COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:
THE APPLICATION OF)
NEW CINGULAR WIRELESS PCS, LLC, A DELAWARE LIMITED LIABILITY COMPANY, D/B/A AT\&T MOBILITY
AND UNITI TOWERS LLC, A DELAWARE
LIMITED LIABILITY COMPANY
FOR ISSUANCE OF A CERTIFICATE OF PUBLIC) CASE NO.: 2020-00365 CONVENIENCE AND NECESSITY TO CONSTRUCT A WIRELESS COMMUNICATIONS FACILITY
IN THE COMMONWEALTH OF KENTUCKY
IN THE COUNTY OF ROCKCASTLE

SITE NAME: MCGUIRE RELO / MT. VERNON

APPLICATION FOR
 CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY FOR CONSTRUCTION OF A WIRELESS COMMUNICATIONS FACILITY

New Cingular Wireless PCS, LLC, a Delaware limited liability company, $\mathrm{d} / \mathrm{b} / \mathrm{a}$ AT\&T Mobility and Uniti Towers LLC, a Delaware limited liability company ("Applicants"), by counsel, pursuant to (i) KRS $\S \S 278.020,278.040,278.650,278.665$, and other statutory authority, and the rules and regulations applicable thereto, and (ii) the Telecommunications Act of 1996, respectfully submit this Application requesting issuance of a Certificate of Public Convenience and Necessity ("CPCN") from the Kentucky Public Service Commission ("PSC") to construct, maintain, and operate a Wireless Communications Facility ("WCF") to serve the customers of the Applicants with wireless communications services.

In support of this Application, Applicants respectfully provide and state the following
information:

1. The complete names and addresses of the Applicants are: New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT\&T Mobility, having an address of Meidinger Tower, 462 S. $4^{\text {th }}$ Street, Suite 2400 , Louisville, Kentucky 40202 and Uniti Towers LLC, a Delaware limited liability company having an address of 10802 Executive Center Drive, Benton Building, Suite 300, Little Rock, Arkansas 72211.
2. Applicants propose construction of an antenna tower for communications services, which is to be located in an area outside the jurisdiction of a planning commission, and Applicants submit this application to the PSC for a certificate of public convenience and necessity pursuant to KRS §§ 278.020(1), 278.040, 278.650, 278.665, and other statutory authority.
3. AT\&T Mobility is a limited liability company organized in the State of Delaware on October 20, 1994. Uniti Towers is a limited liability company organized in the State of Delaware on December 2, 2015.
4. Applicants attest that they are in good standing in the state in which they are organized and further state that they are authorized to transact business in Kentucky.
5. The Certificates of Authority filed with the Kentucky Secretary of State for both Applicants are attached as part of Exhibit A pursuant to 807 KAR 5:001: Section 14(3).
6. AT\&T Mobility operates on frequencies licensed by the Federal Communications Commission ("FCC") pursuant to applicable FCC requirements. Copies of AT\&T Mobility's FCC licenses to provide wireless services are attached to this Application or described as part of Exhibit A, and the facility will be constructed and operated in
accordance with applicable FCC regulations.
7. The public convenience and necessity require the construction of the proposed WCF. The construction of the WCF will bring or improve AT\&T Mobility's services to an area currently not served or not adequately served by AT\&T Mobility by increasing coverage or capacity and thereby enhancing the public's access to innovative and competitive wireless communications services. The WCF will provide a necessary link in AT\&T Mobility's communications network that is designed to meet the increasing demands for wireless services in Kentucky's wireless communications service area. The WCF is an integral link in AT\&T Mobility's network design that must be in place to provide adequate coverage to the service area.
8. To address the above-described service needs, Applicants propose to construct a WCF at Old U.S. Hwy 25, Mt. Vernon, KY 40456 ($37^{\circ} 21^{\prime} 11.74^{\prime \prime}$ North latitude, $84^{\circ} 19^{\prime} 38.27^{\prime \prime}$ West longitude), on a parcel of land located entirely within the county referenced in the caption of this application. The property on which the WCF will be located is owned by VADD Company pursuant to a deed recorded at Deed Book 187, Page 303 in the office of the County Clerk. The proposed WCF will consist of a 330 -foot tall tower, with an approximately 12 -foot tall lightning arrestor attached at the top, for a total height of 342 -feet. The WCF will also include concrete foundations and a shelter or cabinets to accommodate the placement of AT\&T Mobility's radio electronics equipment and appurtenant equipment. The Applicants' equipment cabinet or shelter will be approved for use in the Commonwealth of Kentucky by the relevant building inspector. The WCF compound will be fenced and all access gate(s) will be secured. A description of the
manner in which the proposed WCF will be constructed is attached as Exhibit B and Exhibit C.
9. A list of utilities, corporations, or persons with whom the proposed WCF is likely to compete is attached as Exhibit D.
10. The site development plan and a vertical profile sketch of the WCF signed and sealed by a professional engineer registered in Kentucky depicting the tower height, as well as a proposed configuration for AT\&T Mobility's antennas has aiso been included as part of Exhibit B.
11. Foundation design plans signed and sealed by a professional engineer registered in Kentucky and a description of the standards according to which the tower was designed are included as part of Exhibit C.
12. Applicants have considered the likely effects of the installation of the proposed WCF on nearby land uses and values and have concluded that there is no more suitable location reasonably available from which adequate services can be provided, and that there are no reasonably available opportunities to co-locate AT\&T Mobility's antennas on an existing structure. When suitable towers or structures exist, AT\&T Mobility attempts to co-locate on existing structures such as communications towers or other structures capable of supporting AT\&T Mobility's facilities; however, no other suitable or available colocation site was found to be located in the vicinity of the site.
13. A copy of the Determination of No Hazard to Air Navigation issued by the Federal Aviation Administration ("FAA") is attached as Exhibit E.
14. A copy of the approval issued by the Kentucky Airport Zoning Commission
("KAZC") for the proposed construction is attached as Exhibit F.
15. A geotechnical engineering firm has performed soil boring(s) and subsequent geotechnical engineering studies at the WCF site. A copy of the geotechnical engineering report, signed and sealed by a professional engineer registered in the Commonwealth of Kentucky, is attached as Exhibit G. The name and address of the geotechnical engineering firm and the professional engineer registered in the Commonwealth of Kentucky who supervised the examination of this WCF site are included as part of this exhibit.
16. Clear directions to the proposed WCF site from the County seat are attached as Exhibit H. The name and telephone number of the preparer of Exhibit H are included as part of this exhibit.
17. Uniti Towers LLC, pursuant to a written agreement, has acquired the right to use the WCF site and associated property rights. A copy of the agreements or abbreviated agreements recorded with the County Clerk are attached as Exhibit I.
18. Personnel directly responsible for the design and construction of the proposed WCF are well qualified and experienced. The tower and foundation drawings for the proposed tower submitted as part of Exhibit C bear the signature and stamp of a professional engineer registered in the Commonwealth of Kentucky. All tower designs meet or exceed the minimum requirements of applicable laws and regulations.
19. The Construction Manager for the proposed facility is Jeremy Culpepper and the identity and qualifications of each person directly responsible for design and construction of the proposed tower are contained in Exhibits B \& C.
20. As noted on the Survey attached as part of Exhibit B, the surveyor has determined that the site is not within any flood hazard area.
21. Exhibit B includes a map drawn to an appropriate scale that shows the location of the proposed tower and identifies every owner of real estate within 500 feet of the proposed tower (according to the records maintained by the County Property Valuation Administrator). Every structure and every easement within 500 feet of the proposed tower or within 200 feet of the access road including intersection with the public street system is illustrated in Exhibit B.
22. Applicants have notified every person who, according to the records of the County Property Valuation Administrator, owns property which is within 500 feet of the proposed tower or contiguous to the site property, by certified mail, return receipt requested, of the proposed construction. Each notified property owner has been provided with a map of the location of the proposed construction, the PSC docket number for this application, the address of the PSC, and has been informed of his or her right to request intervention. A list of the notified property owners and a copy of the form of the notice sent by certified mail to each landowner are attached as Exhibit J and Exhibit K, respectively.
23. Applicants have notified the applicable County Judge/Executive by certified mail, return receipt requested, of the proposed construction. This notice included the PSC docket number under which the application will be processed and informed the County Judge/Executive of his/her right to request intervention. A copy of this notice is attached as Exhibit L.
24. Notice signs meeting the requirements prescribed by 807 KAR $5: 063$, Section

1(2) that measure at least 2 feet in height and 4 feet in width and that contain all required language in letters of required height, have been posted, one in a visible location on the proposed site and one on the nearest public road. Such signs shall remain posted for at least two weeks after filing of the Application, and a copy of the posted text is attached as Exhibit M. A legal notice advertisement regarding the location of the proposed facility has been published in a newspaper of general circulation in the county in which the WCF is proposed to be located. A copy of the newspaper legal notice advertisement is attached as part of Exhibit M.
25. The general area where the proposed facility is to be located is rural and heavily wooded.
26. The process that was used by AT\&T Mobility's radio frequency engineers in selecting the site for the proposed WCF was consistent with the general process used for selecting all other existing and proposed WCF facilities within the proposed network design area. AT\&T Mobility's radio frequency engineers have conducted studies and tests in order to develop a highly efficient network that is designed to handle voice and data traffic in the service area. The engineers determined an optimum area for the placement of the proposed facility in terms of elevation and location to provide the best quality service to customers in the service area. A radio frequency design search area prepared in reference to these radio frequency studies was considered by the Applicants when searching for sites for its antennas that would provide the coverage deemed necessary by AT\&T Mobility. A map of the area in which the tower is proposed to be located which is drawn to scale and clearly depicts the necessary search area within which the site should be located pursuant
to radio frequency requirements is attached as Exhibit \mathbf{N}.
27. The tower must be located at the proposed location and proposed height to provide necessary service to wireless communications users in the subject area.
28. All Exhibits to this Application are hereby incorporated by reference as if fully set out as part of the Application.
29. All responses and requests associated with this Application may be directed to:

David A. Pike
Pike Legal Group, PLLC
1578 Highway 44 East, Suite 6
P. O. Box 369

Shepherdsville, KY 40165-0369
Telephone: (502) 955-4400
Telefax: (502) 543-4410
Email: dpike@pikelegal.com

WHEREFORE, Applicants respectfully request that the PSC accept the foregoing Application for filing, and having met the requirements of KRS $\S \S 278.020(1), 278.650$, and 278.665 and all applicable rules and regulations of the PSC, grant a Certificate of Public Convenience and Necessity to construct and operate the WCF at the location set forth herein.

Respectfully submitted,

David A. Pike
Pike Legal Group, PLLC
1578 Highway 44 East, Suite 6
P. O. Box 369

Shepherdsville, KY 40165-0369
Telephone: (502) 955-4400
Telefax: (502) 543-4410
Email: dpike@pikelegal.com
Attorney for Applicants

LIST OF EXHIBITS

A - Certificate of Authority \& FCC License Documentation
B - Site Development Plan:
500' Vicinity Map
Legal Descriptions
Flood Plain Certification
Site Plan
Vertical Tower Profile
C - Tower and Foundation Design
D - Competing Utilities, Corporations, or Persons List
E - FAA
F - Kentucky Airport Zoning Commission
G - Geotechnical Report
H - Directions to WCF Site
I - Copy of Real Estate Agreement
J - Notification Listing
K - Copy of Property Owner Notification
L - Copy of County Judge/Executive Notice
M - Copy of Posted Notices and Newspaper Notice Advertisement
N - Copy of Radio Frequency Design Search Area

EXHIBIT A

CERTIFICATE OF AUTHORITY \& FCC LICENSE DOCUMENTATION

Commonwealth of Kentucky Alison Lundergan Grimes, Secretary of State

Alison Lundergan Grimes Secretary of State P. O. Box 718

Frankfort, KY 40602-0718
(502) 564-3490
http://mww.sos.ky.gov

Certificate of Authorization

Authentication number: 216299
Visit https://app.sos.ky.gov/ftshow/certvalidate. aspx to authenticate this certificate.

I, Alison Lundergan Grimes, Secretary of State of the Commonwealth of Kentucky, do hereby certify that according to the records in the Office of the Secretary of State,

NEW CINGULAR WIRELESS PCS, LLC

, a limited liability company authorized under the laws of the state of Delaware, is authorized to transact business in the Commonwealth of Kentucky, and received the authority to transact business in Kentucky on October 14, 1999.

I further certify that all fees and penalties owed to the Secretary of State have been paid; that an application for certificate of withdrawal has not been filed; and that the most recent annual report required by KRS 14A.6-010 has been delivered to the Secretary of State.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my Official Seal at Frankfort, Kentucky, this $28^{\text {th }}$ day of May, 2019, in the $227^{\text {th }}$ year of the Commonwealth.

Alison Lundergan Grimes
Secretary of State
Commonwealth of Kentucky
216299/0481848

0972004.06	mstratton
Alison Lundergan Grimes	ADD
Kentucky Secretary of State	
Received and Filed:	
1/3/2017 $3: 10$ PM	
Fee Receipt: $\$ 90.00$	

Alison Lundergan Grimes, Secretary of State:

8. The names and business addresses of the entity's representatives (secretary, officers and directors, managers, tristees or general partners):

Daniel L. Heard		Little Rock	AR	72211
Name	Street or P.O. Box	City	Stato	Zip Code
Kenneth Gunderman		Little Rock	AR	72211
Name	Stroet or P.O. Box	city	Stato	ZIp Codo
Mark A. Wallace		Little Rock	AR	72211
Name	Street or P.O. Box	city	State	2ip Code

9. It a professionai service corporation, all the individual sharehoiders, not less than one haif ($1 / 2$) of the directors, and atl of the omicors other then the secretary and treasurer are licensed in one of more statas or teritories of the United Stales or District of Columbia to render a protessional service described in the statement of purposes of the copporation
10. I certify that, as of the date of fliing this application, the above-named entity validly exists under the laws of the jurisdiction of its formation.
11. If a limited partnership, it elects to be a limited liability limited partnership. Check the box if applicable: \square
12. If a limited liability company, check box if manager-managed:
13. This application will be effective upon filing, uniess a delayed effective date and/or time is provided.

(09/15)

Multi-page document. Select page: $1 \underline{2}$

Multi-page document. Select page: 12

Delaware

The First State

Abstract

I, Jefrrey w. bullock, secretary of state of the state of DELAWARE, DO HEREBY CERTIFY "UNITI TOWERS LLC" IS DULY FORMED UNDER the laws of the state of delaware and is in good standing and has a LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS OFFICE SHOW, AS OF THE THIRTIETH DAY OF DECEMBER, A.D. 2016.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE BEEN PAID TO DATE

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

```
ATTN: LESLIE WILSON
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 1016
DALLAS, TX 75202
```

Call Sign KNKN965	File Number
Radio Service CL - Cellular	
Market Numer CMA448	Channel Block B
Sub-Market Designator	
0	

FCC Registration Number (FRN): 0003291192
0

Market Name

Kentucky 6 - Madison

| Grant Date | Effective Date | Expiration Date |
| :---: | :---: | :---: | :---: | :---: |
| $08-31-2018$ | Five Yr Build-Out Date | Print Date |
| $08-30-2011$ | | |

Site Information:

| Location Latitude | Longitude | Ground Elevation
 (meters) | Structure Hgt to Tip
 (meters) | Antenna Structure
 Registration No. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 37-24-34.0 N | $084-19-48.0 \mathrm{~W}$ | 449.6 | 1043626 |

Address: Burdette Rd (105167)
City: WILDIE County: ROCKCASTLE State: KY Construction Deadline:

Licensee Name: NEW CINGULAR WIRELESS PCS, LLC

Call Sign: KNKN965	File Number:			Print Date:				
Location Latitude	Longitude	Ground Elevation (meters)			ucture H ters)	to Tip	Antenna Structure Registration No.	
10 37-21-02.1 N	084-19-46.3 W	450.8		77.4			1242832	
Address: 208 DAVIS LANE (86925)								
City: Mount Vernon Coun	ty: ROCKCASTLE	State: KY Co		onstruction Deadline:				
Antenna: 1								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	We 0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	193.700	137.500	148.900	151.500	164.200	185.600	160.000	178.000
Transmitting ERP (watts) Antenna: 2	122.700	52.400	5.400	0.300	0.245	0.300	8.700	63.000
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	- 0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	193.700	137.500	148.900	151.500	164.200	185.600	160.000	178.000
Transmitting ERP (watts)	1.600	18.200	93.100	111.900	26.300	2.500	0.300	0.400
Maximum Transmitting ERP in Watts: 140,820								
Azimuth(from true north)) 0		90	135	180	225	270	315
Antenna Height AAT (meters)	193.700	137.500	148.900	151.500	164.200	185.600	160.000	178.000
Transmitting ERP (watts)	1.800	0.400	0.400	6.700	55.500	186.500	141.700	15.300
Location Latitude	Longitude		Ground Elevation (meters)		Structure Hgt to Tip (meters)		Antenna Structure	
14 37-30-14.0 N	084-19-39.5 W		339.2	110.3			1204267	
Address: 151 JIM LAMBERT ROAD (67666)								
City: MOUNT VERNON C	County: ROCKCAS	STLE	ate: KY	Constru	ion Deadli			

Antenna: 1

Maximum Transmitting ERP in	40.820							
Azimuth(from true north)	0	45	90 ,	135	180	225	270	315
Antenna Height AAT (meters)	132.000	123.500	30.000	52.900	101.900	117.900	108.700	136.400
Transmitting ERP (watts)	74.600	66.500	10.300	0.900	0.149	0.200	2.100	19.600
Antenna: 2								
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	132.000	123.500	30.000	52.900	101.900	117.900	108.700	136.400
Transmitting ERP (watts)	0.500	0.500	11.300	108.100	236.600	118.500	7.800	1.100
Antenna: 3								
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	-180	225	270	315
Antenna Height AAT (meters)	132.000	123.500	30.000	52.900	101.900	117.900	108.700	136.400
Transmitting ERP (watts)	45.200	1.900	0.433	0.433	2.600	47.700	216.900	210.000

Licensee Name: NEW CINGULAR WIRELESS PCS, LLC

Call Sign: $\mathrm{KNKN965}$		File Number:			Print Date:
Location Latitude		Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
18	$37-06-28.8 \mathrm{~N}$	$083-58-14.2 \mathrm{~W}$	429.8	59.7	1251801

Address: 1250 Lick Fork Road (114153)
City: London County: LAUREL State: KY Construction Deadline:

Address: 102 STONEHENGE DRIVE (37535)
City: LONDON County: LAUREL State: KY Construction Deadline:

Antenna: 1

Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	144.000	126.500	122.000	126.400	140.600	130.100	134.900	129.600
Transmitting ERP (watts)	70.300	32.900	3.500	0.200	0.140	0.200	4.500	36.900
Antenna: 2								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	144.000	126.500	122.000	126.400	140.600	130.100	134.900	129.600
Transmitting ERP (watts) Antenna: 3	4.500	36.900	70.300	32.900	3.500	0.200	0.140	0.200
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)		45	90	135	180	225	270	315
Antenna Height AAT (meters)	144.000	126.500	122.000	126.400	140.600	130.100	134.900	129.600
Transmitting ERP (watts)	0.249	0.300	3.500	32.800	124.700	111.200	17.200	1.500

Licensee Name: NEW CINGULAR WIRELESS PCS, LLC

Call Sign: $\mathrm{KNKN965}$		File Number:			Print Date:	
Location Latitude		Longitude		Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
22	$37-14-13.8 \mathrm{~N}$	$084-13-43.8 \mathrm{~W}$	369.7	97.5	1201300	

Address: Route \#1, Box 119V (37534)
City: East Bernstadt County: LAUREL State: KY Construction Deadline:

Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)		45	90	135	180	225	270	315
Antenna Height AAT (meters)	110.700	99.200	115.800	90.900	91.900	120.600	111.300	82.000
Transmitting ERP (watts)	64.700	126.200	53.800	5.500	0.300	0.300	0.300	8.900
Antenna: 2								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	110.700	99.200	115.800	90.900	91.900	120.600	111.300	82.000
Transmitting ERP (watts)	2.000	31.000	224.800	348.300	115.300	5.300	1.200	0.700
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	110.700	99.200	115.800	90.900	91.900	120.600	111.300	82.000
Transmitting ERP (watts)	147.600	9.500	1.600	0.600	0.600	14.000	128.700	295.600
Location Latitude		Ground Elevation (meters)			Structure Hgt to Tip (meters)		Antenna Structure	
23 37-09-08.0 N 084-18	084-18-58.5 W	350.8		106.7			1229865	
Address: 31 Laddie (37716)								
City: Somerset County: PULASKI	State:	Y Con	truction	eadline:				
Antenna: 1								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	123.200	125.000	89.000	126.700	144.700	130.600	152.500	128.900
Transmitting ERP (watts) Antenna: 2	11.500	89.000	176.600	74.200	6.100	0.800	0.400	0.400
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	123.200	125.000	89.000	126.700	144.700	130.600	152.500	128.900
Transmitting ERP (watts) Antenna: 3	0.400	0.400	11.700	89.800	178.200	74.900	6.100	0.800
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)		45	90	135	180	225	270	315
Antenna Height AAT (meters)	123.200	125.000	89.000	126.700	144.700	130.600	152.500	128.900
Transmitting ERP (watts)	13.600	1.600	0.331	0.331	5.900	49.200	165.500	125.700

Licensee Name: NEW CINGULAR WIRELESS PCS, LLC

Call Sign: KNKN965

File Number:
Print Date:

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.	
24	$37-08-25.1 \mathrm{~N}$	$084-32-06.1 \mathrm{~W}$	427.9	59.4	1279127

Address: 740 Fire Tower Rd (37718)
City: Somerset County: PULASKI State: KY Construction Deadline:

Antenna: 1

Maximum Transmitting ERP in Watts: Azimuth(from true north)	820							
	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	167.000	183.000	156.400	168.700	182.300	193.800	178.100	149.400
Transmitting ERP (watts)	52.800	159.300	116.300	17.200	0.800	0.318	0.318	4.000
Antenna: 2								
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)		45	90	135	180	225	270	315
Antenna Height AAT (meters)	167.000	183.000	156.400	168.700	182.300	193.800	178.100	149.400
Transmitting ERP (watts) Antenna: 3	0.300	0.300	2.000	31.300	143.100	142.000	30.400	1.500
Maximum Transmitting ERP in Watts: 140.820								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	167.000	183.000	156.400	168.700	182.300	193.800	178.100	149.400
Transmitting ERP (watts)	84.900	4.800 =	0.600	0.700	1.900	34.400	225.900	292.800

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
25	$37-01-12.7 \mathrm{~N}$	$084-34-43.7 \mathrm{~W}$	398.4	77.7

Address: 1025 Hill Road (39215)
City: Somerset County: PULASKI State: KY Construction Deadline:

Antenna: 1

Licensee Name: NEW CINGULAR WIRELESS PCS, LLC

Call Sign: KNKN965
File Number:

Print Date:

Location Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
26	$37-02-20.6 \mathrm{~N}$	$084-38-44.1 \mathrm{~W}$	341.4	29.3

Address: 1399 W. HWY 914 (110483)
City: Somerset County: PULASKI State: KY Construction Deadline:

Control Points:

Control Pt. No. 3
Address: 500 W. Dove Rd.
City: Southlake County: TARRANT State: TX Telephone Number: (800)264-6620

Waivers/Conditions:
NONE

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: CECIL J. MATHEW
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 1016
DALLAS, TX 75202

Call Sign KNLF251	File Number
Radio Service	
CW - PCS Broadband	

FCC Registration Number (FRN): 0003291192

| Grant Date
 $06-02-2015$ | Effective Date
 $01-16-2020$ | Expiration Date
 $06-23-2025$ | Print Date |
| :---: | :---: | :---: | :---: | :---: |
| Market Number | | | |
| MTA026 | Channel Block | Sub-Market Designator
 15 | |

Market Name Louisville-Lexington-Evansvill				
1st Build-out Date $06-23-2000$	2nd Build-out Date $06-23-2005$	3rd Build-out Date	4th Build-out Date	

Waivers/Conditions:

This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

This authorization is subject to the condition that the remaining balance of the winning bid amount will be paid in accordance with Part 1 of the Commission's rules, 47 C.F.R. Part 1.

Conditions:

Pursuant to $\$ 309$ (h) of the Communications Act of 1934, as amended, 47 U.S.C. $\$ 309(\mathrm{~h})$, this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any fight in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. \S 310(d). This license is subject in terms to the right of use or control conferred by $\$ 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Licensee Name: NEW CINGULAR WIRELESS PCS, LLC

Call Sign: KNLF251

File Number:

Print Date:

This license is conditioned upon compliance with the provisions of Applications of AT\&T Wireless Services, Inc. and Cingular Wireless Corporation For Consent to Transfer Control of Licenses and Authorizations, Memorandum Opinion and Order, FCC 04-255 (rel. Oct. 26, 2004).

Spectrum Lease Associated with this License. See Spectrum Leasing Arrangement Letter dated 12/06/2004 and File \# 0001918512.

Commission approval of this application and the licenses contained therein are subject to the conditions set forth in the Memorandum Opinion and Order, adopted on December 29, 2006 and released on March 26, 2007, and revised in the Order on Reconsideration, adopted and released on March 26, 2007. See AT\&T Inc. and BellSouth Corporation Application for Transfer of Control, WC Docket No. 06-74, Memorandum Opinion and Order, FCC 06-189 (rel. Mar. 26, 2007); AT\&T Inc. and BellSouth Corporation, WC Docket No. 06-74, Order on Reconsideration, FCC 07-44 (rel. Mar. 26, 2007).

Licensee Name: NEW CINGULAR WIRELESS PCS, LLC

Call Sign: KNLF251
4
4
4
4

File Number:

Print Date:

700 MHz Relicensed Area Information:
Market $\quad * \quad$ Market Name

REFERENCE COPY
This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC
ATTN: CECIL J MATHEW
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 1015
DALLAS, TX 75202

Call Sign KNLH398	File Number
Radio Service	
CW - PCS Broadband	

FCC Registration Number (FRN): 0003291192

Grant Date $04-14-2017$	Effective Date $08-31-2018$	Expiration Date $04-28-2027$	Print Date		
Market Number BTA252	Channel Block D				
Market Name Lexington, KY					Sub-Market Designator 0

1st Build-out Date $04-28-2002$	2nd Build-out Date	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

Abstract

\section*{Conditions}

Pursuant to $\$ 309$ (h) of the Communications Act of 1934, as amended, 47 U.S.C. $\S 309(\mathrm{~h})$, this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310 (d). This license is subject in terms to the right of use or control conferred by $\S 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

File Number:
Print Date:

700 MHz Relicensed Area Information:

Market
 Market Name

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: CECIL J MATHEW
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 1015
DALLAS, TX 75202

Call Sign WPOI255	File Number
Radio Service	
CW - PCS Broadband	

FCC Registration Number (FRN): 0003291192

Grant Date 05-27-2015	Effective Date $03-12-2020$	Expiration Date 06-23-2025	Print Date
Market Number MTA026		el Block	Sub-Market Designator 19
Market Name Louisville-Lexington-Evansvill			
1st Build-out Date $06-23-2000$	$\begin{gathered} \text { 2nd Build-out Date } \\ 06-23-2005 \end{gathered}$	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

This authorization is subject to the condition that the remaining balance of the winning bid amount will be paid in accordance with Part 1 of the Commission's rules, 47 C.F.R. Part 1.

Conditions:

Pursuant to $\S 309(\mathrm{~h})$ of the Communications Act of 1934 , as amended, 47 U.S.C. $\S 309(\mathrm{~h})$, this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. $\S 310$ (d). This license is subject in terms to the right of use or control conferred by $\$ 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the lardcopy xersion. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Licensee Name: NEW CINGULAR WIRELESS PCS, LLC

Call Sign: WPOI255
File Number:
Print Date:

This license is conditioned upon compliance with the provisions of Applications of AT\&T Wireless Services, Inc. and Cingular Wireless Corporation For Consent to Transfer Control of Licenses and Authorizations, Memorandum Opinion and Order, FCC 04-255 (rel. Oct. 26, 2004).

Spectrum Lease Associated with this License. See Spectrum Leasing Arrangement Letter dated 12/06/2004 and File \# 0001918558.

The Spectrum Leasing Arrangement, which became effective upon approval of application file number 0001918558 , was terminated on $04 / 14 / 2005$. See file number 0002135370.

Commission approval of this application and the licenses contained therein are subject to the conditions set forth in the Memorandum Opinion and Order, adopted on December 29, 2006 and released on March 26, 2007, and revised in the Order on Reconsideration, adopted and released on March 26, 2007. See AT\&T Inc. and BellSouth Corporation Application for Transfer of Control, WC Docket No. 06-74, Memorandum Opinion and Order, FCC 06-189 (rel. Mar. 26, 2007); AT\&T Inc. and BellSouth Corporation, WC Docket No. 06-74, Order on Reconsideration, FCC 07-44 (rel. Mar. 26, 2007).

Licensee Name: NEW CINGULAR WIRELESS PCS, LLC
Call Sign: WPOI255
File Number:
Print Date:

700 MHz Relicensed Area Information:

Market \quad Market Name Buildout Deadline Buildout Notification Status

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC
ATTN: CECIL J MATHEW
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 1015
DALLAS, TX 75202

Call Sign WQGD755	File Number
Radio Service	
AW - AWS (1710-1755 MHz and	
$2110-2155 \mathrm{MHz})$	

FCC Registration Number (FRN): 0003291192

| Grant Date
 $12-18-2006$ | Effective Date
 $08-31-2018$ | Expiration Date
 $12-18-2021$ | Print Date |
| :---: | :---: | :---: | :---: | :---: |
| Market Number | | | |
| BEA047 | Channel Block | C | Sub-Market Designator
 9 |

Market Name Lexington, KY-TN-VA-WV				
1st Build-out Date	2nd Build-out Date	3rd Build-out Date		

Waivers/Conditions:

This authorization is conditioned upon the licensee, prior to initiating operations from any base or fixed station, making reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the $1710-1755 \mathrm{MHz}$ band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the 1710-1755 MHz Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.

Grant of the request to update licensee name is conditioned on it not reflecting an assignment or transfer of control (see Rule 1.948); if an assignment or transfer occurred without proper notification or FCC approval, the grant is void and the station is licensed under the prior name.

Conditions:

Pursuant to $\$ 309$ (h) of the Communications Act of 1934 , as amended, 47 U.S.C. $\S 309$ (h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. $\S 310$ (d). This license is subject in terms to the right of use or control conferred by $\S 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopydyersion. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Licensee Name: NEW CINGULAR WIRELESS PCS, LLC

Call Sign: WQGD755
4
4
4
700 MHz Relicensed Area Information:

Market

File Number:
Print Date:

REFERENCE COPY
This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: CECIL J MATHEW
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST. RM 1015
DALLAS, TX 75202

Call Sign WQUZ670	File Number
Radio Service	
AW - AWS (1710-1755 MHz and	
$2110-2155 \mathrm{MHz}$)	

FCC Registration Number (FRN): 0003291192

Grant Date $09-26-2014$	Effective Date $02-20-2019$	Expiration Date $11-29-2021$	Print Date
Market Number REA004	Channel Block D	Sub-Market Designator 10	

Market Name
Mississippi Valley

1st Build-out Date	2nd Build-out Date	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

This authorization is conditioned upon the licensee, prior to initiating operations from any base or fixed station, making reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the $1710-1755 \mathrm{MHz}$ band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the 1710-1755 MHz Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.

Conditions:

Pursuant to $\S 309$ (h) of the Communications Act of 1934 , as amended, 47 U.S.C. $\S 309(\mathrm{~h})$, this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any tight in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than quthorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. $\S 310$ (d). This license is subject in terms to the right of use or control conferred by $\S 706$ of the Communications Act of 1934, as amended. See 47 U.S.C. $\$ 606$.

This license may not authorize operation throughout the entire geographic area or spectrum identified on tho hardecpiversion. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Licensee Name: NEW CINGULAR WIRELESS PCS, LLC

Call Sign: WQUZ670
File Number:
Print Date:

The license is subject to compliance with the provisions of the January 12, 2001 Agreement between Deutsche Telekom AG, VoiceStream Wireless Corporation, VoiceStream Wireless Holding Corporation and the Department of Justice (DOJ) and the Federal Bureau of Investigation (FBI), which addresses national security, law enforcement, and public safety issues of the FBI and the DOJ regarding the authority granted by this license. Nothing in the Agreement is intended to limit any obligation imposed by Federal lawor regulation including, but not limited to, 47 U.S.C. Section 222(a) and (c)(1) and the FCC's implementing regulations. The Agreement is published at VoiceStream-DT Order, IB Docket No. 00-187, FCC 01-142, 16 FCC Rcd 9779, 9853 (2001).

Call Sign: WQUZ670
File Number:
Print Date:

700 MHz Relicensed Area Information:
Market \quad Market Name \quad Buildout Deadline \quad Buildout Notification \quad Status

EXHIBIT B

SITE DEVELOPMENT PLAN:

500' VICINITY MAP
LEGAL DESCRIPTIONS
FLOOD PLAIN CERTIFICATION SITE PLAN
VERTICAL TOWER PROFILE

FA NUMBER: 15147586 / SITE ID: KYLEX2044
PACE \#: MRTNK047948
PROJECT TRACKING \#: 10110570
SITE NAME: MT. VERNON
OLD U.S. HWY 25
MT. VERNON, KY 40456 ROCKCASTLE COUNTY
PROPOSED 330' SELF-SUPPORT TOWER
ZONING DRAWINGS

PROJECT SUMMARY	
SITE NAME:	MT. VERNON
SITE NUMBER:	FA 15147586
TAX MAP PROPERTY ID:	046-00-001.05
SITE ADDRESS:	OLD U.S. HWY 25 MT. VERNON, KY 40456
JURISICTION:	ROCKCASTLE COUNTY
TOWER OWNER:	HARMONI TOWERS 10802 EXECUTVE CENTER DRIVE LITLE ROCK, AR 72211
NAD83	
LATITUDE: LONGITUDE:	37.353261° -84.327297
APPLICANT:	NEW CINGULAR WIRELESS, PCS, LLC, A DELAWARE LIMITED LIABILITY COMPANY d/b/a AT\&T MOBILITY MEIDINGER TOWER 462 S/ 4th STREET, SUITE 2400 LOUISVILLE, KY 40202
CO-APPLICANT: OCCUPANCY TYPE: A.D.A. COMPLIANCE:	N/A UNMANNED FACILTTY IS UNMANNED AND NOT FOR HUMAN HABITATION

DESIGN INFORMATION	
A\&E FRM:	
SURVEror:	point to point ${ }_{\text {PFA. }}$ P(678) $565-4440$

CODE COMPLIANCE	
	AND MATERIALS INSTALLED IN ACCORDANCE HE FOLLOWING CODES AS ADOPTED BY THE THE FOLLOWING CODES AS ADOPTED CODE

DRIVING DIRECTIONS

PROJECT DESCRIPTION
THE PROPOSED PROJECT INCLUDES CONSTRUCT (1) NEW 330^{\prime} SELF-SUPPORT TOWER CONSTRUCT FENCED GRAVEL UTILITY COMPOUND WITH LEASE AREA. INSTALL (1) H-FRAME W/ UTILITY EQUIPMENT. - INSTALL (1) H-FRAME W/ UTILITY EQUIPMENT. - CONSTRUCT 12^{\prime} WIDE GRAVEL ACCESS ROAD

DO NOT SCALE DRAWINGS
 OF ANY DISCREPANCIES BEFORER ROEEEEDNG WTH
THE WORK OR BE RESPONSIBLE FOR SAME.

TITLE SHEET
Sheet numbe
T-1

\#	Owner	ADDRESS	PID	REF
1	VADD COMPANY	$\begin{aligned} & \text { P.O. BOX } 1350 \\ & \text { MT. VERNON, KY } 40456 \end{aligned}$	046-00-001.05	DB 187 PG 303
2	RAE L. COX, TRUST c/o JERRY COX	$\begin{gathered} \text { P.O. BOX } 1350 \\ \text { MT VERNON, KY } 40456 \end{gathered}$	046-00-001	DB 230 PG 681
3	MALCOLM SHEPHERD	187 OLD DIXIE HWY	046-00-002	DB 194 PG 32
4	WALTER M. \& VANESSA HOWARD	262 OLD DIXIE HWY MT VERNON, KY 40456	046W-09-009	DB 270 PG
5	MALCOLM J. SHEPHERD	187 OLD DIXIE HWY MT VERNON, KY 40456	046W-09-008	DB 199 PG
6	DALLAS GRAVES	220 OLD DIXIE HWY MT VERNON, KY 40456	046-00-005	DB 182 PG 201
7	MATTHEW \& BEULAH SHEPHERD	528 GENERAL CRUFT RD MT VERNON, KY 40456	046-00-006	DB 225 PG 272
8	STOKES JJ -HEIRSC/O EDITH STOKES	509 DRYFORK ROAD ORLANDO, KY 40460	046-00-008	
9	PERRY T \& AMY MINK	665 CARTER RIDGE RD MT VERNON, KY 40456	046-00-007	DB 261 PG 186
10	$\underset{\substack{\text { PERRY T \& AMY } \\ \text { MINK }}}{ }$	665 CARTER RIDGE RD MT VERNON, KY 40456	046-00-009	DB 261 PG 182
11	NEWTON RAYMOND MRS. C/O MARGARET SMITH	362 OLD DIXIE HWY MT VERNON, KY 40456	046W-09-010	-
NOTE:				
1. PVA INFORMATION WAS OBTAINED ON $10 / 28 / 2020$ FROM THE OFFICIAL RECORDS OF THE COUNTY'S PROPERTY VALUATION ADMINISTRATOR.				
2. THIS MAP IS FOR GENERAL INFORMATION PURPOSES ONLY AND IS NOT A BOUNDARY SURVEY.				
3. NOT FOR RECORDING OR PROPERTY TRANSFER.				

$\Sigma_{\text {Porroen }}$

HARMONi

PROJECT NO
CHECKED BY

ISSUED FOR ReV| Date lomen for:
 B\&T ENGINEERING, INC. Expires $12 / 31 / 20$

BAT NOTE:
MUST DO TREE CLEARING BETWEEN OCTOBER 15th AND MARCH 31st, DUE TO B
TREES ON PROPERTY
(1) 500' RADIUS \& ADJOINER'S DRAWING SCALE: BEFORE YOU DIG!

EXHIBIT C
TOWER AND FOUNDATION DESIGN

July 16,2020

Kentucky Public Service Commission
211 Sower Blvd.
P.O. Box 615

Frankfort, KY 40602-0615

RE: Site Name - McGuire Relo
Proposed Cell Tower
37.3532610 North Latitude, 84.3272970 West Longitude

Dear Commissioners:
The Construction Manager for the proposed new communications facility will be Jeremy Culpepper.
His contact information is (985) 707-6175 or Jeremy.Culpepper@uniti.com.
Jeremy has been in the industry completing civil construction and constructing towers since 1998. He has worked at Uniti Towers LLC since 2018 completing project and construction management on new site build projects.

Thank you,

Jeremy Culpeper
Construction Manager - Tennessee/Kentucky Market
Uniti Towers LLC
(985) 707-6175

200.
180.

100.0 f

80.0 ft

60.0 \#
40.0π
280.01
120.0 ft

$\sqrt{B+T}$	B+T Group Boulder Ave, Ste 300	Pob: ATS \#8657-Mt Vernon (Site\# KYLEX2044)Project 330^{\prime} SST/ 37.353261,-84.327297		
		Client: Harmoni (UNITI) Towers	Drawn by JLandon	App'd:
	30	Code. TIA-222-H	Date: $10 / 22 / 20$	le: NTS
	FAX: (918) 295-0265	Path		Dwg No. E-

SST Unit Base Foundation

Project \#: 145800.001 .01
Site Name: Mt. Vernon
Site \#: 8657
TIA-222 Revision:

Top \& Bot. Pad Rein. Different?:	\square
Tower Centroid Offset?:	\square
Block Foundation?:	\square

Superstructure Analysis Reactions		
Global Moment, M	16526	ft-kips
Global Axial, P	117	kips
Global Shear, V	86	kips
Leg Compression, $\mathbf{P}_{\text {comp }}$	708	kips
Leg Comp. Shear, $\mathbf{V}_{\text {u_comp }}$	52	kips
Leg Uplift, $\mathbf{P}_{\text {upilit }}$	604	kips
Leg Uplift. Shear, $\mathbf{V}_{\text {u_upilit }}$	46	kips
Tower Height, \mathbf{H}	330	ft
Base Face Width, BW	28.5	ft
BP Dist. Above Fdn, $\mathrm{bp}_{\text {dist }}$	3	in

Pier Properties			
Pier Shape:	Circular		
Pier Diameter, dpier:	3.5	ft	
Ext. Above Grade, E:	0.50	ft	
Pier Rebar Size, Sc:	8		
Pier Rebar Quantity, mc:	18		
Pier Tie/Spiral Size, St:	4		
Pier Tie/Spiral Quantity, mt:	14		
Pier Reinforcement Type:	Tie		
Pier Clear Cover, cc cpier:	3	in	

Foundation Analysis Checks				
	Capacity	Demand	Rating	Check
Lateral (Sliding) (kips)	572.49	86.00	$\mathbf{1 5 . 0 \%}$	Pass
Bearing Pressure (ksf)	8.77	3.14	$\mathbf{3 5 . 8 \%}$	Pass
Overturning (kip*tt)	21713.92	17535.59	$\mathbf{8 0 . 8 \%}$	Pass
Pier Flexure (Comp.) (kip*ft)	1628.34	221.00	$\mathbf{1 3 . 6 \%}$	Pass
Pier Flexure (Tension) (kip*tt)	339.71	195.50	$\mathbf{5 7 . 5 \%}$	Pass
Pier Compression (kip)	6123.66	715.36	$\mathbf{1 1 . 7 \%}$	Pass
Pad Flexure (kip*ft)	3191.61	2939.97	$\mathbf{9 2 . 1 \%}$	Pass
Pad Shear - 1-way (kips)	1011.77	432.28	$\mathbf{4 2 . 7 \%}$	Pass
Pad Shear - Comp 2-way (ksi)	0.190	0.160	$\mathbf{8 4 . 5 \%}$	Pass
Flexural 2-way (Comp) (kip*ft)	1640.67	132.60	$\mathbf{8 . 1 \%}$	Pass
Pad Shear - Tension 2-way (ksi)	0.190	0.146	$\mathbf{7 6 . 8 \%}$	Pass
Flexural 2-way (Tension) (kip*ft)	1640.67	117.30	$\mathbf{7 . 1 \%}$	Pass

Pad Properties

Pad Properties		
Depth, D	6.00	ft
Pad Width, W:	39.50	ft
Pad Thickness, T:	2.25	ft
Pad Rebar Size (Bottom), Sp:	8	
Pad Rebar Quantity (Bottom), mp:	41	
Pad Clear Cover, cc cpad	3	in

Material Properties

Material Properties			
Rebar Grade, Fy:	60	ksi	
Concrete Compressive Strength, F'c:	4	ksi	
Dry Concrete Density, ठc:	150	pcf	

Soil Properties

Soil Properties		
Total Soil Unit Weight, \mathbf{y}	115	pcf
Ultimate Net Bearing, Qnet:	11.000	ksf
Cohesion, Cu:	1.750	ksf
Friction Angle, $\boldsymbol{\phi}:$	0	degrees
SPT Blow Count, N	blows:	
Base Friction, $\boldsymbol{\mu}:$	0.3	
Neglected Depth, N:	2.5	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	None	ft

<- Toagie between Gross and Net

Drilled Pier Foundation

Project \# Site Name: Order Number:	800.001.01
	Vernon
TIA-222 Revison:Tower Type:	H
	Self Support

Applied Loads		
Comp.		
Moment (kip-ft	Uplift	
Axial Force (kips)	708	604
Shear Force (kips)	52	46

Material Properties

Material Properties		
Concrete Strength, fc:	4	
Rebar Strength, Fy	60	
ksi		
Tie Yield Strength, Fyt:	40	

Rebar \& Pier Options
Embedded Pole Inputs
Belled Pier laputs

Analysis Results		
Soil Lateral Check	Compression	Uplift
$\mathrm{D}_{\mathrm{vo0}}$ (ff from TOC)	10.95	10.95
Soil Safety Factor	19.33	21.86
Max Moment (kip-ft)	434.52	384.38
Rating	6.9\%	6.1\%
Soil Vertical Check	Compression	Uplift
Skin Friction (kips)	558.14	558.14
End Bearing (kips)	1737.39	-
Weight of Concrete (kips)	104.33	78.25
Total Capacity (kips)	2295.52	636.38
Axial (kips)	812.33	604.00
Rating	35.4\%	94.9\%
Reinforced Concrete Flexure	Compression	Uplift
Critical Depth (ft from TOC)	11.05	9.70
Critical Moment (kip-ft)	434.43	374.16
Critical Moment Capacity	4200.04	1822.55
Rating	10.3\%	20.5\%
Reinforced Concrete Shear	Compression	Uplift
Critical Depth (ft from TOC)	17.58	17.58
Critical Shear (kip)	87.03	76.99
Critical Shear Capacity	723.19	357.02
Rating	12.0\%	21.6\%
Soil Interaction Rating		
Structural Foundation Rating		

Soil Profile														
Groundwater Depth		N/A	\# of Layers				7							
Layer	Top (ft)	Bottom (ft)	Thickness (ft)	$\begin{aligned} & Y_{\text {soif }} \\ & (\mathrm{pcf}) \end{aligned}$	$\begin{aligned} & Y_{\text {concrete }} \\ & (\mathrm{pcf}) \end{aligned}$	Cohesion (ksf)	Angle of Friction (degrees)	Calculated Ultimate Skin Friction Comp (ksf)	Calculated Ultimate Skin Friction Uplift (ksf)	Ultimate Skin Friction Comp Override (ksf)	Ulitimate Skin Friction Uplift Override (ksf)	Ult. Net Bearing Capacity (ksf)	SPT Blow Count	Soil Type
1	0	3	3	110	150	0	0	0.000	0.000	0.00	0.00			Cohesionless
2	3	4	1	110	150	1.5	0	0.825	0.825	0.82	0.82			Cohesive
3	4	7	3	115	150	1.75	0	0.963	0.963	0.96	0.96			Cohesive
4	7	9	2	120	150	2.75	0	1.513	1.513	1.51	1.51			Cohesive
5	9	14	5	130	150	6	0	2.700	2.700	2.40	2.40			Cohesive
6	14	17	3	125	150	4.25	0	2.123	2.123	2.12	2.12			Cohesive
7	17	20	3	140	150	12	0	5.40	5.40	4.80	4.80	79.46		Cohesive

| thxTTOWer | Job | Page |
| :---: | :--- | ---: | :--- |
| | | ATS \#8657-Mt Vernon (Site\# KYLEX2044) |

Tower Input Data

The main tower is a 3 x free standing tower with an overall height of 330.000 ft above the ground line.
The base of the tower is set at an elevation of 0.000 ft above the ground line.
The face width of the tower is 3.750 ft at the top and 28.500 ft at the base.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower is located in Rockcastle County, Kentucky.
Tower base elevation above sea level: 1317.000 ft .
Basic wind speed of 105 mph .
Risk Category II.
Exposure Category C.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.000 ft .
Nominal ice thickness of 1.500 in.
Ice thickness is considered to increase with height.
Ice density of 56.000 pcf .
A wind speed of 30 mph is used in combination with ice.
Temperature drop of $50.000^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
Please see feedline plan for proper feedline placement. Deviation from plan may reduce tower capacity.
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in tower member design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
\checkmark Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
\checkmark Include Bolts In Member Capacity
$\sqrt{ }$ Leg Bolts Are At Top Of Section
$\sqrt{ }$ Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform
Assume Legs Pinned
\checkmark Assume Rigid Index Plate
\checkmark Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt Autocalc Torque Arm Areas Add IBC 6D + W Combination
\checkmark Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
\checkmark Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
\checkmark SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
\checkmark Consider Feed Line Torque
\checkmark Include Angle Block Shear Check
Use TIA-222-H Bracing Resist Exemption
Use TIA-222-H Tension Splice Exemption Poles
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Triangular Tower

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
	$f t$			$f t$		$f t$
T1	330 000-320.000			3.750	1	10.000
T2	320.000-300.000			4.500	1	20.000
T3	300000-280.000			6.000	1	20.000
T4	280.000-260.000			7.500	1	20.000
T5	260.000-240.000			9.000	1	20.000
T6	240.000-220.000			10.500	1	20000
T7	$220.000-200.000$			12.000	1	20.000
T8	200.000-180.000			13500	1	20.000
T9	180000-160.000			15000	1	20.000
T10	$160.000-140.000$			16.500	1	20.000
T11	$140.000-120.000$			18.000	1	20.000
T12	120.000-100.000			19500	1	20.000
T13	100.000-80.000			21.000	1	20.000
T14	$80.000-60.000$			22.500	1	20.000
T15	$60.000-40.000$			24.000	1	20.000
T16	40.000-20.000			25500	1	20.000
T17	20.000-0.000			27.000	1	20.000

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft				in	
Panels	in						

Tower Section Geometry (cont'd)

Tower Elevation ft	$\begin{aligned} & \text { Leg } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Leg } \\ & \text { Size } \end{aligned}$	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
$\begin{gathered} \mathrm{Tl} \\ 330.000-320.000 \end{gathered}$	Solid Round	$13 / 4$	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	L. $3 / 4 \times 13 / 4 \times 3 / 16$	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \mathrm{T} 2 \\ 320.000-300000 \end{gathered}$	Solid Round	2	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	L. $3 / 4 \times 13 / 4 \times 3 / 16$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T3 } \\ 300.000-280.000 \end{gathered}$	Solid Round	$21 / 2$	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	L. $3 / 4 \times 13 / 4 \times 3 / 16$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \mathrm{T} 4 \\ 280.000-260.000 \end{gathered}$	Solid Round	23/4	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	$1.2 \times 2 \times 3 / 16$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T5 } \\ 260.000-240.000 \end{gathered}$	Solid Round	3	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	L2 1/2×2 1/2×3/16	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T6 } \\ 240.000-220.000 \end{gathered}$	Solid Round	$31 / 4$	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	L2 $1 / 2 \times 21 / 2 \times 3 / 16$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \mathrm{T} 7 \\ 220.000-200.000 \end{gathered}$	Solid Round	$31 / 2$	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	L $3 \times 3 \times 3 / 16$	$\begin{gathered} \text { A } 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T8 } \\ 200.000-180.000 \end{gathered}$	Solid Round	$33 / 4$	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	$13 \times 3 \times 3 / 16$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T9 } \\ 180.000-160.000 \end{gathered}$	Solid Round	$33 / 4$	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	L $3 \times 3 \times 3 / 16$	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \mathrm{T} 10 \\ 160.000-140.000 \end{gathered}$	Solid Round	4	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	L $3 \times 3 \times 1 / 4$	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T11 } \\ 140.000-120.000 \end{gathered}$	Solid Round	41/4	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Double Angle	2L. $21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \mathrm{T} 12 \\ 120.000-100.000 \end{gathered}$	Solid Round	$41 / 4$	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Double Angle	2L2 $1 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T13 } \\ 100.000-80.000 \end{gathered}$	Solid Round	$41 / 2$	$\begin{aligned} & \text { A } 529-50 \\ & (50 \mathrm{ksi}) \end{aligned}$	Double Angle	$2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T14 } \\ 80.000-60.000 \end{gathered}$	Solid Round	$41 / 2$	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Double Angle	$2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \mathrm{T} 15 \\ 60.000-40.000 \end{gathered}$	Solid Round	43/4	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Double Angle	$2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8$	$\begin{aligned} & \text { A36M-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$
$\begin{gathered} \text { T16 } \\ 40.000-20.000 \end{gathered}$	Solid Round	43/4	$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Double Angle	$2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
T1720.000-0.000	Solid Round	5	A529-50	Double Angle	$2 \mathrm{~L} 3 \times 3 \times 1 / 4 \times 3 / 8$	A36M-50

$\left.\begin{array}{ccccccc}\hline \begin{array}{c}\text { Tower } \\ \text { Elevation } \\ f t\end{array} & \text { Leg } & \text { Type } & \text { Leg } & \text { Leg } & \text { Diagonal } & \text { Diagonal }\end{array} \quad \begin{array}{c}\text { Diagonal } \\ \text { Size }\end{array}\right]$

Tower Section Geometry (cont'd)

Tower Elevation ft	$\begin{gathered} \text { Top Girt } \\ \text { Type } \end{gathered}$	$\begin{aligned} & \text { Top Girt } \\ & \text { Size } \end{aligned}$	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
$\begin{gathered} \mathrm{Tl} \\ 330.000-320.000 \end{gathered}$	Equal Angle	L. $3 / 4 \times 13 / 4 \times 3 / 16$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round		$\begin{aligned} & \text { A529-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$

Tower Section Geometry (cont'd)

Tower Elevation ft	No. of Mid Girts	Mid Girt Type	$\begin{gathered} \text { Mid Girt } \\ \text { Size } \end{gathered}$	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade
$\begin{gathered} \text { T11 } \\ 140.000-120000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Double Angle	2L1 3/4×1 3/4×3/16x3/8	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \mathrm{T} 12 \\ 120.000-100.000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Double Angle	$2 \mathrm{~L} 2 \times 2 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T13 } \\ 100.000-80.000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Double Angle	2L $21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T14 } \\ 80000-60000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Double Angle	$2 \mathrm{~L} 21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T15 } \\ 60.000-40.000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Double Angle	2L2 $1 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T16 } \\ 40.000-20.000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Double Angle	2L2 $1 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
T17 20,000-0.000	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Double Angle	$2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8$	$\begin{gathered} \text { A } 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
$\begin{gathered} \text { T11 } \\ 140.000-120.000 \end{gathered}$	Solid Round		$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	LI 3/4x\| 3/4x3/16	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T12 } \\ 120.000-100.000 \end{gathered}$	Solid Round		$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	L. $3 / 4 \times 13 / 4 \times 3 / 16$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \mathrm{T} 13 \\ 100.000-80.000 \end{gathered}$	Solid Round		$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	LI $3 / 4 \times 13 / 4 \times 3 / 16$	$\begin{gathered} \text { A } 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T14 } \\ 80.000-60.000 \end{gathered}$	Solid Round		$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	LI $3 / 4 \times 13 / 4 \times 3 / 16$	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T15 } \\ 60.000-40.000 \end{gathered}$	Solid Round		$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	L. $3 / 4 \times 13 / 4 \times 3 / 16$	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$

Tower Elevation $f t$	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
$\begin{gathered} \text { T16 } \\ 40.000-20000 \end{gathered}$	Solid Round		$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	LI 3/4x\| 3/4x3/16	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$
T1720.000-0.000	Solid Round		$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \\ \hline \end{gathered}$	Single Angle	L1 3/4x\| 3/4x3/16	$\begin{gathered} \text { A } 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \\ \hline \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Gusset Area (per face) \qquad	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{i}	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
$\begin{gathered} \mathrm{T} 1 \\ 330.000-320.0 \\ 00 \end{gathered}$	0.000	0.375	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	36.000	36.000	36000
$\begin{gathered} \mathrm{T} 2 \\ 320.000-300.0 \\ 00 \end{gathered}$	0.000	0375	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	36.000	36.000	36.000
$\begin{gathered} \text { T3 } \\ 300000-280.0 \\ 00 \end{gathered}$	0.000	0.375	$\begin{gathered} \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	36.000	36.000	36.000
$\begin{gathered} \mathrm{T} 4 \\ 280.000-260.0 \\ 00 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	36.000	36.000	36.000
$\begin{gathered} \text { T5 } \\ 260.000-240.0 \\ 00 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	36.000	36.000	36.000
$\begin{gathered} \mathrm{T} 6 \\ 240000-220.0 \\ 00 \end{gathered}$	0.000	0.375	$\underset{(50 \mathrm{ksi})}{\mathrm{A} 36 \mathrm{M}-50}$	1	1	1	36.000	36.000	36.000
$\begin{gathered} \mathrm{T} 7 \\ 220.000-200.0 \\ 00 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	36000	36.000	36.000
$\begin{gathered} \text { T8 } \\ 200.000-180.0 \\ 00 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	36.000	36.000	36.000
$\begin{gathered} \text { T9 } \\ 180000-1600 \\ 00 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	36.000	36.000	36000
$\begin{gathered} \mathrm{T} 10 \\ 160000-140.0 \\ 00 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	36.000	36.000	36.000
$\begin{gathered} \mathrm{T} 11 \\ 140.000-120.0 \\ 00 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	Mid-Pt	Mid-Pt	36.000
$\begin{gathered} \mathrm{T} 12 \\ 120.000-100.0 \\ 00 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	Mid-Pt	Mid-Pt	36.000
$\begin{gathered} \mathrm{T} 13 \\ 100000-80.00 \\ 0 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	Mid-Pt	Mid-Pt	36.000
$\begin{gathered} \mathrm{T} 14 \\ 80.000-60.000 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	Mid-Pt	Mid-Pt	36.000
$\begin{gathered} \text { T15 } \\ 60.000-40.000 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36M-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	1	1	1	Mid-Pt	Mid-Pt	36.000

Tower Elevation ft	Gusset Area (per face) ft	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
T16	0.000	0375	A36M-50	1	1	1	Mid-Pt	Mid-Pt	36.000
$\begin{gathered} 40.000-20.000 \\ \text { T17 } \\ 20.000-0.000 \\ \hline \end{gathered}$	0.000	0.375	$\begin{gathered} (50 \mathrm{ksi}) \\ \mathrm{A} 36 \mathrm{M}-50 \\ (50 \mathrm{ksi}) \\ \hline \end{gathered}$	1	1	1	Mid-Pt	Mid-Pt	36000

Tower Section Geometry (cont'd)

Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	K Factors ${ }^{\text {l }}$							
			Legs	X Brace	K Brace	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
				Diags	Diags					
				X						
$f t$				Y						
T1	No	No	1	1	1	1	1	1	1	1
$330.000-320.0$				1	1	I	1	1	1	1
00										
T2	No	No	1	1	1	1	1	1	1	1
320.000-300.0				1	1	I	I	I	1	1
00										
T3	No	No	1	1	1	1	1	1	1	1
300.000-280.0				1	1	1	1	1	1	1
00										
T4	No	No	1	1	1	1	1	1	1	1
280.000-260.0				1	1	1	1	1	1	1
00										
T5	No	No	1	1	1	1	1	1	1	1
260.000-240.0				1	1	1	1	1	1	1
00										
T6	No	No	1	1	1	1	1	1	1	1
240.000-220.0				1	1	1	1	1	1	1
00										
T7	No	No	1	1	1	1	1	1	1	1
220.000-200.0				1	1	1	1	1	1	1
00 (1)										
T8	No	No	I	1	1	1	1	1	1	1
200.000-180.0				1	1	1	1	1	1	1
00										
T9	No	No	1	1	1	1	1	1	1	1
$180.000-160.0$				1	1	1	1	1	1	1
00										
T10	No	No	I	1	1	1	1	1	1	1
$160.000-140.0$				1	1	1	1	1	1	1
00×1										
T11	No	No	1	1	1	1	1	1	1	1
140.000-120.0				1	1	1	1	1	1	1
00										
T12	No	No	1	1	1	1	1	1	1	1
120.000-100.0				1	1	1	1	1	1	1
00 (1)										
T13	No	No	1	1	1	1	1	1	1	1
100.000-80.00				1	1	1	1	1	1	1
T14	No	No	1	1	1	1	1	1	1	1
80.000-60.000				1	1	1	1	1	1	1
T15	No	No	1	1	1	1	1	1	1	1

Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	K Factors ${ }^{\text {l }}$							
			Legs	X	K	Single	Girts	Horiz.	Sec. Horiz.	Inner Brace
				Brace	Brace	Diags				
				Diags	Diags					
				X	X	X	X	X	X	X
t				Y						
60.000-40.000				1	1	1	1	1	1	1
T16	No	No	1	1	1	1	1	1	1	1
40.000-20.000				1	1	1	1	1	1	1
T17	No	No	1	1	1	1	1	1	1	1
20.000-0.000				1	1	1	1	1	1	1

${ }^{7}$ Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
$\begin{gathered} \mathrm{T1} \\ 330.000-320.0 \\ 00 \end{gathered}$	0.000	1	0.000	0.75	0.000	0.75	0000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T2 $320000-3000$	0.000	1	0000	0.75	0.000	0.75	0.000	075	0000	0.75	0.000	0.75	0000	0.75
$\begin{gathered} 320.000-300.0 \\ 00 \\ \text { T3 } \end{gathered}$														
$\begin{gathered} \text { T3 } \\ 300.000-280.0 \\ 00 \end{gathered}$	0.000	1	0.000	0.75	0.000	0.75	0.000	075	0.000	0.75	0.000	0.75	0.000	0.75
T4	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} 280.000-260.0 \\ 00 \\ \text { T5 } \end{gathered}$														
	0.000	1	0000	0.75	0000	0.75	0.000	0.75	0.000	075	0000	0.75	0.000	0.75
$\begin{gathered} 260.000-240.0 \\ 00 \\ \text { T6 } \end{gathered}$														
	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	075	0.000	0.75	0.000	0.75
$\begin{gathered} 240.000-220.0 \\ 00 \\ \mathrm{~T} 7 \end{gathered}$														
	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} 220.000-200.0 \\ 00 \\ \text { T8 } \end{gathered}$														
	0.000	1	0.000	0.75	0000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} 200.000-180.0 \\ 00 \\ \text { T9 } \end{gathered}$														
	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} 180.000-1600 \\ 00 \\ \text { T10 } \end{gathered}$														
	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} 160.000-140.0 \\ 00 \\ \text { T11 } \end{gathered}$														
	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} 140000-120.0 \\ 00 \\ \text { T12 } \end{gathered}$														
	0.000	1	0.000	0.75	0000	0.75	0000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} 120.000-100.0 \\ 00 \end{gathered}$														

Tower Elevation $f t$	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in	U										
$\begin{gathered} \mathrm{T} 13 \\ 100.000-80.00 \\ 0 \end{gathered}$	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T14 } \\ 80.000-60.000 \end{gathered}$	0.000	1	0000	075	0.000	0.75	0.000	075	0000	075	0.000	075	0.000	0.75
$\begin{gathered} \mathrm{T} 15 \\ 60000-40000 \end{gathered}$	0.000	1	0.000	075	0.000	0.75	0.000	0.75	0000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \mathrm{T} 16 \\ 40.000-20.000 \end{gathered}$	0.000	1	0000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \mathrm{T} 17 \\ 20.000-0.000 \\ \hline \end{gathered}$	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75

Tower Section Geometry (cont'd)

Tower Elevation ft	LegConnectionType	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
		Bolt Size in	No.	Bolt Size in		Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.
$\begin{gathered} \mathrm{TI} \\ 330.000-320.0 \\ 00 \end{gathered}$	Flange	$\begin{gathered} 0.000 \\ \mathrm{~A} 325 \mathrm{~N} \end{gathered}$	0	$\begin{gathered} 0.625 \\ \text { A325X } \end{gathered}$	1	$\begin{gathered} 0.625 \\ \text { A } 325 \mathrm{X} \end{gathered}$	1	$\begin{gathered} 0.000 \\ \mathrm{~A} 325 \mathrm{~N} \end{gathered}$	0	$\begin{gathered} 0.625 \\ \mathrm{~A} 325 \mathrm{~N} \end{gathered}$	0	$\begin{gathered} 0.000 \\ \mathrm{~A} 325 \mathrm{X} \end{gathered}$	0	$\begin{gathered} 0.625 \\ \mathrm{~A} 325 \mathrm{~N} \end{gathered}$	0
$\begin{gathered} \text { T2 } \\ 320000-3000 \end{gathered}$	Flange	$\begin{gathered} 0.750 \\ \text { A.325N } \end{gathered}$	6	$\begin{gathered} 0.625 \\ \mathrm{~A} 325 \mathrm{X} \end{gathered}$	1	$\begin{gathered} 0.000 \\ \mathrm{~A} 325 \mathrm{~N} \end{gathered}$	0	$\begin{gathered} 0.000 \\ \mathrm{~A} 32.5 \mathrm{~N} \end{gathered}$	0	$\begin{gathered} 0.625 \\ \text { A325N } \end{gathered}$	0	$\begin{gathered} 0.000 \\ \mathrm{~A} 325 \mathrm{X} \end{gathered}$	0	$\begin{gathered} 0.625 \\ \mathrm{~A} 325 \mathrm{~N} \end{gathered}$	0
$\begin{aligned} & 00 \\ & \text { T3 } \end{aligned}$		A325N	6	A 325 X 0.625	1	A 325 N	0	A325N	0		0	A325 X 0.000	0	A 325 N 0.625	0
$\begin{gathered} 300.000-280.0 \\ 00 \end{gathered}$		A 325 N		A 325 X		A 325 N		A 325 N		A325N		A325X		A 325 N	
T4	Flange	0.750	6	0.625	1	0.000	0	0.000	0	0.625	0	0.000	0	0.625	0
$\begin{gathered} 280000-260.0 \\ 00 \end{gathered}$		A 325 N		A325X		A 325 N		A 325 N		A 325 N		A325X		A 325 N	
T5	Flange	0.750	6	0.625	I	0.000	0	0.000	0	0625	0	0.000	0	0.625	0
$\begin{gathered} 260000-2400 \\ 00 \end{gathered}$		A325N		A325X		A 325 N		A 325 N		A 325 N		A325X		A 325 N	
T6	Flange	1.000	6	0.625	1	0.000	0	0.000	0	0.625	0	0.000	0	0.625	0
$\begin{gathered} 240.000-220.0 \\ 00 \end{gathered}$		A 325 N		A 325 X		A 325 N		A 325 N		A 325 N		A325X		A325N	
T7	Flange	1.000	6	0.625	1	0.000	0	0.000	0	0.625	0	0.000	0	0.625	0
220.000-200.0		A 325 N		A 325 X		A 325 N		A 325 N		A 325 N		A325X		A 325 N	
T8	Flange	1000	6	0.625	1	0.000	0	0.000	0	0.625	0	0.000	0	0625	0
$\begin{gathered} 200.000-180.0 \\ 00 \end{gathered}$		A325N		A 325 X		A 325 N		A 325 N		A 325 N		A325X		A325N	
T9	Flange	1.000	6	0.625	1	0.000	0	0.000	0	0.625	0	0.000	0	0.625	0
$\begin{gathered} 180000-160.0 \\ 00 \end{gathered}$		A325N		A 325 X		A 325 N		A 325 N		A 325 N		A325X		A325N	
T10	Flange	1250	6	0.625	1	0.000	0	0.000	0	0.625	0	0.000	0	0.625	0
$\begin{gathered} 160000-140.0 \\ 00 \end{gathered}$		A 325 N		A 325 X		A 325 N		A 325 N		A325N		A325X		A 325 N	
T11	Flange	1.250	6	0.625	1	0.000	0	0.000	0	0.625	0	0.625	1	0.625	0
$140.000-120.0$		A325N		A 325 X		A 325 N		A 325 N		A325N		A325X		A325N	

Tower Elevation $f t$	Leg Connection Type	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
		Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.
T12	Flange	1250	6	0625	1	0.000	0	0.000	0	0.625	0	0.625	1	0.625	0
$\begin{gathered} 120000-100.0 \\ 00 \end{gathered}$		A325N		A325X		A 325 N		A 325 N		A 325 N		A 325 X		A 325 N	
T13	Flange	1250	6	0.625	1	0.000	0	0.000	0	0.625	0	0.625	1	0.625	0
$\begin{gathered} 100000-80.00 \\ 0 \end{gathered}$		A325N		A325X		A 325 N		A325N		A 325 N		A325X		A 325 N	
T14	Flange	1250	6	0.625	1	0.000	0	0.000	0	0.625	0	0.625	1	0.625	0
$80.000-60.000$		A325N		A325X		A 325 N		A 325 N		A 325 N		A325X		A 325 N	
T15	Flange	1250	6	0.625	1	0.000	0	0.000	0	0.625	0	0.625	1	0.625	0
60.000-40.000		A325N		A325X		A 325 N		A 325 N		A 325 N		A325X		A325N	
T16	Flange	1500	6	0.625	1	0.000	0	0.000	0	0.625	0	0.625	1	0.625	0
40.000-20.000		A325N		A325X		A 325 N		A 325 N		A325N		A325X		A 325 N	
T17	Flange	1.500	6	0.625	1	0.000	0	0.000	0	0.625	0	0.625	1	0.625	0
20.000-0.000		A325N		A 325 X		A 325 N		A 325 N		A 325 N		A325X		A 325 N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	$\begin{gathered} \text { Face } \\ \text { Offset } \\ \text { in } \end{gathered}$	Lateral Offset (Frac FW)	\#	$\begin{gathered} \# \\ \text { Per } \\ \text { Row } \end{gathered}$	Clear Spacing in	Width or Diameter in	Perimeter in	Weight klf
$\begin{gathered} 1-5 / 8^{\prime \prime} \\ \text { (Carrier 1) } \end{gathered}$	C	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 325.000- \\ 10.000 \end{gathered}$	0000	0	9	5	0.750	1.980		0.001
$1.5^{\prime \prime}$ Hybrid (Carrier 1)	C	No	No	$\operatorname{Ar}(\mathrm{CaAa})$	$\begin{gathered} 325.000- \\ 10.000 \end{gathered}$	0.000	-0 25	6	3	0.750	1.500		0.001
$\begin{gathered} 1-5 / 8^{\prime \prime} \\ \text { (Carrier 2) } \end{gathered}$	B	No	No	$\operatorname{Ar}(\mathrm{CaAa})$	$\begin{gathered} 313.000- \\ 10.000 \end{gathered}$	0.000	0	9	5	0.750	1.980		0001
$15^{\prime \prime}$ Hybrid (Carrier 2)	B	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{array}{r} 313.000- \\ 10.000 \end{array}$	0000	-0.25	6	3	0.750	1500		0001
$\begin{gathered} 1-5 / 8^{\prime \prime} \\ \text { (Carrier 3) } \end{gathered}$	A	No	No	$\operatorname{Ar}(\mathrm{CaAa})$	$\begin{gathered} 301.000- \\ 10.000 \end{gathered}$	0.000	0	9	5	0.750	1.980		0.001
1.5" Hybrid (Carrier 3) **	A	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 301.000- \\ 10.000 \end{gathered}$	0.000	-0. 25	6	3	0.750	1500		0.001
$\begin{gathered} 1-5 / 8^{\prime \prime} \\ (\text { Carrier } 4) \\ * * \end{gathered}$	C	No	No	Ar (CaAa)	$\begin{gathered} 289.000- \\ 10.000 \end{gathered}$	0.000	0.35	2	1	0.750	1.980		0.001
$\begin{gathered} 1-5 / 8^{\prime \prime} \\ \left(\begin{array}{c} \text { Carrier } 5 \text {) } \\ * * \end{array}\right. \end{gathered}$	C	No	No	$\operatorname{Ar}(\mathrm{CaAa})$	$\begin{gathered} 277.000- \\ 10.000 \end{gathered}$	0.000	0.4	2	1	0.750	1.980		0.001
Safety Line $3 / 8$	A	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 330.000- \\ 10.000 \end{gathered}$	0.000	0.45	1	1	0.375	0.375		0.000
Strobe Cable **	A	No	No	$\operatorname{Ar}(\mathrm{CaAa})$	$\begin{gathered} 330.000- \\ 10.000 \end{gathered}$	0.000	-0.45	1	1	1250	1.250		0.001
Feedline Ladder (Af)	C	No	No	$\mathrm{Af}(\mathrm{CaAa})$	$\begin{gathered} 325.000- \\ 10.000 \end{gathered}$	0.000	03	1	1	3000	0.250		0008
Feedline Ladder (Af)	B	No	No	$\mathrm{Af}(\mathrm{CaAa})$	$\begin{gathered} 313.000- \\ 10.000 \end{gathered}$	0.000	0.3	1	1	3.000	0.250		0.008
Feedline Ladder (Af)	A	No	No	$\mathrm{Af}(\mathrm{CaAa})$	$\begin{gathered} 301.000- \\ 10.000 \end{gathered}$	0.000	0.3	1	1	3.000	0.250		0.008

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation $f t$	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Ice Thickness in	A_{k} $t t^{2}$	A_{F} $f t^{2}$	$C_{A} A_{4}$ In Face ft^{2}	$C_{A} A_{A}$ Out Face ft^{2}	Weight K
TI	330.000-320.000	A	1.886	0.000	0.000	9.167	0.000	0.134
		B		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	21.491	0.000	0.445
T2	320.000-300.000	A	1.877	0.000	0.000	22.553	0000	0.354
		B		0.000	0.000	55.773	0.000	1.153
		C		0.000	0.000	85.804	0.000	1.775
T3	$300.000-280.000$	A	1.864	0000	0.000	103.746	0000	2028
		B		0.000	0.000	85.583	0.000	1766
		C		0.000	0.000	97.044	0.000	1936
T4	280.000-260.000	A	1851	0.000	0.000	103.405	0000	2.015
		B		0.000	0.000	85.348	0.000	1.756
		C		0.000	0.000	132.295	0.000	2.450
T5	$260.000-240.000$	A	1837	0.000	0.000	103.040	0.000	2.002
		B		0.000	0.000	85.096	0000	1.746
		C		0.000	0.000	135653	0.000	2489
T6	240.000-220.000	A	1.821	0.000	0.000	102.647	0.000	1.988
		B		0.000	0.000	84.826	0.000	1735
		C		0.000	0.000	135.171	0.000	2.469
T7	220.000-200.000	A	1805	0.000	0.000	102.223	0.000	1.972
		B		0.000	0.000	84.533	0.000	1.723
		C		0.000	0.000	134.650	0.000	2449
T8	200.000-180.000	A	1787	0.000	0.000	101761	0.000	1.956
		B		0.000	0.000	84.215	0.000	1.710
		C		0.000	0.000	134.082	0.000	2.426
T9	180.000-160.000	A	1.767	0000	0.000	101252	0.000	1.938
		B		0.000	0000	83865	0000	1.696
		C		0.000	0.000	133.458	0.000	2.401
T10	160.000-140.000	A	1745	0.000	0.000	100.687	0.000	1.918
		B		0.000	0.000	83.475	0.000	1681
		C		0000	0.000	132.763	0.000	2.374
T11	$140.000-120.000$	A	1720	0.000	0.000	100.049	0.000	1895
		B		0.000	0.000	83.036	0.000	1.664
		C		0.000	0.000	131.980	0.000	2.344
T12	120.000-100.000	A	1692		0000	99.316	0000	1.869
		B		0.000	0.000	82.531	0000	1.644
		C		0.000	0.000	131.080	0.000	2.309
T13	$100.000-80.000$	A	1658		0.000	98.452	0000	1839
		B		0.000	0.000	81.936	0.000	1.621
		C		0.000	0000	130.019	0000	2.268
T14	80.000-60.000	A	1.617		0.000	97.395	0.000	1.803
		B		0.000	0.000	81.207	0000	1592
		C		0.000	0.000	128721	0.000	2.219
T15	60.000-40.000	A	1.564		0.000	96.020	0000	1756
		B		0.000	0.000	80.261	0000	1.556
		C		0.000	0.000	127.033	0.000	2155
T16	40 000-20.000	A	1486	0.000	0.000	94020	0000	1689
		B		0.000	0.000	78.884	0.000	1.504
		C		0.000	0.000	124579	0.000	2065
T17	20.000-0.000	A	1331	0.000	0.000	45.026	0.000	0.781
		B		0.000	0.000	38.076	0.000	0.702
		C		0.000	0.000	59857	0000	0.946

Feed Line Center of Pressure

Section	Elevation $f t$	$C P_{X}$ in	$C P_{Z}$ in	$\begin{gathered} C P_{X} \\ \text { Ice } \\ \text { in } \end{gathered}$	$\begin{gathered} C P_{Z} \\ \text { Ice } \\ \text { in } \end{gathered}$
T1	330000-320.000	0.395	3280	-0.928	1980
12	320.000-300.000	3.181	0385	1860	1053
T3	300.000-280.000	-0.427	-2.257	-1.544	-1224
T4	280.000-260.000	-1.746	-0.644	-3.654	1.088
T5	260.000-240 000	-1.963	-0.492	-4.199	1430
T6	240.000-220.000	-2.137	-0.534	-4.602	1.556
17	220.000-200.000	-2.143	-0.539	-4.811	1.626
T8	200.000-180.000	-2.263	-0. 569	-5.110	1.723
T9	180.000-160.000	-2.381	-0.599	-5.389	1813
T10	160.000-140.000	-2.479	-0.624	-5.624	1.890
T11	140.000-120.000	-3.187	-0.784	-6.677	2.210
T12	120.000-100.000	-3.290	-0.811	-6.915	2.290
T13	$100000-80.000$	-3.143	-0.782	-6.857	2285
T14	$80000-60.000$	-3.248	-0.809	-7.047	2.350
T15	60.000-40 000	-3.335	-0.831	-7.177	2.396
T16	$40.000-20.000$	-3 422	-0.854	-7.262	2430
T17	$20.000-0.000$	-1.992	-0.511	-4.248	1464

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \\ \hline \end{gathered}$	$\begin{aligned} & K_{u} \\ & \mathrm{Ice} \\ & \hline \end{aligned}$
T1	1	1-5/8"	$\begin{array}{r} 320.00- \\ 325.00 \end{array}$	0.6000	0.5262
T1	2	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 320.00- \\ 325.00 \end{array}$	0.6000	05262
T1	14	Safety Line 3/8	$\begin{array}{r} 320.00- \\ 330.00 \end{array}$	0.6000	0.5262
T1	15	Strobe Cable	$\begin{array}{r} 320.00- \\ 330.00 \end{array}$	0.6000	0.5262
T1	17	Feedline Ladder (Af)	$\begin{array}{r} 320.00- \\ 325.00 \end{array}$	0.6000	05262
T2	1	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 300.00- \\ 320.00 \end{array}$	0.6000	0.6000
T2	2	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 300.00- \\ 320.00 \end{array}$	0.6000	0.6000
T2	4	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 300.00- \\ 313.00 \end{array}$	0.6000	0.6000
T2	5	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 300.00- \\ 31300 \end{array}$	0.6000	0.6000
T2	7	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 300.00- \\ 301.00 \end{array}$	0.6000	0.6000
T2	8	1.5" Hybrid	$\begin{array}{r} 30000- \\ 301.00 \end{array}$	0.6000	0.6000
T2	14	Safety Line 3/8	$\begin{array}{r} 300.00- \\ 320.00 \end{array}$	0.6000	06000
T2	15	Strobe Cable	$\begin{array}{r} 300.00- \\ 320.00 \end{array}$	0.6000	0.6000
T2	17	Feedline Ladder (Af)	$\begin{array}{r} 300.00- \\ 320.00 \end{array}$	0.6000	0.6000
T2	18	Feedline Ladder (Af)	$\begin{array}{r} 300.00- \\ 313.00 \end{array}$	0.6000	0.6000
T2	19	Feedline Ladder (Af)	$\begin{array}{r} 30000- \\ 301.00 \end{array}$	0.6000	0.6000
T3	1	$1-5 / 8^{\prime \prime}$	280.00-1	0.6000	0.6000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \\ \hline \end{gathered}$	$\begin{aligned} & K_{u} \\ & \text { Ice } \end{aligned}$
T3	2	15" Hybrid	300.00 $280.00-$ 300.00	06000	0.6000
T3	4	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 28000- \\ 300.00 \end{array}$	06000	06000
T3	5	15" Hybrid	$\begin{array}{r} 280.00- \\ 300.00 \end{array}$	06000	0.6000
T3	7	$1-5 / 8^{\prime \prime}$	$280.00-$ 300.00	0.6000	0.6000
T3	8	1.5" Hybrid	$\begin{array}{r} 280.00- \\ 300.00 \end{array}$	0.6000	0.6000
T3	10	$1-5 / 8^{\prime \prime}$	$28000-$ 28900	06000	0.6000
T3	14	Safety Line 3/8	$\begin{array}{r} 280.00- \\ 300.00 \end{array}$	0.6000	0.6000
T3	15	Strobe Cable	$\begin{array}{r} 280.00- \\ 300.00 \end{array}$	0.6000	06000
T3	17	Feedline Ladder (Af)	$\begin{array}{r} 280.00- \\ 300.00 \end{array}$	0.6000	0.6000
T3	18	Feedline Ladder (Af)	$\begin{array}{r} 280.00- \\ 300.00 \end{array}$	0.6000	0.6000
T3	19	Feedline Ladder (Af)	$\begin{array}{r} 280.00- \\ 300.00 \end{array}$	0.6000	0.6000
T4	1	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 260.00- \\ 280.00 \end{array}$	0.6000	0.6000
T4	2	15" Hybrid	$\begin{array}{r} 26000- \\ 280.00 \end{array}$	0.6000	06000
T4	4	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 260.00- \\ 280.00 \end{array}$	0.6000	0.6000
T4	5	15" Hybrid	$\begin{array}{r} 260.00- \\ 280.00 \end{array}$	0.6000	0.6000
T4	7	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 260.00- \\ 280.00 \end{array}$	06000	0.6000
T4	8	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 260.00- \\ 28000 \end{array}$	0.6000	06000
T4	10	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 260.00- \\ 280.00 \end{array}$	0.6000	0.6000
T4	12	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 260.00- \\ 277.00 \end{array}$	0.6000	0.6000
T4	14	Safety Line 3/8	$\begin{array}{r} 260.00- \\ 280.00 \end{array}$	0.6000	0.6000
T4	15	Strobe Cable	$\begin{array}{r} 260.00- \\ 280.00 \end{array}$	06000	0.6000
T4	17	Feedline Ladder (Af)	$\begin{array}{r} 260.00- \\ 280.00 \end{array}$	0.6000	0.6000
T4	18	Feedline Ladder (Af)	$\begin{array}{r} 260.00- \\ 280.00 \end{array}$	0.6000	0.6000
T4	19	Feedline Ladder (Af)	$\begin{array}{r} 260.00- \\ 280.00 \end{array}$	06000	06000
T5	1	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 240.00- \\ 260.00 \end{array}$	06000	0.6000
T5	2	$1.5^{\prime \prime} \mathrm{Hybrid}$	$\begin{array}{r} 240.00- \\ 260.00 \end{array}$	0.6000	0.6000
T5	4	1-5/8"	$\begin{array}{r} 24000- \\ 260.00 \end{array}$	0.6000	0.6000
T5	5	$1.5{ }^{\prime \prime}$ Hybrid	$\begin{array}{r} 240.00- \\ 260.00 \end{array}$	06000	0.6000
T5	7	1-5/8"	$\begin{array}{r} 240.00- \\ 260.00 \end{array}$	0.6000	0.6000
T5	8	$1.5{ }^{\prime \prime}$ Hybrid	$\begin{array}{r} 240.00- \\ 260.00 \end{array}$	0.6000	0.6000
T5	10	$1-5 / 8^{\prime \prime}$	240.00 -	0.6000	0.6000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \\ \hline \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
T5	12	1-5/8"	$\begin{array}{r} 260.00 \\ 24000- \\ 260.00 \end{array}$	06000	06000
T5	14	Safety Line 3/8	$\begin{array}{r} 240.00- \\ 260.00 \end{array}$	0.6000	0.6000
T5	15	Strobe Cable	$\begin{array}{r} 24000- \\ 260.00 \end{array}$	0.6000	0.6000
T5	17	Feedline Ladder (Af)	$240.00-$ 260.00	0.6000	06000
T5	18	Feedline Ladder (Af)	$\begin{array}{r} 240.00- \\ 260.00 \end{array}$	06000	06000
T5	19	Feedline Ladder (Af)	$\begin{array}{r} 240.00- \\ 26000 \end{array}$	0.6000	0.6000
T6	1	$1-5 / 8^{\prime \prime}$	$220.00-$ 240.00	06000	0.6000
T6	2	$15^{\prime \prime}$ Hybrid	$220.00-$ 240.00	0.6000	0.6000
T6	4	$1-5 / 8^{\prime \prime}$	$220.00-$ 240.00	0.6000	06000
T6	5	15" Hybrid	$220.00-$ 240.00	0.6000	06000
T6	7	$1-5 / 8^{\prime \prime}$	$220.00-$ 240.00	0.6000	06000
T6	8	$1.5{ }^{\prime \prime}$ Hybrid	$\begin{array}{r} 220.00- \\ 240.00 \end{array}$	0.6000	06000
T6	10	1-5/8"	$220.00-$ 240.00	0.6000	0.6000
T6	12	$1-5 / 8^{\prime \prime}$	$220.00-$ 240.00	0.6000	0.6000
T6	14	Safety Line 3/8	$220.00-$ 240.00	0.6000	0.6000
T6	15	Strobe Cable	$220.00-$ 240.00	06000	06000
T6	17	Feedline Ladder (Af)	$220.00-$ 240.00	0.6000	0.6000
T6	18	Feedline Ladder (Af)	$22000-$ 240.00	0.6000	0.6000
T6	19	Feedline Ladder (Af)	$220.00-$ 240.00	0.6000	0.6000
T7	1	$1-5 / 8^{\prime \prime}$	$20000-$ 22000	06000	06000
T7	2	$15^{\prime \prime}$ Hybrid	$200.00-$ 220.00	0.6000	0.6000
T7	4	$1-5 / 8^{\prime \prime}$	$200.00-$ 220.00	06000	0.6000
T7	5	$15^{\prime \prime}$ Hybrid	$200.00-$ 22000	0.6000	0.6000
T7	7	$1-5 / 8^{\prime \prime}$	$200.00-$ 220.00	0.6000	0.6000
T7	8	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 20000- \\ 220.00 \end{array}$	0.6000	0.6000
77	10	1-5/8"	$200.00-$ 220.00	0.6000	0.6000
T7	12	$1-5 / 8^{\prime \prime}$	$200.00-$ 220.00	0.6000	0.6000
T7	14	Safety Line 3/8	$200.00-$ 22000	0.6000	06000
T7	15	Strobe Cable	$\begin{array}{r} 200.00- \\ 220.00 \end{array}$	0.6000	0.6000
T7	17	Feedline Ladder (Af)	$200.00-$ 220.00	0.6000	0.6000
T7	18	Feedline Ladder (Af)	$200.00-$	0.6000	0.6000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & K_{a} \\ & \mathrm{Ice} \\ & \hline \end{aligned}$
T7	19	Feedlıne Ladder (Af)	$\begin{array}{r} 220.00 \\ 200.00- \\ 220.00 \end{array}$	0.6000	0.6000
T8	1	1-5/8"	$\begin{array}{r} 180.00- \\ 200.00 \end{array}$	0.6000	06000
T8	2	15" Hybrid	$\begin{array}{r} 180.00- \\ 200.00 \end{array}$	0.6000	06000
T8	4	1-5/8"	$\begin{array}{r} 180.00- \\ 200.00 \end{array}$	0.6000	0.6000
T8	5	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 18000- \\ 20000 \end{array}$	06000	0.6000
T8	7	$1-5 / 8^{\prime \prime}$	$180.00-$ 200.00	0.6000	0.6000
T8	8	15" Hybrid	$\begin{array}{r} 180.00- \\ 200.00 \end{array}$	06000	0.6000
T8	10	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 180.00- \\ 200.00 \end{array}$	0.6000	0.6000
T8	12	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 18000- \\ 200.00 \end{array}$	06000	0.6000
T8	14	Safety Line 3/8	$\begin{array}{r} 180.00- \\ 200.00 \end{array}$	0.6000	0.6000
T8	15	Strobe Cable	$\begin{array}{r} 18000- \\ 200 \end{array}$	06000	0.6000
T8	17	Feedline Ladder (Af)	$\begin{array}{r} 180.00- \\ 200.00 \end{array}$	0.6000	06000
T8	18	Feedline Ladder (Af)	$\begin{array}{r} 180.00- \\ 200.00 \end{array}$	06000	06000
T8	19	Feedline Ladder (Af)	$\begin{array}{r} 180.00- \\ 200.00 \end{array}$	0.6000	06000
T9	1	1-5/8"	$160.00-$ 180.00	0.6000	06000
T9	2	$15^{\prime \prime}$ Hybrid	$160.00-$ 180.00	0.6000	0.6000
T9	4	$1-5 / 8^{\prime \prime}$	$160.00-$ 180.00	0.6000	0.6000
T9	5	1.5 $5^{\prime \prime} \mathrm{Hybrid}$	$\begin{array}{r} 160.00- \\ 180.00 \end{array}$	0.6000	0.6000
T9	7	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 160.00- \\ 180.00 \end{array}$	0.6000	0.6000
T9	8	15" Hybrid	$\begin{array}{r} 160.00- \\ 180.00 \end{array}$	06000	0.6000
T9	10	1-5/8"	$\begin{array}{r} 16000- \\ 180.00 \end{array}$	0.6000	0.6000
T9	12	$1-5 / 8^{\prime \prime}$	$160.00-$ 180.00	0.6000	0.6000
T9	14	Safety Line 3/8	$160.00-$ 180.00	06000	06000
T9	15	Strobe Cable	$\begin{array}{r} 160.00- \\ 180.00 \end{array}$	0.6000	0.6000
T9	17	Feedline Ladder (Af)	$\begin{array}{r} 160.00- \\ 180.00 \end{array}$	0.6000	0.6000
T9	18	Feedline Ladder (Af)	$\begin{array}{r} 160.00- \\ 180.00 \end{array}$	0.6000	0.6000
T9	19	Feedline Ladder (Af)	$\begin{array}{r} 16000- \\ 180.00 \end{array}$	06000	0.6000
T10	1	1-5/8"	$140.00-$ 160.00	0.6000	0.6000
T10	2	1.5" Hybrid	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	0.6000	0.6000
T10	4	$1-5 / 8^{\prime \prime}$	$140.00-$ 160.00	06000	0.6000
T10	5	1.5" Hybrid	$140.00-1$	0.6000	0.6000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev	$\overline{K_{a}}$ No Ice	$\begin{aligned} & K_{a} \\ & \text { Ice } \\ & \hline \end{aligned}$
T10	7	1-5/8"	$\begin{array}{r} 160.00 \\ 140.00- \\ 160.00 \end{array}$	0.6000	0.6000
T10	8	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	06000	06000
T10	10	1-5/8"	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	0.6000	0.6000
T10	12	$1-5 / 8^{\prime \prime}$	$140.00-$ 160.00	06000	0.6000
T10	14	Safety Line 3/8	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	0.6000	06000
T10	15	Strobe Cable	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	0.6000	0.6000
T10	17	Feedline Ladder (Af)	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	06000	0.6000
T10	18	Feedline Ladder (Af)	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	0.6000	0.6000
T10	19	Feedline Ladder (Af)	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	0.6000	0.6000
T11	1	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	0.6000	0.6000
T11	2	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	0.6000	06000
TI1	4	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	0.6000	0.6000
T11	5	15" Hybrid	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	06000	0.6000
T11	7	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	06000	0.6000
T11	8	1.5" Hybrid	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	0.6000	0.6000
T11	10	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	0.6000	0.6000
T11	12	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	0.6000	0.6000
T11	14	Safety Line 3/8	$\begin{array}{r} 120.00- \\ 14000 \end{array}$	06000	0.6000
T11	15	Strobe Cable	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	0.6000	0.6000
TII	17	Feedline Ladder (Af)	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	0.6000	0.6000
T11	18	Feedline Ladder (Af)	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	0.6000	0.6000
TII	19	Feedline Ladder (Af)	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	0.6000	0.6000
T12	1	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 10000- \\ 120.00 \end{array}$	0.6000	0.6000
T12	2	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 10000- \\ 120.00 \end{array}$	06000	0.6000
T12	4	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 100.00- \\ 120.00 \end{array}$	0.6000	0.6000
T12	5	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 10000- \\ 12000 \end{array}$	0.6000	0.6000
T12	7	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 100.00- \\ 120.00 \end{array}$	0.6000	0.6000
T12	8	$15^{\prime \prime}$ Hybrid	$\begin{array}{r} 100.00- \\ 120.00 \end{array}$	0.6000	0.6000
T12	10	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 100.00- \\ 120.00 \end{array}$	0.6000	0.6000
T12	12	$1-5 / 8^{\prime \prime}$	$\begin{array}{r} 100.00- \\ 120.00 \end{array}$	0.6000	0.6000
T12	14	Safety Line 3/8	$100.00-$	0.6000	0.6000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	K_{a} Ice
T17	2	$1.5^{\prime \prime}$ Hybrid	$1000-20.00$	0.6000	0.6000
T17	$1-5 / 8^{\prime \prime}$	$10.00-20.00$	0.6000	0.6000	
T17	4	$1.5^{\prime \prime}$ Hybrid	$1000-20.00$	0.6000	0.6000
T17	$1-5 / 8^{\prime \prime}$	$10.00-20.00$	0.6000	0.6000	
T17	7	$1.5^{\prime \prime}$ Hybrid	$10.00-20.00$	0.6000	0.6000
T17	$1-5 / 8^{\prime \prime}$	$10.00-20.00$	0.6000	0.6000	
T17	10	$1-5 / 8^{\prime \prime}$	$1000-20.00$	0.6000	0.6000
T17	12	Safety Line 3/8	$10.00-20.00$	0.6000	0.6000
T17	14	Strobe Cable	$10.00-20.00$	0.6000	0.6000
T17	15	Feedline Ladder (Af)	$10.00-20.00$	0.6000	0.6000
T17	17	Feedline Ladder (Af)	$10.00-20.00$	0.6000	0.6000
T17	18	Feedline Ladder (Af)	$10.00-20.00$	0.6000	0.6000

Discrete Tower Loads

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert $f t$ ft ft	Azimuth Adjustment 。	Placement		$C_{d} A_{A}$ Front $f t^{2}$	$C_{4} A_{4}$ Side $f t^{2}$	Weight
Lightning Rod 1"x 10^{\prime}	C	From Leg	0.000	0.000	330.000	No Ice	1.000	1.000	0.040
			0000			1/2" Ice	2.017	2017	0.049
			5.000			1 I' Ice	3.050	3050	0.065
						$2^{\prime \prime}$ Ice	5.148	5.148	0.116
Top Beacon	B	From Leg	0.000	0.000	330.000	No Ice	2.700	2700	0.050
			0.000			$1 / 2^{\prime \prime}$ Ice	3.100	3100	0.070
			1000			$1^{\prime \prime}$ Ice	3.500	3.500	0.090
						$2^{\prime \prime}$ Ice	4.300	4300	0.130
**									
Sector $1(\mathrm{CaAa}=13333.33$	A	From Leg	4.000	0.000	325.000	No Ice	92.592	62.037	0.700
			0.000			1/2" Ice	115.740	77.546	1400
(Carrier 1)						$1^{\prime \prime}$ Ice	138888	93055	2.100
						$2^{\prime \prime}$ Ice	185.184	124.073	3.500
Sector 2 ($\mathrm{CaAa}=13333.33$	B	From Leg		0.000	325.000	No Ice	92.592	62.037	0.700
Sq in) No Ice			0.000			$1 / 2^{\prime \prime}$ Ice	115.740	77.546	1.400
(Carrier 1)			0.000			1" Ice	138.888	93.055	2.100
						$2^{\prime \prime}$ Ice	185.184	124073	3500
Sector $3(\mathrm{CaAa}=1333333$	C	From Leg	4.000	0000	325.000	No Ice	92.592	62.037	0.700
Sq.in)No Ice			0.000			1/2" Ice	115.740	77.546	1400
(Carrier 1)						$1^{\prime \prime}$ Ice	138.888	93.055	2.100
						$2^{\prime \prime}$ Ice	185.184	124.073	3.500
**									
Sector $1(\mathrm{CaAa}=10000$	A	From Leg	4000	0.000	313.000	No Ice	69.440	46.525	0.700
Sq.in) No Ice			0.000			1/2 ${ }^{\prime \prime}$ Ice	86800	58.156	1.400
(Carrier 2)			0.000			$1^{\prime \prime}$ Ice	104160	69.787	2100
						$2^{\prime \prime}$ Ice	138880	93.050	3500
Sector $2(\mathrm{CaAa}=10000$	B	From Leg	4000	0.000	313.000	No lce	69.440	46525	0.700
Sq in) No Ice			0.000			1/2 $2^{\prime \prime}$ Ice	86.800	58156	1.400
(Carrier 2)			0.000			I' Ice	104.160	69.787	2.100
						$2^{\prime \prime}$ Ice	138.880	93.050	3500
	C	From Leg		0.000	313000	No Ice	69.440	46525	0.700
Sq in) No Ice			0.000			$1 / 2^{\prime \prime} \text { Ice }$	86.800	58.156	1.400
(Carrier 2)			0.000			1" Ice	104.160	69.787	2.100

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) Front \\
\(f t^{\prime}\)
\end{tabular} \& \(C_{t} A_{t}\)
Side

ft^{2} \& Weight

K

\hline \multicolumn{9}{|l|}{**} \& 3500

\hline Sectorl(CaAa=10000 \& A \& From Leg \& 4.000 \& 0.000 \& 301.000 \& No Ice \& 69.440 \& 46.525 \& 0.700

\hline Sq in) No Ice \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 86.800 \& 58.156 \& 1.400

\hline \multirow[t]{2}{*}{(Carrier 3)} \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 104.160 \& 69787 \& 2.100

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 138880 \& 93050 \& 3.500

\hline Sector $2(\mathrm{CaAa}=10000$ \& B \& From Leg \& 4.000 \& 0.000 \& 301.000 \& No Ice \& 69.440 \& 46.525 \& 0.700

\hline \& \& \& $$
0.000
$$ \& \& \& $1 / 2^{\prime \prime}$ Ice \& 86.800 \& 58.156 \& \[

1.400
\]

\hline \multirow[t]{2}{*}{(Carrier 3)} \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& \[
104.160

\] \& \[

69.787

\] \& \[

2.100
\]

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 138.880 \& 93.050 \& 3.500

\hline \& C \& From Leg \& \& 0.000 \& 301.000 \& No Ice \& 69440 \& 46.525 \& 0.700

\hline Sq in) No Ice \& \& \& $$
0.000
$$ \& \& \& 1/2" Ice \& 86.800 \& 58.156 \& 1.400

\hline \multirow[t]{2}{*}{(Carrier 3)} \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 104.160 \& 69.787 \& 2.100

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 138.880 \& 93050 \& 3500

\hline ** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{$41 / 2^{\prime \prime}$ OD Dish Mount (Carrier 4)} \& C \& From Leg \& 0.500 \& 0.000 \& 289.000 \& No Ice \& 1.646 \& 1646 \& 0.057

\hline \& \& \& $$
0.000
$$ \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.207 \& 2207 \& \[

0.074
\]

\hline \& \& \& \& \& \& 1" Ice \& 2.543 \& 2543 \& $$
0.094
$$

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.241 \& 3241 \& 0.148

\hline \multirow[t]{4}{*}{$41 / 2^{\prime \prime}$ OD Dish Mount (Carrier 4)} \& B \& From Leg \& \& 0.000 \& 289.000 \& No Ice \& \[
1646

\] \& 1646 \& \[

0.057
\]

\hline \& \& \& $$
0.000
$$ \& \& \& \[

1 / 2^{\prime \prime} Ice

\] \& 2.207 \& 2.207 \& \[

0.074
\]

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 2.543 \& 2.543 \& 0.094

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.241 \& 3241 \& 0.148

\hline \multicolumn{10}{|l|}{**}

\hline \multirow[t]{4}{*}{4 I/2" OD Dish Mount (Carrier 5)} \& C \& From Leg \& \& 0.000 \& 277.000 \& \& \& \&

\hline \& \& \& 0.000 \& \& \& $$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

2207

\] \& 2.207 \& \[

0.074
\]

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 2.543 \& 2.543 \& 0.094

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3241 \& 3241 \& 0.148

\hline \multirow[t]{4}{*}{$41 / 2^{\prime \prime}$ OD Dish Mount (Carrier 5)} \& B \& From Leg \& 0500 \& 0.000 \& 277.000 \& No Ice \& 1646 \& 1.646 \& 0.057

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.207 \& 2207 \& 0.074

\hline \& \& \& 0000 \& \& \& I" Ise \& $$
2.543
$$ \& \[

2543
\] \& 0.094

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.241 \& 3.241 \& 0.148

\hline ** \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Dishes

Description	$\begin{aligned} & \text { Face } \\ & \text { or } \\ & \text { Leg } \end{aligned}$	Dish Type	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert $f t$	Azimuth Adjustment 0	$3 d B$ Beam Width 0	Elevation	Outside Diameter $f t$		Aperture Area	Weight
6 MW Dish (Carrier 4)	C	Paraboloid w/o Radome	From Leg	1.000	0.000		289000	6.000	No Ice	28270	0.143
				0.000					$1 / 2^{\prime \prime}$ Ice	29.050	0.292
				0.000					$1^{\prime \prime}$ Ice	29.831	0.441
									$2^{\prime \prime}$ Ice	31.392	0.740
6' MW Dish (Carrier 4)	B	Paraboloid w/o Radome	From Leg	1000	0000		289.000	6.000	No Ice	28270	0.143
				0000					$1 / 2^{\prime \prime}$ Ice	29.050	0.292
				0.000					$1^{\prime \prime}$ Ice	29831	0.441
									$2^{\prime \prime}$ Ice	31.392	0.740
**											
6' MW Dish	C	Paraboloid w/o	From	1.000	0.000		277000	6000	No Ice	28.270	0.143

Load Combinations

$\begin{gathered} \text { Comb. } \\ \text { No. } \end{gathered}$	Description
1	Dead Only
2	1.2 Dead+10 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+10 Wind 30 deg - No Ice
6	1.2 Dead+10 Wind 60 deg - No lce
7	0.9 Dead+1.0 Wind 60 deg - No lce
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	09 Dead+10 Wind 90 deg - No Ice
10	12 Dead+1.0 Wind 120 deg - No Ice
11	09 Dead+10 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No lce
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+10 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No lce
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No lce
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+10 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice +1.0 Temp
28	12 Dead +1.0 Wind 30 deg +1 0 Ice +1.0 Temp
29	1.2 Dead +10 Wind 60 deg +10 Ice +10 Temp
30	1.2 Dead+1 0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+10 Temp
32	1.2 Dead+10 Wind $150 \mathrm{deg}+1.0$ Ice +1.0 Temp
33	$12 \mathrm{Dead}+1.0$ Wind 180 deg+1.0 Ice +10 Temp
34	1.2 Dead+1.0 Wind $210 \mathrm{deg}+1.0$ Ice +10 Temp
35	1.2 Dead +1.0 Wind $240 \mathrm{deg}+1.0$ Ice +1.0 Temp
36	$12 \mathrm{Dead}+10$ Wind 270 deg+10 Ice +10 Temp
37	$12 \mathrm{Dead}+1.0$ Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service

Comb.		Description
No.		
44	Dead+Wind 150 deg - Service	
45	Dead + Wind 180 deg - Service	
46	Dead + Wind 210 deg - Service	
47	Dead + Wind 240 deg - Service	
48	Dead + Wind 270 deg - Service	
49	Dead + Wind 300 deg - Service	
50	Dead + Wind 330 deg - Service	

Maximum Member Forces

Section No.	$\underset{f t}{\text { Elevation }}$	Component Type	Condition	Gov: Load Comb	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
T1	330-320	Leg	Max Tension	15	8206	1.132	-0.004
			Max Compression	18	-9.850	0.157	0.006
			Max Mx	2	-9 845	-1.176	0.004
			Max My	4	-1.070	0.004	0.613
			Max. Vy	2	-2.673	0.160	-0.004
			Max V_{x}	4	-2.152	0.001	-0.082
		Diagonal	Max Tension	8	3.570	0.000	0.000
			Max Compression	6	-3.240	0.000	0.000
			Max. Mx	2	-0.831	0.045	-0.002
			Max My	20	-3.210	-0.002	0.031
			Max. Vy	35	0.018	0.013	-0.002
			Max. Vx	20	-0.010	0000	0.000
		Top Girt	Max Tension	14	1853	0.000	0.000
			Max Compression	2	-1.839	0.000	0000
			Max Mx	35	-0.270	-0.023	0.000
			Max My	38	0.041	0.000	0000
			Max. Vy	35	0.024	0.000	0000
			Max Vx	38	-0.001	0.000	0000
T2	320-300	Leg	Max Tension	15	46.214	1493	-0.018
			Max Compression	2	-52.105	1.690	-0.017
			Max Mx	2	-46.767	-2 370	0.025
			Max. My	4	-3.531	-0.008	1376
			Max. Vy	2	-7.385	1.690	-0.017
			Max Vx	16	-3.520	-0.032	0.940
		Diagonal	Max Tension	24	5.404	0.000	0.000
			Max Compression	20	-4.919	0000	0.000
			Max. Mx	2	-0.502	0.024	-0.002
			Max My	2	-4.197	-0019	-0013
			Max Vy	34	0.024	0021	-0.002
			Max Vx	2	0.004	0.000	0.000
T3	300-280	Leg	Max Tension	15	97.423	2.511	-0.020
			Max Compression	2	-107.292	0883	-0.003
			Max Mx	2	-52.133	5319	-0.059
			Max. My	16	-3.458	-0.057	2.700
			Max. Vy	2	-8.459	0.883	-0.003
			Max Vx	4	3882	0.042	-0.476
		Diagonal	Max Tension	20	7619	0.000	0.000
			Max Compression	20	-7.626	0.000	0.000
			Max. Mx	2	1.449	0.033	-0.002
			Max. My	20	-7.599	-0.002	0.027
			Max. Vy	34	0029	0.027	-0.003
			Max Vx	20	-0.007	0.000	0.000
T4	280-260	Leg	Max Tension	7	146.742	3190	0.168
			Max Compression	2	-160.273	0.859	0.002
			Max Mx	2	-107.309	5.081	-0.031
			Max. My	4	-5.969	0.130	-2.419

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	$\begin{gathered} \text { Minor Axis } \\ \text { Moment } \\ \text { kip-ft } \end{gathered}$
T5	260-240	Diagonal	Max Vy	2	-10.053	0.859	0002
			Max Vx	24	-4.239	0.020	0.473
			Max Tension	20	8466	0.000	0000
			Max Compression	20	-8.201	0.000	0.000
			Max Mx	32	0.409	0.040	0.004
		Leg	Max. My	20	-8.161	-0.006	0018
			Max Vy	32	0.038	0.040	0.004
			Max Vx	20	-0.004	0.000	0.000
			Max Tension	7	190.805	3.456	0.149
			Max Compression	2	-207960	0.872	0.005
		Diagonal	Max Mx	2	-160.291	5.857	-0.000
			Max My	24	-10975	0.246	2.595
			Max. Vy	18	-10.767	0873	0037
			Max Vx	24	-4 408	0.025	0419
			Max Tension	8	8.538	0.000	0.000
			Max Compression	8	-8.850	0.000	0.000
	240-220		Max. Mx	36	1390	0.061	-0.004
			Max My	20	-8787	-0.014	0.018
		Leg	Max Vy	32	0.052	0.060	0.006
			Max Vx	20	-0.004	0000	0000
T6			Max Tension	7	231.125	3.745	0127
			Max Compression	2	-252289	0.953	0.008
			Max Mx	18	-207.568	6230	0.293
		Diagonal	Max My	24	-15.018	0.218	2.626
			Max Vy	18	-11648	0.958	0.039
			Max. Vx	24	-4.633	0.026	0.520
	220-200		Max Tension	8	8.801	0.000	0.000
			Max Compression	8	-8.948	0.000	0.000
			Max. Mx	32	0.446	0.076	0007
		Leg	Max My	22	-7.714	0.009	0.016
			Max Vy	32	0.058	0.076	0.007
			Max Vx	22	-0.003	0.000	0.000
77			Max Tension	7	269.312	4.230	0.118
			Max Compression	18	-295.442	0.940	0.029
			Max. Mx	18	-252.217	6.755	0.252
		Diagonal	Max My	24	-18524	0.202	2.839
			Max Vy	18	-12.787	0.940	0.029
			Max Vx	24	-4.964	0.022	0471
	200-180		Max Tension	8	9.401	0.000	0.000
			Max Compression	8	-9.356	0.000	0.000
			Max. Mx	36	1.616	0.107	-0.009
		Leg	Max My	22	-8. 140	0.013	0.017
			Max. Vy	32	0.075	0.106	0.010
			Max Vx	38	-0.003	0.000	0.000
T8			Max Tension	7	306.454	5.265	0.119
			Max Compression	18	-338.254	0.215	0.011
			Max. Mx	18	-295.468	7.313	0.211
	1	Diagonal	Max. My	24	-21.818	0.190	2.957
			Max Vy	18	-14.148	0.215	0.011
			Max Vx	24	-5.359	0.006	0.206
				8	10.233	0.000	0.000
			Max Compression	8	-9.937	0.000	0.000
	180-160	Leg	Max Mx	38	0.561	0.128	-0.012
			Max My	22	-9.284	0.025	0.017
			Max Vy	38	0.082	0.128	-0.012
			Max. Vx	38	0.003	0.000	0.000
T9			Max Tension	7	342.696	4.931	0.088
			Max Compression	18	-380.536	1275	0.039
			Max. Mx	18	-338.278	7.288	0.170
			Max. My	24	-24 942	0.163	2.890
			Max. Vy	18	-15.545	1275	0.039

| tnxTTOWer | Job | Page |
| :---: | :--- | ---: | :--- |
| | | ATS \#8657-Mt Vernon (Site\# KYLEX2044) |

Section No.	Elevation $f t$	Component Type	Condition	Gov: Load Comb	Axial K	$\begin{gathered} \text { Major Axis } \\ \text { Moment } \\ \text { kip-ft } \end{gathered}$	Minor Axis Moment kip-ft
			Max. Mx	35	-0.015	-0.215	0000
			Max. My	35	-0.015	0.000	-0.000
			Max Vy	35	-0.061	0000	0.000
			Max. Vx	35	-0.000	0000	0.000

Location	Condition	Maximum Reactions			
		Gov Load Comb.	Vertical K	$\begin{gathered} \text { Horizontal, } X \\ K \end{gathered}$	$\begin{gathered} \text { Horizontal. Z } \\ K \end{gathered}$
Leg C	Max Vert	18	708.160	45.060	-25.922
	Max H_{5}	18	708.160	45.060	-25.922
	Max. H_{2}	7	-603.862	-40.147	23032
	Min. Vert	7	-603.862	-40.147	23.032
	Min $\mathrm{H}_{\text {s }}$	7	-603 862	-40.147	23.032
	Min. H_{2}	18	708160	45.060	-25.922
Leg B	Max Vert	10	704.836	-45.247	-25.308
	$\text { Max } \mathrm{H}_{\mathrm{x}}$	23	-601523	40.378	22.352
	Max. H_{2}	23	-601 523	40.378	22.352
	Min. Vert	23	-601.523	40.378	22.352
	$\operatorname{Min} \mathrm{H}_{\mathrm{s}}$	10	704836	-45247	-25308
	Min H_{4}	10	704836	-45.247	-25.308
Leg A	Max Vert	2	701.696	-0 244	51404
	Max H_{5}	21	44.217	6.553	2.300
	Max. $\mathrm{H}_{\text {, }}$	2	701696	-0. 244	51.404
	Min Vert	15	-580.689	0.269	-44.655
	$\mathrm{Min} \mathrm{H}_{5}$	9	44.217	-6560	2300
	Min. H_{2}	15	-580.689	0.269	-44.655

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear. K	Shear, K	Overturning Moment, M_{*} kip-ft	Overturning Moment, M, kip-ft	$\begin{gathered} \text { Torque } \\ \text { kip-ft } \end{gathered}$
Dead Only	97.794	-0.000	0.000	7.150	6.585	-0.000
1.2 Dead +1.0 Wind 0 deg - No	117.352	0000	-85.364	-16353.571	8.025	-12.740
0.9 Dead+1.0 Wind 0 deg - No	88.014	0.000	-85.361	-16315.493	6.021	-12.720
Ice						
1.2 Dead+1.0 Wind 30 deg - No	117.352	41.675	-69 356	-13332.952	-8161.596	16.449
Ice						
0.9 Dead+1.0 Wind 30 deg - No	88.014	41.674	-69 354	-13302 254	-8143.347	16.446
Ice						
12 Dead+1.0 Wind 60 deg - No	117.352	69872	-40.006	-7757.533	-13608.883	5494
Ice						
0.9 Dead+1.0 Wind 60 deg - No	88.014	69870	-40.005	-7740.544	-13577. 203	5471
Ice						
12 Dead+1.0 Wind 90 deg - No	117.352	81897	-1.309	-366.057	-15834.390	1.153
Ice						
0.9 Dead+1.0 Wind 90 deg - No	88.014	81895	-1309	-367.233	-15797.314	1.114
Ice						
12 Dead+1.0 Wind 120 deg -	117.352	75.798	41150	7664.888	-14547.666	34.122
No Ice						

Load Combination	Vertical K	Shear K	Shear: K	Overturning Moment. M ${ }_{x}$ kip-ft	Overturning Moment, Mz kip-ft	Torque kip-ft
0.9 Dead+10 Wind 120 deg No Ice	88014	75796	41148	7644.155	-14513867	34.078
12 Dead+1. 0 Wind 150 deg No Ice	117352	39993	69142	13283890	-7677.326	48.095
0.9 Dead+1.0 Wind 150 deg No Ice	88014	39991	69.140	13249057	-7660 362	48.063
1.2 Dead+1.0 Wind 180 deg No Ice	117.352	0.000	77.874	15095.992	8.019	12.737
0.9 Dead+1.0 Wind 180 deg - No Ice	88.014	0.000	77.871	15056515	6.015	12.719
1.2 Dead+1.0 Wind 210 deg - No Ice	117.352	-40.103	69.333	13343.554	7727.896	-11.084
0.9 Dead +1.0 Wind 210 deg No Ice	88014	-40 101	69331	13308.539	7706819	-11.083
12 Dead+1.0 Wind 240 deg No Ice	117.352	-75.987	41259	7698.872	14622.779	-1.175
0.9 Dead +1.0 Wind 240 deg No Ice	88.014	-75.984	41.257	7678.035	14584.792	-1.149
1.2 Dead+1.0 Wind 270 deg No Ice	117.352	-81.897	-1.309	-366.058	15850.316	-1.157
0.9 Dead+1 0 Wind 270 deg No Ice	88.014	-81895	-1.309	-367.234	15809234	-1.117
1.2 Dead+1.0 Wind 300 deg No Ice	117.352	-69.684	-39 897	-7723 263	13565.776	-38441
0.9 Dead +1.0 Wind 300 deg No Ice	88.014	-69681	-39 896	-7706 379	13530268	-38.399
1.2 Dead+1.0 Wind 330 deg No Ice	117.352	-41565	-69.166	-13273.112	8143182	-53461
0.9 Dead+1.0 Wind 330 deg No Ice	88.014	-41.564	-69.163	-13242.597	8121030	-53.426
1.2 Dead+1.0 Ice+1.0 Temp	304687	0001	-0. 001	57.391	76.328	-0.000
1.2 Dead+1.0 Wind 0 deg+1. 0 Ice +10 Temp	304687	0.000	-11828	-2336.139	76.957	-4.017
12 Dead+1.0 Wind 30 deg+ 10 Ice+1.0 Temp	304687	5867	-9.907	-1951.119	-1126.121	-0.631
1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$ Ice+1.0 Temp	304687	10.048	-5.771	-1116857	-1973.275	0051
1.2 Dead +1.0 Wind 90 deg+1.0 Ice +1.0 Temp	304.687	11.736	-0.118	23.432	-2305.494	1853
12 Dead +10 Wind 120 deg+1.0 Ice 10 Temp	304.687	10470	5810	1212.362	-2041.949	5733
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	304687	5.716	9889	2061.490	-1081 710	7.021
1.2 Dead+1.0 Wind 180 deg+1.0 Ice +10 Temp	304.687	0.000	11.284	2355698	76.943	4.013
1.2 Dead+1.0 Wind 210 deg+1. 0 Ice +10 Temp	304.687	-5.725	9905	2066.496	1238494	1.121
1.2 Dead+1.0 Wind 240 deg+1.0 Ice +10 Temp	304687	-10.486	5.819	1215.231	2200.834	0.333
12 Dead +1.0 Wind 270 deg+1.0 Ice +1.0 Temp	304.687	-11736	-0.118	23.423	2459387	-1.862
1.2 Dead 1.0 Wind 300 deg+1.0 Ice +10 Temp	304687	-10.032	-5 762	-1113.968	2122.162	-6.121
12 Dead+ 10 Wind 330 deg+1.0 Ice +10 Temp	304687	-5858	-9.892	-1946.108	1277.135	-7.506
Dead+Wind 0 deg - Service	97.794	0.000	-27.874	-5327557	6.636	-4.155
Dead+Wind 30 deg - Service	97.794	13.608	-22.647	-4342.621	-2656.985	5.392
Dead+Wind 60 deg - Service	97.794	22.816	-13.063	-2524 770	-4432.975	1787
Dead+Wind 90 deg - Service	97.794	26.742	-0.427	-114.869	-5158.586	0.348
Dead+Wind 120 deg - Service	97.794	24.751	13.437	2503542	-4739.114	11.133
Dead+Wind 150 deg - Service	97.794	13.059	22.577	4335.431	-2499 082	15.719

Load Combination	Vertical K	Shear. K	Shear: K	Overturning Moment, M_{x} kip-ft	Overturning Moment, Mz kip-ft	Torque kip-ft
Dead+Wind 180 deg - Service	97.794	0.000	25.429	4926.194	6.633	4157
Dead+Wind 210 deg - Service	97.794	-13.095	22.640	4354902	2523.602	-3640
Dead+Wind 240 deg - Service	97.794	-24.812	13.472	2514.652	4771652	-0.379
Dead + Wind 270 deg - Service	97.794	-26.742	-0.427	-114.870	5171.843	-0.349
Dead+Wind 300 deg - Service	97.794	-22.754	-13.028	-2513.628	4426.971	-12.543
Dead+Wind 330 deg - Service	97.794	-13.572	-22.585	-4323.132	2659.011	-17.467

Solution Summary

Load Comb.	Sum of Applied Forces			Sum of Reactions			\% Error
	PX	PY	PZ	PX	PY	$P Z$	
	K	K	K	K	K	K	
1	0.000	-97 794	0.000	0000	97.794	-0.000	0.000\%
2	0.000	-117.352	-85.371	-0.000	117.352	85.364	0.005\%
3	0.000	-88.014	-85.371	-0.000	88.014	85.361	0.008\%
4	41.678	-117.352	-69.362	-41675	117.352	69.356	0.005\%
5	41678	-88.014	-69.362	-41.674	88.014	69.354	0.008\%
6	69878	-117.352	-40.009	-69.872	117.352	40.006	0.004\%
7	69.878	-88014	-40 009	-69.870	88014	40.005	0.007\%
8	81.904	-117.352	-1309	-81.897	117.352	1309	0.005\%
9	81.904	-88.014	-1.309	-81.895	88.014	1309	0.008\%
10	75804	-117.352	41.153	-75.798	117352	-41.150	0.005\%
11	75804	-88014	41.153	-75.796	88.014	-41.148	0.008\%
12	39.996	-117.352	69148	-39.993	117.352	-69.142	0.005\%
13	39.996	-88.014	69.148	-39.991	88.014	-69.140	0.008\%
14	0.000	-117.352	77.880	-0.000	117.352	-77.874	0.004\%
15	0.000	-88.014	77.880	-0.000	88.014	-77.871	0.007\%
16	-40.106	-117.352	69.338	40.103	117.352	-69.333	0.005\%
17	-40.106	-88014	69338	40.101	88.014	-69.331	0.008\%
18	-75.993	-117.352	41.262	75.987	117.352	-41.259	0.005\%
19	-75.993	-88.014	41262	75.984	88014	-41.257	0008\%
20	-81.904	-117.352	-1.309	81.897	117.352	1.309	0.005\%
21	-81.904	-88.014	-1.309	81895	88014	1309	0.008\%
22	-69.689	-117.352	-39.900	69684	117.352	39.897	0.004\%
23	-69 689	-88.014	-39 900	69.681	88014	39896	0.007\%
24	-41.568	-117352	-69.171	41.565	117.352	69166	0.005\%
25	-41.568	-88.014	-69.171	41.564	88.014	69.163	0.008\%
26	0.000	-304.687	0.000	-0.001	304.687	0.001	0.001\%
27	0.000	-304.687	-11.830	-0.000	304687	11828	0.001\%
28	5868	-304 687	-9 909	-5.867	304687	9907	0.001\%
29	10.050	-304.687	-5.772	-10.048	304687	5.771	0.001\%
30	11.738	-304.687	-0.118	-11.736	304.687	0.118	0.001\%
31	10.472	-304.687	5811	-10.470	304.687	-5.810	0.001\%
32	5.717	-304687	9.891	-5.716	304687	-9 889	0.001\%
33	0.000	-304 687	11286	-0.000	304.687	-11.284	0.001\%
34	-5.726	-304.687	9.907	5.725	304687	-9.905	0.001\%
35	-10.488	-304.687	5820	10.486	304.687	-5.819	0.001\%
36	-11.738	-304 687	-0.118	11.736	304687	0.118	0.001\%
37	-10.034	-304 687	-5.763	10.032	304687	5.762	0.001\%
38	-5.859	-304.687	-9.893	5.858	304.687	9.892	0.001\%
39	0.000	-97.794	-27.876	-0.000	97.794	27.874	0.002\%
40	13.609	-97.794	-22.649	-13.608	97.794	22.647	0.002\%
41	22.817	-97.794	-13064	-22.816	97794	13.063	0.002\%
42	26.744	-97.794	-0.428	-26.742	97.794	0.427	0.002\%
43	24.752	-97.794	13.438	-24.751	97794	-13437	0.002\%
44	13.060	-97.794	22.579	-13.059	97794	-22.577	0.002\%
45	-0.000	-97.794	25.430	-0.000	97.794	-25.429	0.002\%
46	-13096	-97794	22.641	13.095	97794	-22.640	0002\%

	Sum of Applied Forces			Sum of Reactions			
Load	$P X$	$P Y$	K	$P Z$	$P X$	$P Y$	$P Z$
Comb.	K	-24.814	-97.794	13.473	K	K	K
47	-26.744	-97.794	-0.428	24.812	97.794	-13.472	0.742
48	-22.756	-97.794	-13.029	22.754	97.794	0.427	0.002%
49	-13.573	-97.794	-22.587	13.572	97.794	13028	0.002%
50					9794	22.585	0.002%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	6	0.00000001	0.00000001
2	Yes	15	0.00006093	0.00011056
3	Yes	14	000008412	0.00014944
4	Yes	15	0.00005908	0.00010748
5	Yes	14	0.00008089	0.00014404
6	Yes	15	0.00005751	0.00010478
7	Yes	14	0.00007811	0.00013931
8	Yes	15	0.00005907	0.00010740
9	Yes	14	0.00008087	0.00014393
10	Yes	15	000006085	0.00011030
11	Yes	14	0.00008401	0.00014906
12	Yes	15	000005919	0.00010760
13	Yes	14	0.00008108	0.00014428
14	Yes	15	000005757	0.00010493
15	Yes	14	0.00007820	0.00013953
16	Yes	15	000005921	000010767
17	Yes	14	0.00008111	0.00014438
18	Yes	15	0.00006088	0.00011037
19	Yes	14	0.00008405	0.00014917
20	Yes	15	000005907	0.00010739
21	Yes	14	0.00008087	0.00014392
22	Yes	15	0.00005752	0.00010474
23	Yes	14	000007813	0.00013928
24	Yes	15	000005907	0.00010741
25	Yes	14	000008086	0.00014395
26	Yes	11	0.00000001	0.00009970
27	Yes	16	0.00012584	0.00013842
28	Yes	16	0.00012545	0.00013554
29	Yes	16	000012543	0.00013647
30	Yes	16	000012589	0.00013835
31	Yes	16	0.00012640	0.00014119
32	Yes	16	0.00012641	0.00014019
33	Yes	16	000012645	0.00014150
34	Yes	16	0.00012666	0.00014298
35	Yes	16	0.00012678	0.00014579
36	Yes	16	0.00012638	0.00014353
37	Yes	16	0.00012592	0.00014090
38	Yes	16	0.00012575	000013815
39	Yes	15	000004909	0.00008819
40	Yes	15	000000001	0.00008727
41	Yes	15	0.00000001	0.00008651
42	Yes	15	000000001	0.00008724
43	Yes	15	000004905	0.00008804
44	Yes	15	000000001	0.00008724
45	Yes	15	000000001	0.00008654
46	Yes	15	0.00000001	0.00008730
47	Yes	15	000004906	0.00008808

48	Yes	15	000000001	0.00008723
49	Yes	15	000000001	0.00008644
50	Yes	15	0.00000001	0.00008720

Maximum Tower Deflections - Service Wind

Section No	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
T1	ft	$330-320$	21335	47	0.613
T2	$320-300$	20.006	47	0.614	0
T3	$300-280$	17373	47	0.586	0.097
T4	$280-260$	14.883	47	0.542	0.096
T5	$260-240$	12.620	47	0.488	0.095
T6	$240-220$	10.600	47	0.433	0.078
T7	$220-200$	8.798	47	0.383	0.067
T8	$200-180$	7.204	47	0.337	0.057
T9	$180-160$	5.783	47	0.296	0.048
T10	$160-140$	4.523	47	0.254	0.039
T11	$140-120$	3.441	47	0.216	0.030
T12	$120-100$	2.544	47	0.182	0.023
T13	$100-80$	1792	47	0.147	0.019
T14	$80-60$	1185	47	0.115	0.015
T15	$60-40$	0.707	47	0.083	0.012
T16	$40-20$	0.351	47	0.055	0.009
T17	$20-0$	0.112	47	0.026	0.006
				0.002	

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load Comb	Deflection	Tilt	Twist	Radius of Curvature $f t$
330000	Lightning Rod 1"x10'	47	21.335	0.613	0.097	Inf
325.000	$\begin{gathered} \text { Sector }(\mathrm{CaAa}=13333.33 \mathrm{Sq} \text { in }) \text { No } \\ \text { Ice } \end{gathered}$	47	20.670	0.614	0.096	Inf
313000	Sector $1(\mathrm{CaAa}=10000 \mathrm{Sq}$ in $)$ No Ice	47	19.076	0608	0.096	86310
301000	Sectorl(CaAa $=10000 \mathrm{Sq}$ in) No Ice	47	17.502	0.588	0.095	32242
289.000	6^{\prime} MW Dish	47	15.979	0.563	0.093	23235
277.000	6' MW Dish	47	14.528	0.534	0.089	19521

Maximum Tower Deflections - Design Wind

\(\left.$$
\begin{array}{cccccc}\hline \begin{array}{c}\text { Section } \\
\text { No. }\end{array} & \text { Elevation } & \begin{array}{c}\text { Horz. } \\
\text { Deflection } \\
\text { in }\end{array} & \begin{array}{c}\text { Gov. } \\
\text { Load } \\
\text { Comb. }\end{array}
$$ \& Tilt \& Twist

\& f t \& 630-320 \& 65.419 \& 18 \& 0\end{array}\right]\)| 0 |
| :---: |
| T1 |

Section No.	Elevation	Horz Deflection in	Gov. Load Comb.	Tilt	Twist
T7	ft	$220-200$	26.976	18	1.174
T8	$200-180$	22.090	18	1.034	0
T9	$180-160$	17731	18	0.908	0.174
T10	$160-140$	13.868	18	0.779	0.147
T11	$140-120$	10.551	18	0.663	0.093
T12	$120-100$	7.802	18	0.557	0.072
T13	$100-80$	5.495	18	0.060	
T14	$80-60$	3.634	18	0.349	0.048
T15	$60-40$	2.168	18	0.255	0.038
T16	$40-20$	1.078	18	0.168	0.028
T17	$20-0$	0.344	18	0.080	0.017
					0.008

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	\circ	0	ort

Bolt Design Data

Section No.	Elevation $f t$	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load per Bolt K	Ratio Load		Allowable Ratio	Criteria
								Allowa			
T7	220	Leg	A325N	1.000	6	38.518	54.517	0.707	\checkmark	1	Bolt Tension
		Diagonal	A325X	0.625	1	9401	14.168	0.664		1	Member Block Shear
T8	200	Leg	A 325 N	1.000	6	44.883	54.517	0.823	V	1	Bolt Tension
		Diagonal	A325X	0625	1	10.233	14.168	0.722		1	Member Block Shear
T9	180	Leg	A 325 N	1.000	6	51.073	54.517	0.937	,	1	Bolt Tension
		Diagonal	A325X	0.625	1	10.790	14.168	0762	\checkmark	1	Member Block Shear
T10	160	Leg	A 325 N	1.250	6	57.113	87.220	0.655	V	1	Bolt Tension
		Diagonal	A325X	0.625	1	11.646	17.257	0675	\checkmark	1	Bolt Shear
T11	140	Leg	A325N	1.250	6	63.063	87.220	0.723	\checkmark	1	Bolt Tension
		Diagonal	A325X	0.625	1	13.222	26.051	0.508	\checkmark	1	Member Block Shear
		Horizontal	A325X	0.625	1	7.879	19.195	0.410		1	Member Block Shear
T12	120	Leg	A325N	1.250	6	68.914	87.220	0.790	V	1	Bolt Tension
		Diagonal	A325X	0.625	1	13.471	26.051	0.517	\checkmark	1	Member Block Shear
		Horizontal	A325X	0.625	1	8.598	21.480	0.400	\checkmark	1	Member Block Shear
T13	100	Leg	A 325 N	1.250	6	74.547	87.220	0.855	\checkmark	1	Bolt Tension
		Diagonal	A325X	0.625	1	14.255	28.336	0.503	\downarrow	1	Member Block Shear
		Horizontal	A325X	0.625	1	9.311	26.051	0.357		1	Member Block Shear
T14	80	Leg	A325N	1250	6	80.057	87.220	0.918	V	1	Bolt Tension
		Diagonal	A325X	0.625	1	14.681	28.336	0.518	V	1	Member Block Shear
		Horizontal	A325X	0625	1	10.020	26.051	0385	\checkmark	1	Member Block Shear
T15	60	Leg	A325N	1.250	6	85.451	87.220	0.980	\checkmark	1	Bolt Tension
		Diagonal	A325X	0.625	1	15.340	28.336	0.541	\checkmark	1	Member Block Shear
		Horizontal	A325X	0625	1	10.724	26.051	0.412	\downarrow	1	Member Block Shear
T16	40	Leg	A325N	1500	6	90.759	126.472	0.718	V	I	Bolt Tension
		Diagonal	A325X	0625	1	15.560	28336	0549	y	1	Member Block Shear
		Horizontal	A325X	0.625	1	11.422	26.051	0438	\downarrow	1	Member Block Shear
T17	20	Leg	A325N	1500	6	95.921	126.472	0758	\checkmark	1	Bolt Tension
		Diagonal	A325X	0.625	1	16.469	29.250	0.563	∇	1	Gusset Bearing
		Horizontal	A325X	0.625	1	12.108	28.336	0.427	\checkmark	1	Member Block Shear

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		in ${ }^{2}$	K	K	ϕP_{n}
TI	330-320	$13 / 4$	10.009	4504	$\begin{gathered} 123.5 \\ \mathrm{~K}=1.00 \end{gathered}$	2.405	-6.285	35.601	$\begin{gathered} 0.177 \\ \end{gathered}$
T2	320-300	2	20.019	4.754	$\begin{gathered} 1141 \\ \mathrm{~K}=1.00 \end{gathered}$	3142	-46767	54509	$\overbrace{}^{0.858}$
T3	300-280	21/2	20.019	4.754	$\begin{gathered} 91.3 \\ \mathrm{~K}=1.00 \end{gathered}$	4909	-100.906	120.108	0.840^{1}
T4	280-260	$23 / 4$	20.019	4.754	$\begin{gathered} 83.0 \\ \mathrm{~K}=1.00 \end{gathered}$	5.940	-153.975	161.540	$\underbrace{0.953}$
T5	260-240	3	20.019	4.754	$\begin{gathered} 76.1 \\ K=1.00 \end{gathered}$	7069	-202.065	208.347	0.970^{1}
T6	240-220	$31 / 4$	20.019	4754	$\begin{gathered} 70.2 \\ \mathrm{~K}=1.00 \end{gathered}$	8296	-246.561	260.312	$\overbrace{}^{0.947}$
T7	220-200	$31 / 2$	20.019	4.754	$\begin{gathered} 65.2 \\ K=1.00 \end{gathered}$	9.621	-289.647	317.273	
T8	200-180	$33 / 4$	20.019	4.754	$\begin{gathered} 60.9 \\ K=100 \end{gathered}$	11.045	-332.344	379.106	0.877
T9	180-160	$33 / 4$	20.019	4.754	$\begin{gathered} 60.9 \\ K=1.00 \end{gathered}$	11.045	-374.664	379106	
T10	160-140	4	20.019	4.754	$\begin{gathered} 57.1 \\ \mathrm{~K}=1.00 \end{gathered}$	12.566	-417.384	445.717	${ }^{0.936^{1}}$
T11	140-120	$41 / 4$	20.019	4.754	$\begin{gathered} 53.7 \\ K=1.00 \end{gathered}$	14.186	-454.552	517.034	
T12	120-100	41/4	20.019	4.754	$\begin{gathered} 53.7 \\ K=1.00 \end{gathered}$	14.186	-496.036	517034	
T13	100-80	$41 / 2$	20.019	4.754	$\begin{gathered} 50.7 \\ K=1.00 \end{gathered}$	15.904	-537.178	593.004	0.906^{1}
T14	80-60	41/2	20.019	4.754	$\begin{gathered} 50.7 \\ K=1.00 \end{gathered}$	15.904	-578.095	593.004	
T15	60-40	43/4	20.019	4.754	$\begin{gathered} 48.0 \\ \mathrm{~K}=1.00 \end{gathered}$	17.721	-618.726	673582	
T16	40-20	43/4	20.019	4.754	$\begin{gathered} 48.0 \\ \mathrm{~K}=1.00 \end{gathered}$	17.721	-658.963	673.582	0.978 \downarrow
T17	20-0	5	20.019	4754	$\begin{gathered} 45.6 \\ K=100 \end{gathered}$	19.635	-698.572	758734	0.921

${ }^{1} P_{n} / \phi P_{n}$ controls

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{μ}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		in ${ }^{2}$	K	K	ϕP_{n}
T1	330-320	L1 3/4×13/4×3/16	6.221	3.127	$\begin{gathered} 1093 \\ \mathrm{~K}=1.00 \end{gathered}$	0.621	-3.240	14.893	0.218^{1}
T2	320-300	L1 3/4×13/4x3/16	7.485	3.750	$\begin{gathered} 1310 \\ \mathrm{~K}=1.00 \end{gathered}$	0.621	-4.707	10.354	0.455^{1}

Section No.	Elevation	Size	L	L_{n}	Kl / r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		in ${ }^{2}$	K	K	ϕP_{n}
T3	300-280	L. 3/4x\| 3/4x $3 / 16$	8.697	4330	$\begin{gathered} 1513 \\ K=1.00 \end{gathered}$	0.621	-7 198	7.765	0.927^{1}
T4	280-260	L $2 \times 2 \times 3 / 16$	9987	4.964	$\begin{gathered} 151.2 \\ K=100 \end{gathered}$	0.715	-7.901	8.951	$\underbrace{0.883}$
T5	260-240	L2 $1 / 2 \times 21 / 2 \times 3 / 16$	11329	5.625	$\begin{gathered} 136.4 \\ K=1.00 \end{gathered}$	0.902	-8.061	13885	0.581^{1}
T6	240-220	L2 1/2 $21 / 2 \times 3 / 16$	12.706	6303	$\begin{gathered} 152.8 \\ K=1.00 \end{gathered}$	0.902	-8.465	11.057	${ }^{0.766}$
T7	220-200	L $3 \times 3 \times 3 / 16$	14.108	6.994	$\begin{gathered} 140.8 \\ K=1.00 \end{gathered}$	1090	-9.099	15.733	0.578
T8	200-180	L $3 \times 3 \times 3 / 16$	15.529	7.694	$\begin{gathered} 154.9 \\ K=1.00 \end{gathered}$	1.090	-9.937	13.000	0.764
T9	180-160	L3 3 3 $\times 3 / 16$	16.963	8.412	$\begin{gathered} 1694 \\ K=1.00 \end{gathered}$	1090	-10.562	10.877	$\underbrace{0.971^{\prime}}$
T10	160-140	L $3 \times 3 \times 1 / 4$	18.408	9.124	$\begin{gathered} 184.9 \\ K=1.00 \end{gathered}$	1440	-11.446	12.050	$\overbrace{}^{0.950^{1}}$
TII	140-120	2L2 $21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	10.829	10.632	$\begin{gathered} 168.2 \\ K=1.00 \end{gathered}$	1.800	-13207	17.635	0.749^{1}
T12	120-100	$\begin{aligned} & 2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>60882 \text { in }-267 \\ & 2 \mathrm{~L} 21 / 2 \times 2 \quad 1 / 2 \times 3 / 16 \times 3 / 8 \end{aligned}$	11508	11.313	$\begin{gathered} 179.0 \\ K=1.00 \end{gathered}$	1800	-13.564	15.641	0.867^{1}
T13	100-80	$\begin{gathered} 2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>64.783 \mathrm{in}-306 \\ 2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8 \end{gathered}$	12.195	11.991	$\begin{gathered} 159.5 \\ K=1.00 \end{gathered}$	2180	-14.379	23.170	$\overbrace{}^{0.621^{1}}$
T14	80-60	$\begin{gathered} \text { 2L }{ }^{\prime} \mathrm{a}^{\prime}>68500 \text { in }-345 \\ 2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8 \end{gathered}$	12.889	12.687	$\begin{gathered} 168.8 \\ K=1.00 \end{gathered}$	2.180	-14880	20.849	$\overbrace{}^{0.714}$
T15	60-40	$\begin{gathered} 2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>72.475 \mathrm{in}-384 \\ 2 \mathrm{~L} \cdot 3 \times 3 \times 3 / 16 \times 3 / 8 \end{gathered}$	13.589	13.378	$\begin{gathered} 178.0 \\ \mathrm{~K}=1.00 \end{gathered}$	2.180	-15666	18.864	$0^{0.830^{1}}$
T16	40-20	$\begin{gathered} 2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>76419 \text { in }-423 \\ 2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8 \end{gathered}$	14.294	14.084	$\begin{gathered} 187.4 \\ K=100 \end{gathered}$	2.180	-15.992	17.103	$\overbrace{}^{0.935^{1}}$
T17	20-0	$\begin{gathered} 2 L^{\prime} \mathrm{a}^{\prime}>80-455 \text { in }-462 \\ 2 \mathrm{~L} 3 \times 3 \times 1 / 4 \times 3 / 8 \end{gathered}$	15.003	14.784	$\begin{gathered} 196.8 \\ K=1.00 \end{gathered}$	2.880	-16469	20.903	$0^{0.788}$
		$2 L^{\prime} \mathrm{a}^{\prime}>84.697$ in - 501							

${ }^{1} P_{u} / \phi P_{n}$ controls

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L_{n}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		in ${ }^{2}$	K	K	ϕP_{n}
TII	140-120	2L. 3/4x1 3/4×3/16x3/8	19.106	9376	$\begin{gathered} 209.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1242	-7.879	8.097	0.973^{1}
T12	120-100	$\begin{gathered} 2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>53.975 \text { in }-265 \\ 2 \mathrm{~L} .2 \times 2 \times 3 / 16 \times 3 / 8 \end{gathered}$	20.606	10.126	$\begin{gathered} 198.1 \\ \mathrm{~K}=1.00 \end{gathered}$	1430	-8.598	10.289	$0^{0.836^{1}}$
		$2 L^{\prime} \mathrm{a}^{\prime}>58196$ in - 304							

Section No.	Elevation	Size	L	L_{u}	Kl / r	A	P_{n}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		in^{2}	K	K	ϕP_{n}
T13	100-80	$2 \mathrm{~L} 21 / 2 \times 2 \mathrm{I} / 2 \times 3 / 16 \times 3 / 8$	22.106	10.866	$\begin{gathered} 171.9 \\ K=1.00 \end{gathered}$	1800	-9311	16.912	0.551^{\prime}
T14	80-60	$\begin{gathered} 2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>62.219 \text { in }-343 \\ 2 \mathrm{~L} 2 \mathrm{I} / 2 \times 2 \mathrm{~K} 1 / 2 \times 3 / 16 \times 3 / 8 \end{gathered}$	23606	11616	$\begin{gathered} 183.8 \\ K=1.00 \end{gathered}$	1.800	-10.020	14861	0674
T15	60-40	$\begin{gathered} 2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>66.514 \mathrm{in}-382 \\ 2 \mathrm{~L} 21 / 2 \times 2 \mathrm{I} / 2 \times 3 / 16 \times 3 / 8 \end{gathered}$	25106	12.355	$\begin{gathered} 195.5 \\ K=1.00 \end{gathered}$	1800	-10.724	13.179	0.814^{1}
T16	40-20	$\begin{gathered} 2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>70749 \text { in }-421 \\ 2 \mathrm{~L} 21 / 2 \times 2 \mathrm{I} / 2 \times 3 / 16 \times 3 / 8 \end{gathered}$	26.606	13.105	$\begin{gathered} 2074 \\ \mathrm{~K}=100 \end{gathered}$	1800	-11422	11.746	
T17	20-0	$\begin{gathered} \text { 2L } \mathrm{L}^{\prime} \mathrm{a}^{\prime}>75.043 \text { in }-460 \\ 2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8 \end{gathered}$	28.106	13.845	$\begin{gathered} 184.2 \\ \mathrm{~K}=1.00 \end{gathered}$	2.180	-12.108	17.672	
		$2 L^{\prime} \mathrm{a}^{\prime}>79.088$ in -499							

${ }^{1} P_{a} / \phi P_{n}$ controls
Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{*}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$	
	$f t$		$f t$	$f t$		in ${ }^{2}$	K	K	ϕP_{n}	
TI	330-320	L\| 3/4x	3/4x3/16	3.788	3.642	$\begin{gathered} 127.2 \\ \mathrm{~K}=1.00 \end{gathered}$	0.621	-1839	10.980	0.167^{\prime}

${ }^{1} P_{u} / \phi P_{n}$ controls
Inner Bracing Design Data (Compression)

Section No.	Elevation	Size	L	L_{μ}	Kl/r	A	$P_{\text {c }}$	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	ft		in ${ }^{*}$	K	K	ϕP_{n}
T11	140-120	LI 3/4x \| 3/4x3/16	9553	9.553	$\begin{gathered} 3338 \\ \mathrm{~K}=100 \end{gathered}$	0.621	-0.011	1596	0.007^{1}
T12	120-100	$\begin{gathered} \mathrm{KL} / \mathrm{R}>250(\mathrm{C})-274 \\ \mathrm{~L} 13 / 4 \times 13 / 4 \times 3 / 16 \end{gathered}$	10.303	10.303	$\begin{gathered} 360.0 \\ K=1.00 \end{gathered}$	0.621	-0.012	1372	${ }^{0.009}$
T13	$100-80$	$\begin{gathered} \mathrm{KL} / \mathrm{R}>250(\mathrm{C})-313 \\ \mathrm{LI} 3 / 4 \times 13 / 4 \times 3 / 16 \end{gathered}$	11053	11.053	$\begin{gathered} 386.2 \\ \mathrm{~K}=1.00 \end{gathered}$	0.621	-0.014	1.192	0.012^{\prime}
T14	80-60	$\begin{gathered} \mathrm{KL} / \mathrm{R}>250(\mathrm{C})-352 \\ \mathrm{~L} 13 / 4 \times 13 / 4 \times 3 / 16 \end{gathered}$	11803	11.803	$\begin{gathered} 4124 \\ K=1.00 \end{gathered}$	0621	-0.014	1.045	$0^{0.014^{1}}$
T15	60-40	$\begin{gathered} \mathrm{KL} / \mathrm{R}>250(\mathrm{C})-391 \\ \mathrm{~L} 13 / 4 \times 13 / 4 \times 3 / 16 \end{gathered}$	12553	12.553	$\begin{gathered} 438.6 \\ \mathrm{~K}=1.00 \end{gathered}$	0.621	-0.015	0.924	$)^{0.016^{1}}$
		$\mathrm{KL} / \mathrm{R}>250(\mathrm{C})-430$							

Section No.	Elevation	Size	L	L_{u}	Kl / r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		in^{2}	K	K	ϕP_{n}
T16	40-20	LI 3/4x\| 3/4x $3 / 16$	13.303	13.303	$\begin{gathered} 4648 \\ K=1.00 \end{gathered}$	0.621	-0.014	0823	$\overbrace{}^{0.018}$
T17	20-0	$\begin{gathered} \mathrm{KL} / \mathrm{R}>250(\mathrm{C})-469 \\ \mathrm{~L} \mid 3 / 4 \times 13 / 4 \times 3 / 16 \end{gathered}$	14053	14053	$\begin{gathered} 491.0 \\ \mathrm{~K}=1.00 \end{gathered}$	0.621	-0015	0.737	
		$\mathrm{KL} / \mathrm{R}>250(\mathrm{C})-510$							

${ }^{1} P_{n} / \phi P_{n}$ controls

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L_{n}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	K	K	ϕP_{n}
T1	$330-320$	$13 / 4$	10.009	0.500	13.7	2.405	8.206	108.238	0.076^{1}
12	$320-300$	2	20.019	0.500	12.0	3.142	46.214	141.372	0.327^{\prime}
T3	300-280	$21 / 2$	20019	0.500	96	4909	97.423	220893	0.441^{1}
T4	280-260	$23 / 4$	20.019	0.500	87	5.940	146742	267.281	0.549^{1}
T5	260-240	3	20.019	0.500	8.0	7.069	190.805	318086	0.600^{1}
T6	$240-220$	$31 / 4$	20.019	0.500	7.4	8296	231125	373.310	0.619^{1}
T 7	220-200	$31 / 2$	20019	0.500	6.9	9.621	269312	432.951	0622
T8	$200-180$	$33 / 4$	20.019	0.500	6.4	11045	306454	497.010	0.617^{1}
T9	$180-160$	$33 / 4$	20.019	0.500	6.4	11.045	342.696	497.010	0.690^{1}
T10	$160-140$	4	20.019	0.500	6.0	12.566	378.400	565.487	0.669^{1}
T11	$140-120$	41/4	20.019	0.500	5.7	14.186	413.504	638.381	
T12	120-100	$41 / 4$	20.019	0.500	5.7	14.186	447.305	638.381	0.701^{1}
T13	100-80	41/2	20.019	0.500	5.3	15.904	480.364	715694	0671^{1}
T14	80-60	$41 / 2$	20.019	0.500	5.3	15.904	512.731	715694	0.716^{1}
T15	60-40	43/4	20.019	0.500	51	17.721	544.578	797.425	0.683^{1}
T16	40-20	$43 / 4$	20.019	0.500	5.1	17721	575.557	797425	0.722^{1}

Section No.	Elevation	Size	L	L_{u}	$K l / r$	A	P_{u}	ϕP_{n}	Ratio T17
$f t$	$20-0$			$f t$	$f t$		m^{2}	K	K

${ }^{1} P_{a} / \phi P_{n}$ controls

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		in ${ }^{2}$	K	K	ϕP_{n}
T1	330-320	L1 3/4x1 3/4×3/16	6.221	3.127	69.9	0.360	3570	17.567	0.2031
T2	320-300	L. 3/4×1 3/4×3/16	7.485	3.750	838	0.360	5.404	17.567	$0.30{ }^{\text {1 }}$
T3	300-280	LI 3/4×1 3/4×3/16	8.697	4.330	96.8	0360	7.619	17.567	$0.434^{\text {' }}$
T4	280-260	L2 $2 \times 2 \times 3 / 16$	9.987	4.964	96.6	0431	8.466	21.001	0.403^{\prime}
T5	260-240	L2 $1 / 2 \times 21 / 2 \times 3 / 16$	11.329	5.625	86.8	0.571	8.538	27.838	0.307^{1}
T6	240-220	L2 1/2×2 $1 / 2 \times 3 / 16$	12.706	6303	97.2	0.571	8801	27.838	0.316^{1}
T7	220-200	L $3 \times 3 \times 3 / 16$	14.108	6.994	89.4	0.712	9.401	34.712	$271{ }^{\prime}$
T8	200-180	L $3 \times 3 \times 3 / 16$	15.529	7.694	98.3	0712	10.233	34.712	0.295^{\prime}
T9	180-160	L3 $\times 3 \times 3 / 16$	16.963	8.412	107.5	0.712	10.790	34.712	0.311^{1}
T10	160-140	L $3 \times 3 \times 1 / 4$	18.408	9.124	117.7	0.939	11.646	45.794	$0.254^{\text { }}$
T11	140-120	2L $21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	10.829	10.632	1640	1.139	13.222	55.529	0.238^{1}
T12	120-100	$\begin{aligned} & 2 L^{\prime} a^{\prime}>60.882 \text { in }-266 \\ & 2 \mathrm{~L} 2 \mathrm{I} / 2 \times 2 \quad 1 / 2 \times 3 / 16 \times 3 / 8 \end{aligned}$	11508	11313	174.5	1139	13.471	55529	0.243^{1}
T13	100-80	$\begin{gathered} 2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>64.783 \text { in }-305 \\ 2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8 \end{gathered}$	12.195	11.991	1532	1424	14.255	69423	0.205^{1}
T14	80-60	$\begin{gathered} 2 \mathrm{~L}^{\prime} \mathrm{a} \mathrm{a}^{\prime}>68.500 \text { in }-344 \\ 2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8 \end{gathered}$	12.889	12.687	162.1	1424	14.681	69.423	0.211^{\prime}
T15	60-40	$\begin{gathered} 2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>72.475 \text { in }-383 \\ 2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8 \end{gathered}$	13.589	13.378	171.0	1424	15.340	69.423	0.221^{1}
T16	40-20	$\begin{gathered} 2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>76.419 \text { in }-422 \\ 2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8 \end{gathered}$	14.294	14.084	180.0	1424	15.560	69.423	$0.22{ }^{\prime}$
T17	20-0	$\begin{gathered} 2 \mathrm{~L} . \mathrm{a}^{\prime}>80.455 \text { in }-461 \\ 2 \mathrm{~L} 3 \times 3 \times 1 / 4 \times 3 / 8 \end{gathered}$	15.003	14.784	190.8	1879	15.936	91.589	0.174^{1}

Section No	Elevation	Size	L	L_{*}	Kl / r	A$i n n^{2}$	P_{u} K	$\begin{gathered} \phi P_{n} \\ K \end{gathered}$	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \phi P_{n} \end{gathered}$
	$f t$		$f t$	$f t$					

2 L ' $\mathrm{a}^{\prime}>84.697$ in - 500
${ }^{1} P_{a} / \phi P_{n}$ controls

Section No.	Horizontal Design Data (Tension)								
	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	ft		$f t$	ft		$i n^{2}$	K	K	ϕP_{n}
TII	$140-120$	2LI $3 / 4 \times 13 / 4 \times 3 / 16 \times 3 / 8$	19.106	9.376	209.5	0.721	7.879	35.134	0.224
T12	120-100	$\begin{gathered} 2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>53.975 \mathrm{in}-265 \\ 2 \mathrm{~L} .2 \times 2 \times 3 / 16 \times 3 / 8 \end{gathered}$	20.606	10.126	196.9	0.862	8.598	42.001	0205^{1}
TI3	100-80	$\begin{aligned} & 2 \mathrm{~L}^{\prime} \mathrm{a}^{\prime}>58.196 \text { in }-304 \\ & 2 \mathrm{~L} 21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8 \end{aligned}$	22.106	10.866	167.6	1.139	9.311	55.529	0.168
T14	80-60	$\begin{aligned} & 2 L^{\prime} a^{\prime}>62.219 \text { in }-349 \\ & 2 \mathrm{~L} 2 \quad 1 / 2 \times 2 \quad 1 / 2 \times 3 / 16 \times 3 / 8 \end{aligned}$	23.606	11.616	1792	1.139	10.020	55.529	0.180^{1}
T15	60-40	$\begin{aligned} & 2 L^{\prime} \mathrm{a}^{\prime}>66.514 \text { in }-388 \\ & 2 \mathrm{~L} 2 \mathrm{I} / 2 \times 2 \quad \mathrm{I} / 2 \times 3 / 16 \times 3 / 8 \end{aligned}$	25106	12.355	190.6	1139	10.724	55.529	0.193^{1}
T16	40-20	$\begin{aligned} & \text { 2L ' 'a' }>70.749 \text { in }-421 \\ & \text { 2L2 } 1 / 2 \times 2 \quad 1 / 2 \times 3 / 16 \times 3 / 8 \end{aligned}$	26.606	13105	202.1	1.139	11.422	55.529	0.206^{1}
T17	$20-0$	2L ' 'a' >75.043 in -460 2 L $3 \times 3 \times 3 / 16 \times 3 / 8$	28.106	13.845	1769	1424	12.108	69.423	0.174^{1}

${ }^{1} P_{n} / \phi P_{n}$ controls

Top Girt Design Data (Tension)									
Section No.	Elevation	Size	L	L_{μ}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		in ${ }^{2}$	K	K	ϕP_{n}
T1	330-320	L1 3/4x\| 3/4x3/16	3.788	3.642	81.4	0360	1853	17.567	0.105^{1}

${ }^{1} P_{n} / \phi P_{n}$ controls

Section No.	Elevation	Size	L	L_{n}	Kl / r	A	P_{u}	ϕP_{n}	Ratio P_{u}
T 11	$140-120$	$\mathrm{LI} 3 / 4 \times 13 / 4 \times 3 / 16$	9.553	9.553	213.5	0.621	0.001	27.949	0.000^{1}
T 12	$120-100$	$\mathrm{~L} 13 / 4 \times 13 / 4 \times 3 / 16$	10.303	10.303	230.3	0.621	0.000	27.949	0.000^{1}

${ }^{1} P_{n} / \phi P_{n}$ controls

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} o P_{\text {allow }} \\ K \end{gathered}$	$\%$ Capacity	Pass Fail
TI	330-320	Leg	$13 / 4$	1	-6.285	35.601	17.7	Pass
T2	320-300	Leg	2	21	-46.767	54509	85.8	Pass
T3	300-280	Leg	$21 / 2$	48	-100.906	120.108	84.0	Pass
T4	280-260	Leg	$23 / 4$	75	-153.975	161540	95.3	Pass
T5	260-240	Leg	3	102	-202.065	208.347	97.0	Pass
T6	240-220	Leg	$31 / 4$	129	-246.561	260312	94.7	Pass
T7	220-200	Leg	$31 / 2$	154	-289 647	317.273	913	Pass
T8	200-180	Leg	$33 / 4$	181	-332 344	379.106	87.7	Pass
T9	180-160	Leg	$33 / 4$	208	-374.664	379.106	98.8	Pass
T10	160-140	Leg	4	235	-417.384	445.717	93.6	Pass
T11	140-120	Leg	$41 / 4$	262	-454.552	517.034	879	Pass
T12	120-100	Leg	$41 / 4$	301	-496.036	517.034	95.9	Pass
T13	100-80	Leg	$41 / 2$	340	-537.178	593.004	90.6	Pass
T14	80-60	Leg	$41 / 2$	379	-578.095	593.004	97.5	Pass
T15	60-40	Leg	$43 / 4$	418	-618.726	673.582	91.9	Pass
							980 (b)	
T16	40-20	Leg	$43 / 4$	457	-658.963	673582	97.8	Pass
T17	20-0	Leg	5	496	-698.572	758.734	92.1	Pass
T1	330-320	Diagonal	L. $3 / 4 \times 13 / 4 \times 3 / 16$	8	-3.240	14.893	218	Pass
							372 (b)	
T2	320-300	Diagonal	L. $3 / 4 \times 13 / 4 \times 3 / 16$	25	-4.707	10.354	455	Pass
							56.3 (b)	
T3	300-280	Diagonal	LI 3/4x\| 3/4x3/16	49	-7.198	7.765	92.7	Pass
T4	280-260	Diagonal	L2 $2 \times 2 \times 3 / 16$	77	-7.901	8.951	88.3	Pass
T5	260-240	Diagonal	L2 $21 / 2 \times 21 / 2 \times 3 / 16$	104	-8.061	13.885	58.1	Pass
							65.5 (b)	
T6	240-220	Diagonal	L. $21 / 2 \times 21 / 2 \times 3 / 16$	131	-8.465	11057	76.6	Pass
T7	220-200	Diagonal	L $3 \times 3 \times 3 / 16$	158	-9.099	15.733	57.8	Pass
							66.4 (b)	
T8	200-180	Diagonal	L3 $3 \times 3 \times 3 / 16$	185	-9.937	13.000	76.4	Pass
T9	180-160	Diagonal	L $3 \times 3 \times 3 / 16$	212	-10.562	10.877	97.1	Pass
T10	160-140	Diagonal	L $3 \times 3 \times 1 / 4$	239	-11.446	12.050	95.0	Pass
T11	140-120	Diagonal	2L2 $1 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	267	-13.207	17635	74.9	Pass
T12	120-100	Diagonal	2L $21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	306	-13.564	15.641	86.7	Pass
T13	$100-80$	Diagonal	$2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8$	345	-14379	23.170	62.1	Pass
T14	80-60	Diagonal	$2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8$	384	-14.880	20.849	71.4	Pass
T15	60-40	Diagonal	$2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8$	423	-15.666	18.864	83.0	Pass
T16	40-20	Diagonal	$2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8$	462	-15.992	17.103	93.5	Pass
T17	20-0	Diagonal	$2 \mathrm{~L} 3 \times 3 \times 1 / 4 \times 3 / 8$	501	-16.469	20.903	78.8	Pass
T11	140-120	Horizontal	2LI 3/4x1 3/4×3/16x3/8	265	-7.879	8.097	97.3	Pass
T12	120-100	Horizontal	$2 \mathrm{~L} 2 \times 2 \times 3 / 16 \times 3 / 8$	304	-8.598	10.289	83.6	Pass
T13	100-80	Horizontal	2L2 $1 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	343	-9311	16.912	55.1	Pass
T14	80-60	Horizontal	2L2 $1 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	382	-10020	14.861	67.4	Pass
T15	60-40	Horizontal	$2 \mathrm{~L} 21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	421	-10.724	13.179	81.4	Pass

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} \sigma P_{\text {alloon }} \\ K \end{gathered}$	\% Capacity	Pass Fail
T16	40-20	Horizontal	2L $21 / 2 \times 21 / 2 \times 3 / 16 \times 3 / 8$	466	-11.422	11.746	97.2	Pass
T17	20-0	Horizontal	$2 \mathrm{~L} 3 \times 3 \times 3 / 16 \times 3 / 8$	499	-12.108	17672	685	Pass
T1	330-320	Top Girt	L. $3 / 4 \times 13 / 4 \times 3 / 16$	4	-1839	10.980	16.7	Pass
							193 (b)	
T11	140-120	Inner Bracing	L1 3/4x1 3/4×3/16	274	-0.011	1596	0.7	Pass
T12	120-100	Inner Bracing	L1 3/4x\| $3 / 4 \times 3 / 16$	313	-0.012	1372	0.9	Pass
T13	100-80	Inner Bracing	L1 3/4x1 $3 / 4 \times 3 / 16$	352	-0.014	1.192	1.2	Pass
T14	80-60	Inner Bracing	L1 3/4x $13 / 4 \times 3 / 16$	391	-0.014	1.045	14	Pass
T15	60-40	Inner Bracing	L1 3/4x\| $3 / 4 \times 3 / 16$	430	-0.015	0.924	16	Pass
T16	40-20	Inner Bracing	L1 3/4x\| 3/4x3/16	469	-0.014	0.823	1.8	Pass
T17	20-0	Inner Bracing	L1 3/4×1 $3 / 4 \times 3 / 16$	510	-0.015	0.737	2.1	Pass
							Summary	
						Leg (T9)	98.8	Pass
						Diagonal (T9)	97.1	Pass
						$\begin{aligned} & \text { Horizontal } \\ & \text { (T11) } \end{aligned}$	97.3	Pass
						Top Girt (T1)	19.3	Pass
						Inner	2.1	Pass
						Bracing (T17)		
						Bolt Checks	98.0	Pass
						RATING =	98.8	Pass

EXHIBIT D

COMPETING UTILITIES, CORPORATIONS, OR PERSONS LIST

KY Public Service Commission

Master Utility Search

- Search for the utility of interest by using any single or combination of criteria.
- Enter Partial names to return the closest match for Utility

Utility IDUtility Name\quad Address/City/Contact Utility Type	Status
	\vee Active ~
	$\boxed{S e a r c h}$

	Utility ID	Utillty Name	Utility Type	Class	City	State
View	4111300	2600Hz, Inc. dba ZSWITCH	Cellular D	San Francisco CA		
View	4108300	Air Voice Wireless, LLC	Cellular B	Bloomfield Hill	MI	
View	4110650	Alliant Technologies of KY, L.L.C.	Cellular D	Morristown	NJ	
View	4111900	ALLNETAIR, INC.	Cellular C	West Palm Beach	FL	
View	44451184	Alltel Corporation d/b/a Verizon Wireless	Cellular A	Lisle	IL	
View	4110850	AltaWorx, LLC	Cellular D	Fairhope	AL	
View	4107800	American Broadband and Telecommunications Company	Cellular D	Toledo	OH	
View	4108650	AmeriMex Communications Corp.	Cellular D	Dunedin	FL	
View	4105100	AmeriVision Communications, Inc. d/b/a Affinity 4	Cellular D	Virginia	Veach	VA
View	4110700	Andrew David Balholm dba Norcell	Cellular D	Buford	GA	
View	4105700	Assurance Wireless USA, L.P.	Cellular A	Atlanta	GA	
View	4108600	BCN Telecom, Inc.	Cellular D	Morristown	NJ	
View	4106000	Best Buy Health, Inc. d/b/a GreatCall d/b/a Jitterbug	Cellular A	San Diego	CA	
View	4110550	Blue Casa Mobile, LLC	Cellular D	Santa Barbara	CA	
View	411050	BlueBird Communications, LLC	Cellular D	New York	NY	
View	4202300	Bluegrass Wireless, LLC	Cellular A	Elizabethtown KY		

View	4107600	Boomerang Wireless, LLC	Cellular ${ }^{\text {d }}$		Hiawatha	IA
View	4105500	BullsEye Telecom, Inc.	Cellular	D	Southfield	MI
View	4100700	Cellco Partnership dba Verizon Wireless	Cellular	A	Basking Ridge	NJ
View	4106600	Cintex Wireless, LLC	Cellular	D	Houston	TX
View	4111150	Comcast OTR1, LLC	Cellular	C	Phoeniexville	PA
View	4101900	Consumer Cellular, Incorporated	Cellular	A	Portland	OR
View	4106400	Credo Mobile, Inc.	Cellular	A	San Francisco	CA
View	4108850	Cricket Wireless, LLC	Cellular	A	San Antonio	TX
View	4111500	CSC Wireless, LLC d/b/a Altice Wireless	Cellular	D	Long Island City	NY
View	10640	Cumberland Cellular Partnership	Cellular	A	Elizabethtown	KY
View	4111650	DataBytes, Inc.	Cellular	D	Rogers	AR
View	4112000	DISH Wireless L.L.C.	Cellular	C	Englewood	CO
View	4111200	Dynalink Communications, Inc.	Cellular	C	Brooklyn	NY
View	4111800	Earthlink, LLC	Cellular	C	Atlanta	GA
View	4101000	East Kentucky Network, LLC dba Appalachian Wireless	Cellular	A	Ivel	KY
View	4002300	Easy Telephone Service Company dba Easy Wireless	Cellular	D	Ocala	FL
View	4109500	Enhanced Communications Group, LLC	Cellular	D	Bartlesville	OK
View	4110450	Excellus Communications, LLC	Cellular	D	Chattanooga	TN
View	4105900	Flash Wireless, LLC	Cellular C	C	Concord	NC
View	4104800	France Telecom Corporate Solutions L.L.C.	Cellular	D	Herndon	VA
View	4111750	Gabb Wireless, Inc.	Cellular	D	Provo	UT
View	4109350	Global Connection Inc. of America	Cellular	D	Norcross	GA
View	4102200	Globalstar USA, LLC	Cellular	B	Covington	LA
View	4112050	GLOTELL US, Corp.	Cellular	C	Hallandale	FL
View	4109600	Google North America Inc.	Cellular	A	Mountain View	CA
View	33350363	Granite Telecommunications, LLC	Cellular	D	Quincy	MA
View	10630	GTE Wireless of the Midwest dba Verizon Wireless	Cellular	A	Basking Ridge	NJ
View	4111350	HELLO MOBILE TELECOM LLC	Cellular	D	Dania Beach	FL
View	4103100	i-Wireless, LLC	Cellular	B	Newport	KY
View	4109800	IM Telecom, LLC d/b/a Infiniti Mobile	Cellular	D	Dallas	TX
View	4111950	J Rhodes Enterprises LLC	Cellular	C	Gulf Breeze	FL
View	22215360	KDDI America, Inc.	Cellular	D	Staten Island	NY
View	10872	Kentucky RSA \#1 Partnership	Cellular	A	Basking Ridge	NJ
View	10680	Kentucky RSA \#3 Cellular General	Cellular	A	Elizabethtown	KY

Utility Master Information -- Search

View	10681	Kentucky RSA \#4 Cellular General	Cellu		Elizabethtown	$K Y$
View	4109550	Kynect Communications, LLC	Cellutar		Dallas	TX
View	4111250	Liberty Mobile Wireless, LLC	Cellular	D	Sunny Isles Beach	FL
View	4111400	Locus Telecommunications, LLC	Cellular		Fort Lee	NJ
View	4107300	Lycamobile USA, Inc.	Cellular	D	Newark	NJ
View	4108800	MetroPCS Michigan, LLC	Cellular A		Bellevue	WA
View	4111700	Mint Mobile, LLC	Cellular		Costa Mesa	CA
View	4109650	Mitel Cloud Services, Inc.	Cellular	D	Mesa	AZ
View	4111850	Mobi, Inc.	Cellular C	C	Honolulu	HI
View	4202400	New Cingular Wireless PCS, LLC dba AT\&T Mobility, PCS	Cellular A	A	San Antonio	TX
View	4000800	Nextel West Corporation	Cellular	D	Overland Park	KS
View	4001300	NPCR, Inc. dba Nextel Partners	Cellular		Overland Park	KS
View	4001800	OnStar, LLC	Cellular		Detroit	MI
View	4110750	Onvoy Spectrum, LLC	Cellular	D	Chicago	IL
View	4109050	Patriot Mobile LLC	Cellular D	D	Irving	TX
View	4110250	Plintron Technologies USA LLC	Cellular D	D	Bellevue	WA
View	33351182	PNG Telecommunications, Inc. dba PowerNet Global Communications	Cellular	D	Cincinnati	OH
View	4107700	Puretalk Holdings, LLC	Cellular A	A	Covington	GA
View	4106700	Q Link Wireless, LLC	Cellular A	A	Dania	FL
View	4108700	Ready Wireless, LLC	Cellular C	C	Hiawatha	IA
View	4110500	Republic Wireless, Inc.	Cellular A	A	Raleigh	NC
View	4106200	Rural Cellular Corporation	Cellular	A	Basking Ridge	NJ
View	4108550	Sage Telecom Communications, LLC dba TruConnect	Cellular	D	Los Angeles	CA
View	4109150	SelecTel, Inc. d/b/a SelecTel Wireless	Cellular	D	Fremont	NE
View	4110150	Spectrotel, Inc. d/b/a Touch Base Communications	Cellular	D	Neptune	NJ
View	4111450	Spectrum Mobile, LLC	Cellular A	A	St. Louis	MO
View	4200100	Sprint Spectrum, L.P.	Cellular A	A	Atlanta	GA
View	4200500	SprintCom, Inc.	Cellular A	A	Atlanta	GA
View	4111600	STX Group LLC dba Twigby	Cellular	D	Murfreesboro	TN
View	4110200	T C Telephone LLC d/b/a Horizon Cellular	Cellular	D	Red Bluff	CA
View	4202200	T-Mobile Central, LLC dba TMobile	Cellular A	A	Bellevue	WA
View	4002500	TAG Mobile, LLC	Cellular	D	Plano	TX
View	4109700	Telecom Management, Inc. dba Pioneer Telephone	Cellular	D	Portland	ME
View	4107200	Telefonica USA, Inc.	Cellular	D	Miami	FL

Utility Master Information - Search

View	4112100	Tello LLC	Cellular'C	C	Atlanta	GA
View	4108900	Telrite Corporation	Cellular	D	Covington	GA
View	4108450	Tempo Telecom, LLC	Cellular	B	Atlanta	GA
View	4109000	Ting, Inc.	Cellular	A	Toronto	ON
View	4110400	Torch Wireless Corp.	Cellular	D	Jacksonville	FL
View	4103300	Touchtone Communications, Inc.	Cellular		Whippany	NJ
View	4104200	TracFone Wireless, Inc.	Cellular	D	Miami	FL
View	4002000	Truphone, Inc.	Cellular	D	Durham	NC
View	4110300	UVNV, Inc. d/b/a Mint Mobile	Cellular ${ }^{\text {d }}$	D	Costa Mesa	CA
View	4110800	Visible Service LLC	Cellular	D	Basking Ridge	NJ
View	4106500	WiMacTel, Inc.	Cellular	D	Palo Alto	CA
View	4110950	Wing Tel Inc.	Cellular ${ }^{\text {d }}$	D	New York	NY

EXHIBIT E

 FAAMail Processing Center
Federal Aviation Administration
Southwest Regional Office
Obstruction Evaluation Group
10101 Hillwood Parkway
Fort Worth, TX 76177
Issued Date: 05/14/2020
Kristy Hurst
B +T Group Holdings, Inc.
1717 S. Boulder Ave.
Suite 300
Tulsa, OK 74119

** DETERMINATION OF NO HAZARD TO AIR NAVIGATION **

The Federal Aviation Administration has conducted an aeronautical study under the provisions of 49 U.S.C., Section 44718 and if applicable Title 14 of the Code of Federal Regulations, part 77, concerning:

Structure:	Antenna Tower KYLEX2044 (Mt Vernon)
Location:	Mount Vernon, KY
Latitude:	$37-21-11.70 \mathrm{~N}$ NAD 83
Longitude:	$84-19-38.30 \mathrm{~W}$
Heights:	1306 feet site elevation (SE)
	342 feet above ground level (AGL)
	1648 feet above mean sea level (AMSL)

This aeronautical study revealed that the structure does not exceed obstruction standards and would not be a hazard to air navigation provided the following condition(s), if any, is(are) met:

As a condition to this Determination, the structure is to be marked/lighted in accordance with FAA Advisory circular 70/7460-1 L Change 2, Obstruction Marking and Lighting, a med-dual system - Chapters 4,8(MDual),\&12.

Any failure or malfunction that lasts more than thirty (30) minutes and affects a top light or flashing obstruction light, regardless of its position, should be reported immediately to (877) 487-6867 so a Notice to Airmen (NOTAM) can be issued. As soon as the normal operation is restored, notify the same number.

It is required that FAA Form 7460-2, Notice of Actual Construction or Alteration, be e-filed any time the project is abandoned or:

At least 10 days prior to start of construction (7460-2, Part 1)
_ X _ Within 5 days after the construction reaches its greatest height (7460-2, Part 2)
This determination expires on 11/14/2021 unless:
(a) the construction is started (not necessarily completed) and FAA Form 7460-2, Notice of Actual Construction or Alteration, is received by this office.
(b) extended, revised, or terminated by the issuing office.
(c) the construction is subject to the licensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within 6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for completion of construction, or the date the FCC denies the application.

NOTE: REQUEST FOR EXTENSION OF THE EFFECTIVE PERIOD OF THIS DETERMINATION MUST BE E-FILED AT LEAST 15 DAYS PRIOR TO THE EXPIRATION DATE. AFTER RE-EVALUATION OF CURRENT OPERATIONS IN THE AREA OF THE STRUCTURE TO DETERMINE THAT NO SIGNIFICANT AERONAUTICAL CHANGES HAVE OCCURRED, YOUR DETERMINATION MAY BE ELIGIBLE FOR ONE EXTENSION OF THE EFFECTIVE PERIOD.

This determination is based, in part, on the foregoing description which includes specific coordinates, heights, frequency(ies) and power. Any changes in coordinates, heights, and frequencies or use of greater power, except those frequencies specified in the Colo Void Clause Coalition; Antenna System Co-Location; Voluntary Best Practices, effective 21 Nov 2007, will void this determination. Any future construction or alteration, including increase to heights, power, or the addition of other transmitters, requires separate notice to the FAA.This determination includes all previously filed frequencies and power for this structure.

If construction or alteration is dismantled or destroyed, you must submit notice to the FAA within 5 days after the construction or alteration is dismantled or destroyed.

This determination does include temporary construction equipment such as cranes, derricks, etc., which may be used during actual construction of the structure. However, this equipment shall not exceed the overall heights as indicated above. Equipment which has a height greater than the studied structure requires separate notice to the FAA.

This determination concerns the effect of this structure on the safe and efficient use of navigable airspace by aircraft and does not relieve the sponsor of compliance responsibilities relating to any law, ordinance, or regulation of any Federal, State, or local government body.

A copy of this determination will be forwarded to the Federal Communications Commission (FCC) because the structure is subject to their licensing authority.

If we can be of further assistance, please contact our office at (404) 305-6582, or Stephanie.Kimmel@faa.gov. On any future correspondence concerning this matter, please refer to Aeronautical Study Number 2020-ASO-11449-OE.

Signature Control No: 437235531-439978246
(DNE)
Stephanie Kimmel
Specialist
Attachment(s)
Frequency Data
Map(s)
cc: FCC

LOW FREQUENCY	HIGH FREQUENCY	FREQUENCY UNIT	ERP	$\begin{gathered} \text { ERP } \\ \text { UNIT } \end{gathered}$
6	7	GHz	55	dBW
6	7	GHz	42	dBW
10	11.7	GHz	55	dBW
10	11.7	GHz	42	dBW
17.7	19.7	GHz	55	dBW
17.7	19.7	GHz	42	dBW
21.2	23.6	GHz	55	dBW
21.2	23.6	GHz	42	dBW
614	698	MHz	1000	W
614	698	MHz	2000	W
698	806	MHz	1000	W
806	901	MHz	500	W
806	824	MHz	500	W
824	849	MHz	500	W
851	866	MHz	500	W
869	894	MHz	500	W
896	901	MHz	500	W
901	902	MHz	7	W
929	932	MHz	3500	W
930	931	MHz	3500	W
931	932	MHz	3500	W
932	932.5	MHz	17	dBW
935	940	MHz	1000	W
940	941	MHz	3500	W
1670	1675	MHz	500	W
1710	1755	MHz	500	W
1850	1910	MHz	1640	W
1850	1990	MHz	1640	W
1930	1990	MHz	1640	W
1990	2025	MHz	500	W
2110	2200	MHz	500	W
2305	2360	MHz	2000	W
2305	2310	MHz	2000	W
2345	2360	MHz	2000	W
2496	2690	MHz	500	W

Verified Map for ASN 2020-ASO-11449-OE

Page 4 of 5

Page 5 of 5

EXHIBIT F

KENTUCKY AIRPORT ZONING COMMISSION

KENTUCKY AIRPORT ZONING COMMISSION

ANDY BESHEAR

Governor

Office of Audits, 200 Mero Street, 4th floor
Frankfort, KY 40622
www.transportation.ky.gov
502-782-4043

APPROVAL OF APPLICATION

August 13, 2020

```
APPLICANT
Uniti Towers
B&T Group - Patricia Parr
10802 Executive Center Dr. Ste 300
Little Rock, AR }7221
```

SUBJECT: AS-ROCKCASTLE-RGA-2020-105

STRUCTURE:	Antenna Tower
LOCATION:	Mt.Vernon, KY
COORDINATES:	$37^{\circ} 21^{\prime} 11.7^{\prime \prime} \mathrm{N} / 84^{\circ} 19^{\prime} 38.3^{\prime \prime} \mathrm{W}$
HEIGHT:	$342^{\prime} \mathrm{AGL} / 1648^{\prime}$ AMSL

The Kentucky Airport Zoning Commission has approved your application for a permit to construct 342^{\prime} AGL/1648' AMSL Antenna Tower near Mt.Vernon, KY $37^{\circ} 21^{\prime} 11.7^{\prime \prime} \mathrm{N} / 84^{\circ} 19^{\prime} 38.3^{\prime \prime} \mathrm{W}$.

This permit is valid for a period of $18 \mathrm{Month}(\mathrm{s})$ from its date of issuance. If construction is not completed within said 18-Month period, this permit shall lapse and be void, and no work shall be performed without the issuance of a new permit.

Dual - Red \& Medium Intensity White Obstruction Lighting Required

Randall S. Royer

Randall S. Royer, Executive Director
Office of Audits
Acting Administrator
Randall.Royer@ky.gov
Jason.Salazar-Munoz@ky.gov

EXHIBIT G GEOTECHNICAL REPORT

GEOTECHNICAL INVESTIGATION REPORT

Mount Vernon

KYLEX2044
Proposed 330-Foot Self-Supporting Tower
Old U.S. Highway 25, Mount Vernon (Rockcastle County), Kentucky 40456
Latitude N $37^{\circ} 21^{\prime} 11.7^{\prime \prime}$ Longitude W $84^{\circ} 19^{\prime} 38.3^{\prime \prime}$

Delta Oaks Group Project GEO20-07031-08
Revision 0
geotech@deltaoaksgroup.com

Justin Brosseau, E.I.

Reviewed By:

Joseph V. Borrelli, Jr., P.E.

INTRODUCTION

This geotechnical investigation report has been completed for the proposed 330-foot selfsupporting tower located on Old U.S. Highway 25 in Mount Vernon (Rockcastle County), Kentucky. The purpose of this investigation was to provide engineering recommendations and subsurface condition data at the proposed tower location. A geotechnical engineering interpretation of the collected information was completed and utilized to suggest design parameters regarding the adequacy of the structure's proposed foundation capacity under various loading conditions. This report provides the scope of the geotechnical investigation; geologic material identification; results of the geotechnical laboratory testing; and design parameter recommendations for use in the design of the telecommunication facility's foundation and site development.

SITE CONDITION SUMMARY

The proposed tower and compound are located on a heavily wooded hill exhibiting a steep sloping topography from the east to west across the tower compound and subject property.

REFERENCES

- Survey Drawings, prepared by Point to Point Land Surveyors, dated February 5, 2020
- TIA Standard (TIA-222-G), dated August 2005

SUBSURFACE FIELD INVESTIGATION SUMMARY

The subsurface field investigation was conducted through the advancement of one mechanical soil test boring to the auger refusal depth of 16.5 feet bgs. Samples were obtained at selected intervals in accordance with ASTM D 1586. The sampling was conducted at the staked centerline of the proposed tower. Upon encountering auger refusal 5.0 feet of rock coring was conducted in accordance with ASTM D 2113 . Soil and rock samples were transported to our laboratory and classified by a geotechnical engineer in accordance with ASTM D 2487. A detailed breakdown of the material encountered in our subsurface field investigation can be found in the boring log presented in the Appendix of this report.

Additional testing was performed on selected samples in accordance with ASTM D 7012 (Unconfined Compressive Strength - Rock). Laboratory data can be found in the Appendix of this report.

A boring plan portraying the spatial location of the boring in relation to the proposed tower, tower compound and immediate surrounding area can be found in the Appendix.

[^0]
SUBSURFACE CONDITION SUMMARY

The following provides a general overview of the site's subsurface conditions based on the data obtained during our field investigation.

FILL
Fill material was not encountered during the subsurface field investigation.
SOIL
The residual soil encountered in the subsurface field investigation began at the existing ground surface in the boring and consisted of sandy lean clay, silty clay, and clayey silt. The materials ranged from a stiff to very hard cohesion.

Auger advancement refusal was encountered during the subsurface field investigation at a depth of 16.5 feet bgs.

ROCK
Rock was encountered during the subsurface investigation at a depth of 16.5 feet bgs. The rock can be described as moderately fractured, slightly weathered, hard limestone.

SUBSURFACE WATER

At the time of drilling, subsurface water was not encountered during the subsurface investigation. However, subsurface water elevations can fluctuate throughout the year due to variations in climate, hydraulic parameters, nearby construction activity and other factors.

FROST PENETRATION

The frost penetration depth for Rockcastle County, Kentucky is 30 inches (2.5 feet).

CORROSIVITY

Soil resistivity was performed in accordance with ASTM G187 with a test result of 1,750 ohmscm.

DELTA OAKS GROUP

FOUNDATION DESIGN SUMMARY
In consideration of the provided tower parameters and the determined soil characteristics, Delta Oaks Group recommends utilizing a shallow foundation and/or drilled shaft foundation for the proposed structure. The strength parameters presented in the following sections can be utilized for design of the foundation.

GENERAL SUBSURFACE STRENGTH PARAMETERS

GENERAL SUBSURFACE STRENGTH PARAMETERS					
Boring	Depth (bgs)	USCS	Moist/Buayant Unil Weight (pcf)	Phi Angle (degrees)	Cohesion (psi)
B-1	0.0-1.5	CL	110	0	1,250
	1.5-4.0	CL	110	0	1,500
	4.0-6.5	CL	115	0	1.750
	$6.5-9.0$	$\mathrm{CL}-\mathrm{ML}$	120	0	2.750
	$9.0-14.0$	$\mathrm{CL}-\mathrm{ML}$	130	0	6,000
	14.0-16.5	$\mathrm{CL}-\mathrm{ML}$	125	0	4.250
	$16 . .5-21.5$	LIMESTONE	140	0	12,000

- The unit weight provided assumes overburden soil was compacted to a minimum of 95% of the maximum dry density as obtained by the standard Proctor method (ASTM D 698) and maintained a moisture content within 3 percent of optimum
- The values provided for phi angle and cohesion should be considered ultimate.

SUBSURFACE STRENGTH PARAMETERS - SHALLOW FOUNDATION

Boring	Dimensions (feet)	Depth (feet bgs)	Net Ultimate Bearing Capacity (psi)
B-1	5.0×5.0	3.0	10,360
		4.0	12.520
		5.0	12,950
		6.0	13,380
	10.0×10.0	3.0	9,810
		4.0	11,660
		5.0	11.870
		6.0	12,090
	15.0×15.0	3.0	9,620
		4.0	11,370
		5.0	11.510
		6.0	11.660
	20.0×20.0	3.0	9.530
		4.0	11.230
		5.0	11.330
		6.0	11,440
	25.0×25.0	3.0	9.470
		4.0	11.140
		5.0	11.230
		6.0	11.310

- Delta Oaks Group recommends the foundation bear a minimum of 3.0 feet bgs.
- A sliding friction factor of 0.30 can be utilized along the base of the proposed foundation.
- The bearing capacity can be increased by $1 / 3$ for transient loading.
- An Ullimate Passive Pressure Table with a reduction due to frost penetration to a depth of 2.5 feet bgs is presented on the following page.
- Delta Oaks Group recommends an appropriate factor of safety be utilized for the design of the foundation.

ULTIMATE PASSIVE PRESSURE VS. DEPTH - TOWER FOUNDATION

Soil Layers (feet)		Moist Unit Weight	Phi Angle	Cohesion	PV	KP	Ph
Top	0.0	110	0	1250	0.00	1.00	1250.00
Bottom	1.5	110	0	1250	165.00	1.00	1332.50
Top	1.5	110	0	1250	165.00	1.00	1332.50
Bottom	2.5	110	0	1250	275.00	1.00	1387.50
Top	2.5	110	0	1500	275.00	1.00	3275.00
Bottom	4.0	110	0	1500	440.00	1.00	3440.00
Top	4.0	115	0	1750	440.00	1.00	3940.00
Bottom	6.5	115	0	1750	727.50	1.00	4227.50
Top	6.5	120	0	2750	727.50	1.00	6227.50
Bottom	9.0	120	0	2750	1027.50	1.00	6527.50
Top	9.0	130	0	6000	1027.50	1.00	13027.50
Bottom	10.0	130	0	6000	1157.50	1.00	13157.50

SUBSURFACE STRENGTH PARAMETERS - DRILLED SHAFT FOUNDATION

Boring	Depth (bgs)	Net Uiltmate Bearing Capacily (psi)	Ulimate Skin friction Compression (psi)	Ulimate Skin Friction . Uplift (psi)
B-1	0.0-3.0	-	-	-
	$3.0-4.0$	28,180	820	820
	4.0-7.0	37,000	960	960
	7.0-9.0	50,340	1.510	1.510
	$9.0-14.0$	42,180	2,400	2.400
	$14.0-17.0$	75,763	2,120	2,120
	$17.0-21.5$	79,460	4.800	4.800

- The top 3.0 feet of soil should be ignored due to the frost penetration and the potential soil disturbance during construction.
- The bearing capacity can be increased by $1 / 3$ for transient loading.
- The values presented assume the concrete is cast-in-place against earth walls and any casing utilized during construction of the foundation was removed.
- Delta Oaks Group recommends an appropriate factor of safety be utilized for the design of the foundation.

DELTA OAKS GROUP

SUBSURFACE STRENGTH PARAMETERS - SUPPORT STRUCTURE FOUNDATION

Boring	Depth (bgs)	Nef Ullimate Bearing Capacify (pst)	Minimum Design Footing Width (隹)	Modulus of Subgrade Reaction (pci)
B-1	2.0	9.340	2.0	300
	3.0	10,120		
	4.0	12.710		350
	5.0	13,620		

- Delta Oaks Group recommends utilizing a slab on grade in conjunction with continuous perimeter footings that bear on residual soil or properly compacted structural fill placed in accordance with the recommendations provided in the CONSTRUCTION section of this report.
- The slab on grade should be properly reinforced to prevent concrete cracking and shrinkage.
- The foundation should bear a minimum of 2.0 feet bgs.
* A sliding friction factor of 0.30 can be utilized along the base of the proposed foundation.
- An Ultimate Passive Pressure Table is presented on the following page. An appropriate reduction should be considered in accordance with local building code frost penetration depth.
- Delta Oaks Group recommends an appropriate factor of safety be utilized for the design of the foundation.

ULTIMATE PASSIVE PRESSURE VS. DEPTH - SUPPORT STRUCTURE FOUNDATION

Soil Layers (feet)		Moist Unit Weight	Phi Angle	Cohesion	PV	KP	Ph
Top	0.0	110	0	1250	0.00	1.00	1250.00
Bottom	1.5	110	0	1250	165.00	1.00	1332.50
Top	1.5	110	0	1250	165.00	1.00	1332.50
Bottom	2.5	110	0	1250	275.00	1.00	1387.50
Top	2.5	110	0	1500	275.00	1.00	3275.00
Bottom	4.0	110	0	1500	440.00	1.00	3440.00
Top	4.0	115	0	1750	440.00	1.00	3940.00
Bottom	6.5	115	0	1750	727.50	1.00	4227.50
Top	6.5	120	0	2750	727.50	1.00	6227.50
Bottom	9.0	120	0	2750	1027.50	1.00	6527.50
Top	9.0	130	0	6000	1027.50	1.00	13027.50
Bottom	10.0	130	0	6000	1157.50	1.00	13157.50

CONSTRUCTION

SITE DEVELOPMENT

The proposed access road and tower compound should be evaluated by a Geotechnical Engineer, or their representative, after the removal or "cutting" of the areas to design elevation but prior to the placement of any structural fill material to verify the presence of unsuitable or weak material. Unsuitable or weak materials should be undercut to a suitable base material as determined by a Geotechnical Engineer, or their representative. Backfill of any undercut area(s) should be conducted in accordance with the recommendations provided in the STRUCTURAL FILL PLACEMENT section of this report.

Excavations should be sloped or shored in accordance and compliance with OSHA 29 CFR Part 1926, Excavation Trench Safety Standards as well as any additional local, state and federal regulations.

STRUCTURAL FILL PLACEMENT

Structural fill materials should be verified, prior to utilization, to have a minimum unit weight of 110 pcf (pounds per cubic foot) when compacted to a minimum of 95% of its maximum dry density and within plus or minus 3 percentage points of optimum moisture. Materials utilized should not contain more than 5 percent by weight of organic matter, waste, debris or any otherwise deleterious materials. The Liquid Limit should be no greater than 40 with a Plasticity Index no greater than 20. Structural fill material should contain a maximum particle size of 4 inches with 20 percent or less of the material having a particle size between 2 and 4 inches. Backfill should be placed in thin horizontal lifts not to exceed 8 inches (loose) in large grading areas and 4 inches (loose) where small handheld or walk-behind compaction equipment will be utilized. The potential suitability of on-site materials to be utilized as fill should be evaluated by a Geotechnical Engineer, or their representative just prior to construction.

During construction structural fill placement should be monitored and tested. This should include at minimum, visual observation as well as a sufficient amount of in-place field density tests by a Geotechnical Engineer, or their representative. Materials should be compacted to a minimum of 95% of the maximum dry density as determined by ASTM D 698 (standard Proctor method). Moisture contents should be maintained to within plus or minus 3 percentage points of the optimum moisture content.

SHALLOW FOUNDATIONS

Foundation excavation(s) should be evaluated by a Geotechnical Engineer, or their representative, prior to reinforcing steel and concrete placement. This evaluation should include visual observation to verify a level bearing surface; vertical side-walls with no protrusions, sloughing or caving; and the exposed bearing surface is free of deleterious material, loose soil and standing water. Excavation dimensions should be verified and testing performed on the exposed bearing surface to verify compliance with design recommendations. Bearing testing should be conducted in accordance with ASTM STP399 (Dynamic Cone Penetrometer). A 6-inch layer of compacted crushed stone should be installed prior to reinforcing steel and concrete placement. If subsurface water is encountered during excavation dewatering methods such as sump pumps or well points may be required.

DRILLED SHAFT FOUNDATIONS

Drilled shaft foundations (caissons) are typically installed utilizing an earth auger to reach the design depth of the foundation. Specialized roller bits or core bits can be utilized to penetrate boulders or rock. The equipment utilized should have cutting teeth to result in an excavation with little or no soil smeared or caked on the excavation sides with spiral-like corrugated walls. The drilled shaft design diameter should be maintained throughout the excavation with a plumbness tolerance of 2 percent of the length and an eccentricity tolerance of 3 inches from plan location. A removable steel casing can be installed in the shaft to prevent caving of the excavation sides due to soil relaxation. Upon completion of the drilling and casing placement, loose soils and subsurface water greater than 3 -inches in depth should be removed from the bottom of the excavation for the "dry" installation method. The drilled shaft installation should be evaluated by a Geotechnical Engineer, or their representative, to verify suitable end bearing conditions, design diameter and bottom cleanliness. The evaluation should be conducted immediately prior to as well as during concrete placement operations.

The drilled shaft should be concreted as soon as reasonably practical after excavation to reduce the deterioration of the supporting soils to prevent potential caving and water intrusion. A concrete mix design with a slump of 6 to 8 inches employed in conjunction with the design concrete compressive strength should be utilized for placement. Super plasticizer may be required to obtain the recommended slump range. During placement, the concrete may fall freely through the open area in the reinforcing steel cage provided it does not strike the reinforcing steel and/or the casing prior to reaching the bottom of the excavation. The removable steel casing should be extracted as concrete is placed. During steel casing removal a head of concrete should be maintained above the bottom of the casing to prevent soil and water intrusion into the concrete below the bottom of the casing.

If subsurface water is anticipated and/or weak soil layers are encountered drilled shafts are typically installed utilizing the "wet" method by excavating beneath a drilling mud slurry. The drilling mud slurry is added to the drilled shaft excavation after groundwater has been encountered and/or the sides of the excavation are observed to be caving or sloughing. Additional inspection by a Geotechnical Engineer, or their representative, during the "wet" method should consist of verifying maintenance of sufficient slurry head, monitoring the specific gravity, pH and sand content of the drilling slurry, and monitoring any changes in the depth of the excavation between initial approval and just prior to concreting.

Concrete placement utilizing the "wet" method is conducted through a tremie pipe at the bottom of the excavation with the drilling mud slurry level maintained at a minimum of 5 feet or one shaft diameter, whichever is greater, above the ground water elevation. The boftom of the tremie should be set one tremie pipe diameter above the excavation. A closure flap at the bottom of the tremie or a sliding plug introduced into the tremie before the concrete is recommended to reduce the potential contamination of the concrete by the drilling mud slurry. The bottom of the tremie must be maintained in the concrete during placement. Additional concrete should be placed through the tremie causing the slurry to overflow from the excavation in order to reduce the potential for the development of "slurry pockets" remaining in the drilled shaft.

[^1]
QUALIFICATIONS

The design parameters and conclusions provided in this report have been determined in accordance with generally accepted geotechnical engineering practices and are considered applicable to a rational degree of engineering certainty based on the data available at the time of report preparation and our practice in this geographic region. All recommendations and supporting calculations were prepared based on the data available at the time of report preparation and knowledge of typical geotechnical parameters in the applicable geographic region.

The subsurface conditions used in the determination of the design recommendations contained in this report are based on interpretation of subsurface data obtained at specific boring locations. Irrespective of the thoroughness of the subsurface investigation, the potential exists that conditions between borings will differ from those at the specific boring locations, that conditions are not as anticipated during the original analysis, or that the construction process has altered the soil conditions. That potential is significantly increased in locations where existing fill materials are encountered. Additionally, the nature and extent of these variations may not be evident until the commencement of construction. Therefore, a geotechnical engineer, or their representative, should observe construction practices to confirm that the site conditions do not differ from those conditions anticipated in design. If such variations are encountered, Delta Oaks Group should be contacted immediately in order to provide revisions and/or additional site exploration as necessary

Samples obtained during our subsurface field investigation will be retained by Delta Oaks Group for a period of 30 days unless otherwise instructed by $\mathrm{B}+\mathrm{T}$ Group. No warranty, expressed or implied, is presented.

Delta Oaks Group appreciates the opportunity to be of service for this Geotechnical Investigation Report. Please do not hesitate to contact Delta Oaks Group with any questions or should you require additional service on this project.

[^2]

APPENDIX

BORING PLAN

EXHIBIT H

 DIRECTIONS TO WCF SITE
Driving Directions to Proposed Tower Site

1. Beginning at the Rockcastle County Judge Executive's Office, located at 205 East Main Street, Mount Vernon, KY 40456, turn right onto East Main Street and travel approximately 623 feet.
2. Turn left onto Old US Hwy 25 and travel approximately 0.6 miles.
3. The site is located on the left. The site address is Old U.S. Hwy 25, Mt. Vernon, KY 40456.
4. The site coordinates are:
a. North 37 deg 21 min 11.74 sec
b. West 84 deg 19 min 38.27 sec

Prepared by:
Chris Shouse
Pike Legal Group
1578 Highway 44 East, Suite 6
P.O. Box 396

Shepherdsville, KY 40165-3069
Telephone: 502-955-4400 or 800-516-4293

EXHIBIT I
COPY OF REAL ESTATE AGREEMENT

OPTION AND LEASE AGREEMENT

THIS OPTION AND LEASE AGREEMENT ("Agreement"), dated as of the latter of the signature dates below (the "Effective Date"), is entered into by VADD Co., having a mailing address of P.O Box 125 Mt. Vernon, KY 40456, ("Landlord"), and Uniti Towers LLC, a Delaware limited liability company having a mailing address of 10802 Executive Center Drive, Benton Building, Suite 300, Little Rock AR 72211 ("Tenant").

BACKGROUND

Landlord owns or controls that certain plot, parcel or tract of land, as described on Exhibit 1, together with all rights and privileges arising in connection therewith, located at Old US Hwy 25, in the City/Town of Mount Vernon, County of Rockcastle, State of Kentucky (collectively, the "Property"). Landlord desires to grant to Tenant the right to use a portion of the Property in accordance with this Agreement.

The parties agree as follows:

1. OPTION TO LEASE.

(a) Landlord grants to Tenant an exclusive option (the "Option") to lease a certain portion of the Property containing approximately 10,000 square feet including the air space above such ground space, as described on attached Exhibit 1, (the "Premises"), for the placement of a Communication Facility.
(b) During the Option Term, and during the Term, Tenant and its agents, engineers, surveyors and other representatives will have the right to enter upon the Property to inspect, examine, conduct soil borings, drainage testing, material sampling, radio frequency testing and other geological or engineering tests or studies of the Property (collectively, the "Tests"), to apply for and obtain licenses, permits, approvals, or other relief required of or deemed necessary or appropriate at Tenant's sole discretion for its use of the Premises and include, without limitation, applications for zoning variances, zoning ordinances, amendments, special use permits, and construction permits (collectively, the "Government Approvals"), initiate the ordering and/or scheduling of necessary utilities, and otherwise to do those things on or off the Property that, in the opinion of Tenant, are necessary in Tenant's sole discretion to determine the physical condition of the Property, the environmental history of the Property, Landlord's title to the Property and the feasibility or suitability of the Property for Tenant's Permitted Use, all at Tenant's expense. Tenant will not be liable to Landlord or any third party on account of any pre-existing defect or condition on or with respect to the Property, whether or not such defect or condition is disclosed by Tenant's inspection. Tenant will restore the Property to its condition as it existed at the commencement of the Option Term, reasonable wear and tear and loss by casualty or other causes beyond Tenant's control excepted.
(c) In consideration of Landlord granting Tenant the Option, Tenant agrees to pay Landlord the sum of The Option may be exercised during an initial term of one (1) year commencing on the Effective Date (the "Initial Option Term") which term may be renewed by Tenant for an additional one (1) year (the "Renewal Option Term") upon written notification to Landlord and the payment of an additional no later than five (5) days prior to the expiration date of the Initial Option Term. The Initial Option Term and any Renewal Option Term are collectively referred to as the "Option Term."
(d) The Option may be sold, assigned or transferred at any time by Tenant without the written consent of Landlord. Upon notification to Landlord of such sale, assignment, or transfer, Tenant shall immediately be released from any and all liability under this Agreement, including the payment of any rental or other sums due, without any further action.
(e) During the Option Term, Tenant may exercise the Option by notifying Landlord in writing. If Tenant exercises the Option, then Landlord leases the Premises to Tenant subject to the terms and conditions of this Agreement. If Tenant does not exercise the Option during the Initial Option Term or any extension thereof, this Agreement will terminate, and the parties will have no further liability to each other.
(f) If during the Option Term, or during the Term if the Option is exercised, Landlord decides to subdivide, sell, or change the status of the zoning of the Premises, Property or any of Landlord's contiguous, adjoining or surrounding property (the "Surrounding Property,") or in the event of a threatened foreclosure, Landlord shall immediately notify Tenant in writing. Landlord agrees that during the Option Term, or during the Term if the Option is exercised, Landlord shall not initiate or consent to any change in the zoning of the Premises, Property or Surrounding Property or impose or consent to any other use or restriction that would prevent or limit Tenant from using the Premises for the Permitted Use. Any and all terms and conditions of this Agreement that by their sense and context are intended to be applicable during the Option Term shall be so applicable.
2. PERMITTED USE. Tenant may use the Premises for the transmission and reception of communications signals and the installation, construction, maintenance, operation, repair, replacement and upgrade of communications fixtures and related equipment, cables, accessories and improvements, which may include a suitable support structure ("Structure"), associated antennas, equipment shelters or cabinets and fencing and any other items necessary to the successful and secure use of the Premises (collectively, the "Communication Facility"), as well as the right to test, survey and review title on the Property; Tenant further has the right but not the obligation to add, modify and/or replace equipment in order to be in compliance with any current or future federal, state or local mandated application, including, but not limited to, emergency 911 communication services, at no additional cost to Tenant or Landlord (collectively, the "Permitted Use"). Landlord and Tenant agree that any portion of the Communication Facility that may be conceptually described on Exhibit 1 will not be deemed to limit Tenant's Permitted Use. If Exhibit 1 includes drawings of the initial installation of the Communication Facility, Landlord's execution of this Agreement will signify Landlord's approval of Exhibit 1. For a period of ninety (90) days following the start of construction, Landlord grants Tenant, its subtenants, licensees and sublicensees, the right to use such portions of the Surrounding Property as may reasonably be required during construction and installation of the Communication Facility. Tenant has the right to install and operate transmission cables from the equipment shelter or cabinet to the antennas, electric lines from the main feed to the equipment shelter or cabinet and communication lines from the Property's main entry point to the equipment shelter or cabinet, install a generator and to make other improvements, alterations, upgrades or additions appropriate for Tenant's Permitted Use including the right to construct a fence around the Premises or equipment, install warning signs to make individuals aware of risks, install protective barriers, install any other control measures reasonably required by Tenant's safety procedures or applicable law, and undertake any other appropriate means to secure the Premises or equipment at Tenant's expense. Tenant has the right to modify, supplement, replace, upgrade, expand the Communication Facility (including, for example, increasing the number of antennas or adding microwave dishes) or relocate the Communication Facility within the Premises at any time during the Term. Tenant will be allowed to make such alterations to the Property in order to ensure that the Communication Facility complies with all applicable federal, state or local laws, rules or regulations. In the event Tenant desires to modify or upgrade the Communication Facility, in a manner that requires an additional portion of the Property (the "Additional Premises") for such modification or upgrade, Landlord agrees to lease to Tenant the Additional Premises, upon the same terms and conditions set forth herein, except that the Rent shall increase, in conjunction with the lease of the Additional Premises by the amount equivalent to the then-current per square foot rental rate charged by Landlord to Tenant times the square footage of the Additional Premises. Landlord agrees to take such actions and enter into and deliver to Tenant such documents as Tenant reasonably requests in order to effect and memorialize the lease of the Additional Premises to Tenant.

3. TERM.

(a) The initial lease term will be five (5) years (the "Initial Term"), commencing on the effective date of written notification by Tenant to Landlord of Tenant's exercise of the Option (the "Term Commencement Date"). The Initial Term will terminate on the fifth ($5^{\text {th }}$) anniversary of the Term Commencement Date.
(b) This Agreement will automatically renew for seventeen (17) additional five (5) year term(s) (each additional five (5) year term shall be defined as an "Extension Term"), upon the same terms and
conditions set forth herein unless Tenant notifies Landlord in writing of Tenant's intention not to renew this Agreement at least sixty (60) days prior to the expiration of the Initial Term or then-existing Extension Term.
(c) Unless (i) Landlord or Tenant notifies the other in writing of its intention to terminate this Agreement at least six (6) months prior to the expiration of the final Extension Term, or (ii) the Agreement is terminated as otherwise permitted by this Agreement prior to the end of the final Extension Term, this Agreement shall continue in force upon the same covenants, terms and conditions for a further term of one (1) year, and for annual terms thereafter ("Annual Term") until terminated by either party by giving to the other party written notice of its intention to so terminate at leastsix (6) months mrior to the end of anysuch_Annual Term. Monthly rent during such Annual Terms shall be

If Tenant remains in possession of the Premises after the termination of this Agreement, then Tenant will be deemed to be occupying the Premises on a month-to-month basis (the "Holdover Term"), subject to the terms and conditions of this Agreement.
(d) The Initial Term, any Extension Terms, any Annual Terms and any Holdover Term are collectively referred to as the "Term".

4. RENT

(a) Commencing on the first day of the month following the date that Tenant commences construction (the "Rent Commencement Date") Tenant will nav_Landlord on or before the fifth ($\left.5^{\text {th }}\right)$ day of each calendar month in advance, (the "Rent"), at the address set forth above. In any partial month occurring after the Rent Commencement Date, Rent will be prorated. The initial Rent payment will be forwarded by Tenant to Landlord within forty-five (45) days after the Rent Commencement Date.
(b) In year two (2) of the Initial Term, and each vear thereafter including throughout any Extension Terms exercised, the monthly Rent will increase by over the Rent paid during the previous year, effective the first day of the month in which the anniversary of the Term Commencement Date occurs..
(c) All charges payable under this Agreement such as utilities and taxes shall be billed by Landlord within one (1) year from the end of the calendar year in which the charges were incurred; any charges beyond such period shall not be billed by Landlord, and shall not be payable by Tenant. The foregoing shall not apply to monthly Rent which is due and payable without a requirement that it be billed by Landlord. The provisions of this subsection shall survive the termination or expiration of this Agreement.

5. APPROVALS.

(a) Landlord agrees that Tenant's ability to use the Premises is contingent upon the suitability of the Premises and Property for the Permitted Use and Tenant's ability to obtain and maintain all Government Approvals. Landlord authorizes Tenant to prepare, execute and file all required applications to obtain Government Approvals for the Permitted Use and agrees to reasonably assist Tenant with such applications and with obtaining and maintaining the Government Approvals.
(b) Tenant has the right to obtain a title report or commitment for a leasehold title policy from a title insurance company of its choice and to have the Property surveyed by a surveyor of its choice.
(c) Tenant may also perform and obtain, at Tenant's sole cost and expense, soil borings, percolation tests, engineering procedures, environmental investigation or other tests or reports on, over, and under the Property, necessary to determine if Tenant's use of the Premises will be compatible with Tenant's engineering specifications, system, design, operations or Government Approvals.
6. TERMINATION. This Agreement may be terminated, without penalty or further liability, as follows:
(a) by either party on thirty (30) days prior written notice, if the other party remains in default under Section 15 of this Agreement after the applicable cure periods;
(b) by Tenant upon written notice to Landlord, if Tenant is unable to obtain, or maintain, any required approval(s) or the issuance of a license or permit by any agency, board, court or other governmental authority necessary for the construction or operation of the Communication Facility as now or hereafter
intended by Tenant; or if Tenant determines, in its sole discretion that the cost of or delay in obtaining or retaining the same is commercially unreasonable;
(c) by Tenant, upon written notice to Landlord, if Tenant determines, in its sole discretion, due to the title report results or survey results, that the condition of the Premises is unsatisfactory for its intended uses;
(d) by Tenant upon written notice to Landlord for any reason or no reason, at any time prior to commencement of construction by Tenant; or
(e) by Tenant upon sixty (60) days' prior written notice to Landlord for any reason or no reason, so long as Tenant pays Landlord a termination fee
provided, however, that no such termination fee will be payable on account of the termination of this Agreement by Tenant under any termination provision contained in any other Section of this Agreement, including the following: Section 5 Approvals, Section 6(a) Termination, Section 6(b) Termination, Section 6(c) Termination, Section 6(d) Termination, Section 11(d) Environmental, Section 18 Condemnation or Section 19 Casualty.
7. INSURANCE. During the Option Term and throughout the Term, Tenant will purchase and maintain in full force and effect such general liability policy as Tenant may deem necessary. Said_molicy of general. liability insurance will at a minimum provide a combined single limit of Notwithstanding the foregoing, Tenant shall have the right to self-insure such general liability coverage.

8. INTERFERENCE.

(a) Prior to or concurrent with the execution of this Agreement, Landlord has provided or will provide Tenant with a list of radio frequency user(s) and frequencies used on the Property as of the Effective Date. Tenant warrants that its use of the Premises will not interfere with those existing radio frequency uses on the Property, as long as the existing radio frequency user(s) operate and continue to operate within their respective frequencies and in accordance with all applicable laws and regulations.
(b) Landlord will not grant, after the Effective Date, a lease, license or any other right to any third party, if the exercise of such grant may in any way adversely affect or interfere with the Communication Facility, the operations of Tenant or the rights of Tenant under this Agreement. Landlord will notify Tenant in writing prior to granting any third party the right to install and operate communications equipment on the Property.
(c) Landlord will not, nor will Landlord permit its employees, tenants, licensees, invitees, agents or independent contractors to interfere in any way with the Communication Facility, the operations of Tenant or the rights of Tenant under this Agreement. Landlord will cause such interference to cease within twentyfour (24) hours after receipt of notice of interference from Tenant. In the event any such interference does not cease within the aforementioned cure period, Landlord shall cease all operations which are suspected of causing interference (except for intermittent testing to determine the cause of such interference) until the interference has been corrected.
(d) For the purposes of this Agreement, "interference" may include, but is not limited to, any use on the Property or Surrounding Property that causes electronic or physical obstruction with, or degradation of, the communications signals from the Communication Facility.

9. INDEMNIFICATION.

(a) Tenant agrees to indemnify, defend and hold Landlord harmless from and against any and all injury, loss, damage or liability, costs or expenses in connection with a third party claim (including reasonable attorneys' fees and court costs) arising directly from the installation, use, maintenance, repair or removal of the Communication Facility or Tenant's breach of any provision of this Agreement, except to the extent attributable to the negligent or intentional act or omission of Landlord, its employees, invitees, agents or independent contractors.
(b) Landlord agrees to indemnify, defend and hold Tenant harmless from and against any and all injury, loss, damage or liability, costs or expenses in connection with a third party claim (including reasonable attorneys' fees and court costs) arising directly from the actions or failure to act of Landlord, its employees,
invitees agents or independent contractors, or Landlord's breach of any provision of this Agreement, except to the extent attributable to the negligent or intentional act or omission of Tenant, its employees, agents or independent contractors.
(c) The indemnified party: (i) shall promptly provide the indemnifying party with written notice of any claim, demand, lawsuit, or the like for which it seeks indemnification pursuant to this Section and provide the indemnifying party with copies of any demands, notices, summonses, or legal papers received in connection with such claim, demand, lawsuit, or the like; (ii) shall not settle any such claim, demand, lawsuit, or the like without the prior written consent of the indemnifying party; and (iii) shall fully cooperate with the indemnifying party in the defense of the claim, demand, lawsuit, or the like. A delay in notice shall not relieve the indemnifying party of its indemnity obligation, except (1) to the extent the indemnifying party can show it was prejudiced by the delay; and (2) the indemnifying party shall not be liable for any settlement or litigation expenses incurred before the time when notice is given.

10. WARRANTIES.

(a) Each of Tenant and Landlord (to the extent not a natural person) acknowledge and represent that it is duly organized, validly existing and in good standing and has the right, power and authority or capacity, as applicable, to enter into this Agreement and bind itself hereto through the party or individual set forth as signatory for the party below.
(b) Landlord represents, warrants and agrees that: (i) Landlord solely owns the Property as a legal lot in fee simple, or controls the Property by lease or license; (ii) the Property is not and will not be encumbered by any liens, restrictions, mortgages, covenants, conditions, easements, leases, or any other agreements of record or not of record, which would adversely affect Tenant's Permitted Use and enjoyment of the Premises under this Agreement; (iii) as long as Tenant is not in default then Landlord grants to Tenant sole, actual, quiet and peaceful use, enjoyment and possession of the Premises without hindrance or ejection by any persons lawfully claiming under Landlord; (iv) Landlord's execution and performance of this Agreement will not violate any laws, ordinances, covenants or the provisions of any mortgage, lease or other agreement binding on Landlord; and (v) if the Property is or becomes encumbered by a deed to secure a debt, mortgage or other security interest, Landlord will provide promptly to Tenant a mutually agreeable subordination, nondisturbance and attornment agreement executed by Landlord and the holder of such security interest in the form attached hereto as Exhibit 10 (b).

11. ENVIRONMENTAL.

(a) Landlord represents and warrants, except as may be identified in Exhibit 11 attached to this Agreement, (i) the Property, as of the Effective Date, is free of hazardous substances, including asbestoscontaining materials and lead paint, and (ii) the Property has never been subject to any contamination or hazardous conditions resulting in any environmental investigation, inquiry or remediation. Landlord and Tenant agree that each will be responsible for compliance with any and all applicable governmental laws, rules, statutes, regulations, codes, ordinances, or principles of common law regulating or imposing standards of liability or standards of conduct with regard to protection of the environment or worker health and safety, as may now or at any time hereafter be in effect, to the extent such apply to that party's activity conducted in or on the Property.
(b) Landlord and Tenant agree to hold harmless and indemnify the other from, and to assume all duties, responsibilities and liabilities at the sole cost and expense of the indemnifying party for, payment of penalties, sanctions, forfeitures, losses, costs or damages, and for responding to any action, notice, claim, order, summons, citation, directive, litigation, investigation or proceeding ("Claims"), to the extent arising from that party's breach of its obligations or representations under Section 11 (a). Landlord agrees to hold harmless and indemnify Tenant from, and to assume all duties, responsibilities and liabilities at the sole cost and expense of Landlord for, payment of penalties, sanctions, forfeitures, losses, costs or damages, and for responding to any Claims, to the extent arising from subsurface or other contamination of the Property with hazardous substances prior to the Effective Date or from such contamination caused by the acts or omissions of Landlord during the Term. Tenant agrees to hold harmless and indemnify Landlord from, and to assume all duties, responsibilities and liabilities at the sole cost and expense of Tenant for, payment of penalties, sanctions, forfeitures, losses,
costs or damages, and for responding to any Claims, to the extent arising from hazardous substances brought onto the Property by Tenant.
(c) The indemnification provisions contained in this Section 11 specifically include reasonable costs, expenses and fees incurred in connection with any investigation of Property conditions or any clean-up, remediation, removal or restoration work required by any governmental authority. The provisions of this Section 11 will survive the expiration or termination of this Agreement.
(d) In the event Tenant becomes aware of any hazardous materials on the Property, or any environmental, health or safety condition or matter relating to the Property, that, in Tenant's sole determination, renders the condition of the Premises or Property unsuitable for Tenant's use, or if Tenant believes that the leasing or continued leasing of the Premises would expose Tenant to undue risks of liability to a government agency or other third party, Tenant will have the right, in addition to any other rights it may have at law or in equity, to terminate this Agreement upon written notice to Landlord.
12. ACCESS. At all times throughout the Term of this Agreement, and at no additional charge to Tenant, Tenant and its employees, agents, and subcontractors, will have twenty-four (24) hour per day, seven (7) day per week pedestrian and vehicular access ("Access") to and over the Property, from an open and improved public road to the Premises, for the installation, maintenance and operation of the Communication Facility and any utilities serving the Premises. As may be described more fully in Exhibit 1, Landlord grants to Tenant an easement for such Access and Landlord agrees to provide to Tenant such codes, keys and other instruments necessary for such Access at no additional cost to Tenant. Upon Tenant's request, Landlord will execute a separate recordable easement evidencing this right. Landlord shall execute a letter granting Tenant Access to the Property substantially in the form attached as Exhibit 12; upon Tenant's request, Landlord shall execute additional letters during the Term. Landlord acknowledges that in the event Tenant cannot obtain Access to the Premises, Tenant shall incur significant damage. If Landlord fails to provide the Access granted by this Section 12, such failure shall be a default under this Agreement. In connection with such default, in addition to any other rights or remedies available to Tenant under this_Agreement or at law or equity, Landlord shall pay Tenant, as liquidated damages and not as a penalty, per day in consideration of Tenant's damages until Landlord cures such default. Landlord and Tenant agree that Tenant's damages in the event of a denial of Access are difficult, if not impossible, to ascertain, and the liquidated damages set forth above are a reasonable approximation of such damages.
13. REMOVAL/RESTORATION. All portions of the Communication Facility brought onto the Property by Tenant will be and remain Tenant's personal property and, at Tenant's option, may be removed by Tenant at any time during or after the Term. Landlord covenants and agrees that no part of the Communication Facility constructed, erected or placed on the Premises by Tenant will become, or be considered as being affixed to or a part of, the Property, it being the specific intention of Landlord that all improvements of every kind and nature constructed, erected or placed by Tenant on the Premises will be and remain the property of Tenant and may be removed by Tenant at any time during or after the Term. Tenant will repair any damage to the Property resulting from Tenant's removal activities. Any portions of the Communication Facility that Tenant does not remove within one hundred twenty (120) days after the later of the end of the Term and cessation of Tenant's operations at the Premises shall be deemed abandoned and owned by Landlord. Notwithstanding the foregoing, Tenant will not be responsible for the replacement of any trees, shrubs or other vegetation.

14. MAINTENANCE/UTILITIES.

(a) Tenant will keep and maintain the Premises in good condition, reasonable wear and tear and damage from the elements excepted. Landlord will maintain and repair the Property and access thereto and all areas of the Premises where Tenant does not have exclusive control, in good and tenantable condition, subject to reasonable wear and tear and damage from the elements. Landlord will be responsible for maintenance of landscaping on the Property, including any landscaping installed by Tenant as a condition of this Agreement or any required permit.
(b) Tenant will be responsible for paying on a monthly or quarterly basis all utilities charges for electricity, telephone service or any other utility used or consumed by Tenant on the Premises. In the event Tenant cannot secure its own metered electrical supply, Tenant will have the right, at its own cost and expense, to sub-meter from Landlord. When sub-metering is required under this Agreement, Landlord will read the meter and provide Tenant with an invoice and usage data on a monthly basis. Tenant shall reimburse Landlord for such utility usage at the same rate charged to Landlord by the utility service provider. Landlord further agrees to provide the usage data and invoice on forms provided by Tenant and to send such forms to such address and/or agent designated by Tenant. Tenant will remit payment within sixty (60) days of receipt of the usage data and required forms. Landlord shall maintain accurate and detailed records of all utility expenses, invoices and payments applicable to Tenant's reimbursement obligations hereunder. Within fifteen (15) days after a request from Tenant, Landlord shall provide copies of such utility billing records to the Tenant in the form of copies of invoices, contracts and cancelled checks. If the utility billing records reflect an overpayment by Tenant, Tenant shall have the right to deduct the amount of such overpayment from any monies due to Landlord from Tenant.
(c) As noted in Section 4(c) above, any utility fee recovery by Landlord is limited to a twelve (12) month period. If Tenant submeters electricity from Landlord, Landlord agrees to give Tenant at least twentyfour (24) hours advance notice of any planned interruptions of said electricity. Landlord acknowledges that Tenant provides a communication service which requires electrical power to operate and must operate twentyfour (24) hours per day, seven (7) days per week. If the interruption is for an extended period of time, in Tenant's reasonable determination, Landlord agrees to allow Tenant the right to bring in a temporary source of power for the duration of the interruption. Landlord will not be responsible for interference with, interruption of or failure, beyond the reasonable control of Landlord, of such services to be furnished or supplied by Landlord.
(d) Tenant will have the right to install utilities, at Tenant's expense, and to improve present utilities on the Property and the Premises. Landlord hereby grants to any service company providing utility or similar services, including electric power and telecommunications, to Tenant an easement over the Property, from an open and improved public road to the Premises, and upon the Premises, for the purpose of constructing, operating and maintaining such lines, wires, circuits, and conduits, associated equipment cabinets and such appurtenances thereto, as such service companies may from time to time require in order to provide such services to the Premises. Upon Tenant's or service company's request, Landlord will execute a separate recordable easement evidencing this grant, at no cost to Tenant or the service company.

15. DEFAULT AND RIGHT TO CURE.

(a) The following will be deemed a default by Tenant and a breach of this Agreement: (i) nonpayment of Rent if such Rent remains unpaid for more than thirty (30) days after written notice from Landlord of such failure to pay; or (ii) Tenant's failure to perform any other term or condition under this Agreement within forty-five (45) days after written notice from Landlord specifying the failure. No such failure, however, will be deemed to exist if Tenant has commenced to cure such default within such period and provided that such efforts are prosecuted to completion with reasonable diligence. Delay in curing a default will be excused if due to causes beyond the reasonable control of Tenant. If Tenant remains in default beyond any applicable cure period, Landlord will have the right to exercise any and all rights and remedies available to it under law and equity.
(b) The following will be deemed a default by Landlord and a breach of this Agreement: (i) Landlord's failure to provide Access to the Premises as required by Section 12 within twenty-four (24) hours after written notice of such failure; (ii) Landlord's failure to cure an interference problem as required by Section 8 within twenty-four (24) hours after written notice of such failure; or (iii) Landlord's failure to perform any term, condition or breach of any warranty or covenant under this Agreement within forty-five (45) days after written notice from Tenant specifying the failure. No such failure, however, will be deemed to exist if Landlord has commenced to cure the default within such period and provided such efforts are prosecuted to completion with reasonable diligence. Delay in curing a default will be excused if due to causes beyond the reasonable control of Landlord. If Landlord remains in default beyond any applicable cure period, Tenant will
have: (i) the right to cure Landlord's default and to deduct the costs of such cure from any monies due to Landlord from Tenant, and (ii) any and all other rights available to it under law and equity.
16. ASSIGNMENT/SUBLEASE. Tenant will have the right to assign this Agreement or sublease the Premises and its rights herein, in whole or in part, without Landlord's consent. Upon notification to Landlord of such assignment, Tenant will be relieved of all future performance, liabilities and obligations under this Agreement to the extent of such assignment.
17. NOTICES. All notices, requests and demands hereunder will be given by first class certified or registered mail, return receipt requested, or by a nationally recognized overnight courier, postage prepaid, to be effective when properly sent and received, refused or returned undelivered. Notices will be addressed to the parties as follows:

If to Tenant: Uniti Towers LLC
Attn: Real Estate
10801 Executive Center Drive
Shannon Building, Suite 100
Little Rock AR 72211
501.458.4724
\(\begin{array}{ll}CC: \& Uniti Towers LLC
\& ATTN: Keith Harvey, Deputy General Counsel\end{array}\)
10802 Executive Center Drive
Benton Building, Suite 300
Little Rock AR 72211
For Emergencies: NOC 1-844-398-9716
If to Landlord: VADD Co.
C/O Jerry Cox
P.O Box 125
Mt. Vernon, KY 40456
Telephone: (606) 256-5111

Either party hereto may change the place for the giving of notice to it by thirty (30) days' prior written notice to the other party as provided herein.
18. CONDEMNATION. In the event Landlord receives notification of any condemnation proceedings affecting the Property, Landlord will provide notice of the proceeding to Tenant within twenty-four (24) hours. If a condemning authority takes all of the Property, or a portion sufficient, in Tenant's sole determination, to render the Premises unsuitable for Tenant, this Agreement will terminate as of the date the title vests in the condemning authority. The parties will each be entitled to pursue their own separate awards in the condemnation proceeds, which for Tenant will include, where applicable, the value of its Communication Facility, moving expenses, prepaid Rent, and business dislocation expenses. Tenant will be entitled to reimbursement for any prepaid Rent on a pro rata basis.
19. CASUALTY. Landlord will provide notice to Tenant of any casualty or other harm affecting the Property within twenty-four (24) hours of the casualty or other harm. If any part of the Communication Facility or Property is damaged by casualty or other harm as to render the Premises unsuitable, in Tenant's sole determination, then Tenant may terminate this Agreement by providing written notice to Landlord, which termination will be effective as of the date of such casualty or other harm. Upon such termination, Tenant will
be entitled to collect all insurance proceeds payable to Tenant on account thereof and to be reimbursed for any prepaid Rent on a pro rata basis. Landlord agrees to permit Tenant to place temporary transmission and reception facilities on the Property, but only until such time as Tenant is able to activate a replacement transmission facility at another location; notwithstanding the termination of this Agreement, such temporary facilities will be governed by all of the terms and conditions of this Agreement, including Rent. If Landlord or Tenant undertakes to rebuild or restore the Premises and/or the Communication Facility, as applicable, Landlord agrees to permit Tenant to place temporary transmission and reception facilities on the Property at no additional Rent until the reconstruction of the Premises and/or the Communication Facility is completed. If Landlord determines not to rebuild or restore the Property, Landlord will notify Tenant of such determination within thirty (30) days after the casualty or other harm. If Landlord does not so notify Tenant and Tenant decides not to terminate under this Section, then Landlord will promptly rebuild or restore any portion of the Property interfering with or required for Tenant's Permitted Use of the Premises to substantially the same condition as existed before the casualty or other harm. Landlord agrees that the Rent shall be abated until the Property and/or the Premises are rebuilt or restored, unless Tenant places temporary transmission and reception facilities on the Property.
20. WAIVER OF LANDLORD'S LIENS. Landlord waives any and all lien rights it may have, statutory or otherwise, concerning the Communication Facility or any portion thereof. The Communication Facility shall be deemed personal property for purposes of this Agreement, regardless of whether any portion is deemed real or personal property under applicable law; Landlord consents to Tenant's right to remove all or any portion of the Communication Facility from time to time in Tenant's sole discretion and without Landlord's consent.
21. TAXES. (a) Landlord shall be responsible for (i) all taxes and assessments levied upon the lands, improvements and other property of Landlord including any such taxes that may be calculated by a taxing authority using any method, including the income method (ii) all sales, use, license, value added, documentary, stamp, gross receipts, registration, real estate transfer, conveyance, excise, recording, and other similar taxes and fees imposed in connection with this Agreement and (iii) all sales, use, license, value added, documentary, stamp, gross receipts, registration, real estate transfer, conveyance, excise, recording, and other similar taxes and fees imposed in connection with a sale of the Property or assignment of Rent payments by Landlord. Tenant shall be responsible for (y) any taxes and assessments attributable to and levied upon Tenant's leasehold improvements on the Premises if and as set forth in this Section 21 and (z) all sales, use, license, value added, documentary, stamp, gross receipts, registration, real estate transfer, conveyance, excise, recording, and other similar taxes and fees imposed in connection with an assignment of this Agreement or sublease by Tenant. Nothing herein shall require Tenant to pay any inheritance, franchise, income, payroll, excise, privilege, rent, capital stock, stamp, documentary, estate or profit tax, or any tax of similar nature, that is or may be imposed upon Landlord.
(b) In the event Landlord receives a notice of assessment with respect to which taxes or assessments are imposed on Tenant's leasehold improvements on the Premises, Landlord shall provide Tenant with copies of each such notice immediately upon receipt, but in no event later than thirty (30) days after the date of such notice of assessment. If Landlord does not provide such notice or notices to Tenant in a timely manner and Tenant's rights with respect to such taxes are prejudiced by the delay, Landlord shall reimburse Tenant for any increased costs directly resulting from the delay and Landlord shall be responsible for payment of the tax or assessment set forth in the notice, and Landlord shall not have the right to reimbursement of such amount from Tenant. If Landlord provides a notice of assessment to Tenant within such time period and requests reimbursement from Tenant as set forth below, then Tenant shall reimburse Landlord for the tax or assessments identified on the notice of assessment on Tenant's leasehold improvements, which has been paid by Landlord. If Landlord seeks reimbursement from Tenant, Landlord shall, no later than thirty (30) days after Landlord's payment of the taxes or assessments for the assessed tax year, provide Tenant with written notice including evidence that Landlord has timely paid same, and Landlord shall provide to Tenant any other documentation reasonably requested by Tenant to allow Tenant to evaluate the payment and to reimburse Landlord.
(c) For any tax amount for which Tenant is responsible under this Agreement, Tenant shall have the right to contest, in good faith, the validity or the amount thereof using such administrative, appellate or other
proceedings as may be appropriate in the jurisdiction, and may defer payment of such obligations, pay same under protest, or take such other steps as permitted by law. This right shall include the ability to institute any legal, regulatory or informal action in the name of Landlord, Tenant, or both, with respect to the valuation of the Premises. Landlord shall cooperate with respect to the commencement and prosecution of any such proceedings and will execute any documents required therefor. The expense of any such proceedings shall be borne by Tenant and any refunds or rebates secured as a result of Tenant's action shall belong to Tenant, to the extent the amounts were originally paid by Tenant. In the event Tenant notifies Landlord by the due date for assessment of Tenant's intent to contest the assessment, Landlord shall not pay the assessment pending conclusion of the contest, unless required by applicable law.
(d) Landlord shall not split or cause the tax parcel on which the Premises are located to be split, bifurcated, separated or divided without the prior written consent of Tenant.
(e) Tenant shall have the right but not the obligation to pay any taxes due by Landlord hereunder if Landlord fails to timely do so, in addition to any other rights or remedies of Tenant. In the event that Tenant exercises its rights under this Section 21(e) due to such Landlord default, Tenant shall have the right to deduct such tax amounts paid from any monies due to Landlord from Tenant as provided in Section 15(b), provided that Tenant may exercise such right without having provided to Landlord notice and the opportunity to cure per Section 15(b).
(f) Any tax-related notices shall be sent to Tenant in the manner set forth in Section 17. Promptly after the Effective Date of this Agreement, Landlord shall provide the Notice address set forth in Section 17 to the taxing authority for the authority's use in the event the authority needs to communicate with Tenant. In the event that Tenant's tax address changes by notice to Landlord, Landlord shall be required to provide Tenant's new tax address to the taxing authority or authorities.
(g) Notwithstanding anything to the contrary contained in this Section 21, Tenant shall have no obligation to reimburse any tax or assessment for which the Landlord is reimbursed or rebated by a third party.

22. SALE OF PROPERTY.

(a) Landlord may sell the Property or a portion thereof to a third party, provided: (i) the sale is made subject to the terms of this Agreement; and (ii) if the sale does not include the assignment of Landlord's full interest in this Agreement, the purchaser must agree to perform, without requiring compensation from Tenant or any subtenant, any obligation of Landlord under this Agreement, including Landlord's obligation to cooperate with Tenant as provided hereunder.
(b) If Landlord, at any time during the Term of this Agreement, decides to rezone or sell, subdivide or otherwise transfer all or any part of the Premises, or all or any part of the Property or Surrounding Property, to a purchaser other than Tenant, Landlord shall promptly notify Tenant in writing, and such rezoning, sale, subdivision or transfer shall be subject to this Agreement and Tenant's rights hereunder. In the event of a change in ownership, transfer or sale of the Property, within ten (10) days of such transfer, Landlord or its successor shall send the documents listed below in this Section 22(b) to Tenant. Until Tenant receives all such documents, Tenant's failure to make payments under this Agreement shall not be an event of default and Tenant reserves the right to hold payments due under this Agreement.

i.	Old deed to Property
ii.	New deed to Property
iii.	Bill of Sale or Transfer
iv.	Copy of current Tax Bill
v.	New IRS Form W-9
vi.	Completed and Signed Tenant Payment Direction Form
vii.	Full contact information for new Landlord including phone number(s)

(c) Landlord agrees not to sell, lease or use any areas of the Property or Surrounding Property for the installation, operation or maintenance of other wireless communication facilities if such installation, operation or maintenance would interfere with Tenant's Permitted Use or communications equipment as determined by radio propagation tests performed by Tenant in its sole discretion. Landlord or Landlord's
prospective purchaser shall reimburse Tenant for any costs and expenses of such testing. If the radio frequency propagation tests demonstrate levels of interference unacceptable to Tenant, Landlord shall be prohibited from selling, leasing or using any areas of the Property or the Surrounding Property for purposes of any installation, operation or maintenance of any other wireless communication facility or equipment.
(d) The provisions of this Section shall in no way limit or impair the obligations of Landlord under this Agreement, including interference and access obligations.
23. RIGHT OF FIRST REFUSAL. Notwithstanding the provisions contained in Section 22, if at any time after the Effective Date, Landlord receives a bona fide written offer from a third party seeking any sale, conveyance, assignment or transfer, whether in whole or in part, of any property interest in or related to the Premises, including without limitation any offer seeking an assignment or transfer of the Rent payments associated with this Agreement or an offer to purchase an easement with respect to the Premises ("Offer"), Landlord shall immediately furnish Tenant with a copy of the Offer. Tenant shall have the right within ninety (90) days after it receives such copy to match the financial terms of the Offer and agree in writing to match such terms of the Offer. Such writing shall be in the form of a contract substantially similar to the Offer, but Tenant may assign its rights to a third party. If Tenant chooses not to exercise this right or fails to provide written notice to Landlord within the ninety (90) day period, Landlord may sell, convey, assign or transfer such property interest in or related to the Premises pursuant to the Offer, subject to the terms of this Agreement. If Landlord attempts to sell, convey, assign or transfer such property interest in or related to the Premises without complying with this Section 23, the sale, conveyance, assignment or transfer shall be void. Tenant shall not be responsible for any failure to make payments under this Agreement and reserves the right to hold payments due under this Agreement until Landlord complies with this Section 23. Tenant's failure to exercise the right of first refusal shall not be deemed a waiver of the rights contained in this Section 23 with respect to any future proposed conveyances as described herein.

24. MISCELLANEOUS.

(a) Amendment/Waiver. This Agreement cannot be amended, modified or revised unless done in writing and signed by Landlord and Tenant. No provision may be waived except in a writing signed by both parties. The failure by a party to enforce any provision of this Agreement or to require performance by the other party will not be construed to be a waiver, or in any way affect the right of either party to enforce such provision thereafter.
(b) Memorandum. Contemporaneously with the execution of this Agreement, the parties will execute a recordable Memorandum of Lease substantially in the form attached as Exhibit 24b. Either party may record this Memorandum of Lease at any time during the Term, in its absolute discretion. Thereafter during the Term, either party will, at any time upon fifteen (15) business days' prior written notice from the other, execute, acknowledge and deliver to the other a recordable Memorandum of Lease.
(c) Limitation of Liability. Except for the indemnity obligations set forth in this Agreement, and otherwise notwithstanding anything to the contrary in this Agreement, Tenant and Landlord each waives any claims that each may have against the other with respect to consequential, incidental or special damages, however caused, based on any theory of liability.
(d) Compliance with Law. Tenant agrees to comply with all federal, state and local laws, orders, rules and regulations ("Laws") applicable to Tenant's use of the Communication Facility on the Property. Landlord agrees to comply with all Laws relating to Landlord's ownership and use of the Property and any improvements on the Property.
(e) Bind and Benefit. The terms and conditions contained in this Agreement will run with the Property and bind and inure to the benefit of the parties, their respective heirs, executors, administrators, successors and assigns.
(f) Entire Agreement. This Agreement and the exhibits attached hereto, all being a part hereof, constitute the entire agreement of the parties hereto and will supersede all prior offers, negotiations and agreements with respect to the subject matter of this Agreement. Exhibits are numbered to correspond to the Section wherein they are first referenced. Except as otherwise stated in this Agreement, each party shall bear its own fees and expenses (including the fees and expenses of its agents, brokers, representatives, attorneys,
and accountants) incurred in connection with the negotiation, drafting, execution and performance of this Agreement and the transactions it contemplates.
(g) Governing Law. This Agreement will be governed by the laws of the state in which the Premises are located, without regard to conflicts of law.
(h) Interpretation. Unless otherwise specified, the following rules of construction and interpretation apply: (i) captions are for convenience and reference only and in no way define or limit the construction of the terms and conditions hereof; (ii) use of the term "including" will be interpreted to mean "including but not limited to"; (iii) whenever a party's consent is required under this Agreement, except as otherwise stated in the Agreement or as same may be duplicative, such consent will not be unreasonably withheld, conditioned or delayed; (iv) exhibits are an integral part of this Agreement and are incorporated by reference into this Agreement; (v) use of the terms "termination" or "expiration" are interchangeable; (vi) reference to a default will take into consideration any applicable notice, grace and cure periods; (vii) to the extent there is any issue with respect to any alleged, perceived or actual ambiguity in this Agreement, the ambiguity shall not be resolved on the basis of who drafted the Agreement; (viii) the singular use of words includes the plural where appropriate and (ix) if any provision of this Agreement is held invalid, illegal or unenforceable, the remaining provisions of this Agreement shall remain in full force if the overall purpose of the Agreement is not rendered impossible and the original purpose, intent or consideration is not materially impaired.
(i) Affiliates. All references to "Tenant" shall be deemed to include any Affiliate of Uniti Towers LLC using the Premises for any Permitted Use or otherwise exercising the rights of Tenant pursuant to this Agreement. "Affiliate" means with respect to a party to this Agreement, any person or entity that (directly or indirectly) controls, is controlled by, or under common control with, that party. "Control" of a person or entity means the power (directly or indirectly) to direct the management or policies of that person or entity, whether through the ownership of voting securities, by contract, by agency or otherwise.
(j) Survival. Any provisions of this Agreement relating to indemnification shall survive the termination or expiration hereof. In addition, any terms and conditions contained in this Agreement that by their sense and context are intended to survive the termination or expiration of this Agreement shall so survive.
(k) W-9. As a condition precedent to payment, Landlord agrees to provide Tenant with a completed IRS Form W-9, or its equivalent, upon execution of this Agreement and at such other times as may be reasonably requested by Tenant, including any change in Landlord's name or address.
(1) Execution/No Option. The submission of this Agreement to any party for examination or consideration does not constitute an offer, reservation of or option for the Premises based on the terms set forth herein. This Agreement will become effective as a binding Agreement only upon the handwritten legal execution, acknowledgment and delivery hereof by Landlord and Tenant. This Agreement may be executed in two (2) or more counterparts, all of which shall be considered one and the same agreement and shall become effective when one or more counterparts have been signed by each of the parties. All parties need not sign the same counterpart.
(m) Attorneys' Fees. In the event that any dispute between the parties related to this Agreement should result in litigation, the prevailing party in such litigation shall be entitled to recover from the other party all reasonable fees and expenses of enforcing any right of the prevailing party, including reasonable attorneys' fees and expenses. Prevailing party means the party determined by the court to have most nearly prevailed even if such party did not prevail in all matters. This provision will not be construed to entitle any party other than Landlord, Tenant and their respective Affiliates to recover their fees and expenses.
(n) WAIVER OF JURY TRIAL. EACH PARTY, TO THE EXTENT PERMITTED BY LAW, KNOWINGLY, VOLUNTARILY AND INTENTIONALLY WAIVES ITS RIGHT TO A TRIAL BY JURY IN ANY ACTION OR PROCEEDING UNDER ANY THEORY OF LIABILITY ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS AGREEMENT OR THE TRANSACTIONS IT CONTEMPLATES.
(o) Incidental Fees. Unless specified in this Agreement, no unilateral fees or additional costs or expenses are to be applied by either party to the other party, including review of plans, structural analyses, consents, provision of documents or other communications between the parties.
(p) Further Acts. Upon request, Landlord will cause to be promptly and duly taken, executed, acknowledged and delivered all such further acts, documents, and assurances as Tenant may request from time
to time in order to effectuate, carry out and perform all of the terms, provisions and conditions of this Agreement and all transactions and permitted use contemplated by this Agreement.
(q) Force Majeure. No party shall be liable or responsible to the other party, nor be deemed to have defaulted under or breached this Agreement, for any failure or delay in fulfilling or performing any term of this Agreement, when and to the extent such failure or delay is caused by or results from acts beyond the affected party's reasonable control, including, without limitation: (a) acts of God; (b) flood, fire, earthquake, or explosion; (c) war, invasion, hostilities (whether war is declared or not), terrorist threats or acts, riot, or other civil unrest; (d) government order or law; (e) embargoes, or blockades in effect on or after the date of this Agreement; (f) action by any governmental authority; (g) national or regional emergency; and (h) strikes, labor stoppages or slowdowns, or other industrial disturbances. The party suffering a force majeure event shall give written notice to the other party, stating the period of time the occurrence is expected to continue and shall use diligent efforts to end the failure or delay and ensure the effects of such force majeure event are minimized.
[SIGNATURES APPEAR ON NEXT PAGE]

IN WITNESS WHEREOF, the parties have caused this Agreement to be effective as of the last date written below.
"LANDLORD"
VADD Co.

"TENANT"

Uniti Towers LLC

[ACKNOWLEDGMENTS APPEAR ON NEXT PAGE]
 as such was authorized to execute this instrument on behalf of the Tenant.

CORPORATE ACKNOWLEDGMENT

STATE OF Kentucky
COUNTY OF Rockcatle

I CERTIFY that on April 2,2020, Jerry J Cox [name of representative] personally came before me and acknowledged under oath that he or she:
(a) is the Sole Officer and Director [title] of VADD Co. [name of corporation], the corporation named in the attached instrument,
(b) was authorized to execute this instrument on behalf of the corporation and
(c) executed the instrument as the act of the corporation.

EXHIBIT 1

DESCRIPTION OF PREMISES

Page 1 of 4

to the Option and Lease Agreement dated April 24,20 Z by and between VADD Co., as Landlord, and Uniti Towers LLC, a Delaware limited liability company, as Tenant.

The Property is legally described as follows:
Property located in Rockcastle County, Kentucky
The following described real property located in Rockcastle County, Kentucky, to wit:
Beginning on an iron pin in the North right-of-way line of Old U.S. Highway 25, corner to Shephard; thence with Shephard N 07 degrees $00^{\prime} 00^{\prime \prime}$ W 156 feet to a point, corner to Shephard and Cox; thence with Cox S 83 degrees $04^{\prime} 24^{\prime \prime} \mathrm{W}, 229.88$ feet to a point corner to Cox; thence with Cox the following calls along an existing roadway; S 02 degrees $00^{\prime} 00^{\prime \prime} \mathrm{W}, 266.00$ feet and S 08 degrees $30^{\prime} 00^{\prime \prime} \mathrm{W}, 140.00$ feet to a point in the right-of-way of Old U.S. Highway 25 ; thence with said Highway N 45 degrees $00^{\prime} 00^{\prime \prime} \mathrm{E}, 392$ feet to the point of beginning and containing $11 / 2$ acres, more or less.
AND BEING the same property conveyed to VADD Co. from Ashland Lodge 640 F\&AM by Deed of Conveyance dated November 27, 2001 and recorded November 27, 2001 in Deed Book 187, Page 303.
Tax Parcel No. 046-00-001.05

The Premises are described and/or depicted as follows:

LEASE AREA

All that tract or parcel of land lying and being in Rockcastle County, Kentucky, and being a part of the lands of Vadd Co. as recorded in Deed Book 187, Page 303, Rockcastle County records, and being more particularly described as follows:

To find the point of beginning, COMMENCE at a point on the northerly right-of-way line of Old U.S. Highway 25, said point having a Kentucky Grid North, NAD 83, Single Zone Value of N: 3655172.8593 E: 5334701.6398 and from whence a $1 / 2$-inch open top pipe found on the southerly right-of-way line of Old U.S. Highway 25 bears, South $30^{\circ} 34^{\prime} 56^{\prime \prime}$ East, 123.31 feet; thence leaving said right-of-way line and running, North $08^{\circ} 31^{\prime} 07^{\prime \prime}$ East, 138.48 feet to a point on the Lease Area, said point having a Kentucky Grid North, NAD 83, Single Zone Value of N: 3655309.8072 E: 5334722.1521 ; thence running along said Lease Area line, North $90^{\circ} 00^{\prime} 00^{\prime \prime}$ West, 15.17 feet to a point and the true POINT OF BEGINNING; Thence, North $00^{\circ} 00^{\prime} 00^{\prime \prime}$ East, 100.00 feet to a point; Thence, North $90^{\circ} 00^{\prime} 00^{\prime \prime}$ East, 100.00 feet to a point; Thence, South $00^{\circ} 00^{\prime} 00^{\prime \prime}$ West, 100.00 feet to a point; Thence, North $90^{\circ} 00^{\prime} 00^{\prime \prime}$ West, 100.00 feet to a point and the POINT OF BEGINNING.

Bearings based on Kentucky Grid North, NAD 83, Single Zone.
Said tract contains 0.2296 acres (10,000 square feet), more or less, as shown in a survey prepared for Uniti Towers, LLC by POINT TO POINT LAND SURVEYORS, INC. dated February 6, 2020.

30' INGRESS-EGRESS \& UTILITY EASEMENT

Together with a 30 -foot wide (15 feet each side of centerline) Ingress-Egress \& Utility Easement lying and being in Rockcastle County, Kentucky, and being a part of the lands of Vadd Co. as recorded in Deed Book 187, Page 303, Rockcastle County records, and being described by the following centerline data:

BEGINNING at a point on the northerly right-of-way line of Old U.S. Highway 25 , said point having a Kentucky Grid North, NAD 83, Single Zone Value of N: 3655172.8593 E: 5334701.6398 and from whence a $1 / 2$-inch open top pipe found on the southerly right-of-way line of Old U.S. Highway 25 bears, South $30^{\circ} 34^{\prime} 56^{\prime \prime}$ East, 123.31 feet; Thence leaving said right-of-way line and running, North $08^{\circ} 31^{\prime} 07^{\prime \prime}$ East, 138.48 feet to the ENDING at a point on the Lease Area, said point having a Kentucky Grid North, NAD 83, Single Zone Value of N: 3655309.8072 E: 5334722.1521.

Bearings based on Kentucky Grid North, NAD 83, Single Zone.
As shown in a survey prepared for Uniti Towers, LLC by POINT TO POINT LAND SURVEYORS, INC. dated February 6, 2020.

Notes:

1. THIS EXHIBIT MAY BE REPLACED BY A LAND SURVEY AND/OR CONSTRUCTION DRAWINGS OF THE PREMISES ONCE RECEIVED BY TENANT.
2. ANY SETBACK OF THE PREMISES FROM THE PROPERTY'S BOUNDARIES SHALL BE THE DISTANCE REQUIRED BY THE APPLICABLE GOVERNMENT AUTHORITIES.
3. WIDTH OF ACCESS ROAD SHALL BE THE WIDTH REQUIRED BY THE APPLICABLE GOVERNMENT AUTHORITIES, INCLUDING POLICE AND FIRE DEPARTMENTS.
4. THE TYPE, NUMBER AND MOUNTING POSITIONS AND LOCATIONS OF ANTENNAS AND TRANSMISSION LINES ARE ILLUSTRATIVE ONLY. ACTUAL TYPES, NUMBERS AND MOUNTING POSITIONS MAY VARY FROM WHAT IS SHOWN ABOVE.

EXHIBIT 12

STANDARD ACCESS LETTER
[FOLLOWS ON NEXT PAGE]

VADD Co.
 C/O Jerry J Cox
 P.O Box $1350 / 25$
 Mt. Vernon, KY 40456
 Telephone: (600) 256-5111

March 27, 2020
Re: Authorized Access granted to UNITI Towers LLC
Dear Building and Security Staff,
Please be advised that we have signed a lease with UNITI Towers LLC permitting UNITI Towers LLC to install, operate and maintain telecommunications equipment at the property. The terms of the lease grant UNITI Towers LLC and its representatives, employees, agents and subcontractors ("representatives") 24 hour per day, 7 day per week access to the leased area.

To avoid impact on telephone service during the day, UNITI Towers LLC representatives may be seeking access to the property outside of normal business hours. UNITI Towers LLC representatives have been instructed to keep noise levels at a minimum during their visit.

Please grant the bearer of a copy of this letter access to the property and to leased area. Thank you for your assistance.

EXHIBIT J NOTIFICATION LISTING

McGuire Relo / Mt. Vernon - Notice List

VADD COMPANY
PO BOX 1350
MT VERNON, KY 40456
COX RAE L TRUST
C/O JERRY COX
PO BOX 1350
MT VERNON, KY 40456
SHEPHERD MALCOLM
187 OLD DIXIE HWY
MT VERNON, KY 40456
HOWARD WALTER M \& VANESSA
262 OLD DIXIE HIGHWAY
MT VERNON, KY 40456
SHEPHERD MALCOM J
187 OLD DIXIE HIGHWAY
MT VERNON, KY 40456
GRAVES DALLAS
220 OLD DIXIE HWYMT VERNON, KY 40456
SHEPHERD MATTHEW \& BEULAH
528 GENERAL CRUFT RD
RICHMOND, KY 40475
STOKES J J -HEIRS-
C/O EDITH STOKES
509 DRYFORK RD
ORLANDO, KY 40460
MINK PERRY T \& AMY
665 CARTER RIDGE RD
MT VERNON, KY 40456
NEWTON RAYMOND MRS
C/O MARGARET SMITH
362 OLD DIXIE HIGHWAY
MT VERNON, KY 40456

EXHIBIT K

COPY OF PROPERTY OWNER NOTIFICATION

1578 Highway 44 East, Suite 6
P.O. Box 369

Shepherdsville, KY 40165-0369
Phone (502) 955-4400 or (800) 516-4293
Fax (502) 543-4410 or (800) 541-4410

Notice of Proposed Construction of Wireless Communications Facility Site Name: McGuire Relo / Mt. Vernon

Dear Landowner:
New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT\&T Mobility and Uniti Towers LLC, a Delaware limited liability company have filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at Old U.S. Hwy 25, Mt. Vernon, KY 40456 ($37^{\circ} 21^{\prime} 11.74^{\prime \prime}$ North latitude, $84^{\circ} 19^{\prime} 38.27^{\prime \prime}$ West longitude). The proposed facility will include a 330 -foot tall tower, with an approximately 12 -foot tall lightning arrestor attached at the top, for a total height of 342feet, plus related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

This notice is being sent to you because the County Property Valuation Administrator's records indicate that you may own property that is within a 500' radius of the proposed tower site or contiguous to the property on which the tower is to be constructed. You have a right to submit testimony to the Kentucky Public Service Commission ("PSC"), either in writing or to request intervention in the PSC's proceedings on the application. You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00365 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. AT\&T Mobility's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us toll free at (800) 516-4293 if you have any comments or questions about this proposal.

Sincerely,
David A. Pike
Attorney for Applicants
enclosures

Driving Directions to Proposed Tower Site

1. Beginning at the Rockcastle County Judge Executive's Office, located at 205

East Main Street, Mount Vernon, KY 40456, turn right onto East Main Street and travel approximately 623 feet.
2. Turn left onto Old US Hwy 25 and travel approximately 0.6 miles.
3. The site is located on the left. The site address is Old U.S. Hwy 25, Mt. Vernon, KY 40456.
4. The site coordinates are:
a. North 37 deg 21 min 11.74 sec
b. West 84 deg 19 min 38.27 sec

Prepared by:
Chris Shouse
Pike Legal Group
1578 Highway 44 East, Suite 6
P.O. Box 396

Shepherdsville, KY 40165-3069
Telephone: 502-955-4400 or 800-516-4293

(1) 500° RADIUS \& ADJOINER'S DRAWING (1) SCALE

z	Owner	ADORESS	PID	REF
1	VADO COMPANY	$\begin{aligned} & \text { P.O. BOX } 1350 \\ & \text { MT. VERNON, KY } 40.356 \end{aligned}$	046-00-001.05	D8 187 PG 303
2	RAE L. COX, TRUST C/a JERRY COX	$\begin{aligned} & \text { P.O. BOX } 1350 \\ & \text { MT VERNON, KY } 40456 \end{aligned}$	046-00-001	D6 230 PG 681
3	MALCOLM SHEPHERD	187 OLD DDXIE HWY	046-00-002	DB 194 PG 32
4	WALTER M. \& VANESSA HOWARD	262 OLD DIXIE HWY MT VERNON, KY 40456	046W-09-009	D8 270 PG 62
5	MALCOLM J. SHEPHERD	187 OLD DDIE HWY	046W-09-008	DE 199 PG 667
6	dallas graves	220 OLD DIXIE HWY	046-00-005	DE 182 PG 201
7	MATHEW \& BEULAH SHEPHERD	528 GENERAL CRUFT RD MT VERNON, KY 40456	046-00-006	DB 225 PG 27
8	STOKES II HEIRSC/O EDITH STOKES	S09 DRYFORK ROAD ORLANDO, KY 40460	046-00-008	-
9	$\begin{aligned} & \text { PERRY T\& AMY } \\ & \text { MINK } \end{aligned}$	665 CARTER RIDGE RD MT VERNON, KY 40456	046-00-007	D8 261 PG 186
10	PERRY T\& AMY MINK	665 CARTER RIDGE RD MT VERNON, KY 40456	046-00-009	DE 261 PG 182
11	NEWTON RAYMOND MRS. C/O MARGARET SMITH	362 OLD DDXE HWY MT VERNON KY 40456	046W-09-010	-
NOTE:				
1. PVA INFORMATION WAS OBTAINED ON 10/28/2020 FROM THE OFFICIAL RECOROS OF THE COUNTYS PROPERTY VALUATION ADMINISTRATOR.				
2. THIS MAP IS FOR GENERAL INFORMATION PURPOSES ONLY AND IS NOT A BOUNDARY SURVEY.				
3. NOT FOR RECORDING OR PROPERTY TRANSFER.				

BAT NOTE:

MUST DO TREE CLEARING BETWEEN OCTOBER 15th ANO MARCH BISt, DUE TO BA
TREES ON PROPERTY

CALL KENTUCKY ONE CALL (800) 752-6007 CALL. 3 WORKING DAYS BEFORE YOU DIGI

	$\mathbf{B + T}$ GRP
	at\&t
HAP	RMONI
$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	

Project no	
catekio ${ }^{\text {by }}$	
ISSUED FOR	
per car on	asscemon
ceris/20 a	20man dean
cos/31/20 a	zow
$1+10 / 8 / 8 / 20$	zomect pume
BSET ENGINEERING, INC £-1403 Expires $12 / 31 / 20$	
500 RDDIUS \& ADJOINER'S DRAWING	
$C-1$	

EXHIBIT L

COPY OF COUNTY JUDGE/EXECUTIVE NOTICE

VIA CERTIFIED MAIL

Howell Holbrook Jr. County Judge Executive
P.O. Box 755

205 East Main Street
Mount Vernon, KY 40456
RE: Notice of Proposal to Construct Wireless Communications Facility Kentucky Public Service Commission Docket No. 2020-00365 Site Name: McGuire Relo / Mt. Vernon

Dear Judge/Executive:
New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT\&T Mobility and Uniti Towers LLC, a Delaware limited liability company have filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at Old U.S. Hwy 25, Mt. Vernon, KY 40456 ($37^{\circ} 21^{\prime \prime} 11.74^{\prime \prime}$ North latitude, $84^{\circ} 19^{\prime} 38.27^{\prime \prime}$ West longitude). The proposed facility will include a 330 -foot tall tower, with an approximately 12 -foot tall lightning arrestor attached at the top, for a total height of 342feet, plus related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

You have a right to submit comments to the PSC or to request intervention in the PSC's proceedings on the application. You may contact the PSC at: Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00365 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. AT\&T Mobility's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us with any comments or questions you may have.

Sincerely,
David A. Pike Attorney for Applicants enclosures

Driving Directions to Proposed Tower Site

1. Beginning at the Rockcastle County Judge Executive's Office, located at 205

East Main Street, Mount Vernon, KY 40456, turn right onto East Main Street and travel approximately 623 feet.
2. Turn left onto Old US Hwy 25 and travel approximately 0.6 miles.
3. The site is located on the left. The site address is Old U.S. Hwy 25, Mt. Vernon, KY 40456.
4. The site coordinates are:
a. North 37 deg 21 min 11.74 sec
b. West 84 deg 19 min 38.27 sec

Prepared by:
Chris Shouse
Pike Legal Group
1578 Highway 44 East, Suite 6
P.O. Box 396

Shepherdsville, KY 40165-3069
Telephone: 502-955-4400 or 800-516-4293

:	Owner	adoress	PID	REF
1	vado compank	$\begin{aligned} & \text { P.O. BOX } 1350 \\ & \text { MT. VERNON, KY } 40456 \end{aligned}$	046-00-001.05	DE 187 PG 303
2	RAE L. COX, TRUST	$\begin{aligned} & \text { P.O. BOX } 1350 \\ & \text { MT VERNON, KY } 40456 \end{aligned}$	046-00-001	DB 230 PG 681
3	MALCOM SHEPHERD	187 OLD DDIE HWY MT VERNON, KY 40456	046-00-002	DB 194 PG 32
4	WALTER M. \& VANESSA	262 OLD DIXIE HWY MT VERNON, KY 40456	046W-09-009	D8 270 PG 62
5	MALCOM J. SHEPMERD	187 OLD DDCIE HWY MT VERNON, KY 40456	046w-09-008	DB 199 PG 667
6	dallas graves	$\begin{aligned} & 220 \text { OLD DDXIE HWY } \\ & \text { MT VERNON, KY } 40456 \end{aligned}$	046-00-605	D8 182 PG 201
7	MATTHEW \& EEULAH SHEPHERD	$\begin{aligned} & 528 \text { GENERAL CRUFT RD } \\ & \text { MT VERNON, KY } 40456 \end{aligned}$	046-00-006	DB 225 PG 272
8	STOKES JI HEIRS. c/O EDITH STOKES	$\begin{aligned} & 509 \text { DRYFORK ROAAD } \\ & \text { ORLANDO, KY } 40460 \end{aligned}$	046-00-008	-
9	PERRY T S AMY MIMK	665 CARTER RIDGE RD MT VERNON, KY 40456	046-00-007	D8 261 PG 186
10	PERRY T\& 8 AMY MINK	665 CARTER RIDGE RD MT VERNON, KY 40456	046-00-009	DB 261 PG 182
11	NEWTON RAYMOND MRS. C/O MARGARET SMITH	362 OLD DDXIE HWY MT VERNON, KY 40456	046W-09-010	-

1. PVA INFORMATON WAS OBTAINED ON $10 / 28 / 2020$ FROM IHE OfFICIAL
RECORDS OF THE COUNTYS PROPERTY VAIUATION ADMINISTRATOR.

IS GENERAI INFORMATION PUPPOSES ONLY AND IS NOT A THIS MAP IS FOR GEI
BOUNDARY SURVEY.
3. NOT FOR RECORDING OR PROPERTY TRANSFER.

BAT NOTE:

MUST DO TREE CLEARING BETWEEN OCTOEER 1St AND MARCH 31st. DUE TO B
TREES ON PROPERTY

CALL KENTUCKY ONE CALL (800) 752-6007 CALL 3 WORKING DAY
BEFORE YOU DIG

| Profect no |
| :--- | :--- |
| Chekion |

OHECRID BY:

 av OTE ISSUED FOR BKT ENGIEERING, INC.
Expices $12 / 31 / 20$

500 RADIUS
DJOINER':
DRUWING:
C_{-}

EXHIBIT M

COPY OF POSTED NOTICES
AND NEWSPAPER NOTICE ADVERTISEMENT

SITE NAME: MCGUIRE RELO / MT. VERNON NOTICE SIGNS

The signs are at least (2) feet by four (4) feet in size, of durable material, with the text printed in black letters at least one (1) inch in height against a white background, except for the word "tower," which is at least four (4) inches in height.

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT\&T Mobility and Uniti Towers LLC, a Delaware limited liability company propose to construct a telecommunications tower on this site. If you have questions, please contact Pike Legal Group, PLLC, P.O. Box 369, Shepherdsville, KY 40165; telephone: (800) 516-4293, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00365 in your correspondence.

New Cingular Wireless PCS, LLC, a Delaware limited liability company, $\mathrm{d} / \mathrm{b} / \mathrm{a}$ AT\&T Mobility and Uniti Towers LLC, a Delaware limited liability company propose to construct a telecommunications tower near this site. If you have questions, please contact Pike Legal Group, PLLC, P.O. Box 369, Shepherdsville, KY 40165; telephone: (800) 516-4293, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00365 in your correspondence.

1578 Highway 44 East, Suite 6
P.O. Box 369

Shepherdsville, KY 40165-0369
Phone (502) 955-4400 or (800) 516-4293
Fax (502) 543-4410 or (800) 541-4410

VIA TELEPHONE: (606) 256-2244
The Mt. Vernon Signal
115 W Main Street
Mount Vernon, KY 40456
RE: Legal Notice Advertisement
Site Name: McGuire Relo / Mt. Vernon
Dear Mt. Vernon Signal:
Please publish the following legal notice advertisement in the next edition of The Mt. Vernon Signal:

NOTICE

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT\&T Mobility and Uniti Towers LLC, a Delaware limited liability company have filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located on Old U.S. Hwy 25, Mt. Vernon, KY 40456 (37° 21' 11.74" North latitude, $84^{\circ} 19^{\prime} 38.27^{\prime \prime}$ West longitude). You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00365 in any correspondence sent in connection with this matter.

After this advertisement has been published, please forward a tearsheet copy, affidavit of publication, and invoice to Pike Legal Group, PLLC, P. O. Box 369, Shepherdsville, KY 40165. Please call me at (800) $516-4293$ if you have any questions. Thank you for your assistance.

Sincerely,
Chris Shouse
Pike Legal Group, PLLC

EXHIBIT N

COPY OF RADIO FREQUENCY DESIGN SEARCH AREA

[^0]: Delta Oaks Group Project GEO20-07031-08
 4904 Protessional Court - Second Floor • Raleigh • NC $\cdot 27609$
 $919.342 \cdot 8247$
 www.deltaoaksgroup.com
 Page 2 of 14

[^1]: Delta Oaks Group Project GEO20-07031-08
 4904 Professional Court • Second Floor • Raleigh • NC • 27609
 919-342-8247
 www.deltaoaksgroup.com
 Page 11 of 14

[^2]: Delta Oaks Group Project GEO20-07031-08
 4904 Professional Court • Second Floor - Raleigh • NC • 27609
 $919 \cdot 342 \cdot 8247$
 www.deltaoaksgroup.com
 Page 12 of 14

