COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matters of:

ELECTRONIC APPLICATION OF KENTUCKY)	
UTILITIES COMPANY FOR AN ADJUSTMENT)	
OF ITS ELECTRIC RATES, A CERTIFICATE)	
OF PUBLIC CONVENIENCE AND NECESSITY)	CASE NO.
TO DEPLOY ADVANCED METERING)	2020-00349
INFRASTRUCTURE, APPROVAL OF CERTAIN)	
REGULATORY AND ACCOUNTING)	
TREATMENTS, AND ESTABLISHMENT OF A)	
ONE-YEAR SURCREDIT)	
ELECTRONIC APPLICATION OF LOUISVILLE)	
GAS AND ELECTRIC COMPANY FOR AN)	
ADJUSTMENT OF ITS ELECTRIC AND GAS)	
RATES, A CERTIFICATE OF PUBLIC)	CASE NO.
CONVENIENCE AND NECESSITY TO DEPLOY)	2020-00350
ADVANCED METERING INFRASTRUCTURE,)	
APPROVAL OF CERTAIN REGULATORY AND)	
ACCOUNTING TREATMENTS, AND)	
ESTABLISHMENT OF A ONE-YEAR SURCREDIT)	

Supplemental Rebuttal Testimony of Justin R. Barnes On Behalf of Kentucky Solar Industries Association, Inc.

August 5, 2021

Supplemental Rebuttal Testimony of Justin R. Barnes On Behalf of the Kentucky Solar Industries Association, Inc. August 5, 2021

TABLE OF CONTENTS

1	I. INTRODUCTION	2
2	II. SQF and LQF TARIFFS	4
3	III. NMS-2 EXPORT COMPENSATION RATES	24
4	A. Avoided Energy Costs	25
5	B. Avoided Generation Capacity Costs	28
6	C. Avoided Transmission Costs	35
7	D. Avoided Distribution Costs	42
8	E. Avoided Carbon Costs	50
9	F. Avoided Environmental Costs	54
10	G. Jobs & Economic Benefits	57
11	H. NMS-2 Rate Summary	59
12	IV. Conclusion and Recommendations	60

1		I. INTRODUCTION
2	Q.	PLEASE STATE YOUR NAME, BUSINESS ADDRESS, AND CURRENT
3		POSITION.
4	A.	My name is Justin R. Barnes. My business address is 1155 Kildaire Farm Rd., Suite
5		202, Cary, North Carolina, 25711. My current position is Director of Research with
6		EQ Research LLC.
7	Q.	ON WHOSE BEHALF ARE YOU SUBMITTING TESTIMONY?
8	A.	I am submitting testimony on behalf of the Kentucky Solar Industries Association,
9		Inc. ("KYSEIA").
10	Q.	HAVE YOU PREVIOUSLY SUBMITTED TESTIMONY BEFORE THE
11		KENTUCKY PUBLIC SERVICE COMMISSION ("COMMISSION")?
12	A.	Yes. I submitted testimony in the earlier portion of these proceedings, as well as
13		supplemental testimony on July 13, 2021. I also submitted testimony to the
14		Commission in Case No. 2020-00174 addressing the Kentucky Power Company's
15		("KPC") most recent general rate case application on aspects of the application
16		addressing the proposed N.M.S. II tariff and rates for small power production
17		facilities.
18	Q.	PLEASE DESCRIBE THE PURPOSE OF YOUR REBUTTAL
19		TESTIMONY AND HOW IT IS ORGANIZED.
20	A.	My testimony responds to the Supplemental Testimony filed by Kentucky Utilities
21		Company ("KU") and Louisville Gas and Electric ("LG&E"; collectively, the
22		"Companies") on July 13, 2021. Section II of my testimony responds to the
23		Companies' new proposal on establishing avoided energy and capacity rates Supplemental Rebuttal Testimony of Justin R. Barnes 2 On Behalf of the Kentucky Solar Industries Association, Inc. August 5, 2021

applicable to Qualifying Facilities ("QFs") under the Public Utility Regulatory
 Policies Act of 1978 ("PURPA"), tariffs SQF and LQF. I describe major
 shortcomings with the Companies' proposal and provide recommendations on
 better methodologies for fairly valuing the energy and capacity provided by QFs.

5 Section III of my testimony addresses the Companies' proposals with 6 respect to avoided energy cost, ancillary services cost, generation capacity cost, 7 transmission capacity cost, distribution capacity cost, carbon cost, environmental compliance cost, and job benefits as they relate to calculating the NMS-2 export 8 9 compensation rates. I explain how the Companies have failed to conduct an analysis 10 consistent with the guidance offered by the Commission's decision on KPC's 11 N.M.S. II tariff, and in doing so systematically underestimated the long-term costs 12 avoided by net metered generation. Where possible I have also developed recommendations for specific rates for different components of the NMS-2 rate. 13

Section IV provides my concluding remarks and summarized
recommendations.

1 II. SQF AND LQF TARIFFS 2 О. DID THE COMPANY PROPOSE REVISED SQF AND LQF RIDERS IN ITS 3 SUPPLEMENTAL TESTIMONY? 4 A. Yes. Mr. Conroy sponsored the revised tariffs and Mr. Sinclair sponsored the 5 derivation of the rates that the Companies propose to offer under those tariffs. 6 **Q**. PLEASE SUMMARIZE THE REVISIONS THAT THE COMPANIES 7 PROPOSE TO MAKE TO RIDER SQF AND RIDER LQF. 8 A. The Companies propose several changes. Most notably, they propose offering a 9 fixed price 20-year PPA option with a separate option for a QF to enter into a 2-10 year PPA instead of a 20-year contract. They also propose specific energy and 11 capacity compensation rates denominated in \$/kWh that are differentiated into 12 categories for solar tracking, solar fixed tilt, wind, and "other" technologies. These rates are differentiated by the year in which a QF facility begins delivering energy. 13 14 Both the energy rates and capacity rates are levelized over the 20-year life of the 15 contract. The 2-Year contract does not include capacity compensation. 16 The capacity rates, where applicable, are differentiated into two tranches 17 comprised of the first 109 MW of contracted QF nameplate capacity and the next 18 891 MW of contracted QF nameplate capacity with lower rates for the second 19 tranche. Thus capacity compensation would be limited to the first 1,000 MW of 20 contracted QF nameplate capacity, pending review and potential revision as part of 21 a biennial avoided cost filing process.

Q. DO YOU AGREE WITH THE ESTABLISHMENT OF A 20-YEAR PPA OPTION AND 2-YEAR OPTION?

A. Yes. In my direct testimony in this proceeding, I recommended that the Companies be directed to offer a long-term contract option that includes compensation for capacity. Although this aspect of their proposal does not exactly replicate my own recommendations for revised QF tariffs, it is aligned with the character and reasoning behind my recommendation, therefore, I support it. I did not recommend a separate 2-Year contract option in my direct testimony, but I also believe this aspect of the Companies' proposal to be reasonable.

10 Q. DO YOU DISAGREE WITH ANY ASPECTS OF THE COMPANIES' 11 PROPOSED REVISED RIDERS SQF AND LQF?

- 12 A. Yes. My areas of disagreement are as follows:
- The "lowest rate" selection methodology that the Companies employ to
 determine rates for different technologies is at odds with common sense and
 the concept of marginal costs.
- 2. The avoided cost rates specified in the revised tariffs do not include adders for avoided line losses for either energy or capacity. The tariffs should be modified to differentiate between facilities connected at transmission and distribution voltage where facilities connected at distribution voltage receive a higher rate that accounts for avoided transmission energy and demand losses. According to the Companies line loss studies, the appropriate gross ups for KU are 3.295% for demand losses, applicable to

1	the capacity rates, and 2.827% for energy, applicable to the energy rates. ¹
2	For LG&E the appropriate gross-ups are 1.549% for demand losses,
3	applicable to the capacity rates, and 1.033% for energy, applicable to the
4	energy rates. ²

5 3. The calculation of the capacity rates, which uses different methodologies 6 for different technologies, results in discrimination of solar QFs relative to 7 wind QFs or QFs that employ an "other" technology. The capacity rate 8 calculation should utilize a single technology neutral methodology based on 9 the cost of a proxy natural gas combined cycle unit based on the next 10 hypothetical addition to the Companies' system in its IRP. The use of a 11 proxy market price based on a single utility-scale solar PPA fails to reflect 12 the Companies' long-term avoided costs.

4. The solar capacity factors that are used to translate the cost of "perfect" 13 14 dispatchable capacity for solar QFs understate the contribution of solar QFs 15 to meeting capacity needs. The calculation uses a simple average of 16 estimated solar capacity factors over 12 separate monthly peak hours. This 17 fails to reflect the fact that system peaks that drive a need for capacity 18 investments are not evenly distributed across all months and monthly peaks 19 of the year. The assumed solar contribution to peak should be calculated 20 using the weighted LOLP methodology I identified in my Supplemental 21 Testimony, which produces a solar ELCC of 58.14% of nameplate capacity

¹ KU response to PSC 5-20 (filed Apr. 1, 2021) [PDF 151 of 202].

² LG&E response to PSC 5-21 (filed Apr. 1, 2021) [PDF 152 of 203].

Supplemental Rebuttal Testimony of Justin R. Barnes

On Behalf of the Kentucky Solar Industries Association, Inc. August 5, 2021

for a fixed tilt solar array rather than the 28.8% amount calculated by the Companies.

1

2

3 Q. PLEASE ELABORATE ON YOUR OBJECTION TO THE "LOWEST 4 RATE" METHODOLOGY THE COMPANY EMPLOYS TO DETERMINE 5 DIFFERENT RATES APPLICABLE TO DIFFERENT TECHNOLOGIES.

6 A. There are at least two major logical failures with this aspect of the Companies' 7 proposal. First, consider what such an approach would mean in practice for the 8 purchase of any valuable good or service. In the context of the Rhudes Creek PPA, 9 the Company is saying that it will never pay more to a specific type of vendor (e.g., 10 solar) than what it paid in the past for that commodity, but it would pay more for 11 the exact same commodity that provides equivalent value from a different type of 12 vendor (e.g., wind). This like a general consumer saying that because they were 13 able to purchase gasoline from an Exxon station at a specific price in the past, they 14 will never pay a higher rate to purchase gasoline from any Exxon station. On the 15 other hand, because that consumer has never purchased gasoline from a Valero 16 station, they are willing to pay more than that amount for the exact same product, 17 and they would pay still more from a third vendor. Such an approach to purchasing 18 decisions flies in the face of economically rationale decision-making, and 19 ratepayers will pay the cost of that irrationality.

Second, marginal costs refer to the incremental costs associated with the
 next purchase of a given product or service. In an economically rational world, the
 incremental cost is effectively defined on the basis of the maximum price a
 consumer is willing to pay based on the value a product has to that consumer. For
 Supplemental Rebuttal Testimony of Justin R. Barnes
 On Behalf of the Kentucky Solar Industries Association, Inc.

instance, in organized wholesale markets, participants that make successful sale
offers of energy and capacity receive the clearing price rather than the price they
may have bid into the market. That clearing price is the price offered by the most
expensive offer that allows supply to meet demand. In other words, it is maximum
price based on the value of the underlying good or service. The costs avoided by a
substitute are not driven by the lowest offer, they are driven by the highest price
that might need to be paid in the future.

8 Q. PLEASE EXPLAIN HOW THE CAPACITY RATE DERIVATION IS 9 DISCRIMINATORY TO SOLAR QFS.

10 The Companies employ three methods for calculating avoided costs for different A. 11 technologies and then select the lowest indicated by each for a given technology. 12 One calculation uses the Rhudes Creek PPA as a baseline all-in compensation rate 13 for both energy and capacity. Another uses an index of solar and wind PPA prices 14 as the all-in price baseline. The third uses a bottom-up calculation of capacity costs 15 for a combustion turbine under the "peaker" methodology that was historically 16 employed by KPC for developing avoided capacity rates. The lowest rate selection 17 method results in the selection of the Rhudes Creek PPA for solar, the PPA index 18 for wind (because there is no equivalent Rhudes Creek PPA for wind), and the CT 19 peaker method for "other" technologies.

This methodology creates a discriminatory pricing regime for QFs in which
each of the three technology categories (i.e., Solar, Wind, and Other) gets a
different capacity rate that is <u>not based on actual avoided costs</u>. The discriminatory
nature of the Companies' proposed methodology is evident from the absurdity of
Supplemental Rebuttal Testimony of Justin R. Barnes
On Behalf of the Kentucky Solar Industries Association, Inc.

1	its pricing recommendations compared to the capacity value actually provided by
2	each type of resource. For example:
3	• Wind and Other technologies receive higher capacity rates than Solar for an
4	identical amount of equivalent capacity.
5	• Fixed-tilt Solar is compensated at a lower rate than Wind even though the
6	Companies' peaker methodology evaluation demonstrates that Fixed-tilt
7	Solar has a <i>higher</i> capacity value per MW-year, ³ and this value is spread
8	over assumed production that is lower for Solar than for Wind. ⁴
9	• Both Single-axis and Fixed-tilt Solar resources have a higher availability
10	during peak hours, both on an annual basis and during the summer peaks
11	specifically, than Wind resources. ⁵ Yet both types of solar resource would
12	generate less total capacity revenue per MW than a wind resource.
13	• The on-peak capacity factor premium for Single-axis tracking Solar is 29%
14	over Fixed-tilt Solar, but the rate premium is only 7%. ⁶
15	• The total rate (i.e., energy plus capacity) paid for a Single-axis tracking
16	Solar is <i>lower</i> than for Fixed-tilt Solar despite the considerably higher
17	capacity value for Single-axis tracking Solar. ⁷ In other words, the

³ Supplemental Exhibit DSS-2, Table 9, p. 10 of 16 (filed July 13, 2021) [PDF 127 of 161].

⁴ Supplemental Exhibit DSS-1, Table 1, p. 1 of 3 (filed July 13, 2021) [PDF 115 of 161].

⁵ Supplemental Exhibit DSS-2, Table 8, p. 9 of 16 (filed July 13, 2021) [PDF 126 of 161].

⁶ Supplemental Exhibit DSS-2, Tables 9 and 14 (filed July 13, 2021) [PDF 127, and 131 of 161]. Table 9 provides production profile adjusted avoided capacity costs while Table 14 presents recommended capacity rates.

⁷ Kentucky Utilities, Tariff SQF [proposed], Supplemental Testimony at PDF p. 21; LG&E, Tariff SQF [proposed], Supplemental Testimony on PDF p. 26.

Supplemental Rebuttal Testimony of Justin R. Barnes

On Behalf of the Kentucky Solar Industries Association, Inc.

1		Companies are <i>penalizing</i> the type of utility-scale solar facilities that
2		actually provides higher value to the Companies and its customers.
3		These incoherent results demonstrate that the Companies' proposed avoided
4		cost methodology is facially discriminatory and produces, in my understanding of
5		the terms, unjust and unreasonable rates for QFs. The Companies do not appear to
6		dispute this contention as they acknowledge that their pricing approach "might not
7		result in avoided cost pricing that is technology neutral".8 By definition, a pricing
8		approach that is not technology neutral is discriminatory.
9	Q.	CAN YOU ILLUSTRATE THE INCONGRUITIES YOU DESCRIBE
10		ABOVE QUANTITATIVELY?
11	A.	Yes. Table 1 below provides comparisons between the annual capacity revenue that
11 12	A.	Yes. Table 1 below provides comparisons between the annual capacity revenue that a hypothetical resource would receive under the rates proposed by the Companies
11 12 13	A.	Yes. Table 1 below provides comparisons between the annual capacity revenue that a hypothetical resource would receive under the rates proposed by the Companies for each technology type. As is readily visible, wind technologies generate greater
11 12 13 14	А.	Yes. Table 1 below provides comparisons between the annual capacity revenue that a hypothetical resource would receive under the rates proposed by the Companies for each technology type. As is readily visible, wind technologies generate greater capacity revenue per MW than either type of solar technology despite the fact that
 11 12 13 14 15 	A.	Yes. Table 1 below provides comparisons between the annual capacity revenue that a hypothetical resource would receive under the rates proposed by the Companies for each technology type. As is readily visible, wind technologies generate greater capacity revenue per MW than either type of solar technology despite the fact that wind contributes less to meeting peak needs than either (as measured by the
 11 12 13 14 15 16 	Α.	Yes. Table 1 below provides comparisons between the annual capacity revenue that a hypothetical resource would receive under the rates proposed by the Companies for each technology type. As is readily visible, wind technologies generate greater capacity revenue per MW than either type of solar technology despite the fact that wind contributes less to meeting peak needs than either (as measured by the estimated on-peak capacity factor). ⁹ Wind receives roughly 1.6 times more revenue
 11 12 13 14 15 16 17 	Α.	Yes. Table 1 below provides comparisons between the annual capacity revenue that a hypothetical resource would receive under the rates proposed by the Companies for each technology type. As is readily visible, wind technologies generate greater capacity revenue per MW than either type of solar technology despite the fact that wind contributes less to meeting peak needs than either (as measured by the estimated on-peak capacity factor). ⁹ Wind receives roughly 1.6 times more revenue than Single-axis tracking Solar despite the fact that it only produces 77% of the
 11 12 13 14 15 16 17 18 	A.	Yes. Table 1 below provides comparisons between the annual capacity revenue that a hypothetical resource would receive under the rates proposed by the Companies for each technology type. As is readily visible, wind technologies generate greater capacity revenue per MW than either type of solar technology despite the fact that wind contributes less to meeting peak needs than either (as measured by the estimated on-peak capacity factor). ⁹ Wind receives roughly 1.6 times more revenue than Single-axis tracking Solar despite the fact that it only produces 77% of the amount of on-peak capacity on a per MW basis than Single-axis tracking Solar.
 11 12 13 14 15 16 17 18 19 	Α.	Yes. Table 1 below provides comparisons between the annual capacity revenue that a hypothetical resource would receive under the rates proposed by the Companies for each technology type. As is readily visible, wind technologies generate greater capacity revenue per MW than either type of solar technology despite the fact that wind contributes less to meeting peak needs than either (as measured by the estimated on-peak capacity factor). ⁹ Wind receives roughly 1.6 times more revenue than Single-axis tracking Solar despite the fact that it only produces 77% of the amount of on-peak capacity on a per MW basis than Single-axis tracking Solar. Wind receives roughly 2.65 times more revenue than Fixed-tilt Solar despite the

⁸ Companies' response to KYSEIA Supplemental Requests – a.k.a. KYSEIA 3rd, Item 4 (filed Aug. 2, 2021) [PDF 11 of 28].
⁹ Uses proposed rates for a 20-year PPA for contracts beginning in 2022.

Supplemental Rebuttal Testimony of Justin R. Barnes

On Behalf of the Kentucky Solar Industries Association, Inc.

Technology Type	Annual Capacity Factor (%)	Annual Energy per MW (MWh)	Capacity Rate (\$/MWh)	Annual Capacity Revenue per MW (\$)	On-Peak Capacity Factor, Monthly Average (%)
Single-Axis					
Tracking Solar	26.0%	2,278	\$1.82	\$4,145	37.2%
Fixed-Tilt					
Solar	16.7%	1,463	\$1.70	\$2,487	28.8%
Wind	25.3%	2,216	\$2.98	\$6,605	28.7%

2 3

4

5

Table 2 below further illustrates the incongruity in pricing by illustrating the implied capacity rate if all technologies were assumed to be 100% available to meet capacity needs. This "perfect" capacity rate is arrived at by dividing the proposed rates by the on-peak capacity factor.

7

6

 Table 2: Perfect Capacity Equivalent Rate By Technology

Technology Type	Capacity Rate (\$/MWh)	On-Peak Capacity Factor, Monthly Average (%)	Equivalent Perfect Capacity Rate (\$/MWh)
Single-Axis Tracking Solar	\$1.82	37.2%	\$4.89
Fixed-Tilt Solar	\$1.70	28.8%	\$5.90
Wind	\$2.98	28.7%	\$10.38
Other	\$8.27	100.0%	\$8.27

8

9 As Table 2 shows, the compensation for a hypothetical perfect capacity 10 resource differs greatly based on technology despite the fact that each resource type 11 provides equivalent capacity value. This result arises directly from the Companies' 12 use of different methodologies for determining capacity rates for each technology. This approach is discriminatory by any objective measure. 13

Q. IS THE USE OF A SINGLE PPA AN APPROPRIATE BENCHMARK FOR DETERMINING MARKET PRICING WHEN CALCULATING THE AVOIDED COST RATE?

A. No. One contract does not determine what the "market price" is, nor is it an
appropriate substitute. Using this approach would allow a single project that is a
"unicorn" and not replicable in the future to be used as the pricing benchmark in a
manner that would discourage purchases from facilities that would be slightly more
expensive, but would still be more cost-effective an any available alternative, such
as the construction of a new natural gas CT.

10 This is particularly concerning given recent trends in solar and wind PPAs that show costs are *increasing*.¹⁰ For instance, relative to 2019, projects in the 11 future are likely to have higher land costs and interconnection costs.¹¹ In addition, 12 federal tax credits have already decreased and will decline further. Finally, solar 13 costs are currently increasing due to rising module costs and other supply chain 14 pressures, with wind PPAs also experiencing recent cost increases.¹² In this 15 16 context, a single PPA is more similar to a short-term marginal cost, as it is reflective 17 of the cost at specific point in time for the unique configurations and variables 18 applicable to the project, rather than a long-term marginal cost that can be applied 19 prospectively. Simply put, a low-cost PPA from 2019 is not indicative of a utility's

¹⁰ Level10 Energy, "Q2 2021 PPA Price Index," available at https://www.leveltenenergy.com/post/q2-2021.

Supplemental Rebuttal Testimony of Justin R. Barnes

¹¹ The availability of the most attractive sites, where projects can be interconnected without a need for costly upgrades, is not infinite, and competition for land in general places upward pressure on lease rates.

¹² *Id*, p. 7.

cost to enter into a similar PPA in 2022 or 2023. These factors strongly caution
 against the use of a single PPA to determine the avoided cost price when other
 methods would provide a better benchmark more indicative of the Companies'
 current avoided cost.

5 Q. DO YOU HAVE ANY FURTHER OBJECTIONS TO THE COMPANY'S 6 PROPOSED SOLAR QF PRICING BEING BASED ON THE RHUDES 7 CREEK PPA MARKET PRICING METHODOLOGY?

8 A. Yes. The Rhudes Creek PPA has an all-in 20-year rate of \$27.82/MWh. This is the 9 apparent price benchmark for a lowest cost solar resource. Yet the all-in rates that 10 the Company would offer for 20-year PPAs for other solar resources for contracts 11 beginning in 2022 sum to \$25.77/MWh for Fixed-tilt Solar and \$25.67/MWh for 12 Single-axis Tracking Solar, both of which are lower than the supposed absolute minimum cost solar resource. This is a result of the Companies' mixing and 13 14 matching concepts of market-based pricing and proxy unit capacity costs and the 15 manner in which future energy and capacity values are discounted in the 16 levelization process.

The end result is that even though the Companies were willing to pay \$27.82/MWh for solar production from the Rhudes Creek solar facility, inclusive of its entire energy and capacity attributes and irrespective of the actual value of the costs that Rhudes Creek allows the Companies to avoid, they would pay less for an identical resource in the future. And as I have previously demonstrated, to add insult to injury, they would pay more for a resource that provides equivalent energy and capacity attributes as long as it is not a solar resource.

> Supplemental Rebuttal Testimony of Justin R. Barnes On Behalf of the Kentucky Solar Industries Association, Inc.

1 **Q**. IS THE LEVELTEN ENERGY PPA PRICE INDEX AN APPROPRIATE 2 BENCHMARK FOR DETERMINING THE COMPANIES' AVOIDED COST 3 **RATE?**

4 No. While the PPA pricing data reported by LevelTen Energy can provide general A. 5 insight into pricing trends and key drivers, it is not an appropriate methodology for 6 determining the Companies' specific avoided cost rate in their service territories, for 7 several reasons. First, by nature it is backwards looking in the same manner as the 8 Rhudes Creek PPA is backwards looking.

9 Second, the LevelTen Energy PPA Price Index Report evaluates the prices 10 that wind and solar project developers have offered for PPAs available on the 11 "LevelTen Energy Marketplace" using the P25 pricing point. The P25 pricing point 12 refers to the most competitive 25th percentile offer price – and not the average executed PPA price. Thus the index only reflects the lower end of the offer price 13 14 range, does not account for actual project execution (i.e., which projects fail?), and 15 by its very nature cannot reflect the numerous variations in PPA terms that could 16 materially influence the way a project is priced. Ultimately, the index is more useful 17 for illustrating pricing trends rather than it is for defining specific price points.

18 **Q**. ARE THERE OTHER PROBLEMS ASSOCIATED WITH USING

19

MARKET PRICING APPROACHES TO SET AVOIDED COST RATES?

20 A. Yes. The two "market" pricing options proposed by the Companies do not equate 21 to the value to the Companies relative to how the utility might otherwise fulfill its 22 capacity need. As a result, it fails to incentivize on-peak production that actually 23 produces the capacity benefits, as the *averaged* rate used under these options is Supplemental Rebuttal Testimony of Justin R. Barnes 14 On Behalf of the Kentucky Solar Industries Association, Inc.

August 5, 2021

spread over all production. As previously discussed, these approaches also fail to
account for recent trends indicating that market pricing is increasing for solar and
wind projects due to a variety of factors. If the Companies used the same approach,
it would suggest that it would not be prudent for them to build a new natural gas
combustion turbine or combined cycle facility if the levelized cost of electricity
from the facility was greater than the market price.

7 Q. DOES THE COMPANIES' AVOIDED COST METHOD 8 APPROPRIATELY ADDRESS THE CONTRIBUTION OF SOLAR TO 9 MEETING ITS CAPACITY NEEDS?

10 A. No. By using the two market pricing approaches, the Companies' proposed capacity 11 rates for solar QFs do not actually have any connection to the contribution that 12 either a solar or wind QF would make to meeting its future capacity needs. Under 13 these approaches, the capacity price is simply the residual difference between the 14 respective all-in market prices and the avoided energy cost. The only place where 15 a contribution to peak methodology is used to define capacity value is in the 16 calculations associated with defining avoided capacity costs under the natural gas 17 CT peaker method. The Company does not propose to use this method to define 18 capacity rates for solar or wind QFs.

Q. IS THE SOLAR CAPACITY CONTRIBUTION THAT THE COMPANIES USE IN THEIR PEAKER METHOD CALCULATIONS AN ACCURATE REFLECTION OF SOLAR'S CONTRIBUTION TO MEETING CAPACITY NEEDS?

- A. No. The Companies' calculations of solar contribution to meeting peak needs is
 based on a simple average of 12 monthly values based on modeled solar production
 at the time of each monthly peak. This is reflected in Figure 1 below, a re-creation
 of Table 8 in Supplemental Exhibit DSS-2.
- 9

	Monthly Peak Hour Beginning (EST)	Solar: Single-Axis Tracking	Solar: Fixed Tilt	Wind	Other Technologies
Jan	7	0.0%	0.0%	35.7%	100.0%
Feb	7	0.0%	0.0%	36.3%	100.0%
Mar	7	3.6%	0.2%	33.8%	100.0%
Apr	6	0.9%	0.0%	18.4%	100.0%
May	15	72.5%	57.7%	39.0%	100.0%
Jun	15	79.9%	65.4%	25.6%	100.0%
Jul	14	81.4%	74.1%	23.4%	100.0%
Aug	15	74.4%	59.3%	23.5%	100.0%
Sep	15	71.7%	51.4%	27.8%	100.0%
Oct	15	62.2%	37.5%	44.8%	100.0%
Nov	7	0.1%	0.0%	11.8%	100.0%
Dec	7	0.0%	0.0%	23.6%	100.0%
Annu	Average	37.2%	28.8%	28.7%	100.0%
Summ (Ju	er Average n-Aug)	78.6%	66.3%	24.2%	100.0%

Table 3: Company Derived Peak Contributions

Table 8: Availability of QF Resources during Peak Hours (% of Nameplate Capacity)

10

The simple averaging method weights the peak during each month equally.
 However, using a simple average capacity factor during all months with all weighted

13

equally conflicts with how the Companies conduct their planning using LOLP¹³ and

Supplemental Rebuttal Testimony of Justin R. Barnes

¹³ Application (filed Nov. 25, 2020), Direct Testimony of Steven S. Seelye ("Seelye Direct"), p. 105 [PDF 109 of 491] lines 9-10, stating "LOLP is a critical measurement the Companies use to plan their generation resources."

does not reflect the value that solar capacity is expected to provide at the most critical
 times (i.e., when the loss of load probability is highest). The Companies'
 methodology undervalues solar's contribution to grid reliability and produces, in my
 view, unjust and unreasonable rates for QFs.

5 A more accurate and fairer method for compensating solar that aligns with 6 the Companies planning is for the effective solar capacity determination to be based 7 on a representative solar production profile weighted according to hourly LOLP, as 8 I recommended in my Supplemental Testimony. My analysis based on the 9 Companies' LOLP study incorporated into its cost of service study produces a solar 10 ELCC of 58.14% of nameplate capacity for a fixed tilt solar array. Such a result is 11 not dissimilar to the June – August average shown in Figure 1 (66.3% for Solar – 12 Fixed Tilt). The reason for the similarity is that the Companies' high LOLP hours are concentrated in the summer afternoon hours. 13

14I also note here that the Companies actually acknowledge that the effective15capacity contribution of solar is related to June – August peaks excluding all other16months in their proposal to establish tranches with different levels of capacity17compensation within Riders SQF and LQF. As discussed by Witness Sinclair, the18tranche applicable to meeting a 2028 capacity need of 100 MW would allow up to19127 MW (nameplate) of Single-axis Tracking Solar to receive the applicable20capacity rate based on the effective summer capacity factor of 78.6% for this type

of resource (i.e., 100 MW / 78.6% = 127 MW).¹⁴ This is an implicit recognition
 that 127 MW of Single-axis Tracking Solar provides 100 MW of effective capacity.

3 Q. WHAT IS A BETTER METHOD FOR DETERMINING AVOIDED 4 CAPACITY COST RATES FOR RIDERS SQF AND LQF?

5 A. I recommend the proxy unit method for establishing the avoided cost rate 6 methodology, which would use a natural gas combined cycle unit as the next 7 capacity unit in accordance with the Companies' current IRP. Alternatively, the Commission could utilize a combustion turbine as the proxy capacity unit as the 8 9 Companies did in developing their own avoided cost pricing proposal. Capacity 10 payments should be directly tied to what a QF produces during peak times. This is 11 calculated by dividing the capacity cost (i.e., revenue requirement) for the proxy 12 NGCC unit across the on-peak hours. It would produce a technology-neutral rate, where a single rate is used for all technologies, but QFs would earn different 13 amounts based on their performance during peak periods. It also incentivizes 14 15 pairing QFs with technologies like battery energy storage systems to better align 16 deliveries with grid needs.

17 Q. CAN YOU PROVIDE AN ILLUSTRATIVE TIME-DIFFERENTIATED

18 CAPACITY RATE FOR RIDERS SQF AND LQF?

A. Yes. Table 3 presents an on-peak capacity rate for all QF production based on the
Companies' assessment of annual avoided costs based on the cost of a natural gas
CT. The rates reflected in Table 3 are derived by dividing the annualized avoided

¹⁴ Supplemental Testimony of Sinclair, p. 15 (filed July 13, 2021) [PDF 105 of 161]. Supplemental Rebuttal Testimony of Justin R. Barnes On Behalf of the Kentucky Solar Industries Association, Inc.

1	capacity cost (\$) for 20-year contracts beginning in each year from 2022-2026, with
2	an adjustment to the rate for avoided transmission demand losses specific to each
3	utility. The rates in Table 3 would apply to delivered energy on summer (June –
4	September) weekdays from $11 \text{ AM} - 8 \text{ PM}$. The rates themselves are arrived at by
5	dividing the annualized cost per MW by the number of hours in this timeframe (791
6	hours). ¹⁵ The rates without transmission losses would apply to QFs interconnected
7	at transmission voltages whereas the utility specific rates would apply to QFs
8	interconnected at distribution voltage.

9

Table 3: Proposed Tranche 1 On-Peak Capacity Rates

	2022	2023	2024	2025	2026
Levelized CT Cost					
(\$/MW)	\$72,488	\$81,175	\$90,514	\$100,553	\$111,339
Rate (\$/MWh), w/o					
Transmission Losses	\$91.67	\$102.66	\$114.47	\$127.17	\$140.81
Rate LG&E					
(\$/MWh), w/Losses	\$93.65	\$104.87	\$116.94	\$129.90	\$143.84
Rate KU (\$/MWh),					
w/Losses	\$95.23	\$106.65	\$118.92	\$132.11	\$146.28

10

11 Q. HOW DID YOU SELECT THE ON-PEAK HOURS FOR THIS RATE?

12	A.	I reviewed the LOLP patterns from the study the Companies conducted for their
13		cost of service study. In this review, I discovered that 98.68% of the total annual
14		LOLP occurs during the June – September period and that 98.38% of this amount
15		occurs on weekdays. I selected the 11 AM - 8 PM timeframe based on the
16		percentage of total summer LOLP accounted for by each of the 24 hours during a
17		day by excluding each daily hour that accounts for less than 1% of total annual

 $^{^{15}}$ The 791 hours is derived as 9 hours per day (9*122), multiplied by (5/7) to exclude weekends.

Supplemental Rebuttal Testimony of Justin R. Barnes

LOLP. The resulting hours within the on-peak period account for 97.12% of total
 annual LOLP, which means that they cover the vast majority of hours during which
 there is an apparent need for capacity.

4 Q. PLEASE EXPLAIN WHY TRANSMISSION LOSSES NEED TO BE 5 INCORPORATED INTO THE RATES PAID TO DISTRIBUTION 6 CONNECTED QFS.

7 A. A distribution-connected QF that does not backfeed to the transmission system does 8 not incur transmission losses. Therefore the energy and capacity produced by a 9 distribution-connected QF is worth incrementally more than a resource connected 10 to the transmission system. The specific transmission loss factors reflected in the 11 rates in Table 3 are 3.88% for KU and 2.15% for LG&E. Those rates include both 12 transmission losses and primary substation losses to reflect the avoidance of losses on both the bulk transmission system and losses that would be incurred by backfeed 13 14 through a primary substation onto the transmission system.

15 Q. DID YOU MAKE ANY LOSS ADJUSTMENTS TO REFLECT FIXED

16 CORE LOSSES AS OPPOSED TO VARIABLE LOSSES?

A. No. Such an adjustment is not justified because distribution-connected QFs would
not incur core transformation losses at the substation and the figures I used reflect
averaged losses. Averaged losses fail to reflect the higher losses that occur during
peak load periods which coincide with the on-peak period I used for the on-peak
rate. Thus any fixed losses that might exist and could merit a reduction in the loss
factor calculation are offset by the fact that the averaged losses understate variable

1		losses during the high load periods that comprise the on-peak pricing window. Thus
2		on the balance the loss figures I used should be considered reasonable.
3	Q.	IF THE COMMISSION WERE TO USE A MARKET PRICING
4		APPROACH TO DETERMINE AVOIDED CAPACITY COSTS, ARE ANY
5		MODIFICATIONS NECESSARY TO THE COMPANY'S
6		METHODOLOGY?
7	A.	While a market pricing based rate would be a sub-optimal design for the reasons I
8		have previously discussed, if the Commission were to elect this approach I
9		recommend that:
10		• The Rhudes Creek approach be rejected and market prices be determined based
11		on LevelTen pricing indices.
12		• The LevelTen prices used to calculate an average market rate should be
13		confined to only the two most recent quarters available (Q4 2020 and Q1 2021)
14		given older data is not reflective of current market conditions. This would
15		produce an all-in price of \$35.45/MWh for solar facilities.
16		• Use this all-in price (\$35.45/MWh) as the combined price for energy and
17		capacity without discounting the capacity component according to the year of
18		the Companies' future capacity needs because the market price itself is an all-
19		in energy price and does not reflect the true marginal cost of new capacity.
20		• The Commission should consider utilizing an adder to the average prices to
21		reflect the fact that the LevelTen indices use only the P25 price offers (i.e., top
22		25% least-cost) rather than an average, median price, or P50 price.

Supplemental Rebuttal Testimony of Justin R. Barnes On Behalf of the Kentucky Solar Industries Association, Inc. August 5, 2021

1		Alternatively, it would also make sense to further explore whether access to
2		more complete pricing could be arranged.
3		Again, I emphasize that such a market pricing approach produces a poor
4		reflection of future marginal capacity costs, fails to reward facilities with delivery
5		profiles that align with peak system needs, and will always produce differing and
6		discriminatory rates for different technologies. Furthermore, it relies on hard-wired
7		assumptions of facility characteristics that make it impossible to adapt to facilities
8		that have different characteristics than the broad categories it uses (e.g., battery-
9		paired systems, varied inverter sizing ratios, dual-axis tracking solar, etc.).
10	Q.	PLEASE SUMMARIZE YOUR RECOMMENDATIONS TO THE
11		COMMISSION ON THE COMPANIES' PROPOSED RIDERS SQF AND
12		LQF.
13	A.	The Commission should:
14		• Accept the Companies' proposal to offer a 20-year fixed rate option under both
15		QF riders.
16		• Deny the Companies' proposed capacity pricing design and instead adopt the
17		summer on-peak capacity rate design I recommend in the body of my testimony.
18		• Adopt both energy and capacity prices for distribution-connected QFs that
19		reflect the avoidance of energy and demand losses on the transmission system
20		that distribution-connected QFs avoid.
21		Secondarily, if the Commission declines to adopt my summer on-peak
22		capacity rate proposal and instead elects to rely on a market price based approach,
23		it should modify the Companies' proposed design in the following ways: Supplemental Rebuttal Testimony of Justin R. Barnes 22 On Behalf of the Kentucky Solar Industries Association, Inc. August 5, 2021

1	• Use LevelTen pricing as opposed to the Rhudes Creek PPA as the appropriate
2	market price benchmark.
3	• Only use LevelTen pricing from only two most recent quarters to determine the
4	all-in price, resulting in an all-in rate of \$35.45/MWh for solar resources.
5	• Apply the all-in price of \$34.45/MWh as a true all-in rate without separate
6	calculation of a capacity rate.
7	• Consider the use of an adder or other adjustment to reflect the fact that the
8	LevelTen price indices reflect only the lowest cost offers on the platform rather
9	than average, median, or 50 th percentile offers.
10	Finally, if the Commission elects to use the peaker method based on a
11	combustion turbine to determine capacity rates but does not adopt my summer on-
12	peak rate pricing proposal, the on-peak capacity factor for fixed tilt solar used in
13	the calculation should be modified to 58.14% based on my solar LOLP analysis.
14	The peak capacity contribution for single-axis tracking solar should also be revised
15	using the same methodology but I have not independently performed such a
16	calculation.
17 18	
19	
20	
21	

1 **III. NMS-2 EXPORT COMPENSATION RATES** 2 О. DO YOU HAVE ANY HIGH-LEVEL **CONCERNS** WITH THE **COMPANIES'** 3 AS IN TARIFF NMS-2 PROPOSED THEIR SUPPLEMENTAL TESTIMONY? 4

5 Yes. The Companies continue to propose a shift away from monthly netting to a A. 6 new policy in which all exported generation from a net metering customer would 7 be credited at the dollar-denominated bill credit rate of \$0.02319/kWh. I discuss in 8 more detail below why this bill credit rate understates the value of excess generation 9 provided by net metering customers. But as an initial point, I note that this price 10 equates to a 29.6% decrease relative to the average solar PPA price the Company 11 calculated as the blended "average" (actually, the P25) PPA price in MISO and PJM and a 16.6% decrease relative to its Rhudes Creek PPA.¹⁶ In other words, the 12 Companies are proposing a NMS-2 compensation rate that is not only dramatically 13 14 less than the current retail rate for customers, but is significantly less than its own 15 solar PPA and the PPAs entered into across the region with renewable resources.

For reasons further articulated in the Direct Testimony of Benjamin Inskeep in this proceeding, I strongly oppose this proposal by the Companies. Because this approach is confusing for customers, unnecessarily complicated, and would make estimating the financial viability of a distributed generation ("DG") facility extremely difficult, among other reasons, I recommend that the Commission adopt

Supplemental Rebuttal Testimony of Justin R. Barnes

¹⁶ Calculated as follows: (\$0.03296 - \$0.02319)/(\$0.03296) = 29.64% and (\$0.02782 - \$0.02319)/(\$0.02782) = 16.64%. See Supplemental Exhibit DSS-2, pp. 3 and 5 of 16 (filed July 13, 2021) [PDF 120, 122 of 161], for average LevelTen Energy PPA Price Index and Rhudes Creek PPA pricing, respectively.

1		the monthly netting regime that it adopted for Kentucky Power Company and that
2		is currently in place for the Companies under their net metering tariff. I recommend
3		the dollar-denominated bill credit established in this proceeding be applied to the
4		customer's net excess generation that accrues over the monthly billing period.
5		A. Avoided Energy Costs
6	Q.	WHAT DID THE COMPANIES PROPOSE WITH RESPECT TO SETTING
7		THE AVOIDED ENERGY COSTS?
8	A.	The Companies proposed setting the Avoided Energy Cost component at
9		\$0.02319/kWh for NMS-2 customers, which is the same rate it developed for
10		qualifying facilities under LQF and SQF for Fixed-tilt Solar based on the average
11		avoided energy cost they calculated for 2022 and 2023.17
12	Q.	IS THE COMPANIES' AVOIDED ENERGY COSTS CALCULATION
13		REASONABLE?
14	А.	No. As an initial matter, the Avoided Energy Cost should not be set below the
15		energy rate established for QFs electing the 20-year rate option proposed by the
16		Companies for tariffs SQF and LQF for fixed-tilt solar facilities. For fixed-tilt solar
17		facilities installed in 2022, the 20-year rate proposed by the Companies for fixed-
18		tilt solar facilities is \$24.07/MWh, or \$0.02407/kWh.18 Net metering customers
19		that install solar facilities are making a long-term investment in a generating facility
20		that has an expected life of at least 25 years. There is no reason to believe these
21		customers would decommission these facilities earlier than necessary, given a net

 ¹⁷ Supplemental Testimony of Seelye, p. 9 (filed July 13, 2021) [PDF 51 of 161].
 ¹⁸ Supplemental Exhibit RMC-1 (filed July 13, 2021) [PDF 18 of 161]. Supplemental Rebuttal Testimony of Justin R. Barnes On Behalf of the Kentucky Solar Industries Association, Inc.

metering customer's financial payback of such an investment is contingent on them
 remaining in service and generating electricity.

Furthermore, the Avoided Energy Costs calculated by the Companies were not grossed up for line losses. Excess generation from net metering facilities interconnected to the distribution system does not incur any transmission losses, unlike centralized power plants, or even transmission-interconnected QFs. They also do not use a substantial portion of the distribution system, as excess generation flows in the path of least resistance – typically, to nearby neighbors.

9 Q. WHAT IS A MORE REASONABLE APPROACH TO CALCULATING 10 AVOIDED ENERGY COSTS?

11 A. A more transparent and logical approach would be to use the LG&E PJM interface 12 three-year daytime-only (with escalation and discounting over time) methodology 13 used for KPC, as I recommend in my Supplemental Direct Testimony. This pricing 14 approach represents the value of substitute energy from either a purchase or sale 15 standpoint and would align the Companies' valuation of Avoided Energy Costs 16 with the established method for KPC.

17 Q. COULD A DIFFERENT INDEX OTHER THAN THE LG&E PJM 18 INTERFACE PRICE BE USED FOR THIS PURPOSE?

A. I recommended the use of the LG&E PJM interface because it constitutes a readily
 accessible market for substitute energy and offers transparency in pricing. If
 substitute energy was more commonly purchased or excess sold through different
 means, another price basis could be used. However, in practice a prudent utility
 would presumably purchase substitute energy from the least-cost source but sell
 Supplemental Rebuttal Testimony of Justin R. Barnes
 On Behalf of the Kentucky Solar Industries Association, Inc.

excess energy at highest price available. A full examination of off-system sales and
 purchases could identify an average rate, but could be complicated to perform and
 less transparent than simply using a single publicly available market index. For that
 reason, my view is that using a single public source is preferrable.

5 Q. IS IT POSSIBLE FOR THE AVOIDED ENERGY COMPONENT OF THE 6 NMS-2 RATE TO DIFFER FROM THE AVOIDED ENERGY RATE 7 APPLIED UNDER RIDERS SQF AND LQF?

8 Yes, because net metering facilities and typical grid-supply QFs are delivering A. 9 energy with different characteristics. A net metering system is exporting energy 10 after it services on-site load in an un-forecasted manner. This means that the 11 temporal profile of exports will differ from the production profile of the net 12 metering facility, and because the deliveries are un-forecasted, they would not be incorporated into the operational decisions governing Company-owned generation 13 14 units. Accordingly, the avoided energy costs correspond to the as available market 15 price represented by the LG&E-PJM interface price, or another available index.

On the other hand, the Company would presumably incorporate the expected energy deliveries from grid-supply QFs into the operational decisions for Company-owned generation. Under these circumstances, the avoided energy costs are tied to the marginal energy costs of Company-owned units because forecasted QF generation substitutes for energy that would otherwise be generated by Company-owned generation units rather than substituting for "imbalance" energy.

Q. IF THE COMMISSION WERE TO BASE AVOIDED ENERGY COSTS ON THE COMPANY'S METHODOLOGY FOR DEFINING 20-YEAR FIXED RATES FOR QFS, ARE ANY MODIFICATIONS NECESSARY TO APPLY THESE RATES TO NMS-2 FACILITIES?

5 Yes. Two modifications are necessary. First, the Company used a 6.75% discount A. 6 rate in performing the levelized cost operation, whereas in the KPC proceeding the 7 Commission adopted a methodology that uses a risk-free discount rate of 1.4%. Making this modification increases the avoided energy rate from \$0.02407/kWh 8 9 for fixed tilt solar facilities to \$0.02432. Second, a loss adder needs to be applied 10 to reflected avoided transmission and distribution losses. The respective loss adders 11 for LG&E and KU are 5.33% and 7.65%, respectively. The combined adjustments 12 produces an energy rate of \$0.02562/kWh for LG&E and \$0.02618/kWh for KU.

13

<u>B. Avoided Generation Capacity Costs</u>

14 Q. WHAT DID THE COMPANIES PROPOSE WITH RESPECT TO SETTING

15 THE AVOIDED GENERATION CAPACITY COSTS?

16 A. The Companies argue that net metering customers should receive *no* credit for 17 avoided generation capacity costs.¹⁹ In the alternative, they argue that net metering 18 customers should not receive a credit for avoided generation capacity costs that 19 "exceed the cost that the Companies would incur from purchasing power from a 20 solar purchased power agreement."²⁰ The Companies calculate this upper bound

Supplemental Rebuttal Testimony of Justin R. Barnes

¹⁹ Supplemental Testimony of Seelye, pp. 22-23 (filed July 13, 2021) [PDF 64 of 161].

²⁰ Supplemental Testimony of Seelye, p. 23 (filed July 13, 2021) [PDF 64, 65 of 161].

value at \$0.00170/kWh in 2022 and \$0.00191/kWh in 2023 based on the Rhudes
 Creek PPA.²¹

The Companies used three methods for calculating avoided costs for different technologies and then picked the lowest value of the three methods for a given technology. The three methods were: (1) the Rhudes Creek PPA as a baseline all-in compensation rate; (2) an index of solar and wind PPA prices as the all-in price baseline; and (3) a bottom-up calculation of capacity costs for a combustion turbine under the "peaker" methodology. The Companies choice to use the lowest value resulted in the selection of the Rhudes Creek PPA for solar.

10 ARE THE RECOMMENDATION Q. **COMPANIES'** ON AVOIDED 11 CAPACITY COST **COMPENSATION** FOR NET **METERING** 12 **CUSTOMERS REASONABLE?**

A. No. As I have previously discussed, the Companies' continued refusal to
acknowledge the avoided capacity cost benefits of excess generation provided by
net metering facilities directly contradicts the Commission's findings in the KPC
Order, ²² as well as how the capacity benefits of variable renewable energy
generation is evaluated and compensated in nearly every wholesale market in the
United States. Net metering customers' excess generation provides a quantifiable
capacity value, and net metering customers should be compensated accordingly.

20 The Companies' contention that it is impossible for non-contracted 21 resources to contribute to avoiding new generation capacity investments is factually

²¹ Supplemental Exhibit DSS-1, Table 14 (filed July 13, 2021) [PDF 131 of 161].

²² Case No. 2020-00174 (Ky PSC May 14, 2021) Order, p. 31.

Supplemental Rebuttal Testimony of Justin R. Barnes On Behalf of the Kentucky Solar Industries Association, Inc.

1 incorrect and defies logic. Net metering customers have a direct, substantial 2 incentive to keep their system operating to recoup their significant upfront investment. There is no legitimate danger of system attrition, and the Companies 3 have not substantiated their claims along these lines with any evidence. In fact, 4 5 according to information provided by the Companies, only two out of a total of 1,189 net metering customers (0.11%) have ceased operation. ²³ Excess generation 6 7 aggregated across net metering customers can be measured, forecasted, planned for, and used to the benefit of the Companies' customers to avoid duplicative capacity 8 9 investments or purchases.

The Companies' claims about net metering customers being unable to 10 11 provide avoided capacity value are undercut by their own treatment of distributed 12 generation, electric vehicle deployment, and demand-side management ("DSM") measures in their integrated resource planning. The Companies' IRP forecasts the 13 deployment of these measures when determining their peak demand and energy 14 15 needs.²⁴ This means that they ascribe capacity value in their IRP to DSM measures, 16 even when DSM customers have no contract and no specific obligation. In response to an information request the Companies concede that this is true.²⁵ While this 17 18 particular response goes to great length to try to distinguish DSM from net metering 19 systems, nowhere does it contest the premise that DSM counted towards the

²³ Companies' Response to MA-KFTC-KSES Supplemental Requests – a.k.a. MA-KFTC-KSES 3rd, Item 8 (filed Aug. 2, 2021) [PDF 31 of 620] at Attachment for Item 8.

²⁴ 2018 IRP, available at https://psc.ky.gov/pscecf/2018-00348/rick.lovekamp%40lgeku.com/10192018102925/3-LGE KU 2018 IRP-Volume I.pdf

²⁵ Companies Response to KYSEIA Supplemental Requests, Item 11(d) (filed Aug. 2, 2021) [PDF 20 of 28].

Supplemental Rebuttal Testimony of Justin R. Barnes

Companies' capacity position in its IRP is not subject a contractual obligation or
 other long-term commitment.

3 Q. ARE THE COMPANIES' AVOIDED CAPACITY COSTS CALCULATION 4 METHODOLOGY REASONABLE FOR NET METERING CUSTOMERS?

5 No. The Companies argue that if an avoided capacity cost is assigned to net A. 6 metering customers, then the value for 2022 and 2023 should be based on pricing 7 from a single solar PPA executed in 2019. The value is computed as the difference 8 between the Rhudes Creek energy cost (\$27.82/MWh) and the avoided cost of 9 energy it separately calculated based on forecasted hourly energy costs developed 10 in PROSYM. As I discussed in the context of capacity pricing for QFs, this 11 approach has multiple failings, not the least of which is that it is discriminatory on 12 the basis of technology type. However, putting aside that dubious premise, an even 13 more concerning aspect of the Companies' methodology is that it relies exclusively 14 on a single PPA contract. A single PPA price point is not a reliable or transparent 15 cost basis for determining the Avoided Capacity Cost, and it is not reflective of the 16 Companies' long-term avoided capacity costs.

17 Q. WHAT IS A MORE REASONABLE APPROACH TO CALCULATING

18

AVOIDED CAPACITY COSTS?

A. As I discussed in my Supplemental Testimony and previously in my Supplemental
 Rebuttal Testimony, the Avoided Capacity Cost calculation should utilize a single
 technology neutral methodology based on the cost of a proxy natural gas combined
 cycle unit based on the next hypothetical addition to the Companies' system in its
 IRP. Furthermore, since system peaks that drive a need for capacity investments
 Supplemental Rebuttal Testimony of Justin R. Barnes
 On Behalf of the Kentucky Solar Industries Association, Inc.

are not evenly distributed across all months and monthly peaks of the year, the
assumed solar contribution to peak should be calculated using the weighted LOLP
methodology that reflects the capacity benefits a typical solar net metering facility
is forecasted to provide relative to the risk of a capacity shortfall at a given hour in
the year.

In my Supplemental Testimony I calculated an initial avoided capacity cost
based on the PJM Net CONE for an NGCC unit as a proxy capacity addition. In
this calculation I used a placeholder for demand losses of 5%. Updating this with
Company-specific demand losses results in avoided capacity cost rates of
\$0.0362/kWh and \$0.0371/kWh for LG&E and KU, respectively.

11 Q. THE COMPANY'S PEAKER UNIT METHODOLOGY USES A
12 COMBUSTION TURBINE AS THE PROXY CAPACITY UNIT. HOW
13 WOULD THIS CHANGE THE AVOIDED CAPACITY COST YOU HAVE
14 CALCULATED?

A. Using the same methodology as I employed for my NGCC-based estimate and
updated loss factors, the respective rates for a combustion turbine based on PJM
Net CONE rates would be \$0.0391/kWh and \$0.0401/kWh for LG&E and KU,
respectively.

19Q.PLEASE EXPLAIN WHY THIS AMOUNT DIFFERS FROM THE RATES20THE COMPANIES CALCULATE USING A COMBUSTION TURBINE AS

21 **A PROXY CAPACITY RESOURCE.**

A. There are several reasons with varying levels of significance on the results. The
 most prominent differences are: (a) the Companies use an effective solar capacity
 Supplemental Rebuttal Testimony of Justin R. Barnes
 On Behalf of the Kentucky Solar Industries Association, Inc.
 August 5, 2021

contribution of 28.8% for fixed tilt solar, whereas my LOLP-based solar capacity
contribution produces a 58.14% on-peak capacity factor, (b) the amount I derived
does not reflect the timing of the next capacity need using a discounted levelization
process, and (c) the Companies did not apply loss factors in their calculations. There
are other differences in the manner in which the Companies perform the capacity
cost calculation that differ from how the PJM does so, but the core cost assumptions
are not dramatically different.

8 Q. WHAT WOULD THE AVOIDED CAPACITY RATE FOR FIXED TILT 9 SOLAR BE USING THE COMPANIES' COMBUSTION TURBINE 10 METHODOLOGY WITH ADJUSTMENTS TO THE SOLAR EFFECTIVE 11 CAPACITY AND INCLUSION OF LOSS FACTORS?

12 Table 4 below shows the implied avoided capacity rates (\$/MWh) for fixed tilt solar A. 13 based on the Companies' combustion turbine methodology for 20-year periods 14 starting in 2022 through 2026 with the effective solar capacity factor adjustment 15 and added demand loss factors. I also adjusted the annual solar capacity factor that 16 is used to estimate the annual solar production used in the denominator of the rate 17 derivation from the 16.7% used by the Companies to 15.17%. The 15.17% capacity 18 factor is based on the annual capacity factor in nameplate (DC) watts for the solar 19 production profile I used in calculations.

20

Table 4: NMS-2 Capacity Rates Based on Gas CT Peaker Methodology

Utility	2022	2023	2024	2025	2026	Average	2022-2024 Average
LG&E	\$0.03372	\$0.03776	\$0.04211	\$0.04678	\$0.05179	\$0.04243	\$0.03786
KU	\$0.03457	\$0.03872	\$0.04317	\$0.04796	\$0.05310	\$0.04351	\$0.03882

21

Supplemental Rebuttal Testimony of Justin R. Barnes On Behalf of the Kentucky Solar Industries Association, Inc. August 5, 2021

1	As is readily visible in Table 4 the implied rates for systems installed during
2	the next several years is similar to my preliminary estimate based on an NGCC unit
3	and PJM Net CONE, lower in 2022, roughly the same though slightly higher in
4	2023, and significantly higher in 2024 and beyond. By contrast, the Companies'
5	proposed NMS-2 capacity rate of \$0.00170/kWh in 2022 and \$0.00191/kWh in
6	2023 based on the inappropriate Rhudes Creek market price methodology is
7	dramatically lower. While I continue to recommend that the rates I developed based
8	on the PJM Net CONE for an NGCC are reasonable for use within the NMS-2 rate
9	calculation, the values in Table 4 based on the Companies' capacity cost calculation
10	for a natural gas CT could be used instead. The resulting rates would be nearly
11	identical if a forward-looking two or three year average is used.

12 Q. YOU RECOMMENDED AN ON-PEAK RATE FOR AVOIDED CAPACITY 13 COSTS FOR RIDERS SQF AND LQF. DO YOU ALSO RECOMMEND 14 THAT A TIME-DIFFERENTIATED CAPACITY RATE BE EMPLOYED 15 FOR NMS-2 AVOIDED COSTS?

A. No. Implementing a time-differentiated rate for NMS-2 avoided capacity would
 require that all NMS-2 customers be equipped with meters capable of such
 measurement. That would constitute an added, unnecessary cost at the present time.
 Furthermore, it would create a disconnect between the non-time-differentiated rates
 at which net metering customers purchase energy from the Company and the rates
 at which net excess production is compensated. Such a disconnect could be
 confusing to customers, make bill savings projections more uncertain, and

1		introduce mixed incentives with respect to how NMS-2 customers behave with
2		respect to their energy use patterns.
3		C. Avoided Transmission Costs
4	Q.	WHAT DID THE COMPANIES PROPOSE WITH RESPECT TO SETTING
5		THE AVOIDED TRANSMISSION COSTS?
6	A.	The Companies argue that net metering customers should receive no compensation
7		for avoided transmission costs. ²⁶ In the alternative, they argue that Avoided
8		Transmission Costs are, "at most," \$0.00025/kWh for KU and \$0.00010/kWh for
9		LG&E. ²⁷ These values were derived by taking the projected total transmission plant
10		additions for retail load growth over 2021-2030, calculating an annual revenue
11		requirement, and dividing that by annual kWh sales.
12	Q.	ARE THE COMPANIES' RECOMMENDATION ON AVOIDED
13		TRANSMISSION COST COMPENSATION FOR NET METERING
14		CUSTOMERS REASONABLE?
15	A.	No. The Companies' argument is effectively a self-fulfilling prophecy: If a critical
16		mass of distributed generation must be installed to cause transmission cost
17		avoidance and only then be eligible to receive compensation for the value of that
18		transmission cost avoidance, then the critical mass will never be reached in the first
19		place because the price signals are not in place to incentivize incremental DG
20		deployment.

 ²⁶ Supplemental Testimony of Seelye, p. 25 (filed July 13, 2021) [PDF 67 of 161].
 ²⁷ Supplemental Testimony of Seelye, p. 26 (filed July 13, 2021) [PDF 68 of 161]. Supplemental Rebuttal Testimony of Justin R. Barnes On Behalf of the Kentucky Solar Industries Association, Inc. August 5, 2021

1 In reality, each incremental unit of capacity or reduced load has a definable 2 value based on the unitized avoided marginal costs. Failing to compensate DG customers for small incremental load reductions will undervalue the benefits of 3 excess generation and result in the self-fulfilling prophecy described above. Each 4 5 incremental kW of load reduction provided by DG offsets an equivalent kW of load 6 increase on the system that contributes to the incurrence of additional transmission 7 investments. Similarly, load increases (e.g., a residential customer adding an air conditioning unit) are typically incremental and generally small in nature 8 9 individually, but cumulatively they result in incremental transmission costs. The 10 same principle is true for incremental reductions provided by DG facilities.

11 Q. DOES AVOIDING TRANSMISSION LOADING PRODUCE BENEFITS TO

THE COMPANIES' CUSTOMERS BEYOND AVOIDANCE OF FUTURE

13 **INVESTMENTS**?

12

A. Yes. The Companies' transmission system is the source of a considerable amount
of revenue which acts as an offset to the embedded costs that its customers would
otherwise pay. The amounts of these offsets have increased considerably over the
last several years. For instance, in KU's service territory, the transmission revenue
offset for residential customers was roughly \$3.75 million in the Company's 2016
rate case.²⁸ In the 2020 rate case, the offset increased to \$11.74 million.²⁹ Such
outside revenue is made possible by the availability of transmission capacity

Supplemental Rebuttal Testimony of Justin R. Barnes

 ²⁸ Case No. 2016-00370. Company response to PSC 3-27, Attachment entitled "2016 KU 3rd Data Response Attachment to PSC Q27 - KU COSS - BIP with Unit Cost Sheets"
 ²⁹ Case No. 2020-00349. Company response to AG-KIUC 1-188, Attachment entitled "2020 AG-KIUC KU DR 1 Attach to 188 - att 1".

beyond what is necessary to serve the Companies' native loads. That available
 capacity can be enhanced by the transmission load reductions provided by net
 metering customers.

4 Q. ARE THE COMPANIES' METHODLOGY FOR CALCULATING 5 AVOIDED TRANSMISSION COSTS FOR NET METERING CUSTOMERS 6 REASONABLE?

7 No. The calculations provided by the Companies do not actually yield the marginal A. 8 value of avoided transmission costs nor do they reflect the value that existing 9 available transmission capacity has as revenue generator. With respect to marginal 10 costs, the Companies did not identify the kW load carrying capability of the 11 investments in the Companies' business plan. Instead, the Companies simply 12 divided the calculated forecasted annual incremental transmission revenue requirement in 2022-2031 by annual kWh sales.³⁰ This calculation fails to establish 13 14 a relationship between how costs vary on a *capacity unitized basis*, which is 15 necessary for computing the transmission cost avoidance.

A serious shortcoming of this methodology is that it fails to consider that the need for transmission is driven by peak needs. If unitized kWh costs are used, they should be confined to the peak hours that actually cause transmission costs to be incurred. Instead, by dividing costs across all kWh of consumption to produce a rate fails to account for how DG exports contribute to peak reductions. In addition, the Companies' methodology fails to gross up solar contributions to avoided

³⁰ Supplemental Testimony of Seelye, p. 26 (filed July 13, 2021) [PDF 68 of 161]. Supplemental Rebuttal Testimony of Justin R. Barnes On Behalf of the Kentucky Solar Industries Association, Inc.

transmission capacity for demand losses. A kW of solar at the point of load avoids
 transmission capacity at a premium based on losses (i.e., transmission capacity
 must have a rating of 1 kW, *plus losses*, to serve 1 kW of load).

The same rationale applies when evaluating how available existing transmission capacity can generate value and how that value can be enhanced by transmission load reductions provided by net metering generators. The availability of excess transmission capability would be correlated with the amount necessary to serve the Companies' native loads and would likely be most valuable during peak periods when the need to transmit electricity to where it is needed is at its highest.

10 Q. WHAT IS A MORE REASONABLE APPROACH TO CALCULATING 11 AVOIDED TRANSMISSION COSTS?

A. Ideally, Avoided Transmission Costs are determined for DG facilities by (1)
calculating the marginal cost per kW of incremental transmission capacity, (2)
determining how the solar production shape aligns with the peaks that define cost
causation for transmission investment, and (3) calculating the portion of the unit
cost that a given kW of PV nameplate can avoid.

17 Avoided Transmission Costs can be estimated in this case using unit 18 transmission costs, i.e., the cost per kW of the system as a whole as it exists 19 currently as a representation of the average marginal cost per unit of system 20 utilization (kW). While a more robust estimation methodology would be based on 21 the results of a marginal cost study, the Companies do not seem to perform this type 22 of analysis, necessitating the use of my method as a reasonable proxy, as this type 23 of study is not something other parties would be able to perform independently. Supplemental Rebuttal Testimony of Justin R. Barnes 38 On Behalf of the Kentucky Solar Industries Association, Inc.

August 5, 2021

1 The unit costs of the existing system can be used to determine what a given 2 increment of transmission capacity has historically cost. While it's backwards-3 looking, it still provides insight into the value of avoiding the expense associated 4 with adding a kW of transmission capacity. I note that the Commission's KPC 5 Order estimated Avoided Transmission Capacity Costs using historical data, 6 finding the value to be \$0.01245/kWh, or several orders of magnitude larger than 7 the maximum values estimated by the Companies in this case.³¹

8 I also note that the embedded unit cost approach aligns with the use of 9 existing transmission assets to generate revenue, as the unit costs directly represent 10 a cost-based rate for those existing assets.

Q. WHAT SPECIFIC AMOUNTS FOR AVOIDED TRANSMISSION COSTS DOES YOUR UNIT COST ANALYSIS METHOD PRODUCE?

13 A. In my Supplemental Testimony I provided preliminary rates of \$0.01037/kWh for

LGE and \$0.01989/kWh for KU under an LOLP-based unit cost methodology, and
 \$0.00812/kWh for KU and \$0.00782/kWh for LG&E, under a 6CP methodology.³²
 I have updated these amounts to: (a) correct an error in the net cost of service

18 methodology,³³ and (b) update the demand loss factor adder to replace a general

17

amount used to calculate transmission unit costs for LG&E under a 6CP

³¹ Case No. 2020-00174 (Ky PSC May 14, 2021) Order, p. 32.

³² Unit costs used for this calculation are derived from residential net cost of service amounts divided by class load (kW). The use of net cost of service in this calculation implicitly incorporates historic depreciation and offsetting revenues, which likely actually cause it to understate the true marginal costs of new transmission investments.

³³ The previous calculation inadvertently used gross cost of service to calculate unit costs for LG&E, rather than net cost of service. The calculation for KU is not affected by this revision.

- 5% placeholder with Company-specific amounts.³⁴ The resulting updated figures
 are shown in Table 5.
- 3

4

6

7

Table 5: NMS-2 Avoided Transmission Capacity Rates

Utility	LOLP Methodology (\$/kWh)	6CP Methodology (\$/kWh)
LG&E	\$0.01050	\$0.00637
KU	\$0.02065	\$0.00843

The amounts presented in Table 5 are current, or Year Zero, amounts that have not been escalated under the escalation, discounting, and levelization methodology employed in calculating net metering rates for KPC.

8 Q. DO YOU RECOMMEND THAT A SIMILAR ESCALATION AND

9 DISCOUNTING CALCULATION BE MADE TO DEVELOP LEVELIZED

10 **AVOIDED TRANSMISSION RATES IN THE CURRENT PROCEEDING.**

11 A. Not necessarily. I agree in principle with the methodology employed for KPC, but 12 after further review of available data it is my view that devising an appropriate 13 escalation rate is somewhat challenging. Based on the cost of service information 14 submitted by the Companies in this rate case and their prior two rate cases, the annualized escalation of net cost transmission rate base over the four years that have 15 16 elapsed since the end of the test year in the Companies 2016 rate case (June 30, 17 2018) and the end of the test year for the current rate case (June 30, 2022) is 9.43% 18 for LG&E and 16.08% for KU. These escalators are based on demonstrated, real 19 increases in transmission investment and costs and as such provide a solid measure

Supplemental Rebuttal Testimony of Justin R. Barnes

 $^{^{34}}$ 6.325% for LG&E and 9.017% for KU based on full demand losses for transmission and distribution.

of cost escalation over recent years. However, assuming cost escalation in these
 amounts could produce rather extraordinary levelized long-term avoided cost
 estimates that some might consider questionable.

In light of that fact, an alternative approach could be to use the escalation in net cost of service for the same time period.³⁵ The annualized escalation based on this metric is 4.19% for KU and 2.01% for LG&E. Table 6 presents the levelized long-term avoided transmission costs using these escalation rates and the 1.4% riskfree discount rate employed for KPC under both the LOLP and 6CP solar contribution to peak scenarios.

10

Table 6: Levelized NMS-2 Avoided Transmission Rates

Utility	LOLP	6CP
	Methodology (\$/kWh)	Methodology (\$/kWh)
LG&E	\$0.01327	\$0.00806
KU	\$0.03426	\$0.01399

11

To be clear, I suggest this as potential measure of future escalation that could be used by the Commission on the basis that net cost of service reflects both the cost side of existing transmission and the ability of that existing transmission to generate revenue. However, given the uncertainties involved and the impact that the escalation rate selection has on the rate calculation, my recommendation is that the Year Zero rates I have calculated be used in the current proceeding. This would effectively assume that cost escalation takes place at the same rate as the risk-free

³⁵ Escalations are based on residential unit costs for ease of calculation. A system-wide analysis could be conducted by summing the applicable amounts for each class of customer.

Supplemental Rebuttal Testimony of Justin R. Barnes

1		discount rate. Refinement of methods used to estimate cost escalation could be
2		pursued in future proceedings.
3		D. Avoided Distribution Costs
4	Q.	WHAT DID THE COMPANIES PROPOSE WITH RESPECT TO SETTING
5		THE AVOIDED DISTRIBUTION COSTS?
6	A.	The Companies argue that net metering customers should receive no compensation
7		for avoided distribution costs. ³⁶ In the alternative, they argue that Avoided
8		Distribution Costs are, "at most," \$0.00046/kWh for KU and \$0.00012/kWh for
9		LG&E. ³⁷ These values were derived by taking the projected total distribution plant
10		additions for retail load growth over 2021-2030, calculating an annual revenue
11		requirement, and dividing that by annual kWh sales.
12	Q.	ARE THE COMPANIES' RECOMMENDATION ON AVOIDED
13		DISTRIBUTION COST COMPENSATION FOR NET METERING
14		CUSTOMERS REASONABLE?
15	A.	No. Similar to its Avoided Transmission Cost arguments, the Companies' argument
16		here is a self-fulfilling prophecy: If a critical mass of distributed generation must
17		be installed to cause distribution cost avoidance and only then be eligible to receive
18		compensation for the value of distribution cost avoidance, the critical mass will
19		never be reached in the first place because the price signals are not in place to
20		incentivize incremental DG deployment.

³⁶ Supplemental Testimony of Seelye, p. 27 (filed July 13, 2021) [PDF 69 of 161] *see also* Supplemental Testimony of John W. Wolfe, p. 7 (filed July 13, 2021) [PDF 143 of 161].
³⁷ Supplemental Testimony of Seelye, p. 28 (filed July 13, 2021) [PDF 70 of 161].

Each incremental unit of capacity or reduced load has a definable value based on the unitized avoided marginal costs. Failing to compensate DG customers for small incremental load reductions will undervalue the benefits of excess generation and result in the self-fulfilling prophecy described above. Each incremental kW of load reduction provided by DG offsets an equivalent kW of load increase on the system that contributes to the incurrence of additional distribution investments.

8 Q. IS THE COMPANIES' METHODLOGY FOR CALCULATING AVOIDED 9 DISTRIBUTION COSTS FOR NET METERING CUSTOMERS 10 REASONABLE?

11A.No. The calculations provided by the Companies do not actually yield the marginal12value of avoided distribution costs for similar reasons described above for Avoided13Transmission Costs. The Companies simply divided the calculated forecasted14annual incremental distribution revenue requirement in 2022-2031 by annual kWh15sales.³⁸ This calculation fails to establish a relationship between how costs vary on16a *capacity unitized basis*, which is necessary for computing the distribution cost17avoidance.

18 The Companies' use of a 10-year forward-looking period for calculating 19 both transmission and distribution avoided costs is also inappropriate and could 20 understate the benefits of DG facilities, particularly if avoided costs in future years 21 (years 11-25) are higher than the average avoided costs in the first ten years. One

 ³⁸ Supplemental Testimony of Seelye, pp. 27-28 (filed July 13, 2021) [PDF 69, 70 of 161]. Supplemental Rebuttal Testimony of Justin R. Barnes
 On Behalf of the Kentucky Solar Industries Association, Inc. August 5, 2021 1 of the principles the Commission adopted in its KPC Order was the use of "forward-2 looking, long-term, and incremental analysis," and "[g]iven that the typical 3 warranty provided by a solar panel manufacturer is 25 years, this would be an 4 appropriate analysis period for Kentucky Power's net metered customers."³⁹

5 The Companies' methodology fails to consider that the need for distribution 6 is driven by peak needs, in this case demands on the distribution system driven 7 maximum class demands. If unitized kWh costs are used, they must be adjusted to 8 reflect the contribution that solar provides during those peak hours that actually 9 cause distribution costs to be incurred. Instead, by dividing costs across all kWh of 10 consumption to produce a rate fails to account for how DG exports contribute to 11 peak reductions.

As the Companies note, DG facilities are dispersed throughout their system.⁴⁰ By providing generation at the point of load and excess generation to nearby neighbors, DG facilities help to reduce load on distribution system substations during peak periods, which allows load increases that might otherwise trigger a need for upgrades to existing distribution system facilities. These real, incremental distribution system benefits should be compensated accordingly.

³⁹ Case No. 2020-00174 (Ky PSC May 14, 2021) Order, p. 23.

⁴⁰ Supplemental Testimony of Wolfe p. 4, lines 9-21 (filed July 13, 2021) [PDF 140 of 161].

Supplemental Rebuttal Testimony of Justin R. Barnes

Q. WHAT IS A MORE REASONABLE APPROACH TO CALCULATING AVOIDED DISTRIBUTION COSTS?

3 As I discussed in my Supplemental Testimony, I recommend a unit-cost based A. 4 approach that relies on: (a) defining the incremental cost of a given unit of 5 distribution capacity (\$/kW), (b) identifying the alignment of typical solar 6 production to distribution peaks, in the form of an effective solar capacity 7 contribution during typical peak hours (%), and (c) calculating a rate based on estimated annual energy production from that same hypothetical solar unit. This 8 9 functionally the same as the unit cost method that I employed to calculated avoided 10 transmission costs. As with transmission, the rate should be grossed up based on a 11 distribution demand loss factor.

12 Q. HAVE YOU QUANTIFIED THE DISTRIBUTION AVOIDED COST?

13A.Yes. Using the top 10% of residential class load hours to define a solar capacity14contribution and the distribution unit cost approach I described in my Supplemental15Testimony, the effective solar capacity factor is 9.09% for KU and 14.43% for16LG&E. After applying this factor to distribution demand-related unit costs, dividing17by annual solar production and adding a demand loss adder produces an initial Year18Zero distribution avoided cost of \$0.00251/kWh for LG&E and \$0.00147/kWh for19KU.

Q. PLEASE EXPLAIN WHY THE TOP 10% OF CLASS LOAD HOURS IS A REASONABLE BASIS ON WHICH TO CALCULATE EFFECTIVE SOLAR CAPACITY IN RELATION TO DISTRIBUTION COSTS.

A. Cost-based rate regulation generally values consistency over time with respect to
the allocation of costs in a cost of service study. For that reason, methods that could
result in dramatic differences in cost allocation from test year to test year are
disfavored. For instance, a single coincident peak ("1CP") method could produce
large differences in implied cost responsibility if the timing of the 1CP could vary
considerably from test year to test year. Relying on a single peak hour in any context
introduces the potential for this type of volatility.

11 The same rationale can be applied in the context of this case when 12 determining the effective solar capacity contribution to reducing distribution loads. 13 During a given test year, maximum class demand might occur during late afternoon 14 during the summer, early evening during the summer, early morning during the 15 winter, or mid-morning during the winter. Those maximum demands can be similar 16 in magnitude (i.e., placing a similar strain the grid) even though their timing differs 17 and the timing can have a significant impact on the implied solar contribution to 18 reducing distribution load. For instance, the solar contribution for the hour ending 19 at 4 PM is much different than it would be at the hour ending at 6 PM. Using an 20 average of solar production during high load hours rather than a single hour

1 mitigates the potential for large swings in solar value attribution that may be transitory artifacts of a specific test year.⁴¹ 2

Furthermore, while maximum class demand during a single hour is 3 frequently used as a measure of cost causation for the distribution system, the fact 4 5 is that it is relatively imprecise because individual distribution circuits peak at 6 different times depending on the character of the loads they serve. For instance, few 7 if any distribution circuits exclusively serve residential customers and by and large 8 non-residential classes tend to peak later in the morning or earlier in the evening 9 than the residential class. While it may not be possible to more precisely define cost 10 responsibility on a circuit by circuit basis, using an average of high class load hours 11 helps introduce diversity reflective of the diversity of load on the distribution 12 system. To be clear, where class loads consistently occur during low or zero solar 13 production hours, my approach still reflects this characteristic.

HAVE YOU IDENTIFIED AN ALTERNATIVE APPROACH TO THE 14 **Q**.

15 EMBEDDED UNIT COST APPROACH FOR ESTIMATING THE 16 MARGINAL COST OF DISTRIBUTION CAPACITY?

17 A. Yes. In response to an information request the Companies provided information on 18 the incremental load carrying capability of planned distribution investments in their 19 portfolio. I used these amounts along with the annualized carrying costs that Mr. 20 Seelye used in his calculations to calculate implied marginal distribution capacity

⁴¹ For instance, for LG&E using the single highest load hour would produce an effective solar capacity of roughly 15.1% while the average of the top two hours is 26.6%. Supplemental Rebuttal Testimony of Justin R. Barnes

1		costs in unitized (\$/kW) figures. ⁴² Applying the same effective solar contribution				
2		and loss factors to these unit costs produces similar, slightly higher, avoided				
3		distribution cost rates. Table 7 presents the results of both sets of distribution unit				
4		cost calculations.				
5		Table 7: NMS-2 Avoided Distribution Capacity Rates				
		UtilityEmbedded UnitImplied MarginalCost MethodologyUnit Cost(\$/kWh)Methodology (\$/kWh)				
		LG&E \$0.00251 \$0.00297				
6		KU \$0.00147 \$0.00306				
7 8		Both sets of rates in Table 7 refer to initial, Year Zero amounts without the use of the escalation, discounting, and levelization procedure employed in the KPC				
9		proceeding.				
10	Q.	DO YOU RECOMMEND THAT A SIMILAR ESCALATION AND				
11		DISCOUNTING CALCULATION BE MADE TO DEVELOP LEVELIZED				
12		AVOIDED DISTRIBUTION RATES IN THE CURRENT PROCEEDING.				
13	A.	No. As with the transmission cost component I have reservations about				
14		recommending a specific escalation rate for distribution costs. Therefore my				
15		recommendation is to use the Year Zero values, which is akin to assuming a				
16		moderate escalation in costs at the same rate as the risk-free discount rate (1.4%).				
17		For the sake of transparency, the distribution escalation rates I calculate based on				
18		net cost rate base are 8.6% for LG&E and 8.8% for KU. The alternative amounts				

⁴² Companies' response to KYSEIA Supplemental 1-13. The unit costs are derived by dividing annualized carrying costs (\$) by the incremental load carrying capability of those investments (kW).

Supplemental Rebuttal Testimony of Justin R. Barnes

based on residential net cost of service are negative (0.86%) for LG&E and 0.43%
 for KU.

It is difficult to reconcile the demonstrated significant increases in distribution costs as reflected in net rate base with the modest or declining escalation rates based on net residential cost of service. Clearly, there must be other factors involved in creating this disconnect, but I have not been able to conduct a comprehensive analysis to identify those factors and the adjustments they may require to calculating escalation rates. For that reason, as with the transmission cost component, I suggest that refinements be pursued in future proceedings.

10 Q. DO YOU RECOMMEND THAT THE COMMISSION USE THE
 11 EMBEDDED UNIT COST APPROACH OR IMPLIED MARGINAL COST
 12 APPROACH FOR CALCULATING AVOIDED DISTRIBUTION RATES?

13 I recommend the rates derived based on the embedded cost approach for two A. 14 reasons. First, doing so would create consistency with the method I recommended 15 for the transmission cost component. Second, the implied marginal costs are based 16 on Company data that I believe merits further review that was not possible to 17 conduct in a comprehensive manner in the current proceeding. On this second point, 18 there are two significant questions that require investigation. First, are the 19 Companies' business plans actually a good long-term predictor of future 20 distribution investments, particularly in years well into the future? Second, are any changes needed to the Companies' method of categorizing costs as load-related vs. 21 22 non-load-related necessary. Both factors could have a material impact on the

> Supplemental Rebuttal Testimony of Justin R. Barnes On Behalf of the Kentucky Solar Industries Association, Inc. August 5, 2021

1		ultimate results of the calculation. I recommend that these issues be explored further
2		in future proceedings.
3		<u>E. Avoided Carbon Costs</u>
4	Q.	WHAT DID THE COMPANIES PROPOSE WITH RESPECT TO SETTING
5		THE AVOIDED CARBON COSTS?
6	A.	The Companies argue that net metering customers should receive no compensation
7		for Avoided Carbon Costs because "currently there are no laws or regulations that
8		put a price on CO2 emissions," ⁴³ (emphasis added).
9	Q.	ARE THE COMPANIES' RECOMMENDATION ON AVOIDED CARBON
10		COST COMPENSATION FOR NET METERING CUSTOMERS
11		REASONABLE?
12	A.	No. The Companies exclusively focus on the (lack of a) current carbon pricing
13		regime to avoid any consideration of how a typical DG facility will provide tangible
14		avoided carbon cost benefits for at least 25 years into the future. Yet again, the
15		Companies fail to abide by the principle adopted by the Commission in the KPC
16		Order to "[c]onduct forward-looking, long-term, and incremental analysis," when
17		compensating net metering customers (emphasis added). ⁴⁴
18		Resource planning should consider reasonably expected long-term costs
19		associated with a given resource. Fossil resources, whether the continued operation
20		or new resources, can reasonably be expected to have long-term carbon costs if they

⁴³ Supplemental Testimony of Seelye, p. 28 (filed July 13, 2021) [PDF 70 of 161]; see also
Supplemental Testimony of Sinclair, p. 20 (filed July 13, 2021) [PDF 110 of 161].
⁴⁴ Case No. 2020-00174 (Ky PSC May 14, 2021) Order, p. 23.

1	are built or continue to operate. Avoided Carbon Costs should therefore be included
2	as a benefit of DG.
3	The Companies' parent company, PPL Corporation, has determined that
4	climate change could negatively impact its costs and its operations, including its
5	ability to provide safe and reliable service to its customers:
6 7 8 9 10	PPL's businesses could be subject to a variety of risks associated with the potential effects of climate change. Among those risks, climate change may produce stronger and more frequent severe weather, disrupting operations and increasing the costs to prepare for, and respond to, weather events. ⁴⁵
12	In addition to the acute risk climate change poses to the Companies' ability
13	to serve its customers, the Companies face a real risk that new state or federal
14	policies could impose a price on carbon emissions. However, PPL's Climate
15	Assessment "analysis does not explicitly use carbon price as an input to the
16	modeling," but notes that "the implied cost of CO2 emissions may be greater than
17	zero in the [Clean Power Plan] scenario" considered in its analysis. ⁴⁶ Likewise, its
18	most recent IRP used a very low projected future CO2 cost based upon a low carbon
19	price scenario from a 2016 analysis. ⁴⁷ While the Clean Power Plan is no longer a
20	regulatory framework under consideration, the Biden Administration has made
21	strong commitments to addressing climate change, including through proposed and
22	anticipated federal legislation and regulation of the power sector. Furthermore, PPL

 ⁴⁵ PPL Corporation, "PPL Corporation Climate Assessment Assessing the Long-term Impact of Climate Policies on PPL," November 2017, p. 1, available at https://www.pplweb.com/wp-content/uploads/2017/12/Climate-Assessment-Report.pdf.
 ⁴⁶ Id., at p. 12

Supplemental Rebuttal Testimony of Justin R. Barnes

⁴⁷ The Companies refer to this as the high CO2 Price scenario, but the values used are actually a low CO2 pricing scenario from the report they cite as the source.

On Behalf of the Kentucky Solar Industries Association, Inc.

itself has proactively set a goal of "[r]educing carbon emissions at least 80% from
 2010 levels by 2050, with at least a 70% reduction by 2040."⁴⁸ The Companies
 strain credulity when claiming the carbon-free nature of excess generation provided
 by net metering facilities provides no value now and for decades to come.

5 Therefore, Avoided Carbon Costs include both the costs avoided from any 6 carbon pricing or similar policy framework that could be imposed in the future, as 7 well as reductions to the Companies' operating costs with respect to providing safe 8 and reliable service to its customers as a result of reduced carbon emissions that the 9 Companies admit pose a business risk.

10 Q. WHAT IS A MORE REASONABLE APPROACH TO CALCULATING 11 AVOIDED CARBON COSTS?

A. The approach employed by the Commission in developing avoided carbon costs
estimates is reasonable and should also be employed for calculating the Companies'
avoided carbon emission costs. I suggest that a single value be used for both
Companies for the sake of simplicity and because they operate their generation
portfolio in an integrated fashion.

While this is my recommendation for a "durable" methodology, I am not aware of any readily accessible information on forecasted emission rates, which are used to perform the calculation. The Companies' 2018 IRP contains a forecast of the base system energy mix and fuel burn by fuel type in Table 8-17. This might be used to develop a forecasted emissions profile, though it does not appear to reflect

⁴⁸ *Id*.

Supplemental Rebuttal Testimony of Justin R. Barnes On Behalf of the Kentucky Solar Industries Association, Inc. August 5, 2021

updated assumptions on potential coal plant retirements or more generally the
 PPL's objectives of achieving a 70% reduction in carbon emissions from 1990
 levels by 2040 and 80% reduction my 2050.⁴⁹

In any case, a lack of information should not prevent the Commission from 4 5 ascribing any avoided carbon emission value. For that reason, I recommend that the 6 Commission utilize the same rate adopted for KPC (\$0.00578/kWh) as an 7 approximation of the Companies carbon costs in the current proceeding. In the 8 alternative, it could be reasonable to attempt to construct an estimate by trending 9 emissions downward to meet a 2040 emissions reduction target and using projected 10 coal retirement dates as inflection points in the trending process. By way of 11 illustration, this would assume that emissions correspond to the 2018 IRP base 12 forecast through 2028, and are then reduced according to the contribution that a 13 given plant retirement makes towards reducing emissions. Such an approach would 14 still require assumptions to be made about replacement resources (e.g., gas vs. zero-15 carbon).

16 Q. WOULD USING THE AMOUNT DERIVED FOR KPC BE LIKELY TO

- 17 **OVERSTATE THE COMPANIES' FUTURE CARBON COSTS?**
- A. No. The Companies' current energy mix is not dramatically different than KPC's
 and the Companies actually use somewhat higher carbon prices in the sensitivity
 analysis they conducted as part of their 2018 IRP. For instance, they specify a

⁴⁹ This information in itself is inadequate for make a precise calculation because the 2010 emissions benchmark is not specified and the timing of a transition away from carbon-based energy would materially affect the calculation.

Supplemental Rebuttal Testimony of Justin R. Barnes

On Behalf of the Kentucky Solar Industries Association, Inc.

carbon price of \$17.00/ton in 2026, escalating to \$26.00/ton in 2033⁵⁰, whereas the
calculation employed for KPC assumed a zero carbon price through 2028 and a
carbon price of only \$17.82/ton in 2033. Furthermore, the base energy forecast from
the 2018 IRP actually retains coal and gas generation at roughly their present levels
rather than reducing them over time. It seems more likely that using the rate
established for KPC would understate rather than overstate the Companies' future
carbon costs.

8

F. Avoided Environmental Costs

9 Q. WHAT DID THE COMPANIES PROPOSE WITH RESPECT TO SETTING

10 THE AVOIDED ENVIRONMENTAL COSTS?

11 The Companies argue that net metering customers should receive *no* compensation A. 12 for Avoided Environmental Costs because "avoided environmental compliance costs are fully accounted for in the avoided energy and capacity cost components," 13 (emphasis added).⁵¹ Specifically, the Companies state that "variable environmental 14 15 compliance costs, i.e., those that vary with energy production, are already accounted for in the avoided energy cost calculations," 52 including "emission 16 17 control reagents (e.g., limestone, ammonia), emission allowance costs, and an opportunity cost for lost CCR revenues."⁵³ In contrast, "certain environmental 18 19 compliance costs are reflected in capital improvements at a unit (e.g., installation

Supplemental Rebuttal Testimony of Justin R. Barnes

⁵⁰ Companies' 2018 IRP, Table 5-6.

⁵¹ Supplemental Testimony of Seelye, p. 28 (filed July 13, 2021) [PDF 70 of 161]; *see also* Supplemental Testimony of Sinclair, pp. 20, 21 (filed July 13, 2021) [PDF 110, 111 of 161].

⁵² Supplemental Testimony of Sinclair, p. 20 (filed July 13, 2021) [PDF 110 of 161].

⁵³ Supplemental Exhibit DSS-1, Page 1 of 3 (filed July 13, 2021) [PDF 115 of 161].

of a new FGD or baghouse) which would be totally unaffected by energy put on
 the grid by a customer-generator."⁵⁴ The Companies also claim that the Avoided
 Capacity Cost calculation reflects environmental costs associated with regulations
 that result in the retirement of generating units.

5 Q. ARE THE COMPANIES' RECOMMENDATION ON AVOIDED 6 ENVIRONMENTAL COST COMPENSATION FOR NET METERING 7 CUSTOMERS REASONABLE?

- 8 A. No. First, the Companies have not transparently identified what their environmental
- 9 compliance costs are as requested by the Commission. These costs should be clearly
- 10 identified rather than lumped into the avoided energy and compliance cost
- 11 calculations so that the costs associated with each are clear.
- 12 Second, the Companies do not actually reflect a complete and long-run view
- 13 of environmental costs that could impact retirement of its generating units:
- 14Given the large uncertainty and wide range of possible new laws and15regulations associated with [new environmental laws and/or16regulations that would require retirement and replacement of fossil17fuel generation], I am recommending that it be ignored in18developing a forecast of future capacity needs."5519
- 20 If the past 50 years of U.S. environmental regulation, as well as current industry
- 21 trends, are any indication, it is reasonable to assume that additional environmental
- 22 regulations impacting fossil generating facilities are extremely likely in the decades
- 23 to come. These impacts cannot simply be ignored; they must be considered when

⁵⁴ Supplemental Testimony of Sinclair, p. 21 (filed July 13, 2021) [PDF 111 of 161].

⁵⁵ Supplemental Testimony of Sinclair, p. 11 (filed July 13, 2021) [PDF 101 of 161].

Supplemental Rebuttal Testimony of Justin R. Barnes

On Behalf of the Kentucky Solar Industries Association, Inc.

1 2 evaluating the Avoided Environmental Costs of net metering facilities operating 25 or more years into the future.

Furthermore, all relevant environmental compliance costs on a long-term, 3 forward-looking basis should be included in the Avoided Environmental Cost 4 5 calculation, not just short-run variable costs. This includes forecasted capital 6 investments at a unit to address or mitigate environmental issues in compliance with 7 applicable regulations. Coal combustion residual ("CCR") costs are one example, where the Companies have adjusted their Avoided Energy Cost to account for 8 9 "opportunity cost for lost CCR revenues," but do not appear to account for the potentially substantial costs of CCR environmental compliance.⁵⁶ If the prospect of 10 11 such lost revenues is incorporated into the avoided energy rate, the cost of CCR 12 mitigation must also be reflected as an environmental cost. Otherwise, the symmetry of benefits offsetting costs is lost. 13

Furthermore, just as exports from one DG facility may not remove the need 14 15 for a specific transmission or distribution capacity investment, DG facilities can, in 16 the aggregate, reduce the need for fossil plants and their associated investments 17 related to environmental control technologies over the long-run. They also help 18 reduce the risk to the Company and its customers of future environmental 19 compliance costs that could be imposed through future state or federal regulations 20 or legislation. Net metering customers should therefore be compensated for this 21 benefit.

⁵⁶ Supplemental Exhibit DSS-1, Page 1 of 3 (filed July 13, 2021) [115 of 161]. Supplemental Rebuttal Testimony of Justin R. Barnes On Behalf of the Kentucky Solar Industries Association, Inc. August 5, 2021

Q. WHAT IS A MORE REASONABLE APPROACH TO CALCULATING AVOIDED ENVIRONMENTAL COMPLIANCE COSTS?

A. It would be reasonable for the Commission to apply a levelized \$/kWh amount
based on a forward projection of *all* of the environmental compliance costs for the
Companies. I have not been able to perform such a calculation, but as with avoided
carbon costs, a lack of the necessary data to perform this calculation does not erase
the existence of avoided costs.

8

G. Jobs & Economic Benefits

9 Q. WHAT DID THE COMPANIES PROPOSE WITH RESPECT TO SETTING

10THE JOBS AND ECONOMIC BENEFIT FOR NET METERING11CUSTOMERS?

A. The Companies argue that net metering customers should receive *no* compensation for a Jobs Benefit because it "would be impermissible because job creation is not within the Commission's jurisdiction."⁵⁷

15 Q. ARE THE COMPANIES' RECOMMENDATION ON JOBS BENEFIT

16 COMPENSATION FOR NET METERING CUSTOMERS REASONABLE?

- A. No. The KPC Order correctly pointed out "that an economic development rate,
 which many utilities have implemented over the decades, 'is intended to stimulate
 the creation of new jobs and capital investment."⁵⁸ The Companies also point out
 that EDR tariffs "require documentation of job creation and capital investment
 related to customers who take service under such rates." The Companies try to
 - ⁵⁷ Supplemental Testimony of Robert Conroy, p. 6 (filed July 13, 2021) [PDF 8 of 161].

⁵⁸ Case No. 2020-00174 (Ky PSC May 14, 2021) Order, p. 38, footnote 122.

Supplemental Rebuttal Testimony of Justin R. Barnes

On Behalf of the Kentucky Solar Industries Association, Inc.

make a semantics argument here that since EDR tariffs do not *require* job creation
 or capital investment, merely its *documentation*, it precludes the Commission from
 considering job creation and economic benefits in this case.⁵⁹

This argument is absurd. What purpose does information documenting job created and capital investment by EDR tariff customers serve other than to provide the Commission with important information on the costs and benefits of the tariff? That is the same objective that is being contemplated in the current proceeding, especially when one considers my recommendation that Job Benefits receive qualitative consideration in the Commission's ultimate decision. The use case could not be more similar.

11 Q. WHAT IS A MORE REASONABLE APPROACH TO CALCULATING A

12 JOBS AND ECONOMIC BENFIT COMPENSATION COMPONENT?

A. The Commission should require the Companies to fully and transparently evaluate
job and economic development benefits as an export rate component for their next
rate case filings. The evaluation should be forward-looking and calculate benefits
on a per kWh basis.

In the instant case, given that the utilities have failed to conduct such a *quantitative* analysis, I recommend that the Commission should, at a minimum, consider jobs and economic development benefits as a *qualitative* factor. This can be achieved in two complementary ways. First, the Commission should default to higher-end quantitative estimates of other categories of benefits. Second, the

⁵⁹ Supplemental Testimony of Conroy, p. 8 (filed July 13, 2021) [PDF 10 of 161]. Supplemental Rebuttal Testimony of Justin R. Barnes

1		Commission should maintain monthly netting under tariff NMS-2. These two
2		approaches would help counteract the under-valuing of excess generation of a net
3		metering customer that would result from providing no compensation for this
4		category of benefits as more analysis is conducted.
5		<u>H. NMS-2 Rate Summary</u>
6	Q.	PLEASE IDENTIFY YOUR RECOMMENDATIONS FOR AVOIDED
7		COST COMPONENTS APPLICABLE MONTHLY NET EXPORTS FROM
8		NMS-2 FACILITIES.
9	A.	Table 8 identifies rates for each component with accompanying notes on how the
10		amounts were derived. Note that the Avoided Energy component rates are italicized
11		to denote them as illustrative requiring some further calculations and adjustment
12		for circumstances where I was unable to finalize a calculation based on my
13		recommended methodology.

14

Table 8: Summary of NMS-2 Avoided Cost Rates

Avoided Cost Component	LG&E (\$/kWh)	KU (\$/kWh)	Notes
Energy	\$0.0256	\$0.0262	Minimum amount, based Companies' QF rate proposal with discount factor adjustment and loss adders.
Generation Capacity	\$0.0362	\$0.0371	Calculated rate, based on PJM Net CONE for NGCC and modeled fixed tilt solar resource.
Transmission Capacity	\$0.0105	\$0.0207	Calculated rate, without long-term levelization.
Distribution Capacity	\$0.0025	\$0.0015	Calculated rate, without long-term levelization.
Ancillary Services	\$0.0006	\$0.0006	Proxy based on KPC rate
Carbon	\$0.0058	\$0.0058	Proxy based on KPC rate
Total Quantified	\$0.0812	\$0.0918	Sum of quantified rates, pending finalization of rates included for illustrative purposes.
Other Environmental	Non-Zero	Non-Zero	Requires additional information but should be a positive benefit

Supplemental Rebuttal Testimony of Justin R. Barnes On Behalf of the Kentucky Solar Industries Association, Inc.

		Jobs Benefits	Qualitative	Qualitative	Qualita	tive consideration in overall development.	NMS-2 rate		
1	Q.	PLEASE E	XPLAIN W	HY YOU	HAVE	CHARACTERIZED	THE		
2		AVOIDED E	NERGY RAT	TES IN TAB	LE 8 AS]	ILLUSTRATIVE.			
3	A.	I recommende	I recommended that the avoided energy rates use a market price index based on the						
4		PJM-LG&E i	PJM-LG&E interface pricing with escalation and discounting over time via a						
5		levelization p	levelization process. I have not been able to perform that calculation so Table 8						
6		uses a similar	methodology b	based on info	rmation ma	ade available in the Com	panies'		
7		fixed QF end	ergy rate prop	oosal. The c	lifference	between the two is t	hat the		
8		Companies' p	proposed rates	are based or	n operation	n of their system rather	than a		
9		market price. I have included those rates, with some adjustments, in Table 8 in order							
10		to be able to p	to be able to provide a somewhat illustrative total NMS-2 rate.						
11		<u>IV.</u>	CONCLUSI	ON AND RE	COMME	NDATIONS			
12	Q.	PLEASE S	UMMARIZE	YOUR	RECOM	MENDATIONS TO	THE		
13		COMMISSIO	ON ON REVI	SIONS TO 7	THE SQF	AND LQF RIDERS.			
14	A.	First, I recom	nend that the C	Commission a	approve th	e Companies' proposal t	to make		
15		available 20-y	year fixed pric	e rates and o	optional ty	vo-year rates available	to both		
16		SQF and LQF participants. Second, I recommend that the Commission reject the							
17		Companies' capacity pricing proposal and instead adopt the technologically neutral							
18		and value-bas	sed summer o	n-peak capao	city rate t	hat I recommend. This	would		
19		produce the ra	ites below for a	electricity del	livered fro	m 11 AM – 8 PM on we	eekdays		
20		from June – S	September for 2	20-year PPA	s beginnin	g in each of the years re	eflected		
21		in the table. T	he rates below	reflect Tranc	the 1 of the	e Companies proposed c	capacity		

pricing regime. The same methodology should also be employed for Tranche 2 of
 capacity pricing.

	2022	2023	2024	2025	2026
Transmission Connected					
Rate (\$/MWh)	\$91.67	\$102.66	\$114.47	\$127.17	\$140.81
Distribution Connected					
Rate- LG&E (\$/MWh)	\$93.65	\$104.87	\$116.94	\$129.90	\$143.84
Distribution Connected					
Rate - KU (\$/MWh)	\$95.23	\$106.65	\$118.92	\$132.11	\$146.28

Table 9: Recommended On-Peak Capacity Rates for Riders SQF & LQF

4

3

5 Secondarily, if the Commission does not adopt my summer on-peak rate 6 pricing proposal and elects to use the peaker method based on a combustion turbine 7 to determine capacity rates, the on-peak capacity factor for fixed tilt solar used in 8 the calculation should be modified to 58.14% based on my solar LOLP analysis. 9 The peak capacity contribution for single-axis tracking solar should also be revised 10 using the same LOLP-based methodology.

Finally, while I emphasize that this a sub-optimal approach to capacity pricing, should the Commission elect to adopt a market-price methodology for determining avoided capacity rates for QFs, if it chooses to do so it should modify the Companies' proposed pricing regime as follows:

- Use LevelTen pricing as opposed to the Rhudes Creek PPA as the appropriate
 market price benchmark.
- Only use LevelTen pricing from only two most recent quarters to determine the
 all-in price, resulting in an all-in rate of \$35.45/MWh for solar resources.

- Apply the all-in price of \$34.45/MWh as a true all-in rate without separate
 calculation of a capacity rate.
- Consider the use of an adder or other adjustment to reflect the fact that the
 LevelTen price indices reflect only the lowest cost offers on the platform rather
 than average, median, or 50th percentile offers.

6 Q. WHAT ARE YOUR RECOMMENDATIONS FOR THE ESTABLISHMENT 7 OF A RATE APPLIED TO NET MONTHLY EXPORTS UNDER THE NMS8 2 TARIFF?

9 A. First, the Commission reject the rates proposed by the Companies and instead adopt
10 the rates shown in Table 10 below, pending the adjustment of the illustrative
11 avoided energy rate to conform to my recommended methodology.

LG&E (\$/kWh)	KU (\$/kWh)
\$0.0256	\$0.0262
\$0.0362	\$0.0371
\$0.0105	\$0.0207
\$0.0025	\$0.0015
\$0.0006	\$0.0006
\$0.0058	\$0.0058
\$0.0812	\$0.0918
	LG&E (\$/kWh) \$0.0256 \$0.0362 \$0.0105 \$0.0025 \$0.0006 \$0.0058 \$0.0812

12 13

19

- In addition, in finalizing the initial NMS-2 tariff and updating it in future
- 14 proceedings, the Commission should:
- Apply a non-zero amount of avoided non-carbon environmental costs;
- Consider job benefits in a qualitative fashion when determining reasonable rates
- 17 and the appropriate structural components of the tariff.
- Direct the Companies to conduct a quantitative evaluation of jobs benefits for
 - use in future updates.

Supplemental Rebuttal Testimony of Justin R. Barnes

Pursue an effort, through any means that it deems appropriate, to develop a
 well-defined and replicable methodology for determining reasonable cost
 escalation rates and long-term marginal costs for use in calculating levelized
 long-term avoided transmission and distribution rates.

5 Q. DOES THIS CONCLUDE YOUR TESTIMONY?

- 6 A. Yes.
- 7

8

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matters of:

ELECTRONIC APPLICATION OF KENTUCKY UTILITIES COMPANY FOR AN ADJUSTMENT OF ITS ELECTRIC RATES, A CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY TO DEPLOY ADVANCED METERING INFRASTRUCTURE, APPROVAL OF CERTAIN REGULATORY AND ACCOUNTING TREATMENTS, AND ESTABLISHMENT OF A ONE-YEAR SURCREDIT	CASE NO. 2020-00349
ELECTRONIC APPLICATION OF LOUISVILLE GAS AND ELECTRIC COMPANY FOR AN ADJUSTMENT OF ITS ELECTRIC AND GAS RATES, A CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY TO DEPLOY ADVANCED METERING INFRASTRUCTURE, APPROVAL OF CERTAIN REGULATORY AND ACCOUNTING TREATMENTS, AND ESTABLISHMENT OF A ONE-YEAR SURCREDIT	CASE NO. 2020-00350

AFFIDAVIT OF JUSTIN BARNES VERIFICATION

JURISDICTION)
)
County of Wise, Virginia)

The undersigned, Justin Barnes, being first duly sworn, states the following: The prepared Supplemental Rebuttal Testimony attached thereto constitute the testimony of Affiant in the above-styled cases. Affiant states that he would give the answers set forth in the Testimony if asked the questions propounded therein. Affiant further states that, to the best of his knowledge, his statements are true and correct. Further, Affiant saith not.

Witness ame of

Stn (MH)

SUBSCRIBED AND SWORN to before me on this 2nd day of August, 2021 by Josh n Baner

NOTARY PUBLIC

My Commission Expires: 0013012023

