seep-14-071318	Total Recoverable	Water	3005A	
490-155661-5	River Seep-04-071218	Total Recoverable	Water	3005A	
490-155661-6	River Seep-07-071218	Total Recoverable	Water	3005A	
490-155661-7	River Seep-05-071218	Total Recoverable	Water	3005A	

Prep Batch: 250943

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	7470A	
490-155661-2	River Seep-12-071318	Total/NA	Water	7470A	
490-155661-3	River Seep-16-071318	Total/NA	Water	7470A	
490-155661-4	River Seep-14-071318	Total/NA	Water	7470A	
490-155661-5	River Seep-04-071218	Total/NA	Water	7470A	
490-155661-6	River Seep-07-071218	Total/NA	Water	7470A	
490-155661-7	River Seep-05-071218	Total/NA	Water	7470A	

Page 26 of 44

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Metals (Continued)

Analysis Batch: 251171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	EPA 7470A	250943
490-155661-2	River Seep-12-071318	Total/NA	Water	EPA 7470A	250943
490-155661-3	River Seep-16-071318	Total/NA	Water	EPA 7470A	250943
490-155661-4	River Seep-14-071318	Total/NA	Water	EPA 7470A	250943
490-155661-5	River Seep-04-071218	Total/NA	Water	EPA 7470A	250943
490-155661-6	River Seep-07-071218	Total/NA	Water	EPA 7470A	250943
490-155661-7	River Seep-05-071218	Total/NA	Water	EPA 7470A	250943

Analysis Batch: 251527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	6010C	250902
490-155661-2	River Seep-12-071318	Total Recoverable	Water	6010C	250902
490-155661-3	River Seep-16-071318	Total Recoverable	Water	6010C	250902
490-155661-4	River Seep-14-071318	Total Recoverable	Water	6010C	250902
490-155661-5	River Seep-04-071218	Total Recoverable	Water	6010C	250902
490-155661-6	River Seep-07-071218	Total Recoverable	Water	6010C	250902
490-155661-7	River Seep-05-071218	Total Recoverable	Water	6010C	250902

Analysis Batch: 252059

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
490-155661-1	River Seep-08-071318	Total Recoverable		6020A	250903	
490-155661-2	River Seep-12-071318	Total Recoverable	Water	6020A	250903	
490-155661-3	River Seep-16-071318	Total Recoverable	Water	6020A	250903	
490-155661-4	River Seep-14-071318	Total Recoverable	Water	6020A	250903	
490-155661-5	River Seep-04-071218	Total Recoverable	Water	6020A	250903	
490-155661-6	River Seep-07-071218	Total Recoverable	Water	6020A	250903	
490-155661-7	River Seep-05-071218	Total Recoverable	Water	6020A	250903	

General Chemistry

Analysis Batch: 529395

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	SM 2540C	
490-155661-2	River Seep-12-071318	Total/NA	Water	SM 2540C	
490-155661-3	River Seep-16-071318	Total/NA	Water	SM 2540C	
490-155661-4	River Seep-14-071318	Total/NA	Water	SM 2540C	
490-155661-5	River Seep-04-071218	Total/NA	Water	SM 2540C	
490-155661-6	River Seep-07-071218	Total/NA	Water	SM 2540C	
490-155661-7	River Seep-05-071218	Total/NA	Water	SM 2540C	

Analysis Batch: 531203

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	9040C	
490-155661-2	River Seep-12-071318	Total/NA	Water	9040C	
490-155661-3	River Seep-16-071318	Total/NA	Water	9040C	
490-155661-4	River Seep-14-071318	Total/NA	Water	9040C	
490-155661-5	River Seep-04-071218	Total/NA	Water	9040C	
490-155661-6	River Seep-07-071218	Total/NA	Water	9040C	
490-155661-7	River Seep-05-071218	Total/NA	Water	9040C	

TestAmerica Nashville

Page 27 of 44

QC Association Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

3

General Chemistry (Continued)

Analysis Batch: 531384

Lab Sample ID	Client Sample ID	Prep Type Matrix		Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	SM 2320B	
490-155661-2	River Seep-12-071318	Total/NA	Water	SM 2320B	
490-155661-3	River Seep-16-071318	Total/NA	Water	SM 2320B	
490-155661-4	River Seep-14-071318	Total/NA	Water	SM 2320B	
490-155661-5	River Seep-04-071218	Total/NA	Water	SM 2320B	
490-155661-6	River Seep-07-071218	Total/NA	Water	SM 2320B	
490-155661-7	River Seep-05-071218	Total/NA	Water	SM 2320B	

-

Rad

Prep Batch: 376745

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	PrecSep-21	
490-155661-2	River Seep-12-071318	Total/NA	Water	PrecSep-21	
490-155661-5	River Seep-04-071218	Total/NA	Water	PrecSep-21	
490-155661-6	River Seep-07-071218	Total/NA	Water	PrecSep-21	
490-155661-7	River Seep-05-071218	Total/NA	Water	PrecSep-21	

Prep Batch: 376750

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	PrecSep_0	
490-155661-2	River Seep-12-071318	Total/NA	Water	PrecSep_0	
490-155661-5	River Seep-04-071218	Total/NA	Water	PrecSep_0	
490-155661-6	River Seep-07-071218	Total/NA	Water	PrecSep_0	
490-155661-7	River Seep-05-071218	Total/NA	Water	PrecSep_0	

4

6

8

0

10

11

1 0

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-08-071318 Lab Sample ID: 490-155661-1

Date Collected: 07/13/18 07:50 **Matrix: Water**

Date Received: 07/14/18 10:50

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 16:22	SW1	TAL NSH
Total/NA	Analysis	9056A		50			531368	07/25/18 20:45	JHS	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/25/18 21:00	JHS	TAL NSH
Total Recoverable Total Recoverable	Prep Analysis	3005A 6010C		1	50 mL	50 mL	250902 251527	07/18/18 12:42 07/24/18 17:24		TAL PIT TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 19:35	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:04	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 20:55	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			999.94 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381568	08/10/18 16:41	RTM	TAL SL
Total/NA	Prep	PrecSep_0			999.94 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379945	08/02/18 09:20	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Lab Sample ID: 490-155661-2 Client Sample ID: River Seep-12-071318

Date Collected: 07/13/18 09:15 **Matrix: Water** Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 16:37	SW1	TAL NSF
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:29	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 19:40	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:05	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:02	ВМС	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			750.37 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381568	08/10/18 16:41	RTM	TAL SL
Total/NA	Prep	PrecSep_0			750.37 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:21	CDR	TAL SL
Total/NA	Analysis	Ra226 Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Lab Sample ID: 490-155661-3

Client Sample ID: River Seep-16-071318 Date Collected: 07/13/18 11:00 **Matrix: Water** Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 16:52	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:35	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 19:44	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:06	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:09	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH

Client Sample ID: River Seep-14-071318 Lab Sample ID: 490-155661-4

Date Collected: 07/13/18 10:10

Matrix: Water

Date Received: 07/14/18 10:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 17:07	SW1	TAL NSH
Total/NA	Analysis	9056A		10			531368	07/25/18 21:15	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:50	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 19:49	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:07	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:17	вмс	TAL NSH
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH

Client Sample ID: River Seep-04-071218 Lab Sample ID: 490-155661-5 **Matrix: Water**

Date Collected: 07/12/18 13:50 Date Received: 07/14/18 10:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 17:51	SW1	TAL NSH
Total/NA	Analysis	9056A		10			531368	07/25/18 21:59	JHS	TAL NSH
Total/NA	Analysis	9056A		50			531368	07/25/18 22:14	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:56	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:06	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:08	RJR	TAL PIT

TestAmerica Job ID: 490-155661-1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-04-071218

Date Collected: 07/12/18 13:50 Date Received: 07/14/18 10:50

Lab Sample ID: 490-155661-5

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9040C		1		-	531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:21	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	529395	07/18/18 08:50	ВМС	TAL NSH
Total/NA	Prep	PrecSep-21			500.17 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381569	08/10/18 16:40	RTM	TAL SL
Total/NA	Prep	PrecSep_0			500.17 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:22	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Client Sample ID: River Seep-07-071218 Lab Sample ID: 490-155661-6

Matrix: Water

Date Collected: 07/12/18 14:50 Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 18:21	SW1	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/25/18 22:29	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:01	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:11	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:09	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:28	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			999.84 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381569	08/10/18 16:39	RTM	TAL SL
Total/NA	Prep	PrecSep_0			999.84 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:22	CDR	TAL SL
Total/NA	Analysis	Ra226 Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Lab Sample ID: 490-155661-7 Client Sample ID: River Seep-05-071218 Date Collected: 07/12/18 14:25

Date Received: 07/14/18 10:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 18:36	SW1	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/25/18 22:44	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:07	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:16	WTR	TAL PIT

TestAmerica Nashville

Page 31 of 44

Lab Chronicle

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/12/18 14:25

Date Received: 07/14/18 10:50

Client Sample ID: River Seep-05-071218

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-7

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A	<u> </u>		50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:12	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:41	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			499.95 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381569	08/10/18 16:40	RTM	TAL SL
Total/NA	Prep	PrecSep_0			499.95 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:22	CDR	TAL SL
Total/NA	Analysis	Ra226 Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Method Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	TAL NSH
6010C	Metals (ICP)	SW846	TAL PIT
6020A	Metals (ICP/MS)	SW846	TAL PIT
EPA 7470A	Mercury (CVAA)	SW846	TAL PIT
9040C	pH	SW846	TAL NSH
SM 2320B	Alkalinity	SM	TAL NSH
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL NSH
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT
7470A	Preparation, Mercury	SW846	TAL PIT

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

3

4

5

8

9

10

4.0

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date
Kentucky (UST)	State Pro	gram	4	19	06-30-19
The following analytes	are included in this repo	ort, but accreditation/	certification is not off	ered by the governing author	ority:
Analysis Method	Prep Method	Matrix	Analyt	te	
9040C		Water	pH		
9040C		Water	Temp	erature	
9056A		Water	Chlori	de	
9056A		Water	Fluorio	de	
9056A		Water	Sulfat	е	
SM 2320B		Water	Alkalir	nity	
SM 2540C		Water	Total I	Dissolved Solids	

Laboratory: TestAmerica Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State Program	6	88-0690	06-27-19
California	State Program	9	2891	04-30-19
Connecticut	State Program	1	PH-0688	09-30-18
Florida	NELAP	4	E871008	06-30-19
Illinois	NELAP	5	200005	06-30-19
Kansas	NELAP	7	E-10350	01-31-19
Louisiana	NELAP	6	04041	06-30-19
Nevada	State Program	9	PA00164	07-31-19
New Hampshire	NELAP	1	2030	04-04-19
New Jersey	NELAP	2	PA005	06-30-19
New York	NELAP	2	11182	03-31-19
North Carolina (WW/SW)	State Program	4	434	12-31-18
Oregon	NELAP	10	PA-2151	01-28-19
Pennsylvania	NELAP	3	02-00416	04-30-19
South Carolina	State Program	4	89014	04-30-19
Texas	NELAP	6	T104704528-15-2	03-31-19
US Fish & Wildlife	Federal		LE94312A-1	07-31-19
USDA	Federal		P330-16-00211	06-26-19
Utah	NELAP	8	PA001462015-4	05-31-19
Virginia	NELAP	3	460189	09-14-18 *
West Virginia DEP	State Program	3	142	01-31-19
Wisconsin	State Program	5	998027800	08-31-18 *

Laboratory: TestAmerica St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	MO00054	06-30-19
ANAB	DoD ELAP		L2305	04-06-19
Arizona	State Program	9	AZ0813	12-08-18
California	State Program	9	2886	06-30-19
Connecticut	State Program	1	PH-0241	03-31-19
Florida	NELAP	4	E87689	06-30-19
Illinois	NELAP	5	200023	11-30-18
Iowa	State Program	7	373	12-01-18

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Nashville

2

3

4

6

9

11

Accreditation/Certification Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Laboratory: TestAmerica St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Kansas	NELAP	7	E-10236	10-31-18
Kentucky (DW)	State Program	4	90125	12-31-18
Louisiana	NELAP	6	04080	06-30-19
Louisiana (DW)	NELAP	6	LA180017	12-31-18
Maryland	State Program	3	310	09-30-19
Michigan	State Program	5	9005	06-30-18 *
Missouri	State Program	7	780	06-30-18 *
Nevada	State Program	9	MO000542018-1	07-31-19
New Jersey	NELAP	2	MO002	06-30-19
New York	NELAP	2	11616	03-31-19
North Dakota	State Program	8	R207	06-30-19
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-19
Pennsylvania	NELAP	3	68-00540	02-28-19
South Carolina	State Program	4	85002001	06-30-19
Texas	NELAP	6	T104704193-18-12	07-31-19
US Fish & Wildlife	Federal		058448	07-31-19
USDA	Federal		P330-17-0028	02-02-20
Utah	NELAP	8	MO000542016-8	07-31-18 *
Virginia	NELAP	3	460230	06-14-19
Washington	State Program	10	C592	08-30-18 *
West Virginia DEP	State Program	3	381	10-31-18 *

4

Q

9

11

12

13

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Nashville

490-155661 Chain of Custos

COOLER RECEIPT FORM

Cooler Received On 114/2018 @ 1030	
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking # (last 4 digits, FedEx) Courier: FedEx	
IR Gun ID_ 17969357_ pH Strip Lot Chlorine Strip Lot	
2. Temperature of rep. sample or temp blank when opened: 5 1 Degrees Celsius	`
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. NA
4. Were custody seals on outside of cooler?	ES.MONA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	(YES).NONA
6. Were custody papers inside cooler?	res. NoNA
I certify that I opened the cooler and answered questions 1-6 (Initial)	<u> </u>
7. Were custody seals on containers: YES NO and Intact	YESNO.(NA)
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam insert Pape	er Other None
9. Cooling process: Ice-pack Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YESZ.NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	BESNONA
12. Did all container labels and tags agree with custody papers?	VES NONA
13a. Were VOA vials received?	YES NO NA
b. Was there any observable headspace present in any VOA vial?	YESNOKA
Larger than this.	
4	
14. Was there a Trip Blank in this cooler? YES. NO.: NA If multiple coolers, sequence	e#
Certify that unloaded the cooler and answered questions 7-14 (initial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNOCSIA
b. Did the bottle labels indicate that the correct preservatives were used	VESNONA
16. Was residual chlorine present?	YESNO NA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (initial)	4)11
17. Were custody papers properly filled out (ink, signed, etc)?	(VES NONA
18. Did you sign the custody papers in the appropriate place?	ХЕЭNОNA
19. Were correct containers used for the analysis requested?	XESZ.NONA
20. Was sufficient amount of sample sent in each container?	YES NO NA
certify that entered this project into LIMS and answered questions 17-20 (Intial))
Leertify that I attached a label with the unique LIMS number to each container (intial)	71
21. Were there Non-Conformance Issues at login? YES(NO) Was a NCM generated? YES	#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

COOLER RECEIPT FORM

Cooler Received/Opened On_7/14/2018 @ 10:50	
Time Samples Removed From CoolerTime Samples Placed In Storage	(2 Hour Window)
(last 4 digits, FedEx) Courier: FedEx	,
IR Gun ID_17960353pH Strip Lot NA Chlorine Strip Lot NA	<u>2_</u>
2. Temperature of rep. sample or temp blank when opened:	
3. If item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO.(NA)
t. Were custody seals on outside of cooler?	YES NO NA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YES NONA
5. Were custody papers inside cooler?	YES.(NO).NA
certify that I opened the cooler and answered questions 1-6 (initial)	
7. Were custody seals on containers: YES NO and Intact	YESNO (NA)
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	er Other None
9. Cooling process: (ice lice-pack lice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	(YEBNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	MESNONA
12. Did all container labels and tags agree with custody papers?	WESNONA
13a. Were VOA vials received?	YES. ONONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
Larger than this.	
	_
14. Was there a Trip Blank in this cooler? YES NONA If multiple coolers, sequence	·6 #
t certify that I unloaded the cooler and answered guestions 7-14 (initial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNOC.NA
b. Oid the bottle labels indicate that the correct preservatives were used	(YES NONA
16. Was residual chlorine present?	YESNOMA
certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	20/1
17. Were custody papers properly filled out (ink, signed, etc)?	YES NONA
18. Did you sign the custody papers in the appropriate place?	YES NONA
19. Were correct containers used for the analysis requested?	#E\$ 2.NONA
20. Was sufficient amount of sample sent in each container?	YES XNONA
certify that I entered this project into LIMS and answered questions 17-20 (Intial)	57
certify that I attached a label with the unique LIMS number to each container (intial))/
21. Were there Non-Conformance issues at login? YES. (NO Was a NCM generated? YES. (NO)	#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

Loc: 490 155661

COOLER RECEIPT FORM

Cooler Received/Opened On 7/14/2018 @1050	
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking # 2 (alost 4 digits, FedEx) Courier: FedEx	
IR Gun ID 14740456 pH Strip Lot A Chilorine Strip Lot	
2. Temporature of rep. sample or temp blank when opened: 3, Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NONA
4. Were custody seals on outside of cooler?	YESNONA
If yes, how many and where:	ran
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	YESNONA
I certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES NO and Intact	YESNO.NA
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Subbleweap Plastic bag Peanuts Vermiculite Foam Insert Pape	er Other None
9. Cooling process: (Ice Ice-pack Ice (direct contact) Dry ice	Other None
10. Did ail containers arrive in good condition (unbroken)?	CYES NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	RESNONA
12. Did all container labels and tags agree with custody papers?	PESNONA
13a. Were VOA vials received?	YES (NONA
b. Was there any observable headspace present in any VOA viai?	YESNONA
Larger than this.	
14. Was there a Trip Blank in this cooler? YES_NONA If multiple copiers, sequence	è#
I certify that I unloaded the cooler and answered questions 7-14 (initial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	CYESNUNA
16. Was residual chlorine present?	YESNO. THA
certify that I checked for chiorine and pH as per SOP and answered questions 15-16 (intial)	
17. Were custody papers properly filled out (lnk, signed, etc.)?	CresNONA
18. Did you sign the custody papers in the appropriate place?	VESNONA
19. Were correct containers used for the analysis requested?	(YES).NONA
20. Was sufficient amount of sample sent in each container?	(YES).NONA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	\
I certify that I attached a label with the unique LIMS number to each container (Intial)	V
21. Were there Non-Conformance issues at login? YES, NO Was a NCM generated? YES, No.).	#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

TestAmerica Nashville 2966 Foster Creighton Drive Nashville, TN 37204	Chain of C	Chain of Custody Record	cord		•	TestAmerica	Ö
Phone (615) 726-0177 Fax (615) 726-3404	(Samiler			Over the second		THE LEADER IN ENVIRONMENT	i Tawa
Client Information		Cisne	Cisneros, Roxanne	Capital States		490-86893-25173.1	
Chent Contact. Greg Dick		E-Mail: Jroxan	E-Mair. roxanne.clsneros@testamericainc.com	ic.com Sector	 Υ	Page 1 of 2	
Company. Big Rivers Electric Corporation			Ana	Requested	_	icb 4.	-
Adoress PO BOX 24	Due Date Requestrd: Starting					1 10	
িন্দু Henderson	TAT Reguested (days): Star referred	-i-				A - HCL M - Hexane B - NaCH N - None C - Zo Acetate D - Astrono	
Siake, Zip. KY, 42419							
Phone: 270-844-6016(Tel)	PO#. Purchase Order - see DOCs		ņės:	of the control of the			
Email Gregory. Dick@bigrivers.com	.wo#:		(ON		S.I	1-fte U-Ace e V-MCA.	
Project Name. Big River's Electric Corp - Handerson KY	Sep.	Land 2/11	es or				 2÷
sie Sekroe Geen Ladfill			n (C))			Other:	-
	Samble (C=c	Sample Matrix Type (N-mater,	- poped 500		radmuN fa	CCRAPILITEAIL, NIL, MIL	My 1/2
Samole Identification	-	BT-THEE, 8-AT)	252 Z			Special Instructions/Note:	je.
R. J. Sept 08-07.14.14	2519	Water	×		10	# 6	1 00
River Scett - 13 - 0713.8		Water	ス × × ×		7,5		7 37
River Soap -16-071718	7/18/1V 1100	Water	×××		M		35.
RIVE 5000-14-071318	2/13/18 1010	Water	XXX		m	۲	といこ
: 1	7/18/18 1350	Water	メイメ		W	Υ,	5, (3
ŀ		Water	XXXX		8	ζ,	7.27
, o	7/12/18 1925	Water	× × ×		Ŋ	6.	92
15000 - 01	7/13/18 1220	Water	× × V		ΩV.	P3.01	.
JENETH Seep -01 - 071318-120		Water	X X X		5	49.01	t 9
		Water	XXX		ā	0K.01	30
(Jun/42) 50-0-05-0713:4	7/13 18 13€0	Water	X X X X		7	8,0°	ර
Possible Hazard foehulfcation Skin mitant Poison B	ison B	ogical	Sample Disposat (A fe	Sample Disposal (A fee may be assessed if samples are retained longer than —— Return To Cilent	les are retained	Honger than 1 month) 9 For Months	
(Apr			Special Instructions/QC Requirements:	Requirements:		1	
Empty Kif Relinquished by:	Date:		ime:	Mayord of Shumens	Tient.		
Felinquisted by. [MM]	JAR18 1630	ACCOND		Many Mary	8/15/2010	1050 Company	145
Relinquished by:	Gate/Time,	Company	Received by;	Date	Date/Time,	Complant	
Retinquished by:	Dete/Time:	Company	Received by:		Oate/Time.	Company	
Custody Seals Intact: Custody Seal No.:		-	Codler Temporature(s) ^a C and Other Remarks:	and Other Remarks;	11/	2 7.	
**************************************				***************************************	-		_

TestAmerica Nashville					TectAmerica
2960 Foster Creighton Drive	Chain of C	Chain of Custody Record			イン・ファード・アン・アート
Nashwile, 1N 37204 Phone (615) 726-0177 Fax (615) 726-3404	:				THE LEADES IN ENVIRONMENT VIVE 1920
	/-	Lab PM: Ciscoente Royanne		Camer Tracking Nots):	CDC No: 490-86693-25173-1
	Phone:	E-Mall:		77007	Page:
Greg Dick	C12-337-1188	roxanne.clsneros@	roxanne.clsneros@testamericainc.com	5000ers	Page 1 of 2
Company: Big Rivers Electric Corporation			Analysis Requested	quested	
	Due Date Requested:	2750			Codes:
	TAT Requested (daye):	¥6.00			B - NaOF None C - Zn Arestate O - Astraco
ANALYSIS AND ANALY	7 seese				
Phone: [270-844-6010(Tel)	Po#: Purchase Order - see DOCs		₽o?		C. America S-H2SO4 H - Ascordic Acid T - TSF Debecarydrate
Gregory.Dick@bigrivers.com	.# OM.	Q8Z	8°C		I - Ice 2 - Ot Water 7 - GOTA
Project Name: Big Rivers Electric Corp - Hendorson KY	Sobre Grean Landfill	e (Ye	2 (A)		
SIR. Stoe Goon Landfill	SSOVÆ.	dwes dwes	801 GE		፬ _ [
		Matrix et (www. (www.)	- bolod_0		NUMBER CCC APPEN IN+
Sample Identification	Sample (C=comp.	Orwanielen, Orwanielen, Arake H. P.	7d y		ŝ
		allon Cookin	ž		
Paro -012-671318	9 058/ 8/18/1/2	× ?≥	インメ		FA 7.95
1 my 14:11 Spen - 04-0713 18	7118/18/15/6	Water PN %	メイメ		17.01 AV
\$3	14.2.1.5. (CX)	- Availer - Avai			
		Water			
		Water			
		Water			Loc: 490
		Water			155661
		Water			
		Water			
		Water			3
		Water			
Possible Hazard Identification	on B		isposal (A fee may be un To Client	assessed if samples at	Sample Disposal (A fee may be assessed if samples are retained fonger than 1 month) Return To Client Disposal By Lab Achine For Months
			structions/QC Requireme	nts.	
trguished by:	Date:	Time:	2 6	Medical of Shipment	
	Date/1/1918 (630	Company Received as	Section of the sectio	Men Date/Time	14/14/14 1000 Care 21/21/6
	Date/Time:		d by:	Chaleffine	Contipany
	Date/Time;	Company Received by:	d by:	Dete/Tine:	Сопрату
Custody Seals Infact: Custody Seal No.:		Cooter F	Cooler Femperature(s) "C and Other Remarks:	emarks: 57.	15.0.
2 150 C W					Ver. UB/U4/2016

Chain of Custody Record

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204

	Sample:	MA GPM	Carrier Tracking Motst:	COC Ne
Cilent Information (Sub Contract Lab)		Cisneros, Roxanhe		490.75463.1
	Phone:	E-May.	State of Ough.	:30 <i>4</i> .
Shipping/Receiving		roxanne cisneros@testamericainc.com	Kenlucky	Page 1 of 2
		Accrediations Required [See nate):		Janua.
TestAmerica Laboratories, Inc.		State Program - Kentucky (UST)		490-155661-1
	Due Date Reguested.			Preservation Codes:
301 Apha Diwe, RIDC Park,	4262018	Analysis Requested	inested	A LICY
CONTRACTOR	TAT Requested (days):			
Pittsbugh				C - Zn Acetate O - AstNaO2

Client Information (Sub Contract Lab)				Cisneros, Roxanne	S. KOX	37076				77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	490-75463.1	
Clan Contact Shipping/Receiving	ትህርካድ			E-May roxann	cisner	os@te	slameri	G-May. roxanne cisneros@testamericaine com	State of Organ Kentucky		Page: Page 1 of 2	
Company: TestAmérice Laboratories, Inc.				থ ট	crestlate	กร หิงอุน มูกส.m -	Accestitators Required (See note State Program - Kentucky ((Accresitations Required (See note): State Program - Kentucky (UST)			John F. 490-155661-1	
Address 301 Alpha Drive, RIDC Park,	Due Date Requested	d						Analysis Requested	tuested		Preservation Codes:	05) . 14 - Hoverno
Cry. Pritsbuigh	TAT Requested (days):	(F)									8 - NgOH C - Zn Acelate	N None O Ashabi
Sart. Zp PA, 15238	T						***************************************				D - National Acid	P - NaZO48 O - NaZBO3
Phone. 412-963-7058(Tel) 412-963-2468(Fax)	# Oct			i lo							G - Amchios H - Ascorbic Acid	R - Nocacus S - H2SOc T - JSP Dodecabydrale
	12 O 20			M 10 2	(op					EJ.	1-Ee 3-Diwale	U-Acetone V-MCAA
Pagest Name. Big Rivers Electric Corp - CCR & SerniAnn	Project #: 49010431			8人) 约	JO 66		κοποιε			ncietr	1.EDA	Z - other (specify)
54e. Big Rivers CCR	:MGSS			QTTE2	Y) OSI		off des				Other	
(Till all It of the first of the contract of t	200	Sample	Sample Type (w	Matrix (Yrwate, Special Owesitedon, 1818	Wish mone () Azeecioero	020P13082P (1	AOTATIAOTA			admuh isio		(A) and (a) and (b) and
		X	7.00		X					X		
River Seep-08-071318 (490-155661-1)	7/13/18	07.50		Water	×	×	×			5	Metais - run once, upipad together	upipad together
River Seep-12-071318 (490-155661-2)	7/13/18	09.15 Central		Water	×	×	×	##/ 	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5.	Metals - run once, upload together	upkoad togiether
River Seep-16-071318 (490-155661.3)	7/13/18	Central Central		Water	×	×	×		isno		Metals - run once, upload logether	uphad logether
River Seep. 14-071318 (490-155661.4)	7/13/18	10.10 Central		Water	×	×	×		10 5		Metals - run once, upicad together	upicad legelher
River Seep.09-071218 (490-155661.5)	7/12/18	13:50 Central		Water	×	×	×		1/2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2	100	Metals - run once, upload together	ipkad together
River Seep-07-071218 (490-155661-6)	7/12/18	14:50 Central		Waler	×	×	×		9999		Metals - run once, upload together	upload together
River Seep-05-071218 (490-155661-7)	7/12/18	14.25 Central	:	Water	_	×	×		1-08		Metals - run cacce, upload together	upload together
Landfill Seep-01-071318 (490-153561-8)	7/13/18	Central		Water	×	×	×		*		Metais - run onco, upioad together	upksad together
Landtill Seep-01-071318-DUP (490-155661-9)	7152718	12.20		Waler	_	×	×				Metals - run once, upload together	upload together.

Note: Since laboratory accessivant are subsect to change. Testhmentes, for places the comerants of method, analyses, the propriet analyses, the samples analyses, the samples analyses, the samples have to the samples analyses, the samples have the samples that the samples have the propriet and above to analyses the propriet and the samples and considered and the samples and considered and the samples are content to date, return the samples are content to date.

	Possible Hazard Identification		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	amples are retained longer than 1 month)
	Unespiraried		Return To Crient Disposal By Lett	b Archive For Months
	Deliverable Requested J. II, III, IV, Oilyer (specify)	Primary Deliverable Rank: 2	Special Instructions/QC Requirements:	
	Empsy Kil Rekinguished by:	Date:	Time:	Supment
. 9	Reductional by Illum Klash	DATE 18 (45C CONTENT - 1/4	Children of the	120 HABA
/6/2	Relatestated by:	Date/free: Company	Metan ed ty	D&Witting /
2018	Reinquished by	. Date/Time. Сопрвлу	Received by.	Date-Time: Company
3.				
(R	Custody Seals Infact: Custody Seal No.:		Codlet Temperature(s) 'C and Other Remarks:	
e	A Yes A No			
٧.				Ver. 09 20:2016

Unconfirmed Deliverable Requested 1, 1, 11, 1V, Other (specify) Primary Deliverable Rank: 2 Empty Kit Relinquished by: Relinq	Special Instructions/OC Requirements: Netrod of Shipmont Netrod of	ve For Months
Deliverable Rank: 2 Date: (1) (4 S 145 C	Method of Shipment	
Marchenia Date:	6/14	
Marchenic Date Tray 16 18 145 6 Date Tray.	1	
DataTring		
DatisTring:	Received by:	Сетрану
	Касенчей by:	Contrary
Custody Seals Mact: Custody Seal No.:	Coaler Temperature(s) 'C and Other Ramarks:	
		Ner; 09/20/26

· ~	3
7	5
ū	
netody	j
£ 7.10	?)
C	5
Chain	3
_)

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Phone (615) 725-0177 Fax (615) 725-3404

TestAmerica Market Mark

									-									
••	Client Information (Sub Contract Lab)	Sampler			Cigner Cigner	cab PM Cisnetos, Poxanne	anne			<u> </u>	acij milis	Camer Tracking No(s)	<i>2</i> 2	요 송	COC No 490-75463.2			
	Ckent Contact: Shipping/Receiving	Phone:			E-Mail	E-Mail roxanne-cishercs@lestamencainc.com	eres@te	stamenc	anc.com		State of Origin Kentlucky	Sale:		ឌីចំ	Page 2 of 2			
	Company: TestAmerica Laboratories, Inc.					Accredial State Pr	ons Regu Ogram -	Arcrediblions Required (See note) State Program - Kenlucky (UST)	(TSU) y					\$ 6	Job #. 490-155661-1			
	Address: 301 Alpha Drive, RIDC Park,	Due Date Requested: 7/26/2018	ij					₹	Analysis Requested	Requ	ested			å.	Preservation Codes:	ğ	29	
	City. Pittsbuigh	TAT Requested (days)	ys):									-		000	R - NaOH G - Ze Aostair C - Ze Aostair	220	N Nove O ASNath	
	State. Zin. PA, 15238											***********		O.ώ'	D - Nario Acid	1.0	P.Na2045 O-Na2503	
	Proce. (4)2.965-7058(1#) 412-963-2465(Fax)	100 at				{c							*	LUI	F - MRCHO! G - Ametho! H - Astorbit Acid	- 1	K - Nacional S - H2SO4 T - TSP Dodecandra	21k12
•	្រុក្សេះ	WO F.					sirion		······						1- ke 3-Di Waler		U - Acetone V - MCAA	
	Project Name. Big Rivers Electric Corp - CCR & SemilAnn	Project #. 49010431				10 50		Astron	.,				************	i de la constante	K.EDIA I.EDA	# 6 % X	Winh 48 Zielher (specify)	****
	Sae. Big Rivers COR	SSOWE	-			A) as		app deal					<u>-</u>	*******	Other:			······································
			Sample	Sample Type (C=cemp,	Matrix (Wante, Second	beratlist ble AlcM miche	10C/3002V (v	4_A0141401.					·	19dmuN lass				
	Sample (destrictation - Chent ID (Lab ID)	Sample Date) 	G=grab) Preservs	Gegrab) Historie And	2	- 2	74		20 20 30 30 30				1>	Specia	Insiruc	Special instructions/Note:	
Pad	Landill Seep-02-071318 (490-155661-10)	7113/18	13:10		Water		×	×						Ž	Meters - run once, upload together	ce upload	i together	Π
je 4:	Landill Seep.03-071318 (490-155661-11)	7/13/18	13.30		Water		×	×				-	<u> </u>	ž G	Metals - run once, upload together	ce, upload	together.	
2 of	Pond-012-071318 (490-155661-12)	7/13/18	13.58 Central		Water		×	×		-		_		ž	Metais - run ence, uplaad together	co uplasa	together.	
44	Landill Sepp-04-071318 (490-155661-13)	7/13/18	14:15 Central		Water		×	×						ž	Metals - run once, upland together	ice, uplase	together.	
				-														
					-		Ľ			-		-	L					Γ

Client: Big Rivers Electric Corporation

Job Number: 490-155661-1

Login Number: 155661
List Source: TestAmerica Pittsburgh
List Number: 2
List Creation: 07/17/18 12:54 PM

Creator: DiNardo, Nicholas J

Orcator: Dirtardo, Monoida o		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Tracer/Carrier Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ba Carrier	
Lab Sample ID	Client Sample ID	(40-110)	
490-155661-1	River Seep-08-071318	87.3	
490-155661-2	River Seep-12-071318	92.9	
490-155661-5	River Seep-04-071218	89.4	
490-155661-6	River Seep-07-071218	79.4	
490-155661-7	River Seep-05-071218	82.9	
Tracer/Carrier Leg	gend		
Ba Carrier = Ba Ca	rrier		

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ba Carrier	Y Carrier	
Lab Sample ID	Client Sample ID	(40-110)	(40-110)	
490-155661-1	River Seep-08-071318	87.3	90.5	
490-155661-2	River Seep-12-071318	92.9	85.6	
490-155661-5	River Seep-04-071218	89.4	87.1	
490-155661-6	River Seep-07-071218	79.4	87.1	
490-155661-7	River Seep-05-071218	82.9	83.0	

Ba Carrier = Ba Carrier
Y Carrier = Y Carrier

TestAmerica Nashville

2

3

5

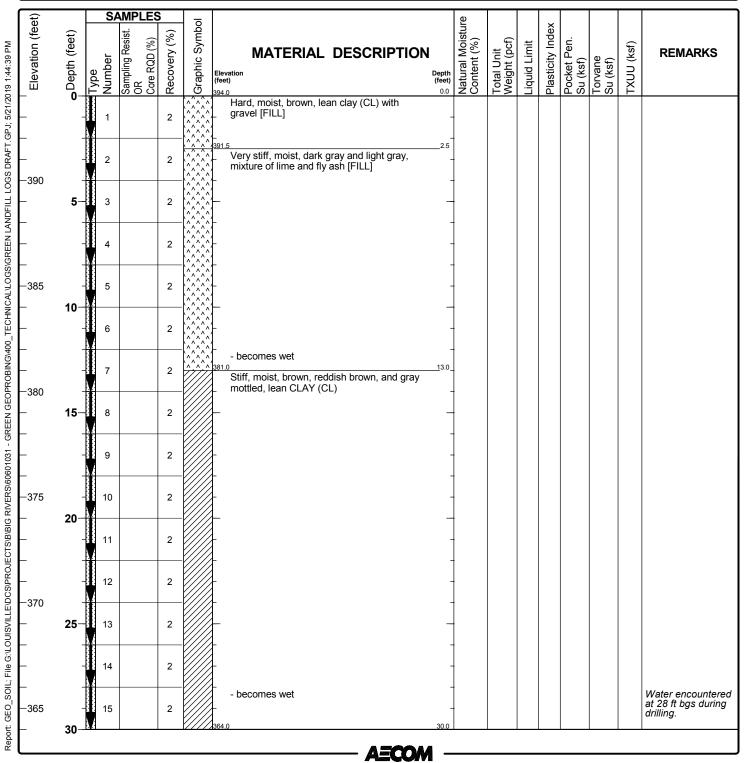
6

8

11

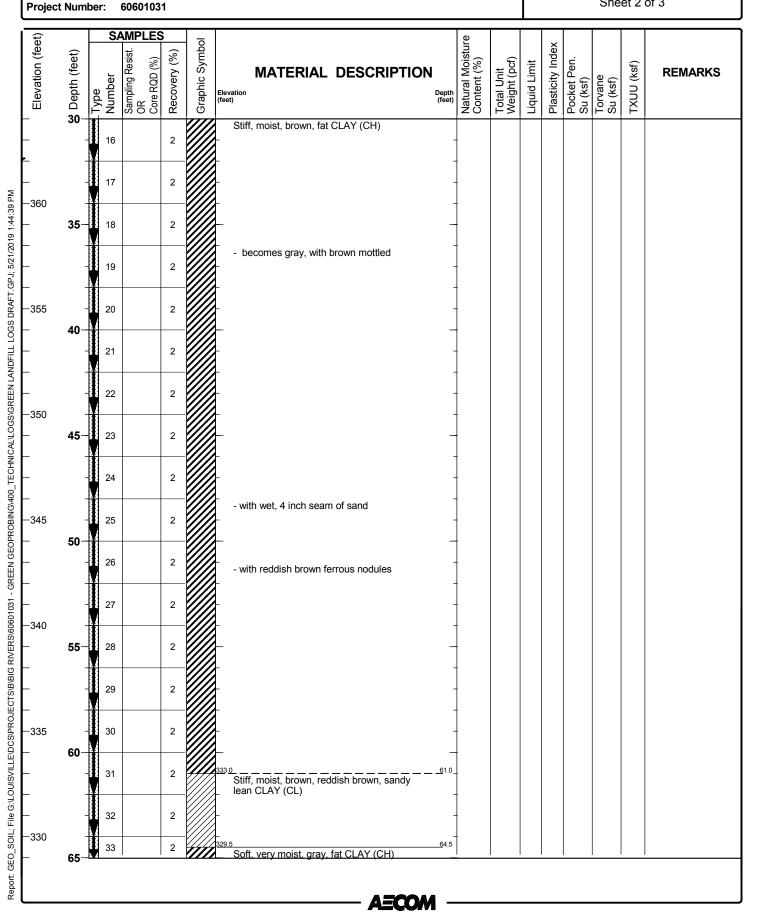
4.0

Appendix B


Supplemental Boring Logs and Cross-Sections

Project Location: Webster County, Kentucky

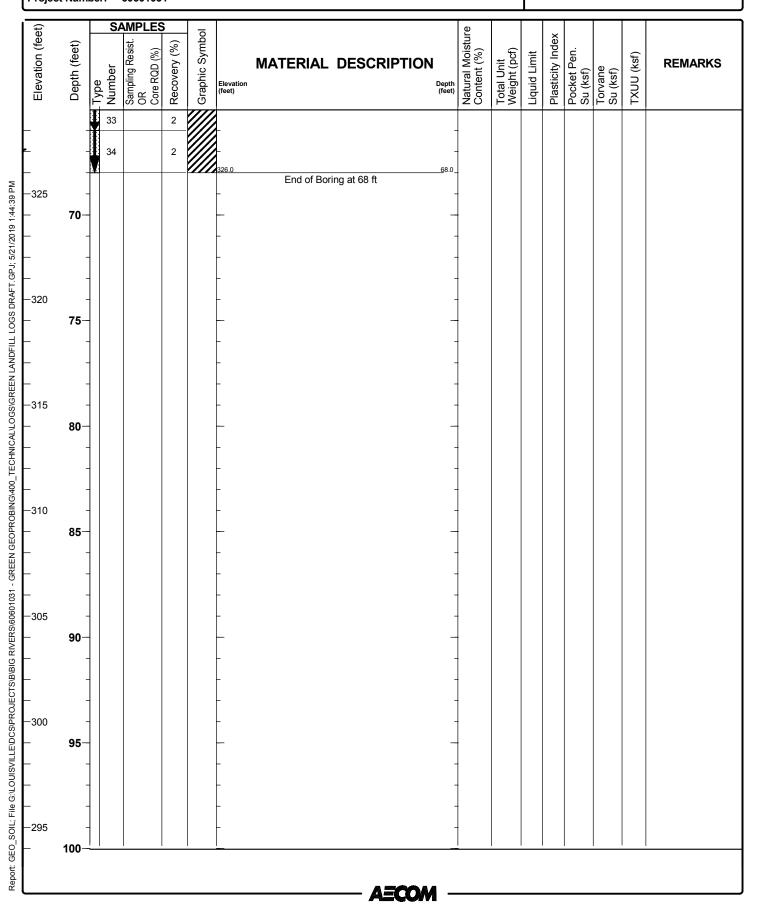
Project Number: 60601031


Log of Boring GESB-01

Date(s) Drilled	04/23/2019 12:00 AM to 04/24/2019 12:00 AM	Logged By	A. Burke	Checked By	M. Keown
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	68.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 1250 (ft NAD83)	Groundwater Level(s)	28 ft on 4/23/2019		

Project Location: Webster County, Kentucky

Log of Boring GESB-01

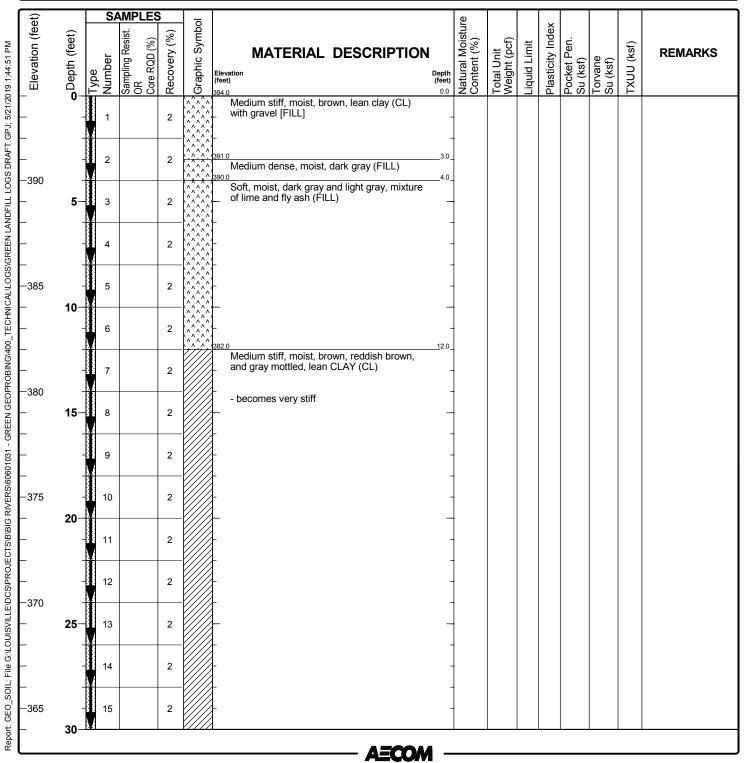

Project Location: Webster County, Kentucky

Project Location. Webster County, Rentucky

Project Number: 60601031

Log of Boring GESB-01

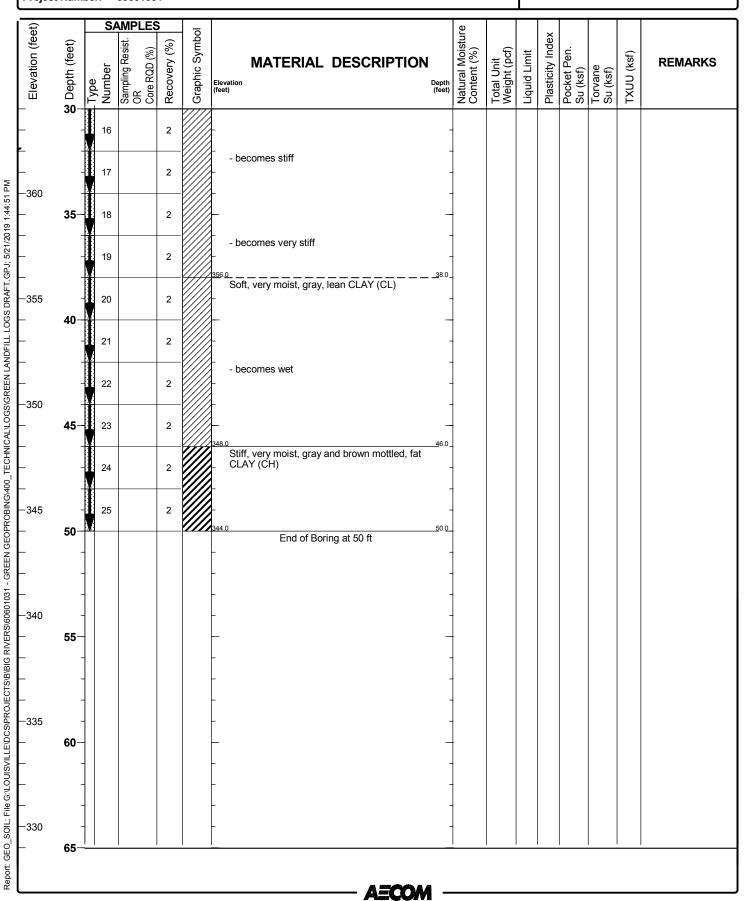
Sheet 3 of 3



Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-02


Date(s) Drilled	04/25/2019 12:00 AM to 04/25/2019 12:00 AM	Logged By	A. Burke	Checked By	M. Keown
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	50.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 1200 (ft NAD83)	Groundwater Level(s)	42 ft on 4/25/2019		

Project Location: Webster County, Kentucky

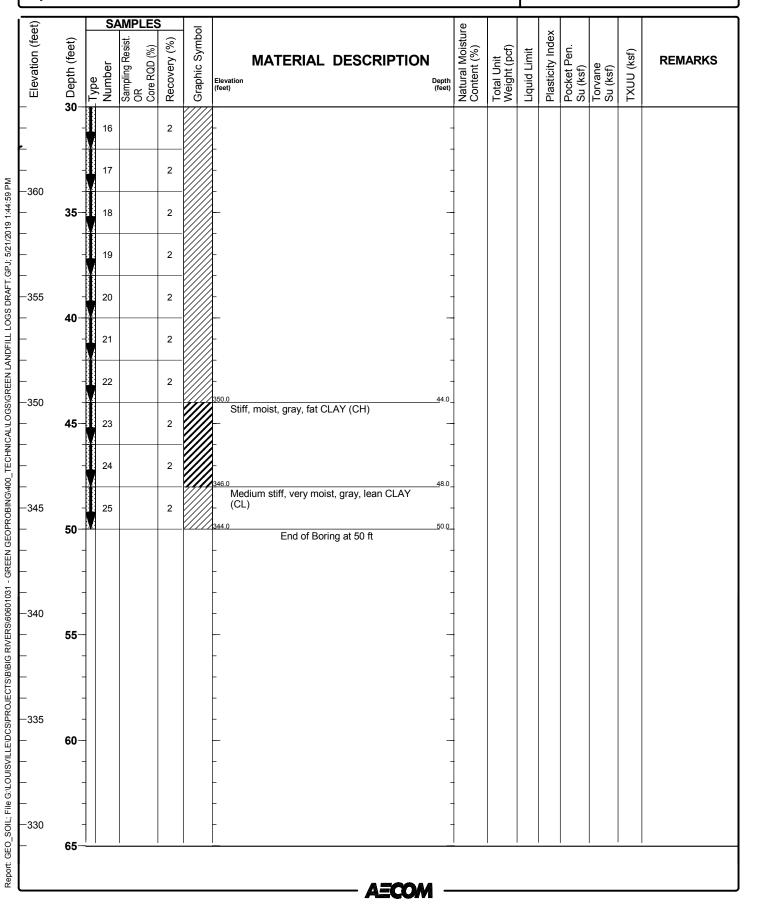
Project Number: 60601031

Log of Boring GESB-02

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-03


Date(s) Drilled	04/25/2019 12:00 AM to 04/25/2019 12:00 AM	Logged By	A. Burke	Checked By	M. Keown
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	50.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 1150 (ft NAD83)	Groundwater Level(s)	9 ft on 4/25/2019		

eet)			MPLES		- <u> 5</u> 5 8 8 8 <u> 8</u> <u> 8</u> <u> 8</u> <u> 8</u> <u> 9</u> <u>9</u> <u>9</u>	
 Elevation (feet)	Depth (feet)	Type Number	Sampling Resist. OR Core RQD (%)	Recovery (%)	Graphic Symbol Graphic Symbol Ontent (%) Total Unit Weight (pcf) Liquid Limit Plasticity Index Pocket Pen. Su (ksf) TXUU (ksf) TXUU (ksf) TXUU (ksf) TXUU (ksf) TXUU (ksf) TXUU (ksf)	3
_	-	1		2	\(\frac{\capa_{\chi^{\chi_{\chi}}}}{\chi_{\chi^{\chi_{\chi}}}}\) Very stiff, moist, brown, yellowish brown, \(\frac{\chi_{\chi}}{\chi_{\chi}}\) 383.0 and gray lean clay (CL) with gravel [FILL] \(\frac{\chi_{\chi}}{\chi_{\chi}}\) 382.5 Medium dense, moist, dark gray (FILL) \(\frac{\chi_{\chi}}{\chi_{\chi}}\) 1.5	
_	-	2		2	Medium stiff, moist, dark gray and light AAAA gray, mixture of lime and fly ash (FILL) AAAA 390.5 AAAAA Very stiff, moist, brown, brown, yellowish	
-390 -	5-	3		2	brown, lean CLAY (CL) [FILL] ^^^_ ^388.5 ^^_ Medium stiff, moist, dark gray and light	
_	-	4		2	gray, mixture of lime and fly ash (FILL)	
- -385	-	5		2	-[^^^^^] -[^^^^] -[^^^^] -[^^^] -[^^^] -[^] -[
_	10- -	6		2	Medium stiff, very moist, black, brown, silty 382.0 CLAY (CL-ML) with organics	
_	-	7		2	Very stiff, moist, yellowish brown, brown, gray, lean CLAY (CL)	
-380 -	15-	8		2		
_	-	9		2		
- -375	-	10		2		
_	20-	11		2		
_ _ _370	-	12		2		
	25-	13		2		
_	_	14		2		
-365 -	30-	15		2		
_	30-				AECOM -	_

Project Location: Webster County, Kentucky

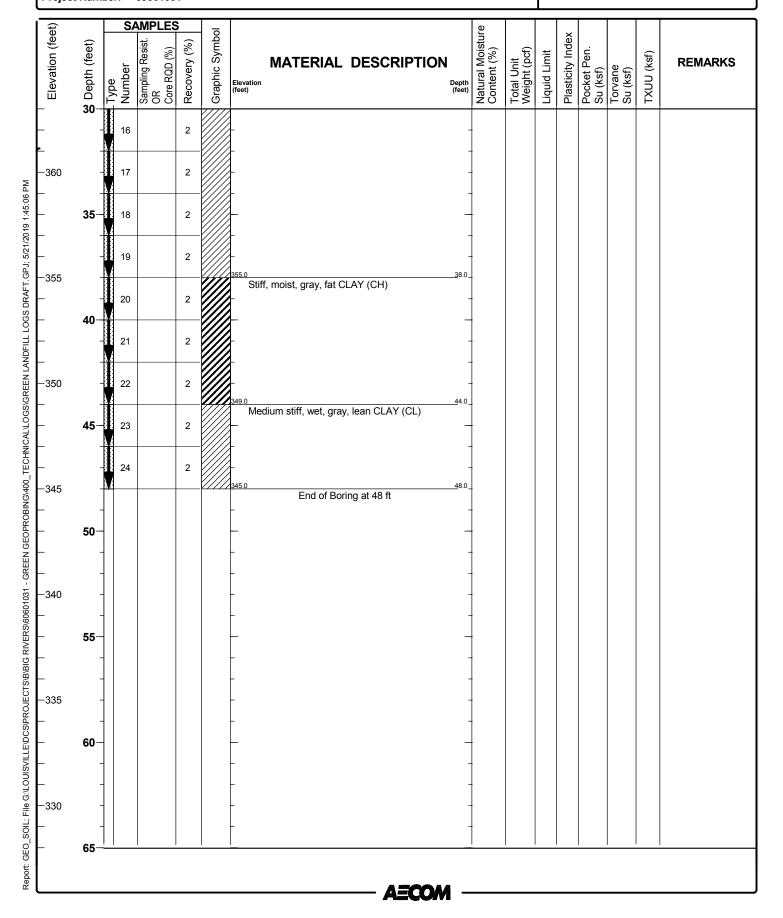
Project Number: 60601031

Log of Boring GESB-03

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-04


Date(s) Drilled	04/25/2019 12:00 AM to 04/25/2019 12:00 AM	Logged By	A. Burke	Checked By	M. Keown
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	48.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	393 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 1100 (ft NAD83)	Groundwater Level(s)	4.25 ft on 1/31/2018		

et)		S	AMPLES	}	- 0			ē			×				
Elevation (feet)	Depth (feet)	Type Number	Sampling Resist. OR Core RQD (%)	Recovery (%)	Graphic Symbol	MATERIAL DESCRIPTION Elevation (feet) 393.0	Depth (feet)		Total Unit Weight (pcf)	Liquid Limit	Plasticity Index	Pocket Pen. Su (ksf)	Torvane Su (ksf)	TXUU (ksf)	REMARKS
-	-	1		2		Very stiff, moist, yellowish brown, lean clay (CL) with gravel [FILL]	2.0								
-390	-	2		2		Soft, moist, dark gray and light gray, mixture of lime and fly ash (FILL)									
-	5-	3		2		- becomes wet	_								
-	-	4		2	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Medium stiff, moist, dark gray and light	6.0								
·385 ·	-	5		2		gray, mixture of lime and fly ash (FILĽ) 384.0 Loose, wet, black (FILL)	9.0								
-	10-	6		2		Medium stiff, moist, dark gray and light	<u>1</u> 1.0_								
380	-	7		2		gray, mixture of lime and fly ash (FILL) 380.0 Very stiff, moist, yellowish brown, brown,	<u>1</u> 3.0								
	15-	8		2		_ gray, lean CLAY (CL) _	_								
	-	9		2		-									
·375 ·	-	10		2		-									
-	20-	11		2		-	-								
370	-	12		2		-									
	25-	13		2		_	_								
-265	-	14		2		-									
-365 -	30-	15		2		-	-								
						AECOM									

Project Location: Webster County, Kentucky

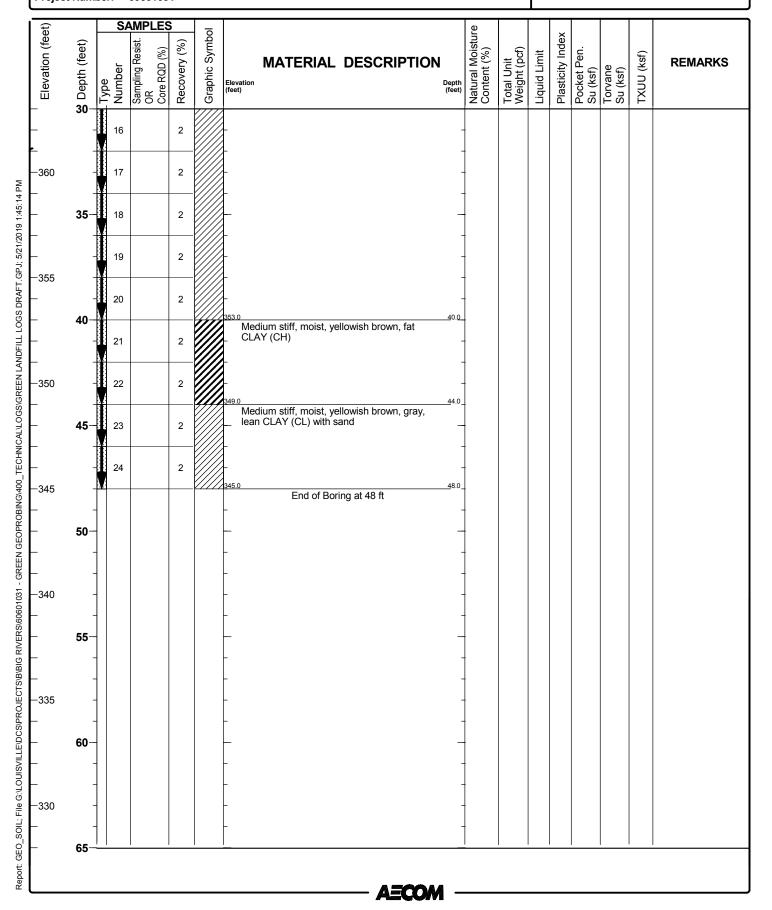
Project Number: 60601031

Log of Boring GESB-04

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-05


Date(s) Drilled	04/25/2019 12:00 AM to 04/25/2019 12:00 AM	Logged By	A. Burke	Checked By	M. Keown
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	48.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	393 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 1050 (ft NAD83)	Groundwater Level(s)	16 ft on 4/25/2019		

_	et)		AMPLES		mbol			isture)	()		yapı	-			
Elevation (feet)	Depth (feet)	Type Number	Sampling Resist. OR Core RQD (%)	Recovery (%)	Graphic Symbol	MATERIAL DESCRIPTIO	Depth (feet)		Total Unit Weight (pcf)	Liquid Limit	Plasticity Index	Pocket Pen. Su (ksf)	Torvane Su (ksf)	TXUU (ksf)	REMARKS
-	U-	1		2	\^^^^	Very stiff, moist, yellowish brown, lean clay _ (CL) with gravel [FILL]	2.0								
- -390	-	2		2		Loose, wet, dark gray, black (FILL) 390.0 Medium stiff, moist, dark gray and light gray, mixture of lime and fly ash (FILL)	3.0								
-	5-	3		2		gray, mixture or lime and my asm (FILL)	_	1							
-	-	4		2		Medium stiff, moist, dark gray and light gray, mixture of lime and fly ash (FILL)	6.0								
-385 -	-	5		2		-		1							
_	10-	6		2		-	-								
- -380	-	7		2		- 380.0 Loose, wet, black (FILL)	13.0 14.0								
-	15-	8		2		Medium stiff, moist, dark gray and light gray, mixture of lime and fly ash (FILL)									
- - -375	-	9		2		Loose, wet, black (FILL) 376.0 Very stiff, moist, yellowish brown, brown, gray, lean CLAY (CL)	17.0								
-	20-	10		2		- -									
_	-	11 V		2		- -									
-370 -	-	12		2		- -									
-	25-	13		2		-	-								
- −365	-	14		2		-									
-	30	15		2		-									

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-05

Project Location: Webster County, Kentucky

Project Number: 60601031

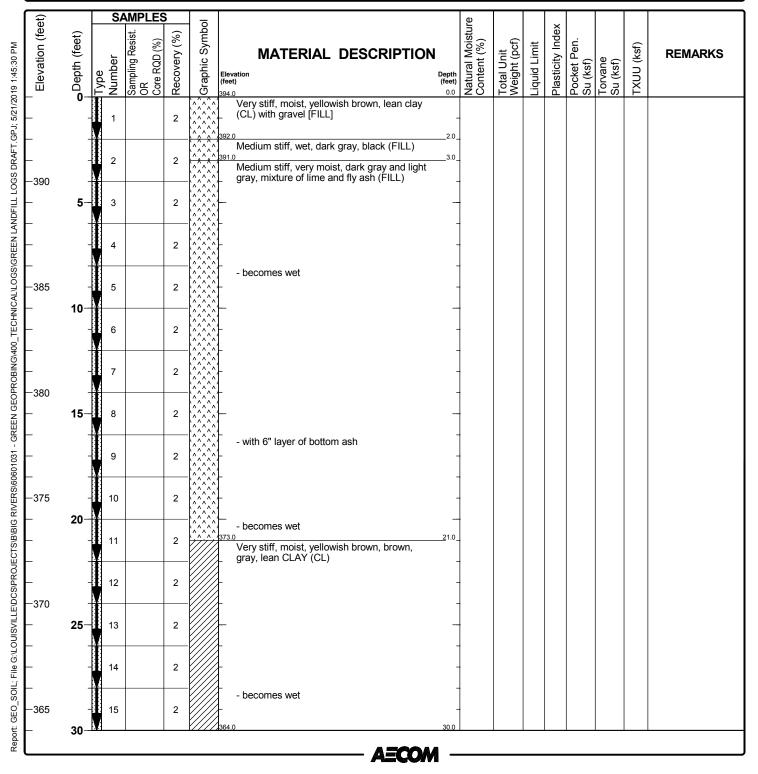

Log of Boring GESB-06

Date(s) Drilled	04/26/2019 12:00 AM to 04/26/2019 12:00 AM	Logged By	A. Burke	Checked By	M. Keown
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	46.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	393 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 1000 (ft NAD83)	Groundwater Level(s)	24 ft on 4/25/2019		

et)		SAMP	LEŞ] _			ė,							
Elevation (feet)	Depth (feet)	Number Sampling Resist.	Core RQD (%) Recovery (%)		MATERIAL DESCRIPTION Elevation (feet) 393.0	Depth (feet)	Natural Moisture Content (%)	Total Unit Weight (pcf)	Liquid Limit	Plasticity Index	Pocket Pen. Su (ksf)	Torvane Su (ksf)	TXUU (ksf)	REMARKS
_	_	1	2	\^^^^	(02) mai gravor [r 122]	2.0_								
-390	-	2	2	\^^^^	Medium stiff, wet, dark gray, black (FILL) 390.0 Medium stiff, moist, dark gray and light	3.0								
_	5-	3	2	_\^^^^ \^^^^	- becomes wet	-								
-	-	4	2		1005.0	8.0_								
-385 -	-	5	2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Medium stiff, moist, dark gray and light	9.0								
-	10	6	2	_\^^^^	gray, mixture or lime and my asm (FILL)	_								
-380	-	7	2											
-	15-	8	2	_\^^^^ \^^^^ \^^^^		_								
-	_	9	2	- ^^^^ \^^^^ \^^^^	-									
-375 -	-	10	2	_ `^^^^ `^^^^	373.0	20.0_								
-	20	11	2	\^^^^	Loose, wet, black (FILL) 372.0 Medium stiff, moist, dark gray and light gray, mixture of fly ash and lime (FILL)	21.0								
- -370	-	12	2	_\^^^^ \^^^^	3 - 7,									
-	25-	13	2	_\^^^^ \^^^^	- becomes wet	26.0								Water encountere at 24 ft bgs
- - -365		14	2		Very stiff, moist, yellowish brown, brown, gray, lean CLAY (CL)	1 1								
-365 - -	30	15	2			-								

Project Location: Webster County, Kentucky

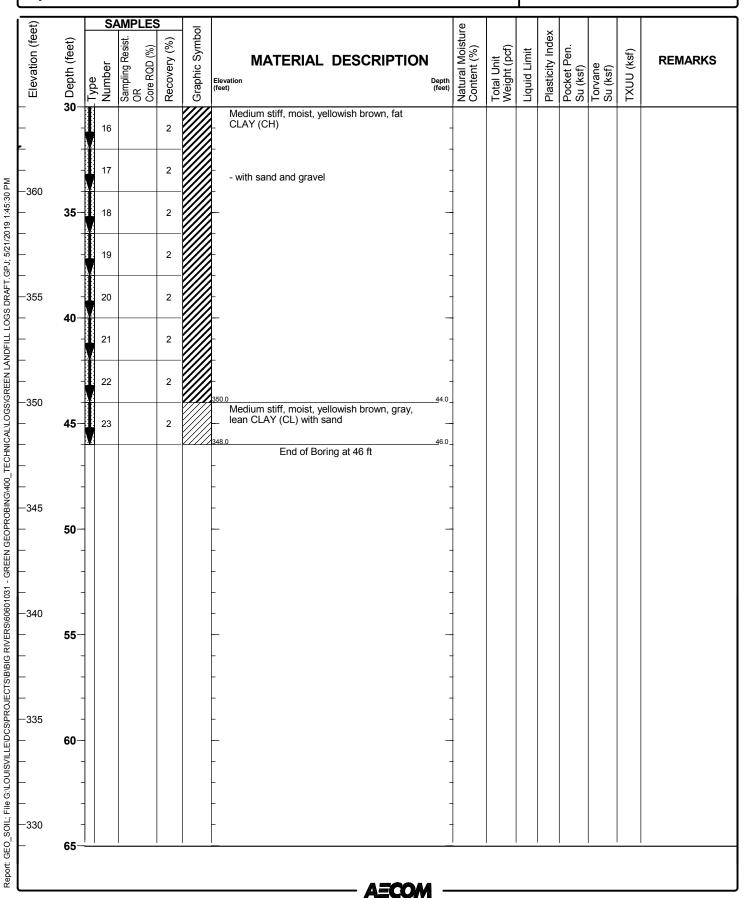
Log of Boring GESB-06



Project Location: Webster County, Kentucky

Project Number: 60601031

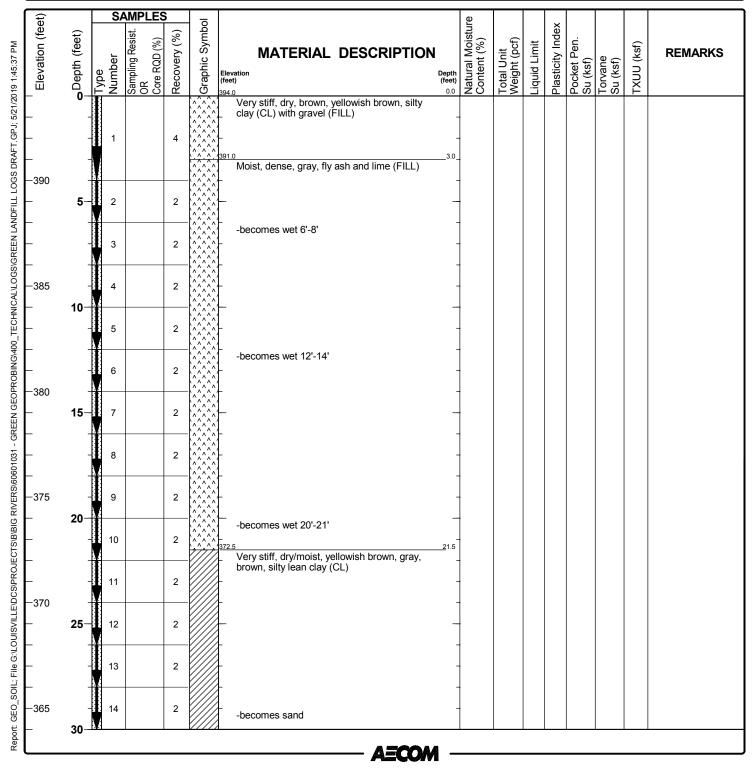
Log of Boring GESB-07


Date(s) Drilled	04/26/2019 12:00 AM to 04/26/2019 12:00 AM	Logged By	A. Burke	Checked By	M. Keown
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	46.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 950 (ft NAD83)	Groundwater Level(s)	28 ft on 4/25/2019		

Project Location: Webster County, Kentucky

Project Number: 60601031

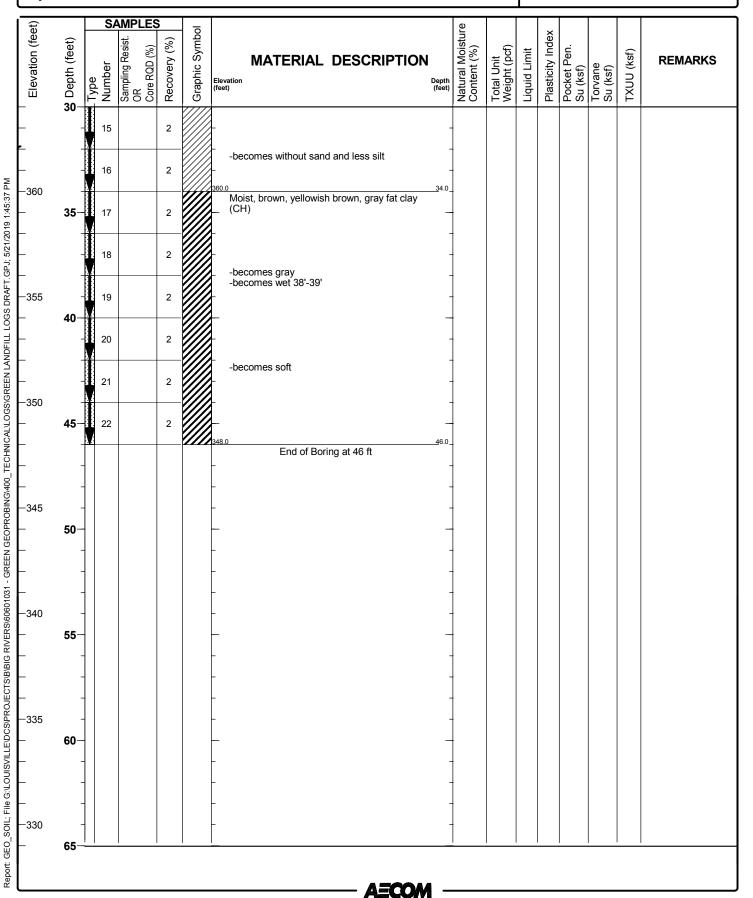
Log of Boring GESB-07



Project Location: Webster County, Kentucky

Project Number: 60601031

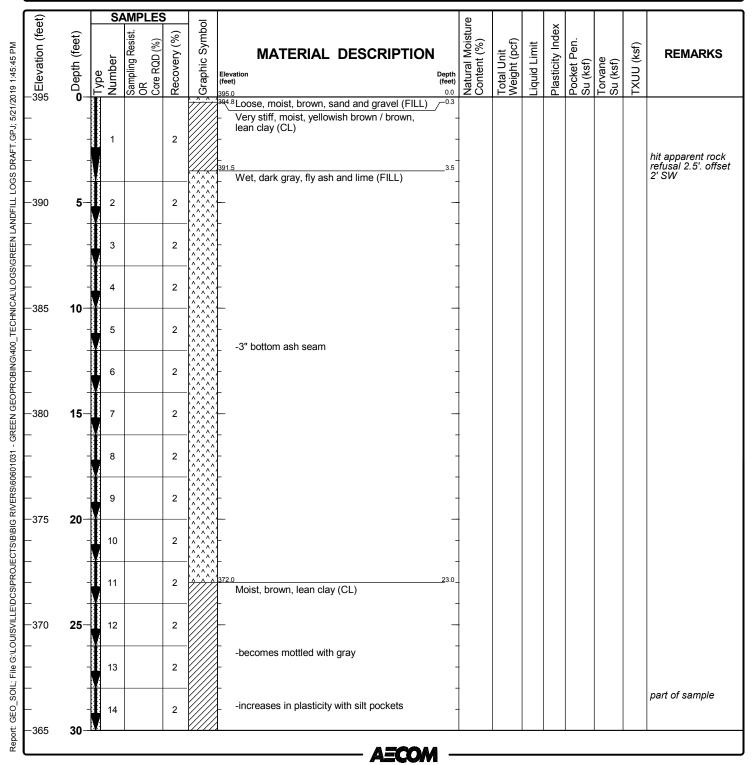
Log of Boring GESB-08


Date(s) Drilled	04/29/2019 12:00 AM to 04/29/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	46.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 900 (ft NAD83)	Groundwater Level(s)	30 ft on 4/29/2019		

Project Location: Webster County, Kentucky

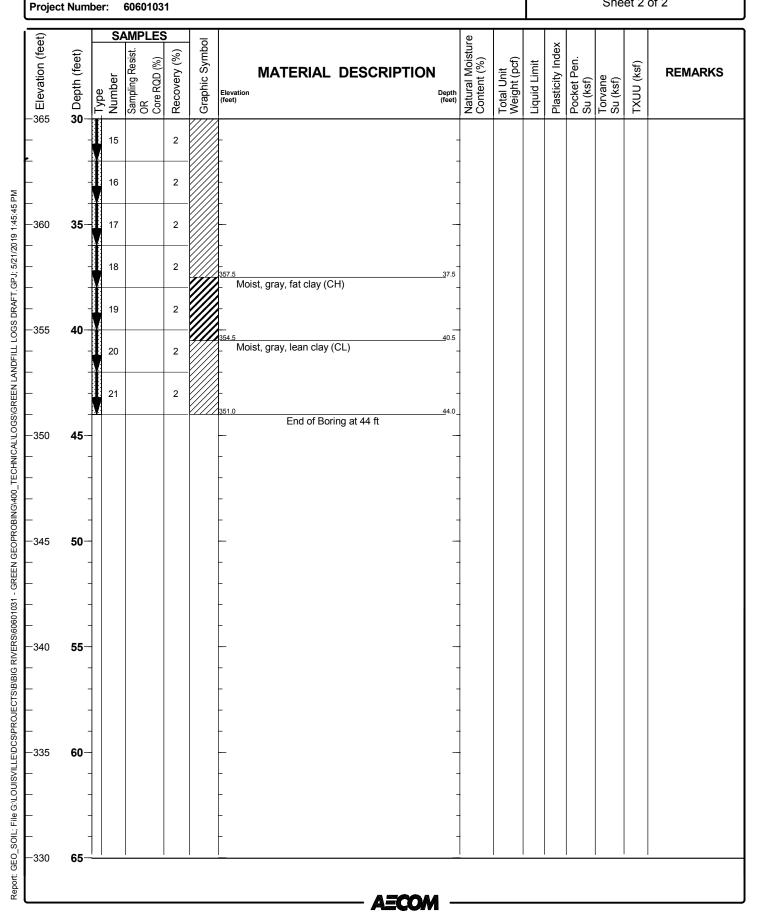
Project Number: 60601031

Log of Boring GESB-08



Project Location: Webster County, Kentucky

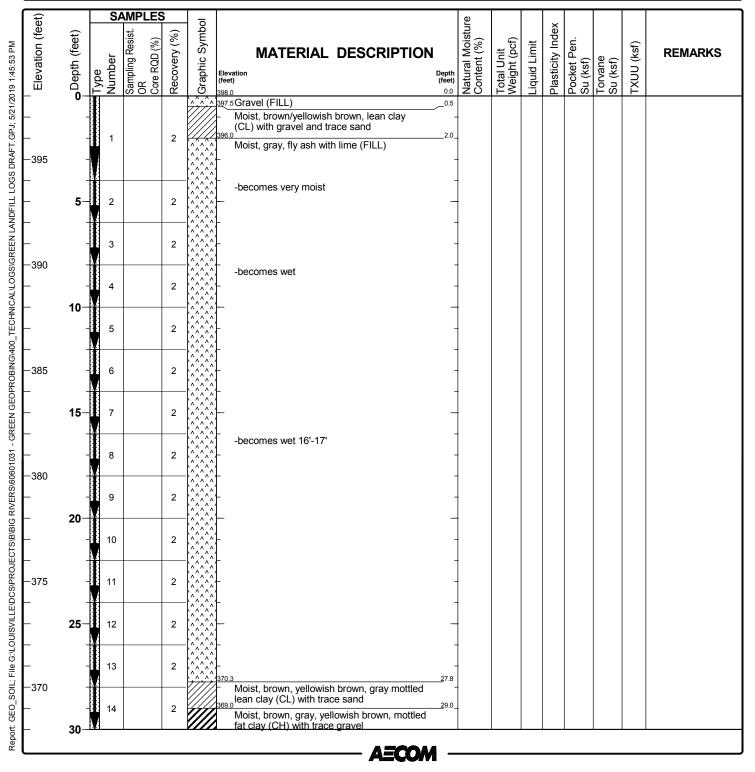
Project Number: 60601031


Log of Boring GESB-09

Date(s) Drilled	04/29/2019 12:00 AM to 04/29/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	395 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 850 (ft NAD83)	Groundwater Level(s)	ft on 4/29/2019		

Project Location: Webster County, Kentucky

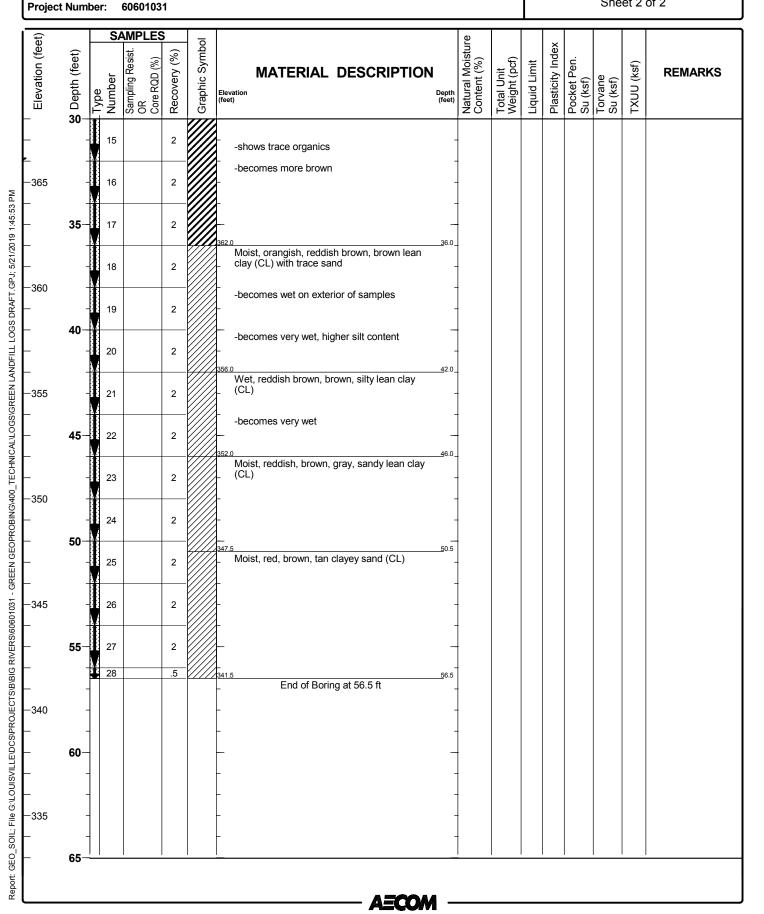
Log of Boring GESB-09



Project Location: Webster County, Kentucky

Project Number: 60601031

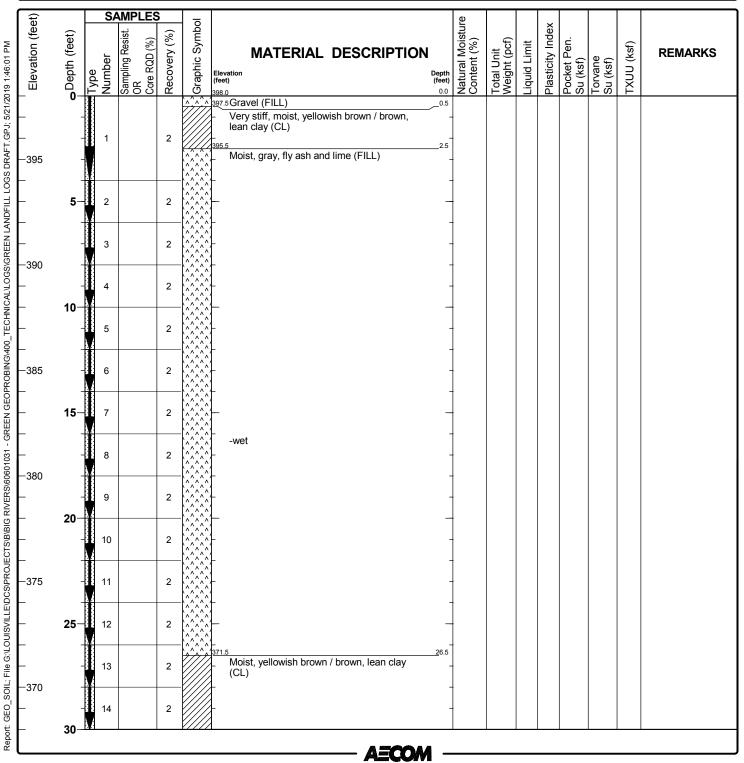
Log of Boring GESB-11


Date(s) Drilled	04/29/2019 12:00 AM to 04/30/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	56.5 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	398 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 800 (ft NAD83)	Groundwater Level(s)	40 ft on 4/29/2019		

Project Location: Webster County, Kentucky

60601031

Log of Boring GESB-11

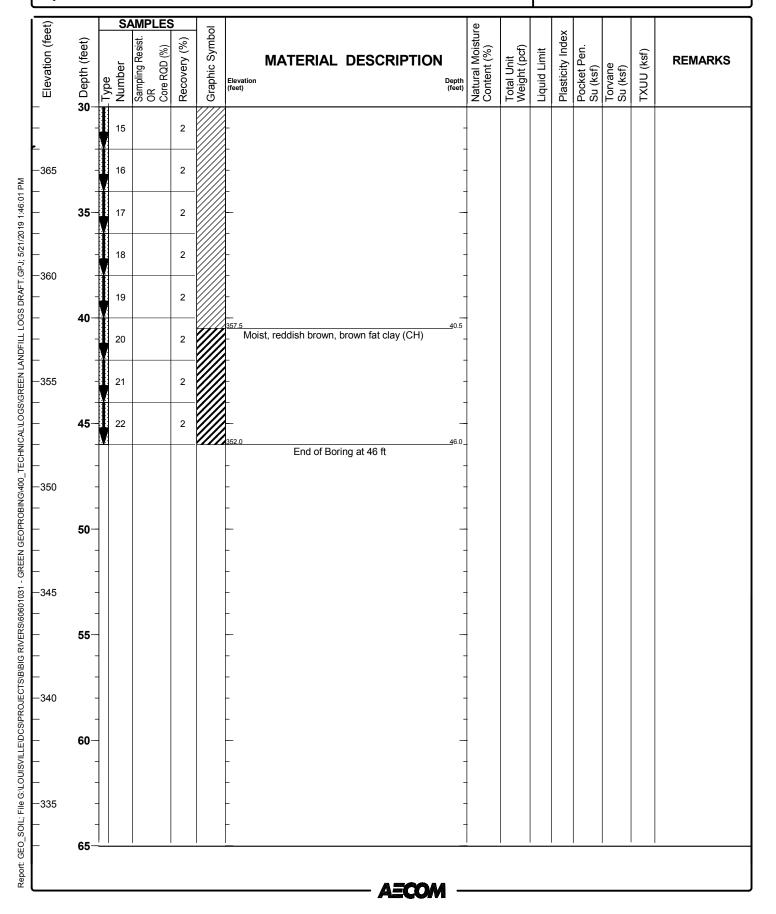


Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-12

Date(s) Drilled	04/30/2019 12:00 AM to 04/30/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	46.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	398 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 750 (ft NAD83)	Groundwater Level(s)	ft on		

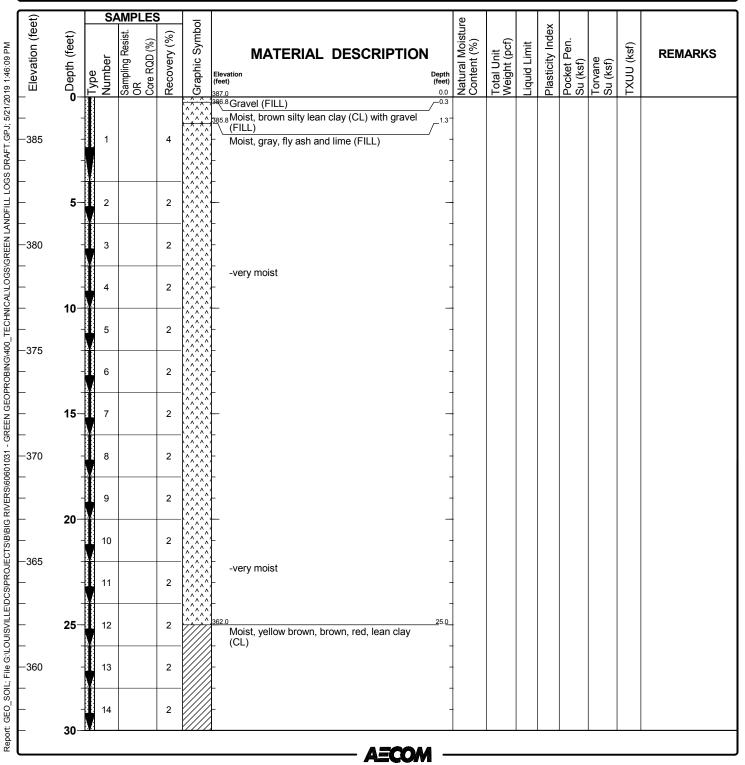


Project Location: Webster County, Kentucky

Project Location. Webster County, Rentuck

Project Number: 60601031

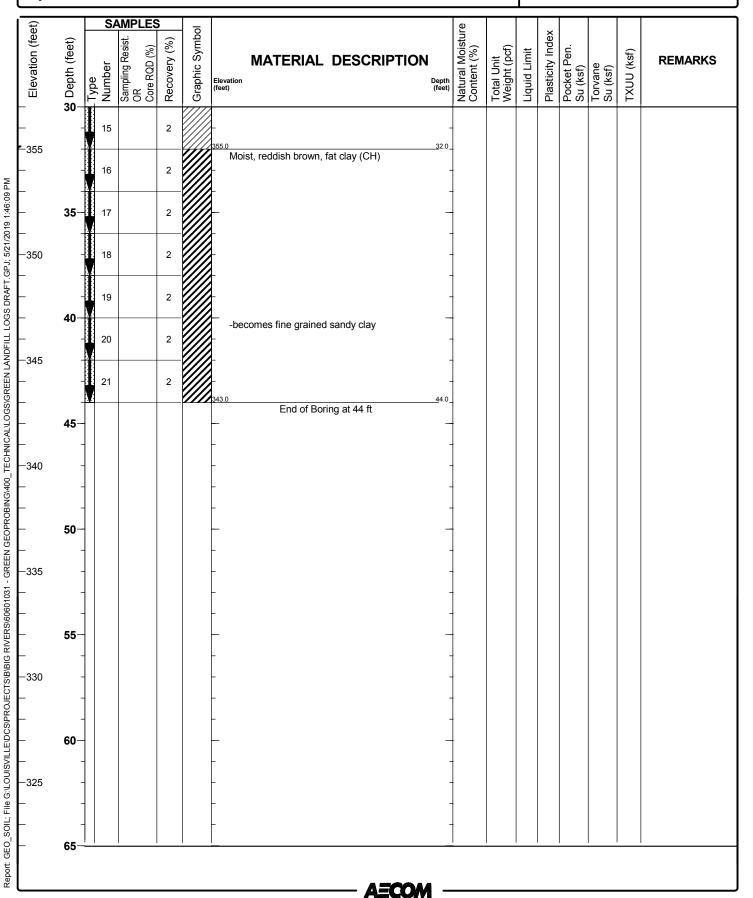
Log of Boring GESB-12



Project Location: Webster County, Kentucky

Project Number: 60601031

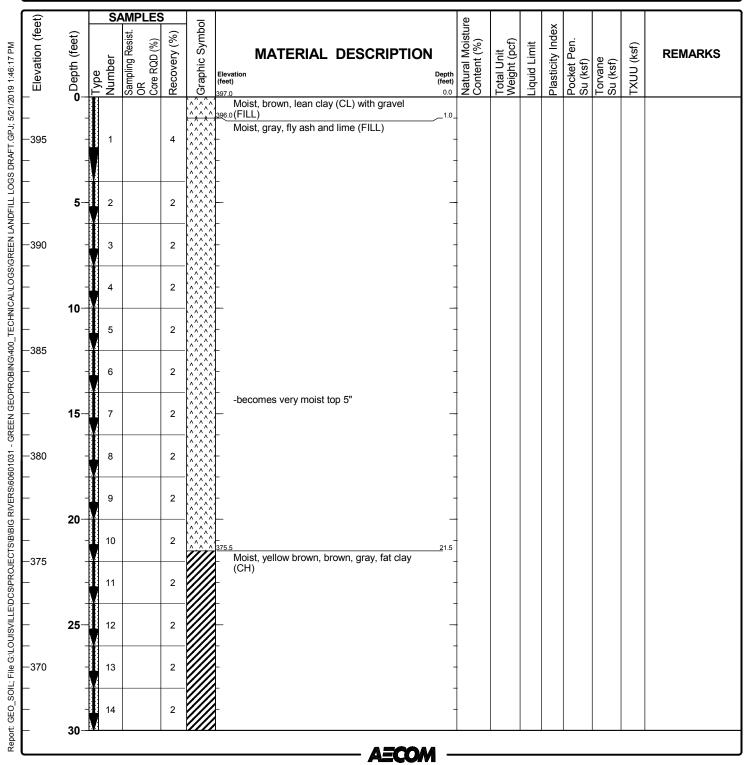
Log of Boring GESB-13


Date(s) Drilled	04/30/2019 12:00 AM to 04/30/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	387 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 700 (ft NAD83)	Groundwater Level(s)	ft on		

Project Location: Webster County, Kentucky

Project Number: 60601031

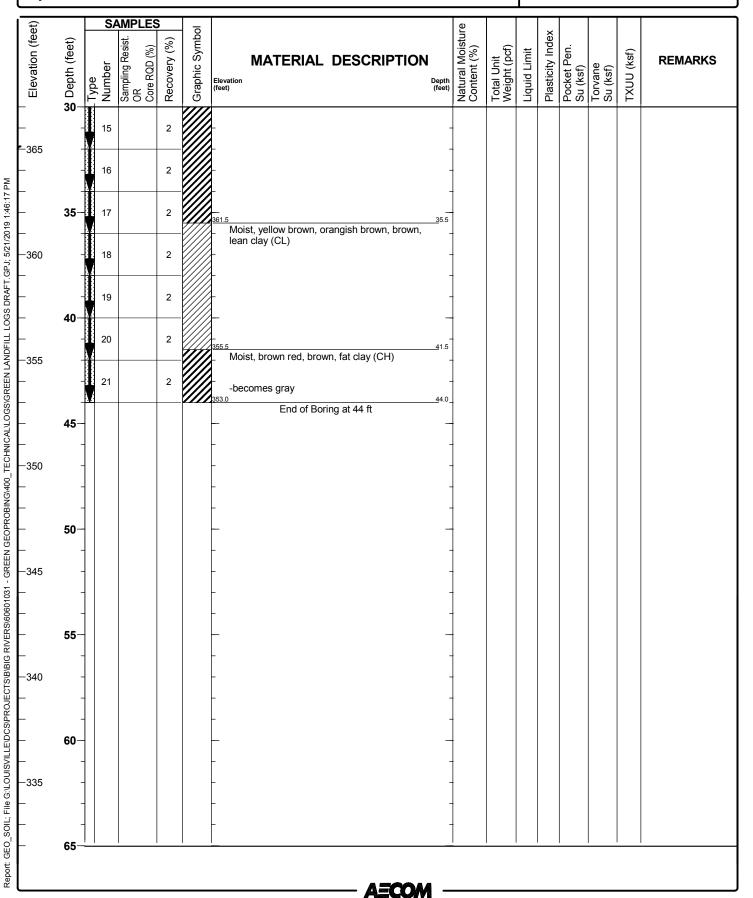
Log of Boring GESB-13



Project Location: Webster County, Kentucky

Project Number: 60601031

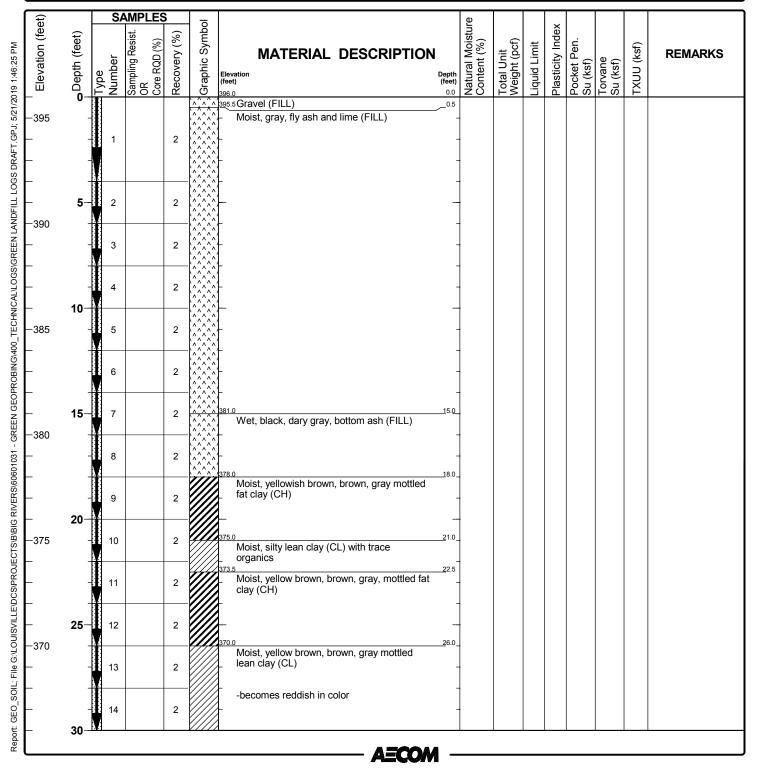
Log of Boring GESB-14


Date(s) Drilled	04/30/2019 12:00 AM to 04/30/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	397 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 650 (ft NAD83)	Groundwater Level(s)	ft on		

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-14

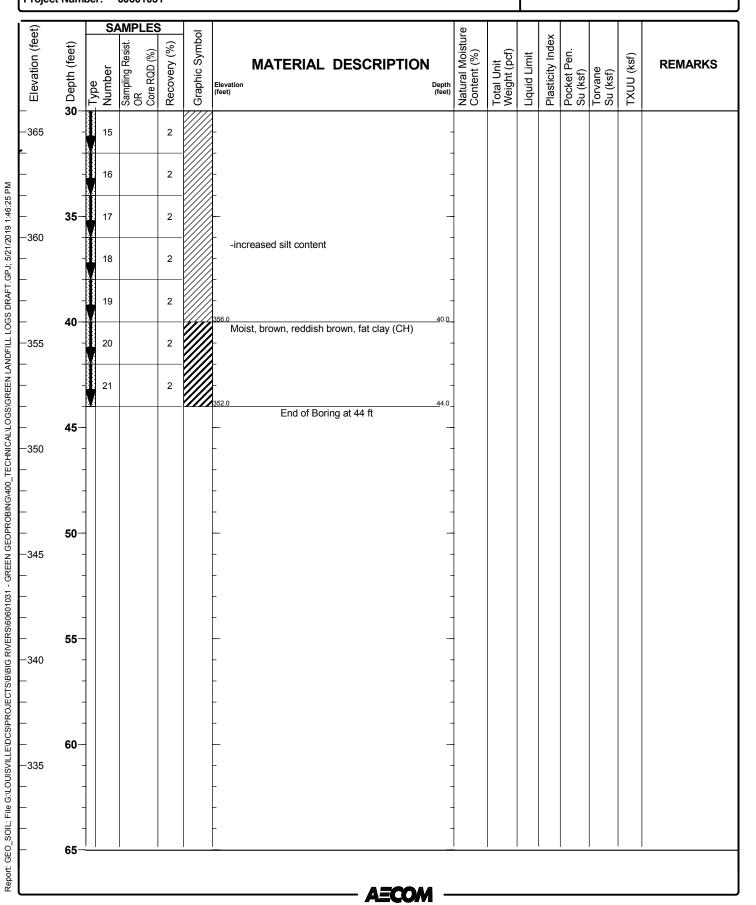


Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-15

Date(s) Drilled	05/01/2019 12:00 AM to 05/01/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	396 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 600 (ft NAD83)	Groundwater Level(s)	ft on		

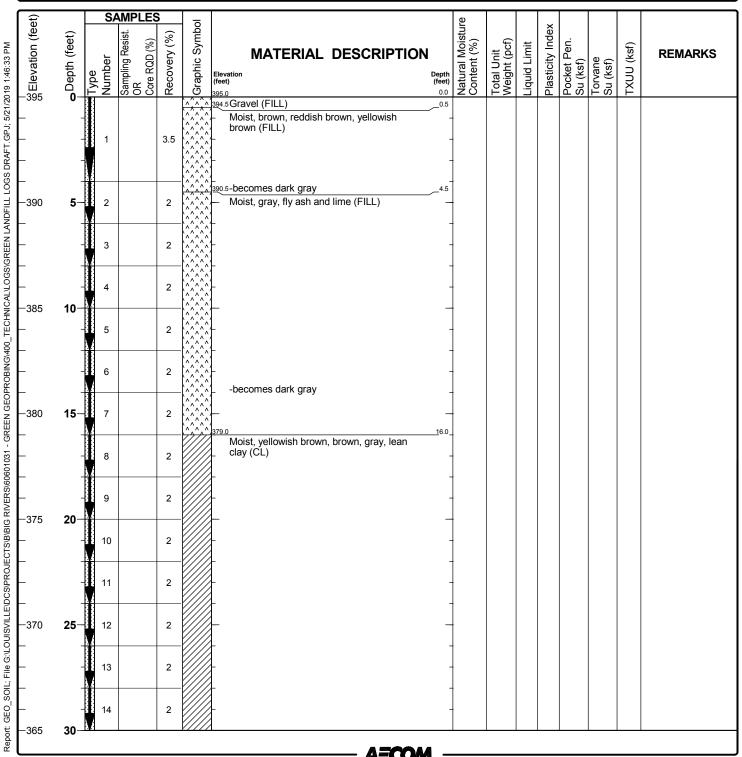


Project Location: Webster County, Kentucky

Project Number: 60601031

•

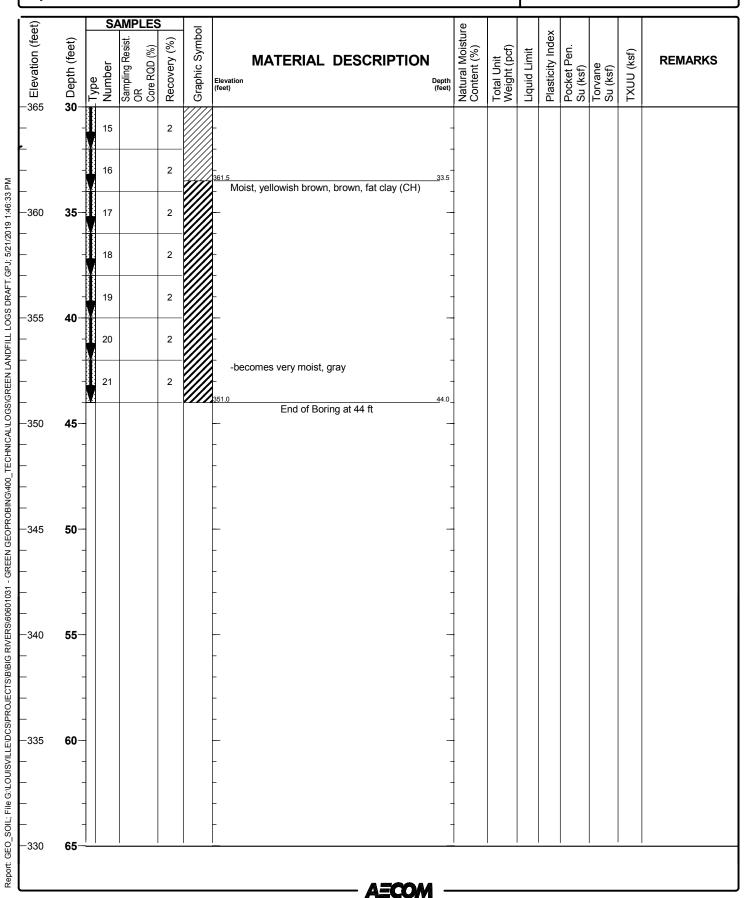
Log of Boring GESB-15



Project Location: Webster County, Kentucky

Project Number: 60601031

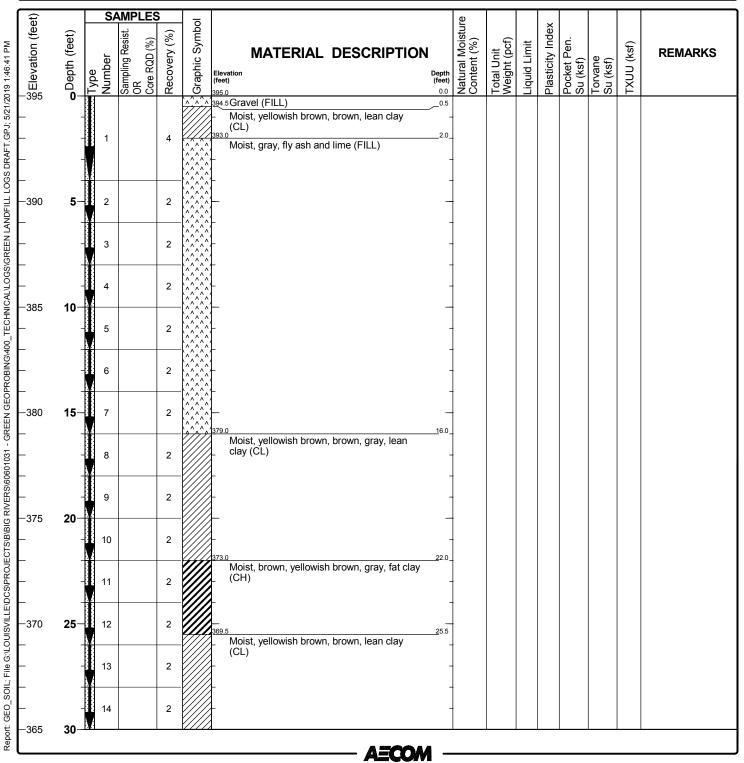
Log of Boring GESB-16


Date(s) Drilled	05/01/2019 12:00 AM to 05/01/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	395 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 550 (ft NAD83)	Groundwater Level(s)	42 ft on 5/1/2019		

Project Location: Webster County, Kentucky

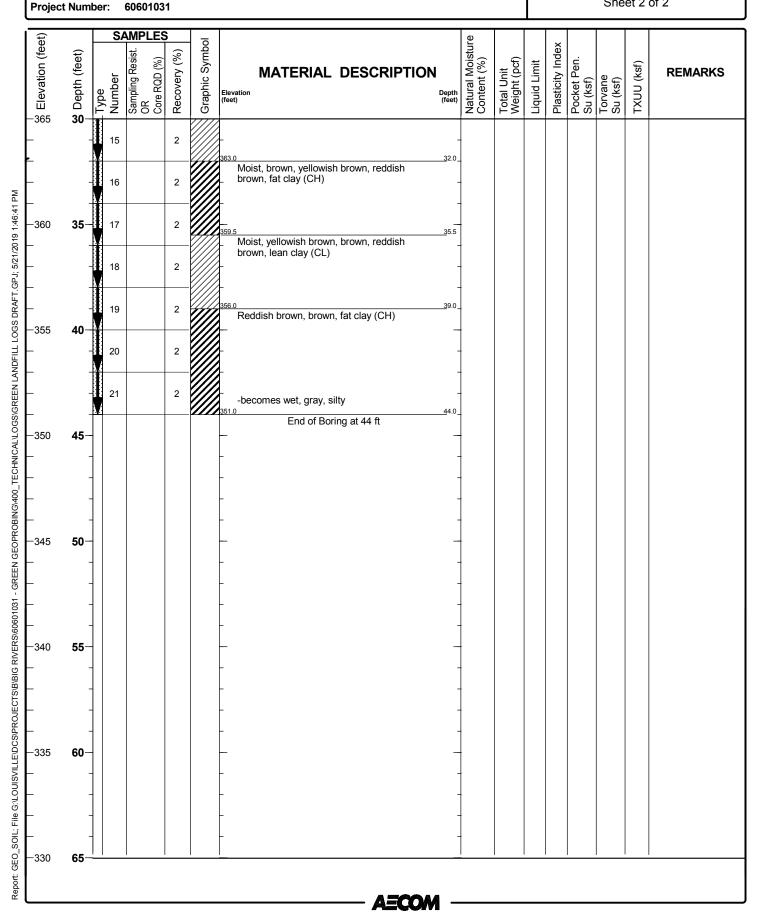
Project Number: 60601031

Log of Boring GESB-16



Project Location: Webster County, Kentucky

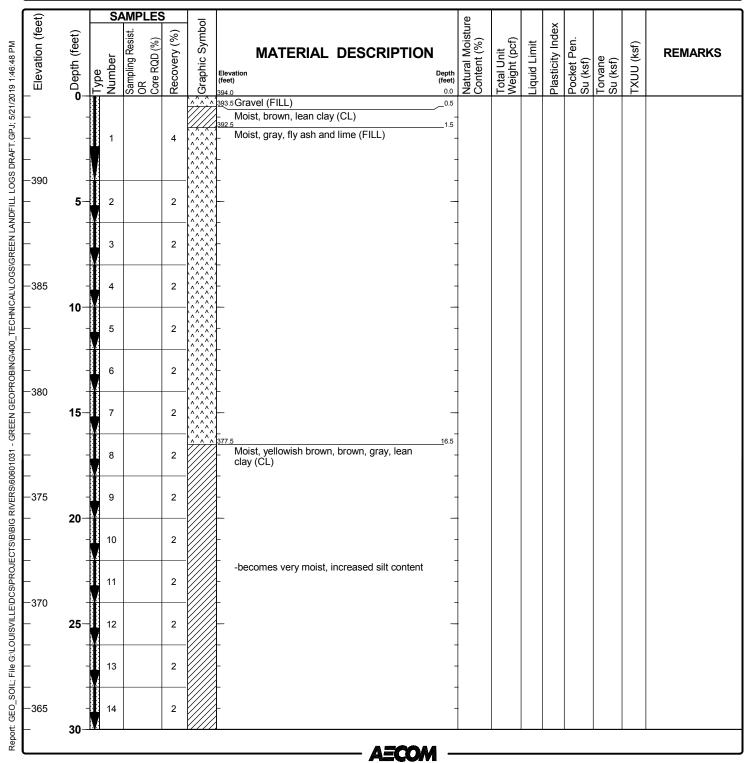
Project Number: 60601031


Log of Boring GESB-17

Date(s) Drilled	05/02/2019 12:00 AM to 05/02/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	395 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 500 (ft NAD83)	Groundwater Level(s)	43 ft on 5/2/2019		

Project Location: Webster County, Kentucky

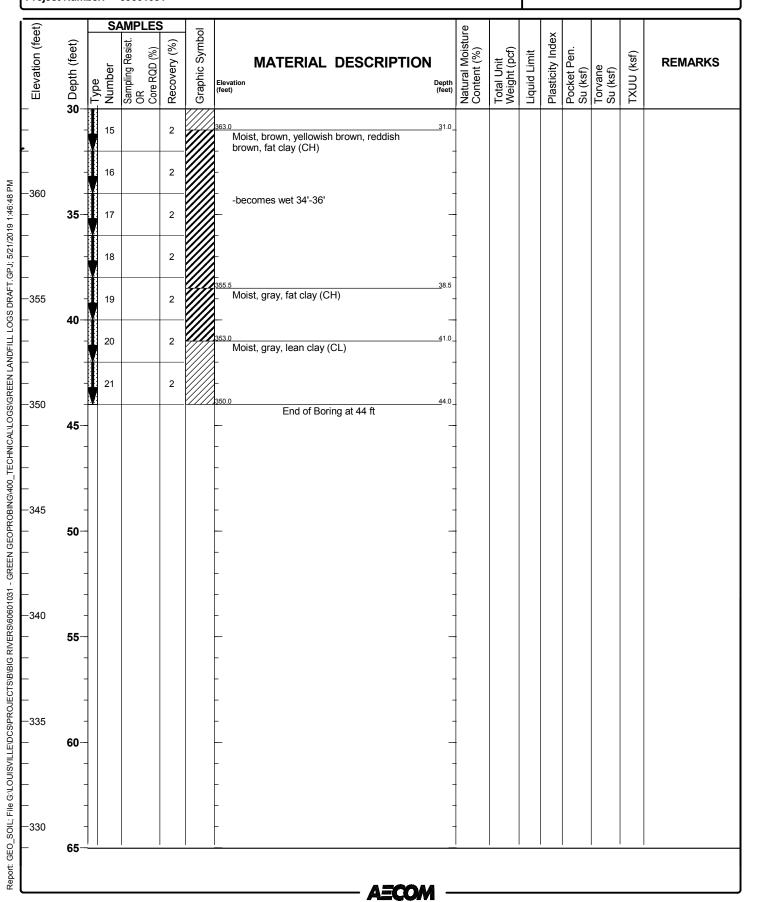
Log of Boring GESB-17



Project Location: Webster County, Kentucky

Project Number: 60601031

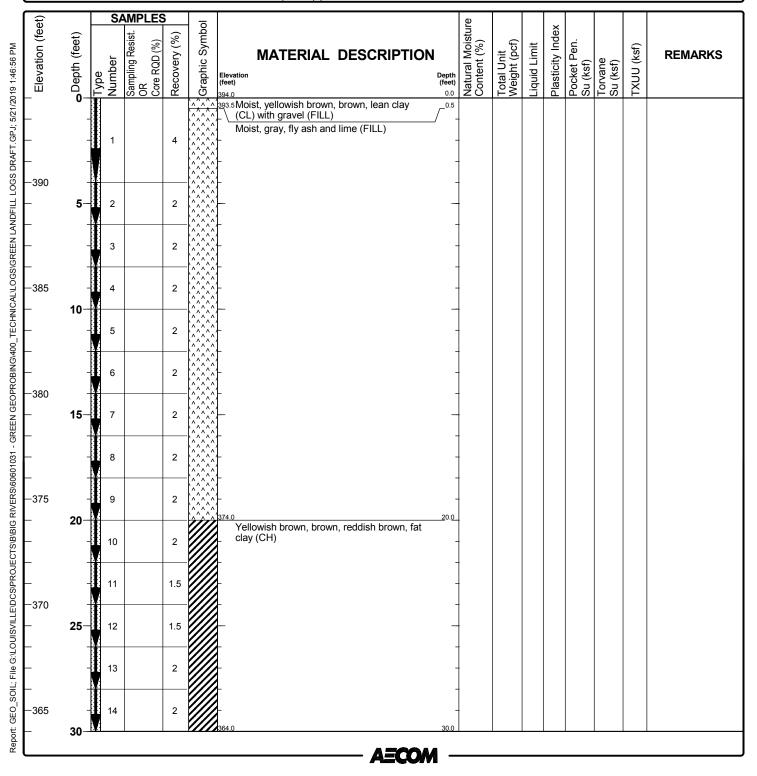
Log of Boring GESB-18


Date(s) Drilled	05/02/2019 12:00 AM to 05/02/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 400 (ft NAD83)	Groundwater Level(s)	34 ft on 5/2/2019		

Project Location: Webster County, Kentucky

Project Number: 60601031

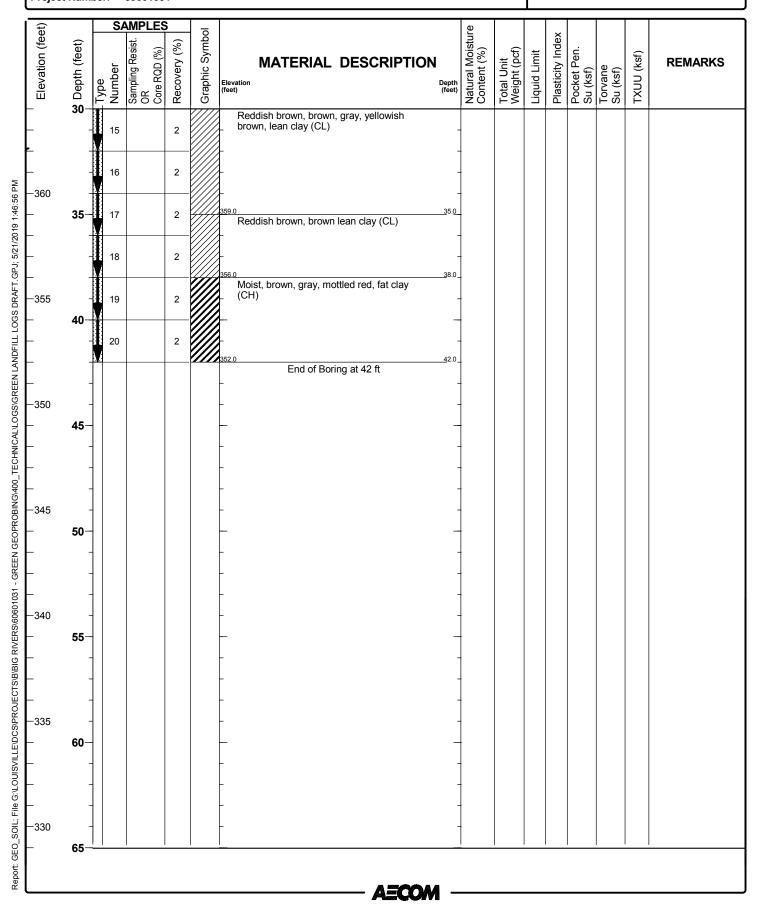
Log of Boring GESB-18



Project Location: Webster County, Kentucky

Project Number: 60601031

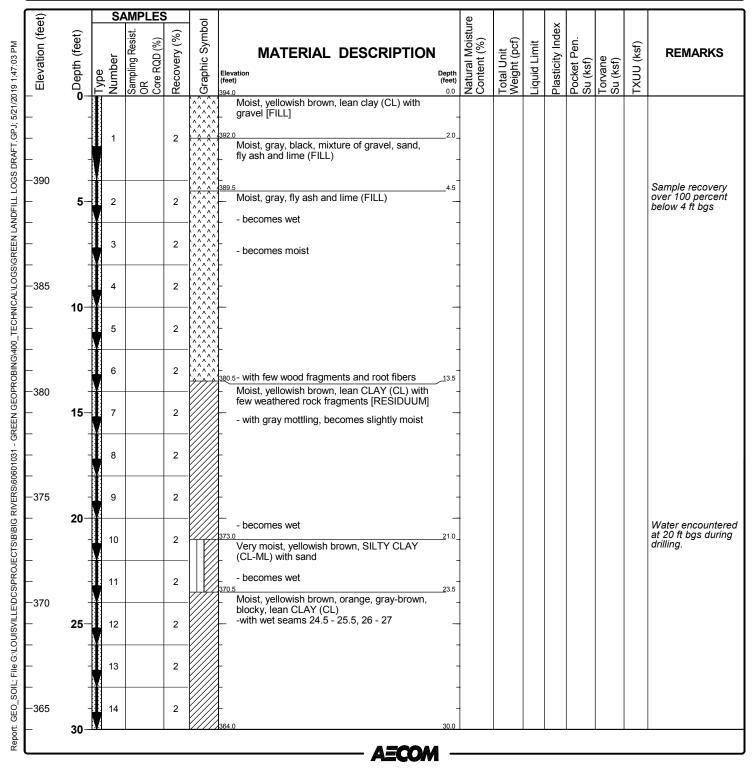
Log of Boring GESB-19


Date(s) Drilled	05/02/2019 12:00 AM to 05/02/2019 12:00 AM	Logged By	A. Burke	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	42.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 300 (ft NAD83)	Groundwater Level(s)	ft on		

Project Location: Webster County, Kentucky

Project Number: 60601031

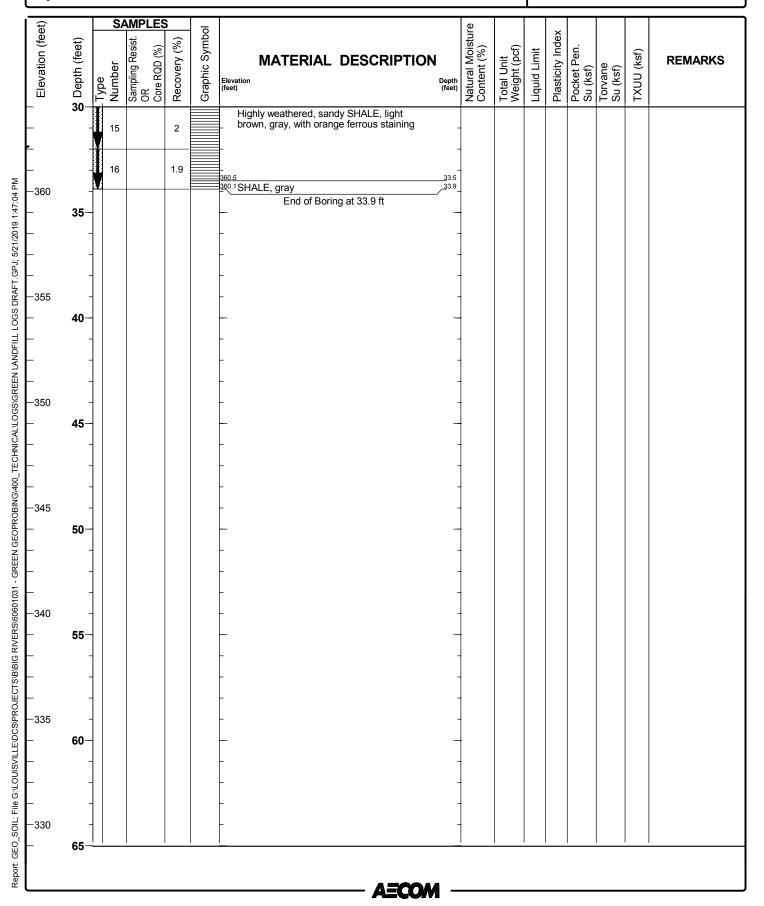
Log of Boring GESB-19



Project Location: Webster County, Kentucky

Project Number: 60601031

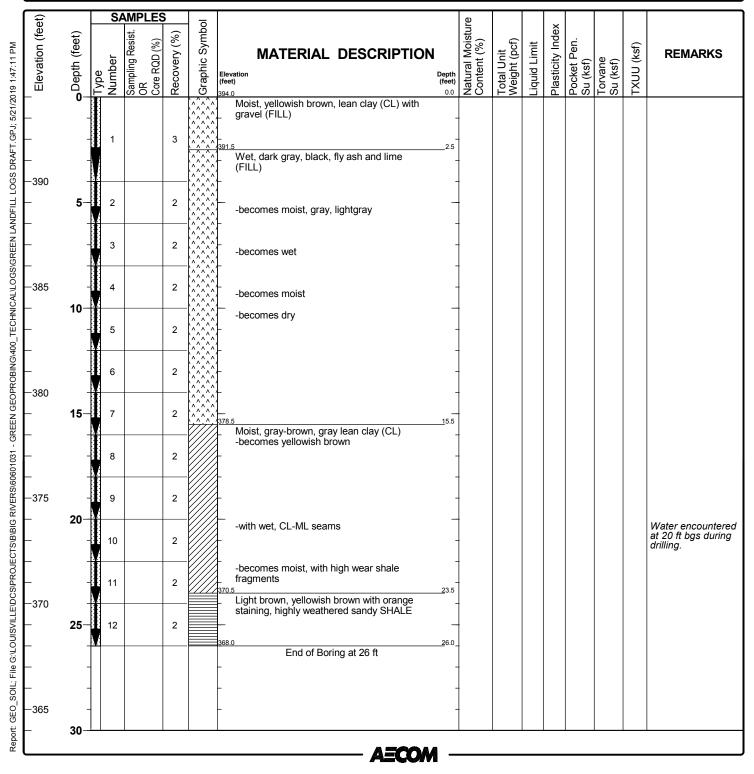
Log of Boring GESB-20


Date(s) Drilled	05/06/2019 12:00 AM to 05/06/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	33.9 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 200 (ft NAD83)	Groundwater Level(s)	20 ft on 5/6/2019		

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-20



Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-21

Date(s) Drilled	05/06/2019 12:00 AM to 05/06/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	26.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E 100 (ft NAD83)	Groundwater Level(s)	20 ft on 5/6/2019		

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-22

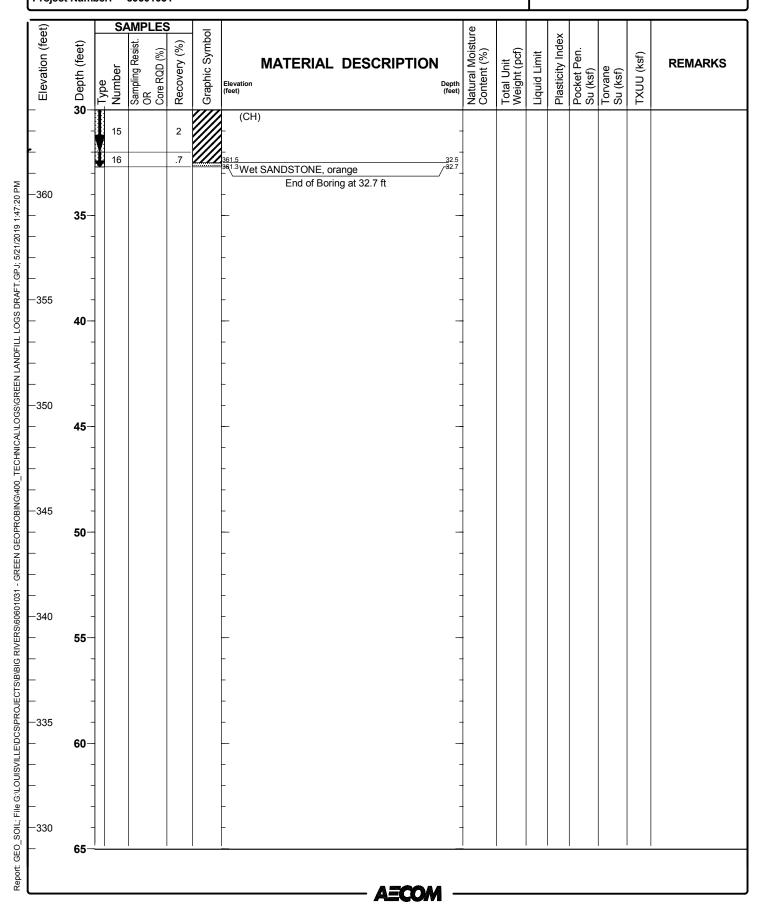
Date(s) Drilled	05/06/2019 12:00 AM to 05/06/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	27.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E (ft NAD83)	Groundwater Level(s)	20 ft on 5/6/2019		

₩	l l	SAMPLES] _			ė							
Elevation (feet)	Depth (feet)	Type Number	Sampling Resist. OR Core RQD (%)	Recovery (%)	Graphic Symbol	MATERIAL DESCRIPTION Elevation (feet) 394.0	Depth (feet)	Natural Moisture Content (%)	Total Unit Weight (pcf)	Liquid Limit	Plasticity Index	Pocket Pen. Su (ksf)	Torvane Su (ksf)	TXUU (ksf)	REMARKS
- - - -390	-	1		4		Moist, yellowish brown, lean clay (CL) with gravel (FILL) 392.0 Wet, black, gray, mixture of bottom ash, fly ash and lime (FILL)	2.0 								
- 390	5-	2		2			_								
=	_	3		2		-becomes wet - -becomes slightly moist	-								
- -385	40	4		2		-	-								
-	10	5		2		-becomes very moist 382.5-with 6" seam of bottom ash	ــ ۔ 11.5_								
	-	6		2		 Moist, yellowish brown, gray, lean clay (CL) 	-								
-380 -	15-	7		2		-becomes slightly moist -	-								
-	-	8		2		- - becomes very moist	-								
- -375	_	9		2		-becomes moist -wet 19-19.5'	20.0								
- -	20	10		2		Wet, yellowish brown, gray silty clay (CL-ML)	-								Water encounter at 20 ft bgs durin drilling.
-	-	11		2		Moist, yellowish brown, gray, lean clay (CL)becomes slightly moist	<u>2</u> 2.0								
-370 -	25-	12		2		369.0-becomes wet Moist, gray, orange-brown, sand silty clay	25.0_ 26.0_								
-	-	13		1		368.0 (CL-ML) Highly weathered sandy SHALE, lightly yellowish gray End of Boring at 27 ft	<u></u>								
- -365 -	30					-	-								

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-23

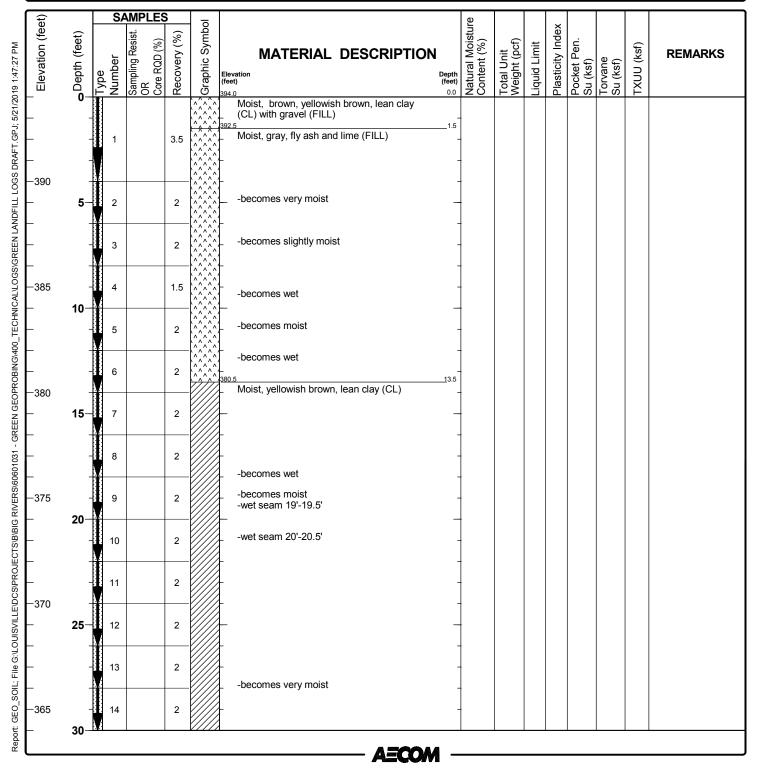

Date(s) Drilled	05/06/2019 12:00 AM to 05/06/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	32.7 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E -150 (ft NAD83)	Groundwater Level(s)	ft on		

eet)			MPLES		loc			rre			×				
Elevation (feet)	Depth (feet)	Type Number	Sampling Resist. OR Core RQD (%)	Recovery (%)	I /5 I	MATERIAL DESCRIPTION (feet) 394.0	Depth (feet)	Natural Moisture Content (%)	Total Unit Weight (pcf)	Liquid Limit	Plasticity Index	Pocket Pen. Su (ksf)	Torvane Su (ksf)	TXUU (ksf)	REMARKS
-	- -	1		3	0,	Moist, yellowish brown, lean clay (CL) with gravel (FILL) Wet, black, bottom ash (FILL) -dark gray, fly ash and lime	1.5 1.5 _								
-390 - -	5-	2		2		-becomes wet4" seam of bottom ash -becomes moist	- -								
-	-	3		2		-becomes slightly moist, light gray		-							
-385	10-	4		2		- -	-								
	-	5		2		-	-								
-380	15-	7		2		- - -									
	-	8		2		- -									
375	-	9		2		- -									
	20	10		2		-becomes wet - 272.0-with 4" seam of wet bottom ash	ــ .22.0								
- - -370	-	11		1.5		Very moist, gray-brown, lean clay (CL) with root fibers									
	25-	12		2		becomes yellowish brown, wet	-								
	-	13		2		- - -becomes yellowish brown, gray, with									
-365 -	30	14		2		365.0 orange weathered sandstone fragment Moist, yellowish brown, gray, blocky, fat clay	<u>2</u> 9.0								

Project Location: Webster County, Kentucky

60601031 Project Number:

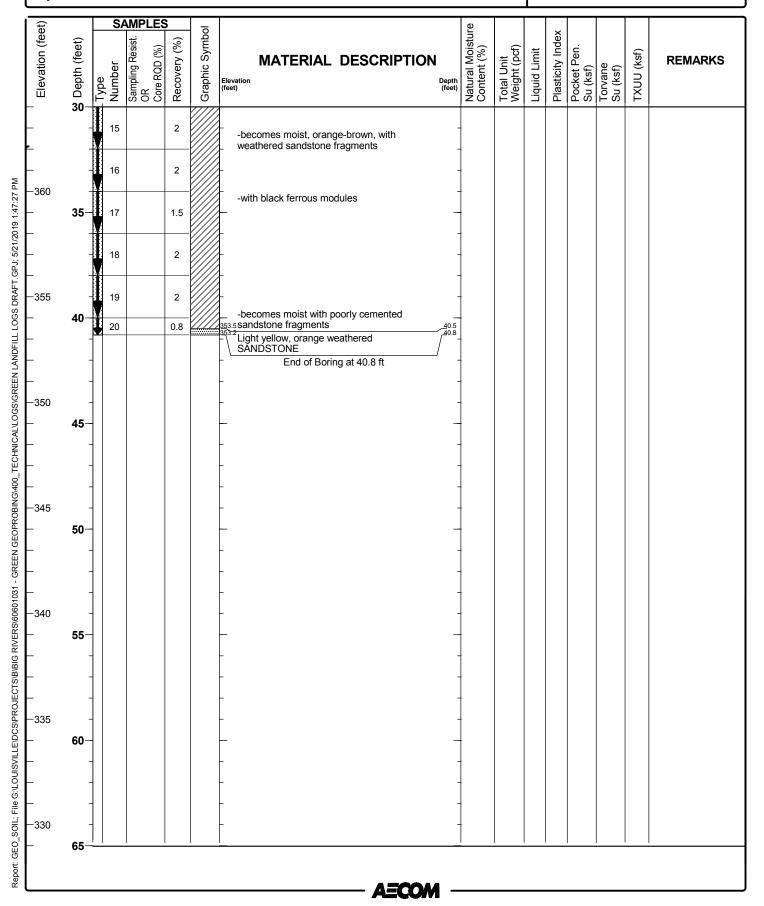
Log of Boring GESB-23



Project Location: Webster County, Kentucky

Project Number: 60601031

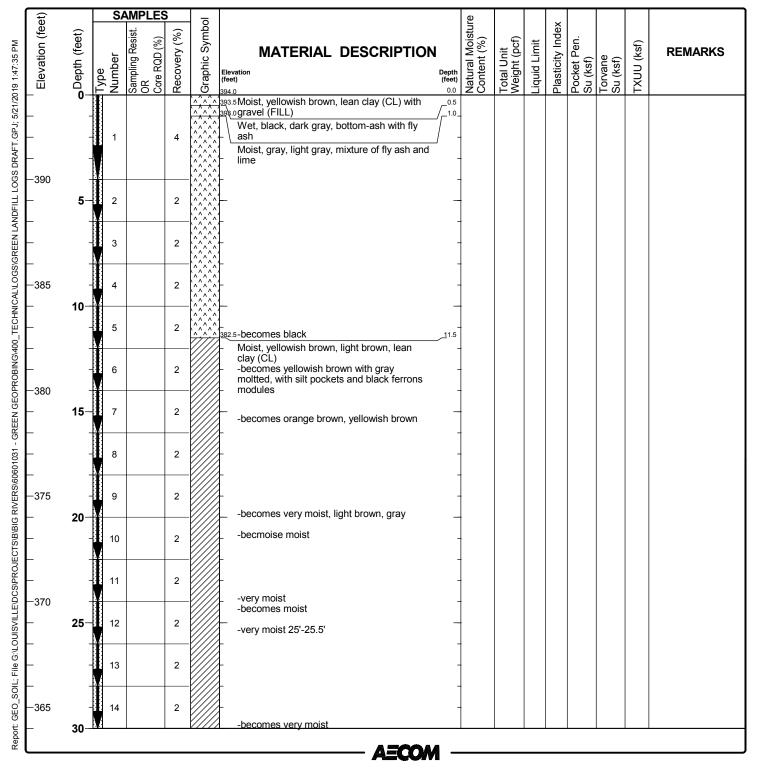
Log of Boring GESB-24


Date(s) Drilled	05/06/2019 12:00 AM to 05/06/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	40.8 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E -300 (ft NAD83)	Groundwater Level(s)	ft on		

Project Location: Webster County, Kentucky

Project Number: 60601031

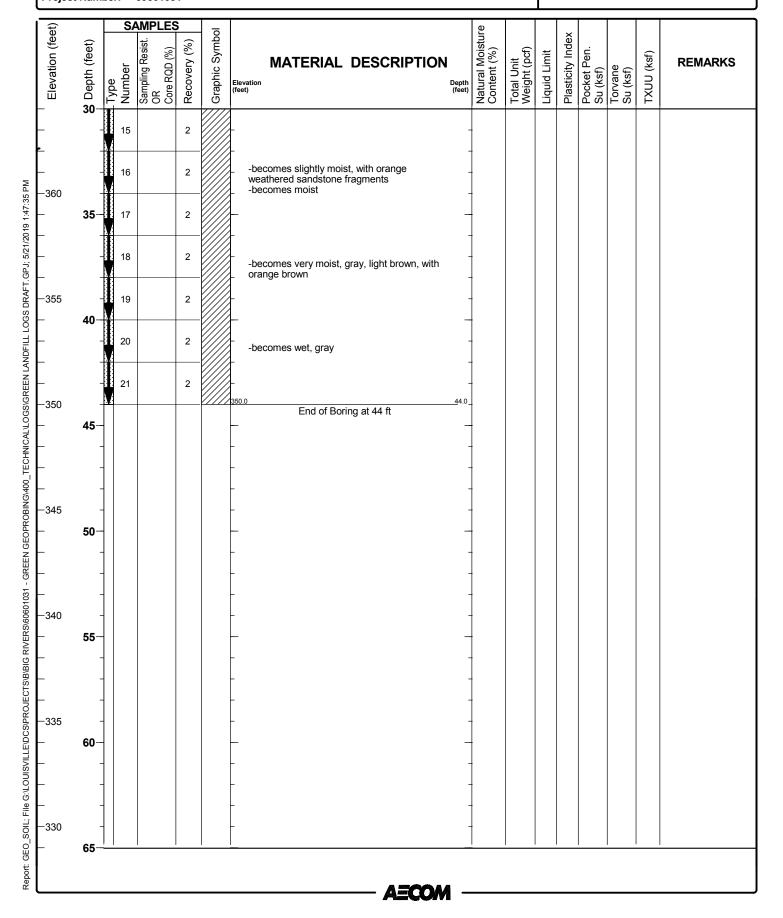
Log of Boring GESB-24



Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-25


Date(s) Drilled	05/07/2019 12:00 AM to 05/07/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E -450 (ft NAD83)	Groundwater Level(s)	ft on		

Project Location: Webster County, Kentucky

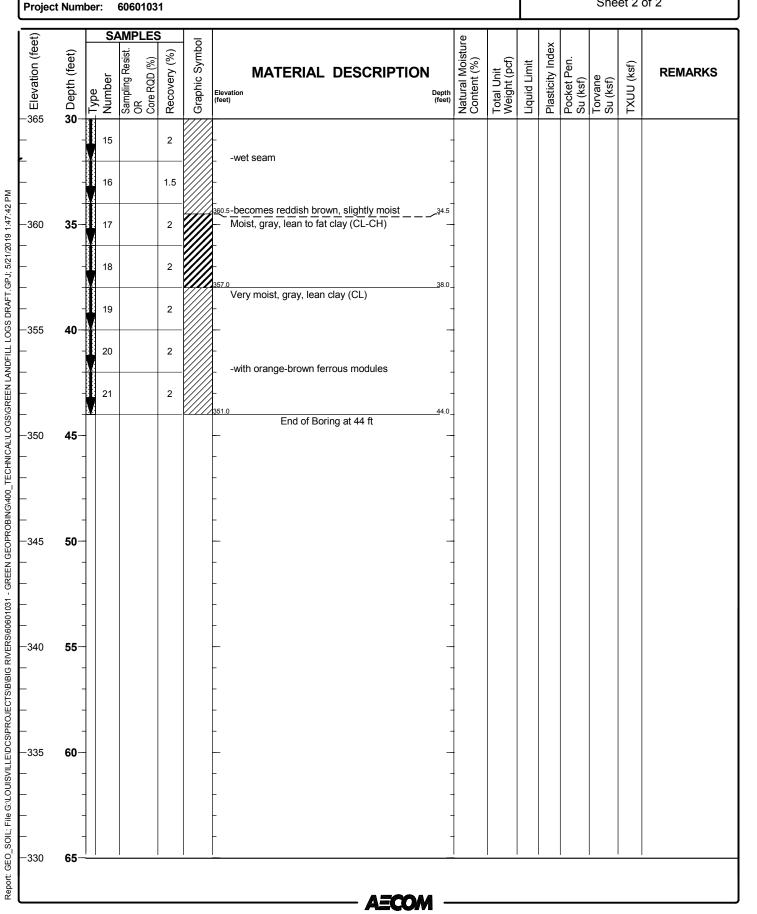
Project Number: 60601031

Log of Boring GESB-25

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-26


Date(s) Drilled	05/07/2019 12:00 AM to 05/07/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	44.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	395 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E -600 (ft NAD83)	Groundwater Level(s)	10 ft on 5/7/2019		

£		SA	MPLES	3					മ			.,				
 ଜୁElevation (feet)	Depth (feet)	Type Number	Sampling Resist. OR Core RQD (%)	Recovery (%)	Gra	levation eet)	DESCRIPTION	Depth (feet)	Natural Moisture Content (%)	Total Unit Weight (pcf)	Liquid Limit	Plasticity Index	Pocket Pen. Su (ksf)	Torvane Su (ksf)	TXUU (ksf)	REMARKS
—	-	1		3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Moist, yellowish brown (CL) with sand and gra 33.0 Wet, black, dark gray, ash and fly ash		2.0								
—390 —	5-	2		2		Moist, gray, light gray, lime	mixture of fly ash and	_								
_ _	_	3		2				-								
− −385	10-	4		2		-becomes very moist		-								
_		5		1.5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	33.5 Moist, dark grayish gre 22.5with root fragments (R	een, lean clay (CL)	11.5	•							Water encountered at 10 ft bgs during drilling.
_	_	6		2	34	Moist, yellowish brown mottled, lean clay (CL)	n with light brown	<u>1</u> 2.5 - -								
—380 —	15-	7		2		-		-	·							
-	- -	8		2		-with gray mottled		-								
_ _375	20	9		2		-		-								
_ _	_ 	10		2		-becomes slightly mois	st	-								
_	-	11		2		3000 molet		-								
−370 −	25	12		2		-becomes very moist		-								
_	_	13		2		-becomes moist -becomes slightly mois	st	-								
_ _365	30	14		2		-becomes moist		-								

Project Location: Webster County, Kentucky

60601031

Log of Boring GESB-26

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-27


Date(s) Drilled	05/07/2019 12:00 AM to 05/07/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	38.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	395 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E -750 (ft NAD83)	Groundwater Level(s)	1.5 ft on 5/7/2019		

et)				PLE					ē			.,				
ا چElevation (feet)	Depth (feet)	Type Number	Sampling Resist.	OR Core RQD (%)	Recovery (%)	Graphic Symbol	MATERIAL DESCRIPTION Elevation (feet) 395.0	Depth (feet)	Natural Moisture Content (%)	Total Unit Weight (pcf)	Liquid Limit	Plasticity Index	Pocket Pen. Su (ksf)	Torvane Su (ksf)	TXUU (ksf)	REMARKS
-	-	1			4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Moist, yellowish brown, lean clay (CL) with gravel (FILL) Wet, dark gray, mixture of bottom ash and fly ash Moist, gray, mixture of fly ash and lime	1.3 -								
- -390 -	5-	2			2	- - - - - - - - - - - - - - - - - - -		-								
_	-	3			2	\^^^^ \^^^^ -\^^^^	\ - -									
- -385	10-	4			2	[^^^^ ^^^^ -^^^^										
- -	-	5			2	\^^^^ \^^^^ -\^^^^	-becomes light gray	-								
_	=	6			2	\^^^^ \^^^^ -\^^^^	£	13.5 1								
-380 -	15-	7			2	\^^^^ -////	380.0 Moist, greenish gray, with organics, lean clay (CL)	<u>1</u> 5.0								
_	-	8			2		-becomes very moist, yellowish brown, light brown and gray mottled									
- -375	20-	9			2			-	-							
_	- -	10			2		-becomes very moist	-								
_	-	11			2		-becomes moist									
-370 -	25-	12			2	-	-very moist 25'-25.5	-								
_	-	13			2	-										
- −365	30-	14			2		-wet seam at 29'	-								

Project Location: Webster County, Kentucky

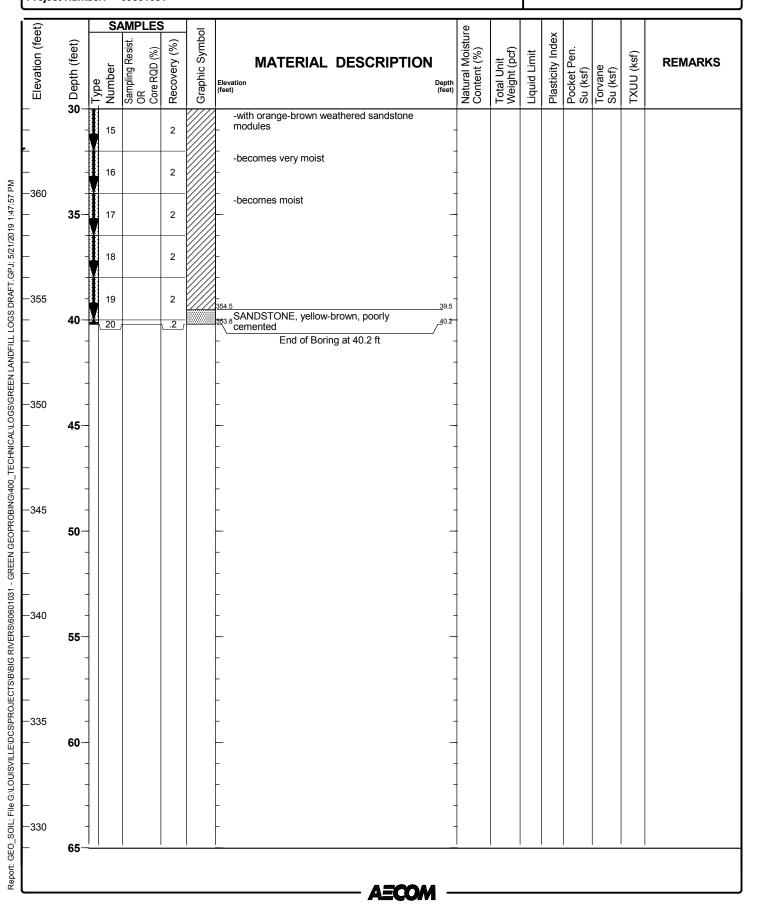
Project Number: 60601031

Log of Boring GESB-27

Project Location: Webster County, Kentucky

Project Number: 60601031

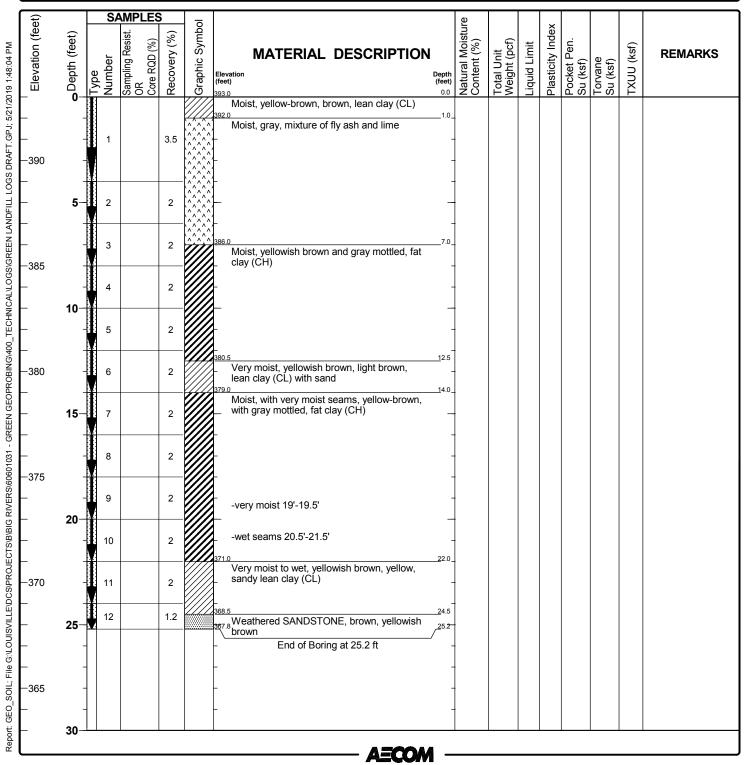
Log of Boring GESB-28


Date(s) Drilled	05/07/2019 12:00 AM to 05/07/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	40.2 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	394 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E -900 (ft NAD83)	Groundwater Level(s)	ft on		

Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-28

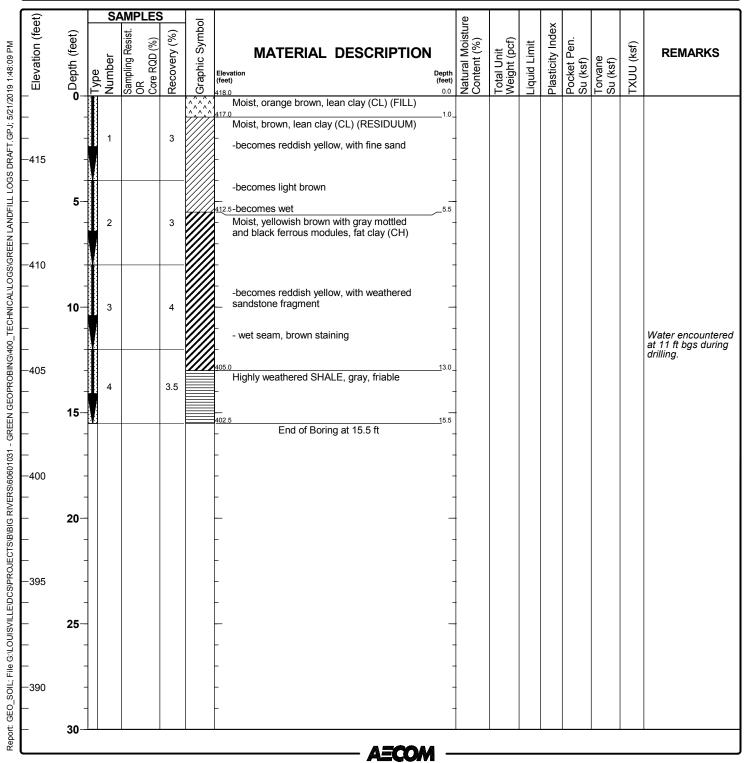


Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GESB-29

Date(s) Drilled	05/08/2019 12:00 AM to 05/08/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	25.2 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	393 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N E -1050 (ft NAD83)	Groundwater Level(s)	ft on		

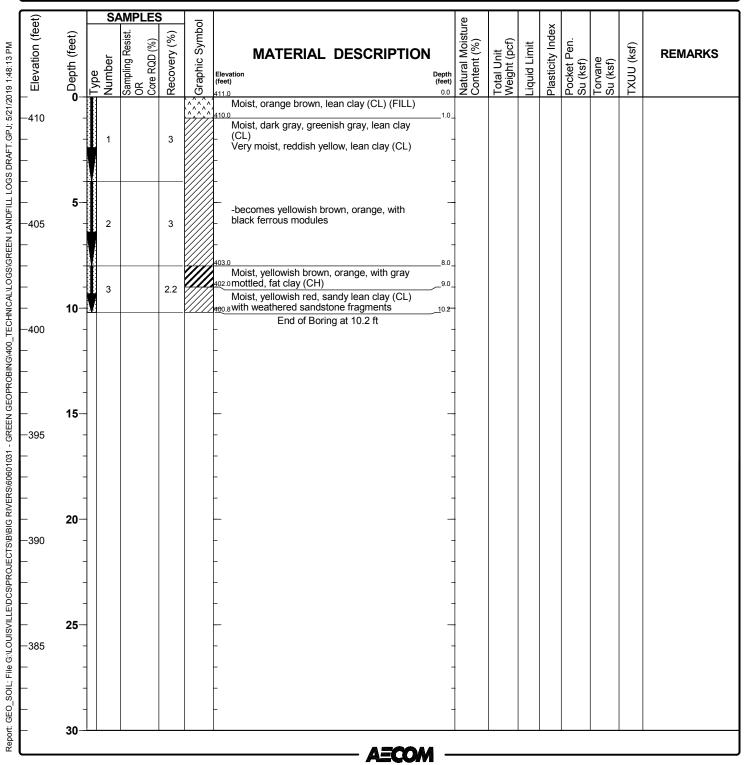


Project Location: Webster County, Kentucky

Project Number: 60601031

Log of Boring GNWSB-1

Date(s) Drilled	05/08/2019 12:00 AM to 05/08/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	15.5 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	418 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N 1500 E 1000 (ft NAD83)	Groundwater Level(s)	11 ft on 5/8/2019		

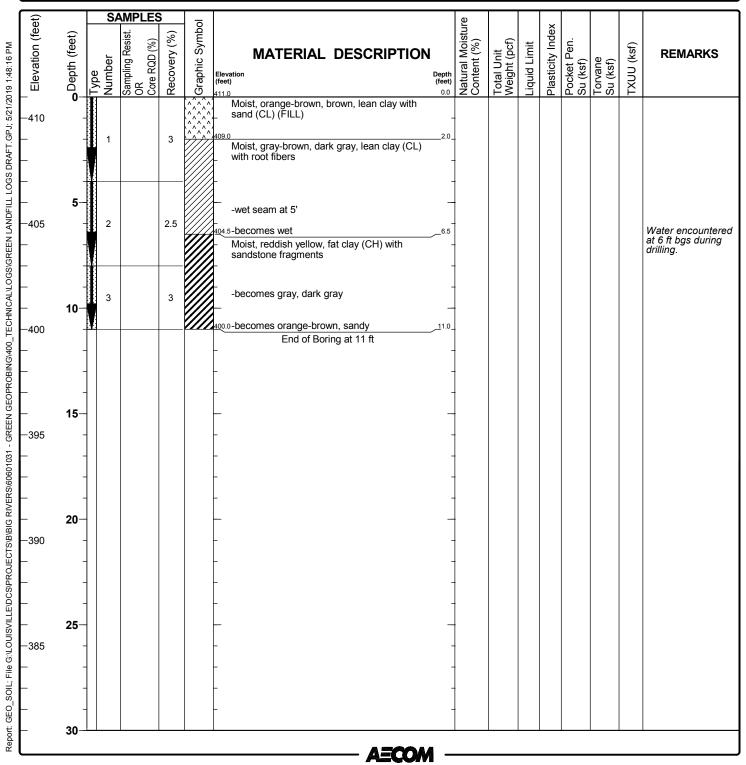


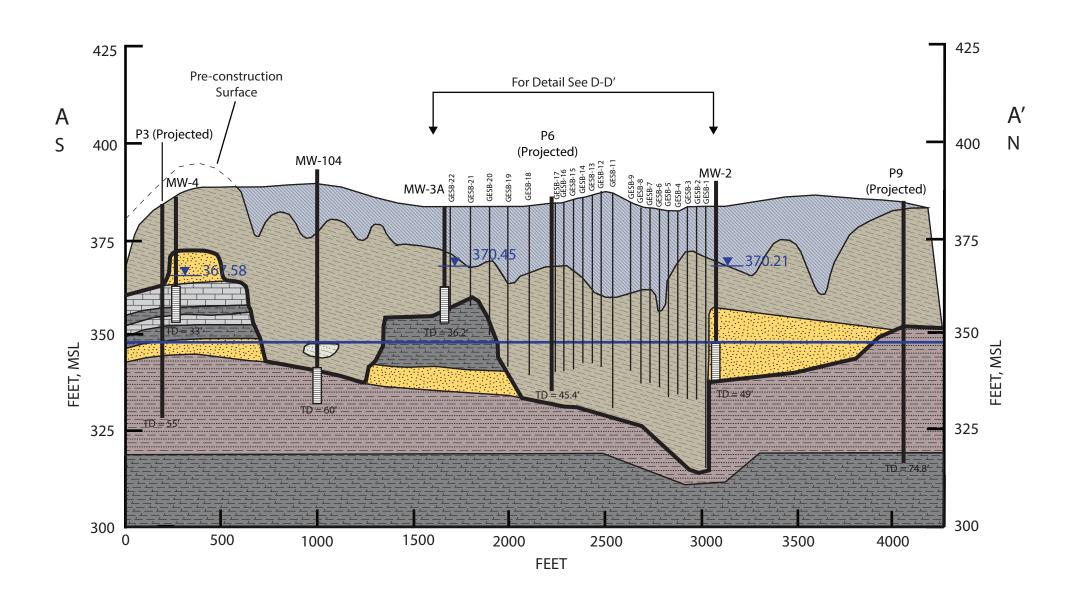
Project Location: Webster County, Kentucky

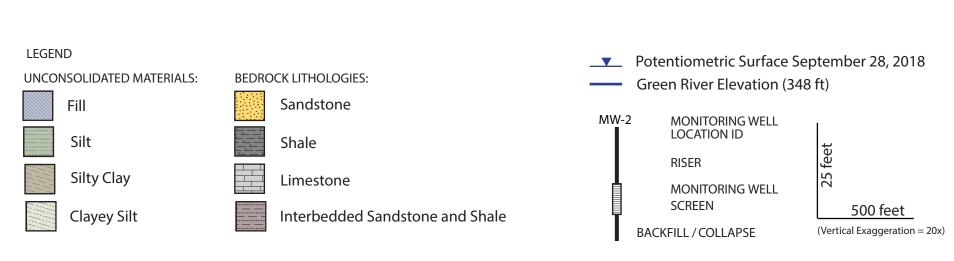
Project Number: 60601031

Log of Boring GNWSB-2

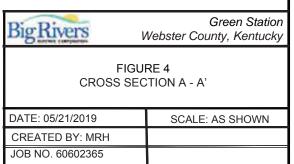
Date(s) Drilled	05/08/2019 12:00 AM to 05/08/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	10.2 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	411 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N 1450 E 1000 (ft NAD83)	Groundwater Level(s)	ft on		




Project Location: Webster County, Kentucky


Project Number: 60601031

Log of Boring GNWSB-3


Date(s) Drilled	05/08/2019 12:00 AM to 05/08/2019 12:00 AM	Logged By	M. Keown	Checked By	
Drilling Method	GeoProbe Core	Drill Bit Size/Type	GeoProbe Core	Borehole Depth	11.0 ft
Drill Rig Type	GeoProbe 7822DT	Drilling Contractor	AST Environmental	Surface Elevation	411 ft NAVD88
Borehole Backfill	Bentonite Chips	Sampling Method(s)	Direct Push	Hammer Data	N/A
Boring Location	N 1500 E 1050 (ft NAD83)	Groundwater Level(s)	6 ft on 5/8/2019		

Appendix C

Northwest Seep Laboratory Analytical Results

Pikeville, KY 606.432.3104

812.696.5076 Paducah, KY

Farmersburg, IN

Lexington, KY 859.299.7775

270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Certificate of Analysis 9042044

Chad Phillips Big Rivers Electric Corporation Reid/Green Station PO Box 24 Henderson KY, 42419

Customer ID: Report Printed:

44-102032 04/16/2019 10:36

Project Name: Reid/Green/Sebree Station Workorder: 9042044

Dear Chad Phillips

Enclosed are the analytical results for samples received at one of our laboratories on 04/03/2019 12:12.

McCoy & McCoy Laboratories, Inc. is a commercial laboratory accredited by various state and national authorities, including Indiana, Kentucky, Tennessee, and Virginia's National Environmental Laboratory Accreditation Program (NELAP). With the NELAP accreditation, applicable test results are certified to meet the requirements of the National Environmental Laboratory Accreditation Program.

If you have any questions concerning this report please contact the individual listed below.

Please visit our website at www.mccoylabs.com for a listing of the NELAP accreditations and Scope of Work, as well as, links to other scientific organizations.

This certificate of analysis may not be reproduced without the written consent of McCoy & McCoy Laboratories, Inc.

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Rob Whittington, Project Manager

606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

Farmersburg, IN

"Providing Tomorrow's Analytical Capabilities Today"

Pikeville, KY

SAMPLE SUMMARY

Lab ID	Client Sample ID/Alias	Matrix	Date Collected	Date Received	Sampled By
9042044-01	RS1/Green Landfill Site	Water	04/02/2019 15:45	04/03/2019 12:12	Gregory Dick
9042044-02	SW-CULVERT-1/Green Landfill Site	Water	04/02/2019 13:43	04/03/2019 12:12	Gregory Dick

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

ANALYTICAL RESULTS

Lab Sample ID: 9042044-01 Sample Collection Date Time: 04/02/2019 15:45
Description: RS1 Green Landfill Site Sample Received Date Time: 04/03/2019 12:12

Volatile Organic Compounds

Analyte	Result	Flag	Jnits MRL	. MDL	Method	Prepared	Analyzed	Analyst
1,1,1-Trichloroethane	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,1,2,2-Tetrachloroethane	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,1,2-Trichloroethane	ND	U	g/L 5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,1-Dichloroethane	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,1-Dichloroethene	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,2,4-Trichlorobenzene	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,2,4-Trimethylbenzene	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,2-Dichlorobenzene	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,2-Dichloroethane	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,2-Dichloropropane	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,3,5-Trimethylbenzene	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,3-Dichlorobenzene	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,3-Dichloropropane	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
1,4-Dichlorobenzene	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
2-Butanone	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
2-Chloroethylvinyl Ether	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
2-Hexanone	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
2-Nitropropane	ND	U	ıg/L 10	5	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
4-Methyl-2-pentanone	ND	U	ıg/L 5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Acetone	ND	U	ıg/L 5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Acrolein	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Acrylonitrile	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Benzene	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Bromodichloromethane	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Bromoform	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Bromomethane	ND	U	ıg/L 5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Carbon disulfide	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Carbon tetrachloride	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Chlorobenzene	ND	U	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Chloroethane	ND	U	ıg/L 5		SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Chloroform	ND	U	ıg/L 5		SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Chloromethane	ND	U	ıg/L 5		SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
cis-1,2-Dichloroethene	ND	U	ig/L 5			04/03/2019 16:52	04/04/2019 16:02	HEM
cis-1,3-Dichloropropene	ND	U	ig/L 5			04/03/2019 16:52	04/04/2019 16:02	HEM
Dibromochloromethane	ND	U	ig/L 5			04/03/2019 16:52	04/04/2019 16:02	HEM
Dichlorodifluoromethane			ig/L 5	, ,	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Diethyl ether	ND		ig/L 5		SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Ethylbenzene	ND		ig/L 5		SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Hexachloroethane	ND		ig/L 5		SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Isopropylbenzene	ND		ig/L 5		SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
m,p-Xylene	ND		ig/L 5		SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Methyl tert-Butyl Ether	ND		ig/L 5		SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Methylene Chloride	2	J	ıg/L 5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Volatile Organic Compounds

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Nitrobenzene	ND	U	ug/L	10	5	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
o-Xylene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Styrene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Tetrachloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Tetrahydrofuran	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Toluene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
trans-1,2-Dichloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
trans-1,3-Dichloropropene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Trichloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Trichlorofluoromethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Vinyl Acetate	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM
Vinyl chloride	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:02	HEM

Surrogate: Bromofluorobenzene 94.3 % 85.1-114.2 04/03/2019 16:52 04/04/2019 16:02 HEM SW846-8260 B

Base Neutral and Acid Extractable Organics

Analyte	Result	Flag	Units	MRL	MDL Method	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
1,2-Dichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
1,2-Diphenylhydrazine	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
1,3-Dichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
1,4-Dichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,2'-oxybis-(1-Chloropropane)	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,4,5-Trichlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,4,6-Trichlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,4-Dichlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,4-Dimethylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,4-Dinitrophenol	ND	L2, V7,	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,4-Dinitrotoluene	ND	U L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2,6-Dinitrotoluene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2-Chloronaphthalene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2-Chlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2-Methylnaphthalene	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2-Methylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2-Nitroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
2-Nitrophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
3,3'-Dichlorobenzidine	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
3-Nitroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4,6-Dinitro-2-methylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4-Bromophenyl-phenylether	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4-Chloro-3-methylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4-Chloroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4-Chlorophenyl-phenylether	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4-Methylphenol	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4-Nitroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
4-Nitrophenol	ND	V7, L2,	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
Acenaphthene	ND	U L2. U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 15:37	JDR
e contract		, •	- J -					

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Base Neutral and Acid Extractable Organics

Analyte	Result	Flag	Units	MRL	MDL	Method		Prepared		Analyze	ed	Analyst
alpha-Terpineol	ND	V7, U	ug/L	5		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Anthracene	ND	L2, U	ug/L	15		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Benzidine	ND	U	ug/L	10		SW846-8270 C		04/03/2019 17:00	1	04/08/2019	15:37	JDR
Benzo(a)anthracene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Benzo(a)pyrene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Benzo(b)fluoranthene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Benzo(g,h,i)perylene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Benzo(k)fluoranthene	ND	L1, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Benzoic acid	ND	V7, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Benzyl alcohol	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Bis(2-chloroethoxy)methane	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Bis(2-chloroethyl) ether	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Bis(2-ethylhexyl)phthalate	ND	L2, U	ug/L	40		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Butylbenzylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Carbazole	ND	V7, U	ug/L	11		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Chrysene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Dibenzo(a,h)anthracene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Dibenzofuran	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Diethylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Dimethylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Di-n-butylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Di-n-octylphthalate	ND	V7, L2,	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Fluoranthene	ND	U L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00	ı	04/08/2019	15:37	JDR
Fluorene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
Hexachlorobenzene	ND	L2, U	ug/L	13		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
Hexachlorobutadiene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
Hexachlorocyclopentadiene	ND	V7, L2,	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
		U,, L2,	-9. –									
Hexachloroethane	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Indeno(1,2,3-cd)pyrene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Isophorone	ND	U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Naphthalene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Nitrobenzene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
N-Nitrosodimethylamine	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
N-Nitroso-di-n-propylamine	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
N-Nitrosodiphenylamine	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Pentachlorophenol	ND	V7, L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Phenanthrene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Phenol	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Pyrene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Pyridine	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	15:37	JDR
Surrogate: 2,4,6-Tribromophenol			59.2 %	45-8	35	04/03/2019	17:00	04/08/2019	15:37	JDR	SW846-8	3270 C
Surrogate: 2-Fluorobiphenyl			59.8 %	16-9		04/03/2019		04/08/2019			SW846-8	
Surrogate: 2-Fluorophenol			39.0 %	30-7		04/03/2019		04/08/2019			SW846-8	
Surrogate: Nitrobenzene-d5			49.6 %	25-1		04/03/2019		04/08/2019			SW846-8	
Surrogate: Phenol-d6			48.5 %	21-9		04/03/2019		04/08/2019		JDR	SW846-8	
Surrogate: Terphenyl-d14			74.6 %	30-1		04/03/2019		04/08/2019			SW846-8	
Canagato. Torphonyi ara			/0	30 1	_•	5 50, 20 10		5 55, 25 15		ושט		

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Metals by EPA 200 Series Methods

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Aluminum	0.27	D2, J	mg/L	0.40	0.14	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Antimony	ND	U	mg/L	0.005	0.002	EPA 200.8 REV	04/05/2019 11:19	04/10/2019 11:59	DMH
Arsenic	ND	D3, U	mg/L	0.0100	0.0020	5.4 EPA 200.8 REV	04/05/2019 11:19	04/10/2019 19:54	DMH
Barium	0.098		mg/L	0.004	0.001	5.4 EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 11:59	DMH
Beryllium	ND	D2, U	mg/L	0.0200	0.0100	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Boron	1.15	D2	mg/L	1.00	1.00	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:13	AKB
Cadmium	0.0005	J	mg/L	0.0010	0.0001	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 11:59	DMH
Calcium	1150	D1	mg/L	400	130	EPA 200.7 REV 4.4	04/05/2019 11:19	04/09/2019 11:29	AKB
Chromium	ND	D2, U	mg/L	0.0200	0.0060	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Cobalt	ND	D2, U	mg/L	0.040	0.040	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Copper	ND	D2, U	mg/L	0.030	0.010	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Iron	18.1	D2	mg/L	1.20	0.500	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:13	AKB
Lead	0.002		mg/L	0.002	0.0005	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 11:59	DMH
Lithium	0.06	D2, J	mg/L	0.20	0.05	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Magnesium	49.6	D2	mg/L	2.00	0.900	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:13	AKB
Manganese	20.5	D1	mg/L	0.400	0.200	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:16	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 11:59	DMH
Molybdenum	ND	D2, U	mg/L	0.10	0.02	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Nickel	ND	D2, U	mg/L	0.030	0.010	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Potassium	301	D1, L1	mg/L	50.0	22.0	EPA 200.7 REV 4.4	04/05/2019 11:19	04/09/2019 11:26	AKB
Selenium	ND	D2, U	mg/L	0.030	0.010	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Silver	ND	U	mg/L	0.0010	0.0004	5.4 EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 11:59	DMH
Sodium	277	D1	mg/L	26.0	10.0	EPA 200.7 REV	04/05/2019 11:19	04/09/2019 11:26	AKB
Thallium	ND	U	mg/L	0.0020	0.0001	4.4 EPA 200.8 REV	04/05/2019 11:19	04/10/2019 11:59	DMH
Vanadium	ND	D2, U	mg/L	0.040	0.020	5.4 EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH
Zinc	ND	D2, U	mg/L	0.20	0.20	5.4 EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 19:54	DMH

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag Un	ts MRL	MDL	Method	Prepared	Analyzed	Analyst
Total Dissolved Solids	6770	mg	L 50	50	2540 C-1997	04/04/2019 17:06	04/05/2019 16:24	JTL
Total Suspended Solids	336	mg	L 10.0	10.0	2540 D-2011	04/04/2019 16:10	04/04/2019 16:10	ARC

Ion Chromatography Madisonville

Analyte	Result Flag	Units	MRL	MDL Method	Prepared	Analyzed	Analyst

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	4090	D	mg/L	200	128	EPA 300.0 REV 2.1	04/04/2019 09:33	04/04/2019 09:33	CSC
Fluoride	ND	U	mg/L	0.2		EPA 300.0 REV 2.1	04/04/2019 09:17	04/04/2019 09:17	CSC
Sulfate	3040	D	mg/L	100	50.0	EPA 300.0 REV 2.1	04/04/2019 09:17	04/04/2019 09:17	CSC

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

ANALYTICAL RESULTS

Lab Sample ID: **9042044-02**Description: **SW-CULVERT-1 Green Landfill Site**Sample Collection Date Time: 04/02/2019 13:43
Sample Received Date Time: 04/03/2019 12:12

Volatile Organic Compounds

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
1,1,1-Trichloroethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,1,2,2-Tetrachloroethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,1,2-Trichloroethane	ND	U	ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,1-Dichloroethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,1-Dichloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,2,4-Trichlorobenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,2,4-Trimethylbenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,2-Dichlorobenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,2-Dichloroethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,2-Dichloropropane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,3,5-Trimethylbenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,3-Dichlorobenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,3-Dichloropropane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
1,4-Dichlorobenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
2-Butanone	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
2-Chloroethylvinyl Ether	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
2-Hexanone	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
2-Nitropropane	ND	U	ug/L	10	5	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
4-Methyl-2-pentanone	ND	U	ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Acetone	ND	U	ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Acrolein	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Acrylonitrile	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Benzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Bromodichloromethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Bromoform	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Bromomethane	ND	U	ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Carbon disulfide	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Carbon tetrachloride	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Chlorobenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Chloroethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Chloroform	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Chloromethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
cis-1,2-Dichloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
cis-1,3-Dichloropropene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Dibromochloromethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Dichlorodifluoromethane	ND	U	ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Diethyl ether	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Ethylbenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Hexachloroethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Isopropylbenzene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
m,p-Xylene	ND	U	ug/L	5	3	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Methyl tert-Butyl Ether	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Methylene Chloride	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Volatile Organic Compounds

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Nitrobenzene	ND	U	ug/L	10	5	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
o-Xylene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Styrene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Tetrachloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Tetrahydrofuran	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Toluene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
trans-1,2-Dichloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
trans-1,3-Dichloropropene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Trichloroethene	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Trichlorofluoromethane	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Vinyl Acetate	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM
Vinyl chloride	ND	U	ug/L	5	2	SW846-8260 B	04/03/2019 16:52	04/04/2019 16:33	HEM

Surrogate: Bromofluorobenzene 92.4 % 85.1-114.2 04/03/2019 16:52 04/04/2019 16:33 HEM SW846-8260 B

Base Neutral and Acid Extractable Organics

Analyte	Result	Flag	Units	MRL	MDL Method	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
1,2-Dichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
1,2-Diphenylhydrazine	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
1,3-Dichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
1,4-Dichlorobenzene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2,2'-oxybis-(1-Chloropropane)	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2,4,5-Trichlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2,4,6-Trichlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2,4-Dichlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2,4-Dimethylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2,4-Dinitrophenol	ND	V7, L2,	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
0.4 D: 11.4.1	N.D.	U		40	014/0.40.0070.0	0.4/0.0/0.40, 47.00	0.4/0.0/0.40	100
2,4-Dinitrotoluene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2,6-Dinitrotoluene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2-Chloronaphthalene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2-Chlorophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2-Methylnaphthalene	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2-Methylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2-Nitroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
2-Nitrophenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
3,3'-Dichlorobenzidine	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
3-Nitroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4,6-Dinitro-2-methylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4-Bromophenyl-phenylether	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4-Chloro-3-methylphenol	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4-Chloroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4-Chlorophenyl-phenylether	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4-Methylphenol	ND	U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4-Nitroaniline	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
4-Nitrophenol	ND	V7, L2,	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
Acananhthana	ND	U	/1	10	CW046 0270 C	04/02/2010 17:00	04/09/2010 10:00	IDD
Acenaphthene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR
Acenaphthylene	ND	L2, U	ug/L	10	SW846-8270 C	04/03/2019 17:00	04/08/2019 16:06	JDR

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Base Neutral and Acid Extractable Organics

Analyte	Result	Flag	Units	MRL	MDL	Method		Prepared		Analyze	ed	Analyst
alpha-Terpineol	ND	V7, U	ug/L	5		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Anthracene	ND	L2, U	ug/L	15		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Benzidine	ND	U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Benzo(a)anthracene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Benzo(a)pyrene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Benzo(b)fluoranthene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Benzo(g,h,i)perylene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Benzo(k)fluoranthene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Benzoic acid	ND	V7, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Benzyl alcohol	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Bis(2-chloroethoxy)methane	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Bis(2-chloroethyl) ether	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Bis(2-ethylhexyl)phthalate	105	J, L2	ug/L	40		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Butylbenzylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Carbazole	ND	v7, U	ug/L	11		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Chrysene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Dibenzo(a,h)anthracene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Dibenzofuran	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Diethylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Dimethylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
Di-n-butylphthalate	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
Di-n-octylphthalate	ND	L2, V7,	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
		U	-9									
Fluoranthene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Fluorene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Hexachlorobenzene	ND	L2, U	ug/L	13		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Hexachlorobutadiene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Hexachlorocyclopentadiene	ND	L2, V7,	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Hexachloroethane	ND	U L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Indeno(1,2,3-cd)pyrene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
Isophorone	ND	U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
Naphthalene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
Nitrobenzene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
N-Nitrosodimethylamine	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
N-Nitroso-di-n-propylamine	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
N-Nitrosodiphenylamine	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
Pentachlorophenol		V7, L2,	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
·		U	- 3									
Phenanthrene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019		JDR
Phenol	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Pyrene	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Pyridine	ND	L2, U	ug/L	10		SW846-8270 C		04/03/2019 17:00		04/08/2019	16:06	JDR
Surrogate: 2,4,6-Tribromophenol			58.3 %	45-85	5	04/03/2019	17:00	04/08/2019	16:06	JDR	SW846-8	3270 C
Surrogate: 2-Fluorobiphenyl			64.0 %	16-99	9	04/03/2019	17:00	04/08/2019	16:06	JDR	SW846-8	3270 C
Surrogate: 2-Fluorophenol			39.7 %	30-77	7	04/03/2019	17:00	04/08/2019	16:06	JDR	SW846-8	3270 C
Surrogate: Nitrobenzene-d5			59.8 %	25-15	7	04/03/2019	17:00	04/08/2019	16:06	JDR	SW846-8	3270 C
Surrogate: Phenol-d6			46.8 %	21-93	3	04/03/2019	17:00	04/08/2019	16:06	JDR	SW846-8	3270 C
Surrogate: Terphenyl-d14			73.7 %	30-12	5	04/03/2019	17:00	04/08/2019	16:06	JDR	SW846-8	3270 C

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Metals by EPA 200 Series Methods

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Aluminum	ND	U, D2	mg/L	0.40	0.14	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Antimony	ND	U	mg/L	0.005	0.002	EPA 200.8 REV	04/05/2019 11:19	04/10/2019 12:06	DMH
Arsenic	ND	D3, U	mg/L	0.0100	0.0020	5.4 EPA 200.8 REV	04/05/2019 11:19	04/10/2019 20:01	DMH
Barium	0.043		mg/L	0.004	0.001	5.4 EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 12:06	DMH
Beryllium	ND	D2, U	mg/L	0.0200	0.0100	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Boron	ND	D2, U	mg/L	1.00	1.00	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:19	AKB
Cadmium	ND	U	mg/L	0.0010	0.0001	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 12:06	DMH
Calcium	203	D1	mg/L	40.0	13.0	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:23	AKB
Chromium	ND	D2, U	mg/L	0.0200	0.0060	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Cobalt	ND	D2, U	mg/L	0.040	0.040	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Copper	ND	D2, U	mg/L	0.030	0.010	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Iron	ND	D2, U	mg/L	1.20	0.500	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:19	AKB
Lead	ND	U	mg/L	0.002	0.0005	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 12:06	DMH
Lithium	0.11	D2, J	mg/L	0.20	0.05	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Magnesium	37.8	D2	mg/L	2.00	0.900	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:19	AKB
Manganese	0.227	D2	mg/L	0.040	0.020	EPA 200.7 REV 4.4	04/05/2019 11:19	04/08/2019 15:19	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 12:06	DMH
Molybdenum	ND	D2, U	mg/L	0.10	0.02	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Nickel	ND	D2, U	mg/L	0.030	0.010	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Potassium	21.1	D2, L1	mg/L	5.00	2.20	EPA 200.7 REV 4.4	04/05/2019 11:19	04/09/2019 11:32	AKB
Selenium	ND	D2, U	mg/L	0.030	0.010	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Silver	ND	U	mg/L	0.0010	0.0004	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 12:06	DMH
Sodium	49.9	D2	mg/L	2.60	1.00	EPA 200.7 REV 4.4	04/05/2019 11:19	04/09/2019 11:32	AKB
Thallium	0.0001	J	mg/L	0.0020	0.0001	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 12:06	DMH
Vanadium	ND	D2, U	mg/L	0.040	0.020	EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH
Zinc	ND	D2, U	mg/L	0.20	0.20	5.4 EPA 200.8 REV 5.4	04/05/2019 11:19	04/10/2019 20:01	DMH

Conventional Chemistry Analyses Madisonville

Analyte	Result Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Specific Conductance	1630	umhos/cm	1	1	2510 B-2011	04/04/2019 16:31	04/04/2019 16:31	TLB
(Lah)								

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Bromide	ND	U	mg/L	4.0		EPA 300.1	04/15/2019 23:29	04/15/2019 23:29	CSC
Chloride	344	D	mg/L	40.0	25.6	EPA 300.0 REV 2.1	04/04/2019 10:23	04/04/2019 10:23	CSC
Fluoride	ND	M1, U	mg/L	0.2		EPA 300.0 REV 2.1	04/04/2019 10:23	04/04/2019 10:23	CSC
Sulfate	401	D, M1	mg/L	20.0	10.0	EPA 300.0 REV 2.1	04/04/2019 10:23	04/04/2019 10:23	CSC

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Notes for work order 9042044

- Samples collected by MMLI personnel are done so in accordance with procedures set forth in MMLI field services SOPs.
- Results contained in this report are only representative of the samples received.
- MMLI does not provide interpretation of these results unless otherwise stated.
- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.
- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.

Qualifiers	
D	Results reported from dilution.
D1	Sample required dilution due to high concentration of target analyte.
D2	Sample required dilution due to matrix interference.
D3	Sample dilution required due to insufficient sample.
Е	Concentration exceeds calibration range
J	Estimated value.
J5	Concentration estimated. Internal standard recoveries did not meet method acceptance criteria.
L1	The associated blank spike recovery was above method acceptance limits.
L2	The associated blank spike recovery was below method acceptance limits.
M1	Matrix spike recovery was high; the method control sample recovery was acceptable.
M2	Matrix spike recovery was low; the method control sample recovery was acceptable.
МЗ	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
M4	The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable.
S2	Surrogate recovery was below method acceptance limits.
U	Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the laboratory method detection limit in our LIMS system).
V7	CCV was below the method control limit for this analyte; however the average % difference or % drift for all the analytes met method criteria.
Y1	Sample RPD exceeded the method control limit.

MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.

Standard Quallifiers/Acronymns

Υ2

% Rec

	,
MDL	Method Detection Limit
MRL	Minimum Reporting Limit
ND	Not Detected
LCS	Laboratory Control Sample
MS	Matrix Spike
MSD	Matrix Spike Duplicate
DUP	Sample Duplicate

Percent Recovery **RPD** Relative Percent Difference

Greater than Less than

Pikeville, KY Farmersburg, IN 606.432.3104 812.696.5076

Lexington, KY Paducah, KY 859.299.7775 270.444.6547

"Providing Tomorrow's Analytical Capabilities Today"

Certified Analyses included in this Report

Analyte	Certifications
2510 B-2011 in Water	KY Drinking Water Mdv (00030)
Specific Conductance (Lab)	Ter Difficility Water May (00000)
2540 C-1997 in Water	
Total Dissolved Solids	KY Drinking Water Mdv (00030)
2540 D-2011 in Water	
EPA 200.7 REV 4.4 in Water	
Iron	KY Wastewater Mdv (00030)
EPA 200.8 REV 5.4 in Water	
Mercury	KY Drinking Water Mdv (00030)
EPA 300.0 REV 2.1 in Water	
Chloride	KY Drinking Water Mdv (00030)
Fluoride	KY Drinking Water Mdv (00030)
Sulfate	KY Drinking Water Mdv (00030)
EPA 300.1 in Water	
Bromide	KY Drinking Water Mdv (00030)

SW846-8260 B in Water SW846-8270 C in Water

	Sample Acceptance Checklist for Work Order 9042044
Shipped By: Client	Temperature: 0.90° Celcius
Condition	
Check if custody seals were present/intact.	
Check if any containers were received damaged.	
Check if COC was submitted and complete.	abla
Check if COC agreed with sample labels.	
Check if all containers on COC were received	
Check if all samples had appropriate containers.	
Check if all samples had appropriate volumes.	abla
Check if collection methods were recorded on COC.	
Check if flow units were recorded on COC.	
Check if any headspace issues with volatile sample	
Check if holding times were acceptable.	
Check if all containers were preserved properly.	✓

Page 1 of 2

Time

Date

Received By (Signature)

Time

Date

Relinquished By (Signature)

BIG RIVERS ELECTRIC CORP. CHAIN OF CUSTODY RECORD

No. 1 of 2

Sampling Location: (Treen Leaffill

		_			d		103	:	Time (/2:/2-	Тте	Time
1040017	Analysis Requested	Chloride, Sulfate, Fluorde	Totel Metels (see attentual)	Total Metals (See ethubud)		2	-		Date 4-3-19 /	Date	Date
,	Ana	Chlorida, S.	Total Metal	Total Metals	sVoc	227, 2027	1000				
	Type of Preservation	NONE, 4ºC	4N03, 4.c	HNO3, 4ºC	NONE, 4°C	NONE, 4ºC	40C, HCI		aturo	ature	ature)
	Sample Size	500 ml	250 m R	250 mg	IL	500 ml	40 mb		Received By Signature)	Received By (Signature)	Received By (Signature)
	Sampling Method	9	6	9	6	9	9		Time Rec		Time Rec
	Station Description	*							Date 1/3/2019		Date
	Central Lab ID. Sample Number	, KS1	"RSI"	, TSY,	. (RS).	,KSI,	, , , , , , , , , , , , , , , , , , ,				
	Centi Date ID. S Time Nur	4 1 2019 3:45 Pm -		3:45 pm	4/2/2019 3:45 PM	4/2/2019 3:45 pm	412/2019 3;45 PM	wes)	(Signature)	(Signature)	(Signature)
	Plant ID. Sample Number		14	, A	7 60	16 1h	3,	Samplers (Signatures)	Relinquished By (Signature)	Relinquished By (Signature)	Relinquished By (Signature)

6. O

White Copy - Central Lab Yellow Copy - Plant (Final Copy) Pink Copy - Plant Env. Contact Gold Copy - Plant Lab

Page 1 of 2

BIG RIVERS ELECTRIC CORP. CHAIN OF CUSTODY RECORD

Green Lauffill

Sampling Location:

2 of 2 ا. چ

							NOE	WO # 9042044	hh
Plant ID. Sample Number	Date Time	Central Lab ID. Sample Number	Station Description	Sampling Method	ing Sample od Size	Type of Preservation	Analys	Analysis Requested	pi
	6102/2/4			,	*	į	Conductivity	,	
į	1343	(SW-Culvert - 1	9	500 ml	NONE, 4°C	Bomide, Flower	de, Suffete	Chloride
	4/2/2019								
ł	1343	,	[Sw- (u) ver+ - 1	Ç	40 mg	40c, HCl	VoC		
	4/21/2014								
1	1343	f	SW- (Wart-1	ঙ	71	7.6	syoc		
	6101/17/1		"5W-Cduert - 1"						,
١	(343	į.		в	250 mg	HN05 4.C	Total Metals (See attended)	(se attenta	<i>ل</i>)
3	4 2 2019 1343	١	5W-CU/Vert-1"	9	250 ml	14N03, 4°C	Tobl Mehls (see challed)	see ethabud)	
ı									
Samplers (Signatures	gnatures)					· · · · · · · · · · · · · · · · · · ·			
7	Wes ()ich	•••							
Relinquished By (Signature)	By (Signature)		Date (4/3/2019)	Time 1212	Received By Signature)	atore	7	Date 4-3-19	Time 12:12
Relinquished	ign	(Date	Time	Received By (Signature)	фило		Date	Time
Relinquished	Relinquished By (Signature)	(Date	Time	Received By (Signature)	ature)		Date	Time
Relinquished	Relinquished By (Signature)	()	Date	Time	Received By (Signature)	ature)		Date	Time

M

White Copy - Central Lab Yellow Copy - Plant (Final Copy) Pink Copy - Plant Erv. Cortact Gold Copy - Plant Lab

60# 9042044

Green Landfill -Constituent List

Antimony

Aluminum

Arsenic

Barium

Beryllium

Boron

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Lithium

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Sodium

Silver

Thallium

Vanadium

Zinc

My Dink BAEC 4/3/2019

1212

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

Laboratory Job ID: 490-172013-1

Laboratory Sample Delivery Group: Sebree Station

Client Project/Site: Sebree Station

For:

Big Rivers Electric Corporation PO BOX 24 Henderson, Kentucky 42419

Attn: Mark Bertram

Roxanne Cisneros

Authorized for release by: 4/24/2019 3:38:21 PM

Roxanne Cisneros, Senior Project Manager (615)301-5761

roxanne.cisneros@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

10

12

13

Laboratory Job ID: 490-172013-1 SDG: Sebree Station

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	7
QC Association	12
Chronicle	14
Method Summary	15
Certification Summary	16
Chain of Custody	17
Receipt Checklists	23

4

C

8

9

10

12

13

Sample Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree Station

Job ID: 490-172013-1 SDG: Sebree Station

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-172013-1	023	Water	04/11/19 11:25	04/12/19 09:55

Case Narrative

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Job ID: 490-172013-1

Laboratory: Eurofins TestAmerica, Nashville

Narrative

Job Narrative 490-172013-1

Comments

No additional comments.

Receipt

The sample was received on 4/12/2019 9:55 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.6° C.

HPLC/IC

Method(s) 9056A: The following sample was diluted due to the nature of the sample matrix: 023 (490-172013-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Qualifiers

HDI C/IC

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
F1	MS and/or MSD Recovery is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
В	Compound was found in the blank and sample.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NO	

NC	Not Calculated
ND	Not Detected at the re

Not Detected at the reporting limit (or MDL or EDL if shown)

PQL **Practical Quantitation Limit**

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Client: Big Rivers Electric Corporation

Total Dissolved Solids

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Lab Sample ID: 490-172013-1 Client Sample ID: 023

Date Collected: 04/11/19 11:25 **Matrix: Water**

Date Received: 04/12/19 09:55									
Method: 9056A - Anions, Ion (Analyte		aphy Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	864		600	40.0	mg/L			04/16/19 12:06	200
Fluoride	0.0356	J	1.00	0.0100	mg/L			04/15/19 15:10	1
Sulfate	548	В	100	0.600	mg/L			04/16/19 11:33	20
Method: 6010C - Metals (ICP) Analyte		overable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.766		0.0500	0.00959	mg/L		04/16/19 11:19	04/22/19 16:56	1
Method: 6020A - Metals (ICP/M Analyte		Recoverable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.0000690	JB -	0.00200	0.0000213	mg/L		04/16/19 11:17	04/17/19 11:26	1
Arsenic	0.000759	J	0.00500	0.000118	mg/L		04/16/19 11:17	04/17/19 11:26	1
Barium	0.0557	JB	0.200	0.000270	mg/L		04/16/19 11:17	04/17/19 11:26	1
Beryllium	ND		0.00200	0.000102	mg/L		04/16/19 11:17	04/17/19 11:26	1
Boron	0.626	JB	1.00	0.00339	mg/L		04/16/19 11:17	04/17/19 11:26	1
Cadmium	0.000411	J	0.00100	0.000152	mg/L		04/16/19 11:17	04/17/19 11:26	1
Calcium	488		1.00	0.0412	mg/L		04/16/19 11:17	04/17/19 11:26	1
Chromium	0.00281	J	0.00300	0.000339	mg/L		04/16/19 11:17	04/17/19 11:26	1
Cobalt	0.000450	J	0.00500	0.0000218	mg/L		04/16/19 11:17	04/17/19 11:26	1
Lead	0.000140	J	0.00500	0.0000675	mg/L		04/16/19 11:17	04/17/19 11:26	1
Molybdenum	0.0110		0.0100	0.000873	mg/L		04/16/19 11:17	04/17/19 11:26	1
Potassium	69300		1000	147	ug/L		04/16/19 11:17	04/17/19 11:26	1
Selenium	ND		0.0100	0.000348	mg/L		04/16/19 11:17	04/17/19 11:26	1
Thallium	0.0000670	J	0.00100	0.0000360	mg/L		04/16/19 11:17	04/17/19 11:26	1
Method: 7470A - Mercury (CV	AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.000200	0.000100	mg/L		04/18/19 12:23	04/18/19 17:30	1
General Chemistry Analyte	Rocult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.13		0.100	0.100				04/18/19 18:32	1
Temperature	22.8		0.100		Degrees C			04/18/19 18:32	1
remperature	22.0		0.100	0.100	Degrees C			U-7/10/10 10.32	

100

2850

28.0 mg/L

04/15/19 16:11

4/24/2019

Job ID: 490-172013-1

SDG: Sebree Station

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 490-588042/3

Matrix: Water

Analysis Batch: 588042

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		3.00	0.200	mg/L			04/15/19 11:18	1
Fluoride	ND		1.00	0.0100	mg/L			04/15/19 11:18	1
Sulfate	0.2213	J	5.00	0.0300	mg/L			04/15/19 11:18	1

Lab Sample ID: LCS 490-588042/4

Matrix: Water

Analysis Batch: 588042

Client Sample ID: Lab Control Sample Prep Type: Total/NA

7 , 6.6 26 666	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.265		mg/L		93	80 - 120	
Fluoride	1.00	0.9279	J	mg/L		93	80 - 120	
Sulfate	10.0	9.611		mg/L		96	80 - 120	

Lab Sample ID: LCSD 490-588042/5

Matrix: Water

Analysis Batch: 588042

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

, , , , , , , , , , , , , , , , , , , ,	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.373		mg/L		94	80 - 120	1	20
Fluoride	1.00	0.9700	J	mg/L		97	80 - 120	4	20
Sulfate	10.0	9.661		mg/L		96	80 - 120	1	20

Lab Sample ID: 490-172052-B-1 MS

Matrix: Water

Analysis Batch: 588042

Client Sample ID: Matrix Spike Prep Type: Total/NA

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	2.12	J	10.0	14.02		mg/L		119	80 - 120	
Fluoride	0.0156	J F1	1.00	1.417	F1	mg/L		140	80 - 120	
Sulfate	0.601	JBF1	10.0	13.20	F1	mg/L		126	80 - 120	

Analysis Batch: 588042

Lab Sample ID: 490-172052-B-1 MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water** Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	2.12	J	10.0	13.02		mg/L		109	80 - 120	7	20
Fluoride	0.0156	J F1	1.00	1.338	F1	mg/L		132	80 - 120	6	20
Sulfate	0.601	JBF1	10.0	12.63		mg/L		120	80 - 120	4	20

Lab Sample ID: MB 490-588250/3

Matrix: Water

Analysis Batch: 588250

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		3.00	0.200	mg/L			04/16/19 10:10	1
Fluoride	ND		1.00	0.0100	mg/L			04/16/19 10:10	1
Sulfate	0.2110	J	5.00	0.0300	mg/L			04/16/19 10:10	1

Eurofins TestAmerica, Nashville

Page 7 of 23

4/24/2019

Job ID: 490-172013-1

Client: Big Rivers Electric Corporation Project/Site: Sebree Station SDG: Sebree Station

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 490-588250/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 588250

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 10.0 93 80 - 120 9.351 mg/L Fluoride 1.00 0.9880 J mg/L 99 80 - 120 Sulfate 10.0 9.710 mg/L 97 80 - 120

Lab Sample ID: LCSD 490-588250/5 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 588250

Prep Type: Total/NA

Spike LCSD LCSD %Rec. **RPD** Added RPD Limit Analyte Result Qualifier Unit D %Rec Limits Chloride 10.0 9.359 93 80 - 120 20 mg/L 0 Fluoride 1.00 0.9895 J mg/L 99 80 - 120 20 0 Sulfate 10.0 9.756 97 80 - 120 20 mg/L n

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 180-275853/1-A

Matrix: Water

Analysis Batch: 276485

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Lithium $\overline{\mathsf{ND}}$ 0.0500 0.00959 mg/L 04/16/19 11:19 04/22/19 15:56

Lab Sample ID: LCS 180-275853/2-A Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Matrix: Water

Analysis Batch: 276485

Prep Batch: 275853 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Lithium 1.00 1.006 101 80 - 120 mg/L

Lab Sample ID: 490-172010-A-3-C MS Client Sample ID: Matrix Spike **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 276485 Prep Batch: 275853**

Sample Sample Spike MS MS %Rec.

Added Result Qualifier Result Qualifier Limits **Analyte** Unit D %Rec 75 - 125 Lithium 0.0313 J 1.00 1.065 103 mg/L

Lab Sample ID: 490-172010-A-3-D MSD

Matrix: Water

Analysis Batch: 276485

Prep Batch: 275853 MSD MSD Sample Sample Spike %Rec. **RPD Analyte** Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Lithium 0.0313 J 1.00 1.090 mg/L 106 75 - 125 20

Eurofins TestAmerica, Nashville

4/24/2019

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total Recoverable

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Batch: 275853

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-275852/1-A

Matrix: Water

Analysis Batch: 276092

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 275852

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.00002800	J	0.00200	0.0000213	mg/L		04/16/19 11:17	04/17/19 11:54	1
Arsenic	ND		0.00500	0.000118	mg/L		04/16/19 11:17	04/17/19 11:54	1
Barium	0.0007190	J	0.200	0.000270	mg/L		04/16/19 11:17	04/17/19 11:54	1
Beryllium	ND		0.00200	0.000102	mg/L		04/16/19 11:17	04/17/19 11:54	1
Boron	0.02478	J	1.00	0.00339	mg/L		04/16/19 11:17	04/17/19 11:54	1
Cadmium	ND		0.00100	0.000152	mg/L		04/16/19 11:17	04/17/19 11:54	1
Calcium	ND		1.00	0.0412	mg/L		04/16/19 11:17	04/17/19 11:54	1
Chromium	ND		0.00300	0.000339	mg/L		04/16/19 11:17	04/17/19 11:54	1
Cobalt	ND		0.00500	0.0000218	mg/L		04/16/19 11:17	04/17/19 11:54	1
Lead	ND		0.00500	0.0000675	mg/L		04/16/19 11:17	04/17/19 11:54	1
Molybdenum	ND		0.0100	0.000873	mg/L		04/16/19 11:17	04/17/19 11:54	1
Potassium	ND		1000	147	ug/L		04/16/19 11:17	04/17/19 11:54	1
Selenium	ND		0.0100	0.000348	mg/L		04/16/19 11:17	04/17/19 11:54	1
Thallium	ND		0.00100	0.0000360	mg/L		04/16/19 11:17	04/17/19 11:54	1

Lab Sample ID: LCS 180-275852/2-A

Matrix: Water

Analysis Batch: 276092

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 275852

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.500	0.5151		mg/L		103	80 - 120	
Arsenic	0.0400	0.03629		mg/L		91	80 - 120	
Barium	2.00	2.120		mg/L		106	80 - 120	
Beryllium	0.0500	0.05131		mg/L		103	80 - 120	
Boron	1.00	1.006		mg/L		101	80 - 120	
Cadmium	0.0500	0.05263		mg/L		105	80 - 120	
Calcium	50.0	50.60		mg/L		101	80 - 120	
Chromium	0.200	0.2148		mg/L		107	80 - 120	
Cobalt	0.500	0.4481		mg/L		90	80 - 120	
Lead	0.0200	0.02088		mg/L		104	80 - 120	
Molybdenum	1.00	0.9910		mg/L		99	80 - 120	
Potassium	50000	48340		ug/L		97	80 - 120	
Selenium	0.0100	0.01029		mg/L		103	80 - 120	
Thallium	0.0500	0.05310		mg/L		106	80 - 120	

Lab Sample ID: 490-172010-A-1-B MS

Matrix: Water

Analysis Batch: 276092

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable Prep Batch: 275852**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.000119	JB	0.500	0.5292		mg/L		106	75 - 125	
Arsenic	0.00208	J	0.0400	0.03945		mg/L		93	75 - 125	
Barium	0.0216	JB	2.00	2.197		mg/L		109	75 - 125	
Beryllium	ND		0.0500	0.05176		mg/L		104	75 - 125	
Boron	0.271	JB	1.00	1.297		mg/L		103	75 - 125	
Cadmium	ND		0.0500	0.05279		mg/L		106	75 - 125	
Calcium	502		50.0	557.9	4	mg/L		111	75 - 125	
Chromium	0.00360		0.200	0.2213		mg/L		109	75 - 125	
Cobalt	0.00522		0.500	0.4645		mg/L		92	75 - 125	

Eurofins TestAmerica, Nashville

Page 9 of 23 4/24/2019

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 490-172010-A-1-B MS

Matrix: Water

Analysis Batch: 276092

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable**

Prep Batch: 275852

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lead	0.000233	J	0.0200	0.02146		mg/L		106	75 - 125	
Molybdenum	0.00104	J	1.00	1.043		mg/L		104	75 - 125	
Potassium	1660		50000	48970		ug/L		95	75 - 125	
Selenium	ND		0.0100	0.01059		mg/L		106	75 - 125	
Thallium	ND		0.0500	0.05541		mg/L		111	75 - 125	
Lead Molybdenum Potassium Selenium	0.000233 0.00104 1660 ND	J	0.0200 1.00 50000 0.0100	0.02146 1.043 48970 0.01059	Qualifier	mg/L mg/L ug/L mg/L	<u>D</u>	106 104 95	75 - 125 75 - 125 75 - 125 75 - 125	

Lab Sample ID: 490-172010-A-1-C MSD

Matrix: Water

Client Sample ID: Matrix Spike Duplicate Prep Type: Total Recoverable

Analysis Batch: 276092	Sample	Sample	Spike	MSD	MSD				Prep Ba	atch: 27	75852 RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	0.000119	JB	0.500	0.5401		mg/L		108	75 - 125	2	20
Arsenic	0.00208	J	0.0400	0.03954		mg/L		94	75 - 125	0	20
Barium	0.0216	JB	2.00	2.231		mg/L		110	75 - 125	2	20
Beryllium	ND		0.0500	0.05116		mg/L		102	75 - 125	1	20
Boron	0.271	JB	1.00	1.238		mg/L		97	75 - 125	5	20
Cadmium	ND		0.0500	0.05362		mg/L		107	75 - 125	2	20
Calcium	502		50.0	566.9	4	mg/L		129	75 - 125	2	20
Chromium	0.00360		0.200	0.2201		mg/L		108	75 - 125	1	20
Cobalt	0.00522		0.500	0.4630		mg/L		92	75 - 125	0	20
Lead	0.000233	J	0.0200	0.02185		mg/L		108	75 - 125	2	20
Molybdenum	0.00104	J	1.00	1.061		mg/L		106	75 - 125	2	20
Potassium	1660		50000	50080		ug/L		97	75 - 125	2	20
Selenium	ND		0.0100	0.01045		mg/L		105	75 - 125	1	20
Thallium	ND		0.0500	0.05523		mg/L		110	75 - 125	0	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 490-588899/1-A

Matrix: Water

Analysis Batch: 589024

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Batch: 588899

Prep Type: Total/NA

Prep Batch: 588899

Analyte Result Qualifier RL MDL Unit **Prepared** Analyzed Mercury ND 0.000200 0.000100 mg/L 04/18/19 12:23 04/18/19 17:25

Lab Sample ID: LCS 490-588899/2-A

Matrix: Water

Analysis Batch: 589024

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits %Rec 0.00100 0.001058 106 80 - 120 Mercury mg/L

MB MB

Lab Sample ID: 490-172013-1 MS

Client Sample ID: 023 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 589024 **Prep Batch: 588899** MS MS Sample Sample Spike %Rec.

Analyte Added Result Qualifier Result Qualifier Unit D %Rec Limits Mercury ND 0.00100 0.001196 75 - 125 mg/L 120

Eurofins TestAmerica, Nashville

4/24/2019

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: 490-172013-1 MSD Client Sample ID: 023 Prep Type: Total/NA **Matrix: Water** Analysis Batch: 589024 **Prep Batch: 588899** Sample Sample Spike MSD MSD **RPD** %Rec.

%Rec Analyte Result Qualifier Added Result Qualifier Limits RPD Limit Unit Mercury ND 0.00100 0.001191 119 75 - 125 0 20 mg/L

Method: 9040C - pH

Lab Sample ID: LCS 490-589003/1 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 589003

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Analyte 7.00 SU рН 7.040 101 98 - 103

Lab Sample ID: 490-171598-A-10 DU **Client Sample ID: Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 589003

RPD Sample Sample DU DU Analyte Result Qualifier Result Qualifier Unit D **RPD** Limit SU pH 6.94 6.940 20 n Temperature 23.0 23.00 Degrees C 20 O

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 490-586704/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 586704

MB MB

RL **MDL** Unit Analyte Result Qualifier Prepared Analyzed Dil Fac Total Dissolved Solids $\overline{\mathsf{ND}}$ 2.50 0.700 mg/L 04/15/19 16:11

Lab Sample ID: LCS 490-586704/2 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 586704

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits **Total Dissolved Solids** 10.0 9.800 mg/L 90 - 110

Lab Sample ID: 490-172007-E-1 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 586704

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit Total Dissolved Solids 3370 3384 mg/L 0.4 20

Lab Sample ID: 490-172013-1 DU Client Sample ID: 023 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 586704

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit D **RPD** Limit **Total Dissolved Solids** 2850 2772 mg/L

Eurofins TestAmerica, Nashville

QC Association Summary

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

HPLC/IC

Analysis Batch: 588042

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total/NA	Water	9056A	
MB 490-588042/3	Method Blank	Total/NA	Water	9056A	
LCS 490-588042/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 490-588042/5	Lab Control Sample Dup	Total/NA	Water	9056A	
490-172052-B-1 MS	Matrix Spike	Total/NA	Water	9056A	
490-172052-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	9056A	

Analysis Batch: 588250

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total/NA	Water	9056A	
490-172013-1	023	Total/NA	Water	9056A	
MB 490-588250/3	Method Blank	Total/NA	Water	9056A	
LCS 490-588250/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 490-588250/5	Lab Control Sample Dup	Total/NA	Water	9056A	

Metals

Prep Batch: 275852

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total Recoverable	Water	3005A	_
MB 180-275852/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-275852/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
490-172010-A-1-B MS	Matrix Spike	Total Recoverable	Water	3005A	
490-172010-A-1-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Prep Batch: 275853

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total Recoverable	Water	3005A	
MB 180-275853/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-275853/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
490-172010-A-3-C MS	Matrix Spike	Total Recoverable	Water	3005A	
490-172010-A-3-D MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Analysis Batch: 276092

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total Recoverable	Water	6020A	275852
MB 180-275852/1-A	Method Blank	Total Recoverable	Water	6020A	275852
LCS 180-275852/2-A	Lab Control Sample	Total Recoverable	Water	6020A	275852
490-172010-A-1-B MS	Matrix Spike	Total Recoverable	Water	6020A	275852
490-172010-A-1-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	6020A	275852

Analysis Batch: 276485

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total Recoverable	Water	6010C	275853
MB 180-275853/1-A	Method Blank	Total Recoverable	Water	6010C	275853
LCS 180-275853/2-A	Lab Control Sample	Total Recoverable	Water	6010C	275853
490-172010-A-3-C MS	Matrix Spike	Total Recoverable	Water	6010C	275853
490-172010-A-3-D MSD	Matrix Spike Duplicate	Total Recoverable	Water	6010C	275853

Eurofins TestAmerica, Nashville

4/24/2019

Page 12 of 23

QC Association Summary

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Metals

Prep Batch: 588899

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total/NA	Water	7470A	
MB 490-588899/1-A	Method Blank	Total/NA	Water	7470A	
LCS 490-588899/2-A	Lab Control Sample	Total/NA	Water	7470A	
490-172013-1 MS	023	Total/NA	Water	7470A	
490-172013-1 MSD	023	Total/NA	Water	7470A	

Analysis Batch: 589024

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total/NA	Water	7470A	588899
MB 490-588899/1-A	Method Blank	Total/NA	Water	7470A	588899
LCS 490-588899/2-A	Lab Control Sample	Total/NA	Water	7470A	588899
490-172013-1 MS	023	Total/NA	Water	7470A	588899
490-172013-1 MSD	023	Total/NA	Water	7470A	588899

General Chemistry

Analysis Batch: 586704

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total/NA	Water	SM 2540C	
MB 490-586704/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 490-586704/2	Lab Control Sample	Total/NA	Water	SM 2540C	
490-172007-E-1 DU	Duplicate	Total/NA	Water	SM 2540C	
490-172013-1 DU	023	Total/NA	Water	SM 2540C	

Analysis Batch: 589003

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172013-1	023	Total/NA	Water	9040C	
LCS 490-589003/1	Lab Control Sample	Total/NA	Water	9040C	
490-171598-A-10 DU	Duplicate	Total/NA	Water	9040C	

Lab Chronicle

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Client Sample ID: 023 Lab Sample ID: 490-172013-1

Matrix: Water

Date Collected: 04/11/19 11:25 Date Received: 04/12/19 09:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			588042	04/15/19 15:10	S00	TAL NSH
Total/NA	Analysis	9056A		20			588250	04/16/19 11:33	S00	TAL NSH
Total/NA	Analysis	9056A		200			588250	04/16/19 12:06	SOO	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	275853	04/16/19 11:19	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			276485	04/22/19 16:56	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	275852	04/16/19 11:17	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1			276092	04/17/19 11:26	RSK	TAL PIT
Total/NA	Prep	7470A			30 mL	30 mL	588899	04/18/19 12:23	CSL	TAL NSH
Total/NA	Analysis	7470A		1			589024	04/18/19 17:30	EHS	TAL NSH
Total/NA	Analysis	9040C		1			589003	04/18/19 18:32	MXX	TAL NSH
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	586704	04/15/19 16:11	BMC	TAL NSH

Laboratory References:

TAL NSH = Eurofins TestAmerica, Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Method Summary

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	TAL NSH
6010C	Metals (ICP)	SW846	TAL PIT
6020A	Metals (ICP/MS)	SW846	TAL PIT
7470A	Mercury (CVAA)	SW846	TAL NSH
9040C	pH	SW846	TAL NSH
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL NSH
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT
7470A	Preparation, Mercury	SW846	TAL NSH

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater" SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = Eurofins TestAmerica, Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Accreditation/Certification Summary

Client: Big Rivers Electric Corporation

Job ID: 490-172013-1 Project/Site: Sebree Station SDG: Sebree Station

Laboratory: Eurofins TestAmerica, Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	EPA Region	Identification	Number	Expiration Date
Kentucky (UST)		State Program	4	19		06-30-19
The following analytes	are included in	this report, but the laborate	ory is not certified by	the governing aut	nority. This	list may include analytes for which
the agency does not o	offer certification					
Analysis Method	Prep Meth	od Matrix	Ana	lyte		
9040C		Water	pH			
9040C		Water	Tem	perature		
9056A		Water	Chlo	oride		
9056A		Water	Fluo	ride		
9056A		Water	Sulfa	ate		
SM 2540C		Water	T-4-	I Dissolved Solids		

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State Program	6	88-0690	06-27-19
California	State Program	9	2891	04-30-19 *
Connecticut	State Program	1	PH-0688	09-30-20
Florida	NELAP	4	E871008	06-30-19
Illinois	NELAP	5	200005	06-30-19
Kansas	NELAP	7	E-10350	01-31-20
Louisiana	NELAP	6	04041	06-30-19
Nevada	State Program	9	PA00164	07-31-19
New Hampshire	NELAP	1	2030	04-04-20
New Jersey	NELAP	2	PA005	06-30-19
New York	NELAP	2	11182	03-31-20
North Carolina (WW/SW)	State Program	4	434	12-31-19
Oregon	NELAP	10	PA-2151	02-06-20
Pennsylvania	NELAP	3	02-00416	04-30-19
South Carolina	State Program	4	89014	04-30-19 *
Texas	NELAP	6	T104704528-15-2	03-31-20
US Fish & Wildlife	Federal		LE94312A-1	07-31-19
USDA	Federal		P330-16-00211	06-26-19
Utah	NELAP	8	PA001462015-4	05-31-19 *
Virginia	NELAP	3	460189	09-14-19
West Virginia DEP	State Program	3	142	01-31-20
Wisconsin	State Program	5	998027800	08-31-19

Eurofins TestAmerica, Nashville

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Nashville, TN

COOLER RECEIPT FORM

Cooler Received/Opened On 4/12/2019 @ 0955	
Time Samples Removed From Cooler 4:55 Time Samples Placed In Storage 4:55	(2 Hour Window)
1. Tracking # 1625 (last 4 digits, FedEx) Courier: FedEx	
IR Gun ID_ 17960357 pH Strip Lot /// Chlorine Strip Lot ///	
2. Temperature of rep. sample or temp blank when opened: 0 1 Degrees Celsius	_
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. (NA)
4. Were custody seals on outside of cooler?	(YES).NONA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YES NO NA
6. Were custody papers inside cooler?	YESNONA
I certify that I opened the cooler and answered questions 1-6 (Intial)	
7. Were custody seals on containers: YES (NG) and intact	YESNO. (NA)
Were these signed and dated correctly?	YESNO(NA)
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	er Other None
9. Cooling process: (ce lce-pack lce (direct contact) Dry ice	Other None
16. Did all containers arrive in good condition (unbroken)?	YE9NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	(ESNONA
12. Did all container labels and tags agree with custody papers?	ESINONA
13a. Were VOA vials received?	YES(NO).NA
b. Was there any observable headspace present in any VOA vial?	YESNO(NA)
	_
Larger than this.	
14. Was there a Trip Blank in this cooler? YESNO.NA If multiple coolers, sequence	e#
I certify that I unloaded the cooler and answered questions 7-14 (intial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	(ESNO,NA
16. Was residual chlorine present?	YESNO.
certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	ACC
17. Were custody papers properly filled out (link, signed, etc)?	YESNONA
18. Did you sign the custody papers in the appropriate place?	YESNONA
19. Were correct containers used for the analysis requested?	YES NONA
20. Was sufficient amount of sample sent in each container?	YESNONA
I certify that I entered this project into LIMS and answered guestions 17-20 (initial)	
I certify that I attached a label with the unique LIMS number to each container (intial)	<u> </u>
21. Were there Non-Conformance issues at login? YES. (NO) Was a NCM generated? YES (NO).	#

299400

Testamenco

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.

4/11/2019

Constituent List:

40 C.F.R. 257 Appendix III

Boron Calcium Fluoride рΗ

Suifate

Total Dissolved Solids (TDS)

40 C.F.R. 257 Appendix IV

Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Fluoride Lead Lithium Mercury Molybdenum Selenium Thallium

Radium 226 & 228 combined

They Dink BREC 4/11/2019

1605

Loc: 490 172013

£x Saturday Delivery

N 10:RNCG (615) 726-0177 NG MGR NS TESTAMERICA OSTER (RETGATON

STATES US

PPING/RECEIVING TAMERICA LABORATORIES, INC. ALPHA DRIVE C PARK SBURGH PA 15238

20 8844 2647

SATURDAY 12:00P PRIORITY OVERNIGHT

Chain of Custody Record

Scurofins Engloweri Tusting Tusting

Eurofins TestAmerica, Nashville

(He I torring Cub Course the													• •		•		. :
CHEST HAIGHHERICH SOME CONTINUED CONTINUED	Samples			Lan Ptal: Cisneros, Roxanne	Roxann	بو			٠	artier Tra	Caeler Tracking Nigst	 (8):		COC No. 490-88697.1	1,2		
	Phone:			E-Mail roxanne cisneros@lestamericaloc.com	sneros(@testa!	merical	ne.com		State of Organ Kentucky	rigin. V			Page 1 of 1	**		
Compary. TestAmerica Laboratories, Inc.				Accre	Mations I Progra	Accrediators Required (See note) State Program - Kentucky (UST)	(See no Hucky	(UST)	:				٠.	Job # 490, 172013-1	13.1		
Address: 301 Aphia Drive, RIDC Perk, 47,	Due Date Requested: 4/24/2019						Ą	Analysis Requested	Regu	ested				Preservation Codes.	on Codos		
CAY Pittsburgh	TAY Requested (days).			8880 8880 	1999/51	-		┡		-	_	-	20992	A HCL	٠	M - Hexane N - None O Asklada	
State, Zist PA, 15238				((),\((),\(),\()	vancor:	,==.,,		·:-						D-Nitic Acid		P Nazbas	. * *
Prene: 472.963-7058(Tel) 412.963-2466(Fax)	PO #:			(0	Secondario								Kennesse.	G-Andle	2	R - No2S2O3 S - H2SO4 T - TSP Dividerabledista	slandes.
W. Brasil	WO K		***************************************			elstolf.							1001100000		; }	N-Acetore V-MCAA	
Propert Name: Sebree Station 49	Power #:				muiM	SW/d:								K-EDTA	表 放。	W-pH4.5 Z-otter (specify)	: <u>(2</u> 4)
Sie. Big Rivers COR	SSOW#,				100	al looi							1010-60	Other			
		-S	Sample Matrix	p.0.40	w) VS	N) VS				···········				1200			
	o)	Sample (C	Type (M-445)	ilia bi	001300	BOE/VO								ON IS			
Sample Identification - Client ID (Lab ID)	Sample Date		Ē	9j3	÷09	203									cial Instr	Special Instructions/Note:	ole:
		Y	Preservation Code	$\stackrel{\diamond}{\otimes}$											A		
923 (490-172013-1)	4/11/19	11.25 Eastern	Water		×	×							5500	Metals - rus	tonce, up	Metals - run once, upioad logestw	-
							ļ						1551,00	Legreso			
								<u> </u>				-:	1,000				
						ļ	-	1		1]	
								<u> </u>									
										· -						 	
							ļ	<u> </u>		• } :	2	5	L BL	Tool of Chair of Custody			
												· · · · · · · · · · · · · · · · · · ·	. <u>(886)</u> 	- Aces			
								<u> </u>						- ·			

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return to Client Disposal By Lab Achive For Mant Possible Hazard Identification

Primary Deliyerable Rank: 2

Emply Kil Kelinguished by:	Date	Time	Co postpared	heteod of Shipmen)	
Redemigration by A	5191 035-21-tr	Company	Recoved by ACAST	Date Time 7	1 Company
Rokapulsted by	SateCiño	Company	Reserved by	Одлетино:	Spinpany
જિસ્તાવામાં કોમ લા છે.	<i>िकस्त्र</i> ी।शावः	Codpany	Received by:	Ояветиче	Company
Custody Seals Infact. Custody Seaf No.			Coaser Temperature(s) 'C, and Other Remarks.		
					Ver.01/16/2019

Ver: 01/36/2019

Chain of Custody Record

Eurofins TestAmerica, Nashville

2960 Foster Creighton Drive Nashville, TN 37204

🔆 curofins | Environment Testing

3 TextAmerica

1 - TSP Occeptable Special Instructions/Note: (Appads) zago - 2 Metals - run once, upload togethan P - Na2045 O - Na2005 R - Na25203 S - 82504 V - MCAA W - 5H 4-5 O - AsNaOZ U - Acetone Preservation Codes 14 - Astorbic Acid Page 1 of 1 John: 490-172013-1 COC No: 430-88697.1 A - HCL B - NaOH C - Zn Aretate D - Natic Acid E - NaESO4 F - MeOH G - Amehica 1. Ice J. Di Water K. EDTA L. EDA Total Number of containers Janies Tracking Mots State of Origin. Kentucky Analysis Requested Lab PM Cisreros. Roxanne E-Mai: Ioxanne.cisneros@leslamericainc.com Accedations Required (See note). State Program - Kentucky (UST) × SINTOW SWIED) (COM) ASDREADED × W01487 (GOW) V500E/20109 (ON 10 eay) OSMISM mitohag Preservation Code. Matrix Water (Сясомр. G=grab) Sample Type Sample 11:25 Eastern Time (AT Requested (days) Due Date Requested: 4/24/2019 Sample Date 4/11/19 Project #. 49010431 SSOWE Physics: 34.O.M Client Information (Sub Contract Lab) Phone (615) 726-0177 Fax (615) 726-3404 Sample Identification - Client ID (Lab ID) 412-963-7058(Tel) 412-963-2468(Fax) RIDC Park 'estAmerica Laboratories, Inc 323 (490-172013-1) Ckent Contact: Shipping:Receiving 301 Alpha Drive, Big Rivers CCR Sebree Station State, 2tr. P.A., 15236 prect Name; Pittsburgh

Vote Since blustalary accidinates an electronia Laboratorias. Inc. places the ownership of meltiod, analyte & aicreptation upson complainment abcordance. This sample stranges that candidation states that candidation states that candidation states that any sides states that a state of Origin states that the states that the states of custosy altesting to said completes to the TestAmenta tabustories, the analysis of the states of custosy altesting to said completes, for abborders immediately. If all requested accurates the current to Calar, refund the signed Chain of Custosy altesting to said compicance to TestAmenta tabustories, for. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification

490-172013 Chain of Custody

			-			
Unconfirmed	-			Frehm to Client Disposal By Lab	L"-Archive For	Moriths
Deliverable Requested:	Deliverable Requested: 1, It, II, IV, Other (specify)	Primary Deliverable Rank: 2	or Spirit	Special Instructions/OC Requirements:		
Empty Kit Relinquished by	, (c)	Date:	Time:	Method of Supraent		
Reimquished by		Date Tury: 4-12-14/2 / 1815	Company	Roceined by AACACO	Date/finder / - / So	J decomoson - J decomoson
Retinguitated by:		Date/Tithe:	Company	Reserved ty	Dany Tine:	'yaay
Relenguished by:		Date Time:	Conspany	Received by:	Date/Time:	Z0:80851y
Custody Seals Intact. Custody Seal No.	Custady Seal No.			Coder Tenperature(s) 12 and Other formatiks.		

Client: Big Rivers Electric Corporation

Job Number: 490-172013-1 SDG Number: Sebree Station

Login Number: 172013 List Source: Eurofins TestAmerica, Pittsburgh List Number: 2

List Creation: 04/13/19 01:27 PM

Creator: Watson, Debbie

Question	n	Answer	Comment
Radioact meter.	ivity wasn't checked or is = background as measured by a survey</td <td>N/A</td> <td></td>	N/A	
The cool	er's custody seal, if present, is intact.	True	
Sample of	custody seals, if present, are intact.	True	
The coole tampered	er or samples do not appear to have been compromised or d with.	True	
Samples	were received on ice.	True	
Cooler To	emperature is acceptable.	True	
Cooler To	emperature is recorded.	True	
COC is p	present.	True	
COC is fi	illed out in ink and legible.	True	
COC is fi	illed out with all pertinent information.	True	
Is the Fie	eld Sampler's name present on COC?	False	
There are	e no discrepancies between the containers received and the COC.	True	
Samples HTs)	are received within Holding Time (excluding tests with immediate	True	
Sample of	containers have legible labels.	True	
Containe	ers are not broken or leaking.	True	
Sample of	collection date/times are provided.	True	
Appropri	ate sample containers are used.	True	
Sample b	pottles are completely filled.	True	
Sample F	Preservation Verified.	True	
There is : MS/MSD	sufficient vol. for all requested analyses, incl. any requested	True	
Containe <6mm (1	ers requiring zero headspace have no headspace or bubble is /4").	True	
Multiphas	sic samples are not present.	True	
Samples	do not require splitting or compositing.	True	
Residual	Chlorine Checked.	N/A	

Appendix D

Landfill Perimeter Seeps Laboratory Analytical Results

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-155661-1

Client Project/Site: Sebree-Green Landfill

For:

Big Rivers Electric Corporation PO BOX 24 Henderson, Kentucky 42419

Attn: Greg Dick

Roxanne Cisneros

Authorized for release by: 8/21/2018 10:53:38 AM

Roxanne Cisneros, Senior Project Manager (615)301-5761

roxanne.cisneros@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	7
Client Sample Results	8
QC Sample Results	32
QC Association	43
Chronicle	49
Method Summary	56
Certification Summary	57
Chain of Custody	59
Receipt Checklists	66
Tracer Carrier Summary	67

3

4

6

8

9

10

12

13

Sample Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Lab Sample ID	Client Sample ID	Matrix	Collected Receive
490-155661-1	River Seep-08-071318	Water	07/13/18 07:50 07/14/18 1
490-155661-2	River Seep-12-071318	Water	07/13/18 09:15 07/14/18 1
490-155661-3	River Seep-16-071318	Water	07/13/18 11:00 07/14/18 1
490-155661-4	River Seep-14-071318	Water	07/13/18 10:10 07/14/18 1
490-155661-5	River Seep-09-071218	Water	07/12/18 13:50 07/14/18 1
490-155661-6	River Seep-07-071218	Water	07/12/18 14:50 07/14/18 1
490-155661-7	River Seep-05-071218	Water	07/12/18 14:25 07/14/18 1
490-155661-8	Landfill Seep-01-071318	Water	07/13/18 12:20 07/14/18 1
490-155661-9	Landfill Seep-01-071318-DUP	Water	07/13/18 12:20 07/14/18 1
490-155661-10	Landfill Seep-02-071318	Water	07/13/18 13:10 07/14/18 1
490-155661-11	Landfill Seep-03-071318	Water	07/13/18 13:30 07/14/18 1
490-155661-12	Pond-012-071318	Water	07/13/18 13:50 07/14/18 1
490-155661-13	Landfill Seep-04-071318	Water	07/13/18 14:15 07/14/18 1

_

4

5

7

Ö

9

10

12

13

Case Narrative

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Job ID: 490-155661-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-155661-1

Comments

Revised Report 8/10/2018 to add Potassium per client request.

Receipt

The samples were received on 7/14/2018 10:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 1.0° C, 3.1° C and 5.7° C.

HPLC/IC

Method(s) 9056A: The method blank for analytical batch 490-531256 contained Sulfate above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

Method(s) 9056A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 490-531256 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 9056A: The method blank for analytical batch 490-531256 contained Fluoride and Sulfate above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

Method(s) 9056A: The following samples were diluted due to the nature of the sample matrix: River Seep-08-071318 (490-155661-1), River Seep-14-071318 (490-155661-4), River Seep-09-071218 (490-155661-5), River Seep-07-071218 (490-155661-6), River Seep-05-071218 (490-155661-7), Landfill Seep-01-071318 (490-155661-8), Landfill Seep-01-071318 (490-155661-9), Landfill Seep-02-071318 (490-155661-10), Landfill Seep-03-071318 (490-155661-11), Pond-012-071318 (490-155661-12) and Landfill Seep-04-071318 (490-155661-13). Elevated reporting limits (RLs) are provided.

Method(s) 9056A: The method blank as well as the continuing calibration blanks for analytical batch 490-531368 contained sulfate above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6020A: The following samples were diluted to bring the concentration of calcium within the linear range: Landfill Seep-03-071318 (490-155661-11) and Landfill Seep-04-071318 (490-155661-13). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Narrative

Job Narrative 490-155661-2

Comments

No additional comments.

Receipt

The samples were received on 7/14/2018 10:50 AM; the samples arrived in good condition, properly preserved and, where required, on

TestAmerica Nashville 8/21/2018

K

Job ID: 490-155661-1 (Continued)

Laboratory: TestAmerica Nashville (Continued)

ice. The temperatures of the 3 coolers at receipt time were 1.0° C, 3.1° C and 5.7° C.

RAD

Method(s) 904.0: Ra-228 Prep Batch 160-376750: The following sample did not meet the requested limit (RL) due to the reduced sample volume attributed to the presence of matrix interferences (see prep NCM 160-144167). The sample was brown, opaque and contained heavy amounts of sediment. The data have been reported with this narrative. River Seep-05-071218 (490-155661-7)

Method(s) 904.0: Radium-228 Prep Batch 260-377705: The detection goal was not met for the following samples due to the presence of matrix interferences: Landfill Seep-03-071318 (490-155661-11). The samples were reduced due to potential matrix interferences. Sample 440-216184-1 was brown, opaque and contained floating debris. Sample 490-155661-11's crystallized precipitation interferes with the method's chemistry. Analytical results are reported with the detection limit achieved.

Method(s) PrecSep 0: Radium 228 Prep Batch 160-376750:

Sample aliquot 490-155661-2 reduced due to potential matrix interference. Sample was yellow, murky, and contained heavy amounts of sediment.

Sample aliquots 490-155661-5 and 490-155661-7 reduced due to potential matrix interference. Samples were brown, opaque, and contained heavy amounts of sediment.

Sample aliquot 490-155661-8 reduced due to potential matrix interference. Samples were yellow, opaque, and had a strong odor similar to that of sulfur.

River Seep-12-071318 (490-155661-2), River Seep-09-071218 (490-155661-5), River Seep-05-071218 (490-155661-7) and Landfill Seep-01-071318 (490-155661-8)

Method(s) PrecSep_0: Radium 228 Prep Batch 160-376750: Insufficient sample volume was available to perform a sample duplicate (DUP) for the following samples: River Seep-08-071318 (490-155661-1), River Seep-12-071318 (490-155661-2), River Seep-09-071218 (490-155661-5), River Seep-07-071218 (490-155661-6), River Seep-05-071218 (490-155661-7) and Landfill Seep-01-071318 (490-155661-8). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method(s) PrecSep_0: Radium 228 Prep Batch 160-376805:

Sample aliquots 490-155661-9, 490-155661-12, and 490-155661-13 reduced due to potential matrix interference. Samples were yellow, opaque, and had strong odors similar to that of sulfur.

Sample aliquot 490-155661-10 reduced due to potential matrix interference. Sample was brown, opaque, and contained heavy sediment levels.

Sample aliquot 160-29589-1 reduced due to potential matrix interference. Samples were brown, murky, and contained floating debris.

Landfill Seep-01-071318-DUP (490-155661-9), Landfill Seep-02-071318 (490-155661-10), Pond-012-071318 (490-155661-12) and Landfill Seep-04-071318 (490-155661-13)

Method(s) PrecSep_0: Radium 228 Prep Batch 160-377705:

Sample aliquot reduced due to matrix interference during the initial preparation of the sample. Crystallized precipitation interferes with chemistry of the method. Landfill Seep-03-071318 (490-155661-11)

Method(s) PrecSep-21: Radium 226 Prep Batch 160-376745: Insufficient sample volume was available to perform a sample duplicate (DUP) for the following samples: River Seep-08-071318 (490-155661-1), River Seep-12-071318 (490-155661-2), River Seep-09-071218 (490-155661-5), River Seep-07-071218 (490-155661-6), River Seep-05-071218 (490-155661-7) and Landfill Seep-01-071318 (490-155661-8). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method(s) PrecSep-21: Radium 226 Prep Batch 160-376745:

4

O

7

8

10

13

Case Narrative

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Job ID: 490-155661-1 (Continued)

Laboratory: TestAmerica Nashville (Continued)

Sample aliquot 490-155661-2 reduced due to potential matrix interference. Sample was yellow, murky, and contained heavy amounts of sediment.

Sample aliquots 490-155661-5 and 490-155661-7 reduced due to potential matrix interference. Samples were brown, opaque, and contained heavy amounts of sediment.

Sample aliquot 490-155661-8 reduced due to potential matrix interference. Samples were yellow, opaque, and had a strong odor similar to that of sulfur.

Method(s) PrecSep-21: Radium 226 Prep Batch 160-376796:

Sample aliquots 490-155661-9, 490-155661-12, and 490-155661-13 reduced due to potential matrix interference. Samples were yellow, opaque, and had strong odors similar to that of sulfur.

Sample aliquots 490-155661-10 and 160-29566-2 reduced due to potential matrix interference. Samples were brown, opaque, and contained heavy sediment levels.

Sample aliquot 160-29589-1 reduced due to potential matrix interference. Samples were brown, murky, and contained floating debris.

Landfill Seep-01-071318-DUP (490-155661-9), Landfill Seep-02-071318 (490-155661-10), Pond-012-071318 (490-155661-12) and Landfill Seep-04-071318 (490-155661-13)

Method(s) PrecSep-21: Radium 226 Prep Batch 160-377701:

Sample aliquot reduced due to matrix interference during the initial preparation of the sample. Crystallized precipitation interferes with chemistry of the method.

Landfill Seep-03-071318 (490-155661-11)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Δ

6

7

8

10

12

13

Definitions/Glossary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Qualifiers

HPLC/IC

Qualitier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
F1	MS and/or MSD Recovery is outside acceptance limits.

Metals

Qualifier

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Rad	
Qualifier	Qualifier Description

U	Result is less than the sample detection limit.
G	The Sample MDC is greater than the requested RL.

Qualifier Description

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

ML Minimum Level (Dioxin) NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown) PQL **Practical Quantitation Limit**

QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

RLReporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Nashville

8/21/2018

Page 7 of 68

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 07:50

Date Received: 07/14/18 10:50

Client Sample ID: River Seep-08-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	2040		300	20.0	mg/L			07/25/18 21:00	10
Fluoride	0.0915	J	1.00	0.0100	mg/L			07/24/18 16:22	
Sulfate	1440	В	250	1.50	mg/L			07/25/18 20:45	5
Method: 6010C - Metals (I	CP) - Total Reco	overable							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Lithium	1.80		0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:24	
Method: 6020A - Metals (I	CP/MS) - Total F	Recovera	ble						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.00141	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:35	
Arsenic	0.000404	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:35	
Barium	0.0443	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 19:35	
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:35	
Boron	0.510	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:35	
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:35	
Calcium	801		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:35	
Chromium	0.000560	J	0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 19:35	
Cobalt	0.000691	j	0.00500	0.0000218	•		07/18/18 12:44	07/28/18 19:35	
Lead	0.000769		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 19:35	
Magnesium	291		1.00	0.0153	_			07/28/18 19:35	
Molybdenum	0.00296	J	0.0100	0.000873	-		07/18/18 12:44	07/28/18 19:35	
Potassium	125		1.00	0.0596				07/28/18 19:35	
Selenium	ND		0.0100	0.000348	-			07/28/18 19:35	
Sodium	274		1.00	0.155	•			07/28/18 19:35	
Thallium	ND		0.00100	0.0000360				07/28/18 19:35	
					-				
Method: EPA 7470A - Mer Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND ND		0.200	0.0653	ug/L		07/18/18 15:06		
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
ρΗ	8.16		0.100	0.100	SU			07/24/18 17:55	
Temperature	21.8		0.100	0.100	Degrees C	;		07/24/18 17:55	
Alkalinity	174		10.0	5.00	mg/L			07/24/18 20:55	
Total Dissolved Solids	5310		40.0	28.0	mg/L			07/18/18 08:50	
Method: 903.0 - Radium-2	26 (GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Analyte Res	ult Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226 0.3	32	0.108	0.112	1.00 0.0	0893 pCi/L		07/19/18 15:20	08/10/18 16:41	
Carrier %Yi	eld Qualifier	Limits					Prepared	Analyzed	Dil Fa

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-08-071318

Lab Sample ID: 490-155661-1

Date Collected: 07/13/18 07:50 Date Received: 07/14/18 10:50

226 + 228

Method: 904.0 -		(- /	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.983		0.295	0.309	1.00	0.370	pCi/L	07/19/18 15:49	08/02/18 09:20	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.3		40 - 110					07/19/18 15:49	08/02/18 09:20	1
Y Carrier	90.5		40 - 110					07/19/18 15:49	08/02/18 09:20	1

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radiur	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.31		0.314	0.329	5.00	0.370	pCi/L	_	08/21/18 03:20	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 09:15

Date Received: 07/14/18 10:50

Client Sample ID: River Seep-12-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	32.7		3.00	0.200	mg/L			07/24/18 16:37	
Fluoride	0.0803	J	1.00	0.0100	mg/L			07/24/18 16:37	
Sulfate	16.1	В	5.00	0.0300	mg/L			07/24/18 16:37	
Method: 6010C - Metals (IC	CP) - Total Rec	overable							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Lithium	ND	-	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:29	
Method: 6020A - Metals (IC	CP/MS) - Total I	Recovera	ble						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.000499	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:40	
Arsenic	0.00467	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:40	
3arium	0.0757	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 19:40	
Beryllium	0.000145	J	0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:40	
Boron	0.0379	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:40	
Cadmium	0.000183	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:40	
Calcium	21.1		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:40	
Chromium	0.00200	J	0.00300	0.000339	-			07/28/18 19:40	
Cobalt	0.00581		0.00500	0.0000218	ū			07/28/18 19:40	
.ead	0.00221		0.00500	0.0000675	ū			07/28/18 19:40	
lagnesium	5.20	3	1.00	0.0153	-			07/28/18 19:40	
Molybdenum	0.000948		0.0100	0.000873	-			07/28/18 19:40	
			1.00					07/28/18 19:40	
Potassium	2.37 ND		0.0100	0.0596 0.000348	-			07/28/18 19:40	
Selenium					Ū				
Sodium	5.52		1.00	0.155				07/28/18 19:40	
Γhallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 19:40	
Method: EPA 7470A - Merc	• • •	Ovelifier	RL	MDI	Unit	_	Duamanad	Amalumad	Dile
Analyte		Qualifier				_ D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:05	
General Chemistry Analyte	Pocult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzod	Dil Fa
oH	8.00	- Guainiei	0.100	0.100				Analyzed 07/24/18 17:55	
	8.00 21.7		0.100		Degrees C			07/24/18 17:55	
Temperature	21.7 38.2		10.0		mg/L			07/24/18 17:55	
Alkalinity									
Total Dissolved Solids	157		10.0	7.00	mg/L			07/18/18 08:50	
Method: 903.0 - Radium-22	26 (GFPC)	Count	Total						
		Count							
Amalusta		Uncert.	Uncert.	ы .	MDC Use		Duence	A mal:!	D: F
	ult Qualifier	(2σ+/-)	(2σ+/-)		MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226 0.54	42	0.153	0.161	1.00 0	.105 pCi/L		07/19/18 15:20	08/10/18 16:41	
	ld Qualifier	Limits					Prepared	Analyzed	Dil Fa
Ba Carrier 92	2.9	40 - 110						08/10/18 16:41	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: River Seep-12-071318

Lab Sample ID: 490-155661-2 Date Collected: 07/13/18 09:15 Matrix: Water

Date Received: 07/14/18 10:50

adium-228	(GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.629		0.351	0.356	1.00	0.527	pCi/L	07/19/18 15:49	08/02/18 09:21	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
92.9		40 - 110					07/19/18 15:49	08/02/18 09:21	1
85.6		40 - 110					07/19/18 15:49	08/02/18 09:21	1
	Result	%Yield Qualifier	Count Uncert.	Count Uncert. Uncert.	Count Uncert. Uncert.	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared 0.629 0.351 0.356 1.00 0.527 pCi/L 07/19/18 15:49	Count Uncert. Uncert. Variety Variety

Method: Ra226_Ra	1228 - Con	nbined Rad	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.17		0.383	0.391	5.00	0.527	pCi/L		08/21/18 03:20	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 11:00

Client Sample ID: River Seep-16-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-3

Method: 9056A - Anions, lo	n Chromatogr	anhv							
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	23.2		3.00	0.200	mg/L			07/24/18 16:52	1
Fluoride	0.177	J	1.00	0.0100	mg/L			07/24/18 16:52	1
Sulfate	26.5	В	5.00	0.0300	mg/L			07/24/18 16:52	1
Method: 6010C - Metals (ICF	P) - Total Reco	overable							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Lithium	ND		0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:35	1
Method: 6020A - Metals (ICF	P/MS) - Total F	Recoverabl	е						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000270	J	0.00200	0.0000213	-		07/18/18 12:44	07/28/18 19:44	1
Arsenic	0.0247		0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:44	1
Barium	0.190	J	0.200	0.000270	•		07/18/18 12:44	07/28/18 19:44	1
Beryllium	0.000211	J	0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:44	1
Boron	0.0321	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:44	1
Cadmium	0.000196	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:44	1
Calcium	93.8		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:44	1
Chromium	0.00383		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 19:44	1
Cobalt	0.00613		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 19:44	1
Lead	0.00521		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 19:44	1
Magnesium	20.3		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 19:44	1
Molybdenum	0.00878	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 19:44	1
Potassium	4.85		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 19:44	1
Selenium	0.000906	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 19:44	1
Sodium	26.7		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 19:44	1
Thallium -	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 19:44	1
Method: EPA 7470A - Mercu	ıry (CVAA)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:06	1
General Chemistry									
Analyte		Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fac
рН	8.40		0.100	0.100				07/24/18 17:55	1
Temperature	21.7		0.100		Degrees C			07/24/18 17:55	1
Alkalinity	393		10.0		mg/L			07/24/18 21:09	1
Total Dissolved Solids	504		20.0	14.0	mg/L			07/18/18 08:50	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 10:10

Client Sample ID: River Seep-14-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-4

Method: 9056A - Anions, Ion	Chromatogr	anhv							
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	22.7		3.00	0.200	mg/L			07/24/18 17:07	1
Fluoride	0.144	J	1.00	0.0100	mg/L			07/24/18 17:07	1
Sulfate	159	В	50.0	0.300	mg/L			07/25/18 21:15	10
Method: 6010C - Metals (ICP)	- Total Reco	overable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0126	J	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:50	1
- Method: 6020A - Metals (ICP/	MS) - Total F	Recoverabl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.000312	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 19:49	1
Arsenic	0.0173		0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 19:49	1
Barium	0.242		0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 19:49	1
Beryllium	0.000497	J	0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 19:49	1
Boron	0.0694	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 19:49	1
Cadmium	0.000312	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 19:49	1
Calcium	171		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 19:49	1
Chromium	0.00969		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 19:49	1
Cobalt	0.0125		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 19:49	1
Lead	0.0109		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 19:49	1
Magnesium	36.6		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 19:49	1
Molybdenum	0.00550	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 19:49	1
Potassium	4.96		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 19:49	1
Selenium	0.000582	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 19:49	1
Sodium	18.5		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 19:49	1
Thallium	0.000126	J	0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 19:49	1
Method: EPA 7470A - Mercur	y (CVAA)								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:07	1
General Chemistry									
Analyte		Qualifier	RL_		Unit	_ D	Prepared	Analyzed	Dil Fac
рН	8.14		0.100	0.100				07/24/18 17:55	1
Temperature	21.8		0.100		Degrees C			07/24/18 17:55	1
Alkalinity	443		10.0		mg/L			07/24/18 21:17	1
Total Dissolved Solids	790		20.0	14.0	mg/L			07/18/18 08:50	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/12/18 13:50

Date Received: 07/14/18 10:50

Client Sample ID: River Seep-09-071218

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-5

Method: 9056A - Anions, Io Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	189		30.0	2.00	mg/L			07/25/18 21:59	10
Fluoride	0.239	J F1	1.00	0.0100	mg/L			07/24/18 17:51	
Sulfate	1310	В	250	1.50	mg/L			07/25/18 22:14	50
Method: 6010C - Metals (IC	P) - Total Rec	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	0.0209	J	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 17:56	
Method: 6020A - Metals (IC	P/MS) - Total I	Recovera	ble						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.000200	J	0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 20:06	
Arsenic	0.00188	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 20:06	
3arium	0.0384	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 20:06	
Beryllium	0.00372		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 20:06	
Boron	2.19		1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 20:06	
Cadmium	0.00307		0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 20:06	
Calcium	460		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 20:06	
Chromium	0.00386		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 20:06	
Cobalt	0.0447		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:06	
_ead	0.00507		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:06	
Magnesium	63.6		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:06	
Molybdenum	ND		0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:06	
Potassium	9.51		1.00	0.0596	ma/L		07/18/18 12:44	07/28/18 20:06	
Selenium	0.00216	J	0.0100	0.000348	-		07/18/18 12:44	07/28/18 20:06	
Sodium	42.1		1.00	0.155	J		07/18/18 12:44	07/28/18 20:06	
Thallium	ND		0.00100	0.0000360				07/28/18 20:06	
Method: EPA 7470A - Merc	urv (CVAA)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:08	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
oH .	5.26		0.100	0.100	SU			07/24/18 17:55	
Temperature	21.7		0.100	0.100	Degrees C			07/24/18 17:55	
Alkalinity	ND		10.0	5.00	mg/L			07/24/18 21:21	
Total Dissolved Solids	2130		20.0	14.0	mg/L			07/18/18 08:50	
Method: 903.0 - Radium-22	6 (GFPC)								
		Count	Total						
		Uncert.	Uncert.						
	It Qualifier	(2σ+/-)	(2σ+/-)		MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226 0.66	5	0.213	0.221	1.00 0	.167 pCi/L	_	07/19/18 15:20	08/10/18 16:40	
	d Qualifier	Limits					Prepared	Analyzed	Dil Fa
Ba Carrier 89.		40 - 110						08/10/18 16:40	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-5

Client Sample ID: River Seep-09-071218

Date Collected: 07/12/18 13:50 Date Received: 07/14/18 10:50

Method: 904.0 -	Radium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.810		0.520	0.525	1.00	0.796	pCi/L	07/19/18 15:49	08/02/18 09:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	89.4		40 - 110					07/19/18 15:49	08/02/18 09:22	1
Y Carrier	87.1		40 - 110					07/19/18 15:49	08/02/18 09:22	1

			Count	nd Radium Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.48		0.562	0.570	5.00	0.796	pCi/L		08/21/18 03:20	1
226 + 228										

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/12/18 14:50

Date Received: 07/14/18 10:50

Client Sample ID: River Seep-07-071218

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	1990		300	20.0	mg/L			07/25/18 22:29	10
Fluoride	0.102	J	1.00	0.0100	mg/L			07/24/18 18:21	
Sulfate	1480	В	500	3.00	mg/L			07/25/18 22:29	10
Method: 6010C - Metals (IC	P) - Total Reco	overable							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Lithium	0.772	-	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 18:01	
Method: 6020A - Metals (IC	P/MS) - Total F	Recovera	ble						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Antimony	ND		0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 20:11	
Arsenic	0.00182	J	0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 20:11	
3arium	0.0605	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 20:11	
Beryllium	ND		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 20:11	
Boron	1.46		1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 20:11	
Cadmium	ND		0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 20:11	
Calcium	1120		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 20:11	
Chromium	0.000340	J	0.00300	0.000339	-		07/18/18 12:44	07/28/18 20:11	
Cobalt	0.0218		0.00500	0.0000218	J			07/28/18 20:11	
_ead	0.000523		0.00500	0.0000675	ma/L		07/18/18 12:44	07/28/18 20:11	
Magnesium	51.8		1.00	0.0153	-			07/28/18 20:11	
Molybdenum	0.00219	1	0.0100	0.000873	-			07/28/18 20:11	
Potassium	262		1.00	0.0596	ū			07/28/18 20:11	
Selenium	ND.		0.0100	0.000348	-			07/28/18 20:11	
Sodium	277		1.00	0.155	J			07/28/18 20:11	
Thallium	ND		0.00100	0.0000360				07/28/18 20:11	
					g				
Method: EPA 7470A - Merc ^{Analyte}	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND	· ·	0.200	0.0653	ug/L		07/18/18 15:06		
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Н	8.01		0.100	0.100	SU			07/24/18 17:55	
Temperature	21.7		0.100	0.100	Degrees C			07/24/18 17:55	
Alkalinity	87.7		10.0	5.00	mg/L			07/24/18 21:28	
Total Dissolved Solids	6080		40.0	28.0	mg/L			07/18/18 08:50	
Method: 903.0 - Radium-22	6 (GFPC)								
	•	Count	Total						
		Uncert.	Uncert.						
Analyte Resu	lt Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226 0.56	6	0.144	0.152	1.00 0.0	0969 pCi/L		07/19/18 15:20	08/10/18 16:39	
Carrier %Yiel	ld Qualifier	Limits					Prepared	Analyzed	Dil Fa

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-6

Matrix: Water

Client Sample ID: River Seep-07-071218 Date Collected: 07/12/18 14:50

Date Received: 07/14/18 10:50

adium-228	(GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.831		0.318	0.327	1.00	0.434	pCi/L	07/19/18 15:49	08/02/18 09:22	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
79.4		40 - 110					07/19/18 15:49	08/02/18 09:22	1
87.1		40 - 110					07/19/18 15:49	08/02/18 09:22	1
	Result 0.831	%Yield Qualifier	Count Uncert. (2σ+/-) 0.831	Count Uncert. Uncert.	Count Uncert. Uncert. Count Uncert. Uncert. Count Uncert. Uncert. Count Uncert.	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety

Method: Ra226 Ra	228 - Combin	ned Radium-226	and Radiu	m-228				
_		Count	Total					
		Uncert.	Uncert.					
Analyte	Result Qua	alifier (2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.40	0.349	0.361	5.00	0.434 pCi/L		08/21/18 03:20	1

TestAmerica Nashville

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/12/18 14:25

Client Sample ID: River Seep-05-071218

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-7

Method: 9056A - Anions, Id									
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fa
Chloride	1670		300		mg/L			07/25/18 22:44	10
Fluoride	0.0795		1.00	0.0100	J			07/24/18 18:36	
Sulfate	1170	В	500	3.00	mg/L			07/25/18 22:44	100
Method: 6010C - Metals (IC Analyte		overable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	0.340		0.0500	0.00959				07/24/18 18:07	
					· ·				
Method: 6020A - Metals (IC						_			
Analyte		Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fa
Antimony	0.000366	J	0.00200	0.0000213	-			07/28/18 20:16	
Arsenic	0.0192		0.00500	0.000118	•			07/28/18 20:16	
Barium	0.718		0.200	0.000270				07/28/18 20:16	
Beryllium	0.000545	J	0.00200	0.000102	· ·		07/18/18 12:44	07/28/18 20:16	
Boron	0.853	J	1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 20:16	
Cadmium	0.000563	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 20:16	
Calcium	916		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 20:16	
Chromium	0.0124		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 20:16	
Cobalt	0.0327		0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:16	
Lead	0.0104		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:16	
Magnesium	77.8		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:16	
Molybdenum	0.00442	J	0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:16	
Potassium	238		1.00	0.0596	mg/L		07/18/18 12:44	07/28/18 20:16	
Selenium	0.00121	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 20:16	
Sodium	285		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 20:16	
Thallium	0.000164	J	0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 20:16	
Method: EPA 7470A - Merc	urv (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:12	-
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
pH	7.95		0.100	0.100	SU			07/24/18 17:55	
Temperature	21.7		0.100	0.100	Degrees C			07/24/18 17:55	
Alkalinity	229		10.0	5.00	mg/L			07/24/18 21:41	
Total Dissolved Solids	5140		40.0	28.0	mg/L			07/18/18 08:50	
					-				
Method: 903.0 - Radium-22	6 (GFPC)	Count	Total						
		Count	Total						
Analista =	It Own I'm	Uncert.	Uncert.	B1 -	4D0 11 11		5	A 1	D.: -
	It Qualifier	(2σ+/-)	(2σ+/-)		MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226 3.8	1	0.503	0.609	1.00 0	.187 pCi/L		07/19/18 15:20	08/10/18 16:40	
•		Limits					Dunnanad	A a l a al	Dil Fa
Carrier %Yie Ba Carrier 82	ld Qualifier	LIIIIII					Prepared	Analyzed	Dil Fa

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-7

Client Sample ID: River Seep-05-071218

Date Collected: 07/12/18 14:25 Date Received: 07/14/18 10:50 Matrix: Water

Method: 904.0 - F	Radium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	3.83	G	0.871	0.940	1.00	1.07	pCi/L	07/19/18 15:49	08/02/18 09:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.9		40 - 110					07/19/18 15:49	08/02/18 09:22	1
Y Carrier	83.0		40 - 110					07/19/18 15:49	08/02/18 09:22	1

_			Count	nd Radium Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	7.64		1.01	1.12	5.00	1.07	pCi/L		08/21/18 03:20	1
226 + 228										

1

11

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 12:20

Date Received: 07/14/18 10:50

Client Sample ID: Landfill Seep-01-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-8

Method: 9056A - Ani Analyte	•	ılt Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	209		600		mg/L			07/25/18 23:13	200
Fluoride	1.0		1.00	0.0100	-			07/24/18 18:51	200
Sulfate		30 B	250		mg/L			07/25/18 22:58	50
-	100	,	200	1.00	g/.L			07720710 22:00	
Method: 6010C - Met	als (ICP) - Total Re	coverable							
Analyte	Resu	ılt Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Lithium	3.	11	0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 18:12	
Mathadi COOOA - Mat	ele (ICD/MC) Tete	l Danassana	bla						
Method: 6020A - Met Analyte		I Recovera ılt Qualifier	IDIE RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.004		0.00200	0.0000213			07/18/18 12:44		- Dill a
Arsenic	0.004		0.00500	0.000118	•			07/28/18 20:20	,
Barium	0.06		0.200	0.000110	ū			07/28/18 20:20	
Beryllium		ID	0.00200	0.000102				07/28/18 20:20	
Boron	1.1		1.00	0.00339	ū			07/28/18 20:20	
Cadmium		ID	0.00100	0.000152	J			07/28/18 20:20	
Calcium			1.00	0.0412				07/28/18 20:20	
Chromium		ID	0.00300	0.000339	J			07/28/18 20:20	
Cobalt	0.000037		0.00500	0.0000218	-			07/28/18 20:20	
Lead	0.0002		0.00500	0.0000675	Ū			07/28/18 20:20	
Magnesium		90 J	1.00	0.0153	-			07/28/18 20:20	
Molybdenum	0.092		0.0100	0.000873	-		07/18/18 12:44	07/28/18 20:20	
Potassium		7 9	10.0		mg/L			08/07/18 12:06	10
Selenium	0.0078		0.0100	0.000348	-		07/18/18 12:44	07/28/18 20:20	
Sodium		17	1.00		mg/L		07/18/18 12:44	07/28/18 20:20	
Thallium		ID	0.00100	0.0000360				07/28/18 20:20	
- -									
Method: EPA 7470A						_	_		
Analyte		ılt Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fac
Mercury	0.37	/2	0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:13	•
General Chemistry									
Analyte	Resu	ılt Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	9.9	96	0.100	0.100	SU			07/24/18 17:55	
Temperature	21	.7	0.100	0.100	Degrees C			07/24/18 17:55	•
Alkalinity	82	28	10.0	5.00	mg/L			07/24/18 21:50	
Total Dissolved Solids	850		100	70.0	mg/L			07/18/18 08:50	
• • 									
Method: 903.0 - Radi	um-226 (GFPC)	0	T -4 *						
		Count	Total						
Ameliate	D	Uncert.	Uncert.	D	MD0 11 11		B	A	D.: -
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)		MDC Unit		Prepared	Analyzed	Dil Fac
Radium-226	0.656	0.222	0.229	1.00	0.200 pCi/L		07/19/18 15:20	08/10/18 16:38	•
Carrier	%Yield Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.6	40 - 110					07/19/18 15:20	•	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: Landfill Seep-01-071318

Lab Sample ID: 490-155661-8

Date Collected: 07/13/18 12:20 Date Received: 07/14/18 10:50 Matrix: Water

Method: 904.0 - R	adium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.851	U	0.577	0.582	1.00	0.889	pCi/L	07/19/18 15:49	08/02/18 09:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.6		40 - 110					07/19/18 15:49	08/02/18 09:22	1
Y Carrier	75.9		40 - 110					07/19/18 15:49	08/02/18 09:22	1

_			Count	nd Radium Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.51		0.618	0.625	5.00	0.889	pCi/L		08/21/18 03:20	1
226 + 228										

9

9

12

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 12:20

Client Sample ID: Landfill Seep-01-071318-DUP

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-9

Matrix: Water

07/20/18 08:40 08/13/18 06:34

	s, Ion Chromatogi								
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fac
Chloride	2080		600	40.0	mg/L			07/25/18 23:43	200
Fluoride	1.90		1.00	0.0100	mg/L			07/24/18 19:06	
Sulfate	1700	В	250	1.50	mg/L			07/25/18 23:28	50
Method: 6010C - Metals Analyte	· /	overable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	3.13		0.0500	0.00959	mg/L		•	07/24/18 18:18	
Mothodi 6020A - Motolo	(ICD/MC) Total I	Dogovoro	hlo						
Method: 6020A - Metals Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	0.00463	Quanner	0.00200	0.0000213	mg/L	- –	•	07/28/18 20:25	Dilla
Antimony			0.00200		J			07/28/18 20:25	
Arsenic	0.393			0.000118	•				•
Barium	0.0690		0.200	0.000270	•			07/28/18 20:25	
Beryllium	ND		0.00200	0.000102	J			07/28/18 20:25	•
Boron	1.21		1.00	0.00339	ū			07/28/18 20:25	•
Cadmium	ND		0.00100	0.000152	•			07/28/18 20:25	
Calcium	1230		1.00	0.0412	-			07/28/18 20:25	•
Chromium	ND		0.00300	0.000339	J			07/28/18 20:25	•
Cobalt	0.0000570	J	0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:25	
Lead	0.000254	J	0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:25	•
Magnesium	0.335	J	1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:25	•
Molybdenum	0.0981		0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:25	•
Potassium	37.3		10.0	0.596	mg/L		07/18/18 12:44	08/07/18 12:09	10
Selenium	0.00913	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 20:25	
Sodium	362		1.00	0.155	mg/L		07/18/18 12:44	07/28/18 20:25	
Thallium	ND		0.00100	0.0000360	mg/L		07/18/18 12:44	07/28/18 20:25	1
Method: EPA 7470A - M	ercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.388		0.200	0.0653	ug/L	_	07/18/18 15:06	07/20/18 11:14	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
	40.0		0.400	0.100	SU			07/24/18 17:58	•
рН	10.0		0.100	0.100					
•	10.0 21.9		0.100		Degrees C			07/24/18 17:58	•
Temperature				0.100					
Temperature Alkalinity	21.9		0.100	0.100 5.00	Degrees C			07/24/18 17:58	
Temperature Alkalinity Total Dissolved Solids	21.9 841 7880		0.100 10.0	0.100 5.00	Degrees C mg/L			07/24/18 17:58 07/24/18 21:59	
Temperature Alkalinity Total Dissolved Solids	21.9 841 7880	Count	0.100 10.0	0.100 5.00	Degrees C mg/L			07/24/18 17:58 07/24/18 21:59	
Temperature Alkalinity Total Dissolved Solids	21.9 841 7880	Count Uncert.	0.100 10.0 100	0.100 5.00	Degrees C mg/L			07/24/18 17:58 07/24/18 21:59	
Temperature Alkalinity Total Dissolved Solids Method: 903.0 - Radium	21.9 841 7880	Uncert.	0.100 10.0 100 Total	0.100 5.00 70.0	Degrees C mg/L		Prepared	07/24/18 17:58 07/24/18 21:59 07/18/18 08:50	
Temperature Alkalinity Total Dissolved Solids Method: 903.0 - Radium Analyte	21.9 841 7880 -226 (GFPC)		0.100 10.0 100 Total Uncert.	0.100 5.00 70.0	Degrees C mg/L mg/L		Prepared 07/20/18 08:40	07/24/18 17:58 07/24/18 21:59 07/18/18 08:50 Analyzed	Dil Fac
Alkalinity Total Dissolved Solids Method: 903.0 - Radium Analyte R Radium-226	21.9 841 7880 -226 (GFPC)	Uncert. (2σ+/-)	0.100 10.0 100 Total Uncert. (2σ+/-)	0.100 5.00 70.0	Degrees C mg/L mg/L			07/24/18 17:58 07/24/18 21:59 07/18/18 08:50 Analyzed	Dil Fac

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: Landfill Seep-01-071318-DUP

Lab Sample ID: 490-155661-9

Matrix: Water

Date Collected: 07/13/18 12:20 Date Received: 07/14/18 10:50

Method: 904.0 -	Radium-228	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0841	U	0.488	0.488	1.00	0.874	pCi/L	07/20/18 09:30	08/02/18 09:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.4		40 - 110					07/20/18 09:30	08/02/18 09:25	1
Y Carrier	94.6		40 - 110					07/20/18 09:30	08/02/18 09:25	1

Method: Ra226 Ra	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.564	U	0.532	0.534	5.00	0.874	pCi/L		08/21/18 03:20	1
_+ 228										

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 13:10

Date Received: 07/14/18 10:50

Client Sample ID: Landfill Seep-02-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-10

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride		1710		150		mg/L			07/25/18 23:58	5
Fluoride		1.19		1.00	0.0100	mg/L			07/24/18 19:20	
Sulfate		1500	В	250	1.50	mg/L			07/25/18 23:58	5
Method: 6010C - Meta	ls (ICP)	- Total Reco	overable							
Analyte		_	Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fa
Lithium		2.85		0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 18:24	
Method: 6020A - Meta	ls (ICP	MS) - Total F	Recovera	ble						
Analyte		Result	Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fa
Antimony		0.00218		0.00200	0.0000213	mg/L		07/18/18 12:44	07/28/18 20:30	
Arsenic		0.126		0.00500	0.000118	mg/L		07/18/18 12:44	07/28/18 20:30	
Barium		0.0627	J	0.200	0.000270	mg/L		07/18/18 12:44	07/28/18 20:30	
Beryllium		ND		0.00200	0.000102	mg/L		07/18/18 12:44	07/28/18 20:30	
Boron		2.92		1.00	0.00339	mg/L		07/18/18 12:44	07/28/18 20:30	
Cadmium		0.000464	J	0.00100	0.000152	mg/L		07/18/18 12:44	07/28/18 20:30	
Calcium		1030		1.00	0.0412	mg/L		07/18/18 12:44	07/28/18 20:30	
Chromium		ND		0.00300	0.000339	mg/L		07/18/18 12:44	07/28/18 20:30	
Cobalt		0.000115	J	0.00500	0.0000218	mg/L		07/18/18 12:44	07/28/18 20:30	
Lead		0.000247		0.00500	0.0000675	mg/L		07/18/18 12:44	07/28/18 20:30	
Magnesium		0.804	J	1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:30	
Molybdenum		1.78		0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:30	
Potassium		228		10.0	0.596	mg/L		07/18/18 12:44	08/07/18 12:12	10
Selenium		0.0103		0.0100	0.000348	•		07/18/18 12:44	07/28/18 20:30	
Sodium		315		1.00	0.155	Ū		07/18/18 12:44	07/28/18 20:30	
Thallium		ND		0.00100	0.0000360				07/28/18 20:30	
Method: EPA 7470A -	Mercur	v (CVAA)								
Analyte	morour	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury		0.167	J	0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:15	
General Chemistry										
Analyte		Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
рН		9.02		0.100	0.100	SU			07/24/18 17:58	
Temperature		21.8		0.100	0.100	Degrees C			07/24/18 17:58	
Alkalinity		178		10.0	5.00	mg/L			07/24/18 22:08	
Total Dissolved Solids		7080		100	70.0	mg/L			07/18/18 08:50	
Method: 903.0 - Radiu	m-226	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226	0.658		0.203	0.211	1.00 0	.168 pCi/L		07/20/18 08:40	08/13/18 06:34	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fa
								-	08/13/18 06:34	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: Landfill Seep-02-071318

Lab Sample ID: 490-155661-10

Date Collected: 07/13/18 13:10 Date Received: 07/14/18 10:50

Method: 904.0 - R	adium-228	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.507	U	0.520	0.522	1.00	0.848	pCi/L	07/20/18 09:30	08/02/18 09:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.8		40 - 110					07/20/18 09:30	08/02/18 09:25	1
Y Carrier	85.6		40 - 110					07/20/18 09:30	08/02/18 09:25	1

Method: Ra226 Ra	a228 - Combined R	Radium-226 a	ınd Radiun	n- 228					
_		Count	Total						
		Uncert.	Uncert.						
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.16	0.558	0.563	5.00	0.848	pCi/L		08/21/18 03:20	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 13:30

Date Received: 07/14/18 10:50

Client Sample ID: Landfill Seep-03-071318

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-11

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloride	4370		1500	100	mg/L			07/26/18 01:56	500
Fluoride	0.269	J	1.00	0.0100	mg/L			07/24/18 19:35	
Sulfate	2080	В	500	3.00	mg/L			07/26/18 01:41	100
Method: 6010C - Metals (IC	P) - Total Reco	overable							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Lithium	7.19		0.0500	0.00959	mg/L		07/18/18 12:42	07/24/18 18:29	•
Method: 6020A - Metals (IC Analyte		Recovera Qualifier	<mark>ble</mark> RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.0000610		0.00200	0.0000213			07/18/18 12:44		
Arsenic	0.00176		0.00500	0.000118	•			07/28/18 20:34	
Barium	0.140		0.200	0.000270	ū			07/28/18 20:34	
Beryllium	ND		0.00200	0.000102	•			07/28/18 20:34	· · · · · .
Boron	2.49		1.00	0.00339	-			07/28/18 20:34	
Cadmium	0.000279	4	0.00100	0.000152	•			07/28/18 20:34	
Calcium	2250		10.0	0.412	J			07/31/18 01:20	 1(
Chromium	ND.		0.00300	0.000339	-			07/28/18 20:34	
Cobalt	0.000321	4	0.00500	0.0000218	ū			07/28/18 20:34	
Lead	0.00021		0.00500	0.0000675				07/28/18 20:34	
Magnesium	12.6	•	1.00	0.0153	J			07/28/18 20:34	
Molybdenum	0.792		0.0100	0.000873	J			07/28/18 20:34	
Potassium	1140		10.0	0.596				07/31/18 01:20	<u>.</u> 1(
Selenium	0.00163	J	0.0100	0.000348	Ū			07/28/18 20:34	
Sodium	566		1.00	0.155	J			07/28/18 20:34	
Thallium	ND		0.00100	0.0000360				07/28/18 20:34	· · · · · · .
					J				
Method: EPA 7470A - Merc Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06		
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
рН	8.04		0.100	0.100	SU			07/24/18 17:58	
Temperature	21.7		0.100	0.100	Degrees C			07/24/18 17:58	•
Alkalinity	93.9		10.0	5.00	mg/L			07/24/18 22:15	
Total Dissolved Solids	12400		100	70.0	mg/L			07/18/18 08:50	
Method: 903.0 - Radium-22	6 (GFPC)	Count	Total						
		Uncert.	Uncert.						
Analyte Resu	lt Qualifier	Oncert. (2σ+/-)	oncert. (2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226 Resu		0.418	0.437		.322 pCi/L		07/24/18 13:57	08/16/18 05:35	DII Fa
			0.731	1.00 0	.022 pO//L			00/10/10 00.00	
	ld Qualifier	Limits					Prepared	Analyzed	Dil Fa
Ba Carrier 89.	7	40 - 110					07/24/18 13:57	08/16/18 05:35	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: Landfill Seep-03-071318

Lab Sample ID: 490-155661-11

Date Collected: 07/13/18 13:30 Date Received: 07/14/18 10:50

adium-228	(GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.136	UG	0.846	0.846	1.00	1.50	pCi/L	07/24/18 14:24	08/02/18 16:23	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
89.7		40 - 110					07/24/18 14:24	08/02/18 16:23	1
92.7		40 - 110					07/24/18 14:24	08/02/18 16:23	1
	Result 0.136 %Yield 89.7		Count Uncert.	Count Uncert. Uncert.	Count Uncert. Uncert. Vincert. Vincer	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Variety Variety

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.54		0.944	0.952	5.00	1.50	pCi/L		08/21/18 03:20	1

RL

300

1.00

500

RL

RL

0.00200

0.00500

0.00200

0.00100

0.00300

0.00500

0.200

1.00

1.00

0.0500

MDL Unit

20.0 mg/L

3.00 mg/L

MDL Unit

MDL Unit

0.0000213 mg/L

0.000118 mg/L

0.000270 mg/L

0.000102 mg/L

0.00339 mg/L

0.000152 mg/L

0.000339 mg/L

0.0000218 mg/L

0.0412 mg/L

0.00959 mg/L

0.0100 mg/L

D

Prepared

Prepared

Prepared

07/18/18 12:42 07/24/18 18:35

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

07/18/18 12:44 07/28/18 20:39

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 13:50

Date Received: 07/14/18 10:50

Analyte

Chloride

Fluoride

Sulfate

Analyte

Lithium

Analyte

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Boron

Antimony

Client Sample ID: Pond-012-071318

Method: 9056A - Anions, Ion Chromatography

Method: 6010C - Metals (ICP) - Total Recoverable

Method: 6020A - Metals (ICP/MS) - Total Recoverable

Result Qualifier

Result Qualifier

Result Qualifier

1640

0.266 J

1920 B

2.52

0.00302

0.278

0.0854

ND

2.12

1050

0.000203 J

ND

ND

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-12

Analyzed

07/26/18 02:11

07/24/18 19:50

07/26/18 02:11

Analyzed

Analyzed

Matrix: Water

Dil Fac

100

100

Dil Fac

Dil Fac

1

Ba Carrier	93.2	Quaiiiier	40 - 110					Prepared 07/20/18 08:40	Analyzed 08/13/18 06:34	DII Fac
Carrier		Qualifier	Limits				-	Propared	Analyzod	Dil Fac
Radium-226	0.962		0.258	0.272	1.00	0.223	pCi/L	07/20/18 08:40	08/13/18 06:34	1
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC	Unit	Prepared	Analyzed	Dil Fac
			Uncert.	Uncert.						
		()	Count	Total						
- Method: 903.0 - F	Radium-226	(GFPC)								
Total Dissolved Soli	ds	7180		100	70.0	mg/L			07/18/18 08:50	1
Alkalinity		7.24	J	10.0		mg/L			07/24/18 22:22	
Temperature		21.7		0.100		Degr			07/24/18 17:58	1
pH		6.90		0.100	0.100				07/24/18 17:58	1
Analyte			Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
General Chemist	ry									
Mercury		0.0840	J	0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 11:17	1
Analyte			Qualifier	RL		Unit	D		Analyzed	Dil Fac
Method: EPA 747	OA - Mercui		0	D.				Downson	A a la a . d	D!! E
Thallium -		ND		0.00100	0.0000360	mg/L	-	07/18/18 12:44	07/28/18 20:39	1
Sodium		316		1.00		mg/L			07/28/18 20:39	1
Selenium		0.00201	J	0.0100	0.000348	mg/L		07/18/18 12:44	07/28/18 20:39	1
Potassium		231		10.0	0.596	mg/L		07/18/18 12:44	08/07/18 12:15	10
Molybdenum		0.133		0.0100	0.000873	mg/L		07/18/18 12:44	07/28/18 20:39	1
Magnesium		11.9		1.00	0.0153	mg/L		07/18/18 12:44	07/28/18 20:39	1
						•				

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: Pond-012-071318

Date Collected: 07/13/18 13:50 Date Received: 07/14/18 10:50

226 + 228

Lab Sample ID: 490-155661-12

Method: 904.0 - Ra	adium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.505	U	0.599	0.600	1.00	0.988	pCi/L	07/20/18 09:30	08/02/18 09:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.2		40 - 110					07/20/18 09:30	08/02/18 09:25	1
Y Carrier	77.8		40 - 110					07/20/18 09:30	08/02/18 09:25	1

Method: Ra226 Ra	a228 - Con	nbined Rad	dium-226 a	nd Radiur	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.47		0.652	0.659	5.00	0.988	pCi/L		08/21/18 03:20	1

Client Sample Results

RL

300

1.00

500

RL

RL

0.00200

0.00500

0.00200

0.00100

0.00300

0.00500

0.00500

1.00

10.0

1.00

RL

RL

0.100

0.100

10.0

100

RL

1.00

Total Uncert.

 $(2\sigma + / -)$

0.248

0.200

0.0100

0.0100

0.00100

0.200

1.00

10.0

0.0500

Result Qualifier

Result Qualifier

Result Qualifier

2710

1.53

4.07

0.00470

0.300

0.101

0.000161

0.0000730

ND

0.799 J

1750

ND

ND

0.347

0.214

0.0103

899

397

0.539

10.1

21.7

1060

10100

Result Qualifier

%Yield Qualifier

0.897

97.6

ND

Result Qualifier

Result Qualifier

Count

Uncert.

 $(2\sigma + / -)$

Limits

40 - 110

0.234

1490 B

MDL Unit

20.0 mg/L

3.00 mg/L

MDL Unit

MDL Unit

mg/L

mg/L

mg/L

mg/L

0.0000213 mg/L

0.000102 mg/L

0.00339 mg/L

0.000152 mg/L

0.000339 mg/L

0.0000218 mg/L

0.0000675 mg/L

0.000873 mg/L

0.000348 mg/L

0.0000360 mg/L

0.0653

0.100

0.155 mg/L

MDL Unit

MDL Unit

5.00 mg/L

70.0 mg/L

ug/L

SU

0.100 Degrees C

MDC Unit

0.171 pCi/L

0.596

0.0153

0.412 mg/L

0.000118

0.000270

0.00959 mg/L

0.0100 mg/L

D

D

D

ח

Prepared

Prepared

Prepared

07/18/18 12:42 07/24/18 18:41

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/31/18 01:47

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/31/18 01:47

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 12:44 07/28/18 20:43

07/18/18 15:06 07/20/18 11:18

07/20/18 08:40 08/13/18 06:35

07/20/18 08:40 08/13/18 06:35

Analyzed

Analyzed

07/24/18 17:58

07/24/18 17:58

07/25/18 09:02

07/18/18 08:50

Analyzed

Analyzed

Prepared

Prepared

Prepared

Prepared

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Date Collected: 07/13/18 14:15

Date Received: 07/14/18 10:50

Analyte

Chloride

Fluoride

Sulfate

Analyte

Lithium

Analyte

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Magnesium

Potassium

Selenium

Sodium

Thallium

Analyte

Mercury

Analyte

Temperature

Alkalinity

Analyte

Carrier

Ba Carrier

Radium-226

pН

General Chemistry

Total Dissolved Solids

Molybdenum

Method: EPA 7470A - Mercury (CVAA)

Method: 903.0 - Radium-226 (GFPC)

Cobalt

Lead

Boron

Antimony

Client Sample ID: Landfill Seep-04-071318

Method: 9056A - Anions, Ion Chromatography

Method: 6010C - Metals (ICP) - Total Recoverable

Method: 6020A - Metals (ICP/MS) - Total Recoverable

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-13

Analyzed

07/26/18 02:26

07/24/18 20:05

07/26/18 02:26

Analyzed

Analyzed

Matrix: Water

Dil Fac

100

100

Dil Fac

Dil Fac

1

1

1

1

10

1

10

Dil Fac

Dil Fac

Dil Fac

Dil Fac

1

1

6

TestAmerica Nashville

Client Sample Results

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Lab Sample ID: 490-155661-13

Client Sample ID: Landfill Seep-04-071318

Date Collected: 07/13/18 14:15 Date Received: 07/14/18 10:50

Matrix: Water

Method: 904.0 -	Radium-228	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.873		0.524	0.530	1.00	0.799	pCi/L	07/20/18 09:30	08/02/18 09:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.6		40 - 110					07/20/18 09:30	08/02/18 09:25	1
Y Carrier	86.4		40 - 110					07/20/18 09:30	08/02/18 09:25	1

Method: Ra226 Ra	228 - Com	bined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.77		0.574	0.585	5.00	0.799	pCi/L		08/21/18 03:20	1

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 490-531256/3

Matrix: Water

Analysis Batch: 531256

Client Sample ID: Method Blank Prep Type: Total/NA

MR MR

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		3.00	0.200	mg/L			07/24/18 13:54	1
Fluoride	ND		1.00	0.0100	mg/L			07/24/18 13:54	1
Sulfate	0.3643	J	5.00	0.0300	mg/L			07/24/18 13:54	1
	Chloride Fluoride	Chloride ND Fluoride ND	Chloride ND Fluoride ND	Chloride ND 3.00 Fluoride ND 1.00	Chloride ND 3.00 0.200 Fluoride ND 1.00 0.0100	Chloride ND 3.00 0.200 mg/L Fluoride ND 1.00 0.0100 mg/L	Chloride ND 3.00 0.200 mg/L Fluoride ND 1.00 0.0100 mg/L	Chloride ND 3.00 0.200 mg/L Fluoride ND 1.00 0.0100 mg/L	Chloride ND 3.00 0.200 mg/L 07/24/18 13:54 Fluoride ND 1.00 0.0100 mg/L 07/24/18 13:54

Lab Sample ID: LCS 490-531256/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531256

	Spi	ke LCS	LCS				%Rec.	
Analyte	Adde	ed Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10	.0 9.350		mg/L		93	80 - 120	
Fluoride	1.	0.9781	J	mg/L		98	80 - 120	
Sulfate	10	.0 9.696	i	mg/L		97	80 - 120	

Lab Sample ID: LCSD 490-531256/5 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531256

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Unit Limits RPD Limit Analyte D %Rec Chloride 10.0 9.374 mg/L 94 80 - 120 0 20 Fluoride 1.00 0.9558 J mg/L 95 80 - 120 20 Sulfate 10.0 9.589 mg/L 80 - 120 96

Lab Sample ID: 490-155661-5 MS Client Sample ID: River Seep-09-071218 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531256

7 , 0.0	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoride	0.239	J F1	1.00	1.702	F1	ma/L	_	146	80 - 120	

Lab Sample ID: MB 490-531368/3 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 531368

	INIB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		3.00	0.200	mg/L			07/25/18 18:18	1
Fluoride	ND		1.00	0.0100	mg/L			07/25/18 18:18	1
Sulfate	0.3720	J	5.00	0.0300	mg/L			07/25/18 18:18	1

Lab Sample ID: MB 490-531368/30 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531368

	MB	MB						
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND	3.00	0.200	mg/L			07/26/18 00:57	1
Fluoride	ND	1.00	0.0100	mg/L			07/26/18 00:57	1
Sulfate	0.3740	J 5.00	0.0300	mg/L			07/26/18 00:57	1

Page 32 of 68

TestAmerica Nashville

8/21/2018

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 490-531368/31 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531368

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 	10.0	9.348		mg/L		93	80 - 120	
Fluoride		1.00	0.9475	J	mg/L		95	80 - 120	
Sulfate		10.0	9.314		mg/L		93	80 - 120	

Lab Sample ID: LCS 490-531368/4 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 531368

7, 6.16	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	10.0	9.348		mg/L		93	80 - 120		
Fluoride	1.00	0.9854	J	mg/L		98	80 - 120		
Sulfate	10.0	9.495		mg/L		95	80 - 120		
	Analyte Chloride Fluoride	Analyte Added Chloride 10.0 Fluoride 1.00	Analyte Added Chloride Result 10.0 9.348 Fluoride 1.00 0.9854	Analyte Added Chloride Result Possible Qualifier Fluoride 1.00 0.9854 J	Analyte Added Chloride Result Pluoride Qualifier mg/L Unit mg/L Fluoride 1.00 0.9854 J mg/L	Analyte Added Chloride Result 99.348 Qualifier mg/L Unit mg/L D Fluoride 1.00 0.9854 J mg/L	Analyte Added Chloride Result 10.0 Qualifier 9.348 Unit mg/L D mg/L %Rec mg/L 93 Fluoride 1.00 0.9854 J mg/L 98	Analyte Added Chloride Result 10.0 Qualifier 9.348 Unit mg/L D mg/L %Rec. Limits 20.0 Limits 20.0 Eluoride 10.0 9.348 J mg/L mg/L 98 80 - 120	Analyte Added Chloride Result 10.0 Qualifier 9.348 Unit mg/L D mg/L 93 80 - 120 Fluoride 1.00 0.9854 J mg/L 98 80 - 120

Lab Sample ID: LCSD 490-531368/32 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531368

		Spike	LCSD	LCSD				%Rec.		RPD	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride		10.0	9.368		mg/L		94	80 - 120	0	20	
Fluoride		1.00	0.9513	J	mg/L		95	80 - 120	0	20	
Sulfate		10.0	9.447		mg/L		94	80 - 120	1	20	

Lab Sample ID: LCSD 490-531368/5 **Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Matrix: Water**

Analysis Batch: 531368

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.296		mg/L		93	80 - 120	1	20
Fluoride	1.00	0.9931	J	mg/L		99	80 - 120	1	20
Sulfate	10.0	9.710		mg/L		97	80 - 120	2	20

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 180-250902/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 251527 MB MB

Analyte	Result Qualifi	er RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Lithium	ND	0.0500	0.00959	ma/L			07/18/18 12:42	07/24/18 16:47	

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 180-250902/2-A **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 251527 **Prep Batch: 250902**

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Lithium 1 00 1.028 mg/L 103 80 - 120

TestAmerica Nashville

Prep Batch: 250902

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total Recoverable

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 490-155660-A-5-B MS

Matrix: Water

Analysis Batch: 251527

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable Prep Batch: 250902** Sample Sample Spike MS MS %Rec.

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 1.00 75 ₋ 125 Lithium 0.0132 J 1.082 mg/L 107

Lab Sample ID: 490-155660-A-5-C MSD

Matrix: Water

Analysis Batch: 251527

Prep Batch: 250902 Sample Sample Spike MSD MSD **RPD** %Rec. Result Qualifier Added **Analyte** Result Qualifier Unit Limits **RPD** Limit %Rec Lithium 0.0132 J 1.00 1.090 mg/L 108 75 - 125 20

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-250903/1-A

Matrix: Water

Analysis Batch: 252059

Client Sample ID: Method Blank **Prep Type: Total Recoverable** Prep Batch: 250903

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 07/18/18 12:44 07/28/18 18:53 Antimony $\overline{\mathsf{ND}}$ 0.00200 0.0000213 mg/L 0.000118 mg/L 07/18/18 12:44 07/28/18 18:53 Arsenic ND 0.00500 Barium ND 0.200 0.000270 mg/L 07/18/18 12:44 07/28/18 18:53 Beryllium ND 0.000102 mg/L 07/18/18 12:44 07/28/18 18:53 0.00200 Boron ND 1.00 0.00339 mg/L 07/18/18 12:44 07/28/18 18:53 Cadmium ND 0.00100 0.000152 mg/L 07/18/18 12:44 07/28/18 18:53 Calcium ND 0.0412 mg/L 07/18/18 12:44 07/28/18 18:53 1.00 Chromium ND 0.00300 0.000339 mg/L 07/18/18 12:44 07/28/18 18:53 Cobalt 0.00500 0.0000218 mg/L 07/18/18 12:44 07/28/18 18:53 ND ND 0.00500 0.0000675 mg/L 07/18/18 12:44 07/28/18 18:53 Lead Magnesium ND 1.00 0.0153 mg/L 07/18/18 12:44 07/28/18 18:53 ND 0.0100 0.000873 mg/L Molybdenum 07/18/18 12:44 07/28/18 18:53 Potassium ND 1.00 0.0596 mg/L 07/18/18 12:44 07/28/18 18:53 Selenium ND 0.0100 0.000348 mg/L 07/18/18 12:44 07/28/18 18:53 Sodium ND 1.00 0.155 mg/L 07/18/18 12:44 07/28/18 18:53 Thallium ND 0.00100 0.0000360 mg/L 07/18/18 12:44 07/28/18 18:53

Lab Sample ID: LCS 180-250903/2-A

Matrix: Water

Analysis Batch: 252059

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 250903

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.500	0.4729		mg/L		95	80 - 120	
Arsenic	0.0400	0.03658		mg/L		91	80 - 120	
Barium	2.00	1.840		mg/L		92	80 - 120	
Beryllium	0.0500	0.05027		mg/L		101	80 - 120	
Boron	1.00	0.8897	J	mg/L		89	80 - 120	
Cadmium	0.0500	0.05029		mg/L		101	80 - 120	
Calcium	50.0	45.70		mg/L		91	80 - 120	
Chromium	0.200	0.1649		mg/L		82	80 - 120	
Cobalt	0.500	0.4321		mg/L		86	80 - 120	
Lead	0.0200	0.01998		mg/L		100	80 - 120	

TestAmerica Nashville

Page 34 of 68

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 180-250903/2-A Matrix: Water				Client Sample ID: Lab Control Samp Prep Type: Total Recoverab							
Analysis Batch: 252059	Spike	LCS	LCS				Prep Batch: 250903 %Rec.				
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits				
Magnesium	50.0	45.74		mg/L		91	80 - 120				
Molybdenum	1.00	0.9327		mg/L		93	80 - 120				
Potassium	50.0	46.09		mg/L		92	80 - 120				
Selenium	0.0100	0.009085	J	mg/L		91	80 - 120				
Sodium	50.0	44.98		mg/L		90	80 - 120				
Thallium	0.0500	0.04846		mg/L		97	80 - 120				

Lab Sample ID: 490-155660 Matrix: Water Analysis Batch: 252059	-A-6-C MS				s MS				mple ID: Matrix Spike be: Total Recoverable Prep Batch: 250903
-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	ND	-	0.500	0.4679		mg/L		94	75 - 125
Arsenic	ND		0.0400	0.03692		mg/L		92	75 - 125
Barium	ND		2.00	1.839		mg/L		92	75 - 125
Beryllium	ND		0.0500	0.04768		mg/L		95	75 - 125
Boron	0.00422	J	1.00	0.8456	J	mg/L		84	75 - 125
Cadmium	ND		0.0500	0.04723		mg/L		94	75 - 125
Calcium	ND		50.0	45.39		mg/L		91	75 - 125
Chromium	ND		0.200	0.1840		mg/L		92	75 - 125
Cobalt	ND		0.500	0.4386		mg/L		88	75 - 125
Lead	0.000399	j	0.0200	0.01986		mg/L		97	75 - 125
Magnesium	0.0156	J	50.0	46.32		mg/L		93	75 - 125
Molybdenum	ND		1.00	0.9262		mg/L		93	75 - 125
Potassium	0.0680	J	50.0	46.15		mg/L		92	75 - 125
Selenium	ND		0.0100	0.01006		mg/L		101	75 - 125
Sodium	ND		50.0	45.34		mg/L		91	75 - 125
Thallium	ND		0.0500	0.04726		mg/L		95	75 - 125

Lab Sa	mple ID:	490-1	155660- <i>F</i>	4-6-D MSD

Matrix: Water

Analysis Batch: 252059									Prep Ba	itch: 2	50903
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		0.500	0.4680		mg/L		94	75 - 125	0	20
Arsenic	ND		0.0400	0.03704		mg/L		93	75 - 125	0	20
Barium	ND		2.00	1.847		mg/L		92	75 - 125	0	20
Beryllium	ND		0.0500	0.04801		mg/L		96	75 - 125	1	20
Boron	0.00422	J	1.00	0.8557	J	mg/L		85	75 - 125	1	20
Cadmium	ND		0.0500	0.04852		mg/L		97	75 - 125	3	20
Calcium	ND		50.0	44.91		mg/L		90	75 - 125	1	20
Chromium	ND		0.200	0.1875		mg/L		94	75 - 125	2	20
Cobalt	ND		0.500	0.4400		mg/L		88	75 - 125	0	20
Lead	0.000399	J	0.0200	0.01961		mg/L		96	75 - 125	1	20
Magnesium	0.0156	J	50.0	45.89		mg/L		92	75 - 125	1	20
Molybdenum	ND		1.00	0.9301		mg/L		93	75 - 125	0	20
Potassium	0.0680	J	50.0	45.93		mg/L		92	75 - 125	0	20
Selenium	ND		0.0100	0.01030		mg/L		103	75 - 125	2	20
Sodium	ND		50.0	45.17		mg/L		90	75 - 125	0	20

TestAmerica Nashville

8/21/2018

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total Recoverable

Page 35 of 68

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: Method Blank

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 490-155660-A-6-D MSD						Client Sample ID: Matrix Spike Duplicate						
Matrix: Water							P	rep Ty	pe: Total I	Recove	rable	
Analysis Batch: 252059						Prep Ba	atch: 2	50903				
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Thallium	ND		0.0500	0.04752		mg/L		95	75 - 125	1	20	

Method: EPA 7470A - Mercury (CVAA)

Lab Sample ID: MB 180-250943/1-A

Matrix: Water Analysis Batch: 251171								Prep Type: To Prep Batch: 2	
•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0653	ug/L		07/18/18 15:06	07/20/18 10:52	1

Lab Sample ID: LCS 180-250943/2-A		Client Sample ID: Lab Control Sam						
Matrix: Water							Prep Typ	e: Total/NA
Analysis Batch: 251171							Prep Ba	tch: 250943
•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	2.50	2.486		ug/L		99	80 - 120	

Lab Sample ID: 180-79800-G-1-E MS							Client Sample ID: Matrix Spike				
Matrix: Water									Prep Type	e: Total/NA	
Analysis Batch: 251171									Prep Bate	ch: 250943	
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury	ND		1.00	0.9270		ug/L		93	75 - 125		

Lab Sample ID: 180-79800-	Client Sample ID: Matrix Spike Dupli										
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 251171						Prep Ba	atch: 25	50943			
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	ND		1.00	0.9210		ug/L		92	75 - 125	1	20

Method: 9040C - pH

Temperature

Lab Sample ID: LCS 490-531203/1	Client Sample ID: Lab Control Sample						
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 531203							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
pH	7.00	7.000		SU		100	98 - 103
=							

Lab Sample ID: 490-155660-D-5 DU							Clie	ent Sample ID: D)upl	licate	
Matrix: Water								Prep Type:	Tota	al/NA	
Analysis Batch: 531203											
_	Sample	Sample		DU	DU					RPD	
Analyte	Result	Qualifier		Result	Qualifier	Unit	D	R	PD	Limit	
pH	8.11			8.110		SU			0	20	

21.70

Degrees C

21.7

TestAmerica Nashville 8/21/2018

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 9040C - pH (Continued)

Lab Sample ID: LCS 490-531204/1 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 531204

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 7.00 7.000 SU рН 100 98 - 103

Client Sample ID: Landfill Seep-01-071318-DUP Lab Sample ID: 490-155661-9 DU Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531204

Analysis Batch: 531204	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
рН	10.0		10.03		SU	_	 0	20
Temperature	21.9		21.90		Degrees C		0	20

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 490-531384/73 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 531384

	MB MB							
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	ND	10.0	5.00	mg/L			07/24/18 20:09	1

Lab Sample ID: LCS 490-531384/74 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531384

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity	 100	95.45		mg/L	_	95	90 - 110	

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 490-531384/95 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531384

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Alkalinity 100 95.67 mg/L 96 90 - 110

Lab Sample ID: 490-155661-6 DU Client Sample ID: River Seep-07-071218 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531384

Analysis Baton, 001004	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Alkalinity	87.7		88.85		mg/L			1	20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 490-529395/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 529395

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 7.00 mg/L 07/18/18 08:50

TestAmerica Nashville

8/21/2018

Page 37 of 68

Client Sample ID: River Seep-09-071218

Client Sample ID: Landfill Seep-04-071318

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 490-529395/2 **Client Sample ID: Lab Control Sample Matrix: Water**

Analysis Batch: 529395

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 100 **Total Dissolved Solids** 103.0 mg/L 103 90 - 110

Lab Sample ID: 490-155661-5 DU

Matrix: Water

Analysis Batch: 529395

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier **RPD** Analyte Limit Unit D Total Dissolved Solids 2130 2194 mg/L 20

Lab Sample ID: 490-155661-13 DU

Matrix: Water

Analysis Batch: 529395

Sample Sample DU DU **RPD** RPD Result Qualifier Result Qualifier Limit Analyte Unit D Total Dissolved Solids 10100 10080 mg/L 20

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-376745/23-A

Matrix: Water

Analysis Batch: 381568

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 376745** Count Total

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL MDC Unit Prepared Analyzed Dil Fac Radium-226 07/19/18 15:20 08/10/18 16:41 0.2502 0.100 0.103 1.00 0.106 pCi/L MB MB

Carrier Limits %Yield Qualifier Ba Carrier 40 - 110 97.1

Lab Sample ID: LCS 160-376745/1-A

Matrix: Water

Analysis Batch: 381577

Client Sample ID: Lab Control Sample

07/19/18 15:20 08/10/18 16:41

Prepared

Prep Batch: 376745

Analyzed

Total Spike LCS LCS Uncert. %Rec. Analyte Added $(2\sigma + / -)$ RL MDC Unit Result Qual %Rec Limits Radium-226 11.4 11.66 1.20 1.00 0.0735 pCi/L 103 68 - 137

LCS LCS Carrier %Yield Qualifier Limits 40 - 110 Ba Carrier 100

Lab Sample ID: LCSD 160-376745/2-A

Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 381577 Prep Batch: 376745** Total

Spike LCSD LCSD Uncert. %Rec. **RFR** Analyte Added Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits RER Limit Radium-226 11.4 10.89 1.13 1.00 0.109 pCi/L 96 68 - 137 0.33

TestAmerica Nashville

8/21/2018

Page 38 of 68

Dil Fac

Prep Type: Total/NA

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 903.0 - Radium-226 (GFPC) (Continued)

Lab Sample ID: LCSD 160-376745/2-A

Matrix: Water

Matrix: Water

Carrier

Analysis Batch: 381577

LCSD LCSD

Carrier %Yield Qualifier Limits Ba Carrier 100 40 - 110

Lab Sample ID: MB 160-376796/18-A

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 376745

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 376796

Analysis Batch: 381804 Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.2016 0.0795 0.0816 1.00 0.0804 pCi/L 07/20/18 08:40 08/13/18 06:36 MB MB

Ba Carrier 102

Lab Sample ID: LCS 160-376796/1-A

Matrix: Water

Analysis Batch: 381803

Client Sample ID: Lab Control Sample

07/20/18 08:40 08/13/18 06:36

Prepared

Prep Type: Total/NA

Analyzed

Prep Batch: 376796

Total

%Yield Qualifier

Limits

40 - 110

LCS LCS %Rec. Spike Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits 68 - 137 Radium-226 11.79 1.21 11.4 1.00 0.0688 pCi/L 104

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 99.7 40 - 110

Lab Sample ID: 400-156511-B-1-B DU

Matrix: Water

Analysis Batch: 381803

Client Sample ID: Duplicate

Prep Type: Total/NA

Prep Batch: 376796

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual RL **MDC** Unit RER Limit Result Qual $(2\sigma + / -)$ Radium-226 0.266 0.2898 0.103 1.00 0.0896 pCi/L 0.12

DU DU Carrier %Yield Qualifier Limits Ba Carrier 90.3 40 - 110

Lab Sample ID: MB 160-377701/16-A

Matrix: Water

Analysis Batch: 382769

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 377701

Count Total MB MB Uncert. Uncert. Analyte $(2\sigma + / -)$ RL **MDC** Unit Result Qualifier $(2\sigma + / -)$ Prepared Analyzed Dil Fac Radium-226 0.0970 0.0993 1.00 0.0872 pCi/L 07/24/18 13:57 08/16/18 05:31 0.2320

> ΜB ΜB

Carrier Qualifier Limits Prepared Dil Fac %Yield Analyzed 40 - 110 07/24/18 13:57 08/16/18 05:31 Ba Carrier 94.7

TestAmerica Nashville

Page 39 of 68

Dil Fac

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 903.0 - Radium-226 (GFPC) (Continued)

Lab Sample ID: LCS 160-377701/1-A	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 382767	Prep Batch: 377701
	Total

	Spike	LCS	LCS	Uncert.					%Rec.	
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
Radium-226	15.1	13.45		1.40	1.00	0.0919	pCi/L	89	68 - 137	

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 94.1 40 - 110

Lab Sample ID: 600-169468-C-1-A DU **Client Sample ID: Duplicate**

Matrix: Water Prep Type: Total/NA Analysis Batch: 382767 **Prep Batch: 377701**

					Total				•		
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Radium-226	0.394		0.3673		0.110	1.00	0.0820	pCi/L	 	0.12	1

DU DU Carrier %Yield Qualifier Limits Ba Carrier 94.4 40 - 110

Method: 904.0 - Radium-228 (GFPC)

86.4

Y Carrier

Lab Sample ID: MB 160-376750/23-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA **Prep Batch: 376750 Analysis Batch: 379784**

			Count	Total						
	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.1002	U	0.206	0.206	1.00	0.387	pCi/L	07/19/18 15:49	08/02/18 09:22	1

	IVID	IVID			
Carrier	%Yield	Qualifier	Limits	Prepared Analyzed	Dil Fac
Ba Carrier	97.1		40 - 110	07/19/18 15:49 08/02/18 09:	22 1
Y Carrier	85.6		40 - 110	07/19/18 15:49 08/02/18 09:	22 1

Lab Sample ID: LCS 160-376750/1-A **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total/NA **Analysis Batch: 379945 Prep Batch: 376750** Total

				. Otal				
	Spike	LCS	LCS	Uncert.				%Rec.
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits
Radium-228	11.2	11.05		1.23	1.00	0.352 pCi/L	99	56 - 140

rtadiam 220				11.00	1.20	1.00	0.002
	LCS	LCS					
Carrier	%Yield	Qualifier	Limits				
Ba Carrier	100		40 - 110				

40 - 110

TestAmerica Nashville

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCSD 160-376750/2-A **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA Analysis Batch: 379945 **Prep Batch: 376750** Total

			iotai						
	Spike	LCSD LCSD	Uncert.				%Rec.		RER
Analyte	Added	Result Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	RER	Limit
Radium-228	11.2	11.70	1.29	1.00	0.336 pCi/L	105	56 - 140	0.26	1

LCSD LCSD Carrier %Yield Qualifier Limits Ba Carrier 100 40 - 110 87.5 Y Carrier 40 - 110

Lab Sample ID: MB 160-376805/18-A Client Sample ID: Method Blank **Prep Type: Total/NA Matrix: Water Prep Batch: 376805** Analysis Batch: 379949 Total

Count

		Journe	. ota.						
MB	MB	Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.4979		0.255	0.259	1.00	0.379	pCi/L	07/20/18 09:30	08/02/18 09:27	1
	Result	Result Qualifier	MB MB Uncert. Result Qualifier (2σ+/-)	MB MB Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-)	MB MB Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL	MB MB Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC	MB MB Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit	MB MB Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared	MB MB Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed

	MB	MB			
Carrier	%Yield	Qualifier	Limits	Prepared Analyzed	Dil Fac
Ba Carrier	102		40 - 110	07/20/18 09:30 08/02/18 09:21	,
Y Carrier	91.6		40 - 110	07/20/18 09:30 08/02/18 09:2	' 1

Lab Sample ID: LCS 160-376805/1-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 379784 **Prep Batch: 376805** Total

%Rec.
ec Limits
02 56 - 140

	LCS	LCS	
Carrier	%Yield	Qualifier	Limits
Ba Carrier	99.7		40 - 110
Y Carrier	91.2		40 - 110

Lab Sample ID: 400-156511-B-1-D DU **Client Sample ID: Duplicate**

Matrix: Water Prep Type: Total/NA Analysis Batch: 379784 **Prep Batch: 376805**

					Total						
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Radium-228	0.131	U	0.2403	U	0.319	1.00	0.528	pCi/L		0.20	1

Radium-228	0.131 U		0.2403 U	0.319	1.00	0.528 pCi/L	0.20	1
	DU DU							
Carrier	%Yield Qualifie	r Limits						
Ba Carrier	90.3	40 - 110						
Y Carrier	84.5	40 - 110						

TestAmerica Nashville

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 904.0 - Radium-228 (GFPC) (Continued)

LCS LCS

90.8

Y Carrier

Client Sample ID: Method Blank Lab Sample ID: MB 160-377705/16-A **Matrix: Water** Prep Type: Total/NA Analysis Batch: 380015 **Prep Batch: 377705** Count Total

	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.3838	U	0.431	0.433	1.00	0.707	pCi/L	07/24/18 14:24	08/02/18 20:52	1
	МВ	MB								

	MB	МВ				
Carrier	%Yield	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Ba Carrier	94.7		40 - 110	07/24/18 14:24	08/02/18 20:52	1
Y Carrier	90.1		40 - 110	07/24/18 14:24	08/02/18 20:52	1

Lab Sample ID: LCS 160-377705/1-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA **Prep Batch: 377705** Analysis Batch: 380015

				Total				
	Spike	LCS	LCS	Uncert.				%Rec.
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits
Radium-228	14.9	14.45		1.62	1.00	0.461 pCi/L	97	56 - 140

Carrier	%Yield	Qualifier	Limits
Ba Carrier	94.1		40 - 110
Y Carrier	88.6		40 - 110
Carrier	00.0		40-110

40 - 110

Lab Sample ID: 600-169468-C-1-B DU **Client Sample ID: Duplicate Matrix: Water** Prep Type: Total/NA **Analysis Batch: 380015 Prep Batch: 377705**

					Total						
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Radium-228	0.0185	U	 0.1918	U	0.201	1.00	0.325	pCi/L		0.43	

Analyte	Result Qual		Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	L
Radium-228	0.0185 U		0.1918	U	0.201	1.00	0.325	pCi/L		0.43	
	DU DU										
Carrier	%Yield Qualifier	Limits									
Ba Carrier	94.4	40 - 110									

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

HPLC/IC

Analysis Batch: 531256

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
490-155661-1	River Seep-08-071318	Total/NA	Water	9056A	
490-155661-2	River Seep-12-071318	Total/NA	Water	9056A	
490-155661-3	River Seep-16-071318	Total/NA	Water	9056A	
490-155661-4	River Seep-14-071318	Total/NA	Water	9056A	
490-155661-5	River Seep-09-071218	Total/NA	Water	9056A	
490-155661-6	River Seep-07-071218	Total/NA	Water	9056A	
490-155661-7	River Seep-05-071218	Total/NA	Water	9056A	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	9056A	
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	9056A	
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	9056A	
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	9056A	
490-155661-12	Pond-012-071318	Total/NA	Water	9056A	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	9056A	
MB 490-531256/3	Method Blank	Total/NA	Water	9056A	
LCS 490-531256/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 490-531256/5	Lab Control Sample Dup	Total/NA	Water	9056A	
490-155661-5 MS	River Seep-09-071218	Total/NA	Water	9056A	

Analysis Batch: 531368

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	9056A	
490-155661-1	River Seep-08-071318	Total/NA	Water	9056A	
490-155661-4	River Seep-14-071318	Total/NA	Water	9056A	
490-155661-5	River Seep-09-071218	Total/NA	Water	9056A	
490-155661-5	River Seep-09-071218	Total/NA	Water	9056A	
490-155661-6	River Seep-07-071218	Total/NA	Water	9056A	
490-155661-7	River Seep-05-071218	Total/NA	Water	9056A	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	9056A	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	9056A	
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	9056A	
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	9056A	
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	9056A	
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	9056A	
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	9056A	
490-155661-12	Pond-012-071318	Total/NA	Water	9056A	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	9056A	
MB 490-531368/3	Method Blank	Total/NA	Water	9056A	
MB 490-531368/30	Method Blank	Total/NA	Water	9056A	
LCS 490-531368/31	Lab Control Sample	Total/NA	Water	9056A	
LCS 490-531368/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 490-531368/32	Lab Control Sample Dup	Total/NA	Water	9056A	
LCSD 490-531368/5	Lab Control Sample Dup	Total/NA	Water	9056A	

Metals

Prep Batch: 250902

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	3005A	
490-155661-2	River Seep-12-071318	Total Recoverable	Water	3005A	
490-155661-3	River Seep-16-071318	Total Recoverable	Water	3005A	

TestAmerica Nashville

8/21/2018

Page 43 of 68

2

2

6

6

0

9

10

19

13

1 *A*

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Metals (Continued)

Prep Batch: 250902 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-4	River Seep-14-071318	Total Recoverable	Water	3005A	
490-155661-5	River Seep-09-071218	Total Recoverable	Water	3005A	
490-155661-6	River Seep-07-071218	Total Recoverable	Water	3005A	
490-155661-7	River Seep-05-071218	Total Recoverable	Water	3005A	
490-155661-8	Landfill Seep-01-071318	Total Recoverable	Water	3005A	
490-155661-9	Landfill Seep-01-071318-DUP	Total Recoverable	Water	3005A	
490-155661-10	Landfill Seep-02-071318	Total Recoverable	Water	3005A	
490-155661-11	Landfill Seep-03-071318	Total Recoverable	Water	3005A	
490-155661-12	Pond-012-071318	Total Recoverable	Water	3005A	
490-155661-13	Landfill Seep-04-071318	Total Recoverable	Water	3005A	
MB 180-250902/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-250902/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
490-155660-A-5-B MS	Matrix Spike	Total Recoverable	Water	3005A	
490-155660-A-5-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Prep Batch: 250903

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	3005A	
490-155661-2	River Seep-12-071318	Total Recoverable	Water	3005A	
490-155661-3	River Seep-16-071318	Total Recoverable	Water	3005A	
490-155661-4	River Seep-14-071318	Total Recoverable	Water	3005A	
490-155661-5	River Seep-09-071218	Total Recoverable	Water	3005A	
490-155661-6	River Seep-07-071218	Total Recoverable	Water	3005A	
490-155661-7	River Seep-05-071218	Total Recoverable	Water	3005A	
490-155661-8	Landfill Seep-01-071318	Total Recoverable	Water	3005A	
490-155661-9	Landfill Seep-01-071318-DUP	Total Recoverable	Water	3005A	
490-155661-10	Landfill Seep-02-071318	Total Recoverable	Water	3005A	
490-155661-11	Landfill Seep-03-071318	Total Recoverable	Water	3005A	
490-155661-12	Pond-012-071318	Total Recoverable	Water	3005A	
490-155661-13	Landfill Seep-04-071318	Total Recoverable	Water	3005A	
MB 180-250903/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-250903/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
490-155660-A-6-C MS	Matrix Spike	Total Recoverable	Water	3005A	
490-155660-A-6-D MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Prep Batch: 250943

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	7470A	_
490-155661-2	River Seep-12-071318	Total/NA	Water	7470A	
490-155661-3	River Seep-16-071318	Total/NA	Water	7470A	
490-155661-4	River Seep-14-071318	Total/NA	Water	7470A	
490-155661-5	River Seep-09-071218	Total/NA	Water	7470A	
490-155661-6	River Seep-07-071218	Total/NA	Water	7470A	
490-155661-7	River Seep-05-071218	Total/NA	Water	7470A	
190-155661-8	Landfill Seep-01-071318	Total/NA	Water	7470A	
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	7470A	
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	7470A	
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	7470A	
490-155661-12	Pond-012-071318	Total/NA	Water	7470A	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	7470A	
MB 180-250943/1-A	Method Blank	Total/NA	Water	7470A	

TestAmerica Nashville

8/21/2018

Page 44 of 68

2

-

5

7

ŏ

10

11

40

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Metals (Continued)

Prep Batch: 250943 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 180-250943/2-A	Lab Control Sample	Total/NA	Water	7470A	
180-79800-G-1-E MS	Matrix Spike	Total/NA	Water	7470A	
180-79800-G-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Analysis Batch: 251171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	EPA 7470A	250943
490-155661-2	River Seep-12-071318	Total/NA	Water	EPA 7470A	250943
490-155661-3	River Seep-16-071318	Total/NA	Water	EPA 7470A	250943
490-155661-4	River Seep-14-071318	Total/NA	Water	EPA 7470A	250943
490-155661-5	River Seep-09-071218	Total/NA	Water	EPA 7470A	250943
490-155661-6	River Seep-07-071218	Total/NA	Water	EPA 7470A	250943
490-155661-7	River Seep-05-071218	Total/NA	Water	EPA 7470A	250943
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	EPA 7470A	250943
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	EPA 7470A	250943
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	EPA 7470A	250943
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	EPA 7470A	250943
490-155661-12	Pond-012-071318	Total/NA	Water	EPA 7470A	250943
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	EPA 7470A	250943
MB 180-250943/1-A	Method Blank	Total/NA	Water	EPA 7470A	250943
LCS 180-250943/2-A	Lab Control Sample	Total/NA	Water	EPA 7470A	250943
180-79800-G-1-E MS	Matrix Spike	Total/NA	Water	EPA 7470A	250943
180-79800-G-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	EPA 7470A	250943

Analysis Batch: 251527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	6010C	250902
490-155661-2	River Seep-12-071318	Total Recoverable	Water	6010C	250902
490-155661-3	River Seep-16-071318	Total Recoverable	Water	6010C	250902
490-155661-4	River Seep-14-071318	Total Recoverable	Water	6010C	250902
490-155661-5	River Seep-09-071218	Total Recoverable	Water	6010C	250902
490-155661-6	River Seep-07-071218	Total Recoverable	Water	6010C	250902
490-155661-7	River Seep-05-071218	Total Recoverable	Water	6010C	250902
490-155661-8	Landfill Seep-01-071318	Total Recoverable	Water	6010C	250902
490-155661-9	Landfill Seep-01-071318-DUP	Total Recoverable	Water	6010C	250902
490-155661-10	Landfill Seep-02-071318	Total Recoverable	Water	6010C	250902
490-155661-11	Landfill Seep-03-071318	Total Recoverable	Water	6010C	250902
490-155661-12	Pond-012-071318	Total Recoverable	Water	6010C	250902
490-155661-13	Landfill Seep-04-071318	Total Recoverable	Water	6010C	250902
MB 180-250902/1-A	Method Blank	Total Recoverable	Water	6010C	250902
LCS 180-250902/2-A	Lab Control Sample	Total Recoverable	Water	6010C	250902
490-155660-A-5-B MS	Matrix Spike	Total Recoverable	Water	6010C	250902
490-155660-A-5-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	6010C	250902

Analysis Batch: 252059

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total Recoverable	Water	6020A	250903
490-155661-2	River Seep-12-071318	Total Recoverable	Water	6020A	250903
490-155661-3	River Seep-16-071318	Total Recoverable	Water	6020A	250903
490-155661-4	River Seep-14-071318	Total Recoverable	Water	6020A	250903
490-155661-5	River Seep-09-071218	Total Recoverable	Water	6020A	250903

Page 45 of 68

TestAmerica Nashville

8/21/2018

3

4

6

10

11

13

Client: Big Rivers Electric Corporation

TestAmerica Job ID: 490-155661-1

Metals (Continued)

Analysis Batch: 252059 (Continued)

Project/Site: Sebree-Green Landfill

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-6	River Seep-07-071218	Total Recoverable	Water	6020A	250903
490-155661-7	River Seep-05-071218	Total Recoverable	Water	6020A	250903
490-155661-8	Landfill Seep-01-071318	Total Recoverable	Water	6020A	250903
490-155661-9	Landfill Seep-01-071318-DUP	Total Recoverable	Water	6020A	250903
490-155661-10	Landfill Seep-02-071318	Total Recoverable	Water	6020A	250903
490-155661-11	Landfill Seep-03-071318	Total Recoverable	Water	6020A	250903
490-155661-12	Pond-012-071318	Total Recoverable	Water	6020A	250903
490-155661-13	Landfill Seep-04-071318	Total Recoverable	Water	6020A	250903
MB 180-250903/1-A	Method Blank	Total Recoverable	Water	6020A	250903
LCS 180-250903/2-A	Lab Control Sample	Total Recoverable	Water	6020A	250903
490-155660-A-6-C MS	Matrix Spike	Total Recoverable	Water	6020A	250903
490-155660-A-6-D MSD	Matrix Spike Duplicate	Total Recoverable	Water	6020A	250903

Analysis Batch: 252316

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-11	Landfill Seep-03-071318	Total Recoverable	Water	6020A	250903
490-155661-13	Landfill Seep-04-071318	Total Recoverable	Water	6020A	250903

Analysis Batch: 253104

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-8	Landfill Seep-01-071318	Total Recoverable	Water	6020A	250903
490-155661-9	Landfill Seep-01-071318-DUP	Total Recoverable	Water	6020A	250903
490-155661-10	Landfill Seep-02-071318	Total Recoverable	Water	6020A	250903
490-155661-12	Pond-012-071318	Total Recoverable	Water	6020A	250903

General Chemistry

Analysis Batch: 529395

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
490-155661-1	River Seep-08-071318	Total/NA	Water	SM 2540C	
490-155661-2	River Seep-12-071318	Total/NA	Water	SM 2540C	
490-155661-3	River Seep-16-071318	Total/NA	Water	SM 2540C	
490-155661-4	River Seep-14-071318	Total/NA	Water	SM 2540C	
490-155661-5	River Seep-09-071218	Total/NA	Water	SM 2540C	
490-155661-6	River Seep-07-071218	Total/NA	Water	SM 2540C	
490-155661-7	River Seep-05-071218	Total/NA	Water	SM 2540C	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	SM 2540C	
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	SM 2540C	
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	SM 2540C	
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	SM 2540C	
490-155661-12	Pond-012-071318	Total/NA	Water	SM 2540C	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	SM 2540C	
MB 490-529395/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 490-529395/2	Lab Control Sample	Total/NA	Water	SM 2540C	
490-155661-5 DU	River Seep-09-071218	Total/NA	Water	SM 2540C	
490-155661-13 DU	Landfill Seep-04-071318	Total/NA	Water	SM 2540C	

Analysis Batch: 531203

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	9040C	

TestAmerica Nashville

Page 46 of 68 8/21/2018

2

5

6

8

4.0

11

12

13

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

General Chemistry (Continued)

Analysis Batch: 531203 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-2	River Seep-12-071318	Total/NA	Water	9040C	
490-155661-3	River Seep-16-071318	Total/NA	Water	9040C	
490-155661-4	River Seep-14-071318	Total/NA	Water	9040C	
490-155661-5	River Seep-09-071218	Total/NA	Water	9040C	
490-155661-6	River Seep-07-071218	Total/NA	Water	9040C	
490-155661-7	River Seep-05-071218	Total/NA	Water	9040C	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	9040C	
LCS 490-531203/1	Lab Control Sample	Total/NA	Water	9040C	
490-155660-D-5 DU	Duplicate	Total/NA	Water	9040C	

Analysis Batch: 531204

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	9040C	_
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	9040C	
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	9040C	
490-155661-12	Pond-012-071318	Total/NA	Water	9040C	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	9040C	
LCS 490-531204/1	Lab Control Sample	Total/NA	Water	9040C	
490-155661-9 DU	Landfill Seep-01-071318-DUP	Total/NA	Water	9040C	

Analysis Batch: 531384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
490-155661-1	River Seep-08-071318	Total/NA	Water	SM 2320B	
490-155661-2	River Seep-12-071318	Total/NA	Water	SM 2320B	
490-155661-3	River Seep-16-071318	Total/NA	Water	SM 2320B	
490-155661-4	River Seep-14-071318	Total/NA	Water	SM 2320B	
490-155661-5	River Seep-09-071218	Total/NA	Water	SM 2320B	
490-155661-6	River Seep-07-071218	Total/NA	Water	SM 2320B	
490-155661-7	River Seep-05-071218	Total/NA	Water	SM 2320B	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	SM 2320B	
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	SM 2320B	
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	SM 2320B	
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	SM 2320B	
490-155661-12	Pond-012-071318	Total/NA	Water	SM 2320B	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	SM 2320B	
MB 490-531384/73	Method Blank	Total/NA	Water	SM 2320B	
LCS 490-531384/74	Lab Control Sample	Total/NA	Water	SM 2320B	
LCSD 490-531384/95	Lab Control Sample Dup	Total/NA	Water	SM 2320B	
490-155661-6 DU	River Seep-07-071218	Total/NA	Water	SM 2320B	

Rad

Prep Batch: 376745

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	PrecSep-21	
490-155661-2	River Seep-12-071318	Total/NA	Water	PrecSep-21	
490-155661-5	River Seep-09-071218	Total/NA	Water	PrecSep-21	
490-155661-6	River Seep-07-071218	Total/NA	Water	PrecSep-21	
490-155661-7	River Seep-05-071218	Total/NA	Water	PrecSep-21	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	PrecSep-21	

TestAmerica Nashville

Page 47 of 68 8/21/2018

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Rad (Continued)

Prep Batch: 376745 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 160-376745/23-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-376745/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
LCSD 160-376745/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep-21	

Prep Batch: 376750

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-1	River Seep-08-071318	Total/NA	Water	PrecSep_0	
490-155661-2	River Seep-12-071318	Total/NA	Water	PrecSep_0	
490-155661-5	River Seep-09-071218	Total/NA	Water	PrecSep_0	
490-155661-6	River Seep-07-071218	Total/NA	Water	PrecSep_0	
490-155661-7	River Seep-05-071218	Total/NA	Water	PrecSep_0	
490-155661-8	Landfill Seep-01-071318	Total/NA	Water	PrecSep_0	
MB 160-376750/23-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-376750/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
LCSD 160-376750/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep_0	

Prep Batch: 376796

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	PrecSep-21	
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	PrecSep-21	
490-155661-12	Pond-012-071318	Total/NA	Water	PrecSep-21	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	PrecSep-21	
MB 160-376796/18-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-376796/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-156511-B-1-B DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 376805

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-9	Landfill Seep-01-071318-DUP	Total/NA	Water	PrecSep_0	
490-155661-10	Landfill Seep-02-071318	Total/NA	Water	PrecSep_0	
490-155661-12	Pond-012-071318	Total/NA	Water	PrecSep_0	
490-155661-13	Landfill Seep-04-071318	Total/NA	Water	PrecSep_0	
MB 160-376805/18-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-376805/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-156511-B-1-D DU	Duplicate	Total/NA	Water	PrecSep_0	

Prep Batch: 377701

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	PrecSep-21	
MB 160-377701/16-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-377701/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
600-169468-C-1-A DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 377705

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-155661-11	Landfill Seep-03-071318	Total/NA	Water	PrecSep_0	
MB 160-377705/16-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-377705/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
600-169468-C-1-B DU	Duplicate	Total/NA	Water	PrecSep_0	

TestAmerica Nashville

8/21/2018

Page 48 of 68

9

3

6

8

10

12

13

2

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Lab Sample ID: 490-155661-1

Lab Sample ID: 490-155661-2

Matrix: Water

Date Collected: 07/13/18 07:50 Date Received: 07/14/18 10:50

Client Sample ID: River Seep-08-071318

Bron Type	Batch	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared	Analyst	Lab
Prep Type Total/NA	Type Analysis	9056A	Kuii	1	Amount	Amount	531256	or Analyzed 07/24/18 16:22	Analyst SW1	TAL NSH
Total/NA	Analysis	9056A		50			531368	07/25/18 20:45		TAL NSH
Total/NA	Analysis	9056A		100			531368	07/25/18 21:00	JHS	TAL NSH
Total Recoverable Total Recoverable	Prep Analysis	3005A 6010C		1	50 mL	50 mL	250902 251527	07/18/18 12:42 07/24/18 17:24		TAL PIT TAL PIT
Total Recoverable Total Recoverable	Prep Analysis	3005A 6020A		1	50 mL 1.0 mL	50 mL 1.0 mL	250903 252059	07/18/18 12:44 07/28/18 19:35		TAL PIT TAL PIT
Total/NA Total/NA	Prep Analysis	7470A EPA 7470A		1	50 mL	50 mL	250943 251171	07/18/18 15:06 07/20/18 11:04		TAL PIT TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 20:55	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA Total/NA	Prep Analysis	PrecSep-21 903.0		1	999.94 mL	1.0 g	376745 381568	07/19/18 15:20 08/10/18 16:41		TAL SL TAL SL
Total/NA Total/NA	Prep Analysis	PrecSep_0 904.0		1	999.94 mL	1.0 g	376750 379945	07/19/18 15:49 08/02/18 09:20		TAL SL TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Client Sample ID: River Seep-12-071318

Date Collected: 07/13/18 09:15 Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 16:37	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:29	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 19:40	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:05	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:02	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	529395	07/18/18 08:50	ВМС	TAL NSH
Total/NA	Prep	PrecSep-21			750.37 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381568	08/10/18 16:41	RTM	TAL SL
Total/NA	Prep	PrecSep_0			750.37 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:21	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Page 49 of 68

2

4

O

8

9

11

13

Matrix: Water

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-16-071318

Date Collected: 07/13/18 11:00

Date Received: 07/14/18 10:50

Lab Sample ID: 490-155661-3

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 16:52	SW1	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:35	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 19:44	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:06	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:09	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	529395	07/18/18 08:50	вмс	TAL NSH

Client Sample ID: River Seep-14-071318

Date Collected: 07/13/18 10:10 Date Received: 07/14/18 10:50

Lab Sample ID: 490-155661-4

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 17:07	SW1	TAL NS
Total/NA	Analysis	9056A		10			531368	07/25/18 21:15	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:50	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 19:49	WTR	TAL PIT
Γotal/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:07	RJR	TAL PIT
Γotal/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NS
Γotal/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:17	BMC	TAL NS
Γotal/NA	Analysis	SM 2540C		1	50 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NS

Date Collected: 07/12/18 13:50

Date Received: 07/14/18 10:50

Client Sample	D: Riv	er Seep-09-071218				La	b Sample II	D: 490	-155661-5
Total/NA	Analysis	SM 2540C	1	50 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Analysis	SM 2320B	1	35 mL	35 mL	531384	07/24/18 21:17	BMC	TAL NSH
Total/NA	Analysis	9040C	1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	EPA 7470A	1			251171	07/20/18 11:07	RJR	TAL PIT
Total/NA	Prep	7470A		50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total Recoverable	Analysis	6020A	1	1.0 mL	1.0 mL	252059	07/28/18 19:49	WTR	TAL PIT
Total Recoverable	Prep	3005A		50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 17:51	SW1	TAL NSH
Total/NA	Analysis	9056A		10			531368	07/25/18 21:59	JHS	TAL NSH
Total/NA	Analysis	9056A		50			531368	07/25/18 22:14	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 17:56	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:06	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:08	RJR	TAL PIT

TestAmerica Nashville

Page 50 of 68

Matrix: Water

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-09-071218 Lab Sample ID: 490-155661-5

Date Collected: 07/12/18 13:50 **Matrix: Water** Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9040C		1		-	531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:21	ВМС	TAL NSH
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			500.17 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381569	08/10/18 16:40	RTM	TAL SL
Total/NA	Prep	PrecSep_0			500.17 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:22	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Lab Sample ID: 490-155661-6 Client Sample ID: River Seep-07-071218

Date Collected: 07/12/18 14:50 **Matrix: Water** Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 18:21	SW1	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/25/18 22:29	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:01	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:11	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:09	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:28	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			999.84 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381569	08/10/18 16:39	RTM	TAL SL
Total/NA	Prep	PrecSep_0			999.84 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:22	CDR	TAL SL
Total/NA	Analysis	Ra226 Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Lab Sample ID: 490-155661-7 Client Sample ID: River Seep-05-071218 Date Collected: 07/12/18 14:25 **Matrix: Water**

Date Received: 07/14/18 10:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 18:36	SW1	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/25/18 22:44	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:07	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:16	WTR	TAL PIT

Page 51 of 68

TestAmerica Nashville

Client: Big Rivers Electric Corporation

Project/Site: Sebree-Green Landfill

Client Sample ID: River Seep-05-071218

Date Collected: 07/12/18 14:25 Date Received: 07/14/18 10:50

Lab Sample ID: 490-155661-7

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:12	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:41	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			499.95 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381569	08/10/18 16:40	RTM	TAL SL
Total/NA	Prep	PrecSep_0			499.95 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:22	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Client Sample ID: Landfill Seep-01-071318

Date Collected: 07/13/18 12:20 Date Received: 07/14/18 10:50

Lab Sample ID: 490-155661-8

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 18:51	SW1	TAL NSH
Total/NA	Analysis	9056A		50			531368	07/25/18 22:58	JHS	TAL NSH
Total/NA	Analysis	9056A		200			531368	07/25/18 23:13	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:12	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		10			253104	08/07/18 12:06	RSK	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:20	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:13	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531203	07/24/18 17:55	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:50	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			500.48 mL	1.0 g	376745	07/19/18 15:20	JLC	TAL SL
Total/NA	Analysis	903.0		1			381577	08/10/18 16:38	RTM	TAL SL
Total/NA	Prep	PrecSep_0			500.48 mL	1.0 g	376750	07/19/18 15:49	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:22	CDR	TAL SL
Total/NA	Analysis	Ra226 Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Client Sample ID: Landfill Seep-01-071318-DUP

Date Collected: 07/13/18 12:20 **Matrix: Water** Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 19:06	SW1	TAL NSH

TestAmerica Nashville

Lab Sample ID: 490-155661-9

Page 52 of 68

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Lab Sample ID: 490-155661-9

Matrix: Water

Date Collected: 07/13/18 12:20 Date Received: 07/14/18 10:50

Client Sample ID: Landfill Seep-01-071318-DUP

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		50			531368	07/25/18 23:28	JHS	TAL NSH
Total/NA	Analysis	9056A		200			531368	07/25/18 23:43	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:18	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		10			253104	08/07/18 12:09	RSK	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:25	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:14	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531204	07/24/18 17:58	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 21:59	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			500.28 mL	1.0 g	376796	07/20/18 08:40	JLC	TAL SL
Total/NA	Analysis	903.0		1			381803	08/13/18 06:34	CDR	TAL SL
Total/NA	Prep	PrecSep_0			500.28 mL	1.0 g	376805	07/20/18 09:30	JLC	TAL SL
Total/NA	Analysis	904.0		1	1.0 mL	1.0 mL	379784	08/02/18 09:25	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Client Sample ID: Landfill Seep-02-071318 Lab Sample ID: 490-155661-10

Date Collected: 07/13/18 13:10 **Matrix: Water** Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 19:20	SW1	TAL NSH
Total/NA	Analysis	9056A		50			531368	07/25/18 23:58	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:24	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		10			253104	08/07/18 12:12	RSK	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:30	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:15	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531204	07/24/18 17:58	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 22:08	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			500.14 mL	1.0 g	376796	07/20/18 08:40	JLC	TAL SL
Total/NA	Analysis	903.0		1			381803	08/13/18 06:34	CDR	TAL SL
Total/NA	Prep	PrecSep_0			500.14 mL	1.0 g	376805	07/20/18 09:30	JLC	TAL SL
Total/NA	Analysis	904.0		1	1.0 mL	1.0 mL	379784	08/02/18 09:25	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

TestAmerica Nashville

Page 53 of 68

8/21/2018

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Client Sample ID: Landfill Seep-03-071318

Date Collected: 07/13/18 13:30

Date Received: 07/14/18 10:50

Lab Sample ID: 490-155661-11

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 19:35	SW1	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/26/18 01:41	JHS	TAL NSH
Total/NA	Analysis	9056A		500			531368	07/26/18 01:56	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:29	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:34	WTR	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		10	1.0 mL	1.0 mL	252316	07/31/18 01:20	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:16	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531204	07/24/18 17:58	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 22:15	вмс	TAL NSH
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	529395	07/18/18 08:50	вмс	TAL NSH
Total/NA	Prep	PrecSep-21			250.40 mL	1.0 g	377701	07/24/18 13:57	JLC	TAL SL
Total/NA	Analysis	903.0		1			382767	08/16/18 05:35	ALS	TAL SL
Total/NA	Prep	PrecSep_0			250.40 mL	1.0 g	377705	07/24/18 14:24	JLC	TAL SL
Total/NA	Analysis	904.0		1			380015	08/02/18 16:23	CDR	TAL SL

384175

08/21/18 03:20 RTM

Date Collected: 07/13/18 13:50 Date Received: 07/14/18 10:50

Analysis

Ra226_Ra228

Total/NA

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 19:50	SW1	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/26/18 02:11	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:35	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		10			253104	08/07/18 12:15	RSK	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:39	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:17	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531204	07/24/18 17:58	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/24/18 22:22	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			500.18 mL	1.0 g	376796	07/20/18 08:40	JLC	TAL SL
Total/NA	Analysis	903.0		1			381803	08/13/18 06:34	CDR	TAL SL
Total/NA	Prep	PrecSep_0			500.18 mL	1.0 g	376805	07/20/18 09:30	JLC	TAL SL
Total/NA	Analysis	904.0		1	1.0 mL	1.0 mL	379784	08/02/18 09:25	CDR	TAL SL

TestAmerica Nashville

Page 54 of 68

9

5

5

7

9

10

12

1

Matrix: Water

TAL SL

Lab Chronicle

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Client Sample ID: Pond-012-071318

Date Collected: 07/13/18 13:50 Date Received: 07/14/18 10:50

Lab Sample ID: 490-155661-12

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Client Sample ID: Landfill Seep-04-071318 Lab Sample ID: 490-155661-13

Date Collected: 07/13/18 14:15 **Matrix: Water**

Date Received: 07/14/18 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			531256	07/24/18 20:05	SW1	TAL NSH
Total/NA	Analysis	9056A		100			531368	07/26/18 02:26	JHS	TAL NSH
Total Recoverable	Prep	3005A			50 mL	50 mL	250902	07/18/18 12:42	NAM	TAL PIT
Total Recoverable	Analysis	6010C		1			251527	07/24/18 18:41	RJG	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		1	1.0 mL	1.0 mL	252059	07/28/18 20:43	WTR	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	250903	07/18/18 12:44	NAM	TAL PIT
Total Recoverable	Analysis	6020A		10	1.0 mL	1.0 mL	252316	07/31/18 01:47	WTR	TAL PIT
Total/NA	Prep	7470A			50 mL	50 mL	250943	07/18/18 15:06	RJR	TAL PIT
Total/NA	Analysis	EPA 7470A		1			251171	07/20/18 11:18	RJR	TAL PIT
Total/NA	Analysis	9040C		1			531204	07/24/18 17:58	JDG	TAL NSH
Total/NA	Analysis	SM 2320B		1	35 mL	35 mL	531384	07/25/18 09:02	BMC	TAL NSH
Total/NA	Analysis	SM 2540C		1	10 mL	100 mL	529395	07/18/18 08:50	BMC	TAL NSH
Total/NA	Prep	PrecSep-21			500.06 mL	1.0 g	376796	07/20/18 08:40	JLC	TAL SL
Total/NA	Analysis	903.0		1			381803	08/13/18 06:35	CDR	TAL SL
Total/NA	Prep	PrecSep_0			500.06 mL	1.0 g	376805	07/20/18 09:30	JLC	TAL SL
Total/NA	Analysis	904.0		1			379784	08/02/18 09:25	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1			384175	08/21/18 03:20	RTM	TAL SL

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Method Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	TAL NSH
6010C	Metals (ICP)	SW846	TAL PIT
6020A	Metals (ICP/MS)	SW846	TAL PIT
EPA 7470A	Mercury (CVAA)	SW846	TAL PIT
040C	pH	SW846	TAL NSH
SM 2320B	Alkalinity	SM	TAL NSH
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL NSH
005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT
470A	Preparation, Mercury	SW846	TAL PIT

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater" SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date
Kentucky (UST)	State Pro	gram	4	19	06-30-19
The following analytes	s are included in this repo	ort, but accreditation/	certification is not off	ered by the governing author	ority:
Analysis Method	Prep Method	Matrix	Analyt	е	
9040C		Water	pH		
9040C		Water	Tempe	erature	
9056A		Water	Chloric	de	
9056A		Water	Fluorio	le	
9056A		Water	Sulfate	•	
SM 2320B		Water	Alkalin	ity	
SM 2540C		Water	Total [Dissolved Solids	

Laboratory: TestAmerica Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State Program	6	88-0690	06-27-19
California	State Program	9	2891	04-30-19
Connecticut	State Program	1	PH-0688	09-30-18
Florida	NELAP	4	E871008	06-30-19
Illinois	NELAP	5	200005	06-30-19
Kansas	NELAP	7	E-10350	01-31-19
Louisiana	NELAP	6	04041	06-30-19
Nevada	State Program	9	PA00164	07-31-19
New Hampshire	NELAP	1	2030	04-04-19
New Jersey	NELAP	2	PA005	06-30-19
New York	NELAP	2	11182	03-31-19
North Carolina (WW/SW)	State Program	4	434	12-31-18
Oregon	NELAP	10	PA-2151	01-28-19
Pennsylvania	NELAP	3	02-00416	04-30-19
South Carolina	State Program	4	89014	04-30-19
Texas	NELAP	6	T104704528-15-2	03-31-19
US Fish & Wildlife	Federal		LE94312A-1	07-31-19
USDA	Federal		P330-16-00211	06-26-19
Utah	NELAP	8	PA001462015-4	05-31-19
Virginia	NELAP	3	460189	09-14-18 *
West Virginia DEP	State Program	3	142	01-31-19
Wisconsin	State Program	5	998027800	08-31-18

Laboratory: TestAmerica St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	MO00054	06-30-19
ANAB	DoD ELAP		L2305	04-06-19
Arizona	State Program	9	AZ0813	12-08-18
California	State Program	9	2886	06-30-19
Connecticut	State Program	1	PH-0241	03-31-19
Florida	NELAP	4	E87689	06-30-19
Illinois	NELAP	5	200023	11-30-18
Iowa	State Program	7	373	12-01-18

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Nashville

Page 57 of 68 8/21/2018

2

3

4

6

8

11

12

Accreditation/Certification Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

TestAmerica Job ID: 490-155661-1

Laboratory: TestAmerica St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Kansas	NELAP	7	E-10236	10-31-18
Kentucky (DW)	State Program	4	90125	12-31-18
Louisiana	NELAP	6	04080	06-30-19
Louisiana (DW)	NELAP	6	LA180017	12-31-18
Maryland	State Program	3	310	09-30-18 *
Michigan	State Program	5	9005	06-30-18 *
Missouri	State Program	7	780	06-30-18 *
Nevada	State Program	9	MO000542018-1	07-31-19
New Jersey	NELAP	2	MO002	06-30-19
New York	NELAP	2	11616	03-31-19
North Dakota	State Program	8	R207	06-30-19
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-18 *
Pennsylvania	NELAP	3	68-00540	02-28-19
South Carolina	State Program	4	85002001	06-30-18 *
Texas	NELAP	6	T104704193-18-12	07-31-19
US Fish & Wildlife	Federal		058448	07-31-19
USDA	Federal		P330-17-0028	02-02-20
Utah	NELAP	8	MO000542016-8	07-31-18 *
Virginia	NELAP	3	460230	06-14-19
Washington	State Program	10	C592	08-30-18 *
West Virginia DEP	State Program	3	381	08-31-18 *

TestAmerica Nashville

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

COOLER RECEIPT FORM

90-155661 Chain of Custody

Cooler Received/Opened On 7/14/2018 @ 1050	
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking # a 690 (last 4 digits, FedEx) Courier: FedEx	
IR Gun ID_ 17968357_ pH Strip Lot	
2. Temperature of rep. sample or temp blank when opened: 5 1 Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. NA
4. Were custody seals on outside of cooler?	(ES):NONA
If yes, how many and where: Front	
5. Were the seals intact, signed, and dated correctly?	(YES)NONA
6. Were custody papers inside cooler?	res. NONA
I certify that I opened the cooler and answered questions 1-6 (Initial)	<u> </u>
7. Were custody seals on containers: YES NO and Intact	YESNO.(NA)
Were these signed and dated correctly?	YESNO.LNA
8. Packing mat'l used? Bubblewap Plastic bag Peanuts Vermiculite Foam insert Pape	er Other None
9. Cooling process: CE Ice-pack Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YESZ.NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	PESNONA
12. Did all container labels and tags agree with custody papers?	YES NO NA
13a. Were VOA vials received?	YES. NA
b. Was there any observable headspace present in any VOA vial?	YESNOA
Larger than this.	
44 Min 19 19 19 19 19 19 19 19 19 19 19 19 19	_
14. Was there a Trip Blank in this cooler? YES. NO. NA if multiple coolers, sequence	e#
Certify that I unloaded the cooler and answered questions 7-14 (intial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNOCMA
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
16. Was residual chlorine present?	YESNO THA
t certify that I checked for chlorine and pH as per SQP and answered questions 15-16 (Initial)	AH
17. Were custody papers properly filled out (ink, signed, etc)?	(VES/NONA
18. Did you sign the custody papers in the appropriate place?	ZESNONA
19. Were correct containers used for the analysis requested?	ES.NONA
20. Was sufficient amount of sample sent in each container?	YESNONA
certify that I entered this project into LIMS and answered questions 17-20 (intial)	
I certify that I attached a label with the unique LIMS number to each container (intial)	/
21. Were there Non-Conformance Issues at login? YESNO. Was a NCM generated? YEST.Ng	# <u>.</u>

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

COOLER RECEIPT FORM

Cooler Received/Opened On_7/14/2018 @ 10:50	
Time Samples Removed From CoolerTime Samples Placed In Storage	(2 Hour Window)
(last 4 digits, FedEx) Courier: FedEx	,
IR Gun ID 17960353 pH Strip Lot NA Chlorine Strip Lot NA	<u>2_</u>
2. Temperature of rep. sample or temp blank when opened:	
3. If item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO.(NA)
t. Were custody seals on outside of cooler?	YES NO NA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YES NONA
5. Were custody papers inside cooler?	YES.(NO).NA
certify that I opened the cooler and answered questions 1-6 (initial)	
7. Were custody seals on containers: YES NO and Intact	YESNO (NA)
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubbleurap Plastic bag Peanuts Vermiculite Foam Insert Pape	er Other None
9. Cooling process: (ice lice-pack lice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	(YEBNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	MESNONA
12. Did all container labels and tags agree with custody papers?	WESNONA
13a. Were VOA vials received?	YES. ONONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
Larger than this.	
	_
14. Was there a Trip Blank in this cooler? YES NONA If multiple coolers sequence	:e #
t certify that I unloaded the cooler and answered guestions 7-14 (initial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNOC.NA
b. Oid the bottle labels indicate that the correct preservatives were used	(YES NONA
16. Was residual chlorine present?	YESNOMA
certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	20/1
17. Were custody papers properly filled out (ink, signed, etc)?	YES .NONA
18. Did you sign the custody papers in the appropriate place?	YES NONA
19. Were correct containers used for the analysis requested?	#E\$ 2.NONA
20. Was sufficient amount of sample sent in each container?	YES XNONA
certify that I entered this project into LIMS and answered questions 17-20 (Intial)	57
certify that I attached a label with the unique LIMS number to each container (intial))/
21. Were there Non-Conformance issues at login? YES (NO Was a NCM generated? YES, (NO).	#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

Loc: 490 155661

COOLER RECEIPT FORM

Cooler Received/Opened On 7/14/2018 @1050	
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking # 2 (alast 4 digits, FedEx) Courier: FedEx	
IR Gun ID 14740456 pH Strip Lot A Chilorine Strip Lot	
2. Temperature of rep. sample or temp blank when opened: 2. Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. NA
4. Were custody seals on outside of cooler?	χ€8NONA
If yes, how many and where:	rons
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	YESNO. NA
I certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES NO and Intact	YESNO.NA
Were these signed and dated correctly?	YESNO,NA
8. Packing mat'l used? Subblewarp Plastic bag Peanuts Vermiculite Foam Insert Pap	er Other None
9. Cooling process: (Ice, Ice-pack Ice (direct contact) Dry ice	Other None
10. Did ail containers arrive in good condition (unbroken)?	CYES NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	RYESNONA
12. Did all container labels and tags agree with custody papers?	PESNONA
13a. Were VOA vials received?	YES. (1907NA
b. Was there any observable headspace present in any VOA viai?	YESNOAA
Larger than this.	
14. Was there a Trip Blank in this cooler? YES, NO. NA If multiple copiers, sequence	:e#
I certify that I unloaded the cooler and answered questions 7-14 (Initial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	CYESNONA
16. Was residual chiorine present?	YESNONA
certify that I checked for chiorine and pH as per SOP and answered questions 15-16 (intial)	45/
17. Were custody papers properly filled out (lnk, signed, otc)?	CYES NO NA
18. Did you sign the custody papers in the appropriate place?	YESNONA
19. Were correct containers used for the analysis requested?	YES NONA
20. Was sufficient amount of sample sent in each container?	YES).NONA
I certify that I entered this project into LIMS and answered questions 17-20 (initial)	
I certify that I attached a label with the unique LIMS number to each container (Intial)	X/
21. Were there Non-Conformance issues at login? YES. NO Was a NCM generated? YES. NO.	#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

TestAmerica Nashville 2966 Foster Creighton Drive Nashville, TN 37204 Phone (615) 726-0177 Fax (615) 726-3404	Chain of Custody Record	ustody R	ecord			TestAmerica	Ö 🎚
Cient Information	Sample Chr. S. D. J.	Lab Pa	Lab Pst Cisneros, Roxanne	Carrier 7 factong tvo(s	No(s):	COC No: 490.86893-25173-1	
Client Contact. Greg Dick	LY.	E-Mail	ымы: гохапае.cisneros@testamericainc.com	Salah	Sector	Page Page 1 of 2	T
Company. Big Rivers Electric Corporation			Analysis	Requested		Job N.	T
Adness PO BOX 24	Due Date Requested: Starting					ķ	Ī
িন্দু Henderson	TAT Requested (days): The referred					A - HCt, M - Hexans B - NaCH K - None C - Zn Acetate C - Assach	
Sale, Zp. KY, 42419							<u>-</u>
Phane. (270-844-6010(Tel)	Po≄. Purchase Order - see DOCs		ţės:	00 P . 29 L .		r	40.00
Email Gregory Dick@bigrivers.com	wo ⊭:		(ON	155661	EJ.		
Project Name. Big Rivers Electric Corp - Henderson KY	Setter Green Land Fill		es or		aujejt	X - EOTA W · pH 4-5 L - EOA Z - otter (specity)	
sine space Geor Landfill			Y) (181 0_8500		οί εσι	Other:	
	5ащр!в	Matrix (Wewater, Soudie, Ownerrible,	400 C2109 -		sadmuN (s)	CCRAPITE, TLARIE, NA,M	3
Sample Identification	Sample Date Time G=g	G=grab) BT-THEUR A-AR) Preservation Code:	92 N 92 N	7.5	01 X	Special Instructions/Note:	30
R. S. Sept 08-07/3/4	7/13/18 0750 G	Water	イメメ		10	8 H 7.04	5
River Scep - 1.3 - 0713,8	_	Water	X		5		7.37
RIVET SOOD -16-071718	0011 NIBIL	Water	×××		W		17.7
River 5800-14-071318	8	Water	XXX		n	エグト	7
See, -04	7/13/18 1350	Water	メイメメ		5	3	S. C.
	_	Water	× × × ×		S	727	_
. 1	7/12/18 1925	Water	× × ×		3	6.92	4
1,44411 Seen - 01 -071318	7/13/18 1920	Water	× × V V		(V)	P3.01	
1 Sees - 01 - 071315-120	7/113/16 1390	Water	× × X X		2	+9.01	#
-071319	7/13/18 13/0	Water	スメメメ		Q.	0K.01	0
[Junt fill Son-03-1071314	7/13/18 1330	Water	X		72	ජ <i>0.8</i>	
Possible Hazard Idehulfication Survey Hazard Flammable Skin imfant Polson B	ison B	xical	Sample Disposal (A fee	may be assessed if san Disposal By Lab	mples are retaine	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) ——Return To Cilent ——Disposal By Lab Arthive For Months	
ļ			Special Instructions/QC Requirements	equirements:			Γ
Empty Kif Relinquished by:	Date		Time:	19 Je Merroad	of Shipment		Ţ.
Reinquisted by. []	Cate/198/8 1530	Company AECON		Marsh	S/Jn/Milliana	5 1050 Cangary	18
Reinquefred by:	Gate/Time.	Company		\	Dale/Tíme,	Complant	
Retinguished by	Dete/Time:	Company	Received by:		Oate/Firme.	Company	Ī
Custody Seals Intact: Custody Seal No.:		-	Codler Temperature(s) ⁴ C and Other Remarks:	and Other Remarks:	571	724	
יי דרט ביים							

TestAmerica Nashville	•	•		•							7	TestAmerica	ٿ ر.
Seot roster Creighton Linve Vashville, TV 3726 Johnne (61-8; 726-6177 Fax (61-6) 726-3404	E C	Chain of Custody Record	tody kec	ord							715 VE P.	THE LEADER IN ENVIRONMENT	DACES : .
Sient Information	Sample Cherg Down	\$	Lab PW: Cisnero	Lab PW: Cisneros, Roxanne	G.			amer Tra	Camer Tracking Nots):		CDC No: 490-8669	COC No: 490-86693-25173.1	
Vien Contact. Steg Dick	6-2	18¢	≛-Mall: roxanne	E-Mall: roxanne.clsneros@testamericainc.com	gtestame	ricainc.co		80	Coders		Page 1 of 2	12	
onipany: Sig Rivers Electric Corporation						Analysis		Requested			:# dab		
Adress: PO BOX 24	Due Date Requested: 1	اچېکې	ergitar								Preservat	Preservation Codes:	
Juy. Tenderson	TAT Requested (days):		\$1845C								B - NaOH		
Зав, Др. (Y, 42419	Headed		3014B								D - Nithe Add		
hane. 270-844-8010(Tel)	PO#: Purchase Order - see DOCs	cocs	(5) (0		50₹						G - Amentor	ğ	ecahydrate
inail; Эгедогу: Dick@bigrivers.com	WO#:		N 10 a			80							···
^h iglect Name. Big Rivers, Electric Corp - Hendorson KY	Sobree Grean Landfull	March !	A {\}	M16#0	20	e/9	T.		.,				(¢):00
ille. Stoe Geor Landill	SSOV∕#.		dweg	3028 2		ल्य	Į W	<u>. </u>			፬ [
	Sammis	Sample Type	Matrix (wancer, fracing d Filtered	*30008 'BI	A0745 (B)	מבן וריאט					Sdminh is	CCE App III II+ AIK, NC, MJ	· · · · · · · · · · · · · · · · · · ·
Sampie identification	Sample Date Time	- 170	1.23	1.5	797 Z	Ø ¢	,					Special Instructions/Note	Note:
V (-) 12 (c)	1 2 2 Z	<u>.</u>	Water	X								2	10%
2000 000 000 000 000 000 000 000 000 00		+-	7	*	4	, ,	-					- 1	
Control See Control	+-		7			1	-					± <	17.1
Tree of the contract of the co			o A Parison			#							
			saleyy,				+		-			***************************************	
de de la compansa de		-	vvaler	_			+		1			700, 400	
			Water	-			+		-		saleta a	155664	
			Water						-			10000	
e productive de la productive de la productive de la companya de l			Water									į	
			Water								784		
	`		Water										
			Water								Œv.		
ant	Poison B Chknown	Radiofopical		Sample L	le Disposal (A f Return To Client	A fee m	y be as:	be assessed if san Disposal By Lab	f sample	s are ret	stained longer Archive For	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Months	
Other (specify)				Special Instructions/QC Requirements.	structions	/OC Req	irement		-				
empty Kit Relinguished by:	Date:		Tkne	ł., ł	V	,		Sept.	Method of Shipment	ent			
Ethinquished by:	040/1/918 16	089)	AECOM	Received as	S. A.	14	13		Ogle/Time:	7/CM: //	12 1	050 Con	5
telinguished by:	Date/Time:	~	Sompariy	Reperved by	75 26 26 27 28	74			Cate/Time	Times: 7		Contipany	
खीतपुर्धातम् देषुः	Date/Time;	~	Company	Received by:	M by:				Oette/Filme:	73 1746:		Сопрапу	
Custody Seals Intact: Custody Seal No.:				Cooler	Cooler Femperature(s) "C and Other Remarks:	P(s) "C and	Ofner Rem		6	0.7	18		
arran erin erin erin erin erin erin erin eri									-			Ver Uk/04/2016	2016

2960 Foster Creighton Drive Nashville: TN 37204 Phone (615) 726-0177 Fax (615) 726-3404

TestAmerica Nashville

Chain of Custody Record

		and Other Remarks: 18-52	ď	Caolox Temperature(s)	Caole					Custody Seals Infact: Custody Seal No.;
Company	Date/Time:			teceived by:	Race	any:	Company		Date/Tupe: · · ·	<u> </u>
095 Company	Date/Times	***************************************	1)	Secented by	Received	and the	Company Company	& L	Date/Tanes	Reorgius new Try Life July July July July July July July July
CONTRACTOR OF THE PROPERTY OF	Melboil of Shipment	Method o		2	ਰ :	Time:	Carro	Date:	Manufacture 1	Resignation by:
			s/OC Requirements;	Special Instructions/Q	Special i			able Rank: 2	Primary Deliverable Rank:	Denverable Requested: (, ii, ii), IV, Other (specify)
ree may be assessed if samples are retained longer than 1 month) — Disposal By Late — Archive For Months	amples are retain	be assessed if sam Disposal By Lab		Sample Disposal (A.	Sample					Possible Hazard Identification Unconfirmed
nicast laboralloriea. This sample shipment is forwarded under chain-of-custody. If the laboratory does not the instructions will be provided. Any changes to appreciation storus should be brought to fest/America statories, inc.	stripment is forwarded i Any changes to accre	ries. This sample s is will be growlided.		a upon outs: # lattoratory festAmerica	ompliance estAmetic cance to 3	accraditation of back to the To to said comple	method, analyte & a est must be shipped if Gustody affesting	e ownership of yzed, the sampli signed Chain o	piralejies, Inc. płaces li Jests/marki being ang Irrani, to date, return iki	Note: Since laboratory accreditations are subject to change, TestAmerica Laboratorials, Inc. places the ownership of method, analyte & accreditation compliance upon but subcontrast laboratorial manages accreditation in the State of Chign listed above for onalysis lesis/matrix being analyted, the samples must be shipped back to the TestAmerica laboratory or other instruction in the State of Chign listed above for onalysis lesis/matrix being analyted, the samples must be shipped back to the TestAmerica laboratories, inc. Laboratories, Ric. alterior, immediately, if all requested accreditations are current to date, return the signed Chair of Custody aftership to said correlications to TestAmerica Laboratories, Inc.
run ance - eplejad data twico	2			×	×	Water	W.	Central	7/13/18	Landfill Seep-03-071318 (490-155661-11)
run once - opload data twice	2			×	×	Water	\$	13:10 Central	7/13/18	Landfill Seep-02-071318 (490-155661-10)
run orice - upload data twice				×	×	Water	\$	12:20 Central	7/13/16	Landfill Seep-01-071318-DUP (490-155661-9)
run ence - upload data twice:	2			×	×	Water	\$	12:20 Central	7/13/18	Landfil Seep-01-071318 (490-155661-8).
run orace - upload data (wice:	N.			×	×	Water	W	14:25 Central	7/12/18	River Seep-05-071218 (490-155661-7)
ron once - upload data twice:	· N			×	×	Water	W.	14:50 Central	7/12/18	River Seep-07-071218 (490-155661-6)
run once - upload data (wice:	.			×	×	Waler	۶.	13:50 Central	7/12/18	River Seep-09-071218 (490-155661-5)
run orxer - upload data (wice)	PQ:			×	×	Water	¥	09:15 Central	7/13/18	River Seep-12-071318 (490-155661-2)
run arxo - upload data (wice)	2			×	×	Water	5	07:50 Central	7/13/18	River Seep-08-071318 (490-155681-1):
	×				X	Sode	Preservation Code	X		
Special instructions/Note:	Tota			1	1	Field	G=grab) er-hann	Time	Sample Date	Sample Identification - Client ID (Lab ID)
	i Numbe			D/PrecSec	orm MS/ D/PrecSe;	តិ d Filtered		2		
Olher:	r of co			·		anana Saji			SSOW#:	Big Rivers CCR
k - EDA: Z - alhar (spearly)	ntaine			ndard T		28.880			Project #; 49010431	Big Rivers Electric Corp - CCR & SemiAnn
	rs.			arliet (**********	38396505			₩0#:	E(Pad):
G - Amchiber S - F2SQ4. H - Ascorbig Add T - TSP Oddesatvydrafa				.ist	List	o)			# 04:	314-298-8566(Tel) 314-298-8757(Fax)
										State, Zip. MO. 6:3045
B - NaOH: N - None C - Zn Acetyte: O - AsNaO2						77.00 84.00		aγs):	TAI Requested (days):	Oly Earth City
ation Code		Requested	ıalysis					ed:	Oue Dato Requested: 8/13/2018	13715 Rider Trait North
490-155661-2			ee notes: ucky (UST)	Accrediations Required (See note): State Program - Kentucky (US	edikaladns Re Progr	λιςι Nicio				Conpany: TestAmerica Laboralories, Inc.
Page: Page 1 of 2		Sale of Origina Kentucky	E-Mail: roxanne.cisneros@lestamericainc.com	metani)	cisneros	เอเบบย์ เกษณะส			Phone:	Chen Coract: Shipping/Receiving
606 No: 490-75464.1	1 No(s):	Carrier Trocking No(s):		ne.	Кохал	Lao FW: Cisneros, Roxanno			Samples	Client Information (Sub Contract Lab)
										The state of the s

上のののう

Hng:	Date/Hne:	C and Other Remarks:	Halure(s)	Reseived by: Gooter Temps	್ ೧೯೦೩	Сопрану			Date (me:	Custody Seal No.:	Relinquishes by: Cushody Seals Intact: A Yes A No
ithe:	Date/Time:	•	Ä	Received by:	- - - - - - - - -	Company			Date/Inte: 1		- Kamanahanak
5110081-£1	Date/Times:	15	dell	Received by:	Z. 7	Company	1506	R	Date/Ting	the Hulle	Kelinquished by
nt.	Method of Shipment:				Time:			Date:			Empty Kit Relinquished by
		: Requirements	Special Instructions/QC	ial Instri	Speci		2	able Rank:	Primary Deliverable Rank: 2	Deliverable Requested: I, II, III, IV, Other (specify):	Deliverable Re
Sample Disposal (A fee may be assessed it samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Month	assessed if samples Disposal By Lab	е лізу be asse _{Прізро}	ole Disposal (A fe Return To Client	ole Disp Return	Sam					Passible Hezerd Identification:	Passible Haza Unconfirmed
is forwarded under char	ie szenche slijordent	ad taborolones. Tr) out subcanto	ince upor	on complia	yte & aggraditatio	of method; anai	e ownership (traios, Inc. pisces II	Notes: Since interactory accreditations are subject to strange. TestAmerica Luboratorica, Inc. piaces the dwise ship of method, analyse & accreditation compliance upon out subcontract tahoratories. This sample shipment is forwarded under charmorica study.	Note: Since labora
									-	The state of the s	,
2 Pan onco - upload dala twice			×	×		Water		14:15 Central	7/13/18	-anvill Seap-04-071318 (490-155861-13):	anufill Seep-0
2 Trun once - uptoad data twice			×	× ×		Water		13:50 Central	7/13/18	Pond-012-071318 (490-155661-12)	Pand-012-0713
_ X 					Ž	Preservation Code:	1:20	X	N		
Total Number of Special Instructions/Note:			Ra226Ra22	903.0/Prec: 904.0/Prec:	Field Filte Perform &	Matrix (Sympaths, Second Orwestscal), Profession, Arbit.	Type (G=comp. G=grab)	Sample Time	Sample Date	Sample Identification - Client ID (Lab ID)	Sample Identii
			S GFP		S/MSD		5,1110,11				big Rivers CCR
					(Yos				\$50W#;		355
ACE3-X				······································	01.1	100			Project#:	Project Name: His Rivers Flestor Corn. CCB & SemiAnn	Project Mame: Project Mame:
					lo)				# OM		Emak
G - Amedia H - Ascorbic Acid									PO#	314-298-8757(Fax)	314-298-8566(Tel)
D - Nijic Acid E - NaHSDA						***					Slaw, Zip: MO, 63045
B - NaOH C - Zh Acelate								-(ske	TAT Requested (days):		Earth City
Prasorvation Codes:	fed	Analysis Requested	Ana					ed:	Due Pate Requested: 8/13/2018		Address: 13715 Rider Trait North.
Joh#; 490-155661-2	· · · · · · · · · · · · · · · · · · ·		Acqediations Required (See note): State Program - Kentucky (US	ons Requi	State Pro	(A.S.					Company: TestAmerica Laboratories, Inc.:
Page 2 of 2	Kentucky		E-Maik roxanne.cisneros@lestamericainc.com	ros@te	ne cisne	E-Mako foxant			Յ Ուգոթ.:		Chara Contact: Shipping/Receiving
490-75464.2	(Roxanne		Lab P&k Cisneros,			Samples	(Sub Contract Lab)	Client Information
				Ω,	BCOF	Chain of Custody Record	of Cus	hain	(Nashville. TN 37204. Phone (615) 726-0177 Fax (615) 726-3404	Nashville. TN 37204. Phone (615) 726-0177
DS A			` . · · · ·	* · · · · ·	• •	.	, }			TestAmerica Nashville	TestAmerica Nashv

Client: Big Rivers Electric Corporation

Job Number: 490-155661-2

Login Number: 155661
List Number: 3
List Source: TestAmerica St. Louis
List Creation: 07/17/18 05:06 PM

Creator: McBride, Mike

Creator: MCBride, Mike		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ba Carrier	
Lab Sample ID	Client Sample ID	(40-110)	
400-156511-B-1-B DU	Duplicate	90.3	
490-155661-1	River Seep-08-071318	87.3	
490-155661-2	River Seep-12-071318	92.9	
490-155661-5	River Seep-09-071218	89.4	
490-155661-6	River Seep-07-071218	79.4	
490-155661-7	River Seep-05-071218	82.9	
490-155661-8	Landfill Seep-01-071318	87.6	
490-155661-9	Landfill Seep-01-071318-DUP	94.4	
490-155661-10	Landfill Seep-02-071318	96.8	
490-155661-11	Landfill Seep-03-071318	89.7	
490-155661-12	Pond-012-071318	93.2	
490-155661-13	Landfill Seep-04-071318	97.6	
600-169468-C-1-A DU	Duplicate	94.4	
LCS 160-376745/1-A	Lab Control Sample	100	
LCS 160-376796/1-A	Lab Control Sample	99.7	
LCS 160-377701/1-A	Lab Control Sample	94.1	
LCSD 160-376745/2-A	Lab Control Sample Dup	100	
MB 160-376745/23-A	Method Blank	97.1	
MB 160-376796/18-A	Method Blank	102	
	Method Blank	94.7	

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

•				Percent Yield (Acceptance Limits)
		Ba Carrier	Y Carrier	
Lab Sample ID	Client Sample ID	(40-110)	(40-110)	
400-156511-B-1-D DU	Duplicate	90.3	84.5	
490-155661-1	River Seep-08-071318	87.3	90.5	
490-155661-2	River Seep-12-071318	92.9	85.6	
490-155661-5	River Seep-09-071218	89.4	87.1	
490-155661-6	River Seep-07-071218	79.4	87.1	
490-155661-7	River Seep-05-071218	82.9	83.0	
490-155661-8	Landfill Seep-01-071318	87.6	75.9	
490-155661-9	Landfill Seep-01-071318-DUP	94.4	94.6	
490-155661-10	Landfill Seep-02-071318	96.8	85.6	
490-155661-11	Landfill Seep-03-071318	89.7	92.7	
490-155661-12	Pond-012-071318	93.2	77.8	
490-155661-13	Landfill Seep-04-071318	97.6	86.4	
600-169468-C-1-B DU	Duplicate	94.4	90.8	
LCS 160-376750/1-A	Lab Control Sample	100	86.4	
LCS 160-376805/1-A	Lab Control Sample	99.7	91.2	
LCS 160-377705/1-A	Lab Control Sample	94.1	88.6	
LCSD 160-376750/2-A	Lab Control Sample Dup	100	87.5	
MB 160-376750/23-A	Method Blank	97.1	85.6	
MB 160-376805/18-A	Method Blank	102	91.6	

TestAmerica Nashville

Page 67 of 68

Tracer/Carrier Summary

Client: Big Rivers Electric Corporation Project/Site: Sebree-Green Landfill

Y Carrier = Y Carrier

TestAmerica Job ID: 490-155661-1

2

Method: 904.0 - Radium-228 (GFPC) (Continued)

Matrix: Water Prep Type: Total/NA

matrix: Trator				Trop Type: Tetamin
				Percent Yield (Acceptance Limits)
		Ba Carrier	Y Carrier	
Lab Sample ID	Client Sample ID	(40-110)	(40-110)	
MB 160-377705/16-A	Method Blank	94.7	90.1	
Tracer/Carrier Legend	d			
Ba Carrier = Ba Carrier	r			

1

5

7

10

12

13