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Annual Review

Morgan County Water District has made progress in identify and repairing water line leaks in its
distribution system in the past year. We have been able to purchase new equipment and have
completed the first water line replacement project design to replace water lines that have
historically have been a leak problem.

We have been able to add zone meter pits at each of our water tanks and with the purchase of
a portable flow meter; we have started to identify leaks that in the past we would not have

been able to locate.

We have been able to get additional training for our Leak Detection Specialist through Kentucky
Rural Water Association and McKim & Creed

Actual Water Loss Progress

Please see below a three-year comparison of purchase water below. We have been able to
purchase less water and at the same time sale more water to our customers.

(In Millions)
2019
Water Purchased 264,208
Water Sold 113,389
2020
Water Purchased 243,851 (Change) 20,357 less purchased
Water Sold 115,696 (Change) 2,307 increased sold
2021
Water Purchased 235,275 (Change) 8,576 less purchased
Water Sold 120, 233 (Change) 4,537 increased sold

Estimated Water Loss Progress

We are making progress toward our goal of 15% water loss and we are on track this year to
reduce water purchased by another 10 million gallons in 2022.



Actual Expenditures from Surcharge Account

10/14/2021 Nesbitt Engineering Corrective Action Plan $14,702.50
10/29/2021 McKim and Creed Phocus3 Loggers $26,995.00
2/22/2022  Beartraxx Zone Meter Pits $30,480.00
5/20/2022  Beartraxx Zone Meter Pit $5,080.00 (not approved yet)

Total Spent  $77,257.50

Estimated Expenditures from Surcharge Account

We will continue to add zone meter pits where we need them throughout our distribution
system. We have also been researching the use of pressure monitoring for water leaks. We
have had a company come in and do a demo on this technology. We are also looking at
implementing Lean Six Sigma for problem solving and leak detection. Hydrant locking system
has also been researched to deter theft of service

We have could some research papers regarding pressure monitoring and Lean Six Sigma in Leak
Detection.

Additional Zone Meter Pits  $30,000
Pressure Monitoring $50,000
Lean Six Sigma $10,000
Hydrant Locks $30,000
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Abstract

The purpose of this paper is to explore the potential of a six sigma approach to reducing
water losses through a combination of water efficiency and leak detection on a private
distribution system. The paper takes the form of a case study that investigates the
implementation of water reduction strategy across an estate with 26 miles of potable water
pipe and over 200 facilities. This incorporates methods developed in the water industry such
as water loss reduction and water demand management. The paper demonstrates that large
water savings could be made through adoption of a six sigma approach. The approach has the
potential to be applied to a wide range of situations including sites with limited technology.
This case study provides a useful source for Facilities Managers involved in the management
of utilities to determine suitable water saving approaches and strategies for large estates with
private water distribution networks.

Keywords: Water loss, Six sigma, Water efficiency, Water management, Private water
supplies, Facilities management

1. Introduction

There is an increasing global awareness that water scarcity is one of the emerging issues of
this century (Morais and Teixeira de Almeida, 2007). The demand for this precious
commodity is continuingly escalating through increased population and changes in
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precipitation patterns brought on by climate change (Bates et al. 2008). Effective utilisation
of water through the reduction of wastage either within distribution (leaks) or at the point of
use (water inefficiency) remains a key problem for both developing and developed countries
throughout the world (Morais and Teixeira de Almeida, 2007).

Leakage from water distribution systems has been a widely research topic due to the large
percentage of losses encountered even on the smallest systems. Annually the global water
sector processes 32 billion cubic meters of water that is lost through leaks (Kingdom et al.,
2006) accounting for 9%-43% of the nations total production (Lai, 1991). In addition to the
physical loss of water there are other deleterious impacts relating to energy consumption,
chemical consumption potential health and environmental risks (Colombo ef al., 2009) with
an associated total financial of cost of US$15.6 billion (Kingdom et al., 2006). One such
issue is the energy consumption associated with treating and pumping leaked water (Colombo
and Karney, 2002). This is thought to account for 5-10 billion kWh of power generated a year,
in the states alone (AWWA, 2003). Water hygiene issues are also associated with burst or
leaks through the intrusion of contaminated groundwater. Karim et al., (2003) demonstrated
that a high percentage of soils and potentially harmful pathogenic organism such as coliforms
(58% and 70% of water and soil samples respectively) and faecal coliforms (detected in 43%
and 50% of the water and soil samples respectively). During low pressure events on a burst
line it is possible for these contaminants to be drawn in to the system.

Water demand management (WDM) deals with developing and implementing strategies
aimed at influencing water demand by improving efficiency to reduce average water
consumption (Brooks, 2006). WMD strategies focus on providing tools, mechanisms and
knowledge to enable users to reduce water consumption. Such tools include high efficiency
water fixtures and appliances that have demonstrated to support least cost planning strategies
for water conservation and are thus a good starting point prior to high cost capital works
(Stewart et al., 2010). The provision of knowledge aims to influence attitudes and behaviours
which can have a significant effect on water consumption (Willis et al., 2011).

An increased focus on sustainability performance from a range stakeholders has meant that
companies must also adapt to support this new core activity (Price et al., 2011; Garza-Reyes,
2015). The built environment is responsible for half of the UK’s water consumption (BIFM,
2007) thus sustainability targets are likely to include water usage. It has been reported that
UK private sector could realise savings in excess of £3.5 billion a year through the adoption
of water efficient practices (Environment Agency, 2012). These practices are also being
brought in to the Public Sector through the introduction of the Greening Government
Commitments. This has seen the Ministry of Defence (MOD) introduce water reduction
targets as part of the new regional prime contracts (FM World, 2013).

To reduce the likelihood of failure the utilisation of frameworks to support improvement
initiatives is deemed critical (Oakland and Tanner, 2007). One such framework is Six Sigma
which has gained recognition as a quality improvement methodology within the
manufacturing and service industries (Basu, 2004). It has been applied successfully to the
utilities industry (Inozu et al., 2006; Pheng and Hui, 2004) and can be used to drive
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sustainability initiatives (Zhang and Awasthi, 2014; Banawi and Bilec, 2014; Cherrafi et al.,
2016a; Cherrafi et al., 2016b). Although other frameworks, such as lean, have been proposed
to improve sustainability performance it is believed that their integration has not assisted
organisations achieve peak performance, unlike that of Six Sigma (Banawi and Bilec, 2014).

\ M ac rot h i n k Environmental Management and Sustainable Development

This case study investigates a water saving strategy implemented within an MOD estate on
the Falkland Islands using a six sigma approach.

2. Case Study
2.1 RAF Mount Pleasant Complex

Mount Pleasant Complex (MPC) is operational British Military theatre situated in the
Falkland Islands with a primary mission statement to deter and defend against foreign
aggressors. To enable the MOD to focus on their core activities infrastructure service
provision, such as power generation and water production, is outsourced.

Water services cover all aspects of water and wastewater treatment. This involves the
management of a treatment plant and distribution system in line with The Private Water
Supply Regulations. The task inherently involves the metering of water consumption around
the estate.

Following an increase in consumption over the years as well as the introduction of
environmental targets there has been an increased emphasis on the management of leaks and
water efficiency.

2.2 Water Consumption

Over the years, the activities and population of MPC have remained fairly constant. During
this time, there has been a steady 27.13% increase in water consumption from 25,339m’ in
2002 to 32,216m’ in 2009 (figure 1). This has ranged from a mean consumption of
713m’/day in May 2003 to 1270m*/day in June 2009. Despite the repair of a major leak in
July 2009, consumption continued to rise.
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Figure 1. Site Consumption
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Average domestic water consumption in the UK has been estimated at 1501/Person/day
(Waterwise, 2012). On MPC total water consumption has ranged from 356-6351 per person
per day from 2002 to 2009, roughly two to four times in excess of that in the UK, however it
should be noted that this includes non-domestic water which is used in centralised kitchens,
boiler house operations and vehicle wash-down equipment. Due to metering arrangements it
is not possible to differentiate between the two.

Under previous Environmental targets, the UK “Greening Government Commitments” the
MoD has been set targets of reducing water consumption by 7% on the estate by 2016
relative to 2010/2011 levels.

3. Case Study

“Six Sigma is an organized, parallel-meso structure to reduce variation in the organizational
processes by using improvement specialists, a structured method, and performance metrics
with the aim of achieving strategic objectives” (Schroeder et al., 2008). Using a data driven
improvement methodology Six Sigma aims to identify and significantly reduce operational
defects and variability to improve process performance (Zu et al., 2008; Laureani et al.,
2009). The six sigma methodology that was used to guide implementation was the five phase
DMAIC cycle (define, measure, analyse, improve and control) (Bergman and Klefsjo, 2003)
whereby the initial problem is defined prior to the utilisation of various tools to measure,
analyse and seek the root causes which can be removed and controlled to ensure performance
(Cherrafi et al., 2016a).

In this case study the process problem which was being addressed was water loss and water
inefficiencies. Six Sigma tools were used alongside standard water industry approaches to aid
with the measurements and analysis.

3.1 Define

The charter of the six sigma project was developed by the Water Services Manager. The
business case was based on the fact that water demand was on the verge of exceeding supply
across MPC, despite efforts to optimise water processes to maximise the inputs (Cairns et al.,
2012). The situation had led to excessive chemical consumption, increased pumping costs
and a twofold increase in operator overtime. Due to the age of the infrastructure, water
demand was likely to be excessive as a result of large leaks and inefficient water fittings.

The process improvement tool SIPOC; suppliers, inputs, process, outputs, and customers
(Table 1) was used to define the system to allow for better targeting of resources. The SIPOC
revealed that the process of water delivery could be split into three distinct levels within the
system (main feed, distribution and facilities). This identified that the main goal of reducing
overall water consumption could be achieved through a combination of leak reduction
techniques on the main distribution system and a water demand management approach within
the facilities.
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Table 1. SIPOC of water delivery

Suppliers Inputs Processes Outputs Customer
Water Potable Pumping of water Supplied MPC
Services Water Main feed 2 distribution 2 facilities Water inhabitants
3.2 Measure

An array of measurement techniques were formulated to cover each of these separate areas
and provide a holistic picture of water consumption, losses and inefficiencies, taking into
account the limited technology onsite (Figure 2).

Consumption Baseline Main feed
| 1
" Distribution Distributi Distributi
District Metered Area 1661 IstIbution istribution
i 4 Leg?2 Leg 3
(DMA) Analysis
1 1 || nl i—'—‘L—"}'
F‘Iater efficiency |Facility 1| |Facility 2| |Facility 3| |Facility 4| |Facility 5| [Facility 6
udits

Figure 2. Measurement techniques at various levels of the distribution system

The first stage of the measurement process involved determining the base line consumption
figures for the site on a day-to-day basis. This included overall consumption for the site
(Figure 1) and minimum night flow (MNF). MNF measurements provide a better indication
of leakage on the system compared to daily readings since actual demand is at its lowest
during night time (0100hrs-0300hrs) making the leakage component the highest percentage
of flow (Morrison, 2004).

The second stage of the measuring process involved the setting up and monitoring of District
Metered Areas (DMAs). A DMA is specifically defined area of a distribution system in which
the quantities of water entering and leaving the district can be metered. Flow monitoring
(particularly MNF) can be used to calculate the level of leakage within a district providing an
indication of levels of leakage within different areas and where resources should be focused
(Morrison, 2004)

Flow measurements from the final meters on the DMAs provided an indication of
consumption within individual facilities and could be fed in to the final stage Water
Efficiency Audit. The audit used a standardised form to determine if actual consumption was
inline with expected consumption based on staffing levels and fittings within the facility
(Affinity Water, 2010). Analysis of night time readings supported this by providing an
indication of leaks within individual facilities.
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3.3 Analyse

Results from the DMA analysis illustrated that the high site consumption was the result of
one particularly problematic distribution leg comprising 4 DMAs.

DMA analysis of this leg (Table 2) showed that 77.28% of the total water was lost to leakage,
accounting for 23% of total consumption for the site. The worst areas were DMA 2 and DMA
4 which lost roughly 188m® and 24 m’ a day respectively. DMA 3 and 1 experienced
comparatively lower calculated losses at 1 m’ and 2 m’ respectively.

Table 2. DMA analysis based off mean daily consumption figures (January 2010)

Expected Consumption (L) | Actual (L) | Losses (L) | Losses (%)
DMA 1 278,137 276,616 1,521 0.55
DMA 2 263,742 75,256 188,486 71.47
DMA3 14,484 13,419 1,065 7.35
DMA 4 58,484 34,602 23,882 40.83
Total 214,954 77.28%

In addition to the high percentage of water loss through leaks on this leg the water efficiency
audits revealed that a number of metered facilities experienced excessive consumption (Table
3) totalling 10 a m’°day between 2-3 . In all cases, there was significant flow (up to 150 litres
hour) during the periods of 0100-0300hrs. Water efficiency audits revealed that it was a faulty
urinal flow control devices at the facilities with meters 1, 37 and 40, whilst an external water
leak was the cause of high water consumption at meter 6.

Table 3. Water Efficiency Analysis (August 2010)

Expected daily Consumption | Mean daily consumption | Water consumption per Potential
@) (L) person per day (L) Losses
Meter 1 1,600 4,635 144 3,035
Meter 6 400 3,130 98 2,730
Meter 37 1,600 3,625 113 2,025
Meter 40 500 2,833 88 2,333
3.4 Improve

Corrective action was prioritised as per (Figure 3). Leaks were located using a combination
of visual inspections of the lines, and valve pits in dry conditions and step analysis. Faulty
urinal flow monitors were corrected, monitored and replaced if broken. In terms of DMA
analysis (Table 4) this lead to a 251m’ reduction in consumption along the leg and a drop in
the water losses from 77.28% to 17.01%. The greatest improvements were realised following
work to DMA 2 and DMA 4.
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Figure 3. Work Prioritisation based off potential water losses

Table 4. DMA analysis December 2011

Expected Consumption (L) | Actual (L) | Losses (L) | Losses (%)
DMA1 28354 25442 2912 10.27
DMA 2 13491 11962 1529 11.33
DMA 3 6419 6190 229 3.57
DMA 4 3897 3743 154 3.95
Total 4,824 17.01%

Following repairs to the main potable line, building water efficiency was targeted. Night time
meter readings revealed either leaks meter side of the building or inefficient water fittings the
most common fault was with urinal control devices. These were adjusted where possible and
replaced leading to large water efficiency savings within buildings (table 5).

Table 5. Water Efficiency Analysis December 2011

Mean daily consumption | Water consumption per | Daily Water Saving
End (L) person per day (L) (9
Meter 1 352 11 4,283
Meter 6 194 24 2,936
Meter 37 625 20 3,000
Meter 40 192 19 2,641

From the start of the trials in April 2010 there was a 39% decrease in mean monthly water
consumption from 962m’/day to 584m*/day in July 2014 (Fig 4). Over the course of a year,
this would have provided a saving of 137 million litres. A 39.3% reduction in annual
consumption from 2009 compared to 2014 (Fig 5) led to the lowest consumption figures on
record and the internal water efficiency targets for 2020.
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Figure 5. Annual Consumption
3.5 Control

Minimum night flow was used as the main control measurement (Fig 6). Investigations were
initiated in the instances where water consumption rose above 22.5m’/h in the form of further
DMA analysis and water efficiency audits around MPC. Following the initial investigations
which realised issues with the urinal control systems water efficiency training was provided
to cleaning staff. This proved a successful control measure which helped identify several
faulty urinals and leaks.
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Figure 6. Minimum Night Flow
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4. Discussion

The successful application of water management tools utilising a six sigma approach further
strengthens the notion that Six Sigma is not just applicable to manufacturing operations
(Anthony, 2007; Laureani et al., 2009). The systematic approach of this methodology allows
successful investigations to be conducted in-house whilst providing the necessary flexibility
to be tailored to distribution systems of varying sizes and sophistication. This is in
accordance with previous research which has demonstrated that sustainability performance,
especially relating to environmental sustainability can be enhanced through the use of a Six
Sigma methodology (Calia et al., 2009; Habidin and Yusof, 2012; Zhang and Awasthi, 2014).
Due to the rigorous and disciplined nature of Six Sigma methodologies (Garza-Reyes, 2015)
it is not certain if the ease of implementation could have been enhanced through the use of
simpler frameworks such as Lean (Ng ef al., 2015). In this case, application of the Six Sigma
framework achieved a 39% reduction in annual water consumption, however it is not clear if
this could have been enhanced through the utilisation of other frameworks was designed to
overcome the shortfalls of Six Sigma. Green Lean Six Sigma (GL2S) and was shown on
average to produce reductions in resource consumption by 20% to 40% (Cherrafi et al.,
2016b) which is similar to the 39% reduction witnessed in this case study however due to the
inherent differences in the sectors and organisations in which this was applied a further
casestudy on MPC would have to be conducted in order to determine if GL2S provide
significant benefits of Six Sigma.

The design and installation of more sophisticated systems will allow for the quick and
accurate capture of flow data and has the potential to greatly aid in reducing water
consumption. The installation of telemetry systems at a DMA and household level will
provide more accurate information on consumption, as well as real time consumption data in
a water distribution system, making it possible to identify leaks or inefficient water
consumption (Loureiro, 2010). Increased metering would improve the resolution of the leak
detection process, reducing the amount of time spend locating leaks or inefficiencies in the
system. In addition to metering, various sensing technologies such as IR thermographic
imaging could be used (Hawari et al, 2017) as well as considering the operating pressure of
the distribution network. It has been recognized that leakage rates increase with internal water
pressure (Wu et al, 2010) and that considering pressure driven leakage in the design stage of
the network can reduce overall leaks (Gupta et al, 2016). Considering the analytical nature of
the six sigma framework, the collection of operational pressure data from the distribution
network could be used to identify the areas in which leaks are most likely to occur and thus
be used to further reduce site water consumption.

As technological strategies can be costly and would require a detailed cost benefit analysis
before any capital works is undertaken: greater benefits are typically achieved by the fitting
of efficient fixtures and appliances (Stewart et al., 2010). It has also been documented that
high tech equipment and water efficient devices alone do not necessarily provide water
savings (Geller ef al, 1983), as end users must have an appreciation of the functions of the
devices and apply them in the correct manner (Elizondo and Lofthouse, 2010). Additionally if
these fittings are incorrectly fitted then there is the potential that large volumes of water could
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be wasted especially in public buildings (Roccaro et al., 2011). Both of these issues were
apparent within the case study and related to urinal flow control devices which were wasting
2-4 litres a minute. This was a combination of faulty devices, incorrectly fitted devices, and
cleaning staff increasing the flush frequency to reduce the amount of cleaning required.
Rectification of this issue was tackled through in house training on how the fittings worked,
how they should be positioned, and how to spot if they are working correctly. This has led to
water savings of up to 90% in some facilities.

The behavioural aspects to water reduction have been shown to play an important part in
achieving water savings. Lau (20/2) demonstrated how the promotion of knowledge and
awareness could yield significant water savings in high density housing in Hong Kong. The
effectiveness of a similar strategy when applied to a single MOD estate would be
questionable due to the high transient population with no visibility of personal water
consumption (Randolph and Troy, 2008). This is particularly relevant on this site where the
consumption patterns of domestic and non-domestic water consumption is still not fully
understood. If targeted at an organisational level so that water conservation was embedded in
to the military culture and institutionalised, then there is the potential to realise large water
savings across all estates (Randolph and Troy, 2008).

5. Conclusion

e Six Sigma methodology can been successfully utilised to reduced water loss in a
Private Water Supply Setting to meet environmental quality targets.

e The underlying principals were successfully applied to both supply side (leakage) and
demand side (water efficiency audits) to achieve a 39% reduction in annual
consumption.

e The adoption of a systematic approach to reducing water consumption can aid in
providing an effective, low cost solution even on sites with limited technology. As
water conservation begins to play a more influential role within organisations,
industry will naturally have to adapt to support these new requirements.
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ABSTRACT There is a wide range of leak management tools and techniques in water distribution
systems. This paper investigates the application of Lean Six Sigma methodology in managing losses
of water distribution systems. A DMAIC5S-TPM conceptual framework has been developed to
facilitate this approach. The proposed DMAIC5S-TPM is based on the integration of DMAIC, 58
and TPM. The 5S and TPM are often used together to develop integrated management systems.
However, in the proposed framework, the DMAIC methodology is integrated in between 5S and
TPM. This framework presents the use of Lean Six Sigma dimensions as a sustainable utility
management method that could be used by water utilities’ managers and engineers. In addition to
managing water losses, this method will enhance the effectiveness of using water resources. It could
also serve as a quality assurance tool for satisfying customer needs and expectations.

1. Introduction

Many countries are suffering from a shortage of water. Kilig (2020) stated that only (0.3%)
of the water resources around the world are classified as usable water. Azevedo and Saurin
(2018) highlighted that in water distribution systems, a level of 20% to 30% of the
worldwide produced treated water is lost. As a result, it is estimated that more than one
billion of people are living without adequate potable water. Therefore, it is necessary to
utilise a responsible sustainable approach towards managing water resources and
maintenance of distribution systems.

It is widely accepted that water loss from distribution systems has become a universal
challenge that requires tackling through a sustainable approach. This is a worrying
problem even for well developed countries that have good infrastructure and excellent
operating practices. However, the problem is more serious for developing countries, with
poor distribution system infrastructure, because it causes a serious risk and significant
economic consequences (Farley and Trow, 2005).

This paper investigates the application of Lean Six Sigma methodology in managing
losses of water distribution systems. It presents a systematic management approach based
on solid and well known international continuous improvement industrial practise. In fact,
the contribution of this paper is to introduce a novel conceptual framework that will assist
water utility managers and maintenance practitioners in achieving their business
excellence.
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This research is applying mixed method. It aims to proceed further in implementing the
proposed framework in real applications. And this will require, indeed, collecting
qualitative and quantitative data that will be used to evaluate and test the framework.

2. Losses in water distribution system (WDS)

A water distribution system (WDS) delivers potable water to consumers in a metropolis
by interconnecting reservoirs, pipes, and related accessories (Liu and Yu, 2014). It is a
complex socio-technical system that is interconnected logically, geographically, and
physically with related infrastructure critical items to deliver a potable water to various
consumers (Azevedo and Saurin, 2018). This type of interconnection will help in
hastening identifying root causes of WDS losses through defining its external
perspectives, since the whole system is integrating the social and technology aspects under
one platform.

In a recent study, Fezai et al. (2021) defined the WDS as a complex process that is
composed of multi-hydraulic elements (e.g., reservoirs and consumption nodes) which are
interconnected together by links (e.g., pumps, valves, and pipes). They have proposed a
statistical hypothesis test for leak detection which aims to evaluate the existence of leaks
in WDS. Water losses in any type of distribution systems depend on many attributes,
including specifications of the WDS pipe network and other internal and external factors
such as the utility provider operational management practise, the level of proficiency and
technology deployed to control the system (Farley and Trow, 2005). Chirica ef al. (2018)
reported that water losses (the percentage of the annual non-revenue water) reach a level
of 11% in developed countries and rise up to 65% in developing countries.

It is almost impossible to eliminate losses in WDSs due to the complexity of these socio-
technical systems. Azevedo and Saurin (2018) acknowledged the difficulty of controlling
losses in WDSs as they captured more than 130 methods from literatures that focus on
controlling different types of WDS losses. Their systematic review of previous studies on
losses in WDSs focused on the factors influencing the complexity attributes (e.g.,
engineering attributes and extensive distribution system), non-linear interactions (e.g.,
leaks not detected and variations in water consumption), diversity of elements (e.g.,
different categories of consumers and different supply sources), unexpected variability
(e.g., WDS infrastructure conditions), and resilience (e.g., continuous supply).

Lambert (2002) presented the first IWA (International Water Association) water loss task
force performance indicators as illustrated in Table 1; also known as IWA Standard Water
Balance. This approach is used widely by technical organisations, utilities, consultants,
and regulators, in many countries. Globally, the Non-Revenue Water (NRW) is
representing the main challenge that utilities providers are facing and need addressing.

Water losses could also be classified into apparent and real losses. The apparent losses can
be determined from unauthorised consumption and metering inaccuracies. On the other
hand, real losses result from leakage on transmission and/or distribution mains, leakage
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on overflows at utility’s storage tanks, and leakage on service connections up to the
measurement point. Azevedo and Saurin (2018) described the IWA as a worldwide solid
applied methodology used to assess water losses in various types of WDSs. Although, the
performance indicators are comprehensive and covering the many aspects, it has its
limitation due to the complexity of such socio-technical systems.

Table 1 IWA standard water balance, adopted from Lambert (2002)

Billed Metered
Billed Consumption (including
: Revenue
Authorised ~ water exported)
: - Water
. Consumption  Billed Unmetered
Authorised C .
Consumption onsumption
. Unbilled Metered
Unbilled i
Authorised Consumption
. Unbilled Unmetered
Consumption .
Consumption
System Unauthorised
I Apparent .
nput I osses Consumption
Volume Metering Inaccuracies Non-
Leakage on Revenue
Transmission and/or Water
Water Losses Distribution Mains (NRW)

Leakage and Overflows
Real Losses  at Utility’s Storage

Tanks

Leakage on Service

Connections up to the

Measurement Point

3. Lean six sigma (LSS)

Lean Six Sigma (LSS) as an integrated solution has become one of the most used business
process improvement methodology in the last two decades (Antony et al., 2020). Lean
and Six Sigma have different historical developments. The concept of Lean was explored
globally after the success of a Lean Production System created by Toyota manufacturing
company. It is basically focused on eliminating waste by determining the value-added
activities or steps from non-value-added activities or steps. However, Six Sigma is a data
driven approach that is focusing on reducing process variations which affect the product
performance. Literally saying, Six Sigma means having a process that produce 3.4 defects
per million opportunities (DPMO) (Franchetti, 2015).

Environmental Protection Agency (EPA) is committed to eliminate the world’s known eight
deadly wastes in water utilities by Lean management technique. These wastes are defects
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or rework, overproduction, waiting, non-utilisation of talents, transportation, excessive
inventory, motion, and overprocessing. Based on the researcher experience, Table 2
illustrates clear examples of those wastes from daily practises in WDS field.

Deploying Lean management in isolation cannot improve the process variation and,
similarly, deploying Six Sigma in isolation cannot eliminate all types of process waste. In
most of the Lean management applications, the solution is quite visible, and it just needs
a set of tools to implement the known solution. However, when the problems need
understanding of critical process parameters and the output varies due to number of
factors, then Six Sigma is the one to use (Corbett, 2011; Antony ef al., 2020).

In many of the process improvement cases, it was realised that applying Six Sigma or
Lean methodology alone might not be enough as both are complementary to each other.
For example, it is preferable sometimes to reduce the process variations in addition to
reducing the average lead time. This approach of combination is taking the advantage of
six sigma in reducing the process variations and the advantage of Lean management in the
sense of waste elimination (Antony et al., 2020). In fact, this approach was initially
triggered by George (2002); as he stated that Lean on itself cannot resolve complex
problems that require statistical data analysis techniques. Antony et al. (2017) emphasised
that integrating Lean and Six Sigma will help in achieving high efficiency and
effectiveness which will instantly boost the organisation into achieving the desired
business excellence. This is technically valid as LSS provides the required tools and
techniques that could prepare leaders for managing changes during the cycle of process
improvement.

Table 2 Types of wastes with examples from WDS field

Waste Examples
Defects Ir.npr.ope.r repair of joint leak in main water
distribution line.
Overproduction Exceeding the optimum limit of water production.
Overnrocessin Injecting non-added-value chemicals to the water
P g treatment process.
Waiting Unavailability of critical spare parts.

Non-utilised or under-

atilised resources/talents Plant operator is working as a clerk.

Water distribution network contains many

Transportation .
unnecessary lines.
Inventory Storing larger amount of chemicals than required.
. Unnecessary movement of technicians inside the
Motion oqs . .
utility plant due to improper equipment layout.
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4. The applications of lean and six sigma in water sector

Cairns and MacPherson (2017) have investigated the effectiveness of deploying Six Sigma
in private WDSs with the aim of reducing water losses. They implemented water reduction
plans in over 200 water facilities. The findings revealed the potential of huge water savings
in both supply and demand sides. It was also shown that this approach can be successfully
applied on sites with limited technologies. Although they did not focus on Lean, they used
DMAIC (Define, Measure, Analyse, Improve and Control) methodology as a key aspect
for organisations to achieve peak operational performance.

Kung et.al (2008) applied the principles of Lean management in a case study related to
water and sewage system in Edmonton, Canada. They validated the effect of the proposed
improvements using Lean techniques in productivity. There was a potential of high
effectiveness, but they stated that such improvements need to be quantified and measured,
suggesting that Six Sigma is the right method to be integrated in their future work.

EPA (2012) created Effective Utility Management (EUM) as a guide and framework for
identifying priorities, strengths, and weaknesses of water utilities. It has some attributes
and keys that assess the effectiveness of managing water utilities. It was claimed that LSS
facilitated the roadmap into achieving the EUM attributes, and hence it enabled the water-
sector to increase the profitability and improve the product quality and employee morale.

Almutairi (2020) applied LSS principles in a selected case studies and data collected from
literature review in water maintenance operations. He tested the degree of improvements
in maintenance and quality by calculating MTTR (Mean Time to Repair), MTBF (Mean
Time Between Failure), availability, reliability, and the 5S audit scores. The findings
illustrated a clear improvement in maintenance operation (i.e., the MTTR was reduced
and/or the MTBF was increased). In addition, similar improvements were noticed in other
parameters (i.e., availability, reliability, and the 5S audit scores).

Lean and Six Sigma contain many tools and techniques that can be integrated based project
selection and problem-solving methodology (Corbett, 2011; Antony et al., 2020).
However, this study will focus only in presenting the proposed integration of DMAIC (as
a Six Sigma problem-solving methodology) along with Five S and Total Productive
Maintenance (TPM) as Lean management tool and technique.

4.1 Five S (55)

The 58 tool is the basic tool that represents a proven and solid method towards sustainable
warehousing that has been used widely in very successful and leading-edge organisations.
This tool can show many hidden elements that act as obstacles, and it can motivate the
employees for upcoming culture change. 5S is a Japanese workplace organisation tool
which contains five words that start with the letter “S™: seiri (“sort” or clear selected area
from unrelated/unneeded items), seiton (“set in order” or rearranging tools and portable
equipment layout based on usage frequency), seiso (“shine” or cleaning and checking),
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seiketsu (“standardise” or applying standard procedures/instructions within workplace),
and shitsuke (“sustain” or ensuring the continuity of previous steps). It is used widely with
TPM to develop an integrated management system (Ahuja and Khamba, 2008). However,
for the proposed framework, the DMAIC methodology will be integrated in between.

4.2 DMAIC

DMAIC is a Six Sigma problem-solving method that can be elaborated as:

e Define: The business value and outcomes besides customer needs using critical
to quality (CTQ), process mapping or voice of customer techniques.

e Measure: To evaluate data that help in setting criteria and priorities.

e Analyse: By determining root causes and deep understanding of the process and
problem (using tools like Fishbone, Value Stream Mapping, and hypothesis test).

e Improve: By refining goal statements and developing achievable solutions.

e Control: To monitor the changes by developing a tracking process, applying
Statistical Process Control, and maintaining a document management system
(AlDairi, 2017; Franchetti, 2015).

4.3 Total productive maintenance (TPM)

TPM is a technique that aims to maximise the efficiency of equipment through its lifetime
by preventing unexpected quality defects, speed losses, and breakdown throughout the
process (Ahuja and Khamba, 2008). They classified 16 major losses in the manufacturing
process for example, losses in overall equipment efficiency (OEE). equipment loading
time, worker efficiency, and the use of production resources. These losses can be
eliminated by adopting the (8) main pillars of TPM identified by the authors:

e Autonomous maintenance: (e.g., cleaning, lubricating, and tightening).

e Focused maintenance: (e.g., increasing efficiency, monitoring OEE).

e  Planned maintenance: (e.g., improving MTBF and MTTR).

¢  Quality maintenance: (e.g., working towards zero defects).

e Education and training: (e.g., boosting employees' skills).

e Office TPM: (e.g., improving cross-functional collaboration).

e  Safety, health, and environment: (e.g., ensuring safety at workplace).

e Development management: (e.g., encouraging employee’s initiatives).
Swamidass (2002) highlighted the importance of integrating TQM (Total Quality
Management), TPM, JIT (Just in Time), and employee involvement in the manufacturing
environment. He emphasised that TPM is a critical success factor in improving equipment

performance and organisational capabilities. Using data collected from 179 manufacturer,
McKone et al (2001) tested the effect of TPM on performance and suggested that it
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improves the manufacturing process by supporting JIT and TQM. In order to perform a
realistic Lean maintenance, Mostafa et al. (2015) emphasised that TPM practitioners have
to ensure proper implementation of autonomous maintenance, planned maintenance, Root
Cause Analysis (RCA), safety improvement, OEE, and work order system.

5. The DMAICS5S-TPM conceptual framework

Despite the flexibility of adopting various management tools and techniques, water utility
managers have raised the concern of not having a standard framework that can improve
the operation and maintenance aspects and fit to all sizes of utilities (EPA, 2012). Building
on the water losses scheme described by the IWA standard water balance, this paper is
presenting a conceptual framework that can be used by WDS managers and practitioners
to maximise the system efficiency and organisation profitability. To apply standardisation
in tackling the investigation of different types of losses, the proposed framework aims to
maintain a sustainable and reliable approach. This approach will be achieved by
integrating the 5S with DMAIC and TPM in a platform named as DMAICS5S-TPM which
can be illustrated as shown in Figure 1.

Figure 1 The proposed DMAICS5S-TPM conceptual framework
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The first step is to identify the WDS improvement priorities, whether it is a utility, small
plant, or a selected zone. The complicated structure of WDS requires pre-identification of
areas/zones that need critical improvement. This depends on rate of losses, geographical
spread and diversity of system components which must be investigated by a dedicated
LSS team. After selecting the priority zone that require improvement, an immediate plan
has to be launched deploying the 5S technique embedded with visual management.

6. Implementation of the conceptual framework

In practice, the implementation of LSS methodology is carried out as a small project,
which might require from 4 to 6 months to complete (Antony et al., 2020). A closer look
at most of WDSs utilities and site locations can create a quick impression of how much
improvement can be made. The unawareness of cleaning, lubricating equipment,
calibrating gauges.. .etc, are not just due to lack of supervision. In fact, most water utilities
processes can be dealt with as manufacturing processes (i.e., producing/delivering water
with certain specification and standards/quality that meets customer needs). Therefore, it
requires adopting a solid scientific and sustainable method of management. In practice,
managing the workplace is the easiest part to start with for such improvements, and
therefore, utilising the 5S tool enables the managers to:
e Sort out all critical and value-added WDS parts/items from those that are not
adding any value and should be removed from the site (e.g., storing un-used
pipes, pumps, and accessories around the plant may cause a hazard within a

utility).

e Set in order, so that maintenance equipment and hand tools are placed based on
frequent usage.

e  Shine, where every part within the WDS must be cleaned from debris, oil, or any
kind of waste.

e Standardise, for instance by creating routine operation and maintenance
checklists, color-coding the waterflow lines and gauges.
o  Sustain, by ensuring the continuous improvements to previous steps.

The fast results of deploying the 5S tool will ease the implementation of the next step in
the proposed framework, which is the DMAIC problem-solving method. Before starting
the DMAIC cycle, the LSS project must be selected carefully with a clear goal statement
to avoid unexpected future implications (Antony et al., 2020). In this study, the selected
project goal statement might be “reducing particular WDS zone apparent water losses by
99%”. Then, comes the Measure phase which includes collecting relevant historical and
concurrent data of water supply and consumptions that will be needed for the next phase.
Many organisations build complex data collection and information management systems
without really understanding how the data collected can benefit the organisation (LSS
Black Belt Manual, 2013). In fact, having such valuable data without using them for
example in testing hypothesis or investigating root causes of critical issues means creating
waste of information and manpower efforts. In DMAIC cycle, the findings of the
“Measure phase” will be carried forward to the Analysis phase.
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In the Analysis phase, the LSS project team will test whether the initial scope has been
validated. Additionally, the project team has to ensure identifying the value added and
non-value-added steps within the specified process. For example, redundant pumps’ setup
or other unnecessary installations. The project team will also look at whether the cause-
and-effect technique was used to determine potential problem causes, and to prioritise
those causes. This will drive the LSS team to start looking into the Improve phase; where
the process starts by identifying the valid root causes derived from the previous step. This
is followed by selecting the best solutions that fit with the Plan, Do, Check, Act (PDCA)
continuous improvement cycle, and completed by preparing an action plan and updating
the project documents.

In the Control phase, the LSS project team begins the process by ensuring that the
customer needs are met, the Value Stream Mapping (VSM), and the eight major wastes
have been re-identified. Moreover, the team will evaluate actions taken for managing the
documentation process. Documentation is very important to ensure what has been learned
from the LSS projects is systematically shared within the organisation for implementing
solutions and supporting on-going training (LSS Black Belt Manual, 2013). Finally, the
team will check the existence of a process monitoring tool (e.g. control chart) to secure
the objective of continuous improvement. Process monitoring is very important in the
Control phase. According to Woodall and Montgomery (2014), it should monitor mput
variables so that improvement from the previous stage can be maintained over time.

Despite the improvements in the selected LSS project zone, WDS’s assets are still in need
of a sustainable maintenance management tool, where lack of maintenance awareness can
be addressed. Therefore, integrating the TPM technique will boost the overall performance
which will enhance the infrastructure stability and operational resilience of the WDS. The
idea behind integrating TPM after the DMAIC is due to the fact that TPM will be
continuously running as a standalone Lean method after succeeding in completing the LSS
project in that specific zone. In other words, the operation and maintenance team
responsible for that zone are committed towards achieving optimum targets of zero
breakdowns, zero accidents, zero defects, and zero readjustment (Ahuja and Khamba,
2008). Ngadiman et. al (2012) emphasised that TPM acts as a proactive method that aims
to determine operational issues and plan to prevent their occurrences. In fact, the TPM is
integrating both maintenance and problem-solving activities within the responsibilities of
any plant operator rather than depending only on maintenance staff. For example, along
with basic maintenance skills, operators have to be trained in dealing with six major types
of pump losses, including setup and adjustment losses, speed losses, breakdown losses,
stoppage losses, quality defect losses, and equipment losses. These will lead to continuous
improvement of the overall system OEE, availability, reliability, and maintainability. The
whole DMAICS5S-TPM implementation cycle is repeated for other zones based on
operation and maintenance priorities.
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7. Conclusion

This paper proposed a conceptual framework that can be used by WDS managers and
practitioners to maximise the system efficiency and organisational profitability. The
proposed DMAICS5S-TPM is based on the integration of DMAIC, 5S and TPM. The 58
and TPM are often used together to develop integrated management systems. However, in
the proposed framework, the DMAIC methodology is integrated between 5S and TPM.

The proposed DMAICS5S-TPM conceptual framework presents the use of Lean Six Sigma
dimensions as a sustainable utility management method and aims to maintain a sustainable
and reliable approach.

The framework must be evaluated and tested in real application. The implementation cycle
starts by applying 5S as a Lean management tool followed by the DMAIC Six Sigma
problem-solving technique and accomplished by adopting the TPM towards achieving
optimum targets of zero breakdowns, zero accidents, zero defects, and zero readjustment.

It has been shown that the implementation of this framework could help practitioners in
developing continuous improvement of the overall WDS networks through proper
management of workplace. It could also help in achieving standard excellence of OEE,
availability, reliability, and maintainability that will satisfy customer needs.
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Abstract: This article proposes a novel methodology to determine the optimal number of pressure
sensors for the real-time monitoring of water distribution networks based on a quality hypervolume
indicator. The proposed methodology solves the optimization problem for different numbers of
pressure sensors, assesses the gain of installing each set of sensors by means of the hypervolume
indicator and determines the optimal number of sensors by the variation of the hypervolume indicator.
The methodology was applied to a real case study. Several robustness analyses were carried out. The
results demonstrate that the methodology is hardly influenced by the method parameters and that a
reasonable estimation of the optimal number of sensors can be easily achieved.

Keywords: real-time monitoring; pressure sensors; optimization; multi-objective; hypervolume

1. Introduction

Water distribution networks (WDN) constitute vital infrastructure to ensure drinking
water in sufficient quantity and quality for users. Real-time monitoring of these networks
is essential to ensure the quality of the service provided. This is achieved by employing
on-site sensors to measure certain water quality (e.g., pH, temperature, contaminants) and
hydraulic (i.e., pressure and flowrate) parameters [1]. These sensors produce different
types of data (e.g., flowrate, pressure, contaminants concentration) that can be used in
different activities. Only a limited number of sensors can be installed in a given WDN
due to budget constraints. Moreover, these WDN may rapidly increase in complexity (as a
function of the area served), resulting in a challenging task of real-time monitoring of large
networks when few sensors are installed [2].

Numerous methods have been developed over the recent decades to find the optimal
location for sensors to detect contamination events in real time and mitigate the associ-
ated effects. In the Battle of the Water Sensor Networks [3], fifteen different approaches
of optimal sensor location for contaminant detection were compared according to four
different objectives. Aral et al. [4] blended four distinct criteria into one single objective
which was solved using genetic algorithms. According to Weickgenannt et al. [5], the risk
of contamination is explicitly evaluated as the product of likelihood of not detecting the
contaminant intrusion and the corresponding consequence (water consumed). In a different
approach, Zhao et al. [6] attempted to minimize the consumption of contaminated water
prior to contamination detection. More recently, Naserizade et al. [7] used multi-objective
optimization and a multicriteria decision-making technique whilst Ponti et al. [8] proposed
a new multi-objective evolutionary algorithm which showed improvements over NSGA-II.
However, sensor location techniques aiming at monitoring water quality parameters may
not provide the best solutions for hydraulic parameters since they have different goals in
the utility activities.
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In particular, pressure data are widely used by water utilities in the real-time mon-
itoring of WDN for creating alerts and use in hydraulic modelling calibration and pipe
burst detection. Alarm systems can be designed to respond to the occurrence of abnor-
mal pressure values (low or high pressure) at specific locations of the network [9]. The
calibration process of hydraulic models requires pressure data from specific locations
of the network to calibrate high uncertainty variables such as nodal demands and pipe
roughness coefficient [2,10]. Pipe burst detection and location techniques use pressure data
in a variety of ways, for instance, to carry out inverse analysis of the pipe burst location
(using hydraulic simulation and optimization) [11,12] or by using a data-driven classifier
approach [13].

Distinct methods have been proposed in the literature to optimally locate pressure
sensors in WDN, most of them focusing on the total gain of sensor placement considering
different aims. Cao et al. [14] positioned pressure sensors in such a way as to represent the
pressure patterns of the homogeneous area of the WDN. Zhao et al. [15] aimed at maximiz-
ing the detection coverage rate of pipe burst events whilst Raei et al. [16] aimed at reducing
the detection time of these events. Both Casillas et al. [17] and Steffelbauer et al. [18] fo-
cused on maximizing the percentage of leak scenarios correctly identified (according to the
introduced criteria). Sarrate et al. [19] focused on maximizing the leak detectability perfor-
mance. Furthermore, the maximization of nodal pressure sensitivities was considered both
by de Schaetzen et al. [20] and Francés-Chust et al. [21]. The maximization of the accuracy
of the hydraulic model was also considered by Kapelan et al. [22] and Behzadian et al. [23].

Ideally, the optimal location and number of pressure sensors should be determined
simultaneously. Nonetheless, most of the previously presented methods are not able to
directly provide the optimal number of pressure sensors to be installed. As a result, the
number of pressure sensors to be installed in a WDN is usually defined using different
criteria. Sarrate et al. [19] and Sanz et al. [24] defined the number of pressure sensors
for pipe burst detection by budget limitations whilst both Sophocleous et al. [11] and
Wu et al. [25] used a metric of the number of households per pipe unit length. For the same
objective of pipe burst detection, Soldevila et al. [26] used a metric based on the network
size, and Quintiliani et al. [27] used engineering good sense. Regarding pressure sensors
for model calibration, de Schaetzen et al. [20] used the number of households per unit
length to decide the number of sensors whilst Wéber et al. [2] emphasized the minimum
percentage of calibration errors to be achieved.

This article presents a novel methodology to determine the optimal number of pres-
sure sensors in a WDN. The major advantage is the possibility to be coupled with the
existing optimization methods of sensor location (such as those previously presented), thus
providing the optimal number according to the considered objective functions. Further-
more, the methodology does not require previous knowledge on sensor installation costs
nor the consideration of costs in the optimization problem itself. The methodology uses
the hypervolume indicator [28] to measure the total gain of installing different numbers
of pressure sensors (according to the objective functions being considered) with a single
value. In order to reduce the number of solved optimization problems, a discrete set of
numbers of sensors was established in a distributed and representative way for which the
optimization problem would be solved. A trade-off function was then fitted to the hyper-
volume data, which can be interpreted as a compromise between the total gain (using the
hypervolume) and the number of sensors. Finally, the optimal number of pressure sensors
was determined by assessing the evolution of the hypervolume indicator as a function of
the number of sensors, specifically by identifying the point of maximum curvature of the
hypervolume data. From that point onwards, the inclusion of another sensor was rather
not worth the increment on the total gain.

This methodology is demonstrated through application to a real WDN. The pressure
sensors were located using an optimization method based on the maximization of nodal
sensitivities to both pipe burst events and variations of the pipe roughness coefficient. The
obtained results are discussed and the most relevant conclusions are drawn.
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The main novel contributions are as follows: (i) the proposal and application of
the hypervolume indicator to quantify the total gain associated with a given number
of pressure sensors and (ii) the application of different techniques to detect the point of
maximum curvature aiming to determine the optimal number of pressure sensors.

2. Methodology
2.1. General Approach

A flowchart of the proposed methodology is present in Figure 1 and is composed of
six main steps: (1) definition of the maximum number of sensors; (2) establishment of a
discrete set of numbers of sensors; (3) optimization of the pressure sensor locations; (4)
assessment of the total gain of sensors; (5) trade-off function calculation; (6) determination
of the optimal number of pressure sensors. The following sections further detail each step
of the proposed methodology.

I Definition of the maximum number of sensors ]

N

I Establishment of a discrete set of numbers of sensors I

Discrete set of the number of sensors

Additional data or
processes required by the
optimization problem

Optimization of the pressure sensor location, solved
once for each number of sensors in the discrete set

Set of Pareto fronts, one for each number of sensors in the discrete set

| Assessment of the total gain of sensors I

Set of hypervolunie values, one for each number of sensors in the discrete set

| Trade-off function calculation I

Complete set of hypervolume values

Determination of the optimal number of pressure
SeNnsors

Figure 1. Flowchart of the proposed methodology.

2.2. Definition of the Maximum Number of Sensors

The optimal number of pressure sensors is determined by analyzing the variation
of the total gain (using the results of optimization problems) with the number of sensors.
However, solving optimization problems for an incremental number of sensors (e.g.,
between 1 and 150) can be computationally expensive due to the exponential increase
in the search space. For example, considering 20, 21 and 22 sensors in a total set of 150
possible locations results in 3.63 x 10%4,2.24 x 10% and 1.31 x 102 possible combinations
of sensors, respectively. Therefore, the maximum number of installed sensors, Ny, is
firstly defined, aiming at minimizing the computational burden by limiting the number of
optimization problems to be solved.

Different approaches can be used for the definition of the maximum number of
pressure sensors in a WDN, for instance, by using economic criteria based on the size of the
WDN [18] or by determining when the gain of installation of an additional sensor has no
significant improvement [15], taking into account the total number of possible locations [16]
or the available budget [23,27].

2.3. Establishment of the Discrete Set of Numbers of Sensors

A discrete set of numbers of sensors is established between 1 and the maximum
number of sensors Ny, for which the optimization problem will be solved. The established
set does not have to be a continuous sequence of natural numbers, for instance, it could
be1,5,10,15, ..., Ny The aim is to reduce the number of optimization problems to
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be solved whilst leaving enough results to characterize the total gain as a function of the
number of sensors between 1 and Ny,;y. As such, different sets of the number of sensors
can be considered, for instance, with an evenly distributed number of sensors between 1
and Ny, or with a higher density of observations in the lower number of sensors. The
effect of different discrete sets of the numbers of sensors is assessed in this article.

2.4. Optimization of the Pressure Sensor Locations

The total gain with the installation of pressure sensors depends on the method used
for locating those sensors. Different pressure sensor location methods can be coupled to the
proposed methodology, based on different optimization problem formulations [2,15-23,29].

A method to optimally locate pressure sensors based on the maximization of nodal
sensitivities is considered to demonstrate the performance of the proposed methodology.
This method is based on the formulation of an unconstrained multi-objective optimization
problem, in which the decision variables are the pressure sensor locations (using nodes as
possible locations). It requires the prior computation of two pressure sensitivity matrices
S1 and S2 (one for the pipe roughness coefficient and the other for the pipe burst size,
respectively). The size of the obtained matrices is the number of pipes x the number
of nodes and the number of nodes x the number of nodes, respectively. As such, S1;;
refers to the variation of the pressure in node j with respect to the variation of the pipe
roughness coefficient of pipe i. Similarly, 52;; refers to the variation of the pressure in node
j with respect to the variation in the pipe burst size in node i. Further details regarding
pressure sensitivity analysis can be found in the works by de Schaetzen et al. [20] and
Lansey et al. [30].

Accordingly, two objective functions are formulated for a given sampling design X
of sensor locations. The first function f1 is defined according to de Schaetzen et al. [20]
by using a compromise programming formulation. It aims at maximizing the sensitivity
to the pipe roughness coefficient that the sensors cover (f4) whilst ensuring the evenly
spread geographical distribution of sensor locations by maximizing the entropy according
to Shannon’s definition (fg). Functions f4 and fg are defined as follows:

Np
Maximize fo = Y, a;,  wherea; = max(51i,j) @
i=1 jeX
Np
Maximize fg = — Y, p; X logy(p;),  where p; = ZN“;; )
i=1 i=1 %

where Np is the number of pipes.

Finally, the two functions f4 and fg are combined together into f; by taking the
weighted sum of the two functions.

The second function f; aims at directly maximizing the sensitivity of sensors to pipe
burst events and can be computed as follows:

Nn
Maximize f, = Y, a;, wherea; = m%g‘(szi,j) ®)
i=1 IS

where Nn is the number of nodes.

Further details regarding the formulation of the objective functions can be found in
the work by de Schaetzen et al. [20].

The optimization problem should be solved for each number of sensors in the discrete
set. The results of each optimization problem are a single set of pressure sensor locations
(for single objective optimization) or a set of optimal combinations of sensors (for multiple
objective functions). In the latter case, a Pareto front of solutions is obtained; each solution
of a Pareto front refers to a specific combination of sensors for which no other combination
exists that presents better results for both objectives. Each optimal combination is char-
acterized by the values associated with each objective function. These values are used to
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assess the gain of installing the different number of sensors in the WDN. Note that the same
objective functions and optimization method should be used for all numbers of sensors in
the discrete set.

2.5. Assessment of the Total Gain of Sensors

The result of the previous step is a Pareto front for each number of sensors in the
discrete set. Each Pareto front embraces all the possible combinations of sensors for that
specific number of sensors.

The assessment of the total gain for a given number of sensors is not a trivial task
as the gain can be described by multiple objective functions and, therefore, can have
multiple different values; consider the example presented in Figure 2a, where a single
optimal configuration of five sensors is depicted with a red dot. The gain of that specific
configuration of sensors is characterized by three different values in accordance with some
hypothetical objective functions 1, 2 and 3 to maximize (these are deliberately different
from f1 and f, since the methodology can be adopted to different optimization problem
formulations with different dimensions). Furthermore, multiple optimal configurations
might exist for a given number of sensors due to a trade-off between the objectives. This is
represented in Figure 2b with a Pareto front of four optimal combinations of five sensors
depicted with red dots. Note that the increase of objective function 3 will lead to the
decrease of objective functions 1 and 2 as a trade-off between these contradictory objectives.

Objective Objective

I function 3 T function 3

(a)

‘ Optimal configuration

of sensors

@ Hypervolume

v e
~a i ~a
Objective Obje

Objective ctive

function 2 function | function 2

(b)

Figure 2. Characterization of the total gain for a given number of sensors using the hypervolume indicator.

In order to assess the total gain of installing a different number of pressure sensors,
the quality of each obtained Pareto front is assessed using a quality measure [28,31-36].
This calculation leads to a single value for each Pareto front, characterizing the total gain
associated with each specific number of sensors.

The use of the hypervolume indicator [28] is proposed herein to measure the quality of
each Pareto front. It is one of the most widely used quality measures, the main advantages
whereof being its easy interpretation and properties, such as guaranteeing strict monotonic-
ity regarding Pareto dominance [37]. Nonetheless, this indicator also has disadvantages,
such as sensitivity to the presence or absence of extreme points in a Pareto front [38]. In
sum, this indicator considers the “volume” (i.e., in as many dimensions as the number of
the objective functions) of the region of the objective space dominated by the set of optimal
solutions in relation to the global worst point. Note that the hypervolume has no defined
units, and its magnitude is related to the objective functions used. The hypervolume is
graphically depicted in Figure 2 as a grey volume and considering the global worst point as
(0,0,0). The formal mathematical definition of the hypervolume can be found in the work
by Guerreiro et al. [37].

Different methods of the hypervolume calculation have been developed [37-42], with
different efficiency levels against high dimensionality problems [37]. The efficiency of the
hypervolume calculation in this particular methodology is not a major concern because
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no high dimensionality is expected and a reduced number of hypervolume calculations is
required (specifically, one calculation for each Pareto front).

2.6. Trade-Off Function Fitting

The result of the previous step is a set of hypervolume values, with one value associ-
ated with each number of sensors in the discrete set previously defined in Section 2.3. As
the number of installed pressure sensors increases, the hypervolume also increases since
more sensors lead to a higher total gain. This can be interpreted as a trade-off between
the total gain of installing pressure sensors (using the hypervolume) and the number
of sensors.

Therefore, observations of the hypervolume are used to derive a trade-off function
that describes the behavior of the hypervolume (interpreted as the total gain) as a function
of the number of sensors. By doing so, it is possible to estimate the total gain associated
with the number of sensors for which the optimization problem is not solved.

Different algorithms can be used to fit a function to the hypervolume values by solving
the nonlinear least-squares problem. A review on numerical methods for nonlinear least-
squares optimization problems can be found in the work by Yuan [43]. The use of the
Levenberg-Marquardt method is proposed to optimally fit a function by finding its optimal
set of parameters. It is a well-established method with fast convergence, although it may
be sensitive to the initial parameters guess.

Distinct trade-off functions (with different mathematical formulations and numbers
of parameters) can be fitted to the same hypervolume data. In this study, the well-known
root-mean-square error (RMSE) is used to assist in deciding which function (after the
fitting) best describes the hypervolume data. The smaller the value of the RMSE is, the
better the fitted function represents the behavior of the hypervolume.

The selected fitted function is used to derive estimations of the hypervolume for the
complete set of numbers of sensors between 1 and Ny,.

2.7. Determination of the Optimal Number of Pressure Sensors

The hypervolume estimations are analyzed in order to determine the optimal number
of sensors. This optimal number corresponds to the point where the inclusion of another
sensor does not significantly improve the increment on the total gain. Such a point is
defined as the point of maximum curvature in the hypervolume curve. The mathematical
formulation for the point of maximum curvature can be found in the work by Satopaa
etal. [44]. This point is defined herein as the “knee/elbow” of the trade-off function and can
be identified using different automatic techniques [44-47]. The two techniques used herein
are based on the works of Satopaa et al. [44] and Salvador and Chan [46], respectively. The
performance of both techniques is assessed later in the article.

The first technique, the Kneedle method, starts by rescaling the estimated hypervol-
ume data to [0,1], leading to the normalized hypervolume values, HV,;ps,. The number
of sensors between 1 and N, should also be rescaled to [0,1], leading to the normalized
number of sensors values, Nyorm. These values are represented in Figure 3 as black circles
and squares, respectively, considering Ny = 15 in this example. Finally, the differences A
between HVyorm and Nyorm are calculated, as exemplified with grey arrows and triangular
markers in Figure 3. The optimal number of sensors, Nopt, is selected as the number of
sensors that presents the maximum difference.
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Figure 3. Determination of the optimal number of sensors based on the evolution of the hypervolume
by using the Kneedle method.

The second technique, the L-method, determines the “knee/elbow” as the point that
best divides the hypervolume data into two straight lines. Pairs of lines are fitted to the
hypervolume data using a linear regression procedure, and their junction point is the
looked-for “knee/elbow”. Each line must contain at least two points and start at either
end of the hypervolume data. Figure 4 shows all the possible pairs of straight lines for an
example of the hypervolume data considering Nyux = 7. The seven hypervolume values
are presented both as blue or orange circles (either they are on the left or right side of the
junction point). The corresponding fitted straight lines are represented with blue or red
dashed lines, respectively. The number of sensors tested for the optimal number is in a
blue diamond. The optimal number of sensors is the junction point that minimizes the
weighted RMSE for the two linear parts of the hypervolume data.

Second technique
Test for three sensors Test for four sensors
Hypervolume
values

Fitted straight

lines

Hypervolume
Hypervolume

Number of sensor Number of sensors
Tested number
Test for five sensors Test for six sensors / of sensors
Number of sensors Number of sensors

Figure 4. Determination of the optimal number of sensors based on the evolution of the hypervolume
using the second technique.

The final optimal locations can be found in the Pareto front related to the optimal
number of sensors Nyp. Nonetheless, the Pareto front might not have yet been obtained
(i.e., when Ny, was not considered in the discrete set). In these cases, the optimization
problem should be solved for the number of sensors equal to Nyp:.

3. Case Study

This methodology is demonstrated in a real WDN with a total network extension of
ca. 70 km, 2200 service connections and an average inlet flowrate of about 60 m?/h. The
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supplied area consists mainly of single-family houses with irrigated gardens, most of them
with a swimming pool. The WDN also supplies a few golf courses. The hydraulic simula-
tion model was developed in EPANET [48] and included four storage tanks, 4474 pipes
and 4429 nodes, of which 2200 were consumers with an individual hourly demand pattern.
Figure 5 presents the layout of the hydraulic network.

B N
\ ¥
E‘:‘\( P
Al 3 “43
>\ A “,\‘ \
f‘)_" ;\’) X
J A |
SEAN

Figure 5. Layout of the case study.

The maximum number of installed sensors, Ny, was determined based on the
intrinsic network characteristics, namely, on network length. A maximum of one sensor per
kilometer of pipe network was adopted according to several Portuguese expert opinions,
leading to Ny = 70 sensors (i.e., one sensor per km).

Five discrete sets of numbers of sensors were defined. The objective was to assess if
major differences in the optimal number of sensors were found when considering distinct
sets of numbers of sensors. These five sets presented distinct characteristics and were
defined as follows:

Set 1 = [1,10,20,30,40,50, 60, 70] @
Set 2 = [1,10,30,50,70] )

Set 3 = [1,10,20,30,70] 6)

Set 4 = [1,5,10,15,20,25,30, 70] @)
Set5=[1,2,3,...,24,25,70] ®)

Note that both Set 1 and Set 2 attempted to describe evenly distributed observations
of the hypervolume between 1 and Ny, whilst Set 3, Set 4 and Set 5 incorporated a higher
density in the lower number of sensors. Furthermore, the number of observations highly
varied between the sets: Set 2 and Set 3 contained only five numbers of sensors (leading
to five optimization problems to be solved) whilst Set 5 contained 26 numbers of sensors
(leading to a total of 26 optimization problems).

The method described in Section 2.4 was used to optimally locate the pressure sensors.
Note that other methods can be used with distinct objective functions (both in number and
formulation). Two pressure sensitivity matrices were computed prior to the optimization
problem itself. A variation of Hazen-Williams’s pipe roughness coefficient of 10 was
considered for the computation of the first matrix. The second matrix was obtained by
generating a burst of fixed size for every node of the hydraulic model with a single emitter
coefficient of 0.25 (leading to an average burst of 5 L/s). The hydraulic simulations were
carried in EPANET [48].

The optimal sensor location for a given number of sensors was formulated as an
unconstrained multi-objective optimization problem. The decision variables were the nodes
where pressure sensors could be potentially installed, and all the nodes were considered as
possible locations. The two objective functions presented in Section 2.4 were considered,
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aiming at the maximization of nodal pressure sensitivities to both pipe roughness coefficient
variations (f1) and pipe burst events (f5).

The problem was solved once for each number of sensors in each of the five discrete
sets. When the number of sensors appeared in more than one set (e.g., 70), the problem
was only solved once. The NSGA-II algorithm was applied in the Python environment
using the Pymoo package [49] to solve several optimization problems. Discrete variables
and integer encoding were used for problem formulation; each discrete location (i.e., node)
was translated by an integer value. A population member is a set of locations for the
pressure sensors and each variable of a population member represents a possible pressure
sensor location.

The following NSGA-II parameters were used: random integer sampling and selection
operators; integer polynomial mutation with the probability p;, = 0.05 and index parameter
i, = 20; simulated binary crossover with probability p. = 0.95 and index parameter . = 20.

A population size of 100 was considered and all NSGA-II runs were carried out for
500 generations. As such, each NSGA-II run (i.e., solving an optimization problem for a
given number of sensors in a given set) resulted in 500 x 100 = 50,000 objective function
evaluations. The optimization problems were solved using an Intel Core i5-8250U processor
of 1.80 GHz and 8 GB of memory, with a total running time of around 1 h per optimization
problem. Table 1 presents the number of objective function evaluations associated with
each of the five discrete sets; compare the computation effort (i.e., the number of objective
function evaluations) in Set 2 and Set 3 (both with five optimization problems to be solved)
with that of Set 5 (with 26 optimization problems to be solved).

Table 1. Number of objective function evaluations for each discrete set.

Number of Objective Function
Sets of Numbers of Sensors Observations ]Evaluations
Set 1 = [1,10,20,30,40,50, 60, 70 8 400,000
Set 2 = [1,10,30, 50, 70] 5 250,000
Set 3 = [1,10, 20,30, 70] 5 250,000
Set 4 = [1,5,10, 15,20, 25, 30, 70] 8 400,000
Set5=11,2,3,...,24,25,70] 26 1,300,000

The result of each optimization problem was a Pareto front of optimal pressure sensor
locations, according to the objective functions f1 and f,. For the sake of simplicity, the
obtained Pareto fronts for 10, 20, 30 and 40 sensors are depicted in Figure 6. Each circle
represents an optimal configuration of either 10, 20, 30 or 40 sensors.

SR

Optimal confgurations of 10 sensors
Optimal confgurations of 20 sensors
« Optimal confgurations of 30 sensors

s Optimal confgurations of 40 sensors

10 15 50 55
Objective function f

Figure 6. Example of obtained Pareto fronts for 10, 20, 30 and 40 sensors.

The hypervolume indicator was calculated for each Pareto front of each set of numbers
of sensors, leading to a total of five sets of Hypervolume values (i.e., one for each set of
numbers of sensors). The global worst point was considered equal to (0,0) since both
functions aimed at the maximization of the objective function. The calculation method for
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Hypervolume
1
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the hypervolume was based on variant 3 of the algorithm proposed by Fonseca et al. [42].
The five sets of hypervolume values are depicted in Figure 7 as black triangles.

Set 2 Set 3 Set 4 Set 5
e /,_;A e A
& A w S~
ys A
A
I's
i
A A A s
1 I Fitted function F,
s £ . . .
! I Fitted function F;
i Fitted function F5
1 —— Fitted function F,
— Fitted function F
x g i A Original hypervolume values
10 20 30 40 30 60 70 0O 10 20 30 40 50 60 70 O 10 20 30 40 30 60 7O O 10 20 30 40 30 60 70
Number of sensors

Figure 7. Estimated hypervolume values using different fitted functions F; and different discrete sets of numbers of sensors.

Five different functions, F;, were considered to describe the hypervolume data as a
function of the number of sensors, N:

F(N) = aN? ©)

E(N) = (aN)/(b+ N) (10)
F5(N) = a+blog,(N) —cN (11)
E(N)=ae' N fcefN (12)
Es(N) =a(N+0b)° +d (13)

where 4, b, c and d are the function parameters. These parameters, once optimized, can
represent the curve of the hypervolume as a function of the number of sensors. Note that
different functions can be considered to describe the increasing behavior one can see in
Figure 7 in black triangles.

The Levenberg-Marquardt method was used to fit each function F; to each set of
hypervolume values by finding the optimal set of parameters. This was done by using
MATLAB'’s Curve Fitting Toolbox. A reasonable initial parameter guess was found by
coarsely gridding the parameter space. This was carried out to cope method sensitivity
to the initial parameters. Figure 7 presents in colored lines the estimated hypervolume
values obtained by using each model F;. The original hypervolume values are represented
as triangular black markers.

Table 2 presents the five functions’ specific parameters found using the Levenberg-
Marquardt method for Set 1 of hypervolume values.

Table 2. Fitted functions’ parameters for Set 1 of hypervolume values.

Fitting Function a b c d
Fi(N) = aN? 532,809 0.308 - -
E(N) = (aN)/(b+ N) 2,007,063 6.465 - -
F3(N) = a+blog;o(N) —cN 144,141 1,190,045 7835 -
Es(N) =aet N cedN 1,665,878 0.001 —1,733,051 —0.129
Fs(N) = a(N +b)" +d —136,128,665 10.779 ~1.772 1,861,283
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The RMSE was calculated for each function F; of each set of numbers of sensors in
order to assist in deciding which function F; best describes the hypervolume data. The
obtained results are presented in Table 3, with the best fitted function for each set of
numbers of sensors presented in bold and shaded areas. Finally, the optimal number of
sensors Nypt (considered as the point of maximum curvature) was determined using an
automatic detection technique. The two distinct techniques presented in Section 2.7 were
used for each function F; of each set of numbers of sensors, with the obtained results
presented in Table 3. Figure 8 presents the application of both Kneedle method and
L-method techniques to the estimated hypervolume for the F5 function of Set 1.

Table 3. RMSE and the optimal number of sensors Ny for the different fitted functions and discrete sets of sensors. The
results for the best-fitted function of each discrete set are presented in bold and shaded area.

Number of Sensors’ Set F;(N) F>(N) F5(N) F4(N) F5(N)
RMSE 22 % 10° 6.0 x 10% 1.9 x 10% 2.0 x 10% 1.5 x 10%
Set 1 = [1,10,20,30, 40,50, 60, 70] Ngpt (Kneedle method) 20 17 16 18 17
Nopt (L-method) 20 16 16 17 16
RMSE 2.7 x 10° 7.6 x 10% 22 x 10* 3.0 x 10% 2.6 x 10%
Set 2 = [1,10,30,50,70] Nopt (Kneedle method) 20 18 16 18 17
Ngpt (L-method) 20 17 16 16 16
RMSE 3.3 x 10° 89 x 10% 29 x 10% 1.0 x 10* 3.3 x 10%
Set 3 = [1,10,20,30,70] Nopt (Kneedle method) 19 17 16 17 17
Nopt (L-method) 20 16 16 16 16
RMSE 2.8 x 10° 7.9 x 10% 6.1 x 10* 14 x 10* 22 x 10%
Set 4 = [1,5,10,15,20,25,30,70] Nopt (Kneedle method) 19 17 16 17 17
Ngpt (L-method) 19 16 16 16 16
RMSE 4.1 x 10° 1.3 x 10° 6.4 x 10% 1.5 x 10% 2.4 x 10%
Set5=[1,2,3,...,24,25,70| Nopt (Kneedle method) 20 18 16 17 17
Nopt (L-method) 21 17 16 16 16

T 0.7 . RMSE between the fitted lines and hypervolume data

0.6

> 4-"’ bl oo
= 08 e s
) 05 = % oo’
; "
o 5 < ~ % oo’
T 06 J y &
. ) 04 ¢ ® RMSE ovalues
S 04 0.3 :: Best fitted lines
g & N o)
o N ! 02 :E
Z 02 Nyorm 5 ® Hypervolume
HV,, 0.1 <] . .
Z — Fitted lines
Difference A ¥
0 - 0 = 1N,

O 10 20 30 10 50 60 70
Number of sensors Number of sensors

(a) (b)

Figure 8. Optimal number of sensors for the F5 function of Set 1 using (a) the Kneedle method and (b) the L-method.

4. Discussion

The increase in the number of installed sensors led to a higher total gain. Nonetheless,
the marginal gain decreased when considering additional sensors. This is visible in Figure 7
in black triangles. This figure shows that regardless of the considered number of sensors in
the set, the function F; (grey line) clearly fails to mathematically describe the trend of the
hypervolume as a function of the number of sensors, whereas the remaining functions can
approximately describe the hypervolume variation.

Table 3 presents better insights regarding the fitting capabilities of the different func-
tions F; for each discrete set of numbers of sensors. The best fit corresponds to the smallest
values of the RMSE. Complex models Fy and F5 (i.e., both with a larger number of parame-
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ters) presented the best fitting results (in bold) for most sets of numbers of sensors, except
for Set 3, for which Fj3 led to the lowest RMSE values.

The first robustness analysis was carried out to determine the effect of the different
functions F on the optimal number of sensors. For each technique (Kneedle method and L-
method) of each set of numbers of sensors, it was possible to verify that the optimal number
of sensors did not significantly vary with the fitted functions F; to estimate the hypervolume
value (note that results from F; were excluded from analysis). Technique 1 presented higher
variability in the optimal number of sensors, ranging from 16 to 18. Technique 2 presented
smaller variability, between 16 and 17. Therefore, and as long as selected functions F;
(and respective parameters) can properly represent the hypervolume as a function of
the number of sensors, a good estimation of Nopt can be obtained (considering either the
Kneedle method or the L-method). )

The second robustness analysis was carried out to analyze the effect of different
discrete sets of numbers of sensors on the optimal number of sensors. For each technique
and function F;, it was possible to verify that the optimal number was relatively stable for
the different sets, and no differences greater than one were found. Thus, and as long as
the selected discrete set of numbers of sensors can properly represent the hypervolume
as a function of the number of sensors, a good estimation of Nyy+ can be obtained. This
allows for a significant reduction in the number of optimization problems to be solved as
similar results are obtained when both five (in Set 2 and Set 3) or 26 (in Set 5) optimization
problems are solved.

The third robustness analysis was carried out to assess the effect of the two different
“knee/elbow” detection techniques (Kneedle method and L-method) on the optimal num-
ber of sensors. No differences greater than two in the optimal number of sensors were
found by comparing the pairs of results for both techniques in each discrete set of numbers
of sensors and function F; as the optimal number varied between 16 and 18 sensors. Fur-
thermore, when the best function F; was considered for each set (results in bold in Table
3), the optimal number of sensors was equal to 16 or 17 (depending on the “knee/elbow”
detection technique) regardless of the discrete set of numbers of sensors. Based on these
results, the Kneedle method was recommended given the straightforward implementation
and easier concept understanding.

Overall, the proposed methodology was robust regarding different discrete sets of
numbers of sensors, fitting functions and “knee/elbow” automatic detection techniques.
The optimal number of sensors for the best fitting function was equal to 16 or 17 (depending
on the “knee/elbow” detection method) regardless of the chosen discrete set of numbers of
sensors. This allowed for a great reduction in the computational burden associated with
the overall analysis as similar results were obtained when considering both Set 2 and Set
3 (with five optimization problems to be solved) and Set 5 (26 optimization problems to
be solved). Furthermore, a good approximation between 16 and 18 sensors was found
considering any combination of function F (with the exception of Fy), any discrete set of
numbers of sensors and any “knee/elbow” detection technique.

Based on these results, the optimal number of sensors was selected as 16. The opti-
mization problem was already solved for 16 sensors (as part of Set 5), and the obtained
Pareto front is presented in Figure 9a. Each grey point in Figure 9a represents a combination
of 16 sensors. Figure 9b depicts a possible optimal location for the 16 sensors in green
triangles, associated with the highlighted solution from the Pareto front.
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Figure 9. (a) Pareto front for 16 sensors; (b) optimal pressure sensor location for 16 sensors.

5. Conclusions

This article proposes a six-step methodology to determine the optimal number of
pressure sensors. The major advantage of the proposed methodology is that it does not
require neither prior knowledge about sensor installation costs nor the consideration
of costs in the optimization problem itself to decide on the optimal number of sensors.
Furthermore, the methodology can be used with different optimization methods of the
pressure sensor location.

In the proposed methodology, the optimal number of pressure sensors is determined
by analyzing the relationship between the results of optimization problems and the number
of sensors. The total gain of installing a given number of sensors is characterized by using
the hypervolume indicator. A trade-off function is derived to describe the gain of installing
sensors as a function of the number of sensors. Finally, a technique is used to determine
the optimal number of sensors as the point where the inclusion of another sensor is not
worth the increment on the total gain.

A real case study was used to demonstrate, assess and discuss the performance of the
proposed methodology. Three distinct robustness analyses were carried out and, according
to the obtained results, the following key conclusions related to the proposed methodology
can be drawn:

e  The hypervolume indicator can be used to characterize the total gain of installing
pressure sensors whose locations are obtained by solving multi-objective optimization
problems.

e A trade-off function can be derived, allowing the characterization of the total gain
of installing sensors (i.e., hypervolume) as a function of the number of sensors. This
trade-off function fitting process allows for a great reduction in the computational
effort associated with the overall analysis, as similar results are obtained when solving
both five and 26 multi-objective optimization problems.

e  The obtained results are not affected by considering different trade-off functions or
different sets of numbers of sensors as long as the selected function and the selected
discrete set can properly represent the hypervolume as a function of the number of
Sensors.

e Both Techniques 1 and 2 lead to similar results. The use of Technique 1 (Kneedle
method) is further recommended given the straightforward implementation and
easier concept understanding.

In future work, the robustness of the proposed methodology could be further assessed
by comparing the obtained results with those obtained by using two distinct methods of
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locating those sensors. Furthermore, different quality measures to compare consecutive
Pareto fronts and additional techniques to automatically detect the “knee/elbow” could
be compared.
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Leaks are present to some extent in all water-distribution systems. This paper proposes a leakage
localisation method based on the pressure measurements and pressure sensitivity analysis of nodes in a
network. The sensitivity analysis using analytical tools is not a trivial job in a real network because of
the huge non-explicit non-linear systems of equations that describe its dynamics. Simulations of the
network in the presence and the absence of leakage may provide an approximation of this sensitivity.
This matrix is binarised using a threshold independent of the node. The binary matrix is assumed as a
signature matrix for leakages. However, there is a trade-off between the resolution of the leakage
isolation procedure and the number of available pressure sensors. In order to maximise the isolability
with a reasonable number of sensors, an optimal sensor placement methodology, based on genetic
algorithms, is also proposed. These methodologies have been applied to the Barcelona Network using
PICCOLO simulator. The sensor placement and the leakage detection and localisation methodologies are

applied to several district management areas (DMA) in simulation and in reality.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Water loss in distribution system networks is an issue of great
concern for water utilities, strongly linked with operational costs
and water resource savings. Continuous improvements in water
loss management are applied and new technologies are developed
to achieve higher levels of efficiency. Usually a leakage detection
method in a District Metered Area (DMA) starts by analysing input
flow data, such as minimum night flows and consumer metering
data (Lambert, 1994; MacDonald, 2005). Once the water distribu-
tion district is identified to have a leakage, various techniques are
used to locate the leakage for pipe replacement or repair. Methods
for locating leaks range from ground-penetrating radar to acoustic
listening devices or physical inspection (Colombo, Lee, & Karney,
2009; Farley & Trow, 2003). Some of these techniques require
isolating and shutting down part of the system. The whole process
could take weeks or months with a significant volume of water
wasted. Techniques based on locating leaks from pressure mon-
itoring devices allow a more effective and less costly search in situ.

This paper presents a model-based methodology to detect and
localise leaks. It has been developed within a project carried out

* Corresponding author. Tel.: +34937398620; fax: +349373928.
E-mail address: ramon.perez@upc.edu (R. Pérez).

0967-0661/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.conengprac.2011.06.004

by Aguas Barcelona, Water Technological Centre CETaqua, and the
Technical University of Catalonia (UPC). The objective of this
project is to develop and apply an efficient system to detect and
locate leaks in a water distribution network. It integrates methods
and technologies available and in use by water companies,
including DMA and flow/pressure sensor data, in conjunction
with mathematical hydraulic models. The method is based on the
analysis of pressure variations produced by leakage in the water
distribution network (Pudar & Ligget, 1992). This technique
differs from others in the literature, such as the reflection method
(LRM) or the inverse transient analysis (ITA), since it is not based
on the transient analysis of pressure waves (Ferrante & Brunone,
2003a, 2003b; Misiunas, Lambert, Simpson, & Olsson, 2005;
Verde, Visairo, & Gentil, 2007). Alternatively, the leakage detec-
tion procedure is performed by comparing real pressure and flow
data with their estimation using the simulation of the mathema-
tical network model. Simulation of the network in presence and
absence of leakage provides an approximation of pressure sensi-
tivity of nodes in a network when a leak is present in a node. The
approximation is used to generate a sensitivity matrix that is
binarised using a threshold independent of the node. In order to
successfully apply this methodology, the characterisation of
district metered areas and consumers, considered a critical issue
for a correct model calibration, should be also addressed but is
not described in this paper (see, e.g. Perez, de las Heras, Aguilar,
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Pascual, & Peralta, 2009a, for further details). Another critical
point is the data validation of DMA sensors that can be addressed
as it is described for flowmeters in Quevedo et al. (2010). The
paper also proposes a methodology for placing pressure sensors
within a DMA that optimises leakage detection using a minimum
number of sensors based on the approach proposed in Pérez et al.
(2009b). Finally, the leakage detection methodology proposed
will be tested with sensors installed in a DMA used as case study.

Section 2 reviews water distribution network modelling and
presents the case study used to illustrate the proposed meth-
odologies. Model-based fault detection and isolation techniques
described in Section 3 are used for the leakage detection and
location. Section 4 presents how the leak signature matrix is
obtained from the pressure sensitivity matrix. Since the sensor
placement is a critical issue for maximising discriminability, an
algorithm is presented in Section 5. The signature matrix is
generated for the set of sensors selected. This matrix has to be
compared with the signature obtained comparing the model and
the real measurements. From this comparison, the leakage is
located in a set of possible nodes. This methodology is presented
in Section 6 and is illustrated by simulation and real results.
Finally, Section 7 summarises the conclusions.

2. Water distribution systems: placa del diamant case study

A water distribution system consists of three major compo-
nents: pumps, distribution storage, and distribution piping net-
work. Most systems require pumps to supply lift to overcome
differences in elevation, and energy losses caused by friction.
Pipes may contain flow-control devices, such as regulating or
pressure-reducing valves (Brdys & Ulanicki, 1994). The purpose of
a distribution system is to supply the system’s users with the
amount of water demanded, under adequate pressure for various
loading conditions. A loading condition is a spatial pattern of
demands that defines the users’ flow requirements.

2.1. Mathematical modelling

The governing laws for flow in pipe systems under steady
conditions are conservation of mass and energy. The law of
conservation of mass states that the rate of storage in a system
is equal to the difference between the inflow to and outflow from
the system. In pressurised water distribution networks, no sto-
rage can occur within the pipe network, although tank storage
may change over time. Therefore, in a pipe, or a junction node, the
inflow and the outflow must balance. For a junction node

Z Gin— Z Gout = {ext (1)

where g;, and g, are the pipe flow rates into and out of the node
and gy is the external demand or supply. Conservation of energy
states that the difference in energy between two points is equal to
the energy added to the flow in components between these points
minus the frictional losses. An energy balance can be written for
paths between the two end points of a single pipe, between two
fixed graded nodes (a node for which the total energy is known,
such as a tank) through a series of pipes, valves, and pumps, or
around a loop that begins and ends at the same point. In a general
form for any path

> hpi=> hyi=AE )
iefp ielp

where h;; is the headloss across component i along the path, hp; is
the head added by pump j, and AE is the difference in energy

between the end points of the path. The primary network
component is a pipe. The relationship between pipe flow (q)

Fig. 1. Case study network: Placa del Diamant.

and energy loss caused by friction (h;) in individual pipes can be
represented by a number of equations, including the Darcy-
Weisbach and Hazen-Williams equations. The general relation-
ship is of the following form:

h]_ = qu (3)

where K is a pipe coefficient that depends on the pipe’s diameter,
length, and material and r is an exponent in the range of 2.

2.2. Placa del Diamant DMA case study

The case study used to illustrate the leak localisation metho-
dology presented in this paper is based on Placa del Diamant DMA
at the Barcelona Water Network (see Fig. 1). This DMA is used for
illustrating the methodology. Its model contains 1600 nodes and
41.153 m of pipes. This DMA is simulated using PICCOLO soft-
ware. Demands are assumed to occur in the nodes. In this paper, it
will also be assumed that leaks occur at the nodes. Such assump-
tion introduces a minor imprecision compared with those due to
the methodology and the uncertainty of the model itself. Distance
from the real leakage to the closest junction is much shorter than
the diameter of the search zone obtained in the best case. It will
be clear with results because the areas obtained include some
pipes and nodes. Under such assumption, leaks can be seen as
additional demands but with unknown location and quantity.

Simulated leaks introduced in the network are of 1 I/s, more or
less 3% of the total demand of the sector (in the nighttime). The
demand distribution all over the network is the most variable
parameter of the model. Some uncertainty in the demand has also
been included in order to test the robustness of the method.

3. Leakage detection and isolation methodology foundations

The methodology of leakage localisation proposed in this
paper is mainly based on standard theory of model-based diag-
nosis described for example in (Gertler, 1998) that has already
been applied to water networks to detect faults in flow metres
(Ragot & Maquin, 2006) or in open channel with dynamic models
(Bedjaoui & Weyer, 2011; Nejjari, Pérez, Escobet, & Traves, 2006).
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Model-based diagnosis can be divided in two subtasks: fault
detection and fault isolation. The principle of model-based fault
detection is to check the consistency of observed behaviour while
fault isolation tries to isolate the component that is in fault. The
consistency check is based on computing residuals, r(k), obtained
from measured input signals u(k) and outputs y(k) using the
sensors installed in the monitored system and the analytical
relationship which are obtained by system modelling:

r(k) =Yy (k),u(k) @

where ¥ is the residual generator function that depends on the
type of detection strategy used (parity equation (Gertler, 1998) or
observer (Chen & Patton, 1999)). At each time instance, k, the
residual is compared with a threshold value (zero in ideal case or
almost zero in real case). The threshold value is typically deter-
mined using statistical or set-based methods that take into account
the effect of noise and model uncertainty (Blanke, Kinnaert, Lunze,
& Staroswiecki, 2006). When a residual is bigger than the thresh-
old, it is determined that there is a fault in the system; otherwise, it
is considered that the system is working properly. In practice,
because of input and output noise, nuisance inputs and modelling
errors affecting the considered model, robust residual generators
must be used. The robustness of a fault detection system means
that it must be only sensitive to faults, even in the presence of
model-reality differences (Chen & Patton, 1999).

Robustness can be achieved at residual generation (active) or
evaluation phase (passive). Most of the passive robust residual
evaluation methods are based on an adaptive threshold changing in
time according to the plant input signal and taking into account
model uncertainty either in the time or frequency domain (Puig,
Quevedo, Escobet, Nejjari, & de las Heras, 2008). In this paper, a
passive method in time domain has been proposed for robust fault
detection, where the detection threshold has been obtained using the

method described in Section 4. Robust residual evaluation allows
obtaining a set of observed fault signatures ¢(k) = [¢;(k),p,(k),---,
¢n¢ (k)], where each indicator of fault is obtained as follows:

0 if |ritk)| <Tik
¢ik) = 1 if |rik)| > Ti(k) ¥

where 1; is the threshold associated to the residual r{k) generated
from sensor i.

Fault isolation involves identifying the faults affecting the
system. It is carried out on the basis of observed fault signatures,
¢, generated by the detection module and its relation with all the
considered faults, f(k) = {f(k);.f2(k),...fo,(k)} that are compared
with theoretical signature matrix FSM (Gertler, 1998). One element
of this matrix FSMj; will be equal to one, if a fault f{k) is affected by
the residual ri(k). In this case, the value of the fault indicator ¢ (k)
must be equal to one when the fault appears in the monitored
system. Otherwise, the element FSM;; will be zero. A given fault f{k)
is proposed as a fault candidate when the observed fault signature
matches with its theoretical fault signature.

4. Leakage sensitivity analysis

The theoretical signature matrix needed to apply the isolation
method presented in previous section can be obtained from a
leakage sensitivity analysis. This analysis evaluates the effect of a
leakage on the pressure in a node. If this process is repeated for
each node and possible leak, the sensitivity matrix (Pudar &
Ligget, 1992) is obtained as follows:

1 op1
T

S= 8w w 6)
a]" a:

Sensitivity Matrix

Fig. 2. Sensitivity matrix.
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where each element s; measures the effect of leak f; in the pressure
of node p;. It is extremely difficult to calculate S analytically in a
real network because a water network is a large scale problem
described by a multivariable non-linear and non-explicit system of
equations as described in Section 2. This work proposes instead
generating the sensitivity matrix by simulation as follows: The
same leakage is introduced in each node and the increment of
pressure is measured in each node. It implies 1600 simulations
where 1600 pressures are measured. It has been verified that the
analytical and the simulated sensitivity converge for small lea-
kages. The sensitivity matrix depends on the working point that is,
on the demand and boundary conditions (Vento & Puig, 2009).

In Fig. 2, the sensitivity matrix for the case study network of
Fig. 1 is shown graphically. It has been plotted for 15 nodes
distributed homogenously in the DMA as illustration.

Some sensors are much more sensitive to all leakages than
others. Thus, a normalisation of sensitivity is needed so that the
information provided by any node is comparable. Each row corre-
sponding to a node with a sensor is divided by the maximum value
of this row that corresponds to the leakage most important for that
node. This procedure leads to the normalised sensitivity matrix:

S Sin
01 01
S=1 - . @
Sm1 Smn
On On

where o; =max{sj,....Sin}, i=1,...,n. This matrix is shown in
Fig. 3 for the considered example. It shows how the most relevant
leak is the one on the node itself, the maximum normalised
sensitivity is on the diagonal. Columns correspond to nodes with
leak and rows correspond to nodes with sensors.

Finally, from the normalised sensitivity matrix (7), the FSM
matrix introduced in Section 3 can be derived. Each element FSM;;

is equal to zero when leakage j does not affect pressure in node i
and it is equal to 1 when leakage j affects node i. The aim is to
generate the signature matrix from the normalised sensitivity
matrix. In Fig. 3, it can be seen that all leakages affect all
pressures, Algorithm 1 presents how the Binarised Sensitivity
Matrix (§b) is generated.

A process inspired in the e-method proposed by Sezer and Siljak
(1986) is proposed with the aim of identifying the strongest
relations between leaks and pressure measurements. In this
process, it is absolutely essential to choose conveniently the
threshold that controls if a leak has or not an effect on a given
pressure. The process proceeds as follows: those leaks that have an
effect less than the given threshold are considered as a ‘0’ in the
leak signature matrix (5). Otherwise, their effect is considered as a
‘1. In this way, the sensitivity matrix is binarised based on the
selected threshold. Normalisation allows using a unique threshold
for all sensors but the choice of the threshold is most relevant in
the process. For small thresholds, all binarised matrix elements are
1 and only detection is possible. As the threshold increases more Os
appear. When threshold approaches 1, then only the diagonal of
the signature matrix is 1 and localisation is perfect (or almost
perfect, simulation precision makes some nodes equally sensitive
to some leakages) but all sensors are needed. Fig. 4 shows how the
number of 1s decreases as threshold approaches 1. Number of
signatures increases but the significance of each sensor decays.

Algorithm 1. Binarised Sensitivity Matrix Generation is

input:n, is the number of sensors, nyis the number of leaks
d(k) are the DMA demands
p(k) are the boundary pressures
S is the binarisation threshold
k time instant when sensitivity
matrix is calculated

Normalised Sensitivity Matrix

Fig. 3. Normalised sensitivity matrix.
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Fig. 4. Number of 1s and Os depending on threshold.

output: 3“’ and 0;._ny
for each sensor i=1,...,n,
compute the simulated pressures
without leaky; o(k)
for each leak j=1,..., nf
compute the simulated
pressures with leak at node jy;;(k)
compute s;(k) =¥;j(K)—Y;0(k)
end
end
for each sensor i=1,....,n,

for each leak j=1,..., nf

sk = 29
if §,’J(k) < Sth
57k =0
else
5000 =1
end
end
end

return S‘b(k) and a;._ny(k)

Fig. 5 shows the evolution of the number of signatures present
in the matrix and the maximum number of leakages with the
same signature. It corresponds to the 1613 nodes of the network
in Fig. 1. Theoretically with 11 sensors (rows) there may be 2047
(that corresponds to 2'' —1 since signature with all 0 is discarded
as detection is imposed) different signatures for leakages (col-
umns). In order to get maximum number of signatures, a
necessary condition is to have in each column 2"~! 1s, where n
is the number of sensors (rows). This necessary condition is

number of signatures and maxim number
of nodes in a signature

1600 : - : -
—#— number of nodes
é 1400 —6— number of signatures | |
2
S 1200 1
@
o
E 1000 :
c
© 800 | |
2
g 600 | ]
]
S 400 | 1
[
Qo
E 200 | 1
[=
0 & " % Y & &
0 01 02 03 04 05 06 07 08 09 1
threshold

Fig. 5. Evolution of the signature matrix depending on threshold.

fulfilled for the threshold where both lines in Fig. 5 cross
(~0.1). This is the threshold used.

Algorithm 2 summarises the leakage detection and isolation
procedure using the binarised sensitivity matrix.

Algorithm 2. Leakage Detection and Isolation

input:n, is the number of sensors, ny is the number of
leaks
N is the time horizon
d(0)...d(N) are the demands
p(0)...p(N) are the boundary pressures
¥i...ny(0)...yi. .ny(N) are the measured pressures
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Sth is the binarisation threshold determined
using Algorithm 1
output: f; s contains the number of incidences
of each leak detected in the time horizon N.
initialise f; =0
for each instant k=0,...,N
for each sensor i=1,...,n,
compute simulated pressures
without leaky; 3 (k)
evaluate the residual ri(k) = y:(K)—¥; oK)

compute §b(k) and o;__ny(k) from Algorithm 1
the normalised residual 7;(k) = ;Jl('%
if Fi(k) < si,th

¢ik)=0
else
¢ik)=1
end
end

for each leak j=1,..., nf
if HammingDistance(q&(k)Sb(: HDE)#0

fi=f
else
f=f+1
end
end
end
return fi .y

5. Sensor placement algorithm

An optimal sensor placement is defined as a sensor configura-
tion that achieves the minimum economical cost (number of
sensors) while observing pre-specified performance criteria
(groups of nodes that are not isolable with a minimum number
of elements). Since this issue has been addressed in many
applications in particular in Song, Chen, Sastry, and Tas (2009) a
good literature review is provided.

A model of water network can be represented as a graph G=(V,E),
where E is the set of edges that represent the pipes and V is the set of
vertices (nodes) where pipes meet. Vertices can represent sources,
such as reservoirs or tanks, where water is introduced or sinks
(demand points) where water is consumed. Each pipe connects two
vertices v; and v; and usually is denoted as (v;v;).

Using the graph representation, the problem of optimal sensor
placement can be formulated as an integer programming pro-
blem, where each decision variable x; associated to a node v; of
the network can be 1 or 0, meaning that the sensor will be or will
not be installed in this node (Bagajewicz, 2000). The starting point
of the algorithm is the leakage sensitivity matrix obtained by
simulation binarised using the process described in Section 4.
Every row corresponds to a hypothetical position of a sensor in a
node while every column corresponds to a possible leak in a node.
Thus, if a given element of this binary matrix contains a “17”, it
means that installing a sensor in the node corresponding to this
row it would be able to detect the fault associated to the column
of this element assuming a single leakage. A particular distribu-
tion of sensors (solution) is achieved by instantiating the value of
decision variables x; to “1” (meaning installing the sensor) or to
“0” (meaning non installing the sensor). For any particular
distribution, a set of groups of indiscernible leaks appear, each
group with n; leaks. The objective of the sensor placement
algorithm is to find the sensor distribution that minimises the
number of elements for the largest set of leaks with the same

signature. The objective (cost) function is therefore

J= min max{ny, - - - ,nn;} ®)
X1, Xn f

where x;,...,X, are the decision variables that determines a
particular sensor distribution and n; is the number of nodes in
group i of indiscernible nodes for a given leakage f.. In order to
increase isolability, this cost should be minimised but at the same
time keeping the economical cost reasonable, that is installing the
less number of sensor that is possible. The problem is solved for a
number of sensors; this number is increased till the cost does not
decrease subtantialy. A constraint is included such that all leaks
should be detected. It is introduced by forcing that signature with
all Os is not accepted.

This optimisation problem can be solved using either determi-
nistic method based for example in Branch and Bound or heuristic
methods based for example in Genetic Algorithms. The first type
of methods guarantee the optimal solution but the computation
time tends to be exponential with the number of nodes/faults
(Sarrate, Puig, Escobet, & Rosich, 2007). On the other hand, the
second type of methods just guarantees a suboptimal solution
that tends to the optimal one when the size of considered
population tends to infinity. Besides the formulation of solutions
in series of 1s and Os are most convenient for a GA. Algorithm 3
describes in detail how the optimal sensors distribution is done.

Algorithm 3. Optimal Sensor Distribution

input: nyare the number of leaks (nodes), n, are the number of
sensors
d are the DMA demands
p are the boundary pressures
output: sensors x, and cost J(n,)
Solve mxin([)

subject:

y
2 Xi=ny
i=1
where the cost function J is computed using Algorithm 4
return x

Algorithm 4. Cost function J

input:S‘b is the binarised sensitivity matrix
x are the optimisation variables
output: J is the cost of the solution j=0
for each node i=1...nf
if x(i)==
S )=5"¢.)
j=j+1
end
end
for each leak j=1,...,ns
m(j)=dec"(: .j)
where dec is the conversion of binary to decimal.
end
fori=1...2"
n;=number of i in m
end
J=max (n;)
return J

In Fig. 6, the evolution of cost function is presented. The cost
has been taken as the number of nodes in the biggest group of
possible leakage isolated with a number of sensors and a threshold
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between 0.1 and 0.4. The set of sensors should, in the leakage
localisation, signal a group of nodes that may include a leak.
Optimisation tries that the size of this group is as small as
possible. A sharp improvement appears with the first sensors
but adding more than 7 or 8 sensors introduce little improvement
for any threshold. Therefore only 8 sensors are used.

In Fig. 7, the different groups of nodes with the same leakage
signature are shown. There are 39 groups and the biggest contains

Cost as a function of the number of sensors
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Fig. 6. Evolution of the cost function depending on number of sensors and threshold.
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190 nodes. The localisation of the sensors after the optimisation
process is presented in the last figure.

In an ideal situation with a well calibrated network model, a
leakage should be searched in one of these regions instead of the
whole sector. It is important to note that regions are connected
and geographically coherent. Such coherence is a major issue for
further search in situ. For further details see Pérez et al. (2009b).

6. Leak isolation results
6.1. Simulation results

The proposed approach of localisation of leakages is first
applied in simulation to the Placa del Diamant using the optimal
distribution of the sensors obtained in Section 5 consisting in
8 sensors. The process of leak localisation is based on Algorithm 2.
If the model were perfect (no uncertainty in demands) and no
noise, the leak should be localised with one measurement.
However, because of modelling uncertainty and noise, the test
has been done during 15 days of simulation (only the lowest
consume hour is used each day that corresponds when uncer-
tainty in demands is minimal) and then three options are used to
assign the observed leakage signature to a group:

- mean of the sensitivities;

- mean of binarised sensitivities; and

- voting scheme (all days the leak is assigned to a group). The
group with more assignations (votes) is the elected.

Results, even without uncertainty/noise, were not good using
any of the three decision criteria. It was due to the changing
boundary conditions (pressures and flows) that affected very
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Fig. 7. Groups of nodes with the same leakage signature with 8 sensors and placement of sensors.
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much the sensitivity matrix. It is necessary to generate the
sensitivity matrix ad hoc for each day with proper boundary
conditions that are known. Thus, for each new conditions all the
simulations, normalisation and binarisation described in Section 4
are carried out. When a new signature matrix for each day is
generated the two first approaches are useless because signature
change for each iteration and mean values are meaningless. Thus
the third one is tested. It provided perfect results without
uncertainty, 100% localisation. It means that each day the group
that was signalled suitable to have a leakage contained the node
with leakage. These groups were all different each instant and
signature matrix is adapted to boundary conditions thus only the
voting method had sense. Thus, there are different probabilities of
having a leak in a node. This appears in Table 1. It shows the
number of nodes that have been signalled 0-15 times (each one
for each day). The shadowed line cell corresponds to the one that
contains the node that has real leakage. In this case, it corresponds
always to the node number 15. It has been done for the 39 groups
(one leakage for each) that appeared in sensor distribution (Fig. 7).
In Fig. 8, the nodes are presented in grey scale representing the
times that have been signalled to be suitable of containing a
leakage. The one that contained it appears in the black area.

In order to test the methodology under uncertain parameters in
the model, uncertainty in demands was introduced. Uncertainty was
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Fig. 8. Localisation of a leak in the correct zone with adapting signature matrix.

estimated using the monthly variation for a demand. It was of 18% of
the total demand. Uncertainty was introduced as a coefficient multi-
plied to the demand of each node generated as a random number
between 0.8 and 1.2. The global demand has been kept equal because
it is a measured variable and affects greatly the sensitivity.

Results are presented in Table 2 and Fig. 9. In this case, the
leaky node is not always exactly in the most signalled group and
the dark grey in the figure does not correspond to 15 but to
9 days. It means that the nodes that more times have been
signalled have been signalled thirteen times out of the fifteen. In
Fig. 9, the grey scale is lighter than in Fig. 8 because there are less
correct detections due to the uncertainty.

Increasing uncertainty interval, the proposed localisation meth-
odology produces poorer results. For a 50% uncertainty, leaks were
not well localised but they were localised in a neighbour zone.

The main handicap of the methodology is that in a highly looped
network pressure drops due to a leak are not very significant.
Therefore it demands high accuracy in transducers. Table 3 show
the maximum and minimum pressure drop for leaks 0.5-101/s. In
high demand hour, the difference is higher but the uncertainty in
demand is higher too. Thus, the high cost of sensors may not
guarantee good results because of uncertainties in demands.

6.2. Real results

Results from simulation test showed that high accuracy sensors
are required. Such sensors exist but represent a major investment.
Before such investment is authorised, real test with existing sensors
were carried on. Few sensors with non-optimal distribution are
available. Measurements have not been taken in best conditions
(lower demand time). Nevertheless these results were interesting
for the company in order to take further decisions and are
presented in this section. A scenario based on a leakage forced in
Enamorats DMA, in Barcelona network too, is used. This DMA have
no qualitative difference with Placa del Diamant. All the steps of
methodology exposed so far are applied identically. Only the sensor
distribution is not applied because the existing ones are used.

Enamorats DMA model contains 260 nodes and two water
input points, where a flow metre and a pressure metre are
installed. Input flows in the network and pressures at these points
are fixed in the simulation model as boundary conditions. In
addition to this information, this DMA has 3 installed pressure
sensors, which have been used to apply leakage localisation
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methodology. The water company provided boundary conditions
(pressure and flow) and pressure inside the DMA (three sensors)
data with 10 minute time step. This information was for 5 days in
the last day a leakage was forced. Table 4 shows information
about this leakage.

The first step is to verify that the hydraulic model provided is
correctly calibrated. A four days simulation without any leakage
has been done considering pressure values in three internal
pressure sensors. The result is the pressure evolution during each
day in internal pressure sensors. Differences between the model
and reality are important because of demand uncertainty. The
worst consequence of these results is that pressure difference
caused by a leak can be hidden by the differences due to misfitting
of demand model and real demand. To solve this problem, model is
corrected with the mean error during no leakage days. Real
corrected pressure using these mean errors in each sensor is
shown in Fig. 10, compared with the simulation ones.

Although a correction to real pressure has been applied, no
difference in the period of leakage can be observed. Thus locali-
sation methodology is applied to see if it is possible to show more
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Fig. 9. Localisation of a leak in the correct zone with 18% uncertainty in the
demand.

Table 3
Maximum and minimum pressure drop.

Leakage flow  Minimum demand hour Maximum demand hour

(1/s)
Minimal AP Maximal AP Minimal AP Maximal AP
(m) (m) (m) (m)
0.5 0.01 0.02 0.01 0.03
1 0.01 0.04 0.01 0.06
2 0.01 0.09 0.01 0.12
3 0.01 0.14 0.01 0.18
4 0.01 0.19 0.01 0.24
5 0.01 0.24 0.01 0.31
6 0.01 0.29 0.01 0.38
8 0.01 037 0.01 0.52
10 0.01 0.44 0.01 0.67
Table 4
Leakage information in Enamorats DMA.
Flow (m3/h) Flow (1/s) Leak location Start time End time
18 5 Lepant/Arago 10:20 10:35
14 3.9 Lepant/Arago 10:37 10:52
9 2.5 Lepant/Aragd 10:53 11:08
6 1.7 Lepant/Aragd 11:10 11:25
16 4.4 Aragd 79 11:53 12:08

information not seen in previous figures. Leakage period duration
is about one hour. For leakage period, five second step time data is
given by the water company, but only pressures, not flows. If a ten
minute step time data is used, in an hour period only 6 samples
can be taken. To increase the number of samples a minute time
step is proposed. To calibrate the model pressures at the input
points are calculated by the mean of the last 30 s data (6 samples)
and input flow is taken as a constant during 10 min.

To find discriminable zones obtained with installed sensors, a
leak is moved for all 260 possible nodes using the model. For the
leakage period two simulations are done: the first one without any
leakage and the second one with a leakage moved for 260 nodes.
Forced leakage flow is not constant, as it can be seen in Table 3, but
only ten minutes data is given for each case. For this reason it is
assumed that the leakage flow (5 1/s) is one of them for the whole
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Fig. 11. Leakage localisation results with a threshold of 0.4 in a leakage period.

period. This assumption can be justified due the fact that in a real
situation the leakage flow may be variable and unknown.

In the same way as in simulation tests, leakage methodology
has been applied during more than one time step. In next figures
some results are shown. The first case corresponds to the leakage
period. As well as in simulation, signature matrix has been calcu-
lated depending on boundary conditions. Due to the little quan-
tity of data, the test has been done during the whole leakage
period, taking a pressure measurement every minute. Results for
a 0.4 threshold are shown in Fig. 11. Although some leakages are
not detectable (55 nodes zone), the real leakage is outside this
zone. Sensors are not located optimally, so these undetectable
leakages were expected. The number of discriminable zones is
four, including the non-detectable one. Leakage zone corresponds
to the third group, which contains 88 nodes.

The leakage is given in the circled node: 31 of 64 detections
signalled the correct leakage zone. After this test a non leakage
period is chosen to apply the methodology. At night discrepancies
between reality and the model are smaller than during the day; so
it is the best time to do the test. Although an important zone is
signalled as a possible leakage zone, the number of detections is
only 9 on 42. These results are shown in Fig. 12.

7. Conclusions

A leakage localisation method based on the pressure measure-
ments and sensitivity analysis of nodes in a network has been
proposed. The leakage localisation methodology is founded in
standard model-based fault diagnosis well established theory.

In order to maximise the isolability with a reasonable number
of sensors, an optimal sensor placement methodology based on
genetic algorithms is also proposed. The objective function in the
minimisation process was the size of the maximum group
discriminated. The confidence of the information provided by
pressure sensors about leakage could be studied using the Fisher
Information Matrix generated using the sensitivity matrix. This
new approach is studied as a possible way to define the sensor
placement avoiding the optimisation process.

To assess the validity of the proposed approach, it has been
applied to a DMA of Barcelona network in real and simulated leak
scenarios. Models and information were provided by the water
company. For these sectors (DMA), the sensor placement and the
leakage detection and localisation methodologies have been
applied with successful results even in presence of demand
uncertainty in simulation.
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Fig. 12. Leakage localisation results with a threshold of 0.4 in a non leakage period.

In real test where sensors used where already installed results
were poorer. Two main causes are suggested. First the non-
optimal distribution of the sensors thus the methodology pro-
posed in Section 4 is currently being applied in an on-going
project in order to improve such results. On the other hand, the
estimation of demands should be improved and an evaluation of
the influence of the misfit of demand model on the methodology
has been studied. First results have been published (Pérez et al.,
2011).

An issue in the process is to recalculate the sensitivity matrix
for each boundary condition using the simulation model because
of the high dependence of it to global consumption. This approach
is being currently developed using linear parameter varying (LPV)
models that consider the consumption as a scheduling variable
(Vento & Puig, 2009). Finally, a new approach is being studied that
avoids the binarisation of the sensitivity matrix and it is based on
correlation of model pressures with leakage and the measure-
ments (Quevedo et al., 2011)
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