COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

ELECTRONIC APPLICATION OF)
KENTUCKY UTILITIES COMPANY FOR AN)
ADJUSTMENT OF ITS ELECTRIC RATES, A)
CERTIFICATE OF PUBLIC CONVENIENCE)
AND NECESSITY TO DEPLOY ADVANCED) CASE NO. 2020-00349
METERING INFRASTRUCTURE,)
APPROVAL OF CERTAIN REGULATORY)
AND ACCOUNTING TREATMENTS, AND)
ESTABLISHMENT OF A ONE-YEAR)
SURCREDIT)

In the Matter of:
ELECTRONIC APPLICATION OF)
LOUISVILLE GAS AND ELECTRIC) COMPANY FOR AN ADJUSTMENT OF ITS) ELECTRIC AND GAS RATES, A CERTIFICATE OF PUBLIC CONVENIENCE) AND NECESSITY TO DEPLOY ADVANCED

CASE NO. 2020-00350
METERING INFRASTRUCTURE, APPROVAL OF CERTAIN REGULATORY) AND ACCOUNTING TREATMENTS, AND) ESTABLISHMENT OF A ONE-YEAR SURCREDIT

Filed: November 25, 2020

Table of Contents

I. INTRODUCTION 1
II. QUALIFICATIONS 5
III. ELECTRIC RATE DESIGN AND THE ALLOCATION OF THE INCREASES 6
A. ALLOCATION OF THE ELECTRIC INCREASES 6
B. ELIMINATION OF ENVIRONMENTAL COST RECOVERY (ECR) PROJECTS 8
C. RESIDENTIAL SERVICE (RATE RS) 9
D. RESIDENTIAL TIME-OF-DAY ENERGY AND DEMAND SERVICES 21
E. GENERAL SERVICE (RATE GS) 25
F. GENERAL TIME-OF-DAY SERVICE (RATE GTOD) 26
G. ALL ELECTRIC SCHOOLS SERVICE (AES) (KU ONLY) 28
H. POWER SERVICE (RATE PS) 29
I. LARGE CUSTOMER RATES (RATES TODS, TODP, RTS, FLS) 29
J. CURTAILABLE SERVICE RIDERS (CSR) 32
K. OUTDOOR SPORTS LIGHTING SERVICE (OSL) 33
L. LIGHTING RATES 34
M. SOLAR SHARE 39
N. NET METERING 41
O. OTHER COST CONSIDERATIONS FOR SERVING CUSTOMER- GENERATORS 46
P. ELECTRIC VEHICLE CHARGING STATION RATES 64
Q. REDUNDANT CAPACITY (RIDER RC) 76
IV. GAS RATE DESIGN AND THE ALLOCATION OF THE INCREASE 78
A. ALLOCATION OF THE GAS REVENUE INCREASE 78
B. ELIMINATION OF GAS LINE TRACKER PROGRAMS 83
C. RESIDENTIAL GAS SERVICE (RATE RGS) 84
D. COMMERCIAL GAS SERVICE (RATE CGS) 85
E. INDUSTRIAL GAS SERVICE (RATE IGS) 86
F. AS AVAILABLE GAS SERVICE (RATE AAGS) 87
G. FIRM TRANSPORTATION SERVICE (RATE FT) 87
H. SUBSTITUTE GAS SALES SERVICE (RATE SGSS) 88
I. LOCAL GAS DELIVERY SERVICE (RATE LGDS) 89
J. DISTRIBUTED GENERATION GAS SERVICE (RATE DGGS) 90
VI. MISCELLANEOUS SERVICE CHARGES 90
A. POLE AND STRUCTURE ATTACHMENT CHARGES (RATE PSA) 90
B. NON-RESIDENTIAL LATE PAYMENT CHARGES 92
C. EXCESS FACILITIES CHARGES 93
D. OTHER MISCELLANEOUS CHARGES 95
V. ADVANCED METERING INFRASTRUCTURE (AMI) 100
A. PERSONAL EXPERIENCE WITH AMI 100
B. FUTURE RATE OFFERINGS 101
VII. ELECTRIC COST OF SERVICE STUDIES 102
VIII. GAS COST OF SERVICE STUDY 121
IX. LEAD-LAG STUDIES 134

Exhibits

Exhibit WSS-1 - Qualifications
Exhibit WSS-2 - Cost Components for Residential Service Rate RS
Exhibit WSS-3 - Cost Support for General Time-of-Day Service Rates
Exhibit WSS-4 - Cost Support for LED Fixture and Underground Pole Charges
Exhibit WSS-5 - Cost Support for LED Conversion Fee
Exhibit WSS-6 - Westar's Residential Distributed Generation Rate
Exhibit WSS-7 - Kansas Corp. Commission's Order Regarding Distributed Generation
Exhibit WSS-8 - Traditional Metering Equipment Required for Four-Part Rates
Exhibit WSS-9 - Electric Vehicle Ownership by State in U.S.
Exhibit WSS-10 - DC Fast Charging Ports versus Electric Vehicles by State in U.S.
Exhibit WSS-11 - Cost Support for Electric Vehicle Supply Equipment Rate and Rider
Exhibit WSS-12 - Cost Support for Redundant Capacity Charge
Exhibit WSS-13 - Summary of Class Rates of Returns for Gas Operations
Exhibit WSS-14 - Analysis of Subsidy Reduction for Gas Operations
Exhibit WSS-15 - Cost Components for Residential Gas Service Rate RGS
Exhibit WSS-16 - Cost Support for Pole Attachment Charge
Exhibit WSS-17 - Cost Support for Excess Facilities Rider
Exhibit WSS-18 - Change in Other Operating Revenues for Excess Facilities Rider
Exhibit WSS-19 - Cost Support for Miscellaneous Charges
Exhibit WSS-20 - Change in Other Operating Revenues for Other Misc. Charges
Exhibit WSS-21 - LOLP Analysis for Electric COS
Exhibit WSS-22 - Comparison of LOLP with 12-CP and 6-CP Methodologies
Exhibit WSS-23 - Zero Intercept Overhead Conductor (KU)
Exhibit WSS-24 - Zero Intercept Underground Conductor (KU)
Exhibit WSS-25 - Zero Intercept Line Transformers (KU)
Exhibit WSS-26 - Zero Intercept Overhead Conductor (LG\&E)
Exhibit WSS-27 - Zero Intercept Underground Conductor (LG\&E)
Exhibit WSS-28 - Zero Intercept Line Transformers (LG\&E)
Exhibit WSS-29 - Electric COS Functional Assignment (KU)
Exhibit WSS-30 - Electric COS Functional Assignment (LG\&E)
Exhibit WSS-31 - Electric COS Class Allocation (KU)
Exhibit WSS-32 - Electric COS Class Allocation (LG\&E)
Exhibit WSS-33 - Gas Transmission Plant Functional Assignment for COS
Exhibit WSS-34 - Zero Intercept Distribution Mains
Exhibit WSS-35 - Low-, Medium-, and High-Pressure Distribution Mains
Exhibit WSS-36 - Gas COS Functional Assignment and Classification
Exhibit WSS-37 - Gas COS Class Allocation
Exhibit WSS-38 - Gas COS Storage Allocation
Exhibit WSS-39 - Summary Results of Lead-Lag Study

I. INTRODUCTION

Q. Please state your name and business address.
A. My name is William Steven Seelye. My business address is 2604 Sunningdale Place East, La Grange, Kentucky 40031.

Q. By whom and in what capacity are you employed?

A. I am the managing partner for The Prime Group, LLC, a firm located in La Grange, Kentucky, providing consulting and educational services in the areas of utility regulatory analysis, revenue requirement support, cost of service, rate design and economic analysis.
Q. On whose behalf are you testifying in these proceedings?
A. I am testifying on behalf of Kentucky Utilities Company ("KU"), which provides electric service to utilities throughout Kentucky, and Louisville Gas and Electric Company ("LG\&E") (collectively, "Companies"), which provides both electric and natural gas sales and delivery services in Louisville-Jefferson County and surrounding counties in Kentucky.

Q. What is the purpose of your testimony?

A. The purpose of my testimony is (i) to describe the proposed allocation of the revenue increases for KU and for LG\&E's electric and natural gas operations; (ii) to support KU and LG\&E's proposed rates; (iii) to sponsor the fully allocated cost of service studies based on KU and LG\&E's embedded cost of providing electric and natural gas service for the fully forecasted test year, which is the 12 months beginning July 1 ,

37

2021; and (iv) to sponsor the revenue lag portion of the updated revenue lag study for

KU and LG\&E.

Q. Please summarize your testimony.

A. My direct testimony addresses the following:

- Cost of Service Studies and the Allocation of the Revenue Increase. In developing their proposed rates in these proceedings, KU and LG\&E considered the results of the cost of service studies. The purpose of a class cost of service study is to determine the contribution that each customer class is making towards the utility's overall rate of return. Cost of service is a standard measure of reasonableness for utility rate design. Rates of return are calculated for each rate class. In the electric cost of service studies, production fixed costs were allocated based on hourly class loads weighted by the hourly Loss of Load Probability ("LOLP"), which is a key measure that has been used by KU and LG\&E for many years to plan their generation resources. The Companies used the LOLP as an electric cost of service methodology in their 2016 and 2018 rate cases. In accordance with the Commission's Order in Case Nos. 2018-00294 and 201800295, KU and LG\&E are also submitting 6 Coincident Peak (" 6 -CP") and 12 Coincident Peak ("12-CP") cost of service studies as alternatives to the LOLP cost of service proposed by the Companies. LG\&E's gas cost of service study used the same methodology as was filed in its 2018 and prior rate cases. The Companies’ class cost of service studies were also used as a guide for allocating the revenue increase to the rate classes and for developing unit charges for electric and gas service.
- Elimination of Environmental Cost Recovery (ECR) Surcharge and Gas Line Tracker (GLT) Projects. KU and LG\&E are proposing to eliminate certain ECR projects. LG\&E is also proposing to eliminate all but two GLT projects. The test-year costs of these projects will be transferred into base rates.
- Continued Separation of Rates into Infrastructure and Variable Cost Components. KU and LG\&E are also proposing to continue to separate out the infrastructure and variable cost components of the energy charge for Residential Service (Rate RS), General Service (Rate GS) and other two-part rates that include only a customer charge and an energy charge. The purpose of this structure in the presentation of these rate schedules is to provide more information to customers, stakeholders and employees about which costs are avoidable through the installation of distributed generation (ie., the variable cost component) and which costs are less likely to be avoided (i.e., the fixed cost component). In its Orders
in Case Nos. 2018-00294 and 2018-00295, the Commission ruled that splitting the energy charges into infrastructure and variable components for information purposes is reasonable. My testimony will address the continued importance of this practice.
- Residential Time-of-Day Services. The Companies are proposing to modify Residential Time-of-Day Service (Rates RTOD-E and RTOD-D) to shift the morning peak period by one hour to more accurately reflect current peak periods and to add evening hours to the winter peak period. The on- and off-peak charges are adjusted to reflect this change.
- General Time-of-Day Services. The Companies are proposing to offer optional General Time of Day Services (Rate GTOD - Energy and GTOD - Demand) rate schedules that would be available to any General Service (Rate GS) customer enrolled under the Advanced Metering Systems Customer Service Offering set forth in the Companies' Demand-Side Management Cost Recovery Mechanism.
- Lighting Rates. The Companies are introducing three new light emitting diode (LED) lighting offerings. In its Orders in Case Nos. 2018-00294 and 2018-00295, the Commission approved an LED Conversion Fee that applies whenever a customer requests the replacement of a working non-LED fixture with an LED fixture prior to the failure of the non-LED fixture. The current LED Conversion Fee, which provides for the recovery of the stranded costs created by the replacement of a working non-LED fixture with an LED fixture, is a fixed charge that applies for a period of five years. The Companies are proposing to offer an alternative in which customers can make an up-front payment of the LED Conversion Fee. For Outdoor Sports Lighting Service (Rate OSL), the Companies are proposing to reduce the number of hours during the peak period by one hour.
- Net Metering. In March 2019, Senate Bill 100 was signed into law thereby modifying 278.466 to allow each electric utility to implement rates to recover from non-grandfathered or new net metering customers "all costs necessary to serve its eligible customer-generators, including but not limited to fixed and demand-based costs, without regard for the rate structure for customers who are not eligible customer-generators." The Companies are proposing a new net metering service called "Net Metering Service 2 - NMS 2" that will be applicable to new net metering customers taking service on or after the effective date of the new rates approved in these proceedings.
- Electric Vehicle Rates. The Companies are proposing to offer a new Electric Vehicle Fast Charging Service (Rate EV-FAST). Under the proposed rate, KU and LG\&E would charge $\$ 0.25$ per kWh for charging at Direct Current Fast

Charging Stations (DCFCs) that would be installed by the Companies in late 2022. Because spending for the stations would occur after the end of the forecasted test year in these proceedings, none of the costs are included in revenue requirements.

- Annual Waiver of Non-Residential Late Payment Charges. In Case Nos. 2018-00294 and 2018-00295, the Companies implemented a program to waive late payment charges for residential customers who have not been late in paying their bills during each of the previous 11 months. The Companies are proposing to extend this practice to non-residential customers.
- Miscellaneous Charges. The Companies are proposing changes in certain miscellaneous charges to reflect changes in costs. The Companies are also proposing miscellaneous charges related to the proposed Advanced Metering Infrastructure (AMI) deployment.
- Update to the Lead-Lag Studies. The revenue lags in the study submitted in the Companies' last rate cases were updated for the calendar year 2019.

Q. Are you supporting certain information required by Commission Regulations 807 KAR 5:001, Section 16(7) and 16(8)?

A. Yes. I am sponsoring the following schedules for the corresponding Filing Requirements:

- Cost of Service Studies
Section 16(7)(v) Tab 52
- Revenue Summary
Section 16(8)(m) Tab 66

Q. How is your testimony organized?

A. My testimony is divided into the following sections: (I) Introduction, (II) Qualifications, (III) Electric Rate Design and the Allocation of the Increases, (IV) Gas Rate Design and the Allocation of the Increase, (V) Miscellaneous Service Charges, (VI) Advanced Metering Infrastructure (AMI), (VII) Electric Cost of Service Studies, (VIII) Gas Cost of Service Study, and (IX) Lead-Lag Studies.

II. QUALIFICATIONS

Q. Please describe your educational and professional background.

A. I received a Bachelor of Science degree in Mathematics from the University of Louisville in 1979. I have also completed 54 hours of graduate level course work in Industrial Engineering and Physics. From 2014 through 2015 I completed an additional 12 hours of Electrical Engineering coursework at the University of Louisville's Speed School of Engineering (courses in computer design, microcontroller programming, digital signal processing, and computer communications). In addition, from 2012 through 2015, I was an instructor at Louisville's Walden School and a private tutor and instructor in advanced placement calculus, linear algebra, pre-calculus, college algebra and differential equations.

Concerning my professional background, from May 1979 until July 1996, I was employed by LG\&E. From May 1979 until December 1990, I held various positions within the Rate Department of LG\&E. In December 1990, I became Manager of Rates and Regulatory Analysis. In May 1994, I was given additional responsibilities in the marketing area and was promoted to Manager of Market Management and Rates. I left LG\&E in July 1996 to form The Prime Group, LLC, with two other former employees of LG\&E. Since leaving LG\&E, I have performed or supervised the preparation of cost of service and rate studies for over 150 investorowned utilities, rural electric distribution cooperatives, generation and transmission cooperatives, and municipal utilities. Therefore, including my time at LG\&E, I have more than 40 years of experience in the utility industry. A more detailed description
of my qualifications is included in Exhibit WSS-1.

Q. Have you ever testified before any state or federal regulatory commissions?

A. Yes. I have testified in over 75 regulatory and court proceedings in 13 different jurisdictions. I have testified before the Kentucky Public Service Commission on behalf of both KU and LG\&E, as well as on behalf of other utilities, on numerous occasions. A listing of my testimony in other proceedings is included in Exhibit WSS1.
Q. Please describe your work and testimony experience as they relate to topics addressed in your testimony.
A. I have performed or supervised the development of cost of service and rate studies for over 150 utilities throughout North America. I have testified on numerous occasions regarding the rates proposed by electric, gas and water utilities, including KU and LG\&E. I have also testified on numerous occasions regarding lead-lag studies.
III. ELECTRIC RATE DESIGN AND THE ALLOCATION OF THE INCREASES A. ALLOCATION OF THE ELECTRIC INCREASES
Q. Please summarize your recommendations for allocating the electric revenue increases to the classes of service.
A. The Companies are proposing an overall revenue increase of $\$ 170,120,598$ for KU , which corresponds to a 10.36% increase, and a $\$ 131,073,276$, revenue increase for LG\&E, which corresponds to an 11.61% increase. The Companies are also proposing
changes in miscellaneous charges which result in changes to other operating revenue. Accounting for changes in other operating revenue, the overall increase in revenues from sales to ultimate customers is $\$ 169,747,181$ (or 10.57%) for KU and \$130,983,319 (or 11.83\%) for LG\&E. (See Schedule M-2.1 for KU and Schedule M-2.1-E for LG\&E in the Companies' Filing Requirements.)

Except for the lighting rates, KU is proposing to increase revenues for all rate classes by approximately 10.68%. Based on the results of the cost of service study, KU is proposing no net increases, within rounding, for Lighting Service (Rate LS), Restricted Lighting Service (Rate RLS), Lighting Energy Service (Rate LE), and Traffic Energy Service (TE). KU is proposing a rate reduction for Outdoor Lighting Service (Rate OSL), which is an optional pilot program, of approximately 5.00%. KU is proposing no changes to the rate credits set forth in its Curtailable Service Rider (CSR).

Except for three lighting rates, LG\&E is proposing to increase revenues for all rate classes by approximately 11.80%. LG\&E is proposing no increases, within rounding, for Lighting Energy Service (Rate LE) and Traffic Energy Service (TE). LG\&E is proposing a rate reduction for Outdoor Lighting Service (Rate OSL), which is an optional pilot program, of approximately 10.00%. LG\&E is proposing no changes to the rate credits set forth in its Curtailable Service Rider (CSR).

Both KU and LG\&E are proposing to increase the disconnect/reconnect charges and returned check charges. The Companies are proposing to decrease the unauthorized reconnect charges. KU and LG\&E are proposing minor changes to
certain other miscellaneous charges, which will be discussed later in my testimony.
Q. Have you prepared schedules showing the proposed revenue increase for each standard rate schedule?
A. Yes. The electric revenue increases for each rate class are shown on Schedule M-2.1 of Section 16(8)(m) of the Filing Requirements for KU and Schedule M-2.1-E of Section $16(8)(\mathrm{m})$ of the Filing Requirements for LG\&E. The detailed billing calculations for each rate schedule are shown on Schedule M-2.3 for KU and Schedule M-2.3-E for LG\&E. The proposed unit charges for each rate schedule are shown on these schedules.

B. ELIMINATION OF ENVIRONMENTAL COST RECOVERY (ECR) PROJECTS

Q. Are the Companies proposing to eliminate certain Environmental Cost Recovery (ECR) projects?
A. Yes. KU is proposing to eliminate projects 28 through 31 of the 2009 ECR Plan, all projects in the 2011 ECR Plan, and projects 36 through 38 of the 2016 ECR Plan. LG\&E is proposing to eliminate projects 22 and 23 of the 2009 ECR Plan, all projects in the 2011 ECR Plan, and project 28 of the 2016 ECR Plan. Because work will have been completed on these projects prior to the end of the test year (or, in the case of LG\&E, Project 22, because the project was cancelled), the Companies are proposing to eliminate them from recovery through the ECR mechanism.
Q. Will the costs of these eliminated ECR projects be recovered through base rates

instead of the ECR?

A. Yes. The impact of these projects is also shown in Schedule M-2.3 for KU and Schedule M-2.3-E for LG\&E and in the supporting detail for those schedules. Specifically, on page 1 of these Schedules, the column labeled "Base Rate ECR Adjustment to Reflect ECR Project Elimination" reflects the amount of base rate ECR revenue transferred to base rate revenue, and the column labeled "ECR Mechanism Adjustment to Reflect ECR Project Elimination" reflects the amount of ECR Mechanism revenue transferred to base rates. These adjustments do not alter total revenue, but simply represent the removal of ECR costs for the eliminated projects from the ECR mechanism into base rate recovery. These adjustments are revenue neutral. The supporting details for each rate class are shown on pages 2 through 26 of these schedules.

C. RESIDENTIAL SERVICE (RATE RS)

Q. Please provide a brief description of Rate RS.

A. Rate RS is the standard electric rate schedule available to single-family residential service. KU and LG\&E serve approximately 442,000 and 377,000 residential customers, respectively, under this rate schedule. Rate RS has a two-part rate structure that includes a Basic Service Charge and an Energy Charge.
Q. What are the charges that KU and LG\&E are proposing for Rate RS?
A. KU is proposing a Basic Service Charge of $\$ 0.61$ per day, and LG\&E is proposing a Basic Service Charge of $\$ 0.52$ per day. For KU, the charge would increase from $\$ 0.53$
to $\$ 0.61$, which corresponds to a 15.1% increase. For LG\&E, the charge would increase from $\$ 0.45$ to $\$ 0.52$ per day, which again corresponds to 15.6% increase. For both Companies, the Basic Service Charges were designed to reflect 75% of the customer-related costs calculated in the cost of service studies. ${ }^{1}$ The customer-related cost for KU is $\$ 0.82$ per day; thus, KU's proposed Basic Service Charge of $\$ 0.61$ per day represents 75% of the customer cost from the cost of service study $(\$ 0.61 \div \$ 0.82$ $=75 \%$). The customer-related cost for LG\&E is $\$ 0.69$ per day; therefore, LG\&E's proposed Basic Service Charge of $\$ 0.52$ also represents 75% of the customer cost $(\$ 0.52 \div \$ 0.69=75 \%)$. Although higher Basic Service Charges could be supported based on results of the Companies' cost of service studies, the increase was capped at 75% of customer costs to reflect the ratemaking principles of rate continuity and gradualism. KU is proposing to increase its energy charge from $\$ 0.08963$ per kWh to $\$ 0.09950$ per kWh . LG\&E is proposing to increase its energy charge from $\$ 0.09278$ per kWh to $\$ 0.10482$ per kWh .

Q. Are the Companies proposing to continue to separate the energy charge into a variable cost component and a fixed cost component?

A. Yes. In its Orders in Case Nos. 2018-00294 and 2018-00295, the Commission ruled that splitting the energy charges into variable cost component (Variable Energy Charge) and fixed cost component (Infrastructure Energy Charge) for informational

[^0]purposes is reasonable. For KU, the proposed Variable Energy Charge is $\$ 0.03200$ per kWh , and the proposed Infrastructure Energy Charge is $\$ 0.06750$ per kWh . For LG\&E, the proposed Variable Energy Charge is $\$ 0.03245$ per kWh , and the proposed Infrastructure Energy Charge is $\$ 0.07237$ per kWh .

Q. Why do the Companies separate their energy charges into variable and fixed components?

A. The purpose of showing the energy charge as consisting of both a variable cost component and a fixed cost component is solely educational and informational. The Companies want customers, stakeholders and employees to be aware that two types of costs are included in the energy charge for Rate RS and other rates that have a twopart rate structure consisting of a Basic Service Charge and an Energy Charge. The energy cost component consists of costs that vary directly with the kWh usage of customers, such as fuel expenses and variable operation and maintenance expenses. The fixed cost component consists of demand-related costs that do not vary directly with energy usage, such as depreciation expenses, return, taxes, and fixed operation and maintenance expenses related to utility infrastructure. It is important for customers, stakeholders, and employees to understand that not all costs are automatically reduced when customers use less energy. For example, the fixed costs associated with poles, transformers, conductors, power plants, office buildings, etc., are not automatically reduced when consumers reduce their energy usage. As greater emphasis is placed on distributed generation, energy conservation and other new technologies such as electric vehicles, it is important for customers, stakeholders and
employees to understand the distinction between fixed and variable costs.

Q. What is the breakdown of total costs among these three cost components for Rate RS?

A. The following table (TABLE 1) shows how the cost of providing service to customers under Rate RS is broken down between customer-related fixed costs, demand-related fixed costs, and energy-related variable costs for KU and LG\&E:

TABLE 1

Cost Component	KU Percentage of Cost	LG\&E Percentage of Cost
Customer-Related Fixed Costs	19.41%	19.74%
Demand-Related Fixed Costs (Infrastructure Demand Costs)	52.61%	53.18%
Energy-Related Variable Costs	27.98%	27.08%

Q. How are these costs currently recovered from Rate RS customers?

A. Rate RS, as well as a number of the Companies' other rate schedules that serve smaller commercial and industrial customers (for example Rate GS), are currently structured as a two-part rate consisting of a customer charge (Basic Service Charge) and an Energy Charge. The Basic Service Charge is billed as a flat daily charge per customer, and the Energy Charge is billed on a cents-per-kWh basis. Under a two-part rate design, all three cost components (customer costs, demand costs and energy costs) are
recovered through two rate components (customer charge and energy charge). Unlike the three- and multi-part rates that are used for larger customers, the two-part rate for Rate RS does not utilize a demand charge. Therefore, demand costs (costs associated with transformers, overhead and underground conductor, transmission lines, and generation capacity) must be recovered through either the customer charge or an energy charge. For Rate RS, all demand costs and a portion of the customer costs are currently being recovered through the Energy Charge, which includes the Infrastructure Energy Charge and the Variable Energy Charge. The following tables compare the percentage of costs broken down by component (customer cost, demand cost, and energy cost) to the percentage of recovery through the proposed rate components (customer charge and energy charge) for KU (TABLE 2) and LG\&E (TABLE 3):

TABLE 2 - KU

Component	Percentage of Cost	Rate Design
Customer	19.41%	14.5%
Demand	52.61%	0.0%
Energy	27.98%	85.5%

TABLE 3 - LG\&E

Component	Percentage of Cost	Rate Design
Customer	19.74%	14.8%
Demand	53.18%	0.0%
Energy	27.08%	85.2%

As can be seen from these tables, all demand costs and a significant portion of customer costs are currently recovered through the Energy Charge.

Q. What are three- and multi-part rate designs?

A. A three-part rate is a rate structure that includes a customer charge, energy charge and demand charge. KU and LG\&E's rate for medium commercial and industrial customers (Rate PS) is a three-part rate consisting of a customer charge, energy charge and demand charge. The rates for large commercial and industrial customers (Rates TODS, TODP, RTS, and FLS) are structured as a multi-part rate consisting of a customer charge, energy charge and multi-part demand charge that is unbundled between production fixed cost components and transmission/distribution fixed cost components. The reason that a two-part rate structure traditionally has been used in the industry for residential and small commercial and industrial accounts is that the cost of the metering technology necessary to bill a three- or multi-part rate for small
customers has been prohibitive. In my experience, this is changing in the industry. As utilities install advanced metering technology for all types of customers, it becomes more feasible to use three- or multi-part rates for residential and general service (small commercial and industrial) customers and thereby offer rates that more accurately reflect cost of service. Multi-part rates allow customers to better manage their load by shifting their usage pattern to avoid higher peak period charges. Several utilities in the U.S. have implemented three- and multi-part rates for residential and small general service customers. This is a trend in the industry that I believe the Companies and the Commission should closely monitor.

Q. Does recovering fixed customer and demand costs through a variable energy charge create problems?

A. Yes, it certainly does. The Companies must install generation, transmission and distribution infrastructure to serve customers. The costs associated with this infrastructure are fixed. As explained earlier, some of these fixed costs are demandrelated and are thus related to utility infrastructure that is sized to meet maximum loads that customers place on the system while other fixed costs are customer-related and are thus related to the number of customers that the utility serves. These fixed costs typically will not change if a customer uses more energy or if a customer uses less energy. For example, once KU or LG\&E installs a distribution line, transformer, service line, and meter to serve a customer, the operation and maintenance expenses, depreciation expenses, property taxes, interest expenses, and other such costs are not decreased if a customer uses less energy. Once the facilities are installed, they are
invariant to customer usage and are therefore fixed. If the costs are recovered through a volumetric charge rather than a fixed charge, then when a customer uses less energy these fixed costs will not be recovered from the customer, and those costs must be recovered from other customers. This is particularly problematic if a customer reduces energy consumption by installing distributed generation technology such as solar panels or a wind turbine but falls back on the utility when sunlight is unavailable or when the wind isn't blowing. In those instances, the customer will have reduced its energy usage with distributed generation but will still require the same generation, transmission and distribution capacity to meet its demand requirements. The customer will have reduced the billing of fixed costs collected through the energy charge but will not have caused the utility to reduce its fixed costs. In those instances, the fixed costs are thus shifted to customers who have not installed distributed generation technology.

Q. What is the basis for the proposed increase in the Basic Service Charge for Rate RS?

A. The Companies are proposing a Basic Service Charge that moves the charge towards the customer-related costs from the Companies' cost of service studies. As will be explained in greater detail in the portion of my testimony dealing with the electric cost of service study, the methodology that is used to classify costs as customer related corresponds to the methodology that has been accepted by the Commission in the past. The methodology for classifying costs as customer-related also corresponds to one of the standard methodologies set forth in the Electric Utility Cost Allocation Manual
published by the National Association of Utility Regulatory Commissioners (NARUC).

Q. Have you prepared an exhibit showing the calculation of the cost components for Rate RS?

A. Yes. Exhibit WSS-2 shows the calculation of the unit customer cost, demand related cost, and energy costs from the Companies' cost of service studies. From this calculation, the customer cost for KU is $\$ 0.82$ per customer per day; the demandrelated cost (infrastructure cost) is $\$ 0.06017 / \mathrm{kWh}$; and the energy cost (variable cost) is $\$ 0.03200 / \mathrm{kWh} . \mathrm{KU}$ is proposing to increase the Basic Service Charge from $\$ 0.53$ per day to $\$ 0.61$ per day, which corresponds to a 15.1% increase in the charge. KU's proposed Basic Service Charge of $\$ 0.61$ per day is 75% of the unit cost from KU's cost of service study.

The customer cost for LG\&E is $\$ 0.69$ per customer per day; the demandrelated cost is $\$ 0.06371 / \mathrm{kWh}$; and the energy cost is $\$ 0.03245 / \mathrm{kWh}$. LG\&E is proposing to increase the Basic Service Charge from $\$ 0.45$ per day to $\$ 0.52$ per day, which corresponds to a 15.6% increase in the charge. LG\&E's proposed Basic Service Charge of $\$ 0.52$ is 75% of the unit cost from LG\&E's cost of service study. The Companies are proposing Basic Service Charges for Rate RS that reflect only 75\% of customer costs, which correspond to percentage increases in the Basic Service Charges of less than 16%, to reflect the ratemaking principles of rate continuity and gradualism. It should be noted, however, that in the last several years the Commission has allowed a number of utilities to increase their customer charges by close to 50%.

For example, in its Order in Case No. 2019-00066, the Commission authorized a 46\% increase in Jackson Energy Cooperative Corporation's residential customer charge increasing the customer charge from $\$ 16.44$ to $\$ 24.00$ per month. ${ }^{2}$

Q. Please describe the type of costs that are recovered through the Basic Service Charge.

A. Customer costs include costs related to the minimum system that each customer must have in place to access the electric grid. Customer costs also include the cost of operating and maintaining this minimum system as well as other costs not related to customer usage, such as meter reading, billing and customer service costs. The minimum system comprises the meter, service drop from the transformer, the transformer, the minimum size of wire, and poles extending to the distribution substation that are necessary to provide a customer with access to the electric grid. Once the cost of this minimum system is determined using the zero-intercept methodology (discussed later in my testimony), it can be allocated to each customer.
Q. What other costs need to be considered in developing the Basic Service Charge?
A. Customers often need more equipment than the minimum system in order to receive adequate service. The cost of this equipment above the minimum is related to the customer's usage level and is a demand-related fixed cost that is recovered through either a demand or energy charge. A cost of service study is performed for the purpose of allocating costs as accurately as possible based on cost causation. In a cost of

[^1]service study, it is important to distinguish the distribution system costs related to demand from the distribution system costs that are related to the minimum system that are not related to demand, as discussed in the NARUC Electric Utility Cost Allocation Manual. As discussed earlier, the Companies must install the minimum amount of equipment to provide customers with access to the electric grid. This minimum amount of equipment is not related to the volume of electricity used by the customer, and each customer must have that minimum amount of equipment in place to obtain electric service. These non-volumetric fixed distribution costs are associated with serving the customer and therefore should be borne by the customer through a fixed customer charge regardless of usage. The remainder of the distribution costs, which are related to installed capacity, are classified as demand-related and are collected through a kWh energy charge for Rate RS or through a kW or kVA charge for customer classes billed under a three- or multi-part rate that has a demand charge. This split of distribution system costs between volumetric and fixed assures that customers only have to pay for what they are actually using, namely the basic minimum system that all customers require plus as much additional equipment as required to meet their needs.

Q. Will the Companies' proposed Basic Service Charges recover all of KU and LG\&E's customer-related costs for Rate RS?

A. No. KU's proposed Basic Service Charge of $\$ 0.61$ per day does not recover all of the customer-related fixed costs of $\$ 0.82$ per day. Likewise, LG\&E's proposed Basic Service Charge of $\$ 0.52$ per day does not fully recover the customer-related fixed costs
of $\$ 0.69$ per day. The differences between the proposed Basic Service Charge and customer-related fixed costs will therefore be recovered in the energy charge.

Q. Will the Companies' proposed residential rates help to reduce subsidies?

A. Yes. There are two types of subsidies that need to be considered - inter-class subsidies and intra-class subsidies. The term "inter-class subsidies" refers to subsidies that are provided from or to one class of customers to or from another class of customers, and the "intra-class subsidies" refers to subsidies that are provided from or to customers within the same rate class. The Companies' proposed rates are designed to make progress towards reducing both inter- and intra-class rate subsidies. The apportionment of the total revenue increase to the customers was developed in such a manner as to provide a reduction in inter-class subsidies.

The rate making principle to follow to avoid intra-class subsidies is that fixed costs should be recovered through fixed charges (such as the customer charge and demand charge), and variable costs should be recovered through variable charges (such as the energy charge and the fuel adjustment charge). If fixed costs are recovered through variable charges, such as the energy charge assessed on a kWh basis, each kWh contains a component of fixed costs and customers using more energy than the average customer in the class are paying more than their fair share of the utility's fixed costs while customers using less energy than the average customer in the class are paying less than their fair share of the utility's fixed costs. These fixed costs should be collected through the billing units associated with the appropriate cost driver, and energy usage clearly is not the correct cost driver for collecting fixed costs.

The collection of fixed costs through the energy charge typically results in customers with above-average usage subsidizing customers with below-average usage. In order to eliminate this source of intra-class subsidies, the Companies propose a rate design that more closely follows the ratemaking principle of recovering fixed costs through fixed charges and variable costs through variable charges than does their current rate design.

Increasing the Basic Service Charge by a larger percentage than the energy charge will help reduce subsidies by bringing the charges toward the actual cost of providing service. Increasing KU's Basic Service Charge from $\$ 0.53$ per day to $\$ 0.61$ per day and increasing LG\&E's Basic Service Charge from $\$ 0.45$ per day to $\$ 0.52$ per day will eliminate some, but not all, of the subsidies that high-usage customers are currently providing low-usage customers.

D. RESIDENTIAL TIME-OF-DAY ENERGY AND DEMAND SERVICES

Q. Please provide a brief description of the Companies' residential time-of-day rates.
A. The Companies offer two residential time-of-day rates, RTOD-Energy and RTODDemand. Rate RTOD-Energy is a time-of-day rate that includes a time differentiated energy charge. Under the rate, customers are charged a significantly lower energy charge for off-peak usage. Rate RTOD-Demand is a time-of-day rate that includes a flat energy charge but a time differentiated demand charge.
Q. Are the Companies proposing changes to the time-of-day periods (rating periods)

for their RTOD rates?

A. Yes. The Companies are proposing to modify the on-peak period during the months of November through March ("Winter Months") for both RTOD-Energy and RTODDemand. The on-peak period during the Winter Months are currently 7 AM to 11 AM. KU and LG\&E are proposing to redefine the on-peak period during the Winter Months as the hours between from 6 AM to 10 AM and from 6 PM to 10 PM . With this change, the morning on-peak period will be shifted by one hour earlier in the morning, and non-contiguous evening hours will be added to the on-peak period to capture a secondary daily peak that occurs on the combined KU and LG\&E system during the evening.

Q. Why are these changes to the on-peak period being made?

A. The new on-peak hours will more accurately reflect the hours when a peak on the combined KU and LG\&E system would likely occur during the Winter Months. Because the Companies plan their generation resources to meet their combined load, it is appropriate to define the peak period as the hours during which the combined system peak would likely occur. Another objective is to define the peak period as narrowly as practicable so that customers can manage their loads to avoid higher onpeak charges, while still reflecting the period during which the Companies' peak will likely occur. During the Winter Months, the Companies' hourly combined system load will exhibit a pronounced peak during the morning and another during the evening. In the industry, this is referred to vernacularly as a "double hump", and is MW for a January peak:

GRAPH 1

This graph shows the typical hourly load pattern for KU and LG\&E's combined system on a winter peak day, with the evening peak somewhat lower than the morning peak. While the peak during the Winter Months will typically occur during the morning hours, the Companies' all-time winter peak occurred during the evening.

GRAPH 2 shows the hourly loads in MW for the Companies’ all-time highest winter peak that occurred on January 6, 2014:

GRAPH 2

As seen in the graph, the Companies proposed on-peak period would encompass this all-time winter system peak.
Q. What charges are KU and LG\&E proposing for Rate RTOD-Energy?
A. KU is proposing to increase the Basic Service Charge from $\$ 0.53$ per day to $\$ 0.61$ per
day, to increase the off-peak Energy Charge from $\$ 0.05760$ per kWh to $\$ 0.06512$ per kWh , and to decrease the on-peak Energy Charge from $\$ 0.27542$ per kWh to $\$ 0.22124$ per kWh. LG\&E is proposing to increase the Basic Service Charge from $\$ 0.45$ per day to $\$ 0.52$ per day, to increase the off-peak Energy Charge from $\$ 0.07080$ per kWh to $\$ 0.08180$ per kWh , and to decrease the on-peak Energy Charge from $\$ 0.20508$ per kWh to $\$ 0.17949$ per kWh. The proposed Basic Service Charges for the Companies are the same as for Rate RS. The increases in the off-peak Energy Charges and decreases in the on-peak Energy Charges account for proposed changes to the offpeak and on-peak hours during the Winter Months described above.

Q. What charges are KU and LG\&E proposing for Rate RTOD-Demand?

A. KU is proposing a Basic Service Charge of $\$ 0.61$ per day, an Energy Charge of $\$ 0.04476$ per kWh , a Base Demand charge of $\$ 4.01$ per kW , and a Peak Demand charge of $\$ 10.37$ per kW. LG\&E is proposing a Basic Service Charge of $\$ 0.52$ per day, an Energy Charge of $\$ 0.05340$ per kWh , a Base Demand charge of $\$ 4.22$ per kW , and a Peak Demand charge of $\$ 9.25$ per kW . The energy charge for Rate RTODDemand is broken down into Variable Energy Charge and Infrastructure Energy Charge components.

E. GENERAL SERVICE (RATE GS)

Q. Please provide a brief description of Rate GS.

A. Rate GS is the standard electric rate schedule available to small commercial and industrial customers served at secondary voltages (available voltages less than
$2,400 / 4,160 \mathrm{Y}$ volts). The rate schedule is limited to customers whose 12 -month average monthly demands do not exceed 50 kW . Approximately 83,000 small commercial and industrial customers are served under Rate GS on KU and approximately 45,000 are served under Rate GS on LG\&E. Rate GS has a two-part rate structure that includes a Basic Service Charge and an Energy Charge.

Q. What charges are the Companies proposing for Rate GS?

A. KU is proposing an increase in the Basic Service Charge for Rate GS from $\$ 1.04$ per day to $\$ 1.35$ per day for single-phase service and from $\$ 1.66$ per day to $\$ 2.15$ per day for three-phase service. LG\&E is proposing an increase in the Basic Service Charge for Rate GS from $\$ 1.04$ per day to $\$ 1.16$ per day for single-phase service and from $\$ 1.66$ per day to $\$ 1.85$ per day for three-phase service. KU is proposing to increase the energy charge from $\$ 0.11225$ per kWh to $\$ 0.12469$ per kWh , and LG\&E is proposing to increase the energy charge from $\$ 0.10530$ per kWh to $\$ 0.12355$ per kWh . As with Rate RS, the energy charge for Rate GS is broken down into Variable Energy Charge and Infrastructure Energy Charge components. For KU the proposed Variable Energy Charge is $\$ 0.03253$ per kWh , and the proposed Infrastructure Energy Charge is $\$ 0.09216$ per kWh. For LG\&E the proposed Variable Energy Charge is $\$ 0.03340$ per kWh , and the proposed Infrastructure Energy Charge is $\$ 0.09015$ per kWh .

F. GENERAL TIME-OF-DAY SERVICE (RATE GTOD)

Q. Are the Companies proposing a General Time-of-Day service?

A. Yes. The Companies are proposing to offer optional General Time-of-Day Service
(Rate GTOD-Energy and GTOD-Demand) standard rates that would be available to any General Service (Rate GS) customer enrolled under the Advanced Metering Systems Customer Service Offering set forth in the Companies' Demand-Side Management Cost Recovery Mechanism. Currently there are approximately 460 KU and LG\&E customers enrolled under the Advanced Metering Systems Customer Service Offering that would be eligible to take service under Rate GTOD-Energy or GTOD-Demand.

Q. Please describe the rate structure for Rate GTOD-Energy.

A. Rate GTOD-Energy will have the same pricing structure as RTOD-Energy. Specifically, GTOD-Energy will consist of a Basic Service Charge and a timedifferentiated Energy Charge consisting of an Off-Peak Charge and an On-Peak Charge. During the Summer Months of April through October, the On-Peak will be 1:00 PM to 5:00 PM on weekdays, with all other hours considered Off-Peak. During the Non-Summer Months of November through March, the On-Peak will be 6 AM to 10 AM in the morning and 6 PM to 10 PM in the evening, with all other hours considered Off-Peak.

Q. What charges are KU and LG\&E proposing for GTOD-Energy?

A. KU is proposing a Basic Service Charge $\$ 1.35$ per day for single-phase service and $\$ 2.15$ per day for three-phase service. KU is proposing an off-peak Energy Charge of $\$ 0.08094$ per kWh and an on-peak Energy Charge of $\$ 0.30029$ per kWh. LG\&E is proposing a Basic Service Charge $\$ 1.16$ per day for single-phase service and $\$ 1.85$ per day for three-phase service. LG\&E is proposing an off-peak Energy Charge of
$\$ 0.08075$ per kWh and an on-peak Energy Charge of $\$ 0.24797$ per kWh .

Q. Please describe the rate structure for Rate GTOD-Demand.

A. Rate GTOD-Demand will have the same pricing structure as RTOD-Demand. Specifically, GTOD-Demand will consist of a Basic Service Charge, Energy Charge, Peak Demand Charge, and Base Demand Charge. During the Summer Months of April through October, the On-Peak will be 1:00 PM to 5:00 PM on weekdays, with all other hours considered Off-Peak. During the Non-Summer Months of November through March, the On-Peak will be 6 AM to 10 AM in the morning and 6 PM to 10 PM in the evening, with all other hours considered Off-Peak.

Q. What charges are KU and LG\&E proposing for GTOD-Demand?

A. KU is proposing a Basic Service Charge of $\$ 1.35$ per day for single-phase service and $\$ 2.15$ per day for three-phase service. KU is proposing an Energy Charge of \$0.06916 per kWh , Peak Demand Charge of $\$ 14.16$ per kW per month, and Base Demand Charge of $\$ 5.47$ per kW per month. LG\&E is proposing a Basic Service Charge $\$ 1.16$ per day for single-phase service and $\$ 1.85$ per day for three-phase service. LG\&E is proposing an Energy Charge of $\$ 0.05950$ per kWh, Peak Demand Charge of $\$ 11.75$ per kW per month, and Base Demand Charge of $\$ 5.37$ per kW per month. Exhibit WSS-3 shows the cost support for the charges.

G. ALL ELECTRIC SCHOOLS SERVICE (AES) (KU ONLY)

Q. Please provide a brief description of Rate AES.

A. Rate AES is a KU-only rate generally available for school buildings, although the rate
is closed to new customers and is limited to customers that were qualified for, and being served on, Rate AES as of July 1, 2011. There are approximately 420 schools taking service under Rate AES. KU is proposing to increase the energy charge from $\$ 0.08732$ per kWh to $\$ 0.10079$ per kWh . The energy charge for Rate AES is broken down into Variable Energy Charge and Infrastructure Energy Charge components. The proposed Variable Energy Charge is $\$ 0.03223$ per kWh , and the proposed Infrastructure Energy Charge is $\$ 0.06856$ per kWh .

H. POWER SERVICE (RATE PS)

Q. What charges are the Companies proposing for Rate PS?

A. Rate PS is available for large commercial and industrial customers served at secondary voltages (available voltages less than 2,400/4,160Y volts) whose 12 -month average loads exceed 50 kW but do not exceed 250 kW and for large commercial and industrial customers served at primary voltages $(2,400 / 4,160 \mathrm{Y}$ volts, $7,200 / 12,470 \mathrm{Y}$ volts, or 34,500 volts) whose 12 -month average do not exceed 250 kW . The rate changes proposed for Rate PS are shown on Schedule M-2.3 for KU and Schedule M-2.3-E for LG\&E.

I. LARGE CUSTOMER RATES (RATES TODS, TODP, RTS, FLS)

Q. What are the standard large customer rates offered by KU and LG\&E?
A. KU and LG\&E offer four standard rates for large commercial and industrial customers: Time-of-Day Secondary Service (Rate TODS), Time-of-Day Primary

Service (Rate TODP), Retail Transmission Service (Rate RTS), and Fluctuating Load Service (Rate FLS). Rate TODS is available to customers served at secondary voltages (available voltages less than $2,400 / 4,160 \mathrm{Y}$ volts) with average demands between 250 kW and $5,000 \mathrm{~kW}$. Rate TODP is available to customers served at primary voltages $(2,400 / 4,160 \mathrm{Y}$ volts, $7,200 / 12,470 \mathrm{Y}$ volts, or 34,500 volts $)$ with average demands greater than 250 kVA . Rate RTS is available to customers served at transmission voltages (69,000 volts or higher) with average demands greater than 250 kVA. Rate FLS is available to customers served at primary or transmission voltage whose demands are $20,000 \mathrm{~kW}$ or greater. Customers with demands of $20,000 \mathrm{~kW}$ or greater whose load either increases or decreases 20 MVA or more per minute or whose load either increases or decreases 70 MVA or more in ten minutes, when any such increases or decreases occur more than once during any hour of the month, are required to take service under Rate FLS. The Companies' largest customers are served under these rate schedules. For KU, the proposed charges for Rates TODS, TODP, RTS, and FLS are shown on pages $9,10,11$, and 12, respectively, of Schedule M-2.3 of KU's Filing Requirements. For LG\&E, the proposed charges for Rates TODS, TODP, RTS, and FLS are shown on pages $8,9,10$, and 11, respectively, of Schedule M-2.3-E of LG\&E's Filing Requirements.

Q. Do all of these rate schedules have the same basic rate structure?

A. Yes. All four of these rates have a rate structure consisting of a Basic Service Charge, an Energy Charge, and a Maximum Load Charge comprising a Peak Demand Charge, an Intermediate Demand Charge, and a Base Demand Charge. The demand charges
for these rates are billed based on a charge per kVA. The Peak Demand Charge applies to billing demands (maximum demands) that occur during the weekday hours ("Peak Demand Period") from 1:00 PM to 7:00 PM during the summer months of May through September ("summer peak months") and during the weekday hours from 6:00 AM to 12:00 Noon during winter months of October through April ("winter peak months"). The Intermediate Demand Charge applies to billing demands that occur during the weekday hours ("Intermediate Demand Period") from 10:00 AM to 10:00 PM during the summer peak months and from 6:00 AM to 10:00 PM during the winter peak months. The Base Demand Charge applies to the billing demands that occur at any time during the month.

Q. Is there a cost basis for this rate structure?

A. Yes. The Companies must install sufficient generation resources to meet their peak demands. Peak demand conditions occur during the summer peak months and the winter peak months. Furthermore, peak conditions occur during hours between 6:00 AM and 10:00 PM but vary by season. The Companies must also install sufficient transmission and distribution facilities to deliver power to individual customers regardless of when they need it - during the peak or intermediate period or otherwise. Over the years, the Companies have structured the Peak Demand Charge and the Intermediate Demand Charge so that these charges would essentially provide recovery of generation fixed costs. The Base Demand Charge was structured so that the charge would basically provide recovery of transmission and distribution demand-related costs. Therefore, the Maximum Load Charge is essentially unbundled between
generation fixed costs, which are recovered through the Peak and Intermediate Demand Charges, and transmission and distribution demand-related fixed costs, which are recovered through the Base Demand Charge.

Q. Are the Companies proposing any changes to the pricing structure of these rates?

A. No.
J. CURTAILABLE SERVICE RIDERS (CSR)

Q. Please describe the Companies' CSR schedules.

A. The Companies' CSR schedules provide credits to industrial or commercial customers who have agreed to interrupt a portion of their load when called upon by KU or LG\&E. Curtailable customers receive a discount in the form of a credit to their demand charges in exchange for their willingness to receive curtailable service on a designated portion of their load. KU and LG\&E have two CSR schedules: Curtailable Service Rider-1 (Rider CSR-1) and Curtailable Service-2 (Rider CSR-2). The Companies' CSR schedules are now all closed to new participation.

Q. Are KU and LG\&E proposing changes to the CSR schedules?

A. No, other than a change to the LG\&E CSR schedules to indicate that they are now closed to new participation. Specifically, the Companies are not proposing to change the CSR credits.

K. OUTDOOR SPORTS LIGHTING SERVICE (OSL)

Q. Please describe OSL.

A. OSL is a pilot rate introduced in the Stipulation and Recommendation in the Companies' 2016 rate case proceedings. The pilot rate is limited to 20 customers each for KU and LG\&E on a first-come-first-served basis. The rate affords customers with lighting for outdoor sports fields to realize savings by operating their lighting equipment during off-peak hours. The rate consists of a Basic Service Charge, Energy Charge, and Base and Peak Demand Charges. KU currently serves four OSLSecondary customers, and LG\&E currently serves one OSL-Secondary customer. No customers take service under OSL-Primary.

Q. Are the Companies proposing to retain OSL?

A. Yes. The Companies are proposing to retain the rate schedule as a pilot program. By allowing sports fields the opportunity to avoid the Companies' system peaks and thereby avoid costs, the rate schedule appears to be operating effectively. Furthermore, the Companies' cost of service studies do not indicate that OSL is being subsidized by other customer classes. Therefore, the Companies propose to continue the rate as a pilot program. Because there are fewer than 20 customers currently taking service under OSL, the Companies propose to leave the maximum number of customers under the schedules at the current level of 20 customers on each system.

Q. Are the Companies proposing to adjust the Peak Period for the Summer Months for OSL?

A. Yes. To accommodate the management of sports lighting loads in late September, the

Companies are proposing to reduce the Peak Period during the summer peak months by one hour from the current peak hours of $1 \mathrm{PM}-7 \mathrm{PM}$ to $1 \mathrm{PM}-6 \mathrm{PM}$.

Q. Are the Companies proposing to adjust the charges for OSL?

A. Yes. For OSL-Secondary, KU is proposing to decrease the energy charge from $\$ 0.03249$ to $\$ 0.03210$ per kWh, to decrease the Peak Demand Charge from $\$ 24.17$ to $\$ 19.61$ per kW and increase the Base Demand Charge from $\$ 2.02$ to $\$ 2.93$ per KW. These changes result in a net decrease in revenue for this rate of approximately 5.0% for KU. LG\&E is proposing to decrease the energy charge for OSL-Secondary from $\$ 0.03441$ to $\$ 0.03292$ per kWh , to decrease the Peak Demand Charge from $\$ 26.57$ to $\$ 23.14$ per kW and decrease the Base Demand Charge from $\$ 3.44$ to $\$ 3.38$ per KW. These changes result in a net decrease in revenue for this rate of approximately 10.0% for LG\&E. The detailed rate changes for OSL are shown on pages 16 and 17 of Schedule M-2.3 for KU and Schedule M-2.3-E for LG\&E.

L. LIGHTING RATES

Q. Please provide an overview of the lighting rates currently offered by KU and LG\&E.

A. KU and LG\&E offer two rates that include the lighting fixture along with the delivered energy to operate the lights. Those two rates are Lighting Service (Rate LS) and Restricted Lighting Service (Rate RLS). Under Rates LS and RLS, the rates include the lighting fixtures along with the delivered energy to operate the lighting fixtures. Under these two rates, the lights can be fed by either overhead or underground service.

For lights fed from underground service, the cost of a non-wood pole is currently included in the rate. For lights fed from overhead service, the fixture is typically attached to an existing pole; therefore, the cost of the pole is not included in the rate. However, if a wood pole must be installed to provide service for an overhead light, then the customer would pay a separate monthly fee for that pole. KU and LG\&E also offer two types of delivered energy service to customers who own their lighting fixtures or traffic signal and control equipment. Those two rates are Lighting Energy Service (Rate LE) and Traffic Energy Service (Rate TE).

Q. Please provide an overview of the proposed modifications to Rates LS and RLS.

A. In their 2016 and 2018 rate cases, KU and LG\&E each introduced a number of lightemitting diode (LED) offerings. In the current rate case, KU is offering a new Victorian style LED offering, and LG\&E is offering a new Victorian and a new London style LED offering. Under the proposed tariffs, the Companies will no longer be installing new non-LED lights. Accordingly, all non-LED lights would be moved from Rate LS to Rate RLS and thus be restricted. The Companies will continue to maintain the existing non-LED lights. However, if a non-LED fixture fails and the Companies no longer have replacement equipment in inventory to repair or replace the fixture, then the customer will be given a choice to have the light removed or to replace the non-LED light with an LED light. KU and LG\&E will also continue to allow customers, at their option, to replace non-LED lights that are functioning (i.e., in good working order) with LED lights, but in those instances the customer would pay an LED Conversion Fee, as approved by the Commission in Case Nos. 2018-

00294 and 2018-00295.

Q. How were the charges for the LED fixtures determined?

A. For overhead lights, the proposed charge reflects the current cost to the Companies of the LED fixture, photocell and associated equipment (service wire, connectors, etc.), labor required for installation, and expected maintenance of the fixture. For underground lights, the Companies are proposing to break out the charges into a fixture charge and a pole charge. The fixture charge consists of the costs to the Companies of an LED fixture, photocell, labor required for installation, and expected maintenance of the fixture. Included in the pole charge is the cost to the Companies of the pole and associated equipment (base, connectors, etc.), labor to install the pole, and expected maintenance of the pole. The proposed charges for both underground and overhead fixtures are determined by calculating the monthly costs of the various types of fixtures using a standard carrying cost methodology that is consistent with how overall revenue requirements are determined in these proceedings. The cost of the fixtures reflects the installed cost of new fixtures, associated equipment, and maintenance. In calculating the charge for poles for underground lighting service, the annual cost was determined based on the embedded cost of an existing pole. In other words, it is assumed that an LED fixture will be installed on an existing pole, and the cost of the pole thus reflects the net depreciated cost of a pole on KU or LG\&E's system. This is a reasonable assumption because for most LED conversions the existing pole will be used. The carrying charge calculations used to develop the rates for the fixtures assume an average service life of 25 years for the new LED offerings.

The calculation of the charges for the overhead and underground LED fixtures and the underground poles are shown in Exhibit WSS-4.

Q. Are the Companies proposing to lower the LED Conversion Fee that was authorized in the Companies last rate cases?

A. Yes. The LED Conversion Fee was approved by the Commission in Case Nos. 201800294 and 2018-00295. The Companies have updated the cost support for the Conversion Fee, as shown in Exhibit WSS-5. Based on the updated cost support, KU is proposing to reduce the monthly LED Conversion Fee from $\$ 6.03$ to $\$ 5.01$ per fixture per month, and LG\&E is proposing to reduce the monthly LED Conversion Fee from $\$ 7.37$ to $\$ 7.08$ per fixture per month. ${ }^{3}$

Q. Are the Companies proposing to offer customers an option to pay the LED

 Conversion Fee as an up-front charge?A. Yes. The LED Conversion Fee was implemented by the Commission in Case Nos. 2018-00294 and 2018-00295. The LED Conversion Fee was structured as a monthly charge that would be assessed over a period of five years. The Companies are proposing an option that would allow customers to make an up-front payment of the fee. The up-front payment reflects a discounted payment reflecting the discounted

[^2]present value charges based on KU and LG\&E's weighted cost of capital. A KU customer that chooses to convert a restricted light to an LED light could elect to pay either $\$ 5.01$ per month for 60 months or make an upfront payment of $\$ 197.16$. An LG\&E customer that chooses to convert a restricted light to an LED light could elect to pay either $\$ 7.08$ per month for 60 months or make an upfront payment of $\$ 277.29$.

Q. Please discuss the proposed rate changes to Rates LS, RLS, LE, and TE.

A. KU is not proposing an increase for Rate LS and RLS in total. However, KU is proposing changes to the monthly charges for individual fixtures and poles. For LED fixtures offered under Rate LS, KU is proposing to change the monthly charge for each fixture to reflect the current cost of the fixture. KU is also proposing to change the monthly charge for poles to reflect the current cost of each pole. This generally resulted in a reduction in the charges for LS LED fixtures and an increase in the charges for LS poles. Accounting for the effect of eliminating the ECR projects and the net reduction in revenue due to the decreases in the charges for LS fixtures and poles resulted in an increase of approximately 1.75% for each RLS fixture ${ }^{4}$ to produce revenue neutral rates for LS and RLS customer class as a whole. The overall percentage increase in total revenue for LS and RLS, after accounting for revenues from the rate mechanisms (FAC, ECR, etc.) is 0.00% for KU.

[^3]LG\&E is proposing an increase of 11.90% for Rate LS and RLS in total. For LED fixtures offered under Rate LS, LG\&E is again proposing to change the monthly charge for each fixture to reflect the current cost of the fixture. LG\&E is also proposing to change the monthly charge for poles to reflect the current cost of each pole. This generally resulted in an increase in the charges for LS LED fixtures and an increase in the charges for LS poles. Accounting for the effect of eliminating the ECR projects and the increases in charges for LED fixtures and poles, an increase of approximately 16.57% was required for each RLS fixture and pole ${ }^{5}$ to produce an overall increase for Rate LS and RLS of 11.90%. Therefore, the overall percentage increase in total revenue for LS and RLS, after accounting for revenues from the rate mechanisms (FAC, ECR, etc.) is 11.90% for LG\&E. The cost support for LED fixtures under LS and for poles is included in Exhibit WSS-4. The Companies are not proposing revenue increases for Rates LE and TE. However, the energy charge for the rates are modified to reflect the elimination of ECR projects. Changes in all lighting rates are shown in Schedule M-2.3 for KU and Schedule M-2.3-E for LG\&E.

Q. Please describe KU and LG\&E's Solar Share rates.

[^4]A. KU and LG\&E offer an optional Solar Share Program Rider (Rider SSP) under which customers can purchase electric energy from solar panels jointly installed and maintained by the Companies. Rider SSP was filed by the Companies on August 2, 2016, in Case No. 2016-00274 and was approved by the Commission in its Order dated November 4, 2016. As originally filed, Rider SSP included three rate components: (1) an upfront subscription fee, (2) a monthly Solar Capacity Charge, and (3) monthly Solar Energy Credits for the energy produced by the Solar Share Facilities. On August 2, 2018, the Companies filed revised tariff sheets with the Commission to consolidate the upfront subscription fee with the Solar Capacity Charge and account for the effects of the federal Tax Cuts and Jobs Act and Kentucky House Bill 487. This change, which was accepted for filing by the Commission on August 28, 2018, resulted in the currently effective monthly Solar Capacity Charge of $\$ 5.55$ per quarter-kW (nominal) subscribed.
Q. Are the Companies proposing modifications to KU and LG\&E's Solar Share rates?
A. No.
Q. In the Companies' last rate cases, adjustments to miscellaneous revenues were made to ensure that costs related to the Solar Share Program were not shifted to other customers. Are the Companies making such adjustments for Solar Share in these proceedings?
A. Yes. The Solar Share Program was approved as a pilot program in Case No. 201600274. In that proceeding, the Companies made a commitment that the Solar Share Program would not result in increased charges to the Companies' other customers.

The Companies will continue to honor that commitment. To ensure that the costs of the Solar Share Program are not shifted to other customers, the Companies have imputed revenues to bring the class rate of return for Solar Share in the Companies' cost of service studies up to the overall rate of return on rate base proposed by the Companies in these proceedings. The Companies are also making imputed revenue adjustments for their Business Solar Programs. Specifically, for the Solar Share Programs, revenues of $\$ 295,846$ are imputed for KU and revenues of $\$ 110,942$ are imputed for LG\&E. For the Business Solar Programs, revenues of \$9,579 are imputed for $K \mathrm{U}$ and revenues of \$9,378 are imputed for LG\&E.

N. NET METERING

Q. Are the Companies proposing a new rate schedule for Net Metering Service to address recent amendments to KRS 278.465-278.467?

A. Yes. The Companies are proposing a new rate schedule called "NMS-2 Net Metering Service-2" that implements changes authorized by the amended statutes. NMS-2 will apply to new or non-grandfathered eligible customer-generators served by KU or LG\&E on or after the date on which new rates from these proceedings take effect. Eligible electric generating facilities for which the Companies' written Application for Interconnection and Net Metering have been executed prior to the date new rates take effect will be grandfathered for 25 years under the Companies' current rate schedule for Net Metering Service, which will be renamed Net Metering Service - 1 (NMS-1). In my testimony, such customers who own such facilities are referred to as
"grandfathered net metering customers." Customers to be served under NMS-2 are referred to as "non-grandfathered" or "new" net metering customers.

Q. What is a "customer-generator" according to the statutes?

A. Subparagraph (1) of KRS 278.465 defines an "eligible customer-generator" as follows:

> "Eligible customer-generator" means a customer of a retail electric supplier who owns and operates an electric generating facility that is located on the customer's premises, for the primary purpose of supplying all or part of the customer's own electricity requirements.

According to subparagraph (1)(b) of KRS 278.465, the eligible customer-generator would generate power from an "eligible electric generating facility", which must generate electricity from solar energy, wind energy, biomass or biogas energy, or hydro energy and cannot have a rated capacity above 45 kW . In the industry, an "eligible customer-generator" is also referred to as a "renewable distributed generation customer". I will use the terms "customer-generator" and "distributed generation customer" interchangeably to refer to an "eligible customer-generator" as defined in KRS 278.465.

Q. Does KRS 278.466 indicate that the utility shall compensate the customergenerator for the energy supplied to the grid?

A. Yes. Subparagraph (3) of KRS 278.466 states:

A retail electric supplier serving an eligible customer-generator shall compensate that customer for all electricity produced by the customer's eligible electric generating facility that flows to the retail electric supplier, as measured by the standard kilowatt-hour metering prescribed in subsection (2) of this section. The rate to be
used for such compensation shall be set by the commission using the ratemaking processes under this chapter during a proceeding initiated by a retail electric supplier or generation and transmission cooperative on behalf of one (1) or more retail electric suppliers.

Q. How are the Companies proposing to compensate new customer-generators for energy they supply to the grid?
 A. Under the Companies' proposed NMS-2 schedule, new customer-generators will be compensated for any net generation they supply to the grid (i.e., generation that exceeds their energy requirements during the month) at the avoided cost rate set forth in Rate B - Non-Time Differentiated Rate set for KU and LG\&E's Small Capacity Cogeneration and Small Production Qualifying Facilities Rider (Rider SQF).

Q. Please provide some background on the Companies' Rider SQF.

A. SQF was implemented to comply with Sections 201 and 210 of the Public Utility Regulatory Policies Act of 1978 ("PURPA"). Both KU and LG\&E were required to implement rate schedules under which the Companies would purchase energy from cogeneration and small power production qualifying facilities ("qualifying facilities"). These rate schedules were designed to apply to energy produced from cogeneration and from small power production from what are now characterized as "renewable resources". In its Order in Administrative Case No. 244, the Commission introduced 807 KAR 5:054 implementing Sections 201 and 210 of PURPA. ${ }^{6}$ In compliance with those regulations, the Companies filed rate schedules applicable to energy

[^5]purchased from qualifying facilities. Rider SQF is applicable to energy purchased from qualifying facilities of 100 kW or less.

Q. What are avoided energy costs, and why is it appropriate to compensate customergenerators at a rate reflective of avoided costs?

A. The term avoided energy costs means the incremental costs of the energy that the utility would otherwise generate itself or purchase from another source if the customer-generator did not supply the energy. Whenever a distributed generation customer supplies electric energy to the grid, the utility can avoid generating the energy or purchasing the energy from another power supplier and thus avoid the incurring cost of the generating or purchasing the energy. Because of the intermittent and uncertain nature of the energy source (i.e., due the intermittent and uncertain availability of wind, sunlight, etc.), renewable distributed generating facilities identified in subparagraph (1)(b) of KRS 278.465 cannot be dispatched by the utility and cannot be supplied as firm capacity. Thus, only energy costs are avoided by the utility receiving electric energy from a customer-generator. Accordingly, the energy rates for energy purchases under SQF, which apply to qualifying facilities of 100 kW or less and are based on avoided energy costs, should also apply to the energy supplied to the grid by new customer-generators, as addressed in Subparagraph (3) of KRS 278.466. As specified in Subsection (5)(1)(a) of the 807 KAR 5:054 of the Commission's regulations, the Companies' avoided energy costs, as used to determine the purchase rates under SQF, are updated every two years. Using the avoided cost rate set forth in SQF will therefore place the compensation that new customer-
generators receive under NMS-2 on the same non-discriminatory footing as the compensation that qualifying facilities receive under SQF.

Q. Will compensating customer-generators at avoided costs for the energy they

 supply to the grid put net metering on a more economically accurate footing for new customer-generators?A. Yes. Under the older-style net metering service (such as the Companies' NMS-1, which will continue to be available for grandfathered customer-generators), customergenerators would be compensated for the power they put on the grid at a rate that is over four times the cost that would otherwise be incurred by the Companies to generate the power themselves or purchase the power. For example, KU is proposing an energy charge of $\$ 0.09950$ per kWh for Rate RS. Therefore, under the older-style net metering service such as NMS-1, KU would effectively compensate customergenerators at a rate of $\$ 0.09950$ per kWh plus amounts reflecting various costrecovery riders (i.e., FAC, DSM, and ECR) for power they supply to the grid. However, the cost that KU would incur to generate this power itself or purchase the power is currently only $\$ 0.02173$ per $\mathrm{kWh}{ }^{7}$ Consequently, under the older-style net metering service such as NMS-1, customer-generators are compensated at a rate that is over four times the economic value of the energy. This creates the situation in which one group of customers, customer-generators, is being subsidized by other customers, non-customer-generators. This is particularly problematic in the case of

[^6]low-income customers who may not be able to afford to install solar panels or other types of distributed generation facilities. In those instances, lower-income customers, who may not be able to afford solar panels, would be required to subsidize higherincome customers who can afford to install solar panels. Compensating customergenerators at avoided costs for the power they put on the grid will eliminate these types of cross subsidies and will establish a more economically accurate framework for compensating net metering customers.

O. OTHER COST CONSIDERATIONS FOR SERVING CUSTOMERGENERATORS

Q. Are there provisions of the net metering statutes that the Companies are choosing

 not to address at this time?A. Yes. Subsection (5) of KRS 278.466 states:

Using the ratemaking process provided by this chapter, each retail electric supplier shall be entitled to implement rates to recover from its eligible customer-generators all costs necessary to serve its eligible customer-generators, including but not limited to fixed and demand-based costs, without regard for the rate structure for customers who are not eligible customer-generators.

This subsection entitles electric energy suppliers subject to KRS 278.465 to .467 to implement new rate schedules that recover the cost of providing service to customergenerators "without regard for the rate structure for customers who are not eligible
customer-generators". ${ }^{8}$ The Companies are choosing not to develop cost-based rates designed specifically for distributed generation customers at this time, but the Companies plan to continue to evaluate the use of cost-based rate designs, such as four-part rates that include a customer charge, energy charge, peak demand charge, and base demand charge, to serve distributed generation customers.

Q. Why aren't the Companies implementing fully cost-based rates that recover fixed and demand-based costs?

A. By compensating net generation based on the rates set forth in SQF, the Companies believe that they are taking a major step toward addressing some of the subsidy issues related to serving distributed generation customers. The Companies' proposal represents a gradual movement toward implementing a cost-based pricing structure for customer-generators that will reduce some of the subsidies provided by nondistributed generation customers to distributed generation customers. The Companies' proposal is thus consistent with the ratemaking principles of rate continuity and gradualism. Before implementing fully cost-based rate structures, such as four-part rates, the Companies have also determined that it is necessary to gather more load data for distributed generation customers. Additionally, the Companies believe that more community and customer education and outreach are necessary before taking additional steps toward implementing fully cost-based rates - such as four-part rate designs - for distributed generation customers.

[^7]
Q. What pricing structures have been utilized in other jurisdictions to reflect the cost of serving distributed generation customers?

A. There has been a movement toward implementing three- or four-part rates for distributed generation customers, consisting of a customer charge, energy charge and one or two demand charges. For example, in its Order in Docket No. 15-WSSE-115RTS, the Kansas Corporation Commission approved a residential rate schedule ${ }^{9}$ for Westar Energy Company (now called "Evergy Kansas Central, Inc." ${ }^{10}$) (hereinafter referred to as "Evergy") that required any residential customer adding behind-themeter electric generation after October 28, 2015, ${ }^{11}$ to take service under a three-part rate schedule consisting of a customer charge, energy charge and a seasonally differentiated demand charge. Evergy serves approximately 1.6 million customers in Kansas and Missouri. Evergy's Residential Standard Distributed Generation Rate (see Exhibit WSS-6) currently consists of the following rate components:

Basic Service Fee	$\$ 14.50$ per month
Energy Charge	$4.5840 \notin$ per kWh
Demand Charge	

Winter Period
$\$ 3.00$ per kW
Summer Period
$\$ 9.00$ per kW

[^8]The demand charge in the rate helps prevent a customer with behind-the-meter generation from shifting fixed, and therefore unavoidable, demand-related capacity costs onto other residential customers. In its Order in Docket No. 16-GIME-403GIE, the Kansas Corporation Commission stated:
[T]he Commission finds the current two-part residential rate design [consisting of only a customer charge and energy charges] is problematic for utilities and residential private DG [distributed generation] customers because DG customers use the electric grid as a backup system resulting in their consuming less energy than non-DG customers, which results in DG customers not paying the same proportion of fixed costs as non-DG customers. The Commission finds DG customers are thus being subsidized by nonDG customers. ${ }^{12}$

For ease of reference, Kansas Corporation Commission's Order in Docket No. 16-GIME-403-GIE is attached hereto as Exhibit WSS-7. Challenges with serving distributed generation customers are generally recognized in the industry and utilities are beginning to develop rate designs such as Evergy's three-part rates or four-part rates to address the issue. Other utilities and regulatory commissions have also recognized the problem with the continued use of two-part rates consisting of only a customer charge and energy charge for serving distributed distribution customers. The New Mexico Public Regulation Staff has filed testimony in a number of proceedings pointing out problems with serving distributed generation customers under two-part

[^9]rates. ${ }^{13}$
Q. KRS 278.466 addresses the recovery of fixed- and demand-based costs. Why is it important for utilities to have rates that provide for the recovery of these types of costs to serve customer-generators?
A. Serving distributed generation customers under two-part rate schedules such as Residential Service RS, General Service GS, and All Electric School Service AES creates a pricing environment in which customers who do not have their own electric generation facilities are forced to subsidize customers who operate their own behind-the-meter generating facilities. As will be explained, a two-part rate schedule consisting of a customer charge and an energy charge allows a customer-generator with solar panels, for example, to fall back on the utility when sunlight is not available and avoid paying the full cost of service. Therefore, serving distributed generation customers under a two-part rate consisting of only a customer charge and energy charge forces non-distributed generation customers to subsidize distributed generation customers. Because it accurately reflects cost of service, a four-part rate would ensure that distributed generation customers are not over-charged or under-charged for the service they receive. A four-part rate design would thus prevent customers who do not have electric generation facilities from subsidizing distributed generation customers.

Q. Do KU and LG\&E have any four-part rate schedules?

[^10]A. Yes. The Companies have used four-part rates for decades for its large customers. Rates TODS, TODP, RTS, and FLS are four-part rates. Four-part rates are mandatory for all customers with loads greater than 250 kVA . The Companies require customers with demands between 50 kVA and 250 kVA to take service under Rate PS, which is a three-part rate consisting of a customer charge, energy charge and maximum demand charge. ${ }^{14}$ A wide variety of customers take service under these rate schedules. Load factors of customers taking service under these rates range from less than 5% to almost 100%. To put this in perspective, a residential customer will typically have a load factor based on their maximum demand of between 15% to 30%. Therefore, there are customers taking service under these rates with load factors less than a typical residential customer.

Q. Why have residential and small commercial and industrial (C\&I) customers traditionally not been served under rate schedules with demand charges?

A. The concept of demand rates was conceived in the 1890 s by the British electrical engineer John Hopkinson. ${ }^{15}$ It was not long afterwards that electric utilities began billing some their customers under demand-energy rates, which were often referred to as "Hopkinson Rates". Based on my research, the principal reason that residential and small C\&I customers were not originally served under three- and four-part rates was

[^11]the high cost of metering equipment required to measure a customer's maximum or peak period demands. Until recently, to implement a three-part rate required a relatively expensive demand meter (e.g., a reset demand meter), and to implement a four-part rate required the installation of special chart meters or paper tape meters, which were even more expensive than reset demand meters. (See photos in Exhibit WSS-8.) These types of meters were generally available during the very early years of the electric utility industry, but they were prohibitively expensive. Consequently, they were only used for the largest customers served by electric utilities. As early as 1915, some rate engineers were promoting demand and energy rates for all customers. For example, the electrical engineer Paul M. Lincoln had developed a relatively inexpensive thermal meter which he promoted for use in measuring customer's maximum demand. ${ }^{16}$ Lincoln argued that his meter could eventually be used to implement demand rates for all types of customers, including residential customers. While the meter was relatively inexpensive, it proved not to be sufficiently accurate

[^12]for use in billing customers. ${ }^{17}$ During the early history of the electric utility industry, the principal residential use of electric energy was for lighting. Electric appliances such as clothes irons, fans and refrigerators did not become prevalent until much later. Because customer loads for lighting were considered homogenous, demand metering was not considered necessary during the early years of the industry. ${ }^{18}$ But as residential customers began to use a multitude of appliances, residential customer loads became more diverse and less homogeneous. Until the emergence of Advanced Metering Systems (AMS) and Advanced Metering Infrastructure (AMI), the implementation of demand rates on a wide scale for residential and small $\mathrm{C} \& \mathrm{I}$ customers was not considered practical. Over the past decade, a small but growing number of utilities have implemented demand rates for all their residential customers, not just new distributed generation customers as in Kansas.

Q. Do customers with distributed generation facilities generally have different load characteristics than customers who do not own generation facilities?

A. Yes. Customers with distributed generation facilities typically have significantly different load characteristics and load shapes than customers that do not have distributed generation facilities. For example, customer-generators will have lower load factors than non-distributed generation customers. The following graph (GRAPH

[^13]3) compares the loads for a small sample of the Companies' residential customers ${ }^{19}$ with solar panels to the loads for the residential rate class on a summer peak day:

As can be seen from this graph, loads for the distributed generation customers are depressed during the hours of the day when there is sufficient sunlight to operate the solar panels, but the graph shows a spike in the customer-generators' loads in the

[^14]evening when the sunlight is no longer available for solar generation. ${ }^{20}$ However, KU and LG\&E must stand ready to deliver power to distributed generation customers when the load spikes in the evening. Thus, distributed generation facilities do not result in appreciable savings in generation, transmission, or distribution fixed costs. With a two-part rate, in which generation, transmission and distribution demand costs are recovered through a volumetric-based energy charge, the customer-generators realize reductions in their electric bills that are disproportionate to the savings created by the customer's solar generation. This results in other customers subsidizing distributed generation customers.

The following graph (GRAPH 4) compares the loads for the Companies' residential customers with solar panels to the loads for the residential rate class on a winter peak day:

[^15]GRAPH 4

As can be seen from this graph, on the winter peak day, the loads for residential distributed generation customers do not have an appreciably different pattern than the loads for the Companies' residential customers. KU and LG\&E's combined system peak demand occurs during the hours from 6 AM to 10 AM during the morning and from 6 PM to 10 PM during the evening. During these hours, the customergenerators' solar panels are not operating at significant levels. Therefore, the Companies must have sufficient generation, transmission, and distribution capacity to serve customer-generators' loads during those hours. The distributed generation facilities do not appear to result in any fixed cost savings to the customers. But with
a two-part rate in which fixed costs are recovered through a volumetric energy charge, the distributed generation customers are able to shift demand-related cost recovery to other customers without creating any fixed-cost savings.

Q. Please describe the costs necessary to serve eligible customer-generators.

A. Earlier in my testimony, I discussed that an electric utility incurs three types (or "classifications") of costs to serve customers - namely, energy-related costs, demandrelated costs, and customer-related costs. These same three types of costs are also incurred to serve customer-generators.

As explained earlier in my testimony, energy-related costs are the strictly variable expenses, such as fuel costs, that an electric utility incurs to supply the amount of energy measured in kilowatt-hours (kWh) that a customer uses. To the extent that a customer-generator produces energy from its own electric generation facilities, instead of purchasing the energy from the utility, the energy-related cost incurred by the utility to serve that customer is reduced or avoided.

Demand-related costs are costs related to the maximum load or kW demand placed on the utility system. An electric utility must install sufficient generation, transmission and distribution capacity to meet the maximum demand placed on the facilities. These costs are therefore demand related. For example, an electric utility must have sufficient generation capacity to serve its maximum system peak demand. The maximum system peak demand represents the aggregated load of all of its customers, effectively taking into consideration that while individual customers may have different load patterns, when they are all added together the aggregated loads
result in a well-defined load shape for the system as a whole. Based on their combined system loads in MW, KU and LG\&E's load pattern on a summer peak day is depicted below (GRAPH 5).

KU and LG\&E must install sufficient generation and transmission capacity to meet the summer system peak demand that occurs between the hours of 1 PM to 5 PM during the summer months.

An integrated electric utility such as KU and LG\&E must also have sufficient
distribution capacity to serve its customers' loads. Unlike generation facilities, distribution facilities must be sized to meet the localized loads of individual customers served on the distribution system. For example, an electric utility must install sufficient secondary distribution capacity, transformer capacity, and service line capacity to serve a customer's individual maximum demand whenever it occurs. This is precisely the reason that distribution demand-related costs are allocated differently in the Companies' class cost of service studies than production and transmission costs, as discussed later in my testimony. Therefore, to the extent that a customer-generator can reduce the maximum demand placed on the system, these demand-related distribution costs can be reduced.

Customer-related costs are costs incurred to serve customers regardless of the quantity of electric energy (kWh) purchased or the peak demand requirements (kW) of the customers. As with any other customers, customer-related costs are incurred to serve customer-generators.

Q. How are energy-related costs impacted by customer generation?

A. The electric energy produced by a customer-generator allows an electric utility to avoid its energy-related costs. If a customer generates energy with any type of distributed generation technology, then the utility is not required to generate that energy to serve the customer. The utility's energy-related costs are thereby reduced. Thus, the customer-generator that reduces its energy should not pay for the energyrelated costs. Furthermore, a customer-generator that generates more energy than the total amount of the customer-generator's own energy requirements, thereby resulting
in net generation, allows the utility to further avoid its energy-related costs. The customer-generator should therefore be compensated for such net generation at a rate that reflects the utility's avoided energy costs. In other words, the customer-generator that generates net energy should receive a billing credit that reflects KU and LG\&E's avoided energy costs as set forth in Rider SQF.

Q. How are demand-related costs impacted by customer generation?

A. If a customer-generator can consistently generate power at the time of the utility's system peak demand, then the utility will not incur demand-related generation costs to serve the customer. Specifically, if a customer-generator can generate power during KU and LG\&E's peak period, as shown in GRAPH 5 above, the Companies do not need to have generation capacity to serve the customer-generator. Consequently, the customer-generator should only be assessed a generation demand charge during the Companies' peak periods. Likewise, if a customer-generator can reduce the maximum demand that is placed on the distribution system, the Companies are not required to install the distribution facilities for the reduced load. Therefore, if a customer-generator can reduce its maximum demand through self-generation, then the customer-generator should pay a lower distribution demand cost.

Q. Is it possible for customer-generators to reduce demand-related costs?

A. Yes, but the extent to which demand cost reductions can be realized depends on the distributed generation technology used by the customer. Not all distributed generation technologies create the same demand cost savings. For example, assume a customer-generator installs a combination of solar panels and battery storage. The
combination of solar panels and battery storage can be managed to ensure that both peak-period demands and customer-maximum demands are reduced. This is not likely to be the case for a customer-generator who installs only solar panels. With solar panels, power is generated only when there is sufficient sunlight to produce power. If the solar panels are not producing power during the peak period, then no generation demand cost savings can be realized. These two examples underscore the difference in demand savings created by various distributed generation configurations and underscore the importance of including a demand charge in the pricing structure for distributed generation. With a pricing structure in which demand costs are recovered as an energy charge (per kWh charge), rather than as a demand charge (per kW charge), a technology configuration that includes only solar panels would receive the same pricing benefits as a technology configuration that includes both solar panels and battery storage, even though a combination of solar panels and battery storage can be managed to provide significantly higher demand cost savings. Recovering demandrelated costs though a per- kWh charge overcompensates a customer-generator that installs solar panels but without battery storage.
Q. Can you provide a numerical example of how a customer-generator with solar panels, but no battery backup, is more costly to serve than a customer-generator with solar panels and managed battery storage?
A. Yes. Consider the example of a residential customer served by either KU or LG\&E with a maximum demand of 10 kW during the summer and 20 kW during the winter. Suppose that during the summer, the customer has 7 kW of air-conditioning load and

3 kW of lighting, refrigeration, water heating, and other load, and that during the winter the customer has 17 kW of electric heating load and 3 kW of lighting, refrigeration, water hearing and other load. Assume further that the customer has 20 kW of solar panel capacity. During the summer months, it is likely that the solar panels are fully or partially operational during the KU and LG\&E peak hours from 1:00 to 5:00 PM. Therefore, solar panels may result in a partial reduction in generation demand costs. However, during the evening hours, when the customer's solar panels are not generating power, the customer will still be operating air conditioning equipment and will be fully utilizing KU or LG\&E's distribution system. Consequently, the customer's solar generation does not result in a reduction of the distribution capacity required to serve the customer. For this reason, the customergenerator should be assessed a charge that reflects the demand that the customer imposes on the distribution system.

During the winter, KU and LG\&E's peaks typically occur during the hours of 6 AM to 10 AM in the morning and 6 PM to 10 PM in the evening. During those hours, it is less likely that the customer's solar panels are generating power. Therefore, KU and LG\&E must have the generation, transmission, and distribution capacity necessary to serve the customer-generator's full load. Since the customergenerator cannot reduce demand during the peak period, the customer-generator should be assessed a charge that reflects the demand that the customer imposes on the generation, transmission, and distribution system.
Q. But what about a customer-generator who has installed solar panels and managed battery storage?
A. Let us assume that the same customer has installed 40 kW of solar panels but has also installed lithium ion batteries with 20 kW maximum output and with the ability to store energy for several days. Then the customer can store electric energy in the batteries while the solar panels are operating but draw power from the batteries when there is insufficient sunlight to generate power from the solar panels. This customer can effectively reduce the demand imposed on the generation system during KU and LG\&E's system peak periods and also reduce the maximum demand that the customer places on the Companies' distribution systems. Therefore, unlike a customer with only solar panels, this customer can fully reduce the production demand costs required to serve the customer and partially reduce the distribution costs incurred to serve the customer. Because the customer-generator with a combination of solar panels and managed battery storage can fully reduce demand during the peak period, along with reducing maximum demand during the month, the customer-generator should be assessed lower demand charges than a customer-generator with only solar panels. But this would not be the case if the customer is served under a two-part rate. With a twopart rate design, consisting of only a customer charge and an energy charge, there is no economic benefit for installing battery storage. With a two-part rate, the only benefit for adding battery storage is increased reliability.

Q. How are customer-related costs impacted by customer generation?

A. Customer-related costs are not impacted by customer generation. Customer-related costs are the costs related to connecting the customer to the system and include the
cost of the meter, service line, the minimum distribution assets required to connect the customer to the grid, and meter reading and billing costs. These costs do not vary with the customer's energy usage or demand.
Q. Will the Companies be investigating these issues in the future?
A. Yes, that is their intention.

P. ELECTRIC VEHICLE CHARGING STATION RATES

Q. Do KU and LG\&E currently offer public electric vehicle charging service?
A. Yes. KU and LG\&E currently provide electric vehicle charging service to licensed electric vehicles from twenty Level 2 Charging Stations. Service is provided from these Level 2 Charging Stations under Electric Vehicle Charging Service Rate EVC, which was originally approved by the Commission in Case No. 2015-00355 and substantially modified in the Companies' last general rate case filings in Case Nos. 2018-00294 and 2018-00295.
Q. Are the Companies proposing any changes to the Level 2 charging service set forth in Rate EVC?
A. No.
Q. In the Companies' last rate cases, adjustments to miscellaneous revenues were made to ensure that costs related to Level 2 charging under Rate EV were not shifted to other customers. Are the Companies making such an adjustment for Level $\mathbf{2}$ charging service in these proceedings?
A. Yes. Level 2 Charging Service under Rate EV was approved as a pilot program in

Case No. 2015-00355. In that proceeding, the Companies made a commitment that the Level 2 charging service would not result in increased charges to the Companies' other customers. For Level 2 charging service offered under Rate EV, the Companies will continue to honor that commitment. To ensure that the cost of providing Level 2 charging service isn't shifted to other customers, the Companies have imputed revenues for Rate EV to bring the class rate of return for Rate EV in the Companies' cost of service studies up to the overall rate of return on rate base proposed by the Companies in these proceedings. Specifically, revenues of $\$ 48,431$ are imputed for KU and revenues of \$55,206 are imputed for LG\&E.

Q. Are KU and LG\&E proposing a new electric vehicle charging rate schedule in these proceedings?

A. Yes. The Companies are proposing a new rate schedule to provide Level 3 Charging Service, which is generally referred to as "DC Fast Charging Service". The new rate schedule for DC Fast Charging Service is called "EVC-FAST Electric Vehicle Fast Charging Service."

Q. Please describe the differences between Level 1, Level 2 and Level 3 Charging.

A. A Level 1 Charger is the most basic type of electric vehicle charger, which charges a vehicle from a standard 120 V household outlet. A Level 1 charger can only provide about 4 to 5 miles of driving per hour, which for some drivers can be sufficient if the vehicle is charged through the night and if the vehicles are driven relatively short distances.

A Level 2 Charger charges a vehicle from a 240 V outlet and will typically - 65 -
provide between 12 and 60 miles of range per hour. A 240 V circuit is typically what is required for electric washing machines, dryers, and central air-conditioning units. As the mileage range of electric vehicles increases, it is anticipated that most residential customers with electric vehicles will install Level 2 Chargers. The electric vehicle charging service currently provided by KU and LG\&E under Rate EV utilizes Level 2 Charging Technology.

A Level 3 Charger (or "DC Fast Charging Station") is a primary voltage charger that uses a direct current (DC) circuit to charge a plug-in electric vehicle. In comparison to the Companies' Level 2 stations, which provide charging at a rate of 7.2 kW , the DC Fast Charging Stations will be able to charge at a rate of 50 kW or greater (i.e., 50 kWh or greater per hour). A DC Fast Charging Station can provide 300 miles of range or more in about an hour, although charging speeds vary. Beginning in the second half of 2022, KU and LG\&E plan to install DC Fast Charging Stations to provide service under Rate EVC-FAST. DC Fast Chargers are a key enabling technology for the adoption of electric vehicles.

Q. Are any costs of DC Fast Charging Stations included in revenue requirements in these proceedings?

A. No. All costs incurred to install and operate any DC Fast Charging Stations would be incurred beyond the end of the forecasted test year used in these proceedings. Therefore, revenue requirements in these proceedings do not include any costs of DC Fast Charging Stations. In these proceedings, the Companies are requesting approval for rates for service from DC Fast Charging Stations that the Companies plan to install
beginning in the second half of 2022.

Q. Are there benefits to ratepayers from the adoption of electric vehicles?

A. Yes. The adoption of electric vehicles by residential and non-residential customers has an enormous potential to reduce the unit cost of providing electric service to electric utility customers. What is particularly compelling about the adoption of electric vehicles from a utility customer's perspective is that electric vehicle charging by customers typically takes place through the night, when electric utility loads are at their lowest levels. A residential customer who owns an electric vehicle will typically drive the vehicle during daytime hours and charge the vehicle at night. Since electric vehicles are typically connected to home charging stations during off-peak hours, increased numbers of electric vehicles will result in additional revenue but typically without creating the need to install new generation, transmission or even distribution capacity to serve the load. Consequently, increased electric vehicle ownership helps spread fixed generation and transmission costs over a larger number of sales, thus placing a downward pressure on the Companies' rates. Increasing electric vehicle charging sales provides benefits comparable to adding new industrial and commercial load from economic development efforts. Just as adding new large commercial and industrial loads allows KU and LG\&E to spread fixed costs over a larger number of sales, additional electric vehicle charging will allow KU and LG\&E to spread their fixed costs over a larger sales base.

Q. How does the adoption of electric vehicles in Kentucky compare to other states?

A. Kentucky ranks as a state with one of lowest numbers of electric vehicles in the
country. According to data published by the United States Department of Energy, on a per capita basis, Kentucky had the sixth lowest number of electric vehicles registered in the state, ahead of only West Virginia, Mississippi, Arkansas, North Dakota, and Louisiana. In 2018, there were 1,240 electric vehicles registered in Kentucky, which corresponds to 27.75 electric vehicles registered for every 100,000 residents in Kentucky, ${ }^{21}$ though this number appears to be growing. ${ }^{22}$ Undoubtedly, there is a regional element to the adoption of electric vehicles, with the highest levels of adoption in California, Hawaii, Washington, and Oregon. However, there are also high levels of adoption in Georgia, Florida, Virginia, Texas, and North Carolina. For example, in 2018, there were 5 times more electric vehicles per 100,000 residents registered in Georgia than in Kentucky, and there were 4 times more electric vehicles per 100,000 residents registered in Florida than in Kentucky. Although the number of electric vehicles in Indiana cannot be considered high, there were almost twice the number of electric vehicles per 100,000 residents in Indiana as in Kentucky.

Q. What are the major impediments to the adoption of electric vehicles?

A. As I mentioned earlier, a plug-in electric vehicle is significantly less costly to operate than a conventional passenger vehicle. Therefore, it is useful to consider what the impediments are to the widespread adoption of electric vehicles. Based on my research, there are four major impediments to the adoption of plug-in electric vehicles,

[^16]three of which are being quickly addressed in the automotive industry.
The first impediment is the higher cost of a plug-in electric vehicle in comparison to a traditional vehicle powered by an internal combustion engine. However, over the past few years there has been a dramatic decrease in the cost difference between plug-in electric vehicles and conventional passenger vehicles. This reduction seems to have been in large part due to the engineering, manufacturing and marketing by Tesla, Inc. and other manufacturers. Based on the trends over the past several years, we can expect the price difference between plug-in electric vehicles and conventional vehicles to continue to decline as the economies of scale increase for electric vehicles.

The second impediment to the adoption of plug-in electric vehicles is the mileage range of the batteries. Again, this is an area in which the automotive industry is making dramatic improvements. For example, Tesla currently sells seven vehicles with a range of over 300 miles on a fully charged battery. Tesla's Model S Long Range Plus has a listed range of 391 miles. General Motors and Hyundai currently offer passenger vehicles with ranges that are over 250 miles. However, General Motors announced that it has developed a new electric vehicle battery with a range of up to 400 miles. A few years ago, it was difficult to find a plug-in electric vehicle with a range greater than 100 miles. It is reasonable to expect that the battery range will continue to improve.

The third impediment is the life of the battery. This is yet another area in which the automotive industry is making major improvements. The batteries in all electric
vehicles sold in the United States are covered under warranties for at least 8 years or 100,000 miles. However, it is expected that electric vehicle batteries will last longer than 100,000 miles. For example, Tesla recently announced that a $1,000,000$ mile battery is ready for production. Long-lived batteries along with charging ranges greater than 500 miles will likely be game changers for the adoption of plug-in electric vehicles.

The fourth impediment to the adoption of plug-in electric vehicles is the availability of fast charging stations. While technological advances in the automobile industry are addressing the first three impediments, from a public policy perspective, the availability of fast charging stations may represent the most formidable challenge to the adoption of plug-in electric vehicles. Even with battery ranges greater than 500 miles, there will be a public need for the availability of fast charging stations in order to facilitate the adoption of plug-in electric vehicles. Without the availability of fast charging stations, it is unlikely that passenger vehicle owners will be willing to purchase a plug-in vehicle without the prospects for charging their vehicles on long distance trips. Without more fast charging stations, electric vehicles will likely be limited in their use to commuter vehicles and will thus be demoted to use as a secondary passenger vehicle, forcing people to own a vehicle with an internalcombustion engine to serve as their primary passenger vehicle. Thus, fast charging stations are a key enabling technology that will allow people to purchase electric passenger vehicles.

Q. From a public policy perspective, why is it important for utilities to provide fast

charging service?
A. As mentioned earlier, there are enormous benefits to customers adopting electric vehicle technology. Electric vehicles are not only less costly to operate, the revenues generated by charging electric vehicles have the effect of lowering rates to other customers, by spreading utility fixed costs over a larger sales volume. Therefore, it is in ratepayers' interests for more people to use electric vehicles, providing ratepayer and public benefits that go well beyond the lower operating cost of electric vehicles. The need for electric utilities to install electric vehicle charging infrastructure is addressed in the report Electric Vehicles: Key Trends, Issues, and Considerations for State Regulators prepared by NARUC and sponsored by the United States Department of Energy (DOE), which explains:

> Many utilities around the country have begun to explore owning and operating EV charging stations to accelerate the growth of EVs and the corresponding growth in electric sales. Proponents of utility ownership present several arguments in favor: Most experts agree that current EV charging infrastructure will need to grow dramatically to cover the expected growth of EVs. This large "infrastructure gap" demands all hands on deck, including participation of utilities. Furthermore, widespread charging infrastructure is a prerequisite for many consumers to consider purchasing an EV, but it is difficult for EVs to be profitable without high usage from many EVs on the road. (Id., at p. 20 . Emphasis supplied.)

According to this assessment, electric utilities will have to serve as providers of fast charging service until the number of electric vehicles on the roads make it feasible for private industry such as filling stations along interstates and highways like Pilot,

Flying J, Loves, TA, RaceTrac, Murphy USA, and others to begin installing DC Fast Charging ports in larger numbers.
Q. Nationally, is there a correlation between the number of DC Fast Charging Ports and the number of plug-in electric vehicles owned?
A. Yes. There is a 98.7% correlation between the number of DC Fast Charging Ports and electric vehicles in a state. As can be seen from the graph shown in Exhibit WSS-10, the relationship is essentially linear. While it is impossible to prove causality from this analysis, the relationship does strongly suggest that DC Fast Charging Stations are an essential enabling technology for the adoption of plug-in electric vehicles.
Q. Do other utilities in our region offer DC Fast Charging Service?
A. Yes. Georgia Power currently owns and operates 39 DC Fast Charging stations. In June 2020, the Governor of Florida, Ron DeSantis, signed a directive for the Florida Public Service Commission to encourage utilities to develop electric charging stations along state highways. In July, Florida announced that 34 DC Fast Charging stations would be added along Interstate 95, Interstate 4, Interstate 75, Interstate 275, and Interstate 295.
Q. Please describe the proposed pricing structure for DC Fast Charging Service.
A. KU and LG\&E are proposing to charge $\$ 0.25$ per kWh for charging service under Rate EVC-FAST.
Q. How does this rate compare to the average rate for Level 2 charging service that the Companies currently charge under Rate EVC?
A. The Level 2 charging service rate under Rate EVC has a different pricing structure
than what the Company is proposing for DC Fast Charging Service. Under Rate EVC, which was approved in the Companies' last rate cases, KU and LG\&E charge a fee of $\$ 0.75$ for the first hour of charging service and $\$ 1.00$ for all additional hours during the charging session, plus appropriate taxes and fees. On average this is equivalent to $\$ 0.20$ per kWh after taxes and fees. A recent study has found that the majority of respondents who have an electric vehicle or are considering purchasing one are willing to pay 25% more for fast charging in relation to Level 2 charging service provided under Rate EVC. ${ }^{23}$ Therefore, in the industry, the charge for DC Fast Charging Service (Level 3 service) is typically higher than the charge for Level 2 charging service.

Q. How does the charge for service under the Companies' proposed Rate EVCFAST compare to the DC Fast Charging Service offered by other utilities?
 A. Although I have not performed an exhaustive review of all DC Fast Charging rates charged by utilities, several electric utilities providing service in Eastern United States (i.e., east of the Mississippi River) offer DC Fast Charging Service. The following table (TABLE 4) summarizes the charges per kWh for the utilities that I am aware of in Eastern United States that provide DC Fast Charging Service:

[^17]TABLE 4

Utility	DC Fast Charging Rate
Baltimore Gas and Electric Company (BG\&E)	$\$ 0.255$ to $\$ 0.34$ per kWh *
Duke Energy Carolinas	$\$ 0.236$ per kWh **
Florida Power \& Light (FPL)	$\$ 0.30$ per kWh
Georgia Power Company	$\$ 0.30$ per kWh ***
Potomac Electric Power Company (PEPCO)	$\$ 0.255$ to $\$ 0.34$ per kWh

[^18]As seen in this table, KU and LG\&E's proposed charge for DC Fast Charging Service is in line with what is being charged by these other utilities.

Q. Based on your review of the filings submitted to state regulatory commissions by

 these utilities, were these DC Fast Charging rates supported by a cost analysis?A. No. In developing the rates, the rate filings reflected market considerations rather than costs. Due to the uncertainty regarding future usage of DC Fast Charging Service any such cost analysis would be speculative. As more data is collected over time, a better picture of the actual unit cost of providing this service will emerge. But regardless, as discussed earlier, because of the benefits that the availability of fast charging stations provide as an enabling technology, it is important that more fast charging stations are available for public use. It is important to recognize that KU and LG\&E are not trying to compete with third-party providers of DC Fast Charging
service, and the Companies are not trying to undercut other providers by providing a below market price for fast charging service. More fast charging stations are needed to enable people to purchase electric vehicles. A thriving market for fast charging service will enable more customers to drive electric vehicles and thereby benefit KU and LG\&E's existing customers by putting downward pressure on electric rates.

Q. You mentioned earlier that adjustments to miscellaneous revenues are being made to ensure that costs related to Level 2 charging under Rate EVC are not shifted to other customers. Are similar adjustments being made for DC Fast Charging Service?

A. No, nor are such adjustments necessary in these proceedings. As mentioned earlier, there are no costs related to the DC Fast Charging in test-year revenue requirements. Because test year revenue requirements do not include costs related to the DC Fast Charging Service, such an adjustment is neither necessary nor possible. The revenue requirement treatment of future investments in DC Fast Charging Stations will be addressed in subsequent rate proceedings. In these proceedings, the Companies are requesting approval of rates for DC Fast Charging Service that will be available to the public beginning during the second half of 2022. Consequently, none of the costs for this service is included in test year revenue requirements in these proceeding.

Q. Are the Companies proposing any changes to Electric Vehicle Supply Equipment Rate EVSE and EVSE-R?

A. Yes. Under Electric Vehicle Supply Equipment - Rider (Rider EVSE-R), the Companies provide charging stations behind the customers' meters which can be used
by the customers to charge electric vehicles. Under Rider EVSE-R, the customer is responsible for providing the electric energy for the charging station and the Companies bill the customers a monthly fixed charge for the use of the charging station. Pursuant to Rate EVSE, the Companies provide an unmetered charging station which can be used by customers to charge electric vehicles. Under this rate schedule, the Companies provide the energy for the charging station, the cost of which is bundled into the monthly fixed charge. The Companies are proposing to add an additional charging unit option to the EVSE and EVSE-R tariff. The new charging unit is a basic non-networked charger that is preferred by some customers. The addition of this unit is not meant to compete with or replace the existing charging unit, but to supplement the options available to KU and LG\&E's customers. Cost Support for the new EVSE and EVSE-R rates are shown in Exhibit WSS-11.

Q. REDUNDANT CAPACITY (RIDER RC)

Q. Please describe the Companies' Redundant Capacity rider.

A. The Redundant Capacity rider allows customers that have one or more redundant distribution feeds to reserve back-up capacity on the distribution system. This rider would typically be used by customers, such as hospitals, who want greater assurance that their service will not be interrupted because of an outage on a distribution line. These customers would want a redundant feed along with automatic relay equipment capable of switching from a principal circuit to a backup circuit if electric service from the
primary feed is lost. With the greater use of technology, some customers are finding it increasingly difficult to tolerate electrical outages for even short periods of time.

Q. How is a customer charged for redundant capacity?

A. A customer who wants a second feed must pay the cost of the customer-specific facilities required to provide the feed, including the second distribution line, automatic relay equipment, or other customer-specific facilities that may be required. Customers can pay for the customer-specific facilities by either making a contribution-in-aid-of-construction or by taking service under the Excess Facilities rider. To provide a customer full backup capacity on a second feed, the Companies must incur additional costs to ensure sufficient network distribution capacity for full backup if a relay occurs on the automatic switchgear. To ensure that there is sufficient capacity on the redundant feed to serve the load if the primary feed goes down, the utility must plan the distribution facility as if there were two customers placing demands on the system. For this reason, the Companies assess a demand charge to cover the distribution demand-related cost of providing backup service for customers with redundant feeds. The demand charge is applied to the customer's monthly billing demand determined under the standard rate schedule under which the customer receives electric service. Rider RC includes a charge for customers taking service at primary voltages and a charge for customers taking service at secondary voltages.

Q. What changes are the Companies proposing to the Redundant Capacity charges?

A. KU is proposing to decrease the demand charge for primary voltage customers from $\$ 0.99$ to $\$ 0.92$ per kW per month and to increase the charge from $\$ 1.16$ to $\$ 1.36$ per kW
per month for secondary voltage customers. LG\&E is proposing to decrease the demand charge for primary voltage customers from $\$ 1.41$ to $\$ 1.31$ per kW per month and to increase the charge from $\$ 1.84$ to $\$ 1.93$ per kW per month for secondary voltage customers. The cost support for the proposed redundant capacity charges is included in Exhibit WSS-12.

IV. GAS RATE DESIGN AND THE ALLOCATION OF THE INCREASE A. ALLOCATION OF THE GAS REVENUE INCREASE

Q. Please summarize your recommendations for allocating the gas revenue increase to the classes of service?
A. LG\&E is proposing an overall revenue increase of $\$ 29,988,054$ for its gas line of business, which corresponds to an 8.34% increase. LG\&E is also proposing changes to other miscellaneous charges which result in changes to other operating revenue. Accounting for changes in other operating revenue results in increases in revenues from sales to ultimate customers of $\$ 29,979,285$ (or 8.37%) for LG\&E's gas operations. (See Schedule M 2.1-G in LG\&E’s Filing Requirements.)

I relied on the results of the gas cost-of-service study to develop my recommendations for allocating the gas revenue increase to the classes of service. As seen in the table below (TABLE 5), the class rates of return for As-Available Gas Service (Rate AAGS) and Firm Transportation Service (Rate FT) are significantly lower than for the other rate classes. I am recommending the elimination of 25% of
the subsidies for Rates Residential Gas Service (RGS), AAGS, and FT. Because of its high rate of return, I am not recommending an increase for Rate IGS. Rate CGS is adjusted to collect the residual increase required to yield the overall increase. Specifically, as shown on Schedule M-2.1-G, I am recommending revenue increases of 9.37% for Rate RGS, 4.86% for Rate CGS, 26.09% for Rate AAGS, 39.75% for Rate FT, and no increase for Rate IGS.

It should be noted, however, that the percentage increase for Rate FT is somewhat misleading. The revenues for Rates RGS, CGS, IGS, and AAGS include recovery of the cost of the natural gas (the commodity), but Rate FT is a transportationonly service. Therefore, the recovery of the cost of the natural gas is not included in Rate FT revenues, which inflates the percentage increase for this class. If a proxy price of $\$ 3.42$ per Mcf is assumed as the cost that Rate FT customers pay for natural gas, which reflects LG\&E's average Gas Supply Cost Component during the test year, the effective increase that Rate FT customers would see in their total natural gas costs due to LG\&E's proposed rate increase would only be 5.56%, which is not significantly higher than the increase that LG\&E is proposing for Rate CGS. A comparison of the rate of return at current rates and the percentage revenue increase (decrease) proposed for each rate class is shown below in TABLE 5:

Rate Class	Rate of Retun On Rate Base	Customer Increase in Cost of Gas *	Rate of Return On Rate Base After Increase
Residential Service Rate RGS	4.62%	9.37%	6.87%
Commercial Service Rate CGS	7.56%	4.86%	9.08%
Industrial Service Rate IGS	13.70%	0.00%	13.69%
As Available Gas Service Rate AAGS	-3.24%	26.09%	0.98%
Firm Transportation Service Rate FT	-1.75%	5.56%	2.10%
Total	5.10%	7.58%	7.23%

TABLE 5

* The increase shown for Rate FT reflects a proxy price for the customer's natural gas of $\$ 3.42$ per Mcf.

The rates of return for each rate class are shown in Exhibit WSS-13, and the revenue increases necessary to eliminate 25% of the subsidies for Rates RGS, FT and AAGS are calculated in Exhibit WSS-14.

Q. Is LG\&E proposing to eliminate all subsidies?

A. No. As mentioned above, LG\&E's proposal is to eliminate 25% of the subsidies for Rates FT, AAGS, and RGS. This approach moderates the large increase that would otherwise be required to bring the rates of return for Rates FT, AAGS, and RGS to the proposed overall rate of return.

Q. Has Rate FT increased significantly since it was first introduced?

A. No. Rate FT has increased very little since it was first introduced in 1995. Rate FT replaced a similar service called Rate T, which was introduced in 1988. The distribution charge for Rate T was $\$ 0.43$ per Mcf when it was first introduced in
1988. ${ }^{24}$ Rate T was replaced with Rate FT in 1995 , but the distribution charge of $\$ 0.43$ per Mcf remained the same. ${ }^{25}$ Rate FT was not increased until July 1, 2015, when the charge was raised from $\$ 0.43$ per Mcf to $\$ 0.4302$ per Mcf. ${ }^{26}$ Rate FT was increased again on July 1, 2017, from $\$ 0.4302$ per Mcf to $\$ 0.4440$ per Mcf. ${ }^{27}$ The distribution charge was restructured as a demand/commodity rate in Case No. 2018-00295; however, the modification in that proceeding was designed to be revenue neutral. Therefore, during a period of over 32 years, the distribution charge for Rate FT (or its predecessor, Rate T) has only increased a total of 3.26%.

Q. What is creating the need for rate increases for Rates FT and AAGS?

A. As discussed in detail in Mr. Bellar's testimony, LG\&E obtained approval from the Commission to modernize its gas transmission system. This Transmission Modernization Program ("TMP") and other modifications to LG\&E's gas transmission pipelines, such as the planned modification to the Western Kentucky A and B pipelines, represent a commitment on the part of LG\&E to invest in the replacement of aging gas transmission infrastructure. Prior to these transmission projects, LG\&E had focused primarily on upgrading its distribution infrastructure. The investment that LG\&E made to replace distribution infrastructure did not have a

[^19]major impact on the cost of providing service to customers taking service under Rates FT and AAGS. Customers served under Rates FT and AAGS are allocated relatively little of the cost of distribution infrastructure. This is not the case with transmission infrastructure. Because transmission costs make up a significantly larger portion of the total cost of service to Rate FT and Rate AAGS customers, TMP and other modifications to LG\&E's gas transmission system have increased the cost of service to these two rate classes.

Q. Are there any rate classes not shown on the above table?

A. Yes. Rate VFD is not broken out in the cost-of-service study but is included with Rate RGS. Distributed Generation Gas Service (Rate DGGS) is a rate class that serves a small number of customers. It is a demand/commodity rate that is derived from unit costs from the cost-of-service study for Rate IGS. Rate DGGS is not broken out in the cost-of-service study but is included in Rate IGS in the study, as is the Companies' special contract with LG\&E to provide gas sales service to the Mill Creek Generating Station. Local Gas Delivery Service (Rate LGDS) is a rate for the transportation of locally produced natural gas through LG\&E's delivery system. Rate LGDS has the same rate structure and unit charges as Rate FT. There are currently no customers served under Rate LGDS.

Substitute Gas Sales Service (Rate SGSS) is a rate available to serve customers that desire substitute gas sales service from LG\&E. It is a demand/commodity rate that is derived from unit costs from the cost-of-service study based on either Rate CGS or Rate IGS, as applicable. One commercial customer is served under Rate SGSS.

Therefore, Rate SGSS is not broken out separately in the cost-of-service study but is included in Rate CGS.
Q. Have you prepared an exhibit showing the proposed gas revenue increase for each rate schedule?
A. Yes. The revenue increase for each rate class is shown on Schedule M-2.1-G of Section 16(8)(m) of the Filing Requirements. The detailed billing calculations and proposed unit charges for each rate schedule are shown on Schedule M-2.3-G.

B. ELIMINATION OF GAS LINE TRACKER PROGRAMS

Q. Is LG\&E proposing to eliminate certain Gas Line Tracker (GLT) projects?
A. Yes. LG\&E is proposing to eliminate the Main Replacements portion of the Leak Mitigation Project, the Aldyl-A Mains and Services Replacement Project, and the Steel Customer Service Lines and Targeted Removal of County Loops and Steel Curbed Services Program ("Steel Services Program"), and Transmission Modernization Program ("TMP"). Except for the Steel Services Program, all work on the eliminated projects has been or will be completed before to the end of the test year. The Steel Service Program and the Transmission Modernization Program were only authorized for GLT recovery for a period of five years, which corresponds to the end of the test year.
Q. Will the costs of these eliminated GLT projects be recovered through base rates instead of the GLT?
A. Yes. The impact of the elimination of these programs are also shown in Schedule M-
2.3-G. Specifically, on page 1 of this Schedule, the column labeled "GLT Mechanism Adjustment to Reflect GLT Project Elimination" reflects the amount of GLT Mechanism revenue transferred to base rates. This adjustment does not alter total revenue, but simply represents the removal of GLT costs for the eliminated projects from the GLT mechanism into base rate recovery. This adjustment is revenue neutral. The supporting details for each rate class are shown on pages 2 through 11 of Schedule M-2.3-G.

C. RESIDENTIAL GAS SERVICE (RATE RGS)

Q. Please provide a brief description of Rate RGS.

A. Rate RGS is the standard gas rate schedule available to single-family residential service. Approximately 301,000 residential customers are served under this rate schedule. Rate RGS consists of a Basic Service Charge, Distribution Charge and Gas Supply Cost Component.
Q. What are the charges that LG\&E is proposing for Rate RGS?
A. LG\&E is proposing to increase the Basic Service Charge from $\$ 0.65$ per day to $\$ 0.78$ per day. The Company is also proposing to increase the Distribution Charge from $\$ 0.36782$ per Ccf to $\$ 0.48398$ per Ccf. LG\&E is proposing the same charges for Volunteer Fire Department Service (Rate VFD).
Q. What is the basis for the proposed increase in the Basic Service Charge for Rate RGS?
A. LG\&E is proposing a Basic Service Charge that moves the Basic Service Charge
towards the customer-related costs from the cost-of-service study. As will be explained in greater detail later in my testimony regarding the gas cost-of-service study, the methodology that is used to classify costs as customer-related corresponds to the methodology that has been accepted by the Commission in prior rate case orders.
Q. Have you prepared an exhibit showing the calculation of the unit cost components for Rate RGS?
A. Yes. Exhibit WSS- 15 shows the calculation of the unit customer cost and distribution delivery cost. From this exhibit, the customer cost is calculated to be $\$ 0.98$ per customer per day, and the distribution delivery cost is $\$ 0.37070$ per Ccf. LG\&E's proposed Basic Service Charge of $\$ 0.78$ is approximately 79.6% of the unit customerrelated cost from the cost-of-service study. LG\&E is proposing an increase in the Basic Service Charge of approximately 25%, which reflects a gradual movement of the charge towards cost of service.

D. COMMERCIAL GAS SERVICE (RATE CGS)

Q. Please provide a brief description of Rate CGS.

A. Rate CGS is the standard gas rate schedule available to commercial customers for gas sales service. Approximately 25,700 commercial customers are served under this rate schedule. Rate CGS consists of a Basic Service Charge, Distribution Charge and Gas Supply Cost Component. The Basic Service Charge is differentiated between customers who do not have a meter with a capacity equal to or greater than 5,000 cubic
feet per hour (cf/hr) and customers who do have at least one meter with a capacity equal to or greater than $5,000 \mathrm{cf} / \mathrm{hr}$.

Q. What are the charges that LG\&E is proposing for Rate CGS?

A. LG\&E is proposing to increase the Basic Service Charge from $\$ 1.97$ per day to $\$ 2.30$ per day for customers who do not have a meter with a capacity equal to or greater than $5,000 \mathrm{cf} / \mathrm{hr}$ and to increase the charge from $\$ 9.37$ per day to $\$ 11.00$ per day for customers who do have at least one meter with a capacity equal to or greater than $5,000 \mathrm{cf} / \mathrm{hr}$. LG\&E is proposing to increase the Distribution Charge from $\$ 0.30670$ to $\$ 0.37688$ per Ccf for on-peak usage and from $\$ 0.25670$ to $\$ 0.32688$ per Ccf for offpeak usage.

E. INDUSTRIAL GAS SERVICE (RATE IGS)

Q. Please provide a brief description of Rate IGS.

A. Rate IGS is the standard gas rate schedule available to industrial customers for gas sales service. Approximately 200 industrial customers are served under this rate schedule. Rate IGS consists of a Basic Service Charge, Distribution Charge and Gas Supply Cost Component. The Basic Service Charge is differentiated on the same basis as Rate CGS.

Q. What are the charges that LG\&E is proposing for Rate IGS?

A. LG\&E is not proposing a revenue increase for Rate IGS. However, Distribution Cost Components of Rate IGS are being adjusted to reflect the elimination of certain GLT projects and the transfer of cost recovery of the GLT project costs to base rates. To
reflect the elimination of the GLT projects, LG\&E is proposing to increase the Distribution Charge from $\$ 0.21929$ to $\$ 0.27023$ per Ccf for on-peak usage and from $\$ 0.16929$ to $\$ 0.22023$ per Ccf for off-peak usage. Again, this change is revenue neutral because there will be a corresponding reduction in the GLT.

F. AS AVAILABLE GAS SERVICE (RATE AAGS)

Q. Please provide a brief description of Rate AAGS.

A. Rate AAGS is the rate schedule available to commercial and industrial customers that agree to take gas sales service on a non-firm basis. There are only three customers on this rate schedule. Rate AAGS consists of a Basic Service Charge, Distribution Charge and Gas Supply Cost Component.

Q. Is LG\&E proposing changes to Rate AAGS?

A. Yes. LG\&E is proposing to increase the Basic Service Charge from $\$ 500.00$ per month to $\$ 630.00$ per month and to increase the Distribution Charge from $\$ 1.0644$ to $\$ 2.0168$ per Mcf.

G. FIRM TRANSPORTATION SERVICE (RATE FT)

Q. Please provide a brief description of Rate FT.

A. Rate FT is the standard gas rate schedule available to large commercial and industrial customers for firm gas transportation service. It is generally available to customers who use at least 50 Mcf per day at each delivery point. Rate FT currently includes an Administrative Charge of $\$ 550.00$ per delivery point per month, a Basic Service

Charge of $\$ 750.00$ per delivery point per month, a Distribution Charge of $\$ 0.0380$ per Mcf, and a Demand Charge of $\$ 4.89$ per Mcf of billing demand per month. The Basic Service Charge is applied to each customer receipt point. The Demand Charge is applied to the customer's monthly billing demand, which is the greater of the Maximum Daily Quantity (MDQ) or the highest daily volume of gas delivered to the delivery point during the current or preceding 11 monthly billing periods. The Distribution Charge is applied to the volumes of gas (Mcf) delivered to the customer at its facility. LG\&E's largest gas customers receive service under this rate schedule.

Q. Is LG\&E proposing changes to Rate FT?

A. Yes. LG\&E is proposing to increase the Distribution Charge to $\$ 0.0456$ per Mcf and the Demand Charge to $\$ 7.78$ per Mcf of billing demand per month.

H. SUBSTITUTE GAS SALES SERVICE (RATE SGSS)

Q. Please describe Rate SGSS.

A. Rate SGSS is a standard rate schedule that provides substitute gas sales service for any customer who desires to receive firm sales service from LG\&E in addition to gas received from other sources with which the customer is physically connected. This rate therefore applies to customers who normally receive gas supply directly from an interstate pipeline, another local distribution company, or a local producer but desire to rely on LG\&E as an alternative or substitute supplier of natural gas.

Q. Please describe the proposed charges for Rate SGSS.

A. For commercial customers served under Rate SGSS, LG\&E is proposing a Basic

Service Charge of $\$ 335.00$ per month, a Demand Charge of $\$ 7.54$ per Mcf of Monthly Billing Demand, and a Distribution Charge of $\$ 0.4106$ per Mcf. The increase in the revenue for this class corresponds approximately to the increase for Rate CGS. One commercial customer takes service under Rate SGSS.

For industrial customers served under Rate SGSS, LG\&E is proposing a Basic Service Charge of $\$ 750.00$ per month, a Demand Charge of $\$ 10.89$ per Mcf of Monthly Billing Demand, and a Distribution Charge of $\$ 0.3100$ per Mcf. Currently, no industrial customers take service under Rate SGSS.

I. LOCAL GAS DELIVERY SERVICE (RATE LGDS)

Q. Please describe Rate LGDS.

A. Rate LGDS is a rate schedule that is available to parties who contract with LG\&E to provide firm transportation service of locally produced gas. Currently, there are no customers served under Rate LGDS.
Q. Please describe the rate components for Rate LGDS and cost basis for the charges.
A. Rate LGDS currently includes an Administrative Charge of $\$ 550.00$ per month, Basic Service Charge of $\$ 750.00$ per month, a Demand Charge of $\$ 4.89$ per Mcf, and a Distribution Charge of $\$ 0.0380$ per Mcf. The Administrative Charge and Basic Service Charge are applied to each customer receipt point. The Demand Charge is applied to the customer's monthly billing demand, which is the greater of the Maximum Daily Quantity (MDQ) or the highest daily volume of gas delivered to the
delivery point during the current or preceding 11 monthly billing periods. The Distribution Charge is applied to the net nominated volumes of gas (Mcf) at the delivery point. LG\&E is proposing the same charges for Rate LGDS as Rate FT as previously described because the type of transportation service provided under these two rate schedules is essentially similar. LG\&E is proposing to increase the Distribution Charge to $\$ 0.0456$ per Mcf and the Demand Charge to $\$ 7.78$ per Mcf of billing demand per month.

J. DISTRIBUTED GENERATION GAS SERVICE (RATE DGGS)

Q. Please describe Rate DGGS.

A. Rate DGGS is a rate schedule that is available to parties with customer-owned electric generation facilities who require natural gas service.
Q. Is LG\&E proposing any modifications to the charges for Rate DGGS?
A. Yes. LG\&E is proposing to increase the Distribution Charge from $\$ 0.2992$ to $\$ 0.3100$ per Mcf and to decrease the Demand Charge from $\$ 10.8978$ to $\$ 10.89$.
VI. MISCELLANEOUS SERVICE CHARGES

A. POLE AND STRUCTURE ATTACHMENT CHARGES (RATE PSA)

Q. Are KU and LG\&E proposing to increase the pole and structure attachment charges set forth in Rate PSA?
A. No. The Companies are proposing to maintain the pole attachment charge applicable
to cable television operators and telecommunication carriers at the current annual levels of $\$ 7.25$ per wireline attachment, $\$ 0.81$ per linear foot of duct, and $\$ 36.25$ per wireless facility located on the top of a pole. Of the three charges, the wireline attachment charge has by far the greatest utilization. Currently, there are minimal wireless and duct attachments.

Q. Did you validate the reasonableness of the current wireline attachment charge?

A. Yes. When I calculated the wireline attachment charge using forecasted costs based on a revenue requirement reflecting net cost plant (net cost rate base), the analysis resulted in a unit cost for KU and LG\&E of $\$ 7.84$ per attachment. Because the current charge reasonably reflects the updated cost based on forecasted net plant, the Companies decided not to propose a change in the rates at this time.

Q. Please describe the methodology used to calculate the charges.

A. In its Order in Administrative Case No. 251, the Commission prescribed a methodology for determining the attachment charges. The calculations set forth in Exhibit WSS-16 follow the guidelines established in Administrative Case No. 251. In this exhibit, the weighted average carrying costs are calculated for $35-$ - 40- and 45foot poles. The charge is calculated by multiplying a usage factor of 0.0759 by the annual carrying costs of a bare pole. The 0.0759 usage factor was the prescribed percentage for a three-user pole set forth in the Commission's Order in Administrative Case No. 251 dated September 17, 1982, and assumes that a cable television attachment would utilize one foot of the usable space on the pole. In calculating bare pole costs, 15% of the pole costs have been removed from plant in service costs for

35-, 40- and 45-foot poles to reflect the elimination of appurtenances.

Q. How are the carrying charges calculated?

A. They are calculated using a standard revenue requirement (cost of service) methodology. The carrying charges include the following cost-of-service components: (1) return on net investment (rate base), (2) income taxes, (3) depreciation expenses, (4) O\&M expenses, and (5) property taxes. These are the standard items included in a utility's revenue requirements.
Q. Are the charges based on net depreciated plant?
A. Yes. Net depreciated plant (or rate base), along with straight line depreciation, is used in the carrying charge calculation. This approach is consistent with the way that all other revenue requirements are determined in these proceedings. Therefore, the charges shown in Exhibit WSS-16 are reflective of current revenue requirements associated with the cost of providing attachment service.

B. NON-RESIDENTIAL LATE PAYMENT CHARGES

Q. Are the Companies proposing to modify policies related to their late payment charges?
A. Yes. The Companies are proposing to waive a non-residential customer's late payment charge if the customer requests a waiver and has not incurred a late payment charge in the previous 11 billing cycles. The Companies implemented a similar policy for residential customers in their last rate cases.
Q. Are the Companies making an adjustment to miscellaneous revenues to reflect

the waiver?

A. No. The Companies will absorb the impact of the waiver until any future rate cases, at which time the impact of the change would be reflected in test year miscellaneous revenues in such future rate cases.

C. EXCESS FACILITIES CHARGES

Q. Please describe the Companies' Excess Facilities Rider.

A. The Excess Facilities Rider applies to customer requests for service arrangements requiring equipment and facilities in excess of those the Companies would normally install. Examples of excess facilities include requests for non-standard facilities such as emergency backup feeds, automatic transfer switches, redundant transformer capacity, and duplicate or check meters. Under the rider, customers have the option of either (i) requesting that KU or LG\&E incur the full cost of the equipment (including up-front equipment cost), in which event the monthly excess facilities charge would cover the expected carrying charges on the equipment, the estimated maintenance cost on the equipment, and the estimated cost of replacing the equipment if it fails prior to the service life of the facilities or (ii) making an up-front payment to cover the cost of the facilities, in which event the monthly excess facilities charge would only cover the estimated maintenance cost on the equipment and the estimated cost of replacing the facilities if they fail prior to the expected service life of the equipment. Because estimated failure costs would be included in the charge for either scenario, KU or LG\&E would replace the equipment if it fails prior to the end of the specified service life under either option.

Q. What are the proposed excess facilities charges?

A. Under the first option, in which the Companies would make the up-front investment, the proposed monthly charges as a percentage of the original cost of the facilities are 1.17 percent for KU, 1.23 percent for LG\&E's electric operations, and 1.15 percent for LG\&E's gas operations. These are slight changes from the current charges of 1.16 percent for KU, 1.22 percent for LG\&E's electric operations, and 1.15 percent for LG\&E's gas operations.

Under the second option, in which the customer makes the initial up-front investment, the proposed monthly charges as a percentage of the original cost of the facilities are 0.47 percent for KU, 0.52 percent for LG\&E's electric operations, and 0.45 percent for LG\&E's gas operations. These are unchanged from the current charges.

Q. How are the excess facilities charges calculated?

A. For the first option, in which LG\&E makes the up-front investment, the charge includes (i) the levelized carrying charges associated with both the original cost of the facilities and the present value of the expected replacement cost of the facilities, plus (ii) operation and maintenance expenses as a percentage of the original cost of the plant. The levelized carrying charge rate is calculated using an 8.43 percent cost of capital for KU and an 8.38 percent cost of capital for LG\&E for the estimated 30-year recovery period for long-lived distribution property. The present value of the expected replacement costs is determined using an actuarial approach based on Iowa-type survivor curves, which are the survival frequency distributions developed by Iowa State University that are used in depreciation studies for electric and gas utilities throughout the U.S. Specifically, the present value
replacement cost is determined by calculating the replacement cost for each year based on the failure percentage given by a specified survivor curve and adjusted to reflect a three percent inflation factor. A 30-year R-2 Iowa curve is used to determine the annual replacement percentages. This curve is typical of an Iowa curve that might be used for transformers and other distribution facilities.

For the second option, in which the customer makes the initial up-front investment, the charge includes (i) the levelized carrying charges associated with the present value of the expected replacement cost of the facilities, plus (ii) operation and maintenance expenses as a percentage of the original cost of plant. Therefore, under this option, the charge would not include the carrying charges associated with the initial cost of the facilities but would include carrying charges on the present value of the replacement cost.

For both options, the operation and maintenance component is determined by dividing (i) actual operation and maintenance expenses less purchased power expenses during the test year by (ii) electric plant in service as of the end of the test year. Cost support for the proposed excess facilities charges is included in Exhibit WSS-17. The impact on other operating revenues is shown in Exhibit WSS-18.

D. OTHER MISCELLANEOUS CHARGES

Q. Are KU and LG\&E proposing changes to any other miscellaneous charges?

A. Yes. LG\&E is proposing to increase its electric and gas disconnect/reconnect service charges from $\$ 28.00$ to $\$ 32.00$, and KU is proposing to increase its
disconnect/reconnect service charge from $\$ 28.00$ to $\$ 37.00$. KU is proposing to increase its returned check charge from $\$ 3.00$ to $\$ 3.50$, and LG\&E proposing to increase its returned check charge from $\$ 3.00$ to $\$ 3.70$. For electric meters, KU and LG\&E are proposing to increase the meter-test charge from $\$ 75.00$ to $\$ 79.00$. For gas meters, LG\&E is proposing to increase its meter-test charge from $\$ 90.00$ to $\$ 101.00$. For gas service, LG\&E is proposing to increase its inspection charge and its additional trip charge from $\$ 150.00$ to $\$ 155.00$.

For electric meters, KU and LG\&E are proposing to decrease the meter pulse relay charge from $\$ 24.00$ to $\$ 21.00$. For gas meters, LG\&E is proposing to increase its meter pulse charge for transportation customers served under FT and TS2 from $\$ 7.17$ to $\$ 8.00$ and from $\$ 24.34$ to $\$ 28.00$ for all other types of customers.

KU is proposing to modify the unauthorized reconnect charges as follows: (i) from $\$ 70.00$ to $\$ 45.00$ for tampering or an unauthorized connection or reconnection that does not require the replacement of the meter; (ii) from $\$ 90.00$ to $\$ 66.00$ for tampering or an unauthorized connection or reconnection that requires the replacement of a single-phase standard meter; (iii) from $\$ 110.00$ to $\$ 87.00$ for tampering or an unauthorized connection or reconnection that requires the replacement of a single-phase Automatic Meter Reading (AMR) meter; (iv) from $\$ 174.00$ to $\$ 149.00$ for tampering or an unauthorized connection or reconnection that requires the replacement of a single-phase Advanced Metering Infrastructure (AMI) meter; and (v) from $\$ 177.00$ to $\$ 154.00$ for tampering or an unauthorized connection or reconnection that requires the replacement of a three-phase meter.

For electric service, LG\&E is proposing to modify the unauthorized reconnect charges as follows: (i) from $\$ 70.00$ to $\$ 49.00$ for tampering or an unauthorized connection or reconnection that does not require the replacement of the meter; (ii) from $\$ 90.00$ to $\$ 70.00$ for tampering or an unauthorized connection or reconnection that requires the replacement of a single-phase standard meter; (iii) from $\$ 110.00$ to $\$ 91.00$ for tampering or an unauthorized connection or reconnection that requires the replacement of a single-phase Automatic Meter Reading (AMR) meter; (iv) from $\$ 174.00$ to $\$ 153.00$ for tampering or an unauthorized connection or reconnection that requires the replacement of a single-phase Advanced Metering Infrastructure (AMI) meter; and (v) from $\$ 177.00$ to $\$ 159.00$ for tampering or an unauthorized connection or reconnection that requires the replacement of a three-phase meter.

For gas service, LG\&E is proposing to modify the unauthorized reconnect charges as follows: (i) from $\$ 70.00$ to $\$ 49.00$ for unauthorized reconnects that do not require the replacement of a meter, and (ii) from $\$ 132.00$ to $\$ 114.00$ for unauthorized reconnects that require the replacement of a meter. The cost support for these charges is shown in Exhibit WSS-19, and the impact on other operating revenues is shown in Exhibit WSS-20.

Q. Are KU and LG\&E proposing AMI Opt-Out Charges?

A. Yes. Mr. Conroy's testimony explains why the Companies are proposing the charges and when they will apply.

Q. What are the Companies' proposed AMI Opt-Out Charges?

A. The Companies are also proposing an up-front opt-out setup charge per meter (\$39.00
for KU, $\$ 35.00$ for LG\&E-E, and $\$ 33.00$ for LG\&E-G) and a recurring monthly optout charge per meter ($\$ 15.00$ for KU, $\$ 12.00$ for LG\&E-E, and $\$ 5.00$ for LG\&E-G) applicable to customers who choose to opt out of the proposed Advanced Metering Infrastructure (AMI) deployment.

Q. How do the Companies' proposed AMI Opt-Out Charges compare to similar

 charges for other utilities?A. The following table (TABLE 6) shows the AMI opt-out charges for other utilities in the United States:

TABLE 6

Utility	AMI Opt-out Set-up Fee	Monthly AMI Opt-Out Fee
Duke Energy Progress (NC)	$\$ 170.00$	$\$ 14.75$
Duke Energy Progress (SC)	$\$ 170.00$	$\$ 14.75$
Duke (KY)	$\$ 100.00$	$\$ 25.00$
Duke Energy (OH)	$\$ 100.00$	$\$ 30.00$
Duke Energy (FL)	$\$ 96.34$	$\$ 15.60$
AEP Michigan	$\$ 80.30$	$\$ 9.75$
Portland General	$\$ 80.00$	$\$ 17.00$
Duke Energy (IN)	$\$ 75.00$	$\$ 17.50$
AEP Ohio	$\$ 43.00$	$\$ 24.00$
Central Maine Power	$\$ 40.00$	$\$ 16.05$

The Companies' proposed AMI opt-out charges are toward the bottom end of the charges assessed by other utilities.

Q. What costs are recovered through the proposed charges?

A. The one-time charge includes: (i) the cost of creating work orders for meter change-
out and the routing of meter readers, (ii) travel time, transportation cost and direct costs to remove the AMI electric meters or gas modules and replace them with nonAMI meters or gas modules; and (iii) customer service administrative costs.

The recurring charge includes the following costs: (i) costs for meter readers, dispatchers, supervisors, and transportation costs; (ii) costs, including transportation costs, for manual off-cycle meter reads by meter readers and fields services employees necessary to perform meter readings services for non-AMI meters; (iii) on-going maintenance costs related to the incremental mesh network; (iv) the cost of additional relays, access point, and supporting infrastructure related to the AMI mesh network; (v) system updates, staff training, and testing of billing system to handle opt out requests; and (vi) updating the billing system to handle AMI opt out billing, including system testing and training of staff.

Because the vast majority of LG\&E's gas customers also receive electric service from LG\&E, the travel time and cost for manually reading the non-AMI meters were reduced in calculating the cost of the AMI opt-out for gas customers, thus resulting in a lower opt-out charge for LG\&E's gas customers than for its electric customers. These considerations do not impact the one-time charge for gas AMI optout. This ensures that combination gas and electric customers served by LG\&E will not be overcharged. For LG\&E's gas customers not taking electric service from either LG\&E or KU, non-AMI telemetry (one-way AMR telemetry) would be utilized that will allow LG\&E in most cases to avoid manually reading the meters. The cost support for the opt-out charges is shown in Exhibit WSS-19. None of the costs or revenues
from customer opt-outs are included in test-year operating revenues and expenses in these proceedings. Upon implementation of the AMI opt-out charge, it is anticipated that the revenue collected from the charges will offset the cost of any customers that choose to opt out of AMI.

V. ADVANCED METERING INFRASTRUCTURE (AMI)

A. PERSONAL EXPERIENCE WITH AMI

Q. Have you worked with utilities that have implemented Advanced Metering Infrastructure (AMI) programs?
A. Yes. Most of my electric cooperative and investor-owned utility clients have implemented AMI.

Q. Has AMI been useful in performing cost of service studies and in designing rates?

A. Yes. The demand data collected from AMI have improved the accuracy of the cost of service studies. Without AMI, utilities would rely on sampled load data or data for other utilities to develop demand allocators used in cost of service studies. With AMI, utilities have demand data for almost every customer on the system; therefore, demand allocation factors are essentially exact, with very little estimation required to develop the three categories of demand allocation factors typically used in cost of service studies - namely, coincident peak allocators, maximum class demand allocators, and maximum individual customer demand allocators. The availability of this data is also used to develop accurate loss studies for utilities, which are used in cost of service studies.

AMI has also allowed utilities to develop innovative rate designs for a broader group of customers. Specifically, AMI has allowed utilities to develop a multitude of time-of-day rate options for all of their customers, without installing special purpose metering whenever a customer requests a special rate. With the utilities I have worked with, those with AMI can quickly roll out a new time-differentiated or real-time rate to a broad group of customers without installing specialized metering equipment specifically programed for a certain rate structure. With AMI, the meters can be interrogated remotely for application of a specific rate design.

B. FUTURE RATE OFFERINGS

Q. Would the Companies be well positioned to offer more time-of-day offerings once

 AMI is implemented?A. Yes. KU and LG\&E currently offer time-of-day offerings to residential customers, but the rate schedules are limited to 500 participants for each company. In these proceedings, the Companies are proposing to offer two optional General Time of Day Services (Rate GTOD-Energy and GTOD-Demand) that would be available to any General Service (Rate GS) customer enrolled in the Advanced Metering Systems Customer Service Offering set forth in the Companies’ Demand-Side Management Cost Recovery Mechanism. The Companies do not currently offer four-part time-of-day rates for Power Service Rate PS customers.

VII. ELECTRIC COST OF SERVICE STUDIES

Q. Did The Prime Group prepare cost of service studies for KU and for LG\&E's electric operations based on forecasted financial and operating results for the 12 months beginning July 1, 2021 ?
A. Yes. The Prime Group prepared fully allocated embedded cost of service studies based on a forecasted test year beginning July 1, 2021 for KU and for LG\&E's electric operations. The cost of service study for LG\&E's gas operations will be discussed later in my testimony. The cost of service studies correspond to the pro-forma financial exhibits that the Companies are providing to meet the requirements of Section 16(8). The Companies' objectives in performing the electric cost of service studies were to determine the rate of return on rate base the Companies are earning from each customer class, allocate revenue requirements as fairly as possible among all of the classes of customers the Companies serve, and provide the data necessary to develop rate components that more accurately reflect cost causation.
Q. What model was used to perform the cost of service studies?
A. The cost of service studies were performed using an EXCEL ${ }^{\text {TM }}$ spreadsheet model that was developed by The Prime Group and that has been utilized in previous filings by KU and LG\&E to support requests for adjustments in their rates.
Q. What procedure was used in performing the cost of service studies?
A. Regardless of whether a historical test year or a forecasted test year is used to develop a cost of service study, the methodology for developing a cost of service study is basically the same. The three traditional steps of an embedded cost of service study -
functional assignment, classification, and allocation - were utilized to classify costs. The cost of service studies for KU and LG\&E were therefore prepared using the following procedure: (1) costs were functionally assigned (functionalized) to the major functional groups; (2) costs were then classified as commodity-related, demandrelated, or customer-related; and then finally (3) costs were allocated to the rate classes. These steps are depicted in the following diagram (Figure 1).

Figure 1

The following functional groups were identified in the cost of service studies: (1) Production, (2) Transmission, (3) Distribution Substation, (4) Distribution Primary Lines, (5) Distribution Secondary Lines, (6) Distribution Line Transformers, (7) Distribution Services, (8) Distribution Meters, (9) Distribution Street and Customer

Lighting, (10) Customer Accounts Expense, (11) Customer Service and Information, and (12) Sales Expense. Because KU operates in multiple jurisdictions, it was necessary to identify costs for the Kentucky jurisdiction prior to developing a cost of service study. Therefore, the spreadsheet model used to perform the cost of service study also includes a jurisdictional separation analysis.

Q. Did you supervise the preparation of KU's jurisdictional separation study for the forecasted test period?

A. Yes. Because KU operates in three jurisdictions (Kentucky State Jurisdiction, Virginia State Jurisdiction, and FERC Jurisdiction), joint costs incurred to provide service jointly to all three jurisdictions, such as production fixed costs, must be allocated to the jurisdictions based on relative cost responsibility by jurisdiction, and any identifiable direct costs incurred in providing service to a particular jurisdiction must be directly assigned to that jurisdiction. Because production plant, for example, is jointly used by all three jurisdictions to meet each jurisdiction's demand requirements, these joint costs related to production plant must be allocated to the jurisdictions based on the demand responsibility of each jurisdiction relative to the total. On the other hand, distribution plant costs are recorded on KU's accounting records by jurisdiction and can be directly assigned to each jurisdiction. The jurisdictional separation study generated the Kentucky jurisdiction allocation factors shown on Schedule B-7.
Q. How were production fixed costs allocated in the Companies' cost of service studies?
A. KU and LG\&E's production fixed costs were allocated using the Loss of Load Probability (LOLP) methodology, which was filed in the Companies' 2016 and 2018 rate case proceedings. Several intervenors supported the LOLP methodology in the 2016 proceedings.

LOLP represents the probability that a utility system's total demand will exceed its generation capacity during a given hour. LOLP therefore takes into consideration the magnitude of the load, installed generation capacity, forced outage rates, maintenance schedules, and ramp-up rates of generating units. LOLP can be calculated for any period - an hour, a day, a week, etc. LOLP is a critical measurement the Companies use to plan their generation resources. Specifically, it is used to evaluate the level of reserve margins the Companies target. Therefore, LOLP can serve as a foundation for allocating fixed production costs to the classes of customers. In other words, allocating fixed production costs on the basis of LOLP links the cost-of-service allocation methodology to a key measurement the Companies use to plan the system.

For the cost of service studies, LOLP was calculated for each hour of the test year based on the hourly loads for the test year and the characteristics of the Companies' generating facilities, including capacity, forced outage rates, and maintenance schedules. Hourly loads for each rate class were then weighted by the LOLP for each hour to determine LOLP weighted hourly load for each rate class. The weighted loads for each rate class are then summed for the test year to determine a
production fixed cost allocator. Mathematically, this is equivalent to calculating an allocation vector for fixed production costs using the following formula:

$$
\overline{P R O D ~ A L L O C A T O R}=\sum_{i=1}^{8784} L O L P_{i} * \overline{L O A D}_{i}
$$

Where: $\overline{P R O D ~ A L L O C A T O R}$ is the allocation vector for production fixed costs in the cost of service study; $L O L P_{i}$ is the Loss of Load Probability for hour i; $\overline{L O A D}_{i}$ is a vector of hourly load (in kW) for each rate class at hour i ; for example, $\overline{L O A D}_{i}=($ load for Rate RS at hour i, load for Rate GS for hour i, load for Rate PS at hour i, ...); and i is the hour of the year.

The allocation vector $\overline{P R O D ~ A L L O C A T O R}$ is then used to allocate fixed production costs to the customer classes in the cost of service study.

Q. Is the LOLP approach a time-differentiated methodology?

A. Yes, and at a fine level of granularity. The LOLP methodology is identified in NARUC's Electric Utility Cost Allocation Manual as a standard methodology for performing time-differentiated cost of service studies. With the LOLP methodology, costs are differentiated for each hour of the test year. The approach can be adapted to
calculate costs for any set of time periods during the test year Exhibit WSS-21 is a summary of the production fixed cost allocators used in the study.

Q. Was the revenue allocation set forth in the Stipulation in the Companies' last rate cases based on the LOLP methodology?

A. Yes. In its Orders in those rate cases, the Commission directed the Companies to file an alternative production cost allocation methodology along with the LOLP cost of service study.
Q. Are the Companies filing alternative cost of service studies in compliance with the Commission's Orders?
A. Yes. In addition to the LOLP cost of service study, the Companies are also filing the only two alternative methodologies submitted by intervenors in Case Nos. 2018-00294 and 2018-00295: a 12 CP cost of service study, which was proposed by the Kentucky Industrial Utility Customers, Inc.'s ("KIUC's") witness, ${ }^{28}$ and a 6 CP cost of service study, which was proposed by Federal Executive Agencies' ("FEA's") witness. ${ }^{29}$

Q. Please describe the 12 CP and 6 CP methodologies.

A. The 12 CP methodology allocates production fixed costs on the sum of the monthly coincident peak demands for each rate class. The 6 CP methodology allocates production fixed costs on the sum of the monthly coincident peak demands for each

[^20]rate class during the four summer months of June through September and the two winter months of January and February.

Q. Do you have a preference between the two alternative methodologies?

A. Yes. The 6 CP methodology more accurately reflects the Companies' generation planning than the 12 CP methodology. The Companies' system is summer peaking but the Companies also have a large winter peak. Therefore, the Companies give considerable attention to the winter peak demands, particularly in selecting the type of generation resources needed to meet both the summer and peak demands. But very little consideration is given to the system peak demands during the spring and fall months. Because the 12 CP methodology includes monthly demands for shoulder months such as March, April, May, October, and November, the methodology gives too much weight to demands for months that play little or no role in planning. By including demands for four summer months and two winter months, the 6 CP gives an appropriate weighting to the allocation of production costs for a summer peaking utility with a winter peak that is nearly as high as the summer peak. For these reasons, I favor the 6 CP over the 12 CP methodology. But a problem with both the 12 CP and 6 CP methodologies is that both methods rely on demands for a limited number of hours during the year. The LOLP methodology is more robust in that it weights all hours by the LOLPs for each hour of the year, which is a key metric in the Companies' generation system planning activities.

Q. Have you prepared an exhibit that compares the class rates of return for the three methodologies?

A. Yes. Exhibit WSS-22 compares the class rates of return using the LOLP methodology, 12 CP methodology, and the 6 CP methodology. The spreadsheet workpapers for the alternative cost of service studies are being provided electronically.
Q. How were costs classified as energy-related, demand-related or customerrelated?
A. Classification involves utilizing the appropriate cost driver for each functionally assigned cost, which provides a method of arranging costs so that the service characteristics that give rise to the costs can serve as a basis for allocation. For costs classified as energy-related, the appropriate cost driver is the amount of kilowatthours consumed. Fuel and purchased power expenses are examples of costs typically classified as energy costs. Costs classified as demand-related tend to vary with the capacity needs of customers, such as the amount of generation, transmission or distribution equipment necessary to meet a customer's needs. The costs of production plant and transmission lines are examples of costs typically classified as demandrelated costs. Costs classified as customer-related include costs incurred to serve customers regardless of the quantity of electric energy purchased or the peak requirements of the customers and include the cost of the minimum system necessary to provide a customer with access to the electric grid. As will be discussed later in my testimony, a portion of the costs related to Distribution Primary Lines, Distribution Secondary Lines and Distribution Line Transformers were classified as demandrelated and customer-related using the zero-intercept methodology. Distribution Services, Distribution Meters, Distribution Street and Customer Lighting, Customer

Accounts Expense, Customer Service and Information and Sales Expense were classified as customer-related because these costs do not vary with customers' capacity or energy usage.

Q. What methodologies are commonly used to classify distribution plant between

 customer-related and demand-related components?A. Two commonly used methodologies for determining demand/customer splits of distribution plant are the "minimum system" methodology and the "zero-intercept" methodology. In the minimum system approach, "minimum" standard poles, conductor, and line transformers are selected and the minimum system is obtained by pricing all of the applicable distribution facilities at the unit cost of the minimum size plant. The minimum system determined in this manner is then classified as customerrelated and allocated on the basis of the average number of customers in each rate class. All costs in excess of the minimum system are classified as demand-related. The theory supporting this approach maintains that in order for a utility to serve even the smallest customer, it would have to install a minimum size system. Therefore, the costs associated with the minimum system are related to the number of customers that are served, instead of the demand imposed by the customers on the system.

In preparing the studies, the "zero-intercept" methodology was used to determine the customer components of overhead conductor, underground conductor, and line transformers. Because the zero-intercept methodology is less subjective than the minimum system approach, the zero-intercept methodology is preferred over the minimum system methodology when the necessary data is available. Additionally,

KU and LG\&E have utilized the zero-intercept methodology in determining customerrelated costs in prior rate case filings before this Commission. With the zero-intercept methodology, we are not forced to choose a minimum size conductor or line transformer to determine the customer-related component of distribution costs. In the zero-intercept methodology, the estimated cost of a zero-size conductor or line transformer is the absolute minimum system for determining customer-related costs.

Q. What is the theory behind the zero-intercept methodology?

A. The theory behind the zero-intercept methodology is that there is a linear relationship between the unit cost of conductor $(\$ / \mathrm{ft})$ or line transformers $(\$ / \mathrm{kVA}$ of transformer size) and the load flow capability of the plant measured as the cross-sectional area of the conductor or the kVA rating of the transformer. After establishing a linear relation, which is given by the equation:

$$
y=a+b x
$$

where:
\mathbf{y} is the unit cost of the conductor or transformer,
\mathbf{x} is the size of the conductor (MCM) or transformer (kVA), and
\mathbf{a}, \mathbf{b} are the coefficients representing the intercept and slope, respectively
it can be determined that, theoretically, the unit cost of a foot of conductor or transformer with zero size (or conductor or transformer with zero load carrying capability) is a, the zero-intercept. The zero-intercept is essentially the cost
component of conductor or transformers that is invariant to the size and load carrying capability of the plant.

Like most electric utilities, the feet of conductor and the number of transformers on KU and LG\&E's systems are not uniformly distributed over all sizes of wire and transformer. For this reason, it was necessary to use a weighted linear regression analysis, instead of a standard least-squares analysis, in the determination of the zero intercept. Without performing a weighted linear regression analysis all types of conductor and transformers would have the same impact on the analyses, even though the quantity of conductor and transformers are not the same for each size and type.

Using a weighted linear regression analysis, the cost and size of each type of conductor or transformer is weighted by the number of feet of installed conductor or the number of transformers. In a weighted linear regression analysis, the following weighted sum of squared differences

$$
\sum_{i} w_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

is minimized, where \mathbf{w} is the weighting factor for each size of conductor or transformer, and \mathbf{y} is the observed value and $\hat{\mathbf{y}}$ is the predicted value of the dependent variable.

Q. Has the Commission accepted the use of the zero-intercept methodology?

A. Yes. The Commission found LG\&E's cost of service studies (both electric and gas) submitted in Case No. 2000-080 and Case No. 90-158 to be reasonable, thus providing
a means of measuring class rates of return that are suitable for use as a guide in developing appropriate revenue allocations and rate design. The cost of service studies in both proceedings utilized a zero-intercept methodology to calculate the splits between demand-related and customer-related distribution costs. The Commission also found the embedded cost of service study submitted by Union Light Heat and Power in Case No. 2001-00092, which utilized a zero-intercept methodology, to be reasonable. Furthermore, the zero-intercept methodology has been used in every cost of service study filed by both KU and LG\&E since the early 1980s, including the cost of service studies filed in Case Nos. 2018-00294 and 201800295, the Companies' last two rate cases.

Q. Have you prepared exhibits showing the results of the zero-intercept analysis?

A. Yes. For KU, the zero-intercept analyses for overhead conductor, underground conductor, and line transformers are included in Exhibits WSS-23, WSS-24 and WSS25, respectively. For LG\&E, the zero-intercept analyses for overhead conductor, underground conductor, and line transformers are included in Exhibits WSS-26, WSS27 and WSS-28, respectively. For overhead conductor, the LG\&E results were utilized because the weighted regression analysis for KU did not yield statistically valid results.
Q. Have you prepared an exhibit showing the results of the functional assignment, time-differentiation and classification steps of the electric cost of service study?
A. Yes. Exhibit WSS-29 shows the results of the first two steps of the electric cost of service study, namely functional assignment and classification, for KU. Exhibit WSS-

30 shows the same two steps for LG\&E. In the cost of service model used in this study, the calculations for functionally assigning and classifying Companies’ accounting costs are made using what are referred to in the model as "functional vectors". These vectors are multiplied (using scalar multiplication ${ }^{30}$) by the dollar amount in the various accounts to simultaneously functionally assign and classify KU and LG\&E's accounting costs. These calculations are made in the portion of the cost of service model included in Exhibits WSS-29 (KU) and WSS-30 (LG\&E). In these exhibits, the Companies' accounting costs are functionally assigned and classified using explicitly determined functional vectors (i.e., "external vectors") and using internally generated functional vectors. The explicitly determined functional vectors, which are primarily used to direct where costs are functionally assigned and classified, are shown on pages 29 and 30 of Exhibits WSS-29 for KU and WSS-30 for LG\&E. Internally generated functional vectors are utilized throughout the study to functionally assign and classify costs on the basis of similar costs or on the basis of internal cost drivers. The internally generated functional vectors are also shown on pages 29 and 30 of Exhibits WSS-29 for KU and WSS-30 for LG\&E. The functional vector used to allocate a specific cost is identified in the column of the model labeled "Vector" and refers to a vector identified elsewhere in the analysis by the column labeled "Name".

[^21]Q. Please describe how the functionally assigned and classified costs were allocated to the various classes of customers.
A. Exhibits WSS-31 (KU) and WSS-32 (LG\&E) show the allocation of the functionally assigned and classified costs to the various classes of customers that KU and LG\&E serve. For a forecasted test year, the average number of customers is used for allocating customer-related costs rather than the year-end number of customers that is used for a historical test year. The following allocation factors were used in the electric cost of service study to allocate the functionally assigned and classified costs:

- $\mathbf{E 0 1}$ - The energy cost component of purchased power costs was allocated on the basis of the loss adjusted kWh sales to each class of customers during the test year.
- LOLP - The cost components of production fixed costs were allocated on the basis of the total sum of each class's contribution to the forecasted loss of load probability during every hour of the test year.
- NCPT - The demand cost component is allocated based on the maximum class demands for transmission, primary and secondary voltage customers. This allocation vector is used to allocate transmission costs.
- NCPP - The demand cost component is allocated on
the basis of the maximum class demands for primary and secondary voltage customers. This allocation vector is used to allocate distribution substations and primary distribution demand-related costs.
- \quad SICD - The demand cost component is allocated on the basis of the sum of individual customer demands for secondary voltage customers.
- C02 - The customer cost component of customer services is allocated on the basis of the average number of customers for the test year.
- C03 - Meter costs were specifically assigned by relating the costs associated with various types of meters to the class of customers for whom these meters were installed.
- Cust04 - Customer-related O\&M costs associated with lighting systems were specifically assigned to the lighting class of customers.
- PCust04 - Customer-related plant and rate base associated with lighting systems were specifically assigned to the lighting class of customers.
- Cust05 and Cust06 - Meter reading, billing costs and
customer service O\&M expenses were allocated on the basis of a customer weighting factor calculated using the 12 month average number of customers for the test year based on discussions with the Companies' meter reading, billing and customer service departments.
- PCust05 and PCust06 - Meter reading, billing costs and customer service plant expenses were allocated on the basis of a customer weighting factor calculated using the 13 month average number of customers for the test year based on discussions with the Companies' meter reading, billing and customer service departments.
- Cust07 - Customer-related O\&M costs for secondaryvoltage distribution facilities are allocated on the basis of the 12 month average number of customers using line transformers and secondary voltage conductor.
- PCust07 - Customer-related plant costs for secondaryvoltage distribution facilities are allocated on the basis of the 13 month average number of customers using line transformers and secondary voltage conductor.
- Cust08 - Customer-related O\&M costs for primary-
voltage distribution facilities are allocated on the basis of the 12 month average number of customers using primary voltage conductor.
- PCust08 - Customer-related plant costs for primaryvoltage distribution facilities are allocated on the basis of the 13 month average number of customers using primary voltage conductor.
- Cust09 - Customer-related O\&M costs for transformers are allocated on the basis of the 12 month average number of customers using distribution transformers.
- PCust09 - Customer-related plant costs for transformers are allocated on the basis of the 13 month average number of customers using distribution transformers.
- GPLOLPDA, NPLOLPDA, RBLOLPDA, POMLOLPDA, PDEPLOLPDA, and PPTLOLPDA
- These allocators are used to specifically assign production-related demand costs associated with the Solar Share and Business Solar programs directly to those respective rate classes. These allocators directly
assign Gross Plant, Net Plant, Net Rate Base, O\&M, Depreciation, and Property Taxes associated with those programs directly to customers participating in those programs.
- MGPA, MNPA, MRBA, MOMA, MDA, and MPTA - These allocators are used to specifically assign customer-related costs associated with the Electric Vehicle Charging programs directly to those respective rate classes. These allocators directly assign Gross Plant, Net Plant, Net Rate Base, O\&M, Depreciation, and Property Taxes associated with those programs directly to customers participating in those programs.

Abstract

Q. Once costs are functionally assigned and classified, what calculations are used to allocate these costs to the various customer classes the Companies serve? A. Once costs for all of the major accounts are functionally assigned and classified, the resultant cost matrix for the major cost groupings (e.g., Plant in Service, Rate Base, O\&M Expenses) is then transposed and allocated to the customer classes using "allocation vectors" or "allocation factors". A transpose of a matrix is formed by turning all the rows of a given matrix into columns and vice-versa. This process results in the columns of functionally assigned and classified costs becoming rows in the transposed matrix which then can be allocated to the various classes of customers. This process is illustrated in Figure 2 below.

Costs by Account	\longrightarrow	Cost Matrix	\square	Transposed Cost Matrix	\longrightarrow	Allocated Costs
Steps 1, 2 and 3			Matrix		Step 4	
Functional			Transposition		Allocation	
Assignment,						
Classification, and						
Time						
Differ	ntiation			Figure 2		

The results of the class allocation step of the cost of service study are included in Exhibits WSS-31 (KU) and WSS-32 (LG\&E). The costs shown in the column labeled "Total System" in Exhibits WSS-29 and WSS-30 were carried forward from the functionally assigned and classified costs shown in Exhibits WSS-31 and WSS-32, respectively. The column labeled "Ref" in Exhibits WSS-31 and WSS-32 provides a reference to the results included in Exhibits WSS-29 and WSS-30, respectively.

Q. Please summarize the results of the electric cost of service studies.

A. The Current Rate of Return on Rate Base was calculated by dividing the adjusted net operating income by the adjusted net cost rate base for each customer class. The adjusted net operating income and rate base reflect the rate base, income and expenses discussed in the testimony of Mr. Garrett. The Proposed Rate of Return on Rate Base was calculated by dividing the net operating income adjusted for the proposed rate increase by the adjusted net cost rate base. The determination of the actual adjusted and proposed rates of return are shown on pages 25 through 28 and pages 27 through

30, respectively, of Exhibits WSS-31 and WSS-32, for KU and LG\&E, respectively. The rates of return by customer class for the LOLP cost of service study along with the 6-CP and 12-CP methodologies are shown in Exhibit WSS-22

VIII. GAS COST OF SERVICE STUDY

Q. Did you prepare a cost of service study for LG\&E's gas operations based on financial and operating results for the 12 months beginning July $\mathbf{1 , 2 0 2 1 ?}$
A. Yes. I supervised the preparation of a fully allocated, embedded cost of service study for gas operations for the forecasted test year beginning July 1, 2021, based on LG\&E's forecasted accounting costs. The cost of service study corresponds to the pro-forma financial exhibits included in the testimony of Mr. Garrett. As with the electric cost of service studies, the objective in performing the gas cost of service study is to determine the rate of return on rate base that LG\&E is earning from each customer class, allocate LG\&E's natural gas revenue requirement as fairly as possible to the various classes of customers that LG\&E serves, and provide the data necessary to develop rate components that more accurately reflect cost causation.
Q. Generally, were the procedures used in performing the gas cost of service study the same as those that you described above for the electric cost of service studies?
A. Yes. The gas cost of service study was prepared using the following procedure: (1) costs were functionally assigned (functionalized) to the major functional groups, (2) costs were then classified as commodity-related, demand-related, or customer-related; and then finally (3) costs were allocated to the various natural gas rate classes that

LG\&E serves. These steps are depicted in the following diagram (Figure 3). This is a standard approach utilized in the preparation of embedded cost of service studies for natural gas utilities.

Figure 3
Q. What functional groups were used in the natural gas cost of service study?
A. The following functional groups were identified in the cost of service study: (1) Procurement, (2) Storage, (3) Storage-Related Transmission, (4) Non-Storage-Related Transmission, (5) Distribution Commodity, (6) Distribution Structures and Equipment, (7) Distribution Mains - Low- and Medium-Pressure, (8) Distribution Mains - High-Pressure, (9) Services, (10) Meters, (11) Customer Accounts, and (12) Customer Service Expense.
Q. Please describe the functional assignment of transmission costs.
A. There are two functional groups for transmission costs: Storage-Related Transmission and Non-Storage-Related Transmission. Storage-Related Transmission costs represent the transmission facilities that are used to deliver natural gas from LG\&E's storage fields to the distribution system. The Non-Storage-Related Transmission functional group represents costs of transmission facilities used to deliver gas from interstate pipelines both to the distribution system and directly to customers. It is important to distinguish between the two types of costs because the Non-StorageRelated Transmission facilities are used to serve all customer classes, including both sales and transportation customers, by delivering gas to the distribution system and directly to individual customers, whereas the use of Storage-Related Transmission facilities is limited to delivering storage gas to sales customers and to serving daily imbalances created by transportation customers. Therefore, the use of StorageRelated Transmission facilities to serve customers under Rate FT and any other firm transportation-only service would be limited to their use of daily imbalance service facilitated through storage. Exhibit WSS-33 shows the derivation of the functional assignment for transmission plant.

Q. How were costs classified as commodity-related, demand-related or customerrelated?

A. Classification involves identifying the appropriate cost driver for each account, which provides a method of arranging costs so that the service characteristics that give rise to the costs can serve as a basis for allocation. Costs classified as commodity-related tend to vary with the quantity of gas delivered, such as gas supply and the operation
of compressors. Since gas supply costs were removed from the cost of service study, it was not necessary to classify gas supply costs. Costs classified as demand-related are costs related to facilities installed to meet design-day usage requirements. Costs classified as customer-related include non-volumetric costs incurred to serve customers that are invariant to either the quantity of gas delivered to the customers or the peak demand requirements of the customers. All transmission plant costs were classified as demand-related. The transmission plant used to deliver natural gas from and to storage is allocated on the same basis as storage. The transmission plant used to deliver gas from the pipelines into LG\&E's distribution system was allocated on design-day demands. Distribution Structures and Equipment costs were classified as demand-related. Costs related to Distribution Mains were functionally assigned as either low- and medium-pressure mains or high-pressure mains and then classified as demand-related and customer-related using the zero-intercept methodology. Services, Meters, Customer Accounts, and Customer Service Expenses were classified as customer-related.

Q. Explain the zero-intercept methodology that you used to classify the costs of mains between demand-related and customer-related costs.

A. A portion of the cost of mains was classified as demand-related and a portion was classified as customer-related using the zero-intercept methodology, which was described above in connection with the electric cost of service study. The zerointercept analysis is included in Exhibit WSS-34.
Q. How were distribution mains functionally separated between high-, low- and
medium-pressure categories?
A. The feet of high-pressure mains by size of pipe were identified from LG\&E's maps and records. The feet of low- and medium-pressure pipe were determined residually by subtracting the specifically identified high-pressure mains from the total feet for each pipe size. The zero-intercept unit cost of $\$ 10.91$ was then applied to the highpressure mains and to the low- and medium-pressure mains to determine the customerrelated portion of the mains. ${ }^{31}$ By identifying high-pressure mains from LG\&E's maps and records, it was determined that LG\&E's high-pressure distribution mains represent 9.37% of the total installed cost, with 4.44% corresponding to customerrelated costs and 4.92% corresponding to demand-related costs. The low- and medium-pressure pipe make up the remaining 90.63% of installed cost, with 62.27% classified as customer-related and 28.36% classified as demand-related. The breakdown is shown on Exhibit WSS-34. The allocation of the cost to the customer classes is shown on Exhibit WSS-35.

Q. Was a similar separation made in the electric cost of service studies?

A. Yes. The electric cost of service studies separate distribution conductor between primary voltage conductor and secondary voltage conductor. The functional separation in the gas cost of service study between high-pressure and low- and medium-pressure pipe is analogous to the primary and secondary splits determined in

[^22]the electric cost of service studies. Differences in the pressure in a pipe are often used as an analogy to differences in voltages.

Q. Have you prepared an exhibit showing the results of the functional assignment and classification steps of the cost of service study?

A. Yes. Exhibit WSS-36 shows the results of the first two steps of the natural gas cost of service study: functional assignment and classification.

Q. Please describe the allocation factors used in the gas cost of service study.

A. The results of allocating LG\&E's functionally assigned and classified costs to the various classes of customers that LG\&E serves are provided in Exhibit WSS-37. The following allocation factors were used in the gas cost of service study:

- DEM01 is used to allocate procurement demand-related costs; these costs are the procurement-related expenses that are not recovered through LG\&E's Gas Supply Clause.
- DEM02 is used to allocate Storage demand-related costs and represents a composite allocation based on extreme winter season requirements and design-day demands. The class allocation factor is the sum of (a) the volumes (commodity) withdrawn from storage
during the design winter season and (b) the volumes needed in storage to meet the design-day demands. Rate FT is assigned an allocation based on its utilization of balancing service in accordance with the provision set forth in the rate schedule to allow imbalances that do not exceed $\pm 5 \%$ of delivered volumes when an Operational Flow Order ("OFO") has not been issued. The calculation of this allocation factor is shown in Exhibit WSS-38.
- DEM03 is used to allocate Transmission demandrelated costs for the portion of the transmission system that is used to move gas to and from storage. Because this portion of LG\&E's transmission lines is used to either fill the storage fields or remove gas from storage, transmission demand-related costs are allocated on the same basis as storage demand-related costs.
- DEM04 is used to allocate Distribution Structures and Equipment demand-related costs and represents forecasted maximum class demands determined at

LG\&E's $-14^{\circ} \mathrm{F}$ design-day mean temperature.

- DEM05 is used to allocate the demand-related portion of the cost of high-pressure distribution mains and the cost of transmission lines used to move gas from the pipelines to LG\&E's distribution system. It represents maximum class demands determined at the design-day mean temperature of customers served at high-pressure or below. The high-pressure system consists of pipe pressured above 60 psi . All gas delivered into the lowand medium-pressure system must first pass through the high-pressure system. Consequently, all customers utilize the high-pressure system.
- DEM05a is used to allocate the demand-related portion of the cost of low- and medium-pressure distribution mains and represents maximum class demands determined at the design-day mean temperature of customers served at medium pressure or low pressure. The low- and medium- pressure system consists of pipe pressured at 60 psi and below. The demands of
customers served at high pressure are not included in the determination of this allocation factor. The low- and medium-pressure system is not used to provide distribution delivery service to customers served at high pressure.
- COM01 is used to allocate commodity-related procurement expenses and represents annual throughput volumes (including both sales and transportation). Procurement expenses correspond to expenses incurred by LG\&E's gas supply department (including labor), which are not recovered through the Gas Supply Clause. This department not only purchases gas for sales customers but also administers LG\&E's transportation service schedules.
- COM02 is used to allocate Storage commodity-related costs and represents forecasted customer class deliveries during the winter withdrawal season (defined as the months of November through March.)
- COM03 is used to allocate Transmission commodityrelated costs and represents forecasted customer class deliveries during the winter withdrawal season (defined as the months of November through March.)
- COM04 is used to allocate Distribution commodityrelated costs and represents annual throughput volumes (including both sales and transportation.)
- CUSTPT01 is used to allocate the customer-related portion of LG\&E's high-pressure distribution mains and represents the 13-month average number of customers served at high pressure and below.
- CUSTPT01a is used to allocate the customer-related portion of LG\&E's low- and medium-pressure distribution mains and represents the 13-month average number of customers at low and medium pressure. The customers served at high pressure are not included in the determination of this allocation factor because the low- and medium-pressure system is not used to provide
distribution delivery service to customers served at high pressure.
- CUST02 is used to allocate services and is based on the total estimated cost of installing a service line per customer in each customer class weighted by the average number of customers in each class.
- CUST03 is used to allocate meters and is based on the total cost of meters and meter installation costs per customer in each customer class weighted by the average number of customers in each class.
- CUSTPT04 is used to allocate the plant and rate base components of customer accounts expense and represents 13-month average customers.
- CUSTPT05 is used to allocate the plant and rate base components of customer service. It is based on 13month average customers adjusted for weighting factors for each class.
- CUSTOM01 is used to allocate the customer-related
portion of O\&M expenses for high-pressure distribution mains and represents the 12 -month average number of customers served at high pressure and below.
- CUSTOM01a is used to allocate the customer-related portion of O\&M expenses for low- and mediumpressure distribution mains and represents the average number of customers at low and medium pressure. The customers served at high pressure are not included in the determination of this allocation factor because the low- and medium-pressure system is not used to provide distribution delivery service to customers served at high pressure.
- CUSTOM04 is used to allocate customer accounts expenses (Accounts 901 through 905) and represents a composite allocation factor. ${ }^{32}$

[^23]- CUSTOM05 is used to allocate customer service expenses using the same customer-weighting factor used to allocate Accounts 901, 902, 903, and 905 as in the calculation of CUST04.

Q. Summarize the results of the gas cost of service study.

A. The rates of return shown on net cost rate base for natural gas service for each customer class before and after reflecting the rate adjustments proposed by LG\&E are shown on pages 12 and 13 of Exhibit WSS-37. The current rate of return on net cost rate base was calculated by dividing the adjusted net operating income by the adjusted net cost rate base for each customer class. The adjusted net operating income and rate base reflect the forecasted amounts discussed in the testimony of Mr. Garrett. The proposed rate of return on net cost rate base was calculated by dividing the net operating income adjusted for the proposed rate increase by the adjusted net cost rate base. Rate DGGS is not broken out in the cost of service study but is included in Rate IGS. Rate LGDS is not shown in the table because there are currently no customers served under the rate schedule. Currently, there is one commercial customer served under Rate SGSS. However, Rate SGSS is not broken out in the cost of service study but is included in Rate CGS.

IX. LEAD-LAG STUDIES

Q. Did KU and LG\&E perform a lead lag study in Case Nos. 2018-00294 and 2018$00295 ?$
A. Yes. I supervised the preparation of the lead-lag studies for KU and for LG\&E's electric and gas operations. Mr. Garrett provided the balance sheet analyses used for the study of cash working capital based on amounts from the Companies' forecast. The lead-lag studies used historical payment activity to calculate revenue lag days and expense lead days. Revenue lag days represent the difference between the date when services are rendered by the Companies and the date when revenues for those services are collected from customers. Expense lead days represent the date when expenses are incurred to provide service and the date when those expenses are paid. The net lead-lag days are multiplied by the respective average daily expenses and pass-through items (viz., sales taxes, school taxes, and franchise fees) to determine cash working capital.

Q. In Kentucky, are utilities required to perform a lead-lag study?

A. No. In the Stipulation Agreement in Case Nos. 2016-00370 and 2016-00371, the Companies agreed to submit lead-lag studies in their next general rate cases. The Companies then filed lead-lag studies in Case Nos. 2018-00294 and 2018-00295. In the current rate cases, KU and LG\&E are updating the revenue lag analysis and balance sheet analysis that were filed in Case Nos. 2018-00294 and 2018-00295. By updating the revenue lag analysis and balance sheet analysis, the Companies are following the practice prescribed by the Virginia State Corporation Commission (VA

SCC) for rate case filings in Virginia, which prescribes that if a lead-lag study is less than five years old then only revenue lags and the balance sheet analysis are updated. ${ }^{33}$

Q. Based on your experience, is this practice reasonable?

A. Yes. Unless there is a dramatic change in a utility's financial condition, it has been my experience that expense leads do not change significantly within a five-year period. Performing a lead-lag study is a major undertaking. Therefore, it is reasonable to update revenue lags and the balance sheet analysis if the lead-lag study has been performed within the last five years.

Q. What period was used to perform the revenue lag analysis?

A. The revenue lag analysis was performed using revenue and expense data for the calendar year 2019.

Q. How were revenue lag days determined?

A. The revenue lag measures the number of days from the date service was rendered by the Companies until the date payment was received from customers and the funds deposited and available to the Companies. In the calculation, the revenue lag consists of four time spans: (1) meter reading lag, which is the time period from the midpoint of the service period to the meter read date; (2) billing lag, which is the period from when the meter is read to the date when the bill is invoiced; (3) collection lag, which is the period from when the bill is invoiced to when the customer payment is received;

[^24]and (4) bank lag, which is the period from when the customer payment is received to when the Companies have access to the funds. The collection lag was determined using the turnover approach, which calculates the collection lag days by dividing the average daily accounts receivable balance by the average daily revenues and passthrough items (viz., sales taxes, gross receipt taxes, and franchise fees). The turn-over method was used in KU-ODP's recent rate case filing in Virginia.
Q. Please summarize the components of the revenue lag for KU and LG\&E's electric and gas operations?
A. The revenue lags by component are summarized below (TABLE 7):

TABLE 7

Lag Component	Lag Days		
	KU	LG\&E-Elec	LG\&E-Gas
Meter Reading Lag	15.21	15.21	15.21
Billing Lag	4.20	4.29	4.28
Collection Lag	25.09	23.77	23.77
Bank Lag	1.00	1.00	1.00
Total Revenue Lag	45.50	44.27	44.26

Q. Do you have an exhibit showing the lead-lag days for each category of revenue and expense?
A. Yes. The lead-lag days used to determine cash working capital are shown on Exhibit WSS-39. As mentioned earlier, the revenue lags have been updated based on an analysis of billings for 2019. The expense leads reflect values that were determined from the lead-lag study submitted in Case Nos. 2018-00294 and 2018-00295.
Q. Does this conclude your testimony?

1 A. Yes, it does.

VERIFICATION

STATE OF NORTH CAROLINA

 COUNTY OF BUNCOMBE)
)
)

The undersigned, William Steven Seelye, being duly sworn, deposes and states that he is a Principal of The Prime Group, LLC that he has personal knowledge of the matters set forth in the foregoing testimony and exhibits, and the answers contained therein are true and correct to the best of his information, knowledge and belief.

Subscribed and sworn to before me, a Notary Public in and before said County and State, this $18^{\text {tr }}$ day of November 2020.

(SEAL)

Notary Public ID No. 201821300096
My Commission Expires:
F/ealwess

Exhibit WSS-1

Qualifications

WILLIAM STEVEN SEELYE

Summary of Qualifications

Provides consulting services to numerous investor-owned utilities, rural electric cooperatives, municipal utilities, and public service commissions regarding utility rate and regulatory filings, cost of service and wholesale and retail rate designs; and develops revenue requirements for utilities in general rate cases, including the preparation of analyses supporting pro-forma adjustments and the development of rate base. Mr. Seelye has performed or supervised the preparation of cost of service studies and rate design studies for over 150 electric, gas and water utilities.

Employment

Principal and Managing Partner
The Prime Group, LLC
(1996 to 2012) (2015-Present)
(Associate Member 2012-2015)

Provides consulting services in the areas of tariff development, regulatory analysis, revenue requirements, cost of service studies, rate design, fuel and procurement, depreciation studies, lead-lag studies, and mathematical modeling.

Assists utilities with developing strategic resource and marketing plans. Assist with resource planning and cost benefit analyses for generation investment projects. Performs economic analyses evaluating the costs and benefits of an electric generation projects; performs business practice audits for electric utilities, gas utilities, and independent transmission organizations, including audits of production cost modeling, fuel procurement practices and controls, and wholesale marketing procedures. Assists investor-owned utilities in the development of testimony regarding the prudence of power supply decisions and of investments in specific generation and distribution assets.

Provides utility clients assistance regarding regulatory policy and strategy; project management support for utilities involved in complex regulatory proceedings; process audits; state and federal regulatory filing development; cost of service development and support; the development of innovative rates to achieve strategic objectives; unbundling of rates and the development of menus
of rate alternatives for use with customers; performance-based rate development.

Prepared retail and wholesale rate schedules and filings submitted to the Federal Energy Regulatory Commission (FERC) and state regulatory commissions for numerous of electric and gas utilities. Performed cost of service or rate studies for over 150 utilities throughout North America. Prepared market power analyses in support of market-based rate filings submitted to the FERC for utilities and their marketing affiliates. Performed business practice audits for electric utilities, gas utilities, and independent transmission organizations (ISOs), including audits of production cost modeling, retail utility tariffs, retail utility billing practices, and ISO billing processes and procedures.

Taught advanced placement calculus, linear algebra, pre-calculus, college algebra and differential equations.

Held various positions in the rate department of LG\&E. In December 1990, promoted to Manager of promoted to the position of Manager of Rates and Regulatory Analysis. In May 1994, give additional responsibilities in the marketing area and promoted to Manager of Market Management and Rates.

Instructor in Mathematics
Walden School and Private Instruction (2012-2015)

Manager of Rates and Other Positions Louisville Gas \& Electric Co. (May 1979 to July 1996)

Education

Bachelor of Science Degree in Mathematics, University of Louisville, 1979
66 Hours of Graduate Level Course Work in Electrical and Industrial Engineering and Physics.

Associations

Member of the Society for Industrial and Applied Mathematics

Expert Witness Testimony

Alabama: Testified in Docket 28101 on behalf of Mobile Gas Service Corporation concerning rate design and pro-forma revenue adjustments.

Colorado: Testified in Consolidated Docket Nos. 01F-530E and 01A-531E on behalf of Intermountain Rural Electric Association in a territory dispute case.

Submitted expert report in Proceeding No. 14-CV-30031 before District Court, Prowers County, State of Colorado, on behalf of Arkansas River Power Authority in the City of Lamar et al v. Arkansas River Power Authority regarding power planning and operations.

Submitted expert report in Proceeding No. 19F-0315E before Public Utilities Commission of the State of Colorado, on behalf of San Luis Valley Rural Electric Cooperative in Anne Pace, et al. v. San Luis Valley Rural Electric Cooperative regarding demand charges for residential electric and distributed generation customers.

FERC: Submitted direct and rebuttal testimony in Docket No. EL02-25-000 et al. concerning Public Service of Colorado's fuel cost adjustment.

Submitted direct and responsive testimony in Docket No. ER05-522-001 concerning a rate filing by Bluegrass Generation Company, LLC to charge reactive power service to LG\&E Energy, LLC.

Submitted testimony in Docket Nos. ER07-1383-000 and ER08-05-000 concerning Duke Energy Shared Services, Inc.'s charges for reactive power service.

Submitted testimony in Docket No. ER08-1468-000 concerning changes to Vectren Energy's transmission formula rate.

Submitted testimony in Docket No. ER08-1588-000 concerning a generation formula rate for Kentucky Utilities Company.

Submitted testimony in Docket No. ER09-180-000 concerning changes to Vectren Energy's transmission formula rate.

Submitted testimony in Docket No. ER11-2127-000 concerning transmission rates proposed by Terra-Gen Dixie Valley, LLC.

Submitted testimony in Docket No. ER11-2779 on behalf of Southern Illinois Power Cooperative concerning wholesale distribution service charges proposed by Ameren Services Company.

Submitted testimony in Docket No. ER11-2786 on behalf of Norris Electric Cooperative concerning wholesale distribution service charges proposed by Ameren Services Company.

Florida: \quad Testified in Docket No. 981827 on behalf of Lee County Electric Cooperative, Inc. concerning Seminole Electric Cooperative Inc.'s wholesale rates and cost of service.

Illinois: Submitted direct, rebuttal, and surrebuttal testimony in Docket No. 01-0637 on behalf of Central Illinois Light Company ("CILCO") concerning the modification of interim supply service and the implementation of black start service in connection with providing unbundled electric service.

Indiana: Submitted direct testimony and testimony in support of a settlement agreement in Cause No. 42713 on behalf of Richmond Power \& Light regarding revenue requirements, class cost of service studies, fuel adjustment clause and rate design.

Submitted direct and rebuttal testimony in Cause No. 43111 on behalf of Vectren Energy in support of a transmission cost recovery adjustment.

Submitted direct testimony in Cause No. 43773 on behalf of Crawfordsville Electric Light \& Power regarding revenue requirements, class cost of service studies, fuel adjustment clause and rate design.

Submitted direct and cross answering testimony in Cause No. 45125 on behalf of the City of New Haven regarding Fort Wayne's revenue requirement, cost of service study and the apportionment of the water rate increase.

Submitted direct and cross answering testimony in Cause No. 45142 on behalf of the City of Crown Point regarding Indiana-American Water Company's cost of service study, apportionment of the revenue increase, interruptible service rates and transportation service rates.

Submitted direct and cross answering testimony in Cause No. 45235 on behalf of the City of South Bend regarding Indiana-Michigan Power Company's cost of service study, apportionment of the revenue increase and rate design.

Submitted direct and cross answering testimony in Cause No. 45285 on behalf of the City of South Bend regarding Indiana-Michigan Power Company's demand side management (DSM) plan.

Kansas: Submitted direct and rebuttal testimony in Docket No. 05-WSEE-981-RTS on behalf of Westar Energy, Inc. and Kansas Gas and Electric Company regarding transmission delivery revenue requirements, energy cost adjustment clauses, fuel normalization, and class cost of service studies.

Kentucky: Testified in Administrative Case No. 244 regarding rates for cogenerators and small power producers, Case No. 8924 regarding marginal cost of service, and in numerous 6 -month and 2 -year fuel adjustment clause proceedings.

Submitted direct and rebuttal testimony in Case No. 96-161 and Case No. 96-362 regarding Prestonsburg Utilities' rates.

Submitted direct and rebuttal testimony in Case No. 99-046 on behalf of Delta Natural Gas Company, Inc. concerning its rate stabilization plan.

Submitted direct and rebuttal testimony in Case No. 99-176 on behalf of Delta Natural Gas Company, Inc. concerning cost of service, rate design and expense adjustments in connection with Delta's rate case.

Submitted direct and rebuttal testimony in Case No. 2000-080, testified on behalf of Louisville Gas and Electric Company concerning revenue requirements, cost of service, rate design, and pro-forma adjustments to revenues and expenses.

Submitted rebuttal testimony in Case No. 2000-548 on behalf of Louisville Gas and Electric Company regarding the company's prepaid metering program.

Testified on behalf of Louisville Gas and Electric Company in Case No. 200200430 and on behalf of Kentucky Utilities Company in Case No. 2002-00429 regarding the calculation of merger savings.

Submitted direct and rebuttal testimony in Case No. 2003-00433 on behalf of Louisville Gas and Electric Company and in Case No. 2003-00434 on behalf of Kentucky Utilities Company regarding revenue requirements, pro-forma revenue, expense and plant adjustments, class cost of service studies, and rate design.

Submitted direct and rebuttal testimony in Case No. 2004-00067 on behalf of Delta Natural Gas Company regarding pro-forma adjustments, depreciation rates, class cost of service studies, and rate design.

Testified on behalf of Kentucky Utilities Company in Case No. 2006-00129 and on behalf of Louisville Gas and electric Company in Case No. 2006-00130 concerning methodologies for recovering environmental costs through base electric rates.

Testified on behalf of Delta Natural Gas Company in Case No. 2007-00089 concerning cost of service, temperature normalization, year-end normalization, depreciation expenses, allocation of the rate increase, and rate design.

Submitted testimony on behalf of Big Rivers Electric Corporation and E.ON U.S. LLC in Case No 2007-00455 and Case No. 2007-00460 regarding the design and implementation of a Fuel Adjustment Clause, Environmental Surcharge, Unwind Surcredit, Rebate Adjustment, and Member Rate Stability Mechanism for Big

Rivers Electric Corporation in connection with the unwind of a lease and purchase power transaction with E.ON U.S. LLC.

Submitted testimony in Case No. 2008-00251 on behalf of Kentucky Utilities Company and in Case No. 2008-00252 on behalf of Louisville Gas and Electric Company regarding pro-forma revenue and expense adjustments, electric and gas temperature normalization, jurisdictional separation, class cost of service studies, and rate design.

Submitted testimony in Case No. 2008-00409 on behalf of East Kentucky Power Cooperative, Inc., concerning revenue requirements, pro-forma adjustments, cost of service, and rate design.

Submitted testimony in Case No. 2009-00040 on behalf of Big Rivers Electric Corporation regarding revenue requirements and rate design.

Submitted testimony on behalf of Columbia Gas Company of Kentucky in Case No. 2009-00141 regarding the demand side management program costs and cost recovery mechanism.

Submitted testimony in Case No. 2009-00548 on behalf of Kentucky Utilities Company and in Case No. 2009-00549 on behalf of Louisville Gas and Electric Company regarding pro-forma revenue and expense adjustments, electric and gas temperature normalization, jurisdictional separation, class cost of service studies, and rate design.

Submitted testimony in Case No. 2010-00116 on behalf of Delta Natural Gas Company concerning cost of service, temperature normalization, year-end normalization, depreciation expenses, allocation of the rate increase, and rate design.

Submitted testimony in Case No. 2011-00036 on behalf of Big Rivers Electric Cooperative concerning cost of service, rate design, pro-forma TIER adjustments, temperature normalization, and support of MISO Attachment O.

Submitted testimony in Case No. 2016-00107 on behalf of Columbia Gas Company of Kentucky regarding a tariff application to continue its energy efficiency and conservation rider and programs.

Submitted testimony in Case No. 2016-00274 on behalf of Kentucky Utilities Company and Louisville Gas and Electric Company in support of community solar rates.

Submitted direct and rebuttal testimony in Case No. 2016-00370 on behalf of Kentucky Utilities Company and in Case No. 2016-00371 on behalf of Louisville

Gas and Electric Company regarding electric and gas class cost of service studies and proposed rates.

Submitted rebuttal testimony in Case No. 2018-00050 on behalf of South Kentucky Rural Electric Cooperative Corporation regarding the regulatory application of the filed rate doctrine and cost shifts to other electric cooperatives related to a proposed purchased power agreement.

Submitted testimony in Case No. 2018-00044 on behalf of Columbia Gas Company of Kentucky regarding an assessment of its energy efficiency and conservation rider and programs.

Submitted direct and rebuttal testimony in Case No. 2018-00294 on behalf of Kentucky Utilities Company and in Case No. 2018-00295 on behalf of Louisville Gas and Electric Company regarding electric and gas class cost of service studies, apportionment of the revenue increase, pilot school rates, demand ratchets, late payment charges, residential customer charges, excess facilities charges, LED lighting rates, and lead-lag studies.

Maryland Submitted direct testimony in PSC Case No. 9234 on behalf of Southern Maryland Electric Cooperative regarding a class cost of service study.

Nevada: Submitted direct and rebuttal testimony in Case No. 03-10001 on behalf of Nevada Power Company regarding cash working capital, depreciation adjustments, and other rate base adjustments.

Submitted direct and rebuttal testimony in Case No. 03-12002 on behalf of Sierra Pacific Power Company regarding cash working capital.

Submitted direct and rebuttal testimony in Case No. 05-10003 on behalf of Nevada Power Company regarding cash working capital for an electric general rate case.

Submitted direct and rebuttal testimony in Case No. 05-10005 on behalf of Sierra Pacific Power Company regarding cash working capital for a gas general rate case.

Submitted direct and rebuttal testimony in Case Nos. 06-11022 and 06-11023 on behalf of Nevada Power Company regarding cash working capital for a gas general rate case.

Submitted direct and rebuttal testimony in Case No. 07-12001 on behalf of Sierra Pacific Power Company regarding cash working capital for an electric general rate case.

Submitted direct testimony in Case No. Docket No. 08-12002 on behalf of Nevada Power Company regarding cash working capital for an electric general rate case.

Submitted direct testimony in Case No. Docket No. 10-06001 on behalf of Sierra Pacific Power Company regarding cash working capital for an electric general rate cases.

Submitted direct testimony in Case No. Docket No. 11-06006 on behalf of Nevada Power Company regarding cash working capital for an electric general rate case.

New Mexico Submitted testimony in support of filing of Advice Notice No. 60 on behalf of Kit Carson Electric Cooperative, Inc.

Submitted direct testimony in Case No. 15-00375-UT on behalf of Kit Carson Electric Cooperative, Inc. regarding revenue requirements, the need for a rate increase, class cost of service study, apportionment of the revenue increase to the classes of service, and rate design.

Submitted testimony in Advice Notices in Case No. 15-00087-UT on behalf of Jemez Mountain Electric Cooperative in support of tribal right of way cost recovery surcharge mechanisms.

Submitted direct testimony in Case. No. 16-00065-UT on behalf of Kit Carson Electric Cooperative in support of an application for continuation of its fuel and purchased power cost adjustment clause.

Submitted direct testimony, rebuttal testimony, and testimony in support of an uncontested comprehensive stipulation in Case No. 19-00170-UT on behalf of the New Mexico Public Regulation Commission Utility Division Staff regarding revenue requirements, class cost of service, allocation of the revenue increase, and rate design in a Southwest Power Company rate case.

Nova Scotia: Testified on behalf of Nova Scotia Power Company in NSUARB - NSPI - P-887 regarding the development and implementation of a fuel adjustment mechanism.

Submitted testimony in NSUARB - NSPI - P-884 regarding Nova Scotia Power Company's application to approve a demand-side management plan and cost recovery mechanism.

Submitted testimony in NSUARB - NSPI - P-888 regarding a general rate application filed by Nova Scotia Power Company.

Submitted testimony on behalf of Nova Scotia Power Company in the matter of the approval of backup, top-up and spill service for use in the Wholesale Open Access Market in Nova Scotia.

Submitted testimony in NSUARB - NSPI - P-884 (2) on behalf of Nova Scotia Power Company's regarding a demand-side management cost recovery mechanism.

Virginia: Submitted testimony in Case No. PUE-2008-00076 on behalf of Northern Neck Electric Cooperative regarding revenue requirements, class cost of service, jurisdictional separation and an excess facilities charge rider.

Submitted testimony in Case No. PUE-2009-00029 on behalf of Old Dominion Power Company regarding class cost of service, jurisdictional separation, allocation of the revenue increase, general rate design, time of use rates, and excess facilities charge rider.

Submitted testimony in Case No. PUE-2009-00065 on behalf of Craig-Botetourt Electric Cooperative regarding revenue requirements, class cost of service, jurisdictional separation and an excess facilities charge rider.

Submitted testimony in Case No. PUE-2011-00013 on behalf of Old Dominion Power Company regarding class cost of service, jurisdictional separation, allocation of the revenue increase, and rate design.

Exhibit WSS-2

Cost Components for Residential Service Rate RS

Kentucky Utilities Company

Unit Cost of Service Based on the Cost of Service Study
For the 12 Months Ended June 30, 2022
Rate RS

Description	Amount		Production				TransmissionDemand-Related		Distribution				Customer Service Expenses Customer-Related		Total	
			Demand-Related		Energy-Related				Demand-Related		Customer-Related					
(1) Rate Base	\$	2,457,262,896	\$	1,219,918,258	\$	27,493,896	\$	377,164,232	\$	304,728,690	\$	521,584,458	\$	6,373,362	\$	2,457,262,896
(2) Rate Base Adjustments	\$	2,47,26,		-219,98,		-		77,164,		-		-		-	\$	
(3) Rate Base as Adjusted	\$	2,457,262,896	\$	1,219,918,258	\$	27,493,896	\$	377,164,232	\$	304,728,690	\$	521,584,458	\$	6,373,362	\$	2,457,262,896
(4) Rate of Return		4.74\%		4.74\%		4.74\%		4.74\%		4.74\%		4.74\%		4.74\%		
(5) Return	\$	116,464,860	\$	57,819,458	\$	1,303,105	\$	17,876,142	\$	14,442,974	\$	24,721,108	\$	302,073	\$	116,464,860
(6) Interest Expenses	\$	51,506,086	\$	25,570,408	\$	576,293	\$	7,905,647	\$	6,387,344	\$	10,932,804	\$	133,590	\$	51,506,086
(7) Net Income	\$	64,958,773	\$	32,249,050	\$	726,813	\$	9,970,494	\$	8,055,630	\$	13,788,304	\$	168,483	\$	64,958,773
(8) Income Taxes	\$	20,618,122	\$	10,235,951	\$	230,693	\$	3,164,667	\$	2,556,883	\$	4,376,452	\$	53,477	\$	20,618,122
(9) Operation and Maintenance Expenses	\$	369,164,547	\$	54,624,948	\$	191,795,621	\$	25,536,905		17,160,390	\$	37,627,884	\$	42,418,799	\$	369,164,547
(10) Depreciation Expenses	\$	164,107,492	s	118,364,937	\$	19195,62	\$	15,509,606	s	11,180,449	\$	19,052,501	\$	4,418,7\%	\$	164,107,492
(11) Other Taxes	\$	23,280,695	\$	12,676,971	\$	-	\$	3,123,044	\$	2,765,995	\$	4,714,686	\$	-	\$	23,280,695
(12) Curtailable Service Credit	\$	7,647,274	\$	7,647,274											\$	$7,647,274$
(13) Expense Adjustments - Prod. Demand	\$,	\$		\$	-	\$	-	\$	-	\$	-	\$	-	\$	
(14) Expense Adjustments - Energy	\$	-	S	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
(15) Expense Adjustments - Trans. Demand	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
(16) Expense Adjustments - Distribution	\$	-	\$	-	\$		\$		\$	-	\$		\$	1	\$	--
(17) Expense Adjustments - Other	\$	352,093	\$	174,798	\$	3,940	\$	54,043	\$	43,664	\$	74,736	\$	913	\$	352,093
(18) Revenue Adjustments	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
(19) Expense Adjustments - Total	\$	352,093	\$	174,798	\$	3,940	\$	54,043	\$	43,664	\$	74,736	\$	913	\$	352,093
(20) Total Cost of Service	\$	701,635,083	\$	261,544,337	\$	193,333,359	\$	65,264,407	\$	48,150,353	\$	90,567,366	\$	42,775,263	\$	701,635,083
(21) Less: Misc Revenue - Prod Demand	\$	$(583,332)$	\$	$(583,332)$	\$	-	\$	-	\$	-	\$	-	\$	-	\$	$(583,332)$
(22) Less: Misc Revenue - Energy	\$	$(3,060,544)$	\$	(583,32)	\$	(3,060,544)	\$	(11,743,	\$	-	\$	-	S	-	\$	($3,060,544)$
(23) Less: Misc Revenue - Transmission	S	(11,743,851)	\$	-		(72,	\$	(11,743,851)	\$	-	\$,	\$,	\$	$(11,743,851)$
(24) Less: Misc Revenue - Other	\$	$(6,488,247)$	\$	$(3,221,117)$	\$	$(72,596)$	\$	(995,878)	\$	$(804,617)$	\$	(1,377,211)	\$	$(16,828)$	\$	$(6,488,247)$
(25) Less: Misc Revenue - Total	\$	$(21,875,974)$	\$	$(3,804,449)$	\$	(3,133,140)	\$	(12,739,729)	\$	(804,617)	\$	(1,377,211)	\$	$(16,828)$	\$	$(21,875,974)$
(26) Net Cost of Service	\$	679,759,110	\$	257,739,888	\$	190,200,219	\$	52,524,678	\$	47,345,737	\$	89,190,155	\$	42,758,434	\$	679,759,110
(27) Billing Units				5,943,619,831		5,943,619,831		5,943,619,831		5,943,619,831		5,308,105		5,308,105		
(28) Unit Costs				0.043364127		0.032000738		0.008837153		0.007965808	\$	0.55	\$	0.26	S	0.82
													Customer Cost Infrastructure Energy Cost Variable Energy Cost		s	0.82
															\$	0.06017
															\$	0.03200

Louisville Gas and Electric Company

Unit Cost of Service Based on the Cost of Service Study
For the 12 Months Ended June 30, 2022

Rate RS

Description		Amount		Production				TransmissionDemand-Related		Distribution				Customer Service Expenses Customer-Related		Total					
		Demand-Related	Energy-Related		Demand-Related		Customer-Related														
(1)	Rate Base			\$	1,830,420,621	\$	957,680,114			\$	28,168,165	\$	164,114,791	\$	247,962,447	\$	428,194,391	\$	4,300,712	\$	1,830,420,621
	Rate Base Adjustments	\$	-830,	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	1,830, -				
(3)	Rate Base as Adjusted	\$	1,830,420,621	\$	957,680,114	\$	28,168,165	\$	164,114,791	\$	247,962,447	\$	428,194,391	\$	4,300,712	\$	1,830,420,621				
	Rate of Return		2.78\%		2.78\%		2.78\%		2.78\%		2.78\%		2.78\%		2.78\%						
(5)	Return	\$	50,858,000	\$	26,609,018	\$	782,649	\$	4,559,908	\$	6,889,604	\$	11,897,326	\$	119,495	\$	50,858,000				
(6)	Interest Expenses	\$	40,093,733	\$	20,977,130	\$	616,999	\$	3,594,788	\$	5,431,396	\$	9,379,217	\$	94,203	\$	40,093,733				
(7)	Net Income	\$	10,764,267	\$	5,631,888	\$	165,650	\$	965,120	\$	1,458,208	\$	2,518,109	\$	25,291	\$	10,764,267				
(8)	Income Taxes	\$	10,344,723	\$	5,412,382	\$	159,194	\$	927,504	\$	1,401,373	\$	2,419,964	\$	24,306	\$	10,344,723				
(9)	Operation and Maintenance Expenses	\$	283,536,077	\$	53,383,070	\$	142,877,811	\$	16,306,536	\$	14,564,398	\$	35,738,396	\$	20,665,865	\$	283,536,077				
(10)	Depreciation Expenses		141,321,587		101,457,547		-		6,895,148		12,142,048		20,826,845		-	\$	141,321,587				
(11)	Other Taxes		22,018,306		12,011,678		-		1,886,754		2,989,992		5,129,882		-	\$	22,018,306				
(12)	Curtailable Service Rider		1,177,704		616,178		18,124		105,593		159,541		275,503		2,767	\$	1,177,704				
(13)	Expense Adjustments - Prod. Demand		-		-		-		-		-		-		-	\$	-				
(14)	Expense Adjustments - Energy		-		-		-		-		-		-		-	\$	-				
(15)	Expense Adjustments - Trans. Demand		-		-		-		-		-		-		-	\$	-				
(16)	Expense Adjustments - Distribution		-		-		-		-		-		-		-	\$	-				
(17)	Expense Adjustments - Other		203,392		106,415		3,130		18,236		27,553		47,580		478	\$	203,392				
(18)	Revenue Adjustments		203,32		106,		,		18,236		27,5s3		, 8			\$	203,32				
(19)	Proforma Adjustments - Total	\$	203,392	\$	106,415	\$	3,130	\$	18,236	\$	27,553	\$	47,580	\$	478	\$	203,392				
(20)	Total Cost of Service	\$	509,459,788	\$	199,596,287	\$	143,840,907	\$	30,699,678	\$	38,174,510	\$	76,335,495	\$	20,812,911	\$	509,459,788				
(21)	Less: Misc Revenue - Prod Demand	\$	(317,551)	\$	(317,551)											\$	$(317,551)$				
(22)	Less: Misc Revenue - Energy		$(12,366,967)$		-		$(12,366,967)$		-		-		-		-	\$	(12,366,967)				
(23)	Less: Misc Revenue - Transmission		$(5,722,158)$,		-		$(5,722,158)$		-		-		-	\$	$(5,722,158)$				
(24)	Less: Misc Revenue - Other		$(5,984,316)$		$(3,131,007)$		$(92,092)$		$(536,551)$		$(810,680)$		$(1,399,924)$		$(14,061)$	\$	$(5,984,316)$				
(25)	Less: Misc Revenue - Total		$(24,390,993)$		(3,448,559)		$(12,459,059)$		$(6,258,710)$		$(810,680)$		(1,399,924)		$(14,061)$	\$	$(24,390,993)$				
(26)	Net Cost of Service	\$	485,068,795	\$	196,147,729	\$	131,381,848	\$	24,440,968	\$	37,363,830	\$	74,935,571	\$	20,798,850	\$	485,068,795				
(27)	Billing Units				4,049,109,440		4,049, 109,440		4,049,109,440		4,049,109,440		4,530,684		4,530,684						
(28)	Unit Costs			\$	0.04844	\$	0.03245	\$	0.00604	\$	0.00923	\$	0.54	\$	0.15	\$	0.69				
															omer Cost	\$	0.69				
															structure Energy Cost	\$	0.06371				
														Var	able Energy Cost	\$	0.03245				

Exhibit WSS-3

Cost Support for
General Time-of-Date
Service Rates

Kentucky Utilities Company
Louisville Gas and Electric Company
Cost Support of GSTOD

Infrastructure Cost	Kentucky Utilities Company						Louisville Gas and Electric Company			
		Costs	kWH		Unit Cost		Costs	kWH		Unit Cost
Production Peak	\$	104,295,799.93	334,720,632	\$	0.31159	\$	75,472,056	238,769,104	\$	0.31609
Transmission	\$	54,584,113.90	1,678,149,896	\$	0.03253	\$	43,589,923	1,197,088,880	\$	0.03641
Distribution	\$	39,953,463.73	1,678,149,896	\$	0.02381	\$	39,917,171	1,197,088,880	\$	0.03335

Total Infrastructure Cost per kWh
Peak
0.10725
0.31159
0.05633

0.09216
0.26776
0.04841
0.13280
0.31609
0.06976

GTOD-E
Proposed GS Infrastructure Charge
0.09216
0.26776

Peak
0.21457

Off-Peak

Proposed Residential Infrastructure Charge
0.06750

Proposed General Service Infrastructure Charge
\$ 0.06750

RTOD
Peak
Base

$\$$	10.37	$\$$	9.43
$\$$	4.01	$\$$	4.31
$\$$	0.02683	$\$$	0.02095

GTOD-D
Peak
Base

$\$$	14.16
$\$$	5.47
$\$$	0.03663

Infrastructure Energy
0.03663

$\$$	0.07237
$\$$	0.09015
$\$$	9.43
$\$$	4.31
$\$$	0.02095
$\$$	11.75
$\$$	5.37
$\$$	0.02610

Exhibit WSS-4

Cost Support for LED Fixture and Underground Pole Charges

Kentucky Utilities Company

Cost Support for LED Fixtures and Underground Poles

Louisville Gas \& Electric Company

Cost Support for LED Fixtures and Underground Poles

Exhibit WSS-5

Cost Support for

LED Conversion Fee

Kentucky Utilities Company

Determination of Conversion Fee

Number of Fixtures

2020 Net Book Value

Estimated NBV for Poles
Estimated NBV for Fixtures
NBV per Fixture

5 Year Carrying Charge Rate

Overall Rate of Return	7.206%
Depreciation	20.000%
Income Taxes	1.770%
Property Taxes	1.511%
Carrying Charge Rate	30.487%

Annual Conversion Fee \$ 60.11

Monthly Conversion Fee $\quad 5.01$

Salvage Portion of Conversion Fee	$\$$	3.29
Revenue Portion of Conversion Fee	$\$$	1.72

Louisville Gas \& Electric Company

Determination of Conversion Fee

Number of Fixtures	88,567		
2020 Net Book Value		\$	73,065,258
Estimated NBV for Poles	66.39\%	\$	48,506,556
Estimated NBV for Fixtures		\$	24,558,702
NBV per Fixture		\$	277.29
5 Year Carrying Charge Rate			
Overall Rate of Return			7.165\%
Depreciation			20.000\%
Income Taxes			1.768\%
Property Taxes			1.718\%
Carrying Charge Rate			30.651\%
Annual Conversion Fee		\$	84.99
Monthly Conversion Fee		\$	7.08
Salvage Portion of Conversion Fee		\$	4.62
Revenue Portion of Conversion Fee		\$	2.46

Exhibit WSS-6

Westar's Residential
Distributed Generation Rate

(Name of Issuing Utility)	Replacing Schedule \quad RS-DG	
EVERGY KANSAS CENTRAL RATE AREA		
(Territory to which schedule is applicable)	which was filed \quad September 28, 2018	

RESIDENTIAL STANDARD DISTRIBUTED GENERATION

AVAILABLE

Electric Service is available under this rate schedule at points on the Company's existing distribution system to customers using electric service for residential purposes. Any customer-generator operating or adding generation under an interconnection agreement connecting to Evergy Kansas Central's distribution system after October 1, 2018 must take service under this rate schedule.

APPLICABLE

Applicable to residential customers that have dwelling unit(s) each having separate kitchen facilities, sleeping facilities, living facilities and permanent provisions for sanitation. This rate schedule is restricted to residential electric service used principally for domestic purposes in customer's household, home, detached garage on the same premise as customer's home, or place of dwelling for the maintenance or improvement of customer's quality of life. Service to customers in rural areas through a single meter under this schedule may also use electric service in farm buildings for ordinary farm use providing that such buildings are adjacent to the customer's dwelling unit. However, this schedule is not applicable for crop irrigation, commercial dairies, hatcheries, feed lots, feed mills or any other commercial enterprise. This schedule is not applicable to backup, breakdown, standby, supplemental, short term, resale or shared electric service.

CHARACTER OF SERVICE

Alternating current, 60 hertz, single phase, at nominal voltages of 120 or $120 / 240$ volts.

Darrin Ives, Vice President
\qquad
THE STATE CORPORATION COMMISSION OF KANSAS
EVERGY KANSAS CENTRAL, INC. \& EVERGY KANSAS SOUTH, INC., d/b/a EVERGY KANSAS CENTRAL SCHEDULE _ RS-DG

(Name of Issuing Utility)		
EVERGY KANSAS CENTRAL RATE AREA		
(Territory to which schedule is applicable)	which was filed __ Septembe	2018
No supplement or separate understanding shall modify the tariff as shown hereon	Sheet 2 of 4 She	
RESIDENTIAL STANDARD DISTRIBUTED GENERATION		
ELECTRIC SERVICE		

NET MONTHLY BILL

BASIC SERVICE FEE
ENERGY CHARGE
DEMAND CHARGE
$\$ 14.50$
4.5840¢ per kWh

Winter Period - Demand set in the billing months of October through May. $\$ 3.00$ per kW

Summer Period - Demand set in the billing months of June through September. $\$ 9.00$ per kW

Plus all applicable adjustments and surcharges.

MINIMUM MONTHLY BILL

The Basic Service Fee, plus the minimum specified in the Electric Service Agreement, plus all applicable adjustments and surcharges.

BILLING DEMAND

Customer's average kilowatt load during the 60-minute period of maximum use that occurs in the demand billing period during the month.

DETERMINATION OF PEAK BILLING PERIOD

For purposes of this rate schedule, the demand billing period shall be daily the hours of 2:00 pm through 7:00 pm Central Time, except for weekends, New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, and Christmas Day.

19-WSEE-474-TAR
\qquad
THE STATE CORPORATION COMMISSION OF KANSAS
EVERGY KANSAS CENTRAL, INC. \& EVERGY KANSAS SOUTH, INC., d/b/a EVERGY KANSAS CENTRAL SCHEDULE _ RS-DG
(Name of Issuing Utility)

(Name of Issuing Utility)	Replacing Schedule \quad RS-DG	
EVERGY KANSAS CENTRAL RATE AREA		Sheet 3
(Territory to which schedule is applicable)	which was filed \quad September 28, 2018	

RESIDENTIAL STANDARD DISTRIBUTED GENERATION

ADJUSTMENTS AND SURCHARGES

The rates hereunder are subject to adjustment as provided in the following schedules:

1. Retail Energy Cost Adjustment
2. Property Tax Surcharge
3. Transmission Delivery Charge
4. Environmental Cost Recovery Rider
5. Renewable Energy Program Rider
6. Energy Efficiency Rider
7. Tax Adjustment

Plus all applicable adjustments and surcharges.

DEFINITIONS AND CONDITIONS

1. The initial term of service under this rate schedule shall be one year. Company reserves the right to require the customer to execute an Electric Service Agreement with an additional charge, or special minimum and or a longer initial term when additional facilities are required to serve such customer.
2. A Customer-Generator is the owner or operator of a facility which:
a. Is located on premises owned, operated, leased, or otherwise controlled by the Customer-Generator and provides power to a facility located on that same premise;
b. Is interconnected and operates in parallel phase and synchronization with the Company facilities;
c. Is intended primarily to offset part or all of the Customer-Generator's own electrical energy requirements; and
d. Contains a mechanism, approved by the Company that automatically disables the unit and interrupts the flow of electricity back onto the Company's electric lines in the event that service to the Customer-Generator is interrupted.

19-WSEE-474-TAR
\qquad
THE STATE CORPORATION COMMISSION OF KANSAS

3. Individual motor units shall not exceed five horsepower, unless otherwise agreed upon prior to installation.
4. Service under this rate schedule is subject to Company's General Terms and Conditions presently on file with the State Corporation Commission of Kansas and any modification subsequently approved.
5. All provisions of this rate schedule are subject to changes made by order of the regulatory authority having jurisdiction.

Exhibit WSS-7

Kansas Corporation Commission's
Order Regarding Distributed Generation

BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS

Before Commissioners: Pat Apple, Chairman
Shari Feist Albrecht
Jay Scott Emler
In the Matter of the General Investigation)
to Examine Issues Surrounding Rate Design) Docket No. 16-GIME-403-GIE for Distributed Generation Customers.

FINAL ORDER

This matter comes before the State Corporation Commission of the State of Kansas (Commission) for consideration and decision. Having reviewed the pleadings and record, the Commission makes the following findings:

I. Background

1. On July 12, 2016, the Commission issued an Order Opening General Investigation to examine various issues surrounding rate structure for distributed generation (DG) customers. ${ }^{1}$ The Commission stated its intent to have a thorough and thoughtful discussion of the appropriate rate structure for DG including the quantifiable costs and quantifiable benefits of DG. ${ }^{2}$ The Commission named all Kansas electric public utilities, subject to the Commission's jurisdiction over retail rates, ${ }^{3}$ as parties to the docket and also granted parties an opportunity to provide evidence showing that costs and benefits can be quantified and allocated in a manner which will result in just and reasonable rates for DG customers. ${ }^{4}$

[^25]2. On July 14, 2017, the Commission issued orders granting intervention to Cromwell Environmental, Inc. (Cromwell), the Citizens Utility Ratepayer Board (CURB), The Alliance for Solar Choice, Sunflower Electric Power Corporation (Sunflower) and Mid-Kansas Electric Company (Mid-Kansas), and Brightergy, LLC (Brightergy).
3. On September 1, 2016, the Commission issued orders granting intervention to the Kansas Electric Cooperatives, Inc. (KEC), the Climate and Energy Project (CEP), and IBEW Local Union No. 304 (IBEW).
4. On September 29, 2016, the Commission issued an order granting intervention to United Wind, Inc. (United Wind).
5. On February 16, 2017, the Commission issued an Order Setting Procedural

Schedule. The order set a schedule for the parties to file comments, engage in roundtable discussions, and participate in an evidentiary hearing. ${ }^{5}$
6. On March 17, 2017, Midwest Energy, ${ }^{6}$ Southern Pioneer, ${ }^{7}$ which was joined by KEC, Westar, ${ }^{8}$ Brightergy, ${ }^{9}$ CEP, ${ }^{10}$ KCP\&L, ${ }^{11}$ United Wind, ${ }^{12}$ Cromwell, ${ }^{13}$ Sunflower and Mid-

[^26]Kansas, ${ }^{14}$ CURB, ${ }^{15}$ Empire, ${ }^{16}$ and Commission Utilities Staff ${ }^{17}$ (Staff) filed their initial Comments.
7. On May 5, 2017, Southern Pioneer, ${ }^{18}$ Westar, ${ }^{19}$ Midwest, ${ }^{20}$ Staff, ${ }^{21}$ Sunflower and Mid-Kansas, ${ }^{22}$ KCP\&L, ${ }^{23}$ Empire, ${ }^{24}$ Brightergy, ${ }^{25}$ Cromwell, ${ }^{26}$ IBEW 304, ${ }^{27}$ and CEP ${ }^{28}$ filed their reply comments.
8. On June 16, 2017, Staff, Westar, KCP\&L, Sunflower, Mid-Kansas, Southern Pioneer, KEC, Midwest Energy, Empire, Brightergy, United Wind, and IBEW 304 (Joint Movants) filed a Motion to Approve Non-Unanimous Stipulation and Agreement (S\&A).
9. Also on June 16, 2017, the Parties filed a List of Contested Issues.
10. On June 20, 2017, Westar, ${ }^{29} \mathrm{KCP} \& \mathrm{~L},{ }^{30}$ Southern Pioneer and KEC, ${ }^{31}$ and Staff ${ }^{32}$
filed testimony in support of the Non-Unanimous Stipulation and Agreement.

[^27]11. On June 20, 2017, CURB, ${ }^{33}$ Cromwell, ${ }^{34}$ and CEP, ${ }^{35}$ (collectively the Opposing Parties) filed testimony in opposition to the Non-Unanimous Stipulation and Agreement.

II. Legal Standard

12. Every public utility in Kansas is required to provide reasonably efficient and sufficient service and establish just and reasonable rates. ${ }^{36}$ Just and reasonable rates are those that fall within a "zone of reasonableness," which balances the interests of present and future ratepayers, and the public interest. ${ }^{37}$ The Kansas Supreme Court has recognized that "the touchstone of public utility law is the rule that one class of consumers shall not be burdened with costs created by another class. ${ }^{.338}$ The Commission may in addition to cost-causation, consider matters of public policy, such as gradualism to minimize rate shock, revenue stability for the company, economic development, and energy efficiency. ${ }^{39}$ Both federal and state courts have been clear that rates must be based on costs and supported by substantial competent evidence. ${ }^{40}$ Substantial competent evidence is that which possesses something of substance and relevant consequence, and which furnishes a substantial basis of fact from which the issues can

[^28]reasonably be resolved. ${ }^{41}$ A decision of the Commission is unsupported by substantial competent evidence "only when the evidence shows the [Commission's] determination 'is so wide of the mark as to be outside the realm of fair debate. ${ }^{32}$ The Kansas Supreme Court has also stated that the Commission "is not obligated to render its finding of fact in minute detail ... [h]owever, we require its findings to be specific enough to allow judicial review of the reasonableness of the order. ${ }^{43}$
13. The law generally favors the compromise and settlement of disputes. ${ }^{44}$ However, the Commission must make an independent finding that the settlement is supported by substantial competent evidence in the record as a whole, that the settlement will establish just and reasonable rates, and the settlement is in the public interest. ${ }^{45}$
14. The Commission has established a five-part test to determine the reasonableness of proposed settlement agreements. The five parts are rooted in the Commission's organic statutes, ${ }^{46}$ the Kansas Administrative Procedure Act, ${ }^{47}$ and the Kansas Act for Judicial Review and Civil Enforcement of Agency Actions. ${ }^{48}$ The five parts are:
a. Whether there was an opportunity for the opposing party to be heard on their reasons for opposition to the stipulation and agreement;
b. whether the stipulation and agreement is supported by substantial competent evidence;

[^29]c. whether the stipulation and agreement conforms with applicable law;
d. whether the stipulation and agreement results in just and reasonable rates; e. whether the results of the stipulation and agreement are in the public interest, including the interest of the customers represented by the party not consenting to the agreement. ${ }^{49}$

III. Findings and Conclusions

15. The Commission finds the intent and purpose of this general investigation has shifted slightly from when it was first opened. Staff initially stated the goal of this generic docket was to determine the appropriate rate structure for DG customers by evaluating the costs and benefits of DG, as well as by examining potential rate design alternatives for DG customers. ${ }^{50}$ Though Staff recommended the Commission not change current rates through this proceeding, Staff did recommend the Commission make its findings in this docket binding, with specific tariff changes to be made in utility-specific docket filings. ${ }^{51}$ However, the testimony in the evidentiary hearing suggested the parties were less interested in binding action by the Commission and more interested in guidance from the Commission regarding the appropriate direction of DG rate design. ${ }^{52}$ This position was later repeated during briefing. ${ }^{53}$

[^30]16. With this request for guidance in mind, the Commission reviews the $\mathrm{S} \& \mathrm{~A}$ utilizing the Commission's five-part question analysis of non-unanimous settlement agreements.

Whether there was an opportunity for the opposing party to be heard on their reasons for opposition to the stipulation and agreement?
17. The Commission finds the Opposing Parties each filed testimony in opposition to the $\mathrm{S} \& \mathrm{~A}^{54}$ and fully participated during the evidentiary hearing, including the cross-examination of the witnesses who testified in support of the S\&A. The Commission finds therefore the Opposing Parties were granted an opportunity for their reasons for opposition to the S\&A to be heard.

Whether the stipulation and agreement is supported by substantial competent evidence?
18. The Commission finds the $S \& A$ is specifically supported by the testimony of five witnesses through pre-filed supporting testimony, ${ }^{55}$ live testimony at the evidentiary hearing, and the sworn pre-filed comments of the supporting parties. ${ }^{56}$ Therefore, the Commission finds there to be sufficient evidence from which to make a decision. ${ }^{57}$
19. The $\mathrm{S} \& \mathrm{~A}$ requests the Commission adopt nine substantive findings, which will be addressed below.

[^31]20. First, the Commission finds DG customers should be uniquely identified within the ratemaking process because of their potentially significant different usage characteristics. ${ }^{58}$ The Commission finds the unique identification of DG customers within a class or sub-class is the key to properly recognizing the cost and quantifiable benefits of DG. ${ }^{59}$ Utilities may create a separate residential class or sub-class for DG customers with their own rate design, which appropriately recovers the fixed costs of providing service to residential private DG customers, or a utility may continue to serve residential private DG customers within an existing residential rate class if the utility determines there are too few DG customers to justify a separate residential private DG class or sub-class or determines other justification exists to retain those customers in the existing rate class. A separate rate class for DG customers is not meant to punish those customers, rather such a class would serve to provide clarity for both utilities and customers.
21. Specific to Westar, the Commission finds Westar's Distributed Generation Residential Rate Schedule implemented in Westar's last rate case shall remain in place and effective for all residential customers installing distributed generation on or after October 28, 2015, and shall be treated as a separate class for purposes of future class cost of service studies and ratemaking generally.
22. Second, the Commission finds the current two-part residential rate design is problematic for utilities and residential private DG customers because DG customers use the

[^32]electric grid as a backup system resulting in their consuming less energy than non-DG customers, which results in DG customers not paying the same proportion of fixed costs as nonDG customers. ${ }^{60}$ The Commission finds DG customers are thus being subsidized by non-DG customers. ${ }^{61}$
23. Third, the Commission finds the following rate design options are appropriate for residential private DG customers, to allow utilities to better recover the costs of providing service to that class or sub-class of customers:
a. A cost of service based three-part rate consisting of a customer charge, demand charge, and energy charge; ${ }^{62}$
b. A grid charge based upon either the DG output or nameplate rating; ${ }^{63}$ or
c. A cost of service-based customer charge that is tiered based upon a customer's capacity requirements. ${ }^{64}$

The Commission finds the above list is not meant to preclude a utility from proposing other appropriate rate designs within that individual utility's rate case proceeding, but rather recognizes that each utility might have different conditions and different needs. ${ }^{65}$ Thus, the Commission finds the $\mathrm{S} \& A$ allows flexibility for a variety of alternatives. ${ }^{66}$
24. The Commission's finding that the above rate designs are appropriate does not serve as a predetermination that the above rate designs will result in just and reasonable rates.

[^33]Rather, based upon the testimony on the record, the Commission interprets the $\mathrm{S} \& \mathrm{~A}$ as requiring the sponsoring utility of a new DG rate design as having the burden to show that any proposed rate design will result in non-discriminatory, just and reasonable rates. ${ }^{67}$
25. Fourth, the Commission finds a customer education program must be implemented whenever new residential private DG rate structures are ordered, and that program should be completed as soon as practical after the Commission approves a new rate design. ${ }^{68}$
26. Fifth, the Commission finds rates for private residential DG customers should be cost-based and any unquantifiable value of resource approach should not be considered when setting rates. This is because cost-based rates are a fundamental attribute of good rate design as they allow the Commission to clearly identify quantifiable costs, which ensures rates for all customers are equitable while encouraging efficient use of resources and minimization of unnecessary cross-subsidization between customers. ${ }^{69}$ This finding is consistent with the Commission's stated preference at the initiation of this investigation. ${ }^{70}$ The Commission finds a class cost of service study provides sufficient support for design of a residential private DG tariff and no further study is necessary for the purpose of this docket because the class cost of service study takes into consideration benefits in the form of avoided costs. ${ }^{71}$ However, this finding does not preclude any party from sponsoring any study it believes necessary to provide an evidentiary basis for its position in a general rate case. As in this docket, any study submitted should include only quantifiable market-based costs and benefits to the utility.

[^34]27. Sixth, the Commission finds that a value of resource study (i.e. cost-benefit analysis) is not required by the Commission at this time because, as testified by Staff, such studies have limited value because they return widely varying results and unnecessarily duplicate information already part of utility-specific class cost of service studies. ${ }^{72}$ However, as indicated above, nothing herein precludes any party from developing any study it believes to be helpful to the Commission in establishing just and reasonable rates.
28. Seventh, the Commission finds DG rate design policy is best determined in this docket in order to provide certainty to all parties for the benefit of the orderly development of the private DG market in Kansas. ${ }^{73}$ Without a determination by this Commission as to what an appropriate DG rate structure is, future rate design proposals will be undermined by the question of whether that particular rate design proposal is appropriate. ${ }^{74}$ However, the Commission finds electric utilities that do not currently have DG tariffs shall have the option to propose DG tariffs consistent with the principles established in this general investigation in subsequent general rate case filings for approval by the Commission.
29. Eight, the Commission finds any DG-specific rate design implemented subsequent to this proceeding to serve residential private DG customers would apply to those customers adding DG systems on or after the effective date of those tariffs. Customers with distributed DG systems implemented and operating prior to that date and served by other rate designs will be allowed to remain on those preexisting rates until January 1, 2030, to the extent permitted by Kansas law. On and after January 1, 2030, all distributed generation customers will be subject to the then current residential DG rate design. The Commission further finds this S\&A

[^35]term to be in the public interest because the term sets clear timeframes for implementation of any new DG structure while providing an important grandfathering period to provide a transition to the new rates, while protecting customers served under the old designs from unanticipated changes. ${ }^{75}$ Likewise, the future closing date of January 1, 2030, is appropriate because it is the date set by statute when methods used to compensate excess generation under net meeting are unified under a single method. ${ }^{76}$
30. Specific to Westar, the Commission finds the settlement approved by the Commission in Westar's last general rate case regarding the creation of the "Residential Standard Distributed Generation" tariff remains in effect and customers who added DG on or after October 28, 2015, will be subject to the rate design change that occurs in future rate case dockets based on the policy established in this docket. The Commission finds this approach is appropriate because Westar's customers on its Residential Standard Distribution Generation tariff have received notice in Docket No. 15-WSEE-115-RTS and through Westar's outreach efforts. ${ }^{77}$
31. Ninth, the Commission finds this $S \& A$ provides guidance to the cooperatives that have elected to be self-regulated pursuant to K.S.A. 66-104d, but such self-regulated cooperatives shall not be bound by the $S \& A$. The Commission finds such non-binding guidance to be in the public interest because it acknowledges that the cooperatives regulatory structure is different from the other public utilities subject to the $\mathrm{S} \& A$, while identifying how the $\mathrm{S} \& A$ impacts them. ${ }^{78}$

[^36]Whether the stipulation and agreement conforms with applicable law?
32. Because of the rationale laid out below in paragraphs 34-37 the Commission concludes the $\mathrm{S} \& \mathrm{~A}$ is in conformance with applicable law.

Whether the stipulation and agreement results in just and reasonable rates?
33. The Commission finds the $\mathrm{S} \& A$ does not change rates or rate design for any customer ${ }^{79}$ and thus the $\mathrm{S} \& \mathrm{~A}$ results in the continuation of existing rates which the Commission has previously found to be just and reasonable.

Whether the results of the stipulation and agreement are in the public interest, including the interest of the customers represented by the party not consenting to the agreement?
34. The Commission interprets the $\mathrm{S} \& \mathrm{~A}$ as a roadmap the electric utilities may pursue in future rate filings. The Commission interprets the $\mathrm{S} \& \mathrm{~A}$ as establishing the following policies:
a. utilities may determine whether a separate rate class is appropriate; ${ }^{80}$
b. utilities may provide cost data for that class through a class cost of service study as required by Commission regulation; ${ }^{81}$
c. utilities are to provide cost data uniformly, excluding non-quantifiable societal benefits and externalities; and ${ }^{82}$
d. utilities may recommend the rate design appropriate for their electric system, service and customer base. ${ }^{83}$

[^37]35. The Commission finds the $\mathrm{S} \& \mathrm{~A}$ is in the public interest because it establishes a policy framework for implementing DG. This framework provides a means through which DG issues as yet undetermined can be addressed in a utility-specific rate case docket.
36. Similarly, though the record evidence supports a finding that DG customers are not paying their full fixed costs ${ }^{84}$ and are thus being cross-subsidized by the other residential customers, ${ }^{85}$ there is not sufficient evidence for the Commission to determine whether that crosssubsidization results in an unduly preferential rate because not all of the utilities provided analysis regarding the extent to which cross-subsidization exists. ${ }^{86}$ The record suggests that information would only be available after the utilities completed a class cost of service study in their next rate case.
37. The Commission finds approving the $\mathrm{S} \& \mathrm{~A}$ is in the public interest because it allows the parties to further develop the necessary facts on a utility by utility basis. Likewise, the Commission believes this course of action allows utilities to propose new DG tariffs consistent with terms of the S\&A and for the Commission to address each proposal individually. The Commission finds the $\mathrm{S} \& \mathrm{~A}$ allows the Commission to do so without negatively impacting any of the parties. The rights and obligations of the parties are the same following this order as they were at the beginning of this docket. Therefore, the Commission finds no party is negatively impacted by the S\&A because it merely shifts the discussion and production of evidence into utility specific dockets, where the burden of proof remains on the utilities to show that their proposed rate design results in non-discriminatory and just and reasonable rates. Therefore, the Commission finds the $S \& A$ is in the public interest.

[^38]
THEREFORE, THE COMMISSION ORDERS:

A. The Non-Unanimous Stipulation and Agreement is approved.
B. The parties have 15 days from the date this Order was electronically served to petition for reconsideration. ${ }^{87}$
C. The Commission retains jurisdiction over the subject matter and parties for the purpose of entering such further orders as it deems necessary.

BY THE COMMISSION IT IS SO ORDERED.
Apple, Chairman; Albrecht, Commissioner; Emler, Commissioner
Dated:
'SEP 212017

SF

EMAAKLED
SEP 212017

[^39]
CERTIFICATE OF SERVICE

16-GIME-403-GIE
I, the undersigned, certify that the true copy of the attached Order has been served to the following parties by means of Electronic Service on SEP 212017

JAMES G. FLAHERTY, ATTORNEY
ANDERSON \& BYRD, L.L.P.
216 S HICKORY
PO BOX 17
OTTAWA, KS 66067
Fax: 785-242-1279
jflaherty@andersonbyrd.com

ANDREW J ZELLERS, GEN COUNSELNP REGULATORY
AFFAIRS
BRIGHTERGY, LLC
1712 MAIN ST 6TH FLR
KANSAS CITY, MO 64108
Fax: 816-511-0822
andy.zellers@brightergy.com

GLENDA CAFER, ATTORNEY
CAFER PEMBERTON LLC
3321 SW6TH ST
TOPEKA, KS 66606
Fax: 785-233-3040
glenda@caferlaw.com

THOMAS J. CONNORS, ATTORNEY AT LAW
CITIZENS' UTILITY RATEPAYER BOARD
1500 SW ARROWHEAD RD
TOPEKA, KS 66604
Fax: 785-271-3116
tj.connors@curb.kansas.gov

DAVID W. NICKEL, CONSUMER COUNSEL
CITIZENS' UTILITY RATEPAYER BOARD
1500 SW ARROWHEAD RD
TOPEKA, KS 66604
Fax: 785-271-3116
d.nickel@curb.kansas.gov

MARTIN J. BREGMAN
BREGMAN LAW OFFICE, L.L.C.
311PARKER CIRCLE
LAWRENCE, KS 66049
mjb@mjbregmanlaw.com
C. EDWARD PETERSON
C. EDWARD PETERSON, ATTORNEY AT LAW

5522 ABERDEEN
FAIRWAY, KS 66205
Fax: 913-722-0181
ed.peterson2010@gmail.com

TERRI PEMBERTON, ATTORNEY
CAFER PEMBERTON LLC
3321SW6TH ST
TOPEKA, KS 66606
Fax: 785-233-3040
terri@caferlaw.com

TODD E. LOVE, ATTORNEY
CITIZENS' UTILITY RATEPAYER BOARD
1500 SW ARROWHEAD RD
TOPEKA, KS 66604
Fax: 785-271-3116
t.love@curb.kansas.gov

DELLA SMITH
CITIZENS' UTILITY RATEPAYER BOARD
1500 SW ARROWHEAD RD
TOPEKA, KS 66604
Fax: 785-271-3116
d.smith@curb.kansas.gov

CERTIFICATE OF SERVICE

16-GIME-403-GIE

SHONDA SMITH
CITIZENS' UTILITY RATEPAYER BOARD 1500 SW ARROWHEAD RD
TOPEKA, KS 66604
Fax: 785-271-3116
sd.smith@curb.kansas.gov

ARON CROMWELL
CROMWELL ENVIRONMENTAL, INC.
615 VERMONT ST
LAWRENCE, KS 66044
acromwell@cromwellenv.com

BRYAN OWENS, ASSISTANT DIRECTOR OF PLANNING \&

REGULATORY

EMPIRE DISTRICT INDUSTRIES, INC.
602 JOPLIN
PO BOX 127
JOPLIN, MO 64802-0127
Fax: 417-625-5169
bowens@empiredistrict.com
ROBERT J. HACK, LEAD REGULATORY COUNSEL
KANSAS CITY POWER \& LIGHT COMPANY
ONE KANSAS CITY PL, 1200 MAIN ST 31ST FLOOR (64105
PO BOX 418679
KANSAS CITY, MO 64141-9679
Fax: 816-556-2787
rob.hack@kcpl.com

BRAD LUTZ, REGULATORY AFFAIRS
KANSAS CITY POWER \& LIGHT COMPANY
ONE KANSAS CITY PL, 1200 MAIN ST 31ST FLOOR (64105
PO BOX 418679
KANSAS CITY, MO 64141-9679
Fax: 816-556-2110
brad.lutz@kcpl.com

NICOLE A. WEHRY, SENIOR REGULTORY
COMMUNICATIONS SPECIALIST
KANSAS CITY POWER \& LIGHT COMPANY
ONE KANSAS CITY PL, 1200 MAIN ST 31ST FLOOR (64105
PO BOX 418679
KANSAS CITY, MO 64141-9679
Fax: 816-556-2787
nicole.wehry@kcpl.com

DOROTHY BARNETT
CLIMATE \& ENERGY PROJECT PO BOX 1858
HUTCHINSON, KS 67504-1858
barnett@climateandenergy.org

SUSAN B. CUNNINGHAM, ATTORNEY
DENTONS US LLP
7028 SW 69TH ST
AUBURN, KS 66402-9421
Fax: 816-5317545
susan.cunningham@dentons.com

JOHN GARRETSON, BUSINESS MANAGER
IBEW LOCAL UNION NO. 304
3906 NW 16TH STREET
TOPEKA, KS 66615
Fax: 785-235-3345
johng@ibew304.org

ROBERT J. HACK, LEAD REGULATORY COUNSEL
KANSAS CITY POWER \& LIGHT COMPANY
ONE KANSAS CITY PL, 1200 MAIN ST 31ST FLOOR (64105
PO BOX 418679
KANSAS CITY, MO 64141-9679
Fax: 816-556-2787
rob.hack@kcpl.com

ROGER W. STEINER, CORPORATE COUNSEL
KANSAS CITY POWER \& LIGHT COMPANY
ONE KANSAS CITY PL, 1200 MAIN ST 31ST FLOOR (64105
PO BOX 418679
KANSAS CITY, MO 64141-9679
Fax: 816-556-2787
roger.steiner@kcpl.com

ANTHONY WESTENKIRCHNER, SENIOR PARALEGAL KANSAS CITY POWER \& LIGHT COMPANY
ONE KANSAS CITY PL, 1200 MAIN ST 31ST FLOOR (64105 PO BOX 418679
KANSAS CITY, MO 64141-9679
Fax: 816-556-2787
anthony.westenkirchner@kcpl.com

CERTIFICATE OF SERVICE

16-GIME-403-GIE
SAMUELFEATHER, DEPUTY GENERAL COUNSEL KANSAS CORPORATION COMMISSION 1500 SWARROWHEAD RD
TOPEKA, KS 66604-4027
Fax: 785-271-3167
s.feather@kcc.ks.gov

AMBER SMITH, CHIEF LITIGATION COUNSEL
KANSAS CORPORATION COMMISSION
1500 SW ARROWHEAD RD
TOPEKA, KS 66604-4027
Fax: 785-271-3167
a.smith@kcc.ks.gov

BRUCE GRAHAM, CHIEF EXECUTIVE OFFICER
KANSAS ELECTRIC COOPERATIVE, INC.
7332 SW 21ST STREET
PO BOX 4267
TOPEKA, KS 66604-0267
Fax: 785-478-4852
bgraham@kec.org
ROBERT V. EYE, ATTORNEY AT LAW
KAUFFMAN \& EYE
4840 Bob Billings Pkwy, Ste. 1010
Lawrence, KS 66049-3862
Fax: 785-749-1202
bob@kauffmaneye.com

JACOB J SCHLESINGER, ATTORNEY
KEYES FOX \& WIEDMAN LLP
1580 LINCOLN STREET
SUITE 880
DENVER, CO 80203
jschlesinger@kfwlaw.com

ANNE E. CALLENBACH, ATTORNEY
POLSINELLI PC
900 W 48TH PLACE STE 900
KANSAS CITY, MO 64112
Fax: 913-451-6205
acallenbach@polsinelli.com

JAKE FISHER, LITIGATION COUNSEL KANSAS CORPORATION COMMISSION 1500 SWARROWHEAD RD
TOPEKA, KS 66604-4027
Fax: 785-271-3354
j.fisher@kcc.ks.gov

KIM E. CHRISTIANSEN, ATTORNEY KANSAS ELECTRIC COOPERATIVE, INC.
7332 SW 21ST STREET
PO BOX 4267
TOPEKA, KS 666040267
Fax: 785-478-4852
kchristiansen@kec.org
DOUGLAS SHEPHERD, VP, MANAGEMENT CONSULTING SERVICES
KANSAS ELECTRIC COOPERATIVE, INC. 7332 SW 21ST STREET
PO BOX 4267
TOPEKA, KS 66604-0267
Fax: 785-478-4852
dshepherd@kec.org
SCOTT DUNBAR
KEYES FOX \& WIEDMAN LLP
1580 LINCOLN STREET
SUITE 880
DENVER, CO 80203
sdunbar@kfwlaw.com

PATRICK PARKE, GENERAL MANAGER
MIDWEST ENERGY, INC.
1330 Canterbury Rd
PO Box 898
Hays, KS 676010898
Fax: 785-625-1494
patparke@mwenergy.com
RANDY MAGNISON, EXEC VP \& ASST CEO
SOUTHERN PIONEER ELECTRIC COMPANY
1850 W OKLAHOMA
PO BOX 430
ULYSSES, KS 67880-0430
Fax: 620-356-4306
rmagnison@pioneerelectric.coop

CERTIFICATE OF SERVICE

16-GIME-403-GIE
LINDSAY SHEPARD, EXECUTIVE VP - GENERAL
COUNSEL
SOUTHERN PIONEER ELECTRIC COMPANY
1850 W OKLAHOMA
PO BOX 430
ULYSSES, KS 67880-0430
Fax: 620-356-4306
Ishepard@pioneerelectric.coop
JAMES BRUNGARDT, REGULATORY AFFAIRS
ADMINISTRATOR
SUNFLOWER ELECTRIC POWER CORPORATION
301 W .13 TH
PO BOX 1020 (67601-1020)
HAYS, KS 67601
Fax: 785-623-3395
jbrungardt@sunflower.net
AL TAMIMI, VICE PRESIDENT, TRANSMISSION PLANNING AND POLICY
SUNFLOWER ELECTRIC POWER CORPORATION
301W. 13TH
PO BOX 1020 (676011020)
HAYS, KS 67601
Fax: 785-623-3395
atamimi@sunflower.net
MARK D. CALCARA, ATTORNEY
WATKINS CALCARA CHTD.
1321 MAIN ST STE 300
PO DRAWER 1110
GREAT BEND, KS 67530
Fax: 620-792-2775
mcalcara@wcrf.com

CATHRYN J. DINGES, SENIOR CORPORATE COUNSEL
WESTAR ENERGY, INC.
818 S KANSAS AVE
PO BOX 889
TOPEKA, KS 66601-0889
Fax: 785-575-8136
cathy.dinges@westarenergy.com

LARRY WILKUS, DIRECTOR, RETAIL RATES
WESTAR ENERGY, INC.
FLOOR \#10
818 S KANSAS AVE
TOPEKA, KS 66601-0889
larry.wilkus@westarenergy.com

RENEE BRAUN, CORPORATE PARALEGAL, SUPERVISOR
SUNFLOWER ELECTRIC POWER CORPORATION
301W. 13TH
PO BOX 1020 (67601-1020)
HAYS, KS 67601
Fax: 785-623-3395
rbraun@sunflower.net

COREY LINVILLE, VICE PRESIDENT, POWER SUPPLY \& DELIVER
SUNFLOWER ELECTRIC POWER CORPORATION
301W. 13TH
PO BOX 1020 (67601-1020)
HAYS, KS 67601
Fax: 785-623-3395
clinville@sunflower.net
JASON KAPLAN ESQ
UNITED WIND, INC.
20Jay Street
Suite 928
Brooklyn, NY 11201
jkaplan@unitedwind.com

TAYLOR P. CALCARA, ATTORNEY
WATKINS CALCARA CHTD.
1321MAIN ST STE 300
PO DRAWER 1110
GREAT BEND, KS 67530
Fax: 620-792-2775
tcalcara@wcrf.com

JEFFREY L. MARTIN, VICE PRESIDENT, REGULATORY AFFAIRS
WESTAR ENERGY, INC.
818 S KANSAS AVE

PO BOX 889

TOPEKA, KS 666010889
jeff.martin@westarenergy.com

CASEY YINGLING

YINGLING LAW LLC
330 N MAIN
WICHITA, KS 67202
Fax: 316-267-4160
casey@yinglinglaw.com

CERTIFICATE OF SERVICE

16-GIME-403-GIE

ISI DeeAnn Shupe

DeeAnn Shupe

divATLED

SEP 212017

Exhibit WSS-8

Traditional Metering Equipment
 Required for
 Four-Part Rates

Exhibit WSS-8
Page 2 of 4

DEMAND METERS

TYPES G-9, GS-9, AND GS-12

(((a) 9.73

General siol electric

When ordering renewal parts, give quantity, catalog number, description of each item required, and complete nameplate reading.

Exhibit WSS-9

Electric Vehicle Ownership by State in U.S.

Electric Vehicle Registrations in 2018				
State	EV Registriations	Population	Per Capita Registrations	Registrations per 100,000 Residents
California	256,800	39,557,045	0.0065	649.19
Hawaii	6,590	1,420,491	0.0046	463.92
Washington	28,400	7,535,591	0.0038	376.88
Oregon	12,400	4,190,713	0.0030	295.89
Arizona	15,000	7,171,646	0.0021	209.16
Colorado	11,700	5,695,564	0.0021	205.42
Vermont	1,060	626,299	0.0017	169.25
Utah	5,220	3,161,105	0.0017	165.13
Nevada	4,810	3,034,392	0.0016	158.52
Georgia	15,300	10,519,475	0.0015	145.44
Massachusetts	9,760	6,902,149	0.0014	141.41
District Of Columb	970	702,455	0.0014	138.09
New Jersey	12,100	8,908,520	0.0014	135.83
Maryland	8,080	6,042,718	0.0013	133.71
Connecticut	4,450	3,572,665	0.0012	124.56
Florida	25,200	21,299,325	0.0012	118.31
Virginia	8,370	8,517,685	0.0010	98.27
Illinois	12,400	12,741,080	0.0010	97.32
New York	16,600	19,542,209	0.0008	84.94
Minnesota	4,740	5,611,179	0.0008	84.47
Oklahoma	3,290	3,943,079	0.0008	83.44
New Hampshire	1,120	1,356,458	0.0008	82.57
Texas	22,600	28,701,845	0.0008	78.74
Delaware	720	967,171	0.0007	74.44
Alaska	530	737,438	0.0007	71.87
North Carolina	7,320	10,383,620	0.0007	70.50
Wisconsin	3,680	5,813,568	0.0006	63.30
Pennsylvania	7,990	12,807,060	0.0006	62.39
Idaho	1,080	1,754,208	0.0006	61.57
New Mexico	1,260	2,095,428	0.0006	60.13
Tennessee	3,980	6,770,010	0.0006	58.79
Rhode Island	600	1,057,315	0.0006	56.75
Missouri	3,450	6,126,452	0.0006	56.31
Maine	750	1,338,404	0.0006	56.04
Ohio	6,510	11,689,442	0.0006	55.69
Kansas	1,610	2,911,505	0.0006	55.30
Montana	500	1,062,305	0.0005	47.07
Indiana	3,030	6,691,878	0.0005	45.28
Nebraska	850	1,929,268	0.0004	44.06
Michigan	4,210	9,995,915	0.0004	42.12
South Carolina	1,950	5,084,127	0.0004	38.35
lowa	1,090	3,156,145	0.0003	34.54
Alabama	1,450	4,887,871	0.0003	29.67
South Dakota	260	882,235	0.0003	29.47
Wyoming	170	577,737	0.0003	29.43
Kentucky	1,240	4,468,402	0.0003	27.75
Louisiana	1,110	4,659,978	0.0002	23.82
North Dakota	170	760,077	0.0002	22.37
Arkansas	520	3,013,825	0.0002	17.25
Mississippi	390	2,986,530	0.0001	13.06
West Virginia	230	1,805,832	0.0001	12.74

Sources: Electric Vehicle Registrations were obtained from a US Department of Energy
https://afdc.energy.gov/data/10962
2018 Population
https://www.census.gov/newsroom/press-kits/2018/pop-estimates-national-state.htm|

Electric Vehicle Registrations by State

Exhibit WSS-10

DC Fast Charging Ports
 Versus

Electric Vehicles by State in U.S.

Relationship Between Electric Vehicles and DC Fast Charging Stations		
State	DC Fast Charging Ports	Plug-in Electric Vehicles
Alabama	78	1,450
Alaska	4	530
Arizona	363	15,000
Arkansas	44	520
California	4,679	256,800
Colorado	339	11,700
Connecticut	223	4,450
Delaware	65	720
District of Columbia	20	970
Florida	760	25,200
Georgia	420	15,300
Hawaii	90	6,590
Idaho	75	1,080
Illinois	337	12,400
Indiana	171	3,030
lowa	134	1,090
Kansas	121	1,610
Kentucky	68	1,240
Louisiana	68	1,110
Maine	126	750
Maryland	424	8,080
Massachusetts	329	9,760
Michigan	280	4,210
Minnesota	187	4,740
Mississippi	56	390
Missouri	196	3,450
Montana	96	500
Nebraska	64	850
Nevada	266	4,810
New Hampshire	69	1,120
New Jersey	407	12,100
New Mexico	108	1,260
New York	579	16,600
North Carolina	297	7,320
North Dakota	34	170
Ohio	350	6,510
Oklahoma	328	3,290
Oregon	361	12,400
Pennsylvania	289	7,990
Rhode Island	38	600
South Carolina	100	1,950
South Dakota	54	260
Tennessee	171	3,980
Texas	693	22,600
Utah	186	5,220
Vermont	54	1,060
Virginia	457	8,370
Washington	566	28,400
West Virginia	60	230
Wisconsin	144	3,680
Wyoming	75	170
Total	15,503	543,610
Correlation Coefficient		0.9867

Relationship of Electric Vehicles to
DC Fast Charging Outlets

Exhibit WSS-11

Cost Support for Electric Vehicle Supply Equipment Rate and Rider

Kentucky Utilities Company

Derivation of Rates

		Clipper Creek - Single	
Estimated Investment per Unit		\$	800.85
Fixed Charges @	20.51\%	\$	244.30
O\&M (Scheduled/Trouble)		\$	126.00
Chargepoint Annual Cost		\$	-
		\$	370.30
Monthly Rate for Equipment Only		\$	30.86
EVC Rate per Hour for Equipment Only			
Distribution Energy per kWh per year (Calculated with GS Rate)	\$ 0.12469	\$	623.99
Distribution Energy per kWh per month		\$	52.00
Distribution Energy per kWh per hour			
Basic Service Charge		\$	-
Fuel Adjustment Clause		\$	-
Solar PPA Adjustment Clause		\$	-
Economic Recovery Surcredit		\$	-
Environmental Surcharge (Level 2)		\$	-
Franchise Fee		\$	-
School Tax		\$	-
State Sales Tax		\$	-
EVSE Monthly Rate for Equipment, Energy \& Factors		\$	82.86
EVC Fee per Hour for Equipment, Energy \& Factors			
EVSE-R Monthly Rate for Equipment Only		\$	30.86
EVSE - Company will furnish, own, install, and maintain the charging unit and cable. Customer will furnish, own, and install all duct systems and associated equipment. Customer shall be responsible for the charging equipment installation costs.			
EVSE-R - Customer installs and owns facilities on its side of the meter to serve Company-provided charging station.			

Louisville Gas and Electric Company Derivation of Rates

		Clipper Creek - Single	
Estimated Investment per Unit		\$	800.85
Fixed Charges @	20.70\%	\$	245.89
O\&M (Scheduled/Trouble)		\$	126.00
Chargepoint Annual Cost		\$	-
		\$	371.89
Monthly Rate for Equipment Only		\$	30.99
EVC Rate per Hour for Equipment Only			
Distribution Energy per kWh per year (Calculated with GS Rate)	\$ 0.12355	\$	618.29
Distribution Energy per kWh per month		\$	51.52
Distribution Energy per kWh per hour			
Basic Service Charge		\$	-
Fuel Adjustment Clause		\$	-
Solar PPA Adjustment Clause		\$	-
Economic Recovery Surcredit		\$	-
Environmental Surcharge (Level 2)		\$	-
Franchise Fee		\$	-
School Tax		\$	-
State Sales Tax		\$	-
EVSE Monthly Rate for Equipment, Energy \& Factors		\$	82.51
EVC Fee per Hour for Equipment, Energy \& Factors			
EVSE-R Monthly Rate for Equipment Only		\$	30.99
EVSE - Company will furnish, own, install, and maintain the charging unit and cable. Customer will furnish, own, and install all duct systems and associated equipment. Customer shall be responsible for the charging equipment installation costs. EVSE-R - Customer installs and owns facilities on its side of the meter to serve Company-provided charging station.			

Exhibit WSS-12

Cost Support for

 Redundant Capacity Charge
Kentucky Utilities Company

Derivation of Distribution Demand-Related Cost for Redundant Capacity
Based on the 12 Months Ended June 30, 2022

Secondary Service

Distribution Demand Costs

PSS	$\$$	$4,721,893$
TODS	$\$$	$4,144,728$
Total Cost	$\$$	$8,866,621$

Billing Demand

PSS	$5,272,876$
TODS	$6,217,430$
Total Cost	$11,490,306$

Unit Cost

Rate Base

PSS	$\$$	$49,645,807$
TODS	$\$$	$43,613,366$
Total Cost	$\$$	$93,259,173$

Return \$ 6,770,616

Unit Return
Capacity Charge
$\overline{\underline{\$ \quad 1.36}} / \mathrm{KW}$

Kentucky Utilities Company

Derivation of Distribution Demand-Related Cost for Redundant Capacity
Based on the 12 Months Ended June 30, 2022

Primary Service

Distribution Demand Costs

PSP	$\$$	172,706
TODP	$\$$	$5,548,170$
Total Cost	$\$$	$5,720,876$

Billing Demand
PSP
301,512
TODP
Total Cost
$10,620,000$
$10,921,512$

Unit Cost			\$	0.52
Rate Base				
PSP	\$	1,711,384		
TODP	\$	57,382,076		
Total Cost	\$	59,093,460		
Return	\$	4,290,185		
Unit Return			\$	0.39
Capacity Charge			\$	0.92

Louisville Gas and Electric Company

Derivation of Distribution Demand-Related Cost for Redundant Capacity
Based on the 12 Months Ended June 30, 2022

Secondary Service

Distribution Demand Costs

PSS	$\$$	$5,691,826$
TODS		$4,551,553$
Total Cost	$\$$	$10,243,379$

Billing Demand

PSS	$4,277,098$
TODS	$4,406,484$
Total Cost	$8,683,582$

Unit Cost				\$	1.18
Rate Base					
	PSS	\$	50,667,367		
	TODS		40,506,142		
	Total Cost	\$	91,173,509		
Return		\$	6,546,258		
Unit Return				\$	0.75
Capacity Charge				\$	1.93

Louisville Gas and Electric Company

Derivation of Distribution Demand-Related Cost for Redundant Capacity
Based on the 12 Months Ended June 30, 2022

Primary Service

Distribution Demand Costs

PSP	\$	304,138 TODP
Total Cost		$4,601,652$

Billing Demand
PSP
340,066
TODP
Total Cost
\$ 0.81
Unit Cost

Rate Base

PSP	$\$$	$2,580,628$
TODP		$36,684,134$
Total cost	$\$$	$39,264,762$

Return \$ 2,819,210

Unit Return
Capacity Charge
$\overline{\underline{\$ 1.31}} / \mathrm{KW}$

Exhibit WSS-13

Summary of Class
 Rates of Returns for Gas
 Operations

Louisville Gas and Electric Company
Summary of Adjusted Rates of Return by Class

Rate Class	Revenue	Operating Expenses	Operating Margin	Rate Base	Rate of Return On Rate Base	Rate of Return On Rate Base After Increase
Residential Service Rate RGS	\$ 160,544,346	\$ 126,307,888	\$ 34,236,458	\$ 741,469,107	4.62\%	6.87\%
Commercial Service Rate CGS	60,474,931	42,069,078	18,405,853	243,310,119	7.56\%	9.08\%
Industrial Service Rate IGS	4,718,125	2,739,722	1,978,403	14,445,380	13.70\%	13.69\%
As Available Gas Service Rate AAGS	224,602	287,484	$(62,883)$	1,942,049	-3.24\%	0.98\%
Firm Transportation Service Rate FT	6,589,010	7,483,056	$(894,046)$	51,183,321	-1.75\%	2.10\%
	\$ 232,551,013	\$ 178,887,228	\$ 53,663,785	\$1,052,349,977	5.10\%	7.23\%

Exhibit WSS-14

Analysis of Subsidy Reduction for
 Gas Operations

Louisville Gas and Electric Company 25\% Subsidy Reduction for Gas Operations

Firm

	Total System	Residential (RGS)	Commercial (CGS)	Industrial (IGS)	As Available Gas Service (AAGS)	Transportation Service (FT)		
$\$$	$53,663,785$	$\$$	$34,236,458$	$\$$	$18,405,853$	$\$$	$1,978,403$	$\$$
$(62,883)$	$\$$	$(894,046)$						
$\$$	$29,977,693$	$\$$	$22,317,229$	$\$$	$4,920,979$	$\$$	-	$\$$

Adjustment to Forefeited Discounts
Adjustment to Returned Check Fees
Incremental Income Taxes
Incremental Uncollectable Accounts Expense

Incremental Commission Fees
Net Operating Income Adjusted for Increase
Net Cost Rate Base (Same as Above)

24.85%	$\$$	$7,449,292$	$\$$	$5,545,709$	$\$$	$1,222,836$	$\$$	-	$\$$	27,204	$\$$
0.203%	$\$$	60,855	$\$$	45,304	$\$$	9,990	$\$$	-	$\$$	222	$\$$
0.20%	$\$$	59,955	$\$$	44,634	$\$$	9,842	$\$$	-	$\$$	219	$\$$
25.25%									5,339		
	$\$$	$76,071,376$	$\$$	$50,918,040$	$\$$	$22,084,164$	$\$$	$1,978,403$	$\$$	18,948	$\$$

Exhibit WSS-15

Cost Components for Residential Gas Service Rate RGS

Louisville Gas and Electric Company

Unit Cost of Service Based on the Cost of Service Study
For the 12 Months Ended June 30, 2022
Rate RGS

Exhibit WSS-16

Cost Support for

Pole Attachment Charge

Kentucky Utilities Company and Louisvillle Gas \& Electric Company

Cost Support for Attachment Charges for Wireline Pole Attachments
Based on 12 Months Ended June 30, 2022

Pole Description
35' 40'
45'
Total

Gross Plant		\$	42,672,814	\$	159,603,939	\$	145,470,993	\$	347,747,746
Remove Appurtenances			15\%		15\%		15\%		
Gross Plant less Appurtenances		\$	36,271,892	\$	135,663,348	\$	123,650,344	\$	295,585,584
Accumulated Depreciation			$(15,423,131)$		$(57,685,262)$		$(52,577,225)$		$(125,685,618)$
Remove Appurtenances			15\%		15\%		15\%		
Accumulated Depreciation less Appurtenances		\$	$(13,109,661)$	\$	$(49,032,472)$	\$	$(44,690,642)$	\$	$(106,832,775)$
Net Plant		\$	23,162,231	\$	86,630,876	\$	78,959,702	\$	188,752,809
Accumulated Deferred Income Taxes		\$	$(5,716,450)$	\$	$(21,380,544)$	\$	$(19,487,294)$	\$	$(46,584,288)$
Cash Working Capital			269,597		1,008,340		919,052		2,196,989
Common Plant			773,795		2,894,131		2,637,856		6,305,782
Net Cost Rate Base		\$	18,489,172	\$	69,152,804	\$	63,029,316	\$	150,671,292
Rate of Return			7.16\%		7.16\%		7.16\%		
Return		\$	1,324,579	\$	4,954,161	\$	4,515,469	\$	10,794,208
Income Taxes	24.95\%	\$	326,632	\$	1,221,662	\$	1,113,484	\$	2,661,779
Property Taxes		\$	398,917	\$	1,492,021	\$	1,359,902	\$	3,250,839
Depreciation Expenses		\$	714,291	\$	2,671,575	\$	2,435,007	\$	5,820,873
Maintenance of Poles		\$	473,838	\$	1,772,238	\$	1,615,306	\$	3,861,382
Tree Trimming of Poles			1,503,856		5,624,689		5,126,622	\$	12,255,167
A\&G Expense Allocation to Poles			240,950		901,195		821,394	\$	1,963,538
Revenue Requirement		\$	4,983,062	\$	18,637,541	\$	16,987,185	\$	40,607,787
Quantity			104,622		195,898		92,631		393,151
Average Installed Cost		\$	47.63	\$	95.14	\$	183.39	\$	103.29
(1) Amount of Usable Space Occupied (in feet)			1.00		1.00		1.00		1.00
(2) Total Usable Space (per Order 251)			13.17		13.17		13.17		13.17
Space Usage Factor ((1) / (2))			0.0759		0.0759		0.0759		0.0759
Pole Attachment Rate		\$	3.62	\$	7.22	\$	13.92	\$	7.84

Exhibit WSS-17

Cost Support for

Excess Facilities Rider

Kentucky Utilities

Excess Facilities Charges

		Assuming Customer Does Not Make Contribution In Aid of Construction	Assuming Customer Makes Contribution In Aid of Construction
1	Present Value of Replacement Plant as a Percentage of Original Cost	21.77	21.77
2	Original Cost Value	100	-
3	Total Present Value of Original and Replacement Cost Value as a Percentage of Original Cost	121.77	21.77
4	Monthly Carrying Charge Percentage (Levelized Carrying Charge Rate / 12 months)	0.00702	0.00702
5	Applicable Carrying Charge Charge Percentage (Lines 3×5)	0.86\%	0.15\%
6	O\&M Percentage	0.32\%	0.32\%
7	Total Excess Facilities Charge	1.17\%	0.47\%

Louisville Gas and Electric Company Excess Facilities Charges Electric Service

Louisville Gas and Electric Company

Excess Facilities Charges
Gas Service

		Assuming Customer Does Not Make Contribution In Aid of Construction	Assuming Customer Makes Contribution In Aid of Construction
1	Present Value of Replacement Plant as a Percentage of Original Cost	21.77	21.77
2	Original Cost Value	100	-
3	Total Present Value of Original and Replacement Cost Value as a Percentage of Original Cost	121.77	21.77
4	Monthly Carrying Charge Percentage (Levelized Carrying Charge Rate / 12 months)	0.00699	0.00699
5	Applicable Carrying Charge Charge Percentage (Lines 3×5)	0.85\%	0.15\%
6	O\&M Percentage	0.30\%	0.30\%
7	Total Excess Facilities Charge	1.15\%	0.45\%

Exhibit WSS-18

Change in Other Operating Revenues For Excess Facilities Rider

Kentucky Utilities Company/Louisville Gas and Electric Company

Excess Facilities Proposed Rate Change and Revenue Impact
Case Nos. 2020-00349 and 2020-00350

	Installed Cost of Excess Facilities		Current Rate	Forecasted Test Year Revenue at Current Rate		$\begin{aligned} & \text { Proposed } \\ & \text { Rate } \end{aligned}$	Forecasted Test Year Revenue at Proposed Rate		\qquad	
Kentucky Utilities Company										
Excess Facilities Percentage With No Contribution-in-Aid-of-Construction	\$	9,865,917.88	1.16\%	\$	1,373,335.77	1.17\%	\$	1,385,174.87	\$	11,839
Excess Facilities Percentage With Contribution-in-Aid-of-Construction	\$	914,769.37	0.47\%	\$	51,592.99	0.47\%	\$	51,592.99	\$	(0)
Total -- KU									\$	11,839
Louisville Gas and Electric Company										
Excess Facilities Percentage With No Contribution-in-Aid-of-Construction	\$	4,982,340.73	1.22\%	\$	729,414.68	1.21\%	\$	723,435.87	\$	$(5,979)$
Excess Facilities Percentage With Contribution-in-Aid-of-Construction	\$	1,218,457.13	0.52\%	\$	76,031.72	0.52\%	\$	76,031.72	\$	(0)
Total -- LG\&E									\$	$(5,979)$

Note: No gas customers are currently taking service under the Excess Facilities Rider and none are projected for the forecasted test year.

Exhibit WSS-19

Cost Support for

Miscellaneous Charges

Exhibit WSS-19
 Page 1 of 18

Summary of Increases (Decreases) to Special Charges

Based on the 12 Months Ended July 31, 2020

$$
\begin{array}{llll}
\text { Miscellaneous Charge } & \text { Current Charge } & \text { Actual Cost } & \text { Proposed Charge } \\
\end{array}
$$

LG\&E - Electric

Disconnect/Reconnect Charge	$\$$	28.00	$\$$	32.22	$\$$	32.00
Returned Check Fee	$\$$	3.00	$\$$	3.70	$\$$	3.70
Meter-Test Charge	$\$$	75.00	$\$$	78.85	$\$$	79.00
Meter Pulse Relaying	$\$$	24.00	$\$$	20.76	$\$$	21.00
UAR without meter replacement	$\$$	70.00	$\$$	49.13	$\$$	49.00
UAR Charge for 1/0 Standard Meter Replacement	$\$$	90.00	$\$$	70.16	$\$$	70.00
UAR Charge for 1/0 AMR Meter Replacement	$\$$	110.00	$\$$	90.97	$\$$	91.00
UAR Charge for 1/0 AMS Meter Replacement	$\$$	174.00	$\$$	153.39	$\$$	153.00
UAR Charge for 3/0 Standard Meter Replacement	$\$$	177.00	$\$$	158.60	$\$$	159.00
AMI Opt-Out Charge -- One-Time Charge			$\$$	34.66	$\$$	35.00
AMI Opt-Out Charge -- Monthly Charge		$\$$	12.38	$\$$	12.00	

LG\&E - Gas

Disconnect/Reconnect Charge	$\$$	28.00	$\$$	32.22	$\$$	32.00
Returned Check Fee	$\$$	3.00	$\$$	3.70	$\$$	3.70
Meter-Test Charge	$\$$	90.00	$\$$	101.26	$\$$	101.00
Inspection Charge	$\$$	150.00	$\$$	155.23	$\$$	155.00
Meter Pulse Relaying Non-FT Non-TS2	$\$$	24.34	$\$$	27.52	$\$$	28.00
Meter Pulse Relaying - FT/TS2	7.17	$\$$	8.19	$\$$	8.00	
Additional Trip Charge	$\$$	150.00	$\$$	155.23	$\$$	155.00
UAR without meter replacement	$\$$	70.00	$\$$	49.13	$\$$	49.00
UAR with meter replacement	$\$$	132.00	$\$$	113.86	$\$$	114.00
AMI Opt-Out Charge -- One-Time Charge	$\$$		$\$$	32.63	$\$$	33.00
AMI Opt-Out Charge -- Monthly Charge		$\$$	5.17	$\$$	5.00	

KU

Disconnect/Reconnect Charge	$\$$	28.00	$\$$	37.23	$\$$
Returned Check Fee	$\$$	3.00	$\$$	3.48	$\$$
Meter-Test Charge	$\$$	75.00	$\$$	79.49	$\$$
Meter Pulse Relaying	$\$$	24.00	$\$$	20.87	$\$$
UAR without meter replacement	$\$$	70.00	$\$$	44.68	$\$$
UAR Charge for 1/0 Standard Meter Replacement	$\$$	90.00	$\$$	65.72	$\$$
UAR Charge for 1/0 AMR Meter Replacement	$\$$	110.00	$\$$	86	
UAR Charge for 1/0 AMS Meter Replacement	$\$$	174.00	$\$$	148.52	$\$$
UAR Charge for 3/0 Standard Meter Replacement	$\$$	177.00	$\$$	154.15	$\$$
AMI Opt-Out Charge -- One-Time Charge		$\$$	38.00		
AMI Opt-Out Charge -- Monthly Charge		$\$$	14.00		

Kentucky Utilities Company
Disconnect/Reconnect
Cost Justification

	Cost	
Disconnect Service	$\$$	18.62
Reconnect Service		18.62
	$\$$	37.23

Louisville Gas and Electric Company
Disconnect/Reconnect
Cost Justification

	Cost	
Disconnect Service	$\$$	16.11
Reconnect Service	16.11	
	$\$$	32.22

Kentucky Utilities Company
Electric Meter Test
Cost Justification

	Cost	
Labor - One Hour	$\$$	74.16
Vehicle - 2/3 Hour		5.32
	$\$ 9.49$	

Louisville Gas and Electric Company
Electric Meter Test
Cost Justification

	Cost	
Labor - One Hour	$\$$	73.53
Vehicle - 2/3 Hour		5.32
	$\$ 8.85$	

Louisville Gas and Electric Company

Gas Meter Test
Cost Justification

	Cost	
Labor - One and one third hour	$\$$	56.38
Meter Test - One hour		44.88
	$\$ 8102$	

Louisville Gas and Electric Company Gas Inspection Charge/Additional Trip Charge

Cost Justification

	Cost	
Labor	$\$$	146.92
Transportation	8.32	
	$\$$	155.23

Louisville Gas and Electric Company
 Returned Check/ACH
 Cost Justification

LG\&E Returned Check/ACH Costs

	Returns	Cost	Average	
US Bank/MUFG	15,484	\$ 44,767	\$	3.01
Labor (incl. burdens)	65 hours $\times \$ 31.55$ (straight time labor with burdens) / total LGE/KU returns			0.06
Postage/Material	\$. 47 postage, plus \$. 09 letterhead \& \$. 05 envelope			0.63
Total Per Item Cost a	July 31, 2020		\$	3.70

Kentucky Utilities Company
Returned Check/ACH
Cost Justification

KU Returned Check/ACH Costs

Louisville Gas and Electric Company

Meter Pulse - ELECTRIC
Cost Justification

	Cost
Equipment Installed Costs:	
Pulse Relay	57.84
Pulse Initiator Board	157.76
Relay Enclosure	89.40
5 Hours Labor (loaded)	364.46
Vehicle 2 hours	12.92
Total Cost at July 31, 2020	682.38

Charge per pulse per meter per month (5 Year Contract including carrying costs)

Louisville Gas and Electric Company

Meter Pulse - GAS
Cost Justification

	Cost
Non-FT and Non-TS-2 customer without telemetry	
Equipment Installed Costs:	
Equipment Costs	670.01
3 Hours Labor (loaded)	211.50
Vehicle	22.04
Total Cost at July 31, 2020	903.55

Charge per pulse per meter per month (5 Year Contract
including carrying costs $\$ 27.52$

FT and TS-2 customer with telemetry
AMI Opt-Out Charge -- One-Time Charge
AMI Opt-Out Charge -- Monthly Charge
Equipment Installed Costs:
Equipment Costs
3 Hours Labor (loaded) 241.40
Vehicle
Total Cost at April 30, $2018 \quad 268.94$
27.54

Charge per pulse per meter per month (5 Year Contract including carrying costs)
\$ 8.19

Kentucky Utilities Company
Meter Pulse
Cost Justification

	Cost
Equipment Installed Costs:	
Pulse Relay	157.85
Pulse Initiator Board	89.47
Relay Enclosure	367.64
5 Hours Labor (loaded)	15.83
Vehicle 2 hours	688.49

Charge per pulse per meter per month (5 Year Contract including carrying costs)
\$ 20.87

Louisville Gas and Electric Company
 Electric Unauthorized Meter Reconnect Charge
 Cost Justification

Field Services - (1/4 hour)
Transportation - (1/4 hour)
Back Office Admin Labor - (1/2 hour)
Lock Costs
Total Charge without meter replacement at July 31, 2020

Cost	
$\$$	15.57
$\$$	1.57
$\$$	20.37
$\$$	11.62
$\$$	49.13

Total Charge if meter replacement necessary:
UAR Charge for $1 / 0$ Standard Meter Replacement
Charge without meter replacement

$\$$	49.07
$\$$	21.09
$\$$	70.16

UAR Charge for 1/0 AMR Meter Replacement
Charge without meter replacement

$\$$	48.92
$\$$	42.06
$\$$	90.97

UAR Charge for 1/0 AMS Meter Replacement
Charge without meter replacement

UAR Charge for $3 / 0$ Standard Meter Replacement
Charge without meter replacement

Labor and transportation costs to inspect and lock service, perform back office requirements and meter replacement if necessary.

Exhibit WSS-19
 Page 14 of 18

Louisville Gas and Electric Company
Gas Unauthorized Meter Reconnect Charge
Cost Justification

	Cost	
Field Services - (1/4 hour)	\$	15.57
Transportation - (1/4 hour)	\$	1.57
Back Office Admin Labor - (1/2 hour)	\$	20.37
Lock Costs	\$	11.62
Total Charge without meter replacement at July 31, 2020	\$	49.13
Total Charge if meter replacement necessary:		
UAR Charge for Standard Meter Replacement		
Charge without meter replacement	\$	48.81
Charge for Standard Meter Replacement	\$	65.05
	\$	113.86

Labor and transportation costs to inspect and lock service, perform back office requirements and meter replacement if necessary.

Exhibit WSS-19
 Page 15 of 18

Kentucky Utilities Company
Electric Unauthorized Meter Reconnect Charge

Cost Justification

Field Services - (1/4 hour)

Cost	
$\$$	11.14
$\$$	1.57
$\$$	20.36
$\$$	11.61
$\$$	44.68

Total Charge if meter replacement necessary:
UAR Charge for 1/0 Standard Meter Replacement
Charge without meter replacement

$\$$	44.63
$\$$	21.09
$\$$	65.72

UAR Charge for 1/0 AMR Meter Replacement
Charge without meter replacement

$\$$	44.49
$\$$	42.04
$\$$	86.52

UAR Charge for 1/0 AMS Meter Replacement
Charge without meter replacement

UAR Charge for 3/0 Standard Meter Replacement
Charge without meter replacement

Labor and transportation costs to inspect and lock service, perform back office requirements and meter replacement if necessary.

LG\&E -- Electric AMI Opt-Out Charge

One-Time Fee

4. Meter Readers \$ 59,591
5. Field Services \$ 47,136
6. Enrollment $\quad \$ \quad 12,267$
7. One-Time Fee $\quad \$ 118,995$
8. One-Time Fee costs divided by All Opt-Out Contracts \$ 34.66

One-Time and Recurring Capital Costs

15 Year Life

9. Mesh Network \$ 22,281
10. Enrollment, Billing and Reporting \$ 65,174
11. One-Time and Recurring Capital Costs to be recovered \$

12. One-Time and Recurring Capital Costs divided by All Opt-Out Contracts	$\$$	25.47
13. Monthly Levelized Revenue Requirement Recovery of One-Time and Recurring Capital per Customer ${ }^{1}$	$\$$	0.43

Annual Recurring Costs

14. Meter Readers	\$	487,965
15. Field Services	\$	4,055
16. Mesh Network	\$	326
17. Annual Recovery of on-going Costs	\$	492,346
18. Monthly Recovery of Recurring Costs per Contract	\$	11.95
19. Total Monthly Fee ($13+18$)	\$	12.38

LG\&E -- Gas AMI Opt-Out Charge

One-Time Fee		
4. Meter Readers	\$	45,652
5. Field Services	\$	30,776
6. Enrollment	\$	9,398
7. One-Time Fee	\$	85,827
8. One-Time Fee costs divided by All Opt-Out Contracts	\$	32.63
One-Time and Recurring Capital Costs		
15 Year Life		
9. Mesh Network	\$	17,065
10. Enrollment, Billing and Reporting	\$	49,915
11. One-Time and Recurring Capital Costs to be recovered	\$	66,980
12. One-Time and Recurring Capital Costs divided by All Opt-Out Contracts	\$	25.47
13. Monthly Levelized Revenue Requirement Recovery of One-Time and Recurring Capital per Customer ${ }^{1}$	\$	0.43
Annual Recurring Costs		
14. Meter Readers	\$	146,300
15. Field Services	\$	3,107
16. Mesh Network	\$	250
17. Annual Recovery of on-going Costs	\$	149,657
18. Monthly Recovery of Recurring Costs per Contract	\$	4.74
19. Total Monthly Fee ($13+18$)	\$	5.17

Kentucky Utilities -- AMI Opt Out Charges

One-Time Fee			
4.	Meter Readers	$\$$	74,555
5.	Field Services	74,938	
6.	Enrollment	$\$$	15,176
7.	One-Time Fee	$\$$	$\$ 4670$
8. One-Time Fee costs divided by All Opt-Out Contracts	$\$$	38.77	

One-Time and Recurring Capital Costs		
9. Mesh Network	\$	27,561
10. Enrollment, Billing and Reporting	\$	80,618
11. One-Time and Recurring Capital Costs to be recovered	\$	108,179
12. One-Time and Recurring Capital Costs divided by All Opt-Out Contracts	\$	25.47
13. Monthly Levelized Revenue Requirement Recovery of One-Time and Recurring Capital per Customer ${ }^{1}$	\$	0.43
Annual Recurring Costs		
14. Meter Readers	\$	722,834
15. Field Services	\$	12,907
16. Mesh Network	\$	403
17. Annual Recovery of on-going Costs	\$	736,144
18. Monthly Recovery of Recurring Costs per Contract	\$	14.44
19. Total Monthly Fee (13+18)	\$	14.87

Exhibit WSS-20

Change in Other Operating Revenues For Other Miscellaneous Charges

Summary of Increases (Decreases) to Miscellaneous Charges - Current vs. Proposed Based on the 12 Months Ended July 31, 2020

Miscellaneous Charge	LG\&E - Electric		LG\&E - Gas		KU	
Disconnect/Reconnect Charge	\$	139,956	\$	10,804	\$	384,759
Returned Check Fee*	\$	8,457	\$	2,382	\$	10,021
Meter-Test Charge	\$	76	\$	-	\$	168
Meter Pulse Relaying	\$	$(3,525)$			\$	$(4,122)$
Meter Pulse Relaying Non-FT Non-TS2			\$	706		
Meter Pulse Relaying - FT/TS2			\$	46		
Third-Trip Inspection Charge			\$	-		
Additional Trip Charge			\$	-		
Unauthorized Reconnect Charge	\$	$(55,505)$	\$	$(4,977)$	\$	$(18,399)$
Total	\$	89,459	\$	8,962	\$	372,426

Exhibit WSS-21

LOLP Analysis for Electric Cost of Service Study

Kentucky Utilities Company

LOLP Fixed Production Cost Allocation Factor
For the 12 Months Ended June 30, 2022

Rate Class	Weighted LOLP
	$\sum_{i=1}^{8760} L O L P_{i} * \overline{L O A D}{ }_{i}$
Residential	$1,011,037$
General Service	272,317
All Electric Schools	17,474
TOD Secondary	244,227
TOD Primary	447,085
PS Secondary	253,947
PS Primary	11,033
RTS	145,533
Outdoor Sports Lighting	30
EV_Charge	2
Ind. Service Trans.	60,265
Unmetered Lighting	393
Traffic Energy Service	234
Lighting Energy Service	14

Louisville Gas \& Electric Company

LOLP Fixed Production Cost Allocation Factor
For the 12 Months Ended June 30, 2022

Rate Class	Weighted LOLP
	$\sum_{i=1}^{8784} L O L P_{i} * \overline{L O A D}{ }_{i}$
Residential	902,573
General Service	213,017
TOD Secondary	186,383
TOD Primary	226,687
PS Secondary	238,519
PS Primary	14,423
RTS	103,765
Spec Contr \#1(LWC)	5,705
Outdoor School Lighting	1
EV_Charge	3
Unmetered Lighting	317
Traffic Energy Svc	307
Lighting Energy Svc	11
Total	

Exhibit WSS-22

Comparison of LOLP

Class Rates of Return with 12-CP and 6-CP Methodologies

	Kentucky Utilities Company		
	LOLP Current Rate of Return on Rate Base	12CP Current Rate of Return on Rate Base	6 CP Current Rate of Return on Rate Base
Rate Class			
	2.67%	2.52%	2.14%
Residential Rate RS	11.05%	11.32%	11.21%
General Service Rate GS	5.89%	3.17%	3.68%
All Electric Schools Rate AES	10.28%	10.07%	10.41%
Power Service Rate PS	3.95%	3.93%	4.68%
Time of Day Secondary Rate TODS	3.20%	3.78%	4.26%
Time of Day Primary Rate TODP	3.53%	3.54%	4.65%
Retail Transmission Service Rate RTS	2.75%	4.98%	5.40%
Fluctuating Load Service Rate FLS	12.32%	10.41%	10.54%
Lighting Rate LS \& RLS	28.05%	9.27%	10.03%
Lighting Rate LE	12.39%	12.34%	13.18%
Lighting Rate TE	30.32%	30.27%	30.28%
Outdoor Sports Lighting Rate OSL	-27.00%	-27.07%	-27.07%
Electric Vehicle Charging Rate EV	-1.31%	-1.31%	-1.31%
Solar Share Rate SSP	4.80%	4.80%	4.80%
Business Solar Rate BS			

	Louisville Gas and Electric Company		
	LOLP Current Rate of Return on Rate Base	12CP Current Rate of Return on Rate Base	6 CP Current Rate of Return on Rate Base
Rate Class			
	0.60%	1.75%	1.33%
Residential Rate RS	10.96%	9.98%	9.67%
General Service Rate GS	10.53%	8.68%	9.13%
Power Service Rate PS	6.45%	5.04%	6.02%
TOD Rate TOD Primary	5.33%	3.96%	4.44%
TOD Rate TOD Secondary	7.23%	3.75%	5.76%
Retail Transmission Service Rate RTS	5.52%	2.44%	3.29%
Special Contract Customer	9.74%	7.79%	8.02%
Lighting Rate RLS \& LS	31.88%	8.24%	9.82%
Lighting Rate LE	15.01%	11.82%	13.90%
Lighting Rate TE	89.10%	92.28%	9.63%
Outdoor Sports Lighting OSL	-27.07%	-27.08%	-27.10%
Electric Vehicle Charging EVC	3.60%	3.60%	3.60%
Solar Share SS	-4.38%	-4.38%	-4.38%

Exhibit WSS-23

Zero Intercept Analysis

For
Overhead Conductor
(Kentucky Utilities)

Zero Intercept Analysis Account 365 -- Overhead Conductor

July 31, 2020

Weighted Linear Regression Statistics

	Estimate	Standard Error
Size Coefficient (\$ per MCM)	0.0041724	0.0008336
Zero Intercept (\$ per Unit)	1.3801706	0.2486132
R-Square	0.8225292	
Plant Classification		
Total Number of Units		99,629,647
Zero Intercept		1.3801706
Zero Intercept Cost		137,505,908
Total Cost of Sample		214,874,064
Percentage of Total		0.639937206
Percentage Classified as Customer-Related		63.99\%
Percentage Classified as Demand-Related		36.01\%

Zero Intercept Analysis Account 365 -- Overhead Conductor

July 31, 2020

Description	Size		Cost	Quantity
\#2 Triplex	66.369	$15,319,819.64$	$9,502,231.00$	1.612234
\#4 Aluminum Poly	41.74	$128,346.24$	$27,617.00$	4.6473636
\#2 ACSR	66.36	$1,404,030.05$	$183,400.00$	7.6555619
1/0 CONDUCTOR	105.6	$4,279,000.42$	$692,306.00$	6.1807935
1/0 Triplex	105.6	$134,027.21$	$22,210.00$	6.0345434
1/0 Aluminum	105.6	$117,488.54$	$24,884.00$	4.7214491
123,270 ACAR WIRE	123.27	$17,139,725.02$	$9,362,717.00$	1.8306358
195,700 ACAR WIRE	195.7	$2,630,925.27$	$1,873,176.00$	1.4045265
2/0 COPPER CONDUCTOR	133.1	$1,346,236.36$	$532,633.00$	2.5275121
20 M.A.W. MESSENGER WIRE	20	$2,855,091.75$	$1,333,578.00$	2.140926
336,400 19 STR. ALL ALUMINUM	336.4	$9,462,230.02$	$5,646,839.00$	1.6756685
350 MCM COPPER CONDUCTOR	350	$2,293,985.20$	$85,617.00$	26.793571
392,500 24/13 ACAR WIRE	392.5	$1,018,369.50$	$863,538.00$	1.179299
4 COPPER CONDUCTOR	41.74	$20,512,898.86$	$11,855,843.00$	1.7301932
4A COPPER CONDUCTOR	41.74	$425,395.34$	$76,077.00$	5.5916419
6 COPPER CONDUCTOR	26.25	$11,935,258.01$	$15,247,078.00$	0.7827899
6A COPPER CONDUCTOR	26.25	$751,476.51$	$101,690.00$	7.3898762
750 MCM COPPER CONDUCTOR	750	$853,486.08$	$26,479.00$	32.232565
795 MCM ALUMINUM CONDUCTOR	795	$52,092,231.22$	$10,827,908.00$	4.810923
8 COPPER CONDUCTOR	16.51	$714,478.51$	$356,910.00$	2.001845
840,200 24/13 ACAR WIRE	840.2	$625,715.08$	$212,797.00$	2.9404319
1/0 CABLE	105.6	$46,299,775.20$	$21,978,822.00$	2.1065631
101 MCM ACSR CONDUCTOR	101	$1,181.18$	250.00	4.72472
1272 MCM ACSR CONDUCTOR	1272	$79,529.08$	$30,823.00$	2.5801862
200 MCM CABLE	200	$3,238.76$	500.00	6.47752
3/0 CONDUCTOR	167.8	$6,205,860.32$	$2,056,133.00$	3.0182193
300 MCM COPPER CONDUCTOR	300	$3,564.60$	260.00	13.71
4/0 CONDUCTOR	211.6	$15,519,658.14$	$6,550,826.00$	2.3691147
520 MCM CONDUCTOR	620	112.00	6.1450893	
600 MCM CONDUCTOR	600	$105,914.25$	16	$16,060.00$
636 MCM ALUMINUM CONDUCTOR	636	$21,911.09$	$3,040.00$	7.2075954
7/C CONDUCTOR	20.92	$18,059.98$	$4,050.00$	4.4592543
80 MCM ACSR CONDUCTOR	80	$20,945.38$	$11,500.00$	1.8213374
954 MCM ACSR CONDUCTOR	954	$553,522.85$	$121,743.00$	4.5466503

Zero Intercept Analysis Account 365 -- Overhead Conductor

July 31, 2020

n	y	\mathbf{x}	est y	$y^{*} n^{\wedge} .5$	$\mathrm{n}^{\wedge} .5$	xn^. 5
9,502,231	1.61223	66.37	1.657	4969.822299	3,082.57	204587
27,617	4.64736	41.74	1.554	772.3157654	166.18	6936.505
183,400	7.65556	66.36	1.657	3278.511696	428.25	28418.82
692,306	6.18079	105.60	1.821	5142.72476	832.05	87864.4
22,210	6.03454	105.60	1.821	899.3292067	149.03	15737.59
24,884	4.72145	105.60	1.821	744.7926988	157.75	16658.04
9,362,717	1.83064	123.27	1.895	5601.481447	3,059.86	377188.4
1,873,176	1.40453	195.70	2.197	1922.291387	1,368.64	267842.9
532,633	2.52751	133.10	1.936	1844.621562	729.82	97138.66
1,333,578	2.14093	20.00	1.464	2472.355157	1,154.81	23096.13
5,646,839	1.67567	336.40	2.784	3981.90412	2,376.31	799390
85,617	26.79357	350.00	2.841	7839.901541	292.60	102411.3
863,538	1.17930	392.50	3.018	1095.884179	929.27	364737.5
11,855,843	1.73019	41.74	1.554	5957.455664	3,443.23	143720.5
76,077	5.59164	41.74	1.554	1542.289987	275.82	11512.75
15,247,078	0.78279	26.25	1.490	3056.59924	3,904.75	102499.7
101,690	7.38988	26.25	1.490	2356.547978	318.89	8370.828
26,479	32.23256	750.00	4.509	5245.001932	162.72	122042.8
10,827,908	4.81092	795.00	4.697	15830.72049	3,290.58	2616010
356,910	2.00185	16.51	1.449	1195.941159	597.42	9863.395
212,797	2.94043	840.20	4.886	1356.419021	461.30	387583.6
21,978,822	2.10656	105.60	1.821	9875.899834	4,688.16	495069.4
250	4.72472	101.00	1.802	74.70438253	15.81	1596.95
30,823	2.58019	1,272.00	6.687	452.9898858	175.56	223318.4
500	6.47752	200.00	2.215	144.8417505	22.36	4472.136
2,056,133	3.01822	167.80	2.080	4327.891801	1,433.92	240612.2
260	13.71000	300.00	2.632	221.0671075	16.12	4837.355
6,550,826	2.36911	211.60	2.263	6063.649904	2,559.46	541581.3
112	6.14509	520.00	3.550	65.03351214	10.58	5503.163
16,060	6.59494	600.00	3.884	835.7640283	126.73	76036.83
3,040	7.20760	636.00	4.034	397.3993852	55.14	35066.62
4,050	4.45925	20.92	1.467	283.7852072	63.64	1331.341
11,500	1.82134	80.00	1.714	195.3166756	107.24	8579.044
121,743	4.54665	954.00	5.361	1586.403115	348.92	332866.7

Kentucky Utilities Company

Pri/Sec Splits for Overhead Conductor

Customer Demand

Overhead		63.99%	36.01%
Primary	70.54%	0.4514	0.2540
Secondary	29.46%	0.1885	0.1061

Exhibit WSS-24

Zero Intercept Analysis

For
Underground Conductor
(Kentucky Utilities)

Zero Intercept Analysis

Account 367 -- Underground Conductor

July 31, 2020

Weighted Linear Regression Statistics

		Estimate	Standard Error	T-Statistic
Size Coefficient (\$ per MCM)		0.0135482	0.0034047	3.9792049
Zero Intercept (\$ per Unit)		4.6531902	0.5775615	8.0566138
R-Square		0.8987417		
Plant Classification				
Total Number of Units		29,539,252		
Zero Intercept		4.6531902		
Zero Intercept Cost	\$	137,451,759		
Total Cost of Sample	\$	183,565,083		
Percentage of Total		0.748790328		
Percentage Classified as Customer-Related		74.88\%		
Percentage Classified as Demand-Related		25.12\%		

Zero Intercept Analysis Account 367 -- Underground Conductor

July 31, 2020

Description	Size	Cost	Quantity	Avg Cost
\#12 CABLE	13.12	$170,319.13$	77,929	2.185568017
\#2 Triplex	66.36	$88,747,142.22$	$15,945,949$	5.565497683
\#2 ACSR	66.36	$1,564,961.37$	157,316	9.947884322
1/0 CABLE	105.6	$13,237,152.96$	949,513	13.94099181
1/0 CONDUCTOR	105.6	$4,096,996.41$	206,882	19.80354216
1/0 Triplex	105.6	$518,357.22$	22,986	22.55099713
1000 MCM CONDUCTOR	1000	$6,480,812.47$	364,678	17.77132832
1500 MCM UGAL CABLE	1500	$44,861.19$	4,026	11.14286885
2/0 COPPER CONDUCTOR	133.1	$35,657,910.66$	$6,421,560$	5.552842403
20 M.A.W. MESSENGER WIRE	20	$1,880.60$	2,834	0.663585039
200 MCM CABLE	200	$44,255.13$	5,194	8.520433192
2000 MCM 1/C 1000V CABLE	2000	501.81	578	0.868183391
266 MCM ACSR CONDUCTOR	266	$7,717.86$	400	19.29465
3/0 CONDUCTOR	167.8	$994,247.11$	224,357	4.431540402
300 MCM COPPER CONDUCTOR	300	$8,963.91$	126	71.14214286
350 MCM COPPER CONDUCTOR	350	$4,484,214.59$	431,382	10.39499699
397 MCM ACSR CONDUCTOR	397	$736,737.37$	77,390	9.51980062
4 COPPER CONDUCTOR	41.74	$361,501.33$	44,452	8.132397417
4/0 CONDUCTOR	211.6	$22,155,450.85$	$2,874,908$	7.706490382
4A COPPER CONDUCTOR	41.74	$9,810.69$	4,140	2.369731884
500 MCM COPPER CONDUCTOR	500	$724,136.77$	68,224	10.61410603
520 MCM CONDUCTOR	520	751.53	75	6.0204
6 COPPER CONDUCTOR	26.25	$1,814,646.22$	$1,251,654$	1.449798602
600 MCM CONDUCTOR	600	$76,600.45$	3,983	19.23184785
6A COPPER CONDUCTOR	26.25	$337,831.10$	299328	1.128631802
750 MCM COPPER CONDUCTOR	750	$1,248,122.15$	96109	12.98652728
795 MCM ALUMINUM CONDUCTOR	795	$38,247.86$	2606	14.67684574
8 COPPER CONDUCTOR	795	$1,252.12$	673	1.860505201

Zero Intercept Analysis Account 367 -- Underground Conductor

July 31, 2020

n	y	\mathbf{x}	est y	$\mathrm{y}^{*} \mathrm{n}^{\wedge} .5$	n^. 5	xn^. 5
77,929	2.18557	13.12	4.831	610.1180568	279.16	3662.548519
15,945,949	5.56550	66.36	5.552	22224.35633	3,993.24	264991.2677
157,316	9.94788	66.36	5.552	3945.637423	396.63	26320.4206
949,513	13.94099	105.60	6.084	13584.51475	974.43	102899.7633
206,882	19.80354	105.60	6.084	9007.499162	454.84	48031.40285
22,986	22.55100	105.60	6.084	3418.987011	151.61	16010.15806
364,678	17.77133	1,000.00	18.201	10731.85195	603.89	603885.7508
4,026	11.14287	1,500.00	24.975	707.0235899	63.45	95176.15248
6,421,560	5.55284	133.10	6.456	14071.34529	2,534.08	337286.01
2,834	0.66359	20.00	4.924	35.32616628	53.24	1064.706532
5,194	8.52043	200.00	7.363	614.0626015	72.07	14413.8822
578	0.86818	2,000.00	31.750	20.87254435	24.04	48083.26112
400	19.29465	266.00	8.257	385.893	20.00	5320
224,357	4.43154	167.80	6.927	2099.058417	473.66	79480.7156
126	71.14214	300.00	8.718	798.568573	11.22	3367.491648
431,382	10.39500	350.00	9.395	6827.400468	656.80	229878.8703
77,390	9.51980	397.00	10.032	2648.318877	278.19	110441.6611
44,452	8.13240	41.74	5.219	1714.605635	210.84	8800.312567
2,874,908	7.70649	211.60	7.520	13066.78112	1,695.56	358779.5155
4,140	2.36973	41.74	5.219	152.47526	64.34	2685.669798
68,224	10.61411	500.00	11.427	2772.375238	261.20	130598.6217
75	6.02040	520.00	11.698	52.13819341	8.66	4503.3321
1,251,654	1.44980	26.25	5.009	1621.996163	1,118.77	29367.80268
3,983	19.23185	600.00	12.782	1213.741406	63.11	37866.60798
299,328	1.12863	26.25	5.009	617.4843505	547.11	14361.60506
96,109	12.98653	750.00	14.814	4026.011965	310.01	232510.8868
2,606	14.67685	795.00	15.424	749.2382406	51.05	40583.95188
673	1.86051	795.00	15.424	48.26567903	25.94	20624.08362

Kentucky Utilities Company

Pri/Sec Splits for Underground Conductor

		Customer	Demand
Underground		74.88%	25.12%
Primary	60.51%	0.4531	0.1520
Secondary	39.49%	0.2957	0.0992

Exhibit WSS-25

Zero Intercept Analysis

For

Line Transformers

(Kentucky Utilities)

Zero Intercept Analysis

 Account 368 - Line TransformersJuly 31, 2020

Weighted Linear Regression Statistics

		Standard Error			T-Statistic
	Estimate				
Size Coefficient (\$ per kVA)					
Zero Intercept (\$ per Unit)	11.7345763	0.4657978	25.19242516		
R-Square	461.59	63.5020377	7.268833323		

Plant Classification

Total Number of Units

Zero Intercept

Zero Intercept Cost

Total Cost of Sample
Percentage of Total
Percentage Classified as Customer-Related
Percentage Classified as Demand-Related

249,063
\$ 461.59
\$ 114,963,926
\$ 253,336,808
0.453798748
45.38\%
54.62%

Zero Intercept Analysis Account 368 - Line Transformers

July 31, 2020

Description	Size	Cost	Quantity	Avg Cost
TRANSFORMERS - OH 1 P - .6 KVA	0.6	473.46	1	473.46
TRANSFORMERS - OH 1P-1 KVA	1	14547.14	34	427.86
TRANSFORMERS - OH $1 \mathrm{P}-1.5 \mathrm{KVA}$	1.5	111.09	1	111.09
TRANSFORMERS - OH 1P-10 KVA	10	7656216.94	20187	379.26
TRANSFORMERS - OH 1P-100 KVA	100	6238699.31	4220	1478.36
TRANSFORMERS - OH 1P-1250 KVA	1250	148540.75	14	10610.05
TRANSFORMERS - OH 1P-15 KVA	15	29737938.25	55627	534.60
TRANSFORMERS - OH 1P-150 KVA	150	1793.73	3	597.91
TRANSFORMERS - OH 1P-167 KVA	167	4153323.94	2190	1896.49
TRANSFORMERS - OH 1P-25 KVA	25	42001035.64	63554	660.87
TRANSFORMERS - OH 1P-250 KVA	250	1019916.05	286	3566.14
TRANSFORMERS - OH 1P-3 KVA	3	34061.05	64	532.20
TRANSFORMERS - OH 1P-333 KVA	333	515097.04	131	3932.04
TRANSFORMERS - OH 1P-37.5 KVA	37.5	25074741.13	31674	791.65
TRANSFORMERS - OH 1P-5 KVA	5	318277.27	1770	179.82
TRANSFORMERS - OH 1P-50 KVA	50	19945734.75	15726	1268.33
TRANSFORMERS - OH 1P-500 KVA	500	1061113.17	218	4867.49
TRANSFORMERS - OH 1P-667 KVA	667	92692.95	17	5452.53
TRANSFORMERS - OH $1 \mathrm{P}-7.5 \mathrm{KVA}$	7.5	946.90	2	473.45
TRANSFORMERS - OH 1P-75 KVA	75	8415318.29	6787	1239.92
TRANSFORMERS - OH 1P-833 KVA	833	215904.20	19	11363.38
TRANSFORMERS - PM 1P-10 KVA	10	114272.74	149	766.93
TRANSFORMERS - PM 1P-100 KVA	100	2840373.40	1485	1912.71
TRANSFORMERS - PM 1P-15 KVA	15	2711728.77	3007	901.81
TRANSFORMERS - PM 1P-150 KVA	150	78245.20	16	4890.33
TRANSFORMERS - PM 1P-167 KVA	167	2686250.55	1087	2471.25
TRANSFORMERS - PM 1P-225 KVA	225	27212.10	4	6803.03
TRANSFORMERS - PM 1P-25 KVA	25	11914778.09	11668	1021.15
TRANSFORMERS - PM 1P-250 KVA	250	2101925.21	527	3988.47
TRANSFORMERS - PM 1P-333 KVA	333	3901.90	2	1950.95
TRANSFORMERS - PM 1P-37.5 KVA	37.5	11062540.89	9937	1113.27
TRANSFORMERS - PM 1P-50 KVA	50	9958889.97	8204	1213.91
TRANSFORMERS - PM 1P-75 KVA	75	4866865.69	3242	1501.19
TRANSFORMERS - PM 3P-1000 KVA	1000	4797246.42	382	12558.24
TRANSFORMERS - PM 3P-112 KVA	112	72785.98	25	2911.44
TRANSFORMERS - PM 3P-112.5 KVA	112.5	766431.89	213	3598.27
TRANSFORMERS - PM 3P-1250 KVA	1250	14355.37	2	7177.69
TRANSFORMERS - PM 3P-150 KVA	150	4396405.79	963	4565.32
TRANSFORMERS - PM 3P-1500 KVA	1500	5590700.76	315	17748.26
TRANSFORMERS - PM 3P-2000 KVA	2000	3328373.35	138	24118.65
TRANSFORMERS - PM 3P-225 KVA	225	3119782.71	626	4983.68
TRANSFORMERS - PM 3P - 2500 KVA	2500	3955764.43	180	21976.47
TRANSFORMERS - PM 3P-300 KVA	300	6384804.22	1085	5884.61
TRANSFORMERS - PM 3P - 3000 KVA	3000	938652.94	25	37546.12
TRANSFORMERS - PM 3P-333 KVA	333	117861.40	33	3571.56
TRANSFORMERS - PM 3P - 45 KVA	45	363190.52	114	3185.88
TRANSFORMERS - PM 3P-500 KVA	500	8876810.49	1098	8084.53
TRANSFORMERS - PM 3P-75 KVA	75	3124217.98	862	3624.38
TRANSFORMERS - PM 3P - 750 KVA	750	12443128.19	1143	10886.38
TRANSFORMERS - PM 3P - 833 KVA	833	32827.56	6	5471.26

Zero Intercept Analysis Account 368 - Line Transformers

July 31, 2020

n	y	x	est y	$\mathrm{y}^{*} \mathrm{n}^{\wedge} .5$	n^. 5	$\mathrm{xn}^{\wedge} .5$
1	473	0.60	289	473.46	1.00	0.6
34	428	1.00	473	2494.813928	5.83	5.830951895
1	111	1.50	704	111.09	1.00	1.5
20,187	379	10.00	4,628	53886.29685	142.08	1420.809628
4,220	1,478	100.00	46,170	96036.83274	64.96	6496.152708
14	10,610	1,250.00	576,994	39699.18532	3.74	4677.071733
55,627	535	15.00	6,936	126086.3393	235.85	3537.806524
3	598	150.00	69,250	1035.610498	1.73	259.8076211
2,190	1,896	167.00	77,097	88751.10071	46.80	7815.171783
63,554	661	25.00	11,551	166605.2008	252.10	6302.479671
286	3,566	250.00	115,408	60308.90032	16.91	4227.883631
64	532	3.00	1,396	4257.63125	8.00	24
131	3,932	333.00	153,720	45004.23734	11.45	3811.359206
31,674	792	37.50	17,321	140891.5678	177.97	6673.946546
1,770	180	5.00	2,320	7565.175216	42.07	210.3568397
15,726	1,268	50.00	23,091	159052.6479	125.40	6270.167462
218	4,867	500.00	230,805	71867.6523	14.76	7382.41153
17	5,453	667.00	307,889	22481.34256	4.12	2750.111452
2	473	7.50	3,474	669.5594111	1.41	10.60660172
6,787	1,240	75.00	34,631	102148.4126	82.38	6178.743804
19	11,363	833.00	384,513	49531.82049	4.36	3630.96282
149	767	10.00	4,628	9361.587625	12.21	122.0655562
1,485	1,913	100.00	46,170	73707.58976	38.54	3853.569774
3,007	902	15.00	6,936	49451.50743	54.84	822.5417923
16	4,890	150.00	69,250	19561.3	4.00	600
1,087	2,471	167.00	77,097	81476.38382	32.97	5505.937068
4	6,803	225.00	103,869	13606.05	2.00	450
11,668	1,021	25.00	11,551	110303.1075	108.02	2700.462923
527	3,988	250.00	115,408	91561.30026	22.96	5739.120142
2	1,951	333.00	153,720	2759.05995	1.41	470.9331163
9,937	1,113	37.50	17,321	110975.5342	99.68	3738.168836
8,204	1,214	50.00	23,091	109950.7278	90.58	4528.79675
3,242	1,501	75.00	34,631	85475.73737	56.94	4270.392254
382	12,558	1,000.00	461,597	245448.4794	19.54	19544.82029
25	2,911	112.00	51,709	14557.196	5.00	560
213	3,598	112.50	51,940	52515.04779	14.59	1641.883446
2	7,178	1,250.00	576,994	10150.77947	1.41	1767.766953
963	4,565	150.00	69,250	141672.1966	31.03	4654.836195
315	17,748	1,500.00	692,390	315000.3023	17.75	26622.35902
138	24,119	2,000.00	923,183	283329.9551	11.75	23494.68025
626	4,984	225.00	103,869	124691.595	25.02	5629.498201
180	21,976	2,500.00	1,153,976	294845.2723	13.42	33541.01966
1,085	5,885	300.00	138,487	193835.2308	32.94	9881.801455
25	37,546	3,000.00	1,384,769	187730.588	5.00	15000
33	3,572	333.00	153,720	20517.03624	5.74	1912.939361
114	3,186	45.00	20,783	34015.90879	10.68	480.4685213
1,098	8,085	500.00	230,805	267889.5534	33.14	16568.04153
862	3,624	75.00	34,631	106411.2867	29.36	2201.987738
1,143	10,886	750.00	346,201	368049.6932	33.81	25356.21226
6	5,471	833.00	384,513	13401.79525	2.45	2040.424956

Exhibit WSS-26

Zero Intercept Analysis

For
Overhead Conductor
(Louisville Gas and Electric Company)

Louisville Gas and Electric Company

Zero Intercept Analysis
Account 365 -- Overhead Conductor

July 31, 2020

Weighted Linear Regression Statistics

		Estimate
	Standard Error	
Size Coefficient (\$ per MCM)	0.0041724	0.0008336
Zero Intercept (\$ per Unit)	1.3801706	0.2486132
R-Square	0.8225292	
Plant Classification		$99,629,647$
Total Number of Units		1.3801706
Zero Intercept	$\$$	$137,505,908$
Zero Intercept Cost	$\$$	$214,874,064$
Total Cost of Sample		0.639937206
Percentage of Total		
Percentage Classified as Customer-Related		
Percentage Classified as Demand-Related		

Louisville Gas and Electric Company

Exhibit WSS-26
Page 2 of 4
Zero Intercept Analysis
Account 365 -- Overhead Conductor

July 31, 2020

Description	Size	Cost	Quantity	Avg Cost
\#2 Triplex	66.369	$15,319,819.64$	$9,502,231.00$	1.612234
\#4 Aluminum Poly	41.74	$128,346.24$	$27,617.00$	4.6473636
\#2 ACSR	66.36	$1,404,030.05$	$183,400.00$	7.6555619
1/0 CONDUCTOR	105.6	$4,279,000.42$	$692,306.00$	6.1807935
1/0 Triplex	105.6	$134,027.21$	$22,210.00$	6.0345434
1/0 Aluminum	105.6	$117,488.54$	$24,884.00$	4.7214491
123,270 ACAR WIRE	123.27	$17,139,725.02$	$9,362,717.00$	1.8306358
195,700 ACAR WIRE	195.7	$2,630,925.27$	$1,873,176.00$	1.4045265
2/0 COPPER CONDUCTOR	133.1	$1,346,236.36$	$532,633.00$	2.5275121
20 M.A.W. MESSENGER WIRE	20	$2,855,091.75$	$1,333,578.00$	2.140926
336,400 19 STR. ALL ALUMINUM	336.4	$9,462,230.02$	$5,646,839.00$	1.6756685
350 MCM COPPER CONDUCTOR	350	$2,293,985.20$	$85,617.00$	26.793571
392,500 24/13 ACAR WIRE	392.5	$1,018,369.50$	$863,538.00$	1.179299
4 COPPER CONDUCTOR	41.74	$20,512,898.86$	$11,855,843.00$	1.7301932
4A COPPER CONDUCTOR	41.74	$425,395.34$	$76,077.00$	5.5916419
6 COPPER CONDUCTOR	26.25	$11,935,258.01$	$15,247,078.00$	0.7827899
6A COPPER CONDUCTOR	26.25	$751,476.51$	$101,690.00$	7.3898762
750 MCM COPPER CONDUCTOR	750	$853,486.08$	$26,479.00$	32.232565
795 MCM ALUMINUM CONDUCTOR	795	$52,092,231.22$	$10,827,908.00$	4.810923
8 COPPER CONDUCTOR	16.51	$714,478.51$	$356,910.00$	2.001845
840,200 24/13 ACAR WIRE	840.2	$625,715.08$	$212,797.00$	2.9404319
1/0 CABLE	105.6	$46,299,775.20$	$21,978,822.00$	2.1065631
101 MCM ACSR CONDUCTOR	101	$1,181.18$	250.00	4.72472
1272 MCM ACSR CONDUCTOR	1272	$79,529.08$	$30,823.00$	2.5801862
200 MCM CABLE	200	$3,238.76$	500.00	6.47752
3/0 CONDUCTOR	167.8	$6,205,860.32$	$2,056,133.00$	3.0182193
300 MCM COPPER CONDUCTOR	300	$3,564.60$	260.00	13.71
4/0 CONDUCTOR	211.6	$15,519,658.14$	$6,550,826.00$	2.3691147
520 MCM CONDUCTOR	520	688.25	112.00	6.1450893
600 MCM CONDUCTOR	600	$105,914.75$	$16,060.00$	6.5949408
636 MCM ALUMINUM CONDUCTOR	636	$21,911.09$	$3,040.00$	7.2075954
7/C CONDUCTOR	20.92	$18,059.98$	$4,050.00$	4.4592543
80 MCM ACSR CONDUCTOR	80	$20,945.38$	$11,500.00$	1.8213374
954 MCM ACSR CONDUCTOR	954	$553,522.85$	$121,743.00$	4.5466503

Louisville Gas and Electric Company

Exhibit WSS-26
Page 3 of 4
Zero Intercept Analysis
Account 365 -- Overhead Conductor

July 31, 2020

n	y	\mathbf{x}	est y	$y^{*} n^{\wedge} .5$	n^. 5	xn^. 5
9,502,231	1.61223	66.37	1.657	4969.822299	3,082.57	204587
27,617	4.64736	41.74	1.554	772.3157654	166.18	6936.505
183,400	7.65556	66.36	1.657	3278.511696	428.25	28418.82
692,306	6.18079	105.60	1.821	5142.72476	832.05	87864.4
22,210	6.03454	105.60	1.821	899.3292067	149.03	15737.59
24,884	4.72145	105.60	1.821	744.7926988	157.75	16658.04
9,362,717	1.83064	123.27	1.895	5601.481447	3,059.86	377188.4
1,873,176	1.40453	195.70	2.197	1922.291387	1,368.64	267842.9
532,633	2.52751	133.10	1.936	1844.621562	729.82	97138.66
1,333,578	2.14093	20.00	1.464	2472.355157	1,154.81	23096.13
5,646,839	1.67567	336.40	2.784	3981.90412	2,376.31	799390
85,617	26.79357	350.00	2.841	7839.901541	292.60	102411.3
863,538	1.17930	392.50	3.018	1095.884179	929.27	364737.5
11,855,843	1.73019	41.74	1.554	5957.455664	3,443.23	143720.5
76,077	5.59164	41.74	1.554	1542.289987	275.82	11512.75
15,247,078	0.78279	26.25	1.490	3056.59924	3,904.75	102499.7
101,690	7.38988	26.25	1.490	2356.547978	318.89	8370.828
26,479	32.23256	750.00	4.509	5245.001932	162.72	122042.8
10,827,908	4.81092	795.00	4.697	15830.72049	3,290.58	2616010
356,910	2.00185	16.51	1.449	1195.941159	597.42	9863.395
212,797	2.94043	840.20	4.886	1356.419021	461.30	387583.6
21,978,822	2.10656	105.60	1.821	9875.899834	4,688.16	495069.4
250	4.72472	101.00	1.802	74.70438253	15.81	1596.95
30,823	2.58019	1,272.00	6.687	452.9898858	175.56	223318.4
500	6.47752	200.00	2.215	144.8417505	22.36	4472.136
2,056,133	3.01822	167.80	2.080	4327.891801	1,433.92	240612.2
260	13.71000	300.00	2.632	221.0671075	16.12	4837.355
6,550,826	2.36911	211.60	2.263	6063.649904	2,559.46	541581.3
112	6.14509	520.00	3.550	65.03351214	10.58	5503.163
16,060	6.59494	600.00	3.884	835.7640283	126.73	76036.83
3,040	7.20760	636.00	4.034	397.3993852	55.14	35066.62
4,050	4.45925	20.92	1.467	283.7852072	63.64	1331.341
11,500	1.82134	80.00	1.714	195.3166756	107.24	8579.044
121,743	4.54665	954.00	5.361	1586.403115	348.92	332866.7

Louisville Gas \& Electric Company
Pri/Sec Splits for Overhead Conductor

Customer Demand

Overhead		63.99%	36.01%
Primary	70.52%	0.451257	0.253943
Secondary	29.48%	0.188643	0.106157

Exhibit WSS-27

Zero Intercept Analysis

For
Underground Conductor
(Louisville Gas and Electric Company)

Zero Intercept Analysis

Account 367 -- Underground Conductor

July 31, 2020

Weighted Linear Regression Statistics

	Estimate	Standard Error	T-Statistic
Size Coefficient (\$ per MCM)	0.0120160	0.0020905	5.74802331
Zero Intercept (\$ per Unit)	3.6032354	0.6693966	5.38281094
R-Square	0.8880539		
Plant Classification			
Total Number of Units	28,418,282		
Zero Intercept	3.6032354		
Zero Intercept Cost	\$102,397,759		
Total Cost of Sample	171,072,223		
Percentage of Total	0.598564498		
Percentage Classified as Customer-Related	59.86\%		
Percentage Classified as Demand-Related	40.14\%		

Zero Intercept Analysis

Account 367 -- Underground Conductor

July 31, 2020

Description	Size	Cost	Quantity	Avg Cost
\#12 CABLE	13.12	$2,112,678.09$	745,191	2.83508267
\#2 ACSR	66.36	$1,557,878.07$	156,578	9.949533587
1/0 CONDUCTOR	105.6	$7,195,209.68$	492,534	14.60855429
1000 MCM CONDUCTOR	1000	$31,580,920.64$	$2,179,943$	14.48703963
2/0 COPPER CONDUCTOR	133.1	$3,012,847.79$	599,963	5.021722656
200 MCM 1/C 500/600V CABLE	200	$28,562.39$	1,550	18.42734839
250 MCM COPPER CONDUCTOR	250	$161,508.10$	111,488	1.448659049
350 MCM COPPER CONDUCTOR	350	$16,509,361.29$	$1,003,510$	16.45161612
4 COPPER CONDUCTOR	41.74	$827,737.92$	655,174	1.263386398
6 COPPER CONDUCTOR	26.25	$1,303,875.94$	551,368	2.364801621
750 MCM COPPER CONDUCTOR	750	$4,691,977.35$	268,440	17.47868183
795 MCM ALUMINUM CONDUCTOR	795	$502,850.86$	53,029	9.482563503
8 COPPER CONDUCTOR	16.51	$26,725.53$	18,183	1.469808612
\#2 Triplex	66.36	$17,758,638.68$	$3,500,675$	5.072918417
1/0 CABLE	105.6	$56,010,718.58$	$12,543,200$	4.465424978
123,270 ACAR WIRE	123.27	$7,397.12$	496	14.91354839
195,700 ACAR WIRE	195.7	$10,289.60$	7,611	1.351937984
3/0 CONDUCTOR	167.8	$327,842.85$	31,894	10.27913871
336,400 19 STR. ALL ALUMINUM	336.4	$95,736.62$	2,289	41.82464832
4/0 CONDUCTOR	211.6	$27,020,420.38$	5440647	4.966398368
600 MCM CONDUCTOR	600	$21,636.43$	1634	13.24138923
6A COPPER CONDUCTOR	26.25	$307,231.56$	52777	5.821315346
840,200 24/13 ACAR WIRE	840.2	177.03	108	1.639166667

Zero Intercept Analysis

 Account 367 -- Underground ConductorJuly 31, 2020

n	y	\mathbf{x}	est y	$\mathrm{y}^{*} \mathrm{n}^{\wedge} .5$	n^. 5	xn^. 5
745,191	2.83508	13.12	3.761	2447.369412	863.24	11325.76733
156,578	9.94953	66.36	4.401	3937.02428	395.70	26258.61091
492,534	14.60855	105.60	4.872	10252.39539	701.81	74110.88953
2,179,943	14.48704	1,000.00	15.619	21389.57805	1,476.46	1476463.003
599,963	5.02172	133.10	5.203	3889.689706	774.57	103095.6377
1,550	18.42735	200.00	6.006	725.4854315	39.37	7874.007874
111,488	1.44866	250.00	6.607	483.7046314	333.90	83474.54702
1,003,510	16.45162	350.00	7.809	16480.46341	1,001.75	350613.7119
655,174	1.26339	41.74	4.105	1022.62057	809.43	33785.53279
551,368	2.36480	26.25	3.919	1755.963535	742.54	19491.71651
268,440	17.47868	750.00	12.615	9055.914048	518.11	388583.9678
53,029	9.48256	795.00	13.156	2183.647227	230.28	183072.8099
18,183	1.46981	16.51	3.802	198.1953939	134.84	2226.280296
3,500,675	5.07292	66.36	4.401	9491.476451	1,871.01	124160.1629
12,543,200	4.46542	105.60	4.872	15814.91896	3,541.64	373996.9769
496	14.91355	123.27	5.084	332.1404929	22.27	2745.353252
7,611	1.35194	195.70	5.955	117.9444831	87.24	17073.07258
31,894	10.27914	167.80	5.620	1835.740213	178.59	29967.21967
2,289	41.82465	336.40	7.645	2001.037347	47.84	16094.55167
5,440,647	4.96640	211.60	6.146	11584.22081	2,332.52	493561.1163
1,634	13.24139	600.00	10.813	535.2535765	40.42	24253.65952
52,777	5.82132	26.25	3.919	1337.345055	229.73	6030.476893
108	1.63917	840.20	13.699	17.03471969	10.39	8731.614531

Louisville Gas \& Electric Company

Pri/Sec Splits for Underground Conductor

		Customer	Demand
Underground		59.86%	40.14%
Primary	88.07%	0.527187	0.353513
Secondary	11.93%	0.071413	0.047887

Exhibit WSS-28

Zero Intercept Analysis

For
Line Transformers
(Louisville Gas and Electric Company)

Zero Intercept Analysis

Account 368 - Line Transformers

July 31, 2020

Weighted Linear Regression Statistics

		Estimate	Standard Error	T-Statistic
Size Coefficient (\$ per kVA)		17.6357155	1.1732790	15.03113556
Zero Intercept (\$ per Unit)		771.57	239.3973453	3.2229544
R-Square		0.9017152		
Plant Classification				
Total Number of Units		36,724		
Zero Intercept	\$	771.57		
Zero Intercept Cost	\$	28,335,016		
Total Cost of Sample	\$	79,168,555		
Percentage of Total		0.357907459		
Percentage Classified as Customer-Related		35.79\%		
Percentage Classified as Demand-Related		64.21\%		

Zero Intercept Analysis
 Account 368 - Line Transformers

July 31, 2020

	Size	Cost	Quantity	Avg Cost
TRANSFORMERS - OH 1P-100 KVA	100	1356037.78	528	2568.25
TRANSFORMERS - OH 1P-1 KVA	1	101798.01	191	532.97
TRANSFORMERS - OH 1P-15 KVA	15	2829522.18	3564	793.92
TRANSFORMERS - OH 1P-150 KVA	150	239101.48	64	3735.96
TRANSFORMERS - OH 1P-167 KVA	167	888091.76	327	2715.88
TRANSFORMERS - OH 1P-25 KVA	25	6591201.39	6546	1006.91
TRANSFORMERS - OH 1P-250 KVA	250	143562.02	30	4785.40
TRANSFORMERS - OH 1P-3 KVA	3	27315.31	28	975.55
TRANSFORMERS - OH 1P-333 KVA	333	14112.54	2	7056.27
TRANSFORMERS - OH 1P-37.5 KVA	37.5	6831989.67	6068	1125.90
TRANSFORMERS - OH 1P-50 KVA	50	5257198.70	3367	1561.39
TRANSFORMERS - OH 1P-500 KVA	500	379912.35	97	3916.62
TRANSFORMERS - OH 1P-75 KVA	75	2131164.69	1082	1969.65
TRANSFORMERS - PM 1P - 100 KVA	100	2358129.09	916	2574.38
TRANSFORMERS - PM 1P-150 KVA	150	583737.81	175	3335.64
TRANSFORMERS - PM 1P-225 KVA	225	540183.84	104	5194.08
TRANSFORMERS - PM 1P-25 KVA	25	2078735.66	1992	1043.54
TRANSFORMERS - PM 1P-37.5 KVA	37.5	3499914.69	2529	1383.91
TRANSFORMERS - PM 1P-50 KVA	50	6222858.08	3536	1759.86
TRANSFORMERS - PM 1P-75 KVA	75	6008078.93	2912	2063.21
TRANSFORMERS - PM 3P-1000 KVA	1000	6642706.89	236	28147.06
TRANSFORMERS - PM 3P-150 KVA	150	1474889.68	244	6044.63
TRANSFORMERS - PM 3P - 1500 KVA	1500	2229052.20	106	21028.79
TRANSFORMERS - PM 3P-2000 KVA	2000	1608542.18	57	28220.04
TRANSFORMERS - PM 3P-225 KVA	225	873694.81	107	8165.37
TRANSFORMERS - PM 3P-2500 KVA	2500	1429641.03	45	31769.80
TRANSFORMERS - PM 3P-300 KVA	300	3626588.95	424	8553.28
TRANSFORMERS - PM 3P-3000 KVA	3000	496323.05	12	41360.25
TRANSFORMERS - PM 3P - 500 KVA	500	4537659.88	315	14405.27
TRANSFORMERS - OH 1P-7.5 KVA	7.5	2397.60	1	2397.60
TRANSFORMERS - PM 3P-75 KVA	75	725338.18	106	6842.81
TRANSFORMERS - PM 3P - 750 KVA	750	4852790.96	297	16339.36
TRANSFORMERS - OH 1P-10 KVA	10	83109.37	125	664.87
TRANSFORMERS - PM 1P-15 KVA	15	83044.45	112	741.47
TRANSFORMERS - PM 1P-167 KVA	167	1404628.80	380	3696.39
TRANSFORMERS - PM 1P-250 KVA	250	473303.55	65	7281.59
TRANSFORMERS - PM 1P-500 KVA	500	542197.87	34	15947.00

Zero Intercept Analysis
 Account 368 - Line Transformers

July 31, 2020

n	y	x	est y	$\mathrm{y}^{*} \mathrm{n}^{\wedge} .5$	n^. 5	xn^. 5
528	2,568	100.00	77,174	59013.96953	22.98	2297.825059
191	533	1.00	789	7365.845491	13.82	13.82027496
3,564	794	15.00	11,591	47396.27983	59.70	895.4886934
64	3,736	150.00	115,753	29887.685	8.00	1200
327	2,716	167.00	128,869	49111.58655	18.08	3019.8846
6,546	1,007	25.00	19,307	81466.03528	80.91	2022.683861
30	4,785	250.00	192,909	26210.71892	5.48	1369.306394
28	976	3.00	2,332	5162.108375	5.29	15.87450787
2	7,056	333.00	256,949	9979.072734	1.41	470.9331163
6,068	1,126	37.50	28,951	87705.01254	77.90	2921.151314
3,367	1,561	50.00	38,596	90600.96713	58.03	2901.292815
97	3,917	500.00	385,801	38574.25477	9.85	4924.428901
1,082	1,970	75.00	57,885	64789.314	32.89	2467.032631
916	2,574	100.00	77,174	77914.77825	30.27	3026.54919
175	3,336	150.00	115,753	44126.43075	13.23	1984.313483
104	5,194	225.00	173,620	52969.38348	10.20	2294.558781
1,992	1,044	25.00	19,307	46575.18614	44.63	1115.79568
2,529	1,384	37.50	28,951	69595.80201	50.29	1885.843644
3,536	1,760	50.00	38,596	104648.6833	59.46	2973.213749
2,912	2,063	75.00	57,885	111337.11	53.96	4047.221269
236	28,147	1,000.00	771,584	432403.388	15.36	15362.2915
244	6,045	150.00	115,753	94420.13644	15.62	2343.074903
106	21,029	1,500.00	1,157,368	216504.6888	10.30	15443.44521
57	28,220	2,000.00	1,543,151	213056.6165	7.55	15099.66887
107	8,165	225.00	173,620	84463.26531	10.34	2327.418097
45	31,770	2,500.00	1,928,934	213118.3018	6.71	16770.50983
424	8,553	300.00	231,488	176122.7288	20.59	6177.378085
12	41,360	3,000.00	2,314,718	143276.1233	3.46	10392.30485
315	14,405	500.00	385,801	255668.1703	17.75	8874.119675
1	2,398	7.50	5,804	2397.6	1.00	7.5
106	6,843	75.00	57,885	70451.07197	10.30	772.1722606
297	16,339	750.00	578,693	281587.4917	17.23	12925.26595
125	665	10.00	7,733	7433.528035	11.18	111.8033989
112	741	15.00	11,591	7846.962945	10.58	158.7450787
380	3,696	167.00	128,869	72055.93708	19.49	3255.429311
65	7,282	250.00	192,909	58706.0802	8.06	2015.564437
34	15,947	500.00	385,801	92986.16757	5.83	2915.475947

Exhibit WSS-29

Electric Cost of Service Study
Functional Assignment and
Classification
(Kentucky Utilities)

	Name	Functional Vector		$\begin{gathered} \text { Total } \\ \text { System } \end{gathered}$	Production Demand		Production Energy		TransmissionDemandDemand		Distribution Poles			$\begin{array}{r}\text { Distribution } \\ \text { Substation }\end{array}$General		Distribution Primary Lines						Distribution Sec. Lines		
Description						LOLP		Energy				Specific				Specific		Demand		Customer		Demand		Customer
Plant in Service																								
Intangible Plant																								
301.00 Organization	P301	PT\&D	\$	41,552		26,150		-		5,660		-		1,527		-		1,215		2,361		547		1,104
302.00 Franchise and consents	P301	PT\&D		144,369		90,855		-		19,667		-		5,306		-		4,220		8,202		1,900		3,835
303.00 Software	P302	PT\&D		105,565,478		66,435,041		-		14,380,841		-		3,879,489		-		3,085,565		5,997,613		1,389,074		2,804,196
Total Intangible Plant	PINT		\$	105,751,399	s	66,552,045	\$	-	\$	14,406,168	s	-	\$	3,886,322	\$	-	\$	3,090,999	s	6,008,176	\$	1,391,520	s	2,809,134
Steam Production Plant																								
Total Steam Production Plant	PSTPR	F017	\$	4,761,764,495		4,761,764,495		-		-		-		-		-		-		-		-		-
Hydraulic Production Plant																								
Total Hydraulic Production Plant	PHDPR	F017	\$	45,726,563		45,726,563		-		-		-		-		-		-		-		-		-
Other Production Plant																								
Total Other Production Plant	POTPR	F017	\$	1,044,547,033		1,044,547,033		-		-		-		-		-		-		-		-		-
Total Production Plant	PPRTL		\$	5,852,038,091	s	5,852,038,091	\$	-	\$	-	s	-			\$	-	\$	-						
Transmission																								
KENTUCKY SYSTEM PROPERTY	P350	F011	\$	1,258,529,222				-		1,258,529,222		-		-		-		-		-		-		-
VIRGINIA PROPERTY - 500 KV LINE	P352	F011		8,230,429		-		-		8,230,429		-		-		-		-		-		-		-
Total Transmission Plant	Ptran		\$	1,266,759,651	s	-	\$	-	s	1,266,759,651	s	-	\$	-	\$	-	s	-	s	-	\$	-	\$	-
Distribution																								
TOTAL ACCTS 360-362	P362	F001	\$	341,731,104		-		-		-		-		341,731,104		-				-		-		-
364\& 365-OVERHEAD LINES	P365	F003		921,791,437		-		-		-		-				-		234,148,428		416,083,252		97,788,669		173,771,089
366 \& 367-UNDERGROUND LINES	P367	Fo04		247,685,955		-		-		-		-		-		-		37,648,543		112,226,229		24,570,169		73,241,014
368-TRANSFORMERS - POWER POOL	P368	Foos		5,363,042		-		-		-		-		-		-		-		-		-		-
368 -TRANSFORMERS - ALL OTHER	${ }^{\text {P368a }}$	${ }^{\text {Fo0s }}$		321,195,483		-		-		-		-		-		-		-		-		-		-
369-SERVICES	P369	F006		124,944,572		-		-		-		-		-		-		-		-		-		-
370-METERS	${ }_{\text {P370 }}$	${ }_{\text {FOOO }}$		74,150,151		-		-		-		-		-		:		$:$		-		$:$		$:$
371-CUSTOMER INSTALLATION	${ }_{\text {P371 }}$	${ }^{\text {F007 }}$		159,234		-		-		-		-		-		-		-		-		-		-
373-STREET LIGHTING	P373	F008		143,087,299		-		-		-		-		-		-		-		-		-		-
Total Distribution Plant	PDIST		\$	2,180,108,277	s	-	\$	-	s	-	s	-	\$	341,731,104	\$	-	s	271,796,970	\$	528,309,481	\$	122,358,838	\$	247,012,103
Total Prod, Trans, and Dist Plant	PT\&D		\$	9,298,906,019	s	5,852,038,091	\$	-	s	1,266,759,651	s		\$	341,731,104	\$	-	s	271,796,970	\$	528,309,481	\$	122,358,838	s	247,012,103

Description	Name	Functional Vector	TotalSystem	Production Demand	Production Energy	$\begin{array}{r} \text { Transmission } \\ \text { Demand } \end{array}$	Distribution Poles	Distribution Substation	Distribution Primary Lines			Distribution Sec. Lines	
					Energy		Specific	General	Specific	Demand	Customer	Demand	

Plant in Service (Continued)

General Plant
Total General Plant
TOTAL COMMON PLANT
105.00 PLANT HELD FOR FUTURE USE - PRODUCTION
150.00 PANANT HED FOR UTURE USE - ISTRIIITION
105.00 PLANT HELD FOR FUTURE USE - GENERAL
OTHER
Total Plant in Service

PGP
PCO
P105
P105
P105

$\$$	$244,918,755$	$154,133,602$
$\$$	$-i$	-
$\$$	290,384	290,384
$\$$	906,481	-
$\$$	-	-
	-	-
$\$$	$9,650,773,038$	$\$$
$6,073,014,123$	$\$$	

33,364,484

1,314,530,303 s
\$
$354,760,183$ s
$9,000,667$
$\dot{-}$
142,091
-
-
$54,760,183$
7,158,710
.

13,914,852
6,505,915

113,012
219,669
50,876
102,707

282,159,692 \quad \& $548,452,178$ \& $127,023,977$ \$ $256,429,85$
Construction Work in Progress (CWIP)

$$
\begin{aligned}
& \text { CWIP Production } \\
& \text { CWWP Trasmission } \\
& \text { CWIP Distribution Plan } \\
& \text { CWWP General Plant } \\
& \text { RWIP }
\end{aligned}
$$

Total Construction Work in Progress
Total Utility Plant

CWIP1	F017	\$	20,992,633		20,992,633
CWIP2	F011		78,958,656		
cWIP3	PDIST		26,143,041		
CWIP4	PT\&D		29,729,390		18,709,461
CWIP5	F004				
TCWIP		\$	155,823,720	s	39,702,094
		\$	9,806,596,758	s	6,112,716,217

	$78,958,656$	
	-	
	$4,049,938$	
	-	
S	$83,008,594$	S
S	$1,397,538,897$	S

	-	
	$4,097,911$	
$1,092,543$		
	-	
	$5,190,455$	$\$$
$\$$	$359,950,638$	$\$$

	-	-	-	-
	$3,259,-287$	$6,335,289$	$1,467,281$	$2,962,077$
	868,958	$1,689,050$		391,192
	-	-	-	789,719
	$4,128,245$	$\$$	$8,024,339$	$\$$
	$1,858,473$	$\$$	$3,751,795$	
$\$$	$286,287,937$	$\$$	$556,476,517$	$\$$

		Functional	Distribution Line Trans.	Distribution Services	Distribution Meters	Distribution St. \& Cust. Lighting	Customer Accounts Expense	$\begin{array}{r} \text { Customer } \\ \text { Service \& Info. } \end{array}$	Sales Expense
Description	Name	Vector	Demand ${ }^{\text {Cus }}$	ustome					

Plant in Service (Continued)

General Plant
Total General Plant
TOTAL COMMON PLANT
05.00 LLANT HELD FRO FUTUEE USE - PRODUCTION
05.00 PLANT HELD FOR FUTURE USE - DISTRIBUTION

PGP	
PCOM	
P105	PRR
P105	PDIS
P105	
	PDIS

$4,697,901$	$3,903,143$	$3,290,846$	$1,957,194$	$3,768,697$
-	-	-	-	-
74,164	$-\quad$	-	-	-
-	-	51,951	-	30,898
-	-	-	-	59,495
		-		
$185,167,208$	$\$$	$153,841,916$	$\$$	$129,708,296$

Construction Work in Progress (CWIP)
CWIP Production
CWIP Transmission
CWIP Distribution Plant
CWIP Seneral Plant
RWIP

Total Construction Work in Progress
Total Utility Plant

CWIP1	F017		-									
CWIP2	F011		-		-		-				-	
CWIP3	PDIST		2,138,906		1,777,061		1,498,288		891,090		1,715,849	
CWIP4	PT\&D		570,253		473,782		399,458		237,573		457,462	
CWIP5	F004		-		-		-		-		.	
TCWIP		s	2,709,160	s	2,250,843	s	1,897,747	\$	1,128,664	s	2,173,311	\$
		\$	187,876,368	s	156,092,759	\$	131,606,043	s	78,271,220	s	150,716,057	\$

		Functional Vector		$\begin{gathered} \text { Total } \\ \text { System } \end{gathered}$	Production Demand		Production Energy		$\begin{array}{\|} \begin{array}{r} \text { Transmission } \\ \text { Demand } \\ \text { Demand } \end{array} \\ \hline \end{array}$		Distribution Poles		$\begin{array}{r}\text { Distribution } \\ \text { Substation }\end{array}$General			Distribution Primary Lines				Customer	Distribution Sec.Lines			
Description	Name					LOLP		Energy			Specific					Specific		Demand			Demand			Customer Demand Customer
Rate Base																								
Utility Plant																								
Plant in Service			\$	9,650,773,038	s	6,073,014,123	\$	-	s	1,314,530,303	s		\$	354,760,183	\$	-	s	282,159,692	s	548,452,178	\$	127,023,977	\$	256,429,859
Construction Work in Progress (CWIP)				155,823,720		39,702,094.34		-		83,008,593.88				5,190,454.54		-		4,128,245.29		8,024,339.34		1,858,472.87		3,751,795.13
Total Utility Plant	TUP		\$	9,806,596,758	s	6,112,716,217	\$	-	s	1,397,538,897	s		\$	359,950,638	\$	-	\$	286,287,937	s	556,476,517	\$	128,882,450	\$	260,181,655
Less: Acummulated Provision for Depreciation																								
Steam Production	ADEPREPA	F017	\$	1,910,902,169		1,910,902,169		-		-				-		-		-		-		-		
Hydralic Production	RWIP	F017		16,663,604		16,663,604		-		-				-		-		-		-		-		-
Other Production		F017		425,504,289		425,504,289		-		-				-		-		-				-		
Transmission - Kentucky System Property	ADEPRTP	ptran		340,091,705		-		-		340,091,705				-		-		-		-		-		-
Transmission - Virgina Property	ADEPRDI	PTRAN		2,567,091		-		-		2,567,091				-		-		-						
Transmission - FERC	ADEPRDD ${ }^{\text {a }}$	${ }^{\text {PTRAN }}$		755,524		-		-		755,524				108563287		-		8636, ${ }^{72}$				8-		
Distribution	ADEPRD11	PDIST		692,590,515		-		-		-				108,563,287		-		86,346,172		167,836,680		38,871,726		78,472,359
General Plant	ADEPRD12	PT\&D		77,429,701		48,728,480		-		10,547,996				2,845,511		-		2,263,186		4,399,103		1,018,852		2,056,809
Intangible Plant	ADEPRGP	PT\&D		49,083,879		30,889,734		-		6,686,537				1,803,813		-		1,434,669		2,788,659		645,866		1,303,843
Total Accumulated Depreciation	TADEPR		\$	3,515,588,477	s	2,432,688,276	\$	-	s	360,648,853	s		\$	113,212,611	\$		s	90,044,027	s	175,024,442	\$	40,536,443	\$	81,833,011
Net Utility Plant	ntplant		\$	6,291,008,281	s	3,680,027,941	\$	-	s	1,036,890,044	s		s	246,738,027	\$	-	s	196,243,910	s	381,452,075	\$	88,346,006	\$	178,348,644
Working Capital																								
Cash Working Capital - Operation and Maintenance Expenses	cwc	омLPP	\$	130,078,093		19,058,566		79,624,711		8,904,127				1,431,095		-		1,998,528		3,667,849		857,386		1,599,580
Materials and Supplies	M\&S	TPIS		59,890,781		37,687,920		-		8,157,714				2,201,571		-		1,751,027		3,403,585		788,286		1,591,353
Prepayments	PREPAY	TPIS		19,024,116		11,971,448		-		2,591,272				699,322		-		556,208		1,081,138		250,396		505,488
Fuel Stock		F017		62,536,188		62,536,188		-								-								
Total Working Capital	TwC		\$	271,529,178	s	131,254,122	\$	79,624,711	s	19,653,112	s		\$	4,331,988	\$	-	s	4,305,763	s	8,152,572	\$	1,896,068	\$	3,696,420
Emission Allowance	emall	PROFIX		-		-		-		-				-		-		-		-		-		-
Deferred Debits																								
Service Pension Cost	penscost	tLb	\$	-		-		-		-				-		-		-		-		-		-
Accumulated Deferred Income Tax																								
Total Production Plant	ADITPP	F017		732,330,105		732,330,105		-		-				-		-		-		-		-		-
Total Transmission Plant	ADITTP	F011		198,625,100		-		-		198,625,100				-		-		-		-		-		-
Total Distribution Plant	ADITPP	PDIST		315,220,930		-		-		-				49,410,755		-		39,299,009		76,388,043		17,691,812		35,715,375
Total General Plant	ADITGP	PT\&D		35,890,099		22,586,552		-		4,889,191				1,318,947		-		1,049,029		2,039,066		472,257		953,369
Total Accumulated Deferred Income Tax	ADITT			1,282,066,235		754,916,658		-		203,514,291				50,729,702		-		40,348,037		78,427,109		18,164,069		36,668,744
Accumulated Deferred Investment Tax Credits																								
Production	ADITCP	F017	\$	80,926,985		80,926,985		-		-				-		-		-		-		-		-
Transmission	Aditct	F011		-		-		-		-				-		-		-		-		-		-
Transmission VA	aditctva	F011		-		-		-		-				-		-		-		-		-		-
Distribution VA	aditcdva	PDIST		-		-		-		-				-		-		-		-		-		-
Distribution Plant KY,FERC \& TN	ADITCDKY	PDIST		-		-		-		-				-		-		-		-		-		-
General	aditcg	PT\&D		-		-		-		-				-		\cdot		-		-		-		-
Total Accum. Deferred Investment Tax Credits	Aditctl			80,926,985		80,926,985		-		-				-		-		-		-		-		-
Total Deferred Debits			\$	1,362,993,220	s	835,843,643	\$	-	\$	203,514,291	\$		\$	50,729,702	\$	-	\$	40,348,037	s	78,427,109	\$	18,164,069	\$	36,668,744
Less: Customer Advances	CSTDEP	${ }^{\text {F027 }}$	\$	1,712,216						-				-		-		397,934		773,491		179,144		361,647
Less: Asset Retirement Obligations		${ }^{\text {F017 }}$				-		-		-				-		-		-		-		-		-
Net Rate Base	RB		\$	5,197,832,023	s	2,975,438,420	\$	79,624,711	s	853,028,865	s		\$	200,340,313	\$	-	s	159,803,702	s	310,404,048	\$	71,898,861	\$	145,014,673

Description	Name	$\begin{aligned} & \text { Functional } \\ & \text { Vector } \end{aligned}$	Distribution Line Trans.				DistributionServicesCustomer		Distribution Meters		$\begin{gathered} \text { Distribution St. \& } \\ \text { Cust. Lighting } \end{gathered}$		Customer AccountsExpense		$\begin{array}{r} \text { Customer } \\ \text { Service \& Info. } \end{array}$		Sales Expense	
				Demand	Customer													
Rate Base																		
Utility Plant																		
Plant in Service			\$	185,167,208	s	153,841,916	\$	129,708,296	s	77,142,557	s	148,542,746	\$	-	s	-	\$	-
Construction Work in Progress (CWIP)				2,709,159.65		2,250,842.99		1,897,746.84		1,128,663.68		2,173,311.45						
Total Utility Plant	TUP		\$	187,876,368	§	156,092,759	\$	131,606,043	s	78,271,220	s	150,716,057	\$	-	\$	-	\$	-
Less: Acummulated Provision for Depreciation																		
Steam Production	ADEPREPA	F017		-		-		-		-		-		-		-		-
Hydralic Production	RWIP	${ }^{\text {F017 }}$		-		-		-		-		-		-		-		-
Other Production		${ }^{\text {F017 }}$		-		-		-		-		-		-		-		-
Transmission - Kentucky System Property	ADEPRTP	ptran		-		-		-		-		-		-		-		-
Transmission - Virginia Property	ADEPRDI	ptran		-		-		-		-		-						
Transmission - FERC	ADEPRD10	ptran		-		-						-		-		-		-
Distribution	ADEPRD11	PDIST		56,664,648		47,078,519		39,693,178		23,607,073		45,456,873		-		-		
General Plant	ADEPRD12	PT\&D		1,485,215		1,233,957		1,040,383		${ }^{618,756}$		1,191,453		-		-		-
Intangible Plant	ADEPRGP	PT\&D		941,501		782,224		659,515		392,239		755,280		-		-		-
Total Accumulated Depreciation	TADEPR		\$	59,091,364	s	49,094,701	\$	41,393,075	s	24,618,068	\$	47,403,606	\$	-	s	-	\$	-
Net Utility Plant	ntplant		\$	128,785,004	s	106,998,058	\$	90,212,968	s	53,653,152	\$	103,312,451	\$	-	s	-	\$	-
Working Capital																		
Cash Working Capital - Operation and Maintenance Expenses	cwc	OMLPP		408,278		339,209		279,717		1,778,647		320,334		8,704,114		1,105,953		
Materials and Supplies	M\&S	TPIS		1,149,111		954,712		804,944		478,731		921,827		-		-		-
Prepayments	PREPAY	TPIS		365,011		303,261		255,688		152,068		292,815		-		-		-
Fuel Stock		${ }^{\text {F017 }}$		1922401		1.597.182								8,704,114		1105953		
Total Working Capital	TwC		\$	1,922,401	s	1,597,182	\$	1,340,349	s	2,409,446	\$	1,534,976	\$	8,704,114	s	1,105,953	\$	-
Emission Allowance	emall	Profix		-		-		-		-		-		-		-		-
Deferred Debits																		
Service Pension Cost	PENSCOST	тLB		-		-		-		-		-		-		-		-
Accumulated Deferred Income Tax																		
Total Production Plant	ADITPP	F017		-		-		-		-		-		-		-		-
Total Transmission Plant	ADITTP	F011		-		-		-		-		-		-		-		-
Total Distribution Plant	ADITDP	PDIST		25,789,962		21,426,997		18,065,683		10,744,362		20,688,932		-		-		-
Total General Plant	ADITGP	PT\&D		688,425		571,962		482,237		286,805		552,260		-		-		-
Total Accumulated Deferred Income Tax	ADITT			26,478,387		21,998,959		18,547,919		11,031,167		21,241,192		-		-		-
Accumulated Deferred Investment Tax Credits																		
Production	ADITCP	F017		-		-		-		-		-		-		-		-
Transmission	Aditct	F011		-		-		-		-		-		-		-		-
Transmission VA	aditctva	F011		-		-		-		-		-		-		-		-
Distribution VA	Aditcdia	PDIST		-		-		-		-		-		-		-		-
Distribution Plant KY,FERC \& TN	ADITCDKY	PDIST		-		-		-		-		-		-		-		-
General	ADITCG	PT\&D		-		-		-		-		-		-		-		-
Total Accum. Deferred Investment Tax Credits	aditctl			-		-		-		-		-		-		-		-
Total Deferred Debits			\$	26,478,387	\$	21,998,959	\$	18,547,919	s	11,031,167	\$	21,241,192	\$	-	s	-	\$	-
Less: Customer Advances	CStDep	F027		-		-		-		-		-		-		-		-
Less: Asset Retirement Obligations		${ }^{\text {F017 }}$		-		-		-		-		-		-		-		-
Net Rate Base	RB		\$	104,229,018	s	86,596,282	\$	73,005,398	s	45,031,431	s	83,606,234	\$	8,704,114	s	1,105,953	\$	

Description	Name	Functional Vector	$\begin{gathered} \text { Total } \\ \text { System } \end{gathered}$	Production Demand	Production Energy	$\begin{gathered} \text { Transmission } \\ \text { Demand } \end{gathered}$	Distribution Poles	Distribution Substation	istribution Primary Li			istribution Sec. Lines	
				LOLP	Energy	Demand	Specific	General	Specific	Demand	Customer	Demand	

Operation and Maintenance Expenses

Steam Power Generation Operation Expenses
500 OPERATION SUPERVISION \& ENGINEERING
501 FUEL
501 FUEL
505 ELECTRIIC EXPENSES
506 MISC.
507 RENTS
Total Steam Power Operation Expenses

Steam Power Generation Maintenance Expenses
510 MAINTENANCE SUPERVISION \& ENGINEERING 510 MAINTENANCE SUPERVIIIION \&
511 MAINTENANCE OF STRUCTURES
512 MAINTENANCE OF BOILER PLANT
512 MAINTENANCE OF BOLLER PLANT
513 MAINTENANCE OF ELECTRIC PLANT
514 MAINTENANCE OF MISC STEAM PLANT
Total Steam Power Generation Maintenance Expense
Total Steam Power Generation Expense

OM500	LBSUB1
OM501	Energy
OM502	
OM55	
OM506	PROFIX
OM550	PROFIX
OM509	PROFIX
OM510	LBSUB22
OM511	PROFIX
OM5512	Eneryy
OM513	Energy
OM514	Energy

\$	5,418,923
	296,477,275
	22,989,772
	8,130,854
	25,402,796
	-

$4,838,523$	580,400	
$9,649,494$	$296,477,275$	
$13,30,278$		
$6,673,09$	$1,457,845$	
$25,40,796$	-	
-	-	
$46,563,822$	$\$$	$311,855,798$

s	12,501,304		1,358,608		11,142,696	
	10,051,562		10,051,562			
	48,391,532				48,391,532	
	12,209,687		-		12,209,687	
	3,446,376		-		3,446,376	
\$	86,600,461	s	11,410,170	\$	75,190,291	s
\$	445,020,081	s	57,973,993	\$	387,046,088	s

Hydraulic Power Generation Operation Expenses
535 OPRRATON SUUERVISION \& ENGINEERING 36 Water for power
37 HYDRAULIC EXPENSES
538 ELECTRIC EXPENSES
59 MISC. HYDRAULIC POWER EXPENSES Rents

OM535	L
OM536	P
OM537	P
OM538	P
OM539	P

Total Hydraulic Power Operation Expenses
Hydraulic Power Generation Maintenance Expenses
541 MAINTENANCE SUPERVISION \& ENGINEERING
42 MAINTENANCE OF STRUCTURES
53 MAINT. OF RESERVES, DAMS, AND WATERWAYS
S4 MAINTENANCE OF ELECTRIC PLANT
Total Hydraulic Power Generation Maint. Expense
Total Hydraulic Power Generation Expense

Total

gineering
\qquad
7 RENTS
9 Allowances

MAINTENANCE OF ELECTRIC PLANT
MAINTENANCE OF MISC STEAM PLAN
MAINTENANCE OF MISC STEAM PLANT
LBSUB3
PRRFIX
PROFIX
PRRFIX
PROFIX
PROFIX

OM541	LBSUB4
OM542	PROFIX
OM543	PRFFI
OM544	Energy
OM545	Energy

		Functional	Distribution Line Trans.	Distribution Services	Distribution Meters	Distribution St. \& Cust. Lighting	Customer Accounts Expense	$\begin{array}{r}\begin{array}{r}\text { Customer } \\ \text { Service \& Info. }\end{array} \\ \hline\end{array}$	Sales Expense
Description	Name	Vector	Demand ${ }^{\text {Cu}}$	Customer					

Operation and Maintenance Expenses

Steam Power Generation Operation Expenses 500 OPERATION SUPERVISION \& ENGINEERING 501 FUEL
02 STEAM EXPENSES
505 ELECTRIC EXPENSES
506 MISC. STEAM POWER EXPENSES
07 RENTS
507 RENTS
509 ALLOWANCES
Total Steam Power Operation Expenses
Steam Power Generation Maintenance Expenses
510 MAINTENANCE SUPERVISION \& ENGINEERING
10 MAINTENANCE SUPERVISION \&
511 MAINTENANCE OF STRUCTURES
51 MAINTENANCE OF STRUCTURES
513 MAINTENANCE OF ELECTRIC PLANT
514 MAINTENANCE OF MISC STEAM PLANT
Total Steam Power Generation Maintenance Expense
Total Steam Power Generation Expense
Hydraulic Power Generation Operation Expenses
535 OPRATION SUPERVISION \& ENGINEERING 36 WATER FOR POWER
337 HYDRAULIC EXPENSES
38 ELECTRIC EXPENSES
538 ELECTRIC EXPENSES
540 RENTS
Total Hydraulic Power Operation Expenses
Hydraulic Power Generation Maintenance Expenses
541 MAINTENANCE SUPERVISION \& ENGINEERING
542 MAINTENANCE OF STRUCTURES
543 MAINT. OF RESERVES, DAMS, AND WATERWAYS
55 MAINTENANCE OF MISC HYDRAULIC PLAN
Total Hydraulic Power Generation Maint. Expense

OM500	LBSUB1
OM501	Energy
OM550	
OM505	
OM506	PROFIX
OM507	PROFIX OM509 PROFIX

OM535	LBSU
OM536	PROF
OM537	PRO
OM538	

$\begin{array}{ll}\text { OM538 } & \begin{array}{l}\text { PROFI } \\ \text { OM539 }\end{array} \\ \text { Profil }\end{array}$

OM510	LBSUB2
OM511	PRRFI
OM512	Energy
OM513	Energy
OM514	Energy

Total Hydraulic Power Generation Expense

OM541	LBSUB4
OM542	PROFIX
OM543	PROFIX
OM544	Eneryy
OM545	Energy

Description	Name	Functional Vector	$\begin{gathered} \text { Total } \\ \text { System } \end{gathered}$	Production Demand	Production Energy	$\begin{gathered} \text { Transmission } \\ \text { Demand } \end{gathered}$	Distribution Poles	Distribution Substation	istribution Primary Li			istribution Sec. Lines	
				LOLP	Energy	Demand	Specific	General	Specific	Demand	Customer	Demand	

Operation and Maintenance Expenses (Continued)

Other Power Generation Operation Expense
546 OPERATION SUPERVISION \& ENGINEERING
547 FUEL

548 GENERATION EXPENSE
548 GENERATION EXPENSE
549 MISC OTHER POWER GENERATION
550 RENTS

OM546	LBSUB5	\$	647,260		647,260			
OM547	Energy		107,114,208		-		107,114,208	
OM548	PROFIX		682,059		682,059		-	
OM549	PRoFIX		5,376,587		5,376,587			
OM550	Profix		9,693		9,693		-	
		\$	113,829,807	s	6,715,599	\$	107,114,208	s
OM551	Profix	\$	911,492		911,492		-	
OM552	PROFIX		876,396		876,396		-	
OM553	Profix		7,236,966		7,236,966		-	
OM554	PROFIX		5,979,786		5,979,786		-	
		\$	15,004,640	s	15,004,640	s	-	s
		\$	128,834,447	s	21,720,239	\$	107,114,208	s
		\$	574,443,986	s	80,013,549	\$	494,430,437	s
OM555	OMPP	\$	48,544,007		9,572,612		38,971,395	
OMO555	OMPP				-		-	
OMB555	OMPP				-		-	
OMM555	OMPP				-		-	
OM556	Profix		2,300,266		2,300,266		-	
OM557	Profix		154,987		154,987		-	
TPP		\$	50,999,260	s	12,027,865	\$	38,971,395	s

s	-	\$	-	\$	-	\$	-	s	-	\$	-	\$
	-		-		-		-		-		-	
	-		-		-						-	
	-		-		.		.		.		-	
s	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$
\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$
s	-	\$	-	\$	-	\$	-	s	-	\$	-	\$
	:		-		:						-	
	-		-		-		-		-		-	
	$:$:		:		:		:		-	
	$:$		$:$		$:$		-		$:$		-	
\$	-	\$	-	\$	-	s	-	\$	-	\$	-	\$
\$		\$	-	\$	-	\$	-	s	-	\$	-	\$

		Functional	Distribution Line Trans.	Distribution Services	Distribution Meters	Distribution St. \& Cust. Lighting	$\begin{array}{\|c} \begin{array}{c} \text { Customer Accounts } \\ \text { Expense } \end{array} \\ \hline \end{array}$	$\begin{array}{r} \text { Customer } \\ \text { Service \& Info. } \end{array}$	Sales Expense
Description	Name	Vector	Demand	Cust					

Operation and Maintenance Expenses (Continued)

Other Power Generation Operation Expense
546 OPERATION SUPERVISION \& ENGINEERING 544 OPERA
547 FUEL
548 GENER ATION RXPENS
549 MISC OTHER POWER GENERATION
550 RENTS

OM546	LBSUB5
OM547	Energy
OM548	PROFIX
OM549	PROFIX
OM550	PROFIX

Other Power Generation Maintenance Expense
551 MAINTENANCE SUPERVISION \& ENGINEERING 551 MAINTENANCE SUPERVIIIION \& E
552 MANTENANCE OF STRUCTURES
553 .
53 MAINTENANCE OF GENERATING \& ELEC PLANT
554 MAINTENANCE OF MISC OTHER POWER GEN PL
Total Other Power Generation Maintenance Expense
Total Other Power Generation Expense
Total Station Expense
Other Power Supply Expenses
555 PURCHASED POWER OPTIONS
55 brokerage fees
555 MISO TRANSMISSION EXPENSES
556 SYSTEM CONTROL AND LOAD DISPATCH 557 OTHER EXPENSES

Total Other Power Supply Expenses
Total Electric Power Generation Expenses

Description	Name	Functional Vector	Distribution Line Trans.		Services	Distribution Meters	Distribution St. \& Cust. Lighting	$\begin{array}{r}\text { Customer Accounts } \\ \text { Expense } \\ \hline\end{array}$	$\begin{array}{r} \text { Customer } \\ \text { Service \& Info. } \end{array}$	Sales Expense
			Demand							

Operation and Maintenance Expenses (Continued)

Transmission Expenses 560 OPERATION
 1 LOAD DISP SUPERVISION AND ENG

562 STADION EXPENSES
563 OVERHEAD LINE EXPENSES
56 TRANSMISSION OF ELECTRICITY BY OTHERS
566 MISC. TRANSMISSION EXPENSES
567 RENTS
8 MAINTENACE SUPERVIIION AND ENG
569 STRUCTURES
50 MAINT OF STATION EQUIPMENT
571 MAINT OF OVERHEAD LINES
572 UNDERGROUND LINES
575 MISO DAY $1 \& 2$ EXPENSE
Total Transmission Expenses
Distribution Operation Expense
580 OPERATION SUPERVISION AND ENGI 581 LOAD DISPATCHING
82 STATION EXPENSES
584 UNDERGROUND LINE EXPENSES
55 STREET LIGHTING EXPENSE
586 METTR EXPENSES
586 METER EXPENSES - LOAD MANAGEMENT
586 METER EXPENSES - LOAD MANAGEMENT 588 MIICCELLANEOUS DISTRIBUTION EXP 88 MISC DISTR EXP -- MAPPIN
589 RENTS

OM560	lbtran
OM561	Lbtran
OM562	LBTR
OM563	俍tra
OM565	Lbtran
OM566	ptran
OM567	PtRan
OM568	Lbtran
OM569	LbTRAN
OM570	Lbtran
OM571	Lbtran
OM572	Lbtran
OM573	PTRAN
OM575	PTRAN

Total Distribution Operation Expense

OM580	LBDO
OM581	P362
OM582	P362
OM583	P365
OM584	P337
OM585	P373
OM586	P370
OM588x	F012
OM587	P371
OM588	PDIST
OM588x	PDIST
OM589	PDIST
OMDO	

OMDO

btran
 RaN ptran LbTran LbTtan LbTran ibtran LBTRAN LbTRAN LBTRAN AN

37,660

31,294	26,385	772,788	30,216
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
$:$	-	9,700,980	-
-	-	-	
577,211	486,662	289,437	557,329

		Functional	Distribution Line Trans.	Distribution Services	Distribution Meters	Distribution St. \& Cust. Lighting	$\begin{array}{\|c} \begin{array}{c} \text { Customer Accounts } \\ \text { Expense } \end{array} \\ \hline \end{array}$	$\begin{array}{r} \text { Customer } \\ \text { Service \& Info. } \end{array}$	Sales Expense
Description	Name	Vector	Demand	Cust					

Operation and Maintenance Expenses (Continued)

Distribution Maintenance Expense
590 MAINTENANCE SUPERVISION AND EN 591 STRUCTURES
592 MAINTENANCE
592 MAINTENANCE OF STATION EQUIPM
593 MAINTENANCE OF OVERHEAD LINES
595 MAINTENANCE OF LINE TRANSFORME
596 MAINTENANCE OF ST LIGHTS \& SIG SYSTEMS MAITENANCE OF METER
598 MISCELLANEOUS DISTRIBUTION EXPENSES
Total Distribution Maintenance Expense
Total Distribution Operation and Maintenance Expense
Transmission and Distribution Expenses

Production, Transmission and Distribution Expenses

Customer Accounts Expense
 01 SUPERVISION/CUSTOMER ACCTS
 2 METER READING EXPENSE
 904 UNCOLLECTIBLE ACCOUNT
 905 MISC CUST ACCOUNTS

Total Customer Accounts Expense

Customer Service Expense

908 CUSTOMER ASSISTANCE EXPENSES
908 CUSTOMER ASSISTANCE EXPENSES
09 INFORMATIONAL AND INSTRUCTIONA
09 InForm and instruc -LOAD MgMT 10 MISCELLANEOUS CUSTOMER SERVIC 12 DEMONSTRATION AND SELLING EXP 13 ADVERTIING EXPENSE
916 MISC SALES EXPENSE
Total Customer Service Expense
Sub-Total Prod, Trans, Dist, Cust Acct and Cust Service

OM590	LBDM
OM591	P362
OM592	PP62
OM593	P365
OM594	PP67
OM595	P368
OM596	P373
OM597	P370
OM598	PDIST
OMDM	

omsub

ом904
ом903
omca
OM907
ом908
ом908x
OM909 OM909x
ом911
ом912
омCs
OMSUB2

	202		168		1		1		2	
	-		-							
	-		-		-		-		-	
	-		-		:					
	57,943		48,141		-		-		-	
	-		-		-		-		-	
	47,793		39,707		33,478		19,911		38,340	
\$	105,938	s	88,016	\$	33,480	s	19,940	s	38,341	\$
	838,347		696,521		546,527		10,783,145		625,886	
	838,347		696,521		546,527		10,783,145		625,886	
\$	838,347	s	696,521	\$	546,527	s	10,783,145	s	625,886	\$

4,235,757		-	
9,902,132		-	
21,487,653		-	
4,646,049		-	
165,801		-	
40,437,392	s	-	\$
-		368,993	
-		1,252,447	
-		677	
-		1,698,677	
$:$		1,818,935	
-			
-		121,604	
-		-	
-	s	5,260,656	\$
40,437,392		5,260,656	

Description	Name	Functional Vector	Distribution Line Trans.					$\begin{gathered} \text { Distribution } \\ \text { Services } \\ \hline \end{gathered}$	Distribution Meters		Distribution St. \& Cust. Lighting				Customer Service \& Info		Sales Expense	
			Demand Customer				$\frac{\text { Services }}{\text { Customer }}$											
Operation and Maintenance Expenses (Continued)																		
Administrative and General Expense																		
920 ADMIN. \& GEN. SALARIES-	OM920	LBSUB7		516,849		429,412		362,049		215,325		414,621		5,393,575		644,026		-
921 OFFICE SUPPLIES AND EXPENSES	OM921	LBSUB7		161,517		134,193		113,142		67,290		129,571		1,685,513		201,261		
922 administrative expenses transferred	OM922	LBSUB7		$(97,336)$		$(80,869)$		$(68,183)$		$(40,551)$		$(78,084)$		$(1,015,748)$		$(121,287)$		-
923 OUTSIDE SERVICES EMPLOYED	OM923	LBSUB7		334,290		277,737		234,168		139,269		268,170		3,488,482		416,546		-
924 Property insurance	OM924	TUP		167,181		138,899		117,109		69,649		134,114				-		-
925 injuries and damages - insuran	OM925	LBSUB7		74,867		62,201		52,444		31,190		60,059		781,272		93,289		-
926 Employee benefits	Ом926	LBSUB7		493,195		409,760		345,480		205,470		395,646		5,146,736		614,552		
928 Regulatory Commission fees	Ом928	TUP		16,309		13,550		11,425		6,795		13,084				-		
929 duplicate charges	ом929	LBSUB7		-								-		-		-		
930 miscellaneous general expenses	ом930	LBSUB7		51,936		43,150		36,381		21,637		41,664		541,981		64,716		-
931 RENTS AND LEASES	ом931	PGP		59,061		49,069		41,372		24,605		47,379		-		-		
935 maintenance of general plant	ом935	PGP		32,078		26,651		22,470		13,364		25,733		-		-		-
Total Administrative and General Expense	Omag		s	1,809,949	s	1,503,754	\$	1,267,856	s	754,043	s	1,451,957	\$	16,021,811	s	1,913,104	s	-
Total Operation and Maintenance Expenses	том		s	2,648,296	s	2,200,276	\$	1,814,383	s	11,537,188	s	2,077,842	\$	56,459,203	s	7,173,760	\$	-
Operation and Maintenance Expenses Less Purchase Power	OMLPP		\$	2,648,296	s	2,200,276	\$	1,814,383	s	11,537,188	s	2,077,842	\$	56,459,203	s	7,173,760	\$	

Description	Name	Functional Vector	$\begin{gathered} \text { Total } \\ \text { System } \end{gathered}$	Production Demand	Production Energy	$\begin{gathered} \text { Transmission } \\ \text { Demand } \end{gathered}$	Distribution Poles	Distribution Substation	istribution Primary Li			istribution Sec. Lines	
				LOLP	Energy	Demand	Specific	General	Specific	Demand	Customer	Demand	

Labor Expenses

Steam Power Generation Operation Expenses
500 OPERATION SUPERVIISION \& ENGINEERING
501 FUEL 502 STEAM EXPENSES
505 ELECTRIC EXPENSES
507 RENTS
Total Steam Power Operation Expenses
Steam Power Generation Maintenance Expenses
510 MAINTENANCE SUPERVISION \& ENGINEERING
11 MAINTENANCE OF STRUCTURES
512 MAINTENANCE OF BOILER PLANT
14 MAINTENANCE OF ELECTRIC PLEAM PLANT
Total Steam Power Generation Maintenance Expense
Total Steam Power Generation Expense
Hydraulic Power Generation Operation Expenses

35 OPERATION SUPERVISION \& ENGINEERING
36 WATER FOR POWER

37 HYDRAULIC EXPENSE
538 ELECTRIC EXPENSES
539 MISC. HYDRAULIC POWER EXPENSES
540 Rents
Total Hydrallic Power Operation Expenses
Hydraulic Power Generation Maintenance Expenses
541 MAINTENANCE SUPERVISION \& ENGINEERING 542 MAINTENANCE OF STRUCTURES
543 MAINT. OF RESERVES, DAMS, AND WATERWAY
544 MAINTENANCE OF ELECTRIC PLANT
545 MAINTENANCE OF MISC HYDRAULIC PLANT
Total Hydraulic Power Generation Maint. Expense
Total Hydraulic Power Generation Expense

LB500	F019	\$	4,272,282		3,814,695		457,587	
LB501	Energy		2,438,484				2,438,484	
LB502	PROFIX		9,649,494		9,649,494		-	
LB505	Profix		6,673,009		6,673,009			
LB506	PROFIX		4,006,010		4,006,010			
LB507	Profix							
LBSUB1		\$	27,039,279	s	24,143,208	\$	2,896,071	s
LBS10	F020	\$	11,171,048		1,214,040		9,957,008	
LB511	Profix		1,477,460		1,477,460		-	
LB512	Energy		9,693,149		-		9,693,149	
LB513	Energy		1,990,323		-		1,990,323	
LB514	Energy		433,991		-		433,991	
LBSUB2		\$	24,765,971	s	2,691,500	\$	22,074,471	s
		\$	51,805,250	s	26,834,707	\$	24,970,543	s

LB535	F021
LB536	PROFIX
LB537	PROFIX
LB538	PROFIX
LB539	PROFIX
LB540	PROFIX
LBSUB3	

LB541	F022
LB542	PROFIX
LB543	PROFIX
LB544	Energy
LB545	Energy

\$	160,360		104,960		55,400
	43,386		43,386		-
	911		911		
	22,712		-		22,712
	669		-		669
\$	228,038	s	149,257	\$	78,781

		Functional	Distribution Line Trans.	Distribution Services	Distribution Meters	Distribution St. \& Cust. Lighting	Customer Accounts Expense	$\begin{array}{r}\begin{array}{r}\text { Customer } \\ \text { Service \& Info. }\end{array} \\ \hline\end{array}$	Sales Expense
Description	Name	Vector	Demand Cus	Customer					

Labor Expenses

Steam Power Generation Operation Expenses
500 OPERATION SUPERVISION \& ENGINEERING
501 FUEL 502 STEAM EXPENSES
505 ELECTRIC EXPENSES
506 MICT STEAM POWER EXPENSES
507 ReNTS
Total Steam Power Operation Expenses
Steam Power Generation Maintenance Expenses
510 MAINTENANCE SUPERVISION \& ENGINEERING 511 MAINTENANCE OF STRUCTURES
12 MAINTENANCE OF STRUCTURES
512 MAINTENANCE OF BOILER PLANT
513 MAINTENANCE OF ELECTRIC PLAN
514 MAINTENANCE OF MISC STEAM PLANT
Total Steam Power Generation Maintenance Expense
Total Steam Power Generation Expense
Hydraulic Power Generation Operation Expenses
535 OPERATION SUPERVISION \& ENGINERING 536 WATER FOR POWER
37 HYDRAULIC EXPENS
538 ELECTRIC EXPENSES
539 MISC. HYDRAULIC POWER EXPENSES
540 Rents
Total Hydrallic Power Operation Expenses
Hydraulic Power Generation Maintenance Expenses
541 MAINTENANCE SUPERVISION \& ENGINEERING 54 MAINTENANCE OF STRUCTURES
43 MAINT. OF RESERVES, DAMS, AND WATERWAYS
544 MAINTENANCE OF ELECTRIC PLANT
545 MAINTENANCE OF MISC HYDRAULLC PLANT
Total Hydraulic Power Generation Maint. Expense
Total Hydraulic Power Generation Expense

LB535	F021		-		-										
536	PROFIX														
LB537	PROFIX														
538	PROFIX														
LB539	PROFIX														
LB540	PROFIX														
LBSUB3		\$		s		\$		s	s	-	\$		s	-	

\section*{${ }_{\text {LB542 }}^{\text {LB54 }}$
 | LB543 |
| :--- |
| LBROF |
| PROFIX |
 | LB544 | |
| :---: | :---: |
| LB545 | $\begin{array}{c}\text { Energy } \\ \text { Energy }\end{array}$ |}

Description	Name	Functional Vector	$\begin{gathered} \text { Total } \\ \text { System } \end{gathered}$	Production Demand	Production Energy	$\begin{array}{r} \text { Transmission } \\ \text { Demand } \end{array}$	Distribution Poles	Distribution Substation	Distribution Primary Lines			istribution Sec. Lines	
				LOLP	Energy	Demand	Specific	General	Specific	Demand	Customer	Demand	

Labor Expenses (Continued)

Other Power Generation Operation Expene
546 OPERATION SUPERVISION \& ENGINEERING
547 FUEL
548 GENERATION EXPENSE
549 MISC OTHER POWER GENERATIO
545 RENTS

LB546	PROFIX	s	527,544		527
LB547	Energy		-		
LB548	Profix		383,627		38
LB549	Profix		2,757,670		2,757
LB550	Profix				
LBSUB5		\$	3,668,841	s	3,668
${ }^{\text {LB551 }}$	Profix	\$	732,436		732
LB552	Profix		351,927		351
LB553	PROFIX		1,277,077		1,277
LB554	PROFIX		1,287,143		1,287
LBSUB6		\$	3,648,583	s	3,6
		\$	7,317,424	s	7,317
LPREX		\$	59,350,712	s	34,301
LB555	OMPP	\$	-		
LB556	PROFIX	\$	2,263,912		2,26
LB557	PROFIX	\$	-		

Labor Expenses (Continued)

Other Power Generation Operation Expense
546 OPERATION SUPERVISION \& ENGINEERING
547 FUEL 548 GENERATION EXPENSE
549 MISC OTHER POWER GENERATION
550 Rents

LB546	PRC
LB547	Ene
LB548	PR
LB549	PR0
LB550	PRC
LBSUB5	

PROFIX
Energy
PROFIX

Total O
Other Power Generation Maintenance Expense
551 MAINTENANCE SUPERVISION \& ENGINEERING 551 MAINTENANCE SUPERVISION \& E
552 MANTENANCE OF STRUCTURES
553
553 MAINTENANCE OF GENERATING \& ELEC PLANT
554 MAINTENANCE OF MISC OTHER POWER GLAN PL
Total Other Power Generation Maintenance Expense
Total Other Power Generation Expense
Total Production Expense
Purchased Power
555 PURCHASED POWER
556 SYSTEM CONTROR
556 SYSTEM CONTROL
LB555
LB556 $\begin{aligned} & \text { OMPP } \\ & \text { PROFIX }\end{aligned}$

Total Purchased Power Labo

Description	Name	Functional Vector		$\begin{array}{r} \text { Total } \\ \text { System } \end{array}$	Production Demand		Production Energy		TransmissionDemandDemand	Distribution Poles		$\begin{gathered} \text { Distribution } \\ \text { Substation } \end{gathered}$			Distribution Primary Lines				Customer		Distribution Sec. Lines										
						LOLP	Energy				Specific				Specific		Demand				Demand		Customer								
Labor Expenses (Continued)																															
Transmission Labor Expenses																															
560 OPERATION SUPERVISIION AND ENG	LB560	Ptran	\$	1,591,418			-		1,591,418		-		-		-		-														
561 LOAD DISPATCHING	${ }^{\text {LB561 }}$	PTRAN		4,089,959		-	-		4,089,959		-		-		-		-		-		-										
562 STATION EXPENSES	${ }^{\text {LB562 }}$	PTRAN		424,026		-	-		424,026		-		-		-		-		-		-		-								
563 OVERHEAD LINE EXPENSES	${ }^{\text {LB563 }}$	PTRAN		45,989		-	-		45,989		-		-		:		:														
566 MISC. TRANSMISSION EXPENSES	${ }^{\text {LBS66 }}$	PTRAN		,		-	-		, 950		-		-		-		-		:												
568 MAINTENACE SUPERVIIIION AND ENG	LB568 LB570	PTRAN PTRAN		393,950		-	-		393,950		-		-		:				-												
570 MAINT OF STATION EQUIPMENT 571 MAINT OF OVERHEAD LINES	${ }_{\text {LB571 }}^{\text {LB570 }}$	PTRAN PTRAN		-		:	$:$:		:		-		:		-		:		-		\div								
572 UNDERGROUND LINES	LB572	ptran		1,126,679		-	-		1,126,679		-		-		-		-		-		-		-								
573 MISC PLANT	LB573	Ptran		309,102		-	-		309,102		-		-		-		-		-		-										
Total Transmission Labor Expenses	Lbtran		\$	7,981,123	s	- \$	\$ -	\$	7,981,123	s	-	s	-	\$	-	s	-	s	-	\$	-	\$	-								
Distribution Operation Labor Expense																															
581 LOAD dispatching	${ }^{\text {LB581 }}$	${ }^{\text {P362 }}$		335,815		-	-		-		-		335,815		-		-		-		-										
582 STATION EXPENSES	${ }^{\text {LB582 }}$	P362		1,155,025		-	-		-		-		1,155,025		-		-		-		-		-								
583 OVERHEAD LINE EXPENSES	${ }^{\text {LBS53 }}$	${ }_{\text {P365 }}$		3,066,624		-	-		-		-		-		-		778,967		1,384,229		325,324		578,103								
584 UNDERGROUND LINE EXPENSES	${ }^{\text {LB584 }}$	P367		28,983			-		-		-		-		-		4,405		13,132		2,875		8,570								
585 STREET LIGHTING EXPENSE	${ }^{\text {LB585 }}$	${ }^{\text {P3771 }}$		00		-	-		-		-		-		-		-		-		-		-								
586 METER EXPENSES	${ }^{\text {LB586 }}$	${ }^{\text {P370 }}$		5,005,004		-	-		-		-		-		-		-		-		-		-								
586 METER EXPENSES- LOAD MANAGEMENT 587 CUSTOMER NSTALIATIONS EXPENSE	${ }_{\text {LB5886 }}$	$\underset{\text { F012 }}{ }$		-		-	:		:		:		-		:		$:$		$:$		$:$										
587 CUSTOMER INSTALLATIONS EXPENSE 588 MISCELLANEOUS DISTRIBUTION EXP	LB587 LB588	${ }_{\text {P3IIST }}^{\text {P371 }}$		$\underset{3,043,460}{ }$:	-		-		$:$		477,061		-		379,432		737,527		170,815		344,832								
589 Rents	LB589	PDIST		-		-	-		-		-		-		-		-		-		-		-								
Total Distribution Operation Labor Expense	LBDO		\$	13,903,566	\$	- \$	\$ -	\$	-	s	-	\$	2,165,496	\$	-	\$	1,279,560	\$	2,349,250	\$	549,119	s	1,025,037								

Description	Name	Functional Vector	Distribution Line Trans.					$\begin{gathered} \text { Distribution } \\ \text { Servies } \\ \hline \text { Customer } \end{gathered}$		Distribution Meters	Distribution St. \& Cust. Lighting		Customer AccountsExpense		$\begin{array}{r} \text { Customer } \\ \text { Service \& Info. } \end{array}$		Sales Expense	
			Demand Customer				Customer											
Labor Expenses (Continued)																		
Transmission Labor Expenses																		
560 OPERATION SUPERVISİN AND ENG	LB560	Ptran		-														
561 LOAD DISPATCHING	LB561	PTRAN		-		-		-				-						
562 Station expenses	LB562	ptran		-														
563 OVERHEAD LINE EXPENSES	LB563	PTran		-		-		-		-		-		-				
566 MISC. TRANSMISSION EXPENSES	LB566	PtRan		-		-		-				-						
568 MAINTENACE SUPERVIIIION AND ENG	LB568	PtRan		-		-		-		-		-		-		-		
570 MAINT OF STATION EQUIPMENT	LB570	PtRan		-		-						-						
571 Maint of overhead lines	LB571	PTRAN		-		-		-				-		-				
572 UNDERGROUND LINES	LB572	PTRAN		-		-		-				-		-				
573 MISC PLANT	LB573	PTRAN		-		-		-				-		-		-		
Total Transmission Labor Expenses	lbtran		\$		s	-	\$		s		s	-	\$	-	s	-	\$	
Distribution Operation Labor Expense																		
580 OPERATION SUPERVISION AND ENGI	LB580	F023		25,002		20,772		17,514		512,962		20,057		-		-		
581 Load dispatching	LB581	P362		-		-		-		-		-		-		-		
582 Station expenses	LB582	P362		-		-						-						
583 OVERHEAD LINE EXPENSES	LB583	P365		-		-		-				-						
584 UNDERGROUND LINE EXPENSES	LB584	P367		-														
585 Street lighting expense	LB585	P371		-		-		-		-		-						
586 METER EXPENSES	LB586	P370		-		-		-		5,005,004		-		-		-		
586 METER EXPENSES - LOAD MANAGEMENT	LB586x	F012		-		-		-		-		-						
587 CUSTOMER INSTALLATIONS EXPENSE	LB587	${ }_{\text {P371 }}$		002		878		,		737		75		-		-		
588 MIISCELLANEOUS DISTRIBUTION EXP	LB588	PDIST		249,002		206,878		174,424		103,737		199,752		-		-		-
589 RENTS	LB589	PDIST		-		-		-		-		-		-		-		-
Total Distribution Operation Labor Expense	LBDO		\$	274,004	s	227,650	\$	191,938	s	5,621,703	s	219,809	\$	-	s		\$	

Description	Name	Functional Vector	$\begin{gathered} \text { Total } \\ \text { System } \end{gathered}$	$\frac{\text { Production Demand }}{\text { LoLP }}$	Production Energy	$\begin{array}{r} \text { Transmission } \\ \text { Demand } \\ \hline \end{array}$	Distribution Poles	$\begin{array}{r} \text { Distribution } \\ \text { Substation } \end{array}$	Distribution Primary Lines				
					Energy	Demand			Specific	Demand	Customer	Distribution	

Labor Expenses (Continued)

Distribution Maintenance Labor Expense
590 MAINTENANCE SUPERVIIIION AND EN 591 MAINTENANCE OF STRUCTURES
592 MAINTENANCE OF STATION EQUIPM
593 MAINTENANCE OF OVERHEAD LINES
595 MAINTENANCE OF LINE TRANSFORME
596 MAINTENANCE OF ST LIGHTS \& SIG SYSTEMS 97 MAINTENANCE OF METERS 598 MAINTENANCE OF MISC DISTR PLANT

Total Distribution Maintenance Labor Expense
Total Distribution Operation and Maintenance Labor Expenses
Transmission and Distribution Labor Expense

Production, Transmission and Distribution Labor Expenses

> Customer Accounts Expense 991 SUPRRVIIIONCUSTOMER ACCTS 990 METER READNG EXENES 9903 RECCRDS AND COLLECTION 994 UNCOLECTILE ACCOUNTS 905 MISC CUST ACCOUNTS

Total Customer Accounts Labor Expense
Customer Service Expense
907 SUPERVIIION
907 SUPERVIIION
908 CUSTOMER ASSISTANCE EXP-LOAD MG
909 INFORMATIONAL AND INSTRUCTION
909 INFORM AND INSTRUC -LOAD MGMT
10 MISCELLANEOUS CUSTOMER SERVIC
11 Demonstration and selling exp
913 WATER HEATER - HEAT PUMP PROGRAM
916 MISC SALES EXPENSE
Total Customer Service Labor Expense
Sub-Total Labor Exp

P3920

Description	Name	Functional Vector	(rytal $\begin{array}{r}\text { Total } \\ \text { System }\end{array}$		Production Energy	$\begin{array}{\|c} \text { Transmission } \\ \text { Demand } \end{array}$	Distribution Poles	Distribution Substation	Distribution Primary Lines		istribution Se. Lines		
				Production Demand LoLP	Energy	Demand	Specific	General	Specific	Demand	Customer	Demand C	Customer

Labor Expenses (Continued)

ministrative and General Expen
920 ADMIN, \& GEN. SALARIES-
921 OFFICE SUPPLIES AND EXPEN
922 ADMIN. EXPENSES TRANSFERRED - CRED
923 OUTSIDE SERVICES EMPLOYED
924 PROPERTY INSURANCE
925 InJuries and damages - Insura
926 EmPLOYEE BENEFITS
928 Regulatory Commission fees
929 duplicate charges-cr
930 MISCELLANEOUS GENERAL EXPENSES
931 Rents and Leases
935 MAINTENANCE OF GENERAL PLANT

Total Administrative and General Expense
Total Operation and Maintenance Expenses
Operation and Maintenance Expenses Less Purchase Power

LB920	LBSUB7	\$	32,982,892	
LB921	LBSUB7		4,507	
LB922	LBSUB7		(4,373,143)	
LB923	LBSUB7		-	
LB924	TUP		-	
LB925	LBSUB7		615,769	
LB926	LBSUB7		31,672,892	
LB928	TUP		-	
LB229	LBSUB7		-	
LB930	LBSUB7		314,464	
LB931	PGP		731989	
LB935	PGP		731,985	
lbag		\$	61,949,366	s
tLb		\$	173,228,432	s
LBLPP		\$	173,228,432	s

		Functional	Distribution Line Trans.	Distribution Services	Distribution Meters	Distribution St. \& Cust. Lighting	$\begin{array}{\|r\|} \hline \text { Customer Accounts } \\ \text { Expensse } \\ \hline \end{array}$	$\begin{array}{r} \text { Customer } \\ \text { Service \& Info. } \end{array}$	Sales Expense
Description	Name	Vector	Dema						

Labor Expenses (Continued)

ministrative and General Expense
920 ADMIN. \& GEN. SALARIES-
922 ADMIN. EXPENSES TRANSFERRED - CREDIT
923 OUTSIDE SERVICES EMPLOYED
924 PROPERTY INSURANCE
925 Injuries and damages
926 Employee benefits
928 REGULATORY COMMISSION FEES
929 DUPLICATE CHARGES-CR
930 MISCELLANEOUS GENERAL EX
931 RENTS AND LEASES
935 MAINTENANCE OF GENERAL PLANT

Total Operation and Mainerer
Operation and Maintenance Expenses Less Purchase Power

LB920	LBSUB7
LB921	LBSUB7
LB922	LBSUB7
LB923	LBSUB7
LB924	TUP
LB925	LBSUB7
LB926	LBSUB7
LB928	TUP
LB929	LBSUB7
LB930	LBSUB7
LB931	PGP
LB935	PGP
${ }_{\text {lbag }}$	
TLB	
LBLPP	

	516,849		429,412		362,049		215,325			414,621		5,393,574		644,026	
	71		59		49		29			57		737		88	
	$(68,528)$		(56,935)		$(48,003)$		(28,550)			(54,974)		(715,124)		$(85,390)$	
	-		-												
	-		-		- 75		-					$\stackrel{-}{1}$		-	
	9,649		8,017		6,759		4,020			7,741		100,695		12,024	
	496,321		412,357		347,669		206,772			398,153		5,179,355		618,447	
	-		-		-		-			-		-			
	-		-		, 52		-					,		-	
	4,928		4,094		3,452		2,053			3,953		51,423		6,140	
	-		- ${ }^{\text {- }}$ -									-			
	14,041		11,665		9,835		5,849			11,263		-		-	
\$	973,330	s	808,669	\$	681,811	s	405,499		s	780,814	\$	10,010,660	s	1,195,335	\$
\$	2,717,098	s	2,257,438	\$	1,903,307	s	1,131,971		s	2,179,679	\$	28,207,728	s	3,368,178	\$
\$	2,717,098	s	2,257,438	s	1,903,307	s	1,131,971		s	2,179,679	\$	28,207,728	s	3,368,178	\$

Description	Name	Functional Vector	Distribution Line Trans.					$\begin{gathered} \text { Distribution } \\ \text { Services } \\ 1 \end{gathered}$	Distribution Meters		Distribution St. \& Cust. Lighting		Customer AccountsExpense		$\begin{array}{r}\text { Customer } \\ \text { Service \& Info. }\end{array}$		Sales Expense	
			Demand Customer				Sustomer											
Other Expenses																		
Depreciation Expenses																		
Steam Production	DEPRTP	PPRTL																
Hydraulic Production	DEPRDP1	PPRTL		-		-		-		-								
Other Production	DEPRDP2	PPRTL		-						-								
Transmission - Kentucky System Property	DEPRDP3	ptran		-		-		-		-		-		-		-		-
Transmission - Virginia Property	DEPRDP4	PtRan		-		-		-		-				-				
Transmission - Virginia Property	DEPRDP5	PtRan		-		-		-		-		-		-		-		-
Distribution	DEPRDP6	PDIST		3,180,176		2,642,176		2,227,691		1,324,894		2,551,165		-		-		-
General Plant	DEPRDP7	PGP		264,893		220,080		185,555		110,357		212,499				-		
Intangible Plant	DEPRDP8	PNT		393,130		326,623		275,385		163,782		315,373		-				
Total Depreciation Expense	TDEPR			3,838,199		3,188,880		2,688,631		1,599,033		3,079,037		-		-		-
Regulatory Credits and Accretion Expenses																		
Production Plant	ACRTPP	PPRTL		-		-		-		-		-		-				
Transmission Plant	ACRTTP	PtRan		-		-		-		-		-		-		-		-
Distribution Plant		PDIST		-		-		-		-		-		-		-		-
Total Regulatory Credits and Accretion Expenses	TACRT		\$	-	s	-	\$	-	s	-	s	-	\$	-	s	-	s	-
Property Taxes	ptax	TUP		688,061		571,659		481,982		286,653		551,968		-		-		-
Other Taxes	otax	TUP		261,493		217,256		183,174		108,941		209,772		-		-		-
Gain Disposition of Allowances	GAIN	F013		-		-		-		-		-		-		-		-
Interest	intlid	TUP		2,100,509		1,745,160		1,471,391		875,094		1,685,047		-		-		-
Other Expenses	от	TUP		-		-		-		-		-		-		-		-
Total Other Expenses	тое		\$	6,888,262	s	5,722,954	\$	4,825,178	s	2,869,721	s	5,525,824	s	-	s	-	s	-
Total Cost of Service (O\&M + Other Expenses)			\$	9,536,558	s	7,923,230	\$	6,639,561	s	14,406,908	s	7,603,667	\$	56,459,203	s	7,173,760	s	

Description	Name	$\begin{aligned} & \text { Functional } \\ & \text { Vector } \end{aligned}$	$\begin{array}{r} \text { Total } \\ \text { System } \end{array}$	$\frac{\text { Production Demand }}{\text { LOLP }}$	Production Energy	$\begin{array}{r} \text { Transmission } \\ \text { Demand } \\ \hline \text { Demand } \end{array}$	Distribution Poles	DistributionSubstationGeneral	Distribution Primary Lines		Customer	Distribution Sec. Lines	
					Energy		Specific		Specific	Demand		Demand	Customer
Functional Vectors													
Station Equipment	F001		1.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Poles, Towers and Fixtures	F002		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.254015	0.451385	0.106085	0.188515
Overhead Conductors and Devices	F003		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.254015	0.451385	0.106085	0.188515
Underground Conductors and Devices	F004		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.152001	0.453099	0.099199	0.295701
Line Transformers	F005		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Services	F006		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Meters	F007		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Street Lighting	F008		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Meter Reading	F009		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Billing	F010		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Transmission	F011		1.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Load Management	F012		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Production Plant	F017		1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Provar	PROVAR		1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Fuel	F018		1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Steam Generation Operation Labor	F019		22,766,997	20,328,513	2,438,484		-		-	-	-		-
PROFIX	PROFIX		1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Steam Generation Maintenance Labor	F020		13,594,923	1,477,460	12,117,463	-	-		-			-	
Hydraulic Generation Operation Labor	${ }_{\text {F021 }}$					-	-		-	-	-		
Hydralic Generation Maintenance Labor	F022		67,678	44,297	23,381				-				
Distribution Operation Labor	F023		12,634,911	-	-	\checkmark	-	1,967,901	\checkmark	1,162,805	2,134,889	499,014	931,506
Distribution Maintenance Labor	F024		7,409,842	-	O00	-	-	622,895	-	1,684,710	3,039,359	712,499	1,295,886
Customer Accounts Expense	F025		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Customer Service Expense	F026		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Customer Advances	F027		1,169,477,392		-	-	-		-	271,796,970	528,309,481	122,358,838	247,012,103
Purchase Power Demand		${ }^{\text {F017 }}$	9,604,907	9,604,907	-	-	-	-	-	-	-	-	-
Purchase Power Energy		F018	39, 122,871	-	39,102,871	-	-	-	-	-	-	-	-
Purchased Power Expenses	OMPP	F017	48,707,778	9,604,907	39, 102,871	-	-	-	-	-	-	-	-
Gain Disposition of Allowances	F013		1.00000	-	1.000000	-	-	-	-	-	-	-	-
Intallations on Customer Premises - Accum Depr Generators -Energy	F014		1.00000	-					-			-	
	F015		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	Energy		1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Internally Generated Functional Vectors													
Total Prod, Trans, and Dist Plant		PT\&D	1.000000	0.629325	-	0.136227	-	0.036750	-	0.029229	0.056814	0.013158	0.026564
Total Distribution Plant		PDIST	1.000000		-			0.156750	-	0.124671	0.242332	0.056125	0.113303
Total Transmission Plant		PTRAN	1.000000	-	-	1.000000	-		-	-	-	-	-
Operation and Maintenance Expenses Less Purchase Power		OMLPP	1.000000	${ }^{0.146516}$	0.612130	0.068452	-	0.011002	-	${ }^{0.0015364}$	${ }^{0.0288197}$	${ }^{0.006591}$	${ }^{0.012297}$
Total Plant in Service		TPIS	1.000000	0.629277	-	0.136210	-	0.036760	-	0.029237	0.056830	${ }^{0.013162}$	0.026571
Total Operation and Maintenance Expenses (Labor)		${ }_{\text {TLB }}^{\text {TLS }}$	1.000000	${ }^{0.329862}$	${ }_{0}^{0.224152}$	0.071994 0.062459	-	${ }^{0.030051}$	-	${ }^{0.023901}$	${ }^{0.046458}$	${ }^{0.0010760}$	${ }^{0.021722}$
Sub-Total Prod, Trans, Dist, Cust Acct and Cust Service		OMSUB2	1.000000	0.118003	0.683858	0.062459	-	0.007455	-	0.013084	0.023629	0.005538	0.010089
Total Steam Power Operation Expenses (Labor)		LBSUB1	1.000000	0.892894	0.107106	-	-		\checkmark	-		-	-
Total Steam Power Generation Maintenance Expense (Labor)		LBSUB2	1.000000	0.108677	0.891323	- -	-		-		-	-	-
Total Hydraulic Power Operation Expenses (Labor)		LBsUB3	1.000000	\#Div/0!									
Total Hydraulic Power Generation Maint. Expense (Labor)		LBSUB4	1.000000	${ }^{0.654526}$	0.345474				-		-	-	
Total Other Power Generation Expenses (Labor)		LBSUB5	1.000000	1.000000	-		-		-	-	-	-	-
Total Transmission Labor Expenses		Lbtran	1.000000	-	-	1.0000000		-	-	-	-	-	-
Total Distribution Operation Labor Expense		LBDO	1.000000	-	-	-	-	0.155751	-	0.092031	0.168967	0.039495	0.073725
Total Distribution Maintenance Labor Expense		LBDM	1.000000		-	-	-	0.084063	-	0.227361	0.410179	${ }^{0.096156}$	0.174887
Sub-Total Labor Exp		Lbsub7	1.000000	0.328591	0.225104	${ }^{0.071722}$		0.030022	-	0.023878	0.046414	${ }^{0.010750}$	0.021701
Total General Plant		${ }_{\text {PGP }}$	1.000000	${ }^{0.629325}$	-	0.136227	-	0.036750	-	0.029229	0.056814	0.013158	0.026564
Total Production Plant Total Intangible Plant		PPRTL PNT	1.000000 1.000000	1.000000 0.629325	$:$		$:$		$:$			${ }_{0.013158}$	
Total Intangible Plant		PINT	1.000000	0.629325	-	0.136227	-	0.036750	-	0.029229	0.056814	0.013158	0.026564

Description	Name	Functional Vector	Distribution Line Trans.		DistributionServicesCustomer	Distribution Meters	$\begin{array}{r} \text { Distribution St. \& } \\ \text { Cust. Lighting } \end{array}$	$\begin{array}{r}\text { Customer Accounts } \\ \text { Expense } \\ \hline\end{array}$	$\begin{array}{r} \text { Customer } \\ \text { Service \& Info. } \\ \hline \end{array}$	Sales Expense
			Demand	Customer						
Functional Vectors										
Station Equipment	F001		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Poles, Towers and Fixtures	F002		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Overhead Conductors and Devices	F003		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Underground Conductors and Devices	F004		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Line Transformers	F005		0.546201	0.453799	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Services	F006		0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Meters	F007		0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000
Street Lighting	F008		0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000
Meter Reading	F009		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000
Billing	F010		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000
Transmission	F011		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Load Management	F012		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000
Production Plant	F017		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Provar	Provar		0.000000	0.000000	${ }^{0.000000}$	0.000000	0.000000	${ }^{0.000000}$	0.000000	0.000000
Fuel	F018		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Steam Generation Operation Labor	F019		-	-	-	-	-		-	-
PROFIX	PROFIX		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Steam Generation Maintenance Labor	F020			-	-				-	-
Hydraulic Generation Operation Labor	F021		-	-	-	-	-		-	.
Hydralic Generation Maintenance Labor	F022				-					
Distribution Operation Labor	F023		249,002	206,878	174,424	5,108,741	199,752	-	-	-
Distribution Maintenance Labor	F024		29,461	24,477	203	121	232		-	-
Customer Accounts Expense	F025		0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000
Customer Service Expense	F026		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000
Customer Advances	F027		-	-	-	-	-	-	-	-
Purchase Power Demand		F017	-	-	-	-	-	-	-	
Purchase Power Energy		F018	-		-					
Purchased Power Expenses	OMPP	F017	-	-	-	-	-	-	-	-
Gain Disposition of Allowances	F013		-	-	-	-	-		-	-
Intallations on Customer Premises - Accum Depr	F014		-	-	-	-		1.00000	-	-
Generators -Energy	F015		${ }^{0.000000}$	${ }^{0.000000}$	${ }^{0.000000}$	${ }^{0.000000}$	${ }^{0.000000}$	${ }^{0.000000}$	0.000000	${ }^{0.000000}$
,	Energy		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Internally Generated Functional Vectors										
Total Prod, Trans, and Dist Plant		PT\&D	0.019181	${ }^{0.015936}$	0.013436	${ }^{0.007991}$	0.015388			
Total Distribution Plant		PDIST	0.081816	0.067975	0.057311	0.034085	0.065633	-	-	
Total Transmission Plant		PTRAN							0	
Operation and Maintenance Expenses Less Purchase Power		OMLPP	${ }^{0.003139}$	${ }^{0.002608}$	0.002150	0.013674	0.002463	0.066915	0.008502	-
Total Plant in Service		${ }_{\text {TPIS }}$	${ }^{0} 0.019187$	${ }^{0.0159411}$	${ }^{0.013440}$	${ }^{0.007993}$	${ }^{0.015392}$	0162835	944	
Total Operation and Maintenance Expenses (Labor)		TLB	0.015685	${ }^{0.013032}$	0.010987	${ }^{0.006535}$	${ }^{0.012583}$	${ }^{0.162835}$	${ }^{0.019444}$	
Sub-Total Prod, Trans, Dist, Cust Acct and Cust Service		OMSUB2	0.001075	${ }^{0.000893}$	0.000701	${ }^{0.013825}$	0.000802	0.051844	${ }^{0.006745}$	
Total Steam Power Operation Expenses (Labor)		${ }^{\text {Lbsubi }}$	-	-	-	-	-	-	-	-
Total Steam Power Generation Maintenance Expense (Labor)		LBSUB2	-	-	-	-	-	-		-
Total Hydraulic Power Operation Expenses (Labor)		LBSUB3	\#DIV/0!							
Total Hydraulic Power Generation Maint. Expense (Labor)		LBSUB4		-	-	-				-
Total Other Power Generation Expenses (Labor)		LBSUB5		-	-	-			-	
Total Transmission Labor Expenses		Lbtran	-	-	-	-	-	-	-	-
Total Distribution Operation Labor Expense		LBDO	0.019707	0.016374	0.013805	0.404335	0.015810	-	-	-
Total Distribution Maintenance Labor Expense		LBDM	0.003976	0.003303	0.000027	0.000016	0.000031	-	-	-
Sub-Total Labor Exp		LBSUB7	0.015670	0.013019	0.010977	${ }^{0.006528}$	0.012571	0.163526	0.019526	
Total General Plant		PGP	0.019181	0.015936	0.013436	0.007991	0.015388	-	-	.
Total Production Plant		${ }^{\text {PRRTL }}$						-	-	-
Total Intangible Plant		PINT	0.019181	${ }^{0.015936}$	0.013436	0.007991	0.015388			

Exhibit WSS-30

Electric Cost of Service Study
Functional Assignment and
Classification
(Louisville Gas and Electric Company)

Description	Name	Functional Vector	Total System		12 Months Ended June 30, 2022																			
					ProductionDemand				$\begin{array}{r} \text { Transmission } \\ \text { Demand } \\ \hline \text { Demand } \\ \hline \end{array}$		DistributionSubstation		Distribution Primary Lines						Distribution Sec. Lines					
						LOLP			General	Specific		Demand			Customer	Demand			Customer					
Plant in Service																								
Intangible Plant																								
301.00 ORGANIZATION	P301	PT\&D	\$	2,240		1,368		-				210		83		-		127		208		35		60
302.00 FRANCHISE AND CONSENTS	P301	PT\&D		-		-		-		-		-		-		-		-						
303.00 SOFTWARE - COMMON	P302	PT\&D		-		-		-		-		-		-		-		-		-		-		
301.00 ORGANIZATION - COMMON	P301	PT\&D		-		-		-		-		-		-		-		-		-		-		
302.00 FRANCHISE AND CONSENTS - COMMON	P301	PT\&D		-		-		-		-		-		-		-		-		-		-		
Total Intangible Plant	PINT		\$	2,240	\$	1,368	\$	-	\$	210	\$	83	\$	-	\$	127	\$	208	\$	35	\$	60		
Steam Production Plant																								
Total Steam Production Plant	PSTPR	F017		3,109,195,352		3,109,195,352		-		-		-		-		-		-		-		-		
Hydraulic Production Plant																								
Total Hydraulic Production Plant	PHDPR	F017	\$	159,587,945		159,587,945		-		-		-		-		-		-		-		-		
Other Production Plant																								
Total Other Production Plant	POTPR	F017	\$	418,289,975		418,289,975		-		-		-		-		-		-		-		-		
Total Production Plant	PPRTL		\$	3,687,073,272	\$	3,687,073,272	\$	-	\$	-			\$	-	\$	-								
Transmission																								
Total Transmission Plant	PTRAN	F011	\$	566,296,585		-		-		566,296,585		-		-		-		-		-		-		
Total Transmission Plant	PTRTL		\$	566,296,585	\$	-	\$	-	\$	566,296,585	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-		
Distribution																								
TOTAL ACCTS 360-362	P362	F001	\$	222,802,329		-		-		-		222,802,329		-		-		-		-		-		
364 \& 365-OVERHEAD LINES	P365	F003		684,235,593		-		-		-				-		173,756,511		308,766,430		72,636,726		129,075,927		
366 \& 367-UNDERGROUND LINES	P367	F004		476,035,911		-		-		-		-		-		168,284,874		250,959,953		22,795,941		33,995,143		
368 -TRANSFORMERS	P368	F005		182,077, 170		-		-		-		-		-				-		-		,		
369-SERVICES	P369	F006		41,665,746		-		-		-		-		-		-		-		-		-		
370-METERS	P370	F007		42,308,485		-		-		-		-		-		-		-		-		-		
371-CUSTOMER INSTALLATION	P371	F007		183,388		-		-		-		-		-		-		-		-		-		
373-STREET LIGHTING	P373	${ }^{\text {F008 }}$		137,373,834		-		-		-		-		-		-		-		-		-		
374-ASSET RETIRE OBLIGATIONS DIST PLANT	P374	F003		-		-		-		-		-		-		-		-		-		-		
Total Distribution Plant	PDIST			1,786,682,455	\$	-	\$	-	\$	-	\$	222,802,329	\$		\$	342,041,384	\$	559,726,383	\$	95,432,668	\$	163,071,070		
Total Prod, Trans, and Dist Plant	PT\&D			6,040,052,312	\$	3,687,073,272	\$	-	\$	566,296,585	\$	222,802,329	\$	-	\$	342,041,384	\$	559,726,383	\$	95,432,668	\$	163,071,070		

Description	Name	Functional Vector	12 Months Ended June 30, 2022														
			Distribution Line Trans.				$\begin{array}{r} \text { Distribution } \\ \text { Services } \end{array}$		Distribution Meters		Distribution St. \& Cust. Lighting			$\begin{gathered} \hline \text { Customer } \\ \text { Accounts } \\ \text { Expense } \end{gathered}$	Customer Service \& Info.		Sales Expense
				Demand		Customer		Customer									
Plant in Service																	
Intangible Plant																	
301.00 ORGANIZATION	P301	PT\&D		43		24		15		16		51		-	-		-
302.00 FRANCHISE AND CONSENTS	P301	PT\&D		-		-		-		-		-		-	-		-
303.00 SOFTWARE - COMMON	P302	PT\&D		-		-		-		-		-		-	-		-
301.00 ORGANIZATION - COMMON	P301	PT\&D		-		-		-		-		-		-	-		
302.00 FRANCHISE AND CONSENTS - COMMON	P301	PT\&D		-		-		-		-		-		-	-		-
Total Intangible Plant	PINT		\$	43	\$	24	\$	15	\$	16	\$	51	\$	-	\$	\$	-
Steam Production Plant																	
Total Steam Production Plant	PSTPR	F017		-		-		-		-		-		-	-		-
Hydraulic Production Plant																	
Total Hydraulic Production Plant	PHDPR	F017		-		-		-		-		-		-	-		-
Other Production Plant																	
Total Other Production Plant	POTPR	F017		-		-		-		-		-		-	-		-
Total Production Plant	PPRTL		\$		\$	-					\$	-	\$	-	\$	\$	-
Transmission																	
Total Transmission Plant	PTRAN	F011		-		-		-		-		-		-	-		-
Total Transmission Plant	PTRTL		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	\$	-
Distribution																	
TOTAL ACCTS 360-362	P362	F001		-		-		-		-		-		-	-		-
364 \& 365-OVERHEAD LINES	P365	F003		-		-		-		-		-		-	-		-
366 \& 367-UNDERGROUND LINES	P367	F004		-		-		-		-		-		-	-		-
368-TRANSFORMERS	P368	F005		116,910,393		65,166,777		-		-		-		-	-		-
369-SERVICES	P369	F006		-		-		41,665,746		-		-		-	-		-
370-METERS	P370	F007		-		-				42,308,485		-		-	-		-
371-CUSTOMER INSTALLATION	P371	F007		-		-		-		183,388		-		-	-		-
373-STREET LIGHTING	P373	F008		-		-		-		-		137,373,834		-	-		-
374-ASSET RETIRE OBLIGATIONS DIST PLANT	P374	F003		-		-		-		-		,		-	-		-
Total Distribution Plant	PDIST		\$	116,910,393	\$	65,166,777	\$	41,665,746	\$	42,491,872	\$	137,373,834	\$	-	\$	\$	-
Total Prod, Trans, and Dist Plant	PT\&D		\$	116,910,393	\$	65,166,777	\$	41,665,746	\$	42,491,872	\$	137,373,834	\$	-	\$	\$	-

Description	Name	Functional Vector	$\begin{array}{r} \text { Total } \\ \text { System } \\ \hline \end{array}$		12 Months Ended June 30, 2022																	
						Production Demand		Production Energy		TransmissionDemandDemand			Distribution Primary Lines						Distribution Sec. Lines			
						LOLP		Energy						Specific	Demand		Customer		Demand			Customer
Plant in Service (Continued)																						
General Plant																						
Total General Plant	PGP	PT\&D	\$	21,026,365		12,835,277		-		1,971,367		775,610		-		1,190,699		1,948,495		332,216		567,676
TOTAL COMMON PLANT	Рсом	PT\&D	\$	231,173,767		141,117,092		-		21,674,136		8,527,418		-		13,091,111		21,422,671		3,652,539		6,241,296
106.00 COMPLETED CONSTR NOT CLASSIFIED	P106	PT\&D						-														
105.00 PLANT HELD FOR FUTURE USE - DIST	P105	PDIST		2,908,740		-		-		-		362,725		-		556,847		911,241		155,366		265,482
105.00 PLANT HELD FOR FUTURE USE - PROD	P105	F017		211,410		211,410		-		-		-				-		-		-		-
PROPERTY HELD UNDER CAPITAL LEASE		F017						-		-		-		-		-		-		-		-
OTHER		PDIST	\$	-				-		-		-		-		-				-		-
Total Plant in Service	TPIS		\$	6,295,374,834	\$	3,841,238,419	\$		\$	589,942,298	\$	232,468,164	\$		\$	356,880,169	\$	584,008,998	\$	99,572,824		170,145,583
Construction Work in Progress (CWIP)																						
CWIP Production	CWIP1	F017	\$	17,402,861		17,402,861		-		-		-		-		-		-		-		-
CWIP Transmission	CWIP2	F011		21,580,855		-		-		21,580,855		-		-		-		-		-		-
CWIP Distribution	CWIP3	PDIST		16,836,832		-		-		-		2,099,581		-		3,223,233		5,274,591		899,311		1,536,703
CWIP General \& Common	CWIP4	PT\&D		11,356,326		6,932,325		-		1,064,734		418,906		-		643,096		1,052,381		179,430		306,601
Total Construction Work in Progress	TCWIP		\$	67,176,874	\$	24,335,186	\$	-	\$	22,645,589	\$	2,518,488	\$	-	\$	3,866,329	\$	6,326,972	\$	1,078,741	\$	1,843,304
Total Utility Plant			\$	6,362,551,708	\$	3,865,573,604	\$	-	\$	612,587,887	\$	234,986,652	\$		\$	360,746,498	\$	590,335,970	\$	100,651,565	\$	171,988,888

Assignment and Cl12 Months EndedJune 30, 2022									
		Functional	Distribution Line Trans.	$\begin{array}{r} \text { Distribution } \\ \text { Services } \\ \hline \end{array}$	$\begin{array}{r} \text { Distribution } \\ \text { Meters } \end{array}$	$\begin{array}{r} \text { Distribution St. \& } \\ \text { Cust. Lighting } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Customer } \\ \text { Accounts } \\ \text { Expense } \\ \hline \end{gathered}$	$\begin{array}{r} \text { Customer } \\ \text { Service \& Info. } \end{array}$	Sales Expense
Description	Name	Vector	Demand Cust	Customer					

Plant in Service (Continued)
General Plant
Total General Plant
TOTAL COMMON PLAN
06.00 COMPLETED CONSTR NOT CLASSIFIED
05.00 PLANT HELD FOR FUTURE USE - DIST
05.00 PLANT HELD FOR FUTURE USE - PROD PROPERTY HELD UNDER CAPITAL LEASE OTHER

Total Plant in Service

PGP	PT\&D
PCOM	PT\&D
P106	PT\&D
P105	PDIS
P105	F017
	F017
	PDIS
TPIS	

Construction Work in Progress (CWIP)

CWIP Production

CWIP Transmission
CWIP Distribution
CWIP General \& Common
Total Construction Work in Progress
Total Utility Plant

Rate Base

$\frac{\text { Utility Plant }}{\text { Plant in Service }}$
Construction Work in Progress (CWIP)
Total Utility Plant
Less: Accumulated Provision for Depreciation and RWIP

Production Transmission

Distribution
General \& Common Plant
Intangible Plant
RWIP
Total Accumulated Depreciation

Net Utility Plant

Cash Working Capital - Operation and Maintenance Expenses Materials and Supplies
Prepayments
Total Working Capital
Deferred Debits
Service Pension Cos
Other Deferred Debits
Total Deferred Debits
Less: Customer Advances
Accumulated Deferred Income Taxes
Accumulated Deferred Income Taxes
FAS 109 Deferred Income Taxes
Asset Retirement Obligation-Net Assets
Asset Retirement Obligation-Regulatory Liabilities
Total Accumulated Deferred Income Tax

Investment Tax Credits
 Total Production Plant

otal Transmission Plant
Total Distribution Pla
Total General Plant
Total Investment Tax Credi

Net Rate Base

$\left.\begin{array}{lrlrl}\$ & 589,942,298 & \$ & 232,468,164 & \$ \\ 22,645,588.93\end{array}\right)$

-		180,532,195		-	
-		-		73,039,921	
-		9,806,141		3,858,104	
-					
-	\$	190,338,336	\$	76,898,025	\$
-	\$	422,249,551	\$	158,088,627	\$
,365,699		7,147,160		1,674,372	
-		4,135,173		1,629,475	
-		1,376,410		542,378	
- ${ }^{-}$	\$	12,658,743	\$	3,846,224	

$\$$	$124,454,261$	$18,304,703$	$78,365,699$	$7,147,160$	$1,674,372$	
	$44,127,133$	$26,924,979$	-	$4,135,173$	$1,629,475$	
	$14,687,906$	$8,962,095$	-	$1,376,410$	542,378	
	$33,96,476$	$33,96,476$	-	-		
$\$$	$216,465,777$	$\$$	$87,388,254$	$\$$	$78,365,699$	$\$$
			$12,658,743$	$\$$	$3,846,224$	$\$$

53,253,094 87,144,899 14,858,099 25,388,855

DIT	F017
DIT	PTRAN
DIT	PDIST
DIT	PT\&D

\$	6,295,374,834	\$	3,841,238,419	
	67,176,874		24,335,185.61	
\$	6,362,551,708	\$	3,865,573,604	

ADEPREPA	F017	$\$ 1,306,343,857$	$1,306,343,857$	
ADEPRTP	PRAN	$180,532,195$	-	
ADEPRD11	PDIST	$585,711,151$	-	
ADEPRD12	PT\&D	$104,591,141$	$63,846,335$	
ADEPRGP	PR\&D	-	-	
RWIP	PT\&D	-	-	
TADEPR		$\$ 2,177,184,344$	$\$ 1,370,190,192$	$\$$
NTPLANT		$\$ 4,185,367,364$	$\$ 2,495,383,413$	$\$$

CWC	OMLPP
M\&S	TPIS
PREPAY	TPIS
	F017

Twc
PENSCOST TLB
DDEBPP
$\$ 939,385,87$
$\$$
TUP
CSTDEP F027 \$

PDIST
PT\&D

Description	Name	Functional Vector	12 Months Ended June 30, 2022															
			Distribution Line Trans.				DistributionServices		DistributionMeters		Distribution St. \&Cust. Lighting		Customer Accounts Expense		$\begin{array}{r} \text { Customer } \\ \text { Service \& Info. } \end{array}$		Sales Expense	
				Demand		Customer		Customer										
Rate Base																		
Utility Plant																		
Plant in Service			\$	121,982,317	\$	67,993,908	\$	43,473,331	\$	44,335,297	\$	143,333,524	\$	-	\$	-	\$	-
Construction Work in Progress (CWIP)				1,321,518.47		736,624.84		470,976.54		480,314.82		1,552,830.80						-
Total Utility Plant	TUP		\$	123,303,836	\$	68,730,533	\$	43,944,308	\$	44,815,612	\$	144,886,355	\$	-	\$	- -	\$	

Production	ADEPREPA	F017		-		-		-		-		-						-
Transmission	ADEPRTP	PTRAN		-		-		-		-		-		-		-		-
Distribution	ADEPRD11	PDIST		38,326,017		21,363,225		13,659,026		13,929,850		45,034,421		-		-		
General \& Common Plant	ADEPRD12	PT\&D		2,024,451		1,128,445		721,495		735,800		2,378,802		-		-		-
Intangible Plant	ADEPRGP	PT\&D		-		-		-		-		-		-		-		-
RWIP	RWIP	PT\&D		-		-		-		-		-		-		-		-
Total Accumulated Depreciation	TADEPR		\$	40,350,468	\$	22,491,670	\$	14,380,521	\$	14,665,650	\$	47,413,223	\$	-	\$	-	\$	-
Net Utility Plant	NTPLANT		\$	82,953,368	\$	46,238,863	\$	29,563,787	\$	30,149,962	\$	97,473,132	\$	-	\$	-	\$	-
Working Capital																		
Cash Working Capital - Operation and Maintenance Expenses	cwc	OMLPP		231,637		129,116		69,036		2,886,220		347,121		4,604,270		1,013,761		-
Materials and Supplies	M\&S	TPIS		855,029		476,600		304,724		310,766		1,004,690		-		-		-
Prepayments	PREPAY	TPIS		284,600		158,638		101,429		103,440		334,415		-		-		-
Fuel Stock		F017												-		-		
Total Working Capital	TWC		\$	1,371,266	\$	764,355	\$	475,189	\$	3,300,426	\$	1,686,226	\$	4,604,270	\$	1,013,761	\$	-
Deferred Debits																		
Service Pension Cost	PENSCOST	TLB		-		-		-		-		-		-		-		-
Other Deferred Debits	DDEBPP	OMSUB2		-		-		-		-		-		-		-		-
Total Deferred Debits			\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Less: Customer Advances	CSTDEP	F027		-		-		-		-		-		-		-		-
Accumulated Deferred Income Taxes																		
Accumulated Deferred Income Taxes	DIT	TPIS		18,202,008		10,145,943		6,487,022		6,615,643		21,388,002		-		-		-
FAS 109 Deferred Income Taxes	DIT	TPIS		-		-		-		-		-		-		-		-
Asset Retirement Obligation-Net Assets	DIT	TPIS		-		-		-		-		-		-		-		-
Asset Retirement Obligation-Regulatory Liabilities	DIT	TPIS		-		-		-		-		-		-		-		-
Total Accumulated Deferred Income Tax			\$	18,202,008	\$	10,145,943	\$	6,487,022		6,615,643	\$	21,388,002	\$	-	\$	-	\$	-
Investment Tax Credits																		
Total Production Plant	DIT	F017		-		-		-		-		-		-		-		-
Total Transmission Plant	DIT	PTRAN		-		-		-		-		-		-		-		-
Total Distribution Plant	DIT	PDIST		-		-		-		-		-		-		-		-
Total General Plant	DIT	PT\&D		-		-		-		-		-		-		-		-
Total Investment Tax Credit			\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Net Rate Base	RB		\$	66,122,625	\$	36,857,274	\$	23,551,954	\$	26,834,745	\$	77,771,357	\$	4,604,270	\$	1,013,761	\$	-

Operation and Maintenance Expenses

Steam Power Generation Operation Expenses

500 OPERATION SUPERVISION \& ENGINEERING 501 FUEL

STEAM EXPENSES
STEAM TRANSFER EXPENSES
55 ELECTRIC EXPENSES
506 MISC. STEAM POWER EXPENSES
507 RENTS
509 ALLOWANCES

OM500	LBSUB1
OM501	Energy
OM502	PROFIX
OM504	PROFIX
OM505	PROFIX
OM506	PROFIX
OM507	PROFIX
OM509	PROFIX

Total Steam Power Operation Expenses
Steam Power Generation Maintenance Expenses
510 MAINTENANCE SUPERVISION \& ENGINEERING
511 MAINTENANCE OF STRUCTURES
12 MAINTENANCE OF BOILER PLANT
514 MAINTENANCE OF MLECTRIC PLANT

OM510	LBSUB2
OM111	PROFIX
OM512	Energy
OM553	Energy
OM514	Energy

\$	5,359,919	4,681,925	677,994
	254,165,772	-	254,165,772
	18,685,164	18,685,164	-
	-	-	-
	2,353,024	2,353,024	
	16,437,786	16,437,786	-
	-	-	-
	-	-	-

Total Steam Power Generation Maintenance Expense
Total Steam Power Generation Expense
Hydraulic Power Generation Operation Expenses
535 OPERATION SUPERVISION \& ENGINEERING
536 WATER FOR POWER
537 HYDRAULIC EXPENSES
538 ELECTRIC EXPENSES
539 MISC. HYDRAULIC POWER EXPENSES

Total Hydraulic Power Operation Expenses
Hydraulic Power Generation Maintenance Expenses
541 MAINTENANCE SUPERVISION \& ENGINEERING
541 MAINTENANCE SUPERVISION \& ENGINEERING
542 MAINTENANCE OF STRUCTURES
42 MAINTENANCE OF STRUCTURES
MAINT. OF RESERV EI, DAMS, AND WATERWAYS
545 MAINTENANCE OF MISC HYDRAULIC PLANT
Total Hydraulic Power Generation Maint. Expense
Total Hydraulic Power Generation Expense
Other Power Generation Operation Expense 546 OPERATION SUPERVISION \& ENGINEERING 547 FUEL
548 GENERATION EXPENS
549 MISC OTHER POWER GENERATION 550 RENTS

Total Other Power Generation Expenses

\$	8,141,536		31,953		8,109,583	
	3,444,669		3,444,669			
	34,342,497		-		34,342,497	
	14,018,415		-		14,018,415	
	1,551,793		-		1,551,793	
\$	61,498,910	\$	3,476,622	\$	58,022,288	\$
\$	358,500,575	\$	45,634,521	\$	312,866,054	\$

\$ 297,001,665 \$ 42,157,899 \$ 254,843,766 \$ \quad - \$

$\$$	116,778	116,778
	43,212	43,212
	-	-
	324,155	324,155
	213,613	213,613
	568,902	568,902
	1266,660	

\$
$\$$

\$	-		-		-
	323,993		323,993		-
	222,489		222,489		-
	327,894				327,894
	56,196		-		56,196
\$	930,572	\$	546,482	\$	384,090
	2,197,232	\$	1,813,142	\$	384,090
\$	187,484		187,484		-
	43,921,446		-		43,921,446
	300,829		300,829		-
	1,742,424		1,742,424		-

$\$$	187,484	187,484	-	$43,921,446$
	$43,921,446$	300,829	-	
	300,829	$1,742,424$	$1,742,424$	-
	11,652		11,652	-
	$\$$	$46,163,835$	$\$$	$2,242,389$
	$\$$	$43,921,446$	$\$$	

12 Months Ended

June 30, 2022

		Functional	Distribution Line Trans.	Distribution Services	Distribution Meters	$\begin{array}{r}\text { Distribution St. \& } \\ \text { Cust. Lighting } \\ \hline\end{array}$	Customer Accounts Expense	Customer Service \& Info	Sales Expense
Description	Name	Vector	Demand Cust	Customer					

Operation and Maintenance Expenses

Steam Power Generation Operation Expenses
500 OPRERATION SUPERVISION \& ENGINEERING
501 FUEL
502 STEAM EXPENSES
504 STEAM TRANSFER EXPENSES
505 ELECTRIC EXPENSES
506 MISC. STEAM POWER EXPENSES
507 RENTS
509 ALLOWANCES
Total Steam Power Operation Expenses
Steam Power Generation Maintenance Expenses
510
511 MAINTENANCE SUPERVIIINN \& ENGINEERING
512 MAINTENNCE OF STRUCTURES
513 MANTENANE OF BOILER PLANT
514 MAINTENANE OF EEECTRIC PLANT
Total Steam Power Generation Maintenance Expense
Total Steam Power Generation Expense

Hydraulic Power Generation Operation Expenses
535 OPERATION SUPERVISION \& ENGINEERIN 536 WATER FOR POWER
537 HYDRAULIC EXPENSES
538 ELECTRIC EXPENSES
539 MISC. HYDRAULIC POWER EXPENSES 540 RENTS

Total Hydraulic Power Operation Expenses
Hydraulic Power Generation Maintenance Expenses
541 MAINTENANCE SUPERVISION \& ENGINEERING
542 MAINTENANCE OF STRUCTURES
43 MAINT. OF RESER
545 MAINTENANCE OF MISC HYDRAULIC PLANT

OM550	LBSUB1
OM501	Energy
OM502	PROFIX
OM504	PROFIX
OM505	PROFIX
OM5506	PROFFX
OM507	PROFIX
OM509	PROFIX
OM510	LBSUB2
OM551	PROFF
OM512	Energy
OM513	Energy
OM514	Energy

Total Hydraulic Power Generation Maint. Expense
Total Hydraulic Power Generation Expense
Other Power Generation Operation Expense 546 OPERATION SUPERVISION \& ENGINEERING 547 FUEL
548 GENERATION EXPENS
49 MISC OTHER POWER GENERATION 550 RENTS

Total Other Power Generation Expenses

Operation and Maintenance Expenses (Continued)

Other Power Generation Maintenance Expense
551 MAINTENANCE SUPERVISION \& ENGINEERING
552 MAINTENANCE OF STRUCTURES
553 MAINTENNCE OF GENERATING \& ELEC PLANT
554 MAINTENANCE OF MISC OTHER POWER GEN PL

OM551	PROFIX
OM552	PROFIX
OM553	PROFIX
OM554	PROFIX

Total Other Power Generation Maintenance Expense
Total Other Power Generation Expense

Total Station Expense

Other Power Supply Expenses
555 PURCHASED POWER
555 PURCHASED POWER OPTIONS
555 BROKERAGE FEES
556 SYSTEM CONTROL AND LOAD DISPATCH 557 OTHER EXPENSES
558 DUPLICATE CHARGES
Total Other Power Supply Expenses
Total Electric Power Generation Expenses
Transmission Expenses
560 OPERATION SUPERVISION AND ENG
561 LOAD DISPATCHING
562 STATION EXPENSES
563 OVERHEAD LINE EXPENSES
565 TRANSMISSION OF ELECTRICITY BY OTHERS
566 MISC. TRANSMISSION EXPENSES
567 RENTS
568 MAINTENACE SUPERVISION AND ENG
569 STRUCTURES
570 MAINT OF STATION EQUIPMENT
571 MAINT OF OVERHEAD LINES
573 MISC PLANT
575 MISO DAY 1 \& 2 EXPENSES

OM555	OMPP
OMO555	OMPP
OMB55	OMPP
OMM555	OMPP
OM56	PROFIX
OM557	PROFIX
OM558	Energy
TPP	

$\$$	272,764	
	2055,911	
	$3,098,761$	
	$1,896,209$	
$\$$	$5,503,645$	$\$$
$\$$	$51,667,480$	$\$$
$\$$	$412,365,288$	$\$$

272,764	-	
2755,911	-	
$3,098,761$	-	
$1,896,209$		-
	$5,503,645$	$\$$
	$7,746,034$	$\$$
	$55,193,697$	$\$$

\$ 43,276,6
19,589,961

Total Transmission Expenses

OM560	LBTRAN
OM561	LBTRAN
OM562	LBTRAN
OM563	LBTRAN
OM565	LBTRAN
OM566	PTRAN
OM567	PTRAN
OM568	LBTRAN
OM569	LBTRAN
OM570	LBTRAN
OM571	LBTRAN
OM572	LBTRAN
OM573	PTRAN
OM575	LBTRAN

12 Months Ended
June 30, 2022

		Functional	Distribution Line Trans.	Distribution Services	Distribution Meters	Distribution St. \& Cust. Lighting		Customer Service \& Info.	Sales Expense
Description	Name	Vector	Demand Cust	Customer					

Operation and Maintenance Expenses (Continued)
Other Power Generation Maintenance Expense
551 MAINTENANCE SUPERVISION \& ENGINEERING
552 MAANTENANCE OF STRUCTURES
553 MAINTNANCE OF GENERATING \& ELEC PLANT
554 MAINTENANCE OF MISC OTHER POWER GEN PL
Total Other Power Generation Maintenance Expense
Total Other Power Generation Expense
Total Station Expense

Other Power Supply Expenses
555 PURCHASED POWER
555 PURCHASED POWER OPTIONS
555 BROKERAGE FEES
556 SYSTEM CONTROL AND LOAD DISPATCH 557 OTHER EXPENSES
558 DUPLICATE CHARGES
Total Other Power Supply Expenses
Total Electric Power Generation Expenses

Transmission Expenses

560 OPERATION SUPERVISION AND ENG
561 LOAD DISPATCHING
562 STATION EXPENSES
563 OVERHEAD LINE EXPENSES
565 TRANSMISSION OF ELECTRICITY BY OTHERS
566 MISC. TRANSMISSION EXPENSES
567 RENTS
568 MAINTENACE SUPERVISION AND ENG
569 STRUCTURES
570 MAINT OF STATION EQUIPMENT
571 MAINT OF OVERHEAD LINES
573 MISC PLANT
575 MISO DAY 1 \& 2 EXPENSES
Total Transmission Expenses

Description	Name	Functional Vector		$\begin{array}{r} \text { Total } \\ \text { System } \end{array}$	12 Months Ended June 30, 2022																	
					ProductionDemand			Production Energy		$\begin{array}{r} \begin{array}{r} \text { Transmission } \\ \text { Demand } \end{array} \\ \hline \text { Demand } \end{array}$				Distribution Primary Lines						Distribution Sec. Lines		
						LOLP		Energy				General		Specific		Demand		Customer		Demand		Customer
Operation and Maintenance Expenses (Continued)																						
Distribution Operation Expense																						
580 OPERATION SUPERVISION AND ENGI	OM580	LBDO	\$	2,397,039		-		-		-		355,547				283,565		481,036		95,932		167,375
581 LOAD DISPATCHING	OM581	P362		292,953		-		-		-		292,953		-		-		-		-		-
582 STATION EXPENSES	OM582	P362		1,764,640				-				1,764,640				-						--
583 OVERHEAD LINE EXPENSES	OM583	P365		5,783,700		-		-		-		-		-		1,468,727		2,609,938		613,983		1,091,052
584 UNDERGROUND LINE EXPENSES	OM584	P367		6,320,821				.		-		-		-		2,234,492		3,332,255		302,685		451,389
585 STREET LIGHTING EXPENSE	Ом585	P373		-		-		-		-		-		-		-		-		-		-
586 METER EXPENSES	Ом586	P370		7,932,375		-		-		-				-		-						
586 METER EXPENSES - LOAD MANAGEMENT	OM586x	F012		-		-		-		-		-		-		-		-		-		
587 CUSTOMER INSTALLATIONS EXPENSE	OM587	PDIST		-		-		-		-		-		-		-		-		-		-
588 MISCELLANEOUS DISTRIBUTION EXP	OM588	PDIST		7,395,817		-		-		-		922,271		-		1,415,851		2,316,939		395,035		675,019
588 MISC DISTR EXP -- MAPPIN	OM588x	PDIST																				
589 RENTS	OM589	PDIST		35,725		-		-		-		4,455		-		6,839		11,192		1,908		3,261
Total Distribution Operation Expense	OMDO		\$	31,923,070	\$	-	\$	-	\$	-	\$	3,339,866	\$	-	\$	5,409,474	\$	8,751,359	\$	1,409,543	\$	2,388,094
Distribution Maintenance Expense																						
590 MAINTENANCE SUPERVISION AND EN	OM590	LBDM	\$	47,090		-		-		-		6,498		-		11,032		18,519		3,538		6,141
591 STRUCTURES	OM591	P362		-		-		-		-		-		-		-		-				-
592 MAINTENANCE OF STATION EQUIPME	Ом592	P362		1,865,977		-		-		-		1,865,977		-		-		-		-		-
593 MAINTENANCE OF OVERHEAD LINES	OM593	P365		15,769,154				-				-		-		4,004,459		7,115,949		1,674,014		2,974,733
594 MAINTENANCE OF UNDERGROUND LIN	Ом594	P367		1,854,313		-		-		-		-		-		655,524		977,570		88,798		132,422
595 MAINTENANCE OF LINE TRANSFORME	OM595	P368		185,535		-		-		-		-		-		-						-
596 MAINTENANCE OF ST LIGHTS \& SIG SYSTEMS	Ом596	P373		568,134		-		-		-		-		-		-		-		-		-
597 MAINTENANCE OF METERS	OM597	P370		-		-		-		-		-		-		-		-		-		-
598 MISCELLANEOUS DISTRIBUTION EXPENSES	OM598	PDIST		870,332		-		-		-		108,532		-		166,616		272,655		46,487		79,435
Total Distribution Maintenance Expense	OMDM		\$	21,160,535	\$	-	\$	-	\$	-	\$	1,981,006	\$	-	\$	4,837,630	\$	8,384,692	\$	1,812,837	\$	3,192,731
Total Distribution Operation and Maintenance Expenses			\$	53,083,605		-		-		-		5,320,872		-		10,247,105		17,136,051		3,222,380		5,580,825
Transmission and Distribution Expenses			\$	80,857,178		-		-		27,773,573		5,320,872		-		10,247,105		17,136,051		3,222,380		5,580,825
Production, Transmission and Distribution Expenses	omsub		\$	538,397,683	\$	80,778,954	\$	376,761,551	\$	27,773,573	\$	5,320,872	\$	-	\$	10,247,105	\$	17,136,051	\$	3,222,380	\$	5,580,825

	12 Months Ended June 30, 2022									
		Functional	Distribution L	rans.	$\begin{array}{r} \text { Distribution } \\ \text { Services } \end{array}$	$\begin{array}{r} \text { Distribution } \\ \text { Meters } \end{array}$	Distribution St. \& Cust. Lighting	Customer Accounts Expense	Customer Service \& Info.	Sales Expense
Description	Name	Vector	Demand	Cust	Customer					

Operation and Maintenance Expenses (Continued)

Distribution Operation Expense
580 OPERATION SUPERVISION AND ENGI
581 LOAD DISPATCHING
582 STATION EXPENSE
583 OVERHEAD LINE EXPENSES
584 UNDERGROUND LINE EXPENSES
585 STREET LIGHTING EXPENSE
586 METER EXPENSES
586 METER EXPENES - LOAD MANAGEMENT
587 CUSTOMER INSTALLATIONS EXPENSE
588 MISCELLANEOUS DSTRBUTON EXP
588 MISC DISTR EXP -- MAPPIN
589 RENTS

OM580	LBDO
OM581	P362
OM582	P362
OM583	P365
OM584	P367
OM555	P337
OM586	P370
OM586x	F012
OM587	PDIST
OM588	PDIST
OM558x	PDIST
OM589	PDIST
OMDO	

28,597	15,940	
-	-	
-	-	
-	-	
-	-	
	-	-
	-	
	483,940	269,752
$2,-338$	1,303	
	514,875	$\$$
	286,995	$\$$

10,192	925,254	33,602
-	-	-
-	-	-
-	-	-
-	$7,932,375$	-
-	-	-
-	175,891	568,647
172,472	-	-740
833	2,747	
183,497	$9,034,370$	$\$$
	604,996	$\$$

OM590	LBDM
OM591	P362
OM592	P362
OM593	P365
OM594	P367
OM595	P368
OM596	P373
OM597	P370
OM598	PDIST

808
-
-
-
119,131
-
56,950
176,889

104	-	-	
-	-	-	
-	-	-	
-	-	-	
-	-	-	
568,134	-	-	
66,918	-	-	
$635,155 \$$	-	$\$$	-

Total Distribution Operation and Maintenance Expenses
Transmission and Distribution Expenses
Production, Transmission and Distribution Expenses
591 STRUCTURES

592 MAINTENANCE OF STATION EQUIPME
593 MAINTENANCE OF OVERHEAD LINES
595 MAINTENANCE OF UNDERGROUNDLIN
596 MAINTENANCE OF ST LIGHTS \& SIG SYSTEMS
597 MAINTENANCE OF METERS
598 MISCELLANEOUS DISTRIBUTION EXPENSES
Total Distribution Maintenance Expense
OMDM

176,889	\$	98,599	\$	20,296	\$	20,699	\$	635,155	\$	-	\$	-	\$
691,764		385,595		203,793		9,055,069		1,240,152		-		-	
691,764		385,595		203,793		9,055,069		1,240,152		-		-	
691,764	\$	385,595	\$	203,793	\$	9,055,069	\$	1,240,152	\$	-	\$	-	\$

12 Months Ended

June 30, 2022

Operation and Maintenance Expenses (Continued)

Customer Accounts Expense	
901 SUPERVISION/CUSTOMER ACCTS	Ом901
902 METER READING EXPENSES	Ом902
903 RECORDS AND COLLECTION	ом903
904 UNCOLLECTIBLE ACCOUNTS	ОМ904
905 MISC CUST ACCOUNTS	ом903
Total Customer Accounts Expense	OMCA
Customer Service Expense	
907 SUPERVISION	OM907
908 CUSTOMER ASSISTANCE EXPENSES	Ом908
908 CUSTOMER ASSISTANCE EXP-INCENTIVES	OM908x
909 INFORMATIONAL AND INSTRUCTIONA	ОМ909
909 INFORM AND INSTRUC -LOAD MGMT	ом909x
910 MISCELLANEOUS CUSTOMER SERVICE	OM910
911 DEMONSTRATION AND SELLING EXP	OM911
912 DEMONSTRATION AND SELLING EXP	OM912
913 ADVERTISING EXPENSES	OM913
916 MISC SALES EXPENSE	Ом916
Total Customer Service Expense	OMCS
Sub-Total Prod, Trans, Dist, Cust Acct and Cust Service	OMSU

M901	FO25
M902	FO25
M9904	FO25
OM903	FO25
OMCA	
OM907	F02
OM908	FO26
OM908x	FO2
OM909	FO26
OM909x	FO26
OM910	FO2
OM911	FO26
OM912	FO2
OM913	FO
OM916	FO26
OMCS	

$\begin{array}{lllll}557,295,500 & 80,778,954 & 376,761,551 & 27,773,573 & 5,320,872\end{array}$

$$
10,247,10
$$

17,136,051
3,222,380

	12 Months Ended June 30, 2022									
		Functional Vector	Distribution Line Trans.		$\begin{array}{r} \text { Distribution } \\ \text { Services } \end{array}$	Distribution Meters	Distribution St. \& Cust. Lighting	Customer Accounts Expense	Customer Service \& Info.	Sales Expense
Description	Name		Demand	Cust	Customer					

Operation and Maintenance Expenses (Continued)

Customer Accounts Expense
901 SUPERVIION/CUSTOMER ACCTS
902 METER READING EXPENSES
903 RECORDS AND COLLECTION
904 UNCOLLECTIBLE ACCOUNTS
905 MISC CUST ACCOUNTS
Total Customer Accounts Expense
Customer Service Expens
907 SUPERVISION
908 CUSTOMER ASSISTANCE EXPENSES
908 CUSTOMER ASSISTANCE EXP-INCENTIVES
909 INFORMATIONAL AND INSTRUCTIONA
909 INFORM AND INSTRUC -LOAD MGMT
910 MISCELLANEOUS CUSTOMER SERVIC
911 DEMONSTRATION AND SELLING EXP
912 DEMONSTRATION AND SELLING EXP
916 MISC SALES EXPENSE
Total Customer Service Expense
Sub-Total Prod, Trans, Dist, Cust Acct and Cust Service

OM901	FO25
OM902	FO25
OM903	FO25
OM904	FO25
OM903	F025
OMCA	
OM907	F026
OM908	FO26
OM908x	FO26
OM909	FO26
OM909x	FO26
OM910	FO26
OM911	FO26
OM912	FO26
OM913	FO26
OM916	FO26
OMCS	

OMSUB2

Description	Name	Functional Vector		$\begin{array}{r} \text { Total } \\ \text { System } \\ \hline \end{array}$	$\begin{array}{r} \text { Production } \\ \text { Demand } \end{array}$			ProductionEnergy $\|$	TransmissionDemandDemand			Distribution Substation General	Distribution Primary Lines									
													Specific			Demand		Customer	Distribution Sec. LinesDemandCustomer			
Operation and Maintenance Expenses (Continued)																						
Administrative and General Expense																						
920 ADMIN. \& GEN. SALARIES-	OM920	LBSUB7	\$	25,891,027		8,431,182		7,150,540		1,943,054		808,693				802,104		1,355,414		266,150		463,477
921 OFFICE SUPPLIES AND EXPENSES	OM921	LBSUB7		7,802,685		2,540,875		2,154,932		585,571		243,713		-		241,727		408,476		80,209		139,676
922 ADMIIISTRATIVE EXPENSES TRANSFERRED	OM922	LBSUB7		$(5,240,118)$		$(1,706,398)$		$(1,447,207)$		$(393,257)$		$(163,672)$				$(162,339)$		(274,324)		$(53,866)$		$(93,804)$
923 OUTSIDE SERVICES EMPLOYED	ом923	LBSUB7		17,066,021		5,557,397		4,713,264		1,280,760		533,049		-		528,706		893,419		175,432		305,500
924 PROPERTY INSURANCE	OM924	TUP		7,218,578		4,385,653				695,006		266,602				409,282		669,761		114,193		195,128
925 INJURIES AND DAMAGES	OM925	LBSUB7		3,235,548		1,053,627		893,588		242,819		101,061				100,237		169,383		33,260		57,920
926 EMPLOYEE BENEFITS	OM926	LBSUB7		23,981,335		7,809,308		6,623,124		1,799,737		749,045		-		742,942		1,255,440		246,519		429,291
927 FRANCHISE REQUIREMENTS	OM927	TUP		-		-		-		-		-		-		-		-		-		-
928 REGULATORY COMMISSION FEES	OM928	TUP		984,809		598,322				94,818		36,372				55,837		91,373		15,579		26,621
929 DUPLICATE CHARGES-CR	OM929	LBSUB7		$(216,193)$		(70,401)		(59,708)		$(16,225)$		$(6,753)$		-		$(6,698)$		$(11,318)$		$(2,222)$		$(3,870)$
930 MISCELLANEOUS GENERAL EXPENSES	ом930	LBSUB7		2,554,270		831,775		705,434		191,691		79,781		-		79,131		133,718		26,257		45,724
931 RENTS AND LEASES	OM931	PGP		1,807,941		1,103,635		-		169,507		66,690		-		102,382		167,540		28,565		48,811
935 MAINTENANCE OF GENERAL PLANT	OM935	PGP		1,055,259		644,170		-		98,938		38,926		-		59,758		97,790		16,673		28,490
Total Administrative and General Expense	OMAG		\$	86,141,161	\$	31,179,144	\$	20,733,968	\$	6,692,420	\$	2,753,507	\$	-	\$	2,953,070	\$	4,956,673	\$	946,748	\$	1,642,966
Total Operation and Maintenance Expenses	том		\$	643,436,661	\$	111,958,098	\$	397,495,519	\$	34,465,993	\$	8,074,379	\$	-	\$	13,200,175	\$	22,092,724	\$	4,169,129	\$	7,223,791
Operation and Maintenance Expenses Less Purchase Power	OMLPP		\$	600,159,990	\$	88,271,387	\$	377,905,558	\$	34,465,993	\$	8,074,379	\$	-	\$	13,200,175	\$	22,092,724	\$	4,169,129	\$	7,223,791

12 Months Ended

June 30, 2022

Description		Functional Vector	Distribution Line Trans.		$\begin{array}{r} \text { Distribution } \\ \text { Services } \\ \hline \end{array}$	Distribution Meters	Distribution St. \& Cust. Lighting	Customer Accounts Expense	$\begin{array}{\|r\|r\|} \text { Customer } \\ \hline \text { Service \& Info. } \\ \hline \end{array}$	Sales Expense
	Name		Demand	Cust	Customer					

Operation and Maintenance Expenses (Continued)
Administrative and General Expense
920 ADMIN. \& GEN. SALARIES-
921 OFFICE SUPPLIES AND EXPENSES
922 ADMINISTRATIVE EXPENSES TRANSFERRE
923 OUTSIDE SERVICES EMPLOYED
924 PROPERTY INSURANCE
925 INJURIES AND DAMAGES
926 EMPLOYE EENEFITS
927 FRANCHISE REQUREMENTS
928 REGULATORY COMMISSION FEES
929 DUPLLCATE CHRAGES-CR
930 MISCELLANEOUS GENERAL EXPENSES
931 RENTS AND LEASES
935 MAINTENANCE OF GENERAL PLANT

Total Administrative and Geneat

Total Operation and Maintenance Expenses
Operation and Maintenance Expenses Less Purchase Power
OM920
OM921
OM922
OM923
OM924
OM925
OM926
OM927
OM928
OM929
OM930
OM931
OM935
OMAG
TOM
OMLP

LBSUB7		72,722		40,536		18,178		1,650,318		62,718		2,320,423		505,519		-
LBSUB7		21,916		12,216		5,478		497,350		18,901		699,297		152,346		
LBSUB7		$(14,718)$		$(8,204)$		$(3,679)$		$(334,010)$		$(12,694)$		$(469,633)$		$(102,313)$		
LBSUB7		47,935		26,719		11,982		1,087,804		41,340		1,529,502		333,212		-
TUP		139,893		77,978		49,857		50,845		164,380		-		-		
LBSUB7		9,088		5,066		2,272		206,237		7,838		289,978		63,174		-
LBSUB7		67,358		37,546		16,837		1,528,592		58,092		2,149,271		468,232		
TUP																
TUP		19,085		10,638		6,802		6,937		22,426		-		-		
LBSUB7		(607)		(338)		(152)		$(13,780)$		(524)		$(19,376)$		$(4,221)$		
LBSUB7		7,174		3,999		1,793		162,811		6,187		228,920		49,872		
PGP		34,994		19,506		12,472		12,719		41,119		-		-		-
PGP		20,425		11,385		7,279		7,424		24,001		-		-		-
	\$	425,266	\$	237,046	\$	129,120	\$	4,863,247	\$	433,784	\$	6,728,383	\$	1,465,821	\$	-
	\$	1,117,029	\$	622,641	\$	332,913	\$	13,918,315	\$	1,673,935	\$	22,203,328	\$	4,888,693	\$	-
	\$	1,117,029	\$	622,641	\$	332,913	\$	13,918,315	\$	1,673,935	\$	22,203,328	\$	4,888,693	\$	-
							\$	70,751,095								

Description	Name	Functional Vector	Distribution Line Trans.		Distribution Services	$\begin{aligned} & \text { Distribution } \\ & \text { Meters } \end{aligned}$	Distribution St. \&Cust. Lighting	Customer Accounts Expense	$\begin{array}{\|r\|r\|} \text { Customer } \\ \text { Service \& Info. } \end{array}$	Sales Expense
			Demand	Cust	Customer					

Steam Power Generation Operation Expenses
500 OPERATION SUPERVISION \& ENGINEERING
501 FUEL
502 STEAM EXPENSES
04 STEAM TRANSFER EXPENSES
506 MISC. STEAM POWER EXPENSES
507 RENTS
Total Steam Power Operation Expenses
Steam Power Generation Maintenance Expenses
IT MAINTENANCE SUPERVISION \& ENGINEERING
12 MAINTENANCE OF STRUCTURES
513 MAINTENANCE OF ELECTRIC PLANT
514 MAINTENANCE OF MISC STEAM PLANT
Total Steam Power Generation Maintenance Expense
Total Steam Power Generation Expense

LB500 F019
LB501
LB5019
Energy

B502 LB506
LB507
LB507
PROFIX
PROFIX
LB510 F020

LB510	F020
LB511	PROFIX
LL512	Energy
LB513	Energy
LB514	Energy

LBSUB2
nergy
OFIX

\$

- $\$$
\$
\$

Hydraulic Power Generation Operation Expenses
535 OPERATION SUPERVISION \& ENGINEERING WATER FOR POWER
337 HYDRAULIC EXPENSES
539 MISC. HYDRAULIC POWER EXPENSES
540 RENTS
Total Hydraulic Power Operation Expenses
Hydraulic Power Generation Maintenance Expense 541 MAINTENANCE SUPERVISION \& ENGINEERING 542 MAINTENANCE OF STRUCTURES
543 MAINT. OF RESERVES, DAMS, AND WATERWAYS 544 MAINTENANCE OF ELECTRIC PLAN 545 MAINTENANCE OF MISC HYDRAULIC PLANT Total Hydraulic Power Generation Maint. Expense Total Hydraulic Power Generation Expense

LB535	F021		-				-		-		-		-		-		-
LB536	PROFIX		-														
LB537	PROFIX		-														
LB538	PROFIX		-				-				-		-		-		-
LB539	PROFIX		-				-										
	PROFIX		-				-		-		-		-		-		-
LBSUB3		\$	-	\$		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
LB541	F022		-								-		-		-		
LB542	PROFIX		-														
LB543	PROFIX		-						-		-						
LB544	Energy		-				-		-		-		-				
LB545	Energy		-				-		-		-		-		-		-
LBSUB4		\$	-	\$		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
		\$		\$		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-

Labor Expenses (Continued)

Other Power Generation Operation Expense
546 OPERATION SUPERVISION \& ENGINEERING
547 FUEL
548 GENERATION EXPENSE
549 MISC OTHER POWER GENERATION
550 RENTS
Total Other Power Generation Expenses

Other Power Generation Maintenance Expense
551 MAINTENANCE SUPERVISION \& ENGINEERING
552 MAINTENANCE OF STRUCTURES
553 MAINTENANCE OF GENERATING \& ELEC PLANT
ota Other Power Geration Total Other Power Generation Expense

Total Production Expense
Purchased Power
555 PURCHASED POWER
557 OTHER EXPENSES
Total Purchased Power Labor

LB546	PROFIX
LB547	Energy
LB548	PROFIX
LB549	PROFIX
LB550	PROFIX
LBSUB5	
LB551	PROFIX
LB552	PROIX
LB553	PROFIX
LB554	PROFIX
LBSUB6	
LPREX	
LB555	OMPP
LB556	PROFIX
LB557	PROFIX
LBPP	

Labor Expenses (Continued)

Other Power Generation Operation Expense
546 OPERATION SUPERVISION \& ENGINEERING
544 FUEL
548 GENERATION EXPENSE
549 MISC OTHER POWER GENERATION
550 RENTS
Total Other Power Generation Expenses

Other Power Generation Maintenance Expense
551 MAINTENANCE SUPERVISION \& ENGINEERING 552 MAINTENANCE OF STRUCTURES
553 MAINTENANCE OF GENERATING \& ELEC PLANT
Th O MSC OTHER POWER GENPLT
Total Other Power Generation Maintenance Expense Total Other Power Generation Expense

Total Production Expense

LB546	PROFIX
LB547	Energy
LB548	PROFIX
LB549	PROFIX
LB550	PROFIX
LBSUB5	

LB551 PROFIX
 LB552
 PROFIX PROFII

LB553
LB554
PROFIX
原

LPREX
Purchased Power
555 PURCHASED POWER
CONTROL AND LOAD DISPATCH 557 OTHER EXPENSES

Total Purchased Power Labor
$\begin{array}{ll}\text { LB555 OMPP } \\ \text { LB556 } & \text { PROFIX }\end{array}$
B557 PROFIX
LBPP
PROFIX

Description	Name	Functional Vector	$\begin{array}{r} \text { Total } \\ \text { System } \\ \hline \end{array}$			$\begin{array}{r} \text { Production } \\ \text { Demand } \\ \hline \text { LOLP } \\ \hline \end{array}$		$\begin{array}{r}\text { Production } \\ \text { Energy } \\ \hline \text { Energy }\end{array}$	TransmissionDemandDemand		$\begin{array}{r} \begin{array}{r} \text { Distribution } \\ \text { Substation } \end{array} \\ \hline \text { General } \end{array}$		Distribution Primary Lines							Distribution Sec. Lines				
												Specific		Demand		Customer		Demand		Customer				
Labor Expenses (Continued)																								
Transmission Labor Expenses																								
560 OPERATION SUPERVISION AND ENG	LB560	PTRAN	\$	884,644		-		-		884,644				-				-		-		-		
561 LOAD DISPATCHING	LB561	PTRAN		1,915,335		-		-		1,915,335		-		-		-		-		-		-		
562 STATION EXPENSES	LB562	PTRAN		390,519		-		-		390,519		-		-		-		-		-				
563 OVERHEAD LINE EXPENSES	LB563	PTRAN		12,872		-		-		12,872		-		-		-								
566 MISC. TRANSMISSION EXPENSES	LB566	PTRAN		110,681		-		-		110,681		-		-		-		-		-		-		
569 MAINTENACE OF STRUCTURES	LB569	PTRAN		-		-		-		-		-		-		-		-		-				
570 MAINT OF STATION EQUIPMENT	LB570	PTRAN		687,585		-		-		687,585		-		-		-		-		-		-		
571 MAINT OF OVERHEAD LINES	LB571	PTRAN		170,496		-		-		170,496		-		-		-								
573 MAINT OF MISC. TRANSMISSION PLANT	LB573	PTRAN		-		-		-		-		-		-		-		-		-		-		
Total Transmission Labor Expenses	LBTRAN		\$	4,172,132	\$	-	\$	-	\$	4,172,132	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-		
Distribution Operation Labor Expense																								
580 OPERATION SUPERVISION AND ENGI	LB580	F023	\$	951,702		-		-		-		141,164		-		112,584		190,987		38,088		66,453		
581 LOAD DISPATCHING	LB581	P362		147,043		-		-		-		147,043		-		-								
582 STATION EXPENSES	LB582	P362		886,395		-		-		-		886,395		-		8		441		117		697		
583 OVERHEAD LINE EXPENSES	LB583	P365		2,177,118		-		-		-		-		-		552,863		982,441		231,117		410,697		
584 UNDERGROUND LINE EXPENSES	LB584	P367		377,223		-		-		-		-		-		133,353		198,867		18,064		26,939		
585 STREET LIGHTING EXPENSE	LB585	P373		53		-		-		-		-		-		-								
586 METER EXPENSES	LB586	P370		3,140,532		-		-		-		-		-		-		-		-		-		
586 METER EXPENSES - LOAD MANAGEMENT	LB586x	F012				-		-		-		-		-		-		-		-		-		
587 CUSTOMER INSTALLATIONS EXPENSE	LB587	P371		-		-		-		-		-		-		-		-		-		-		
588 MISCELLANEOUS DISTRIBUTION EXP	LB588	PDIST		1,500,244		-		-		-		187,083		-		287,206		469,992		80,133		136,928		
589 RENTS	LB589	PDIST				-		-		-		-		-		-		-		-		-		
Total Distribution Operation Labor Expense	LBDO		\$	9,180,257	\$	-	\$	-	\$	-	\$	1,361,685	\$	-	\$	1,086,006	\$	1,842,286	\$	367,402	\$	641,017		

12 Months Ended

June 30, 2022

		Functional	Distribution Line Trans.	Distribution Services	Distribution Meters	Distribution St. \& Cust. Lighting	Customer Accounts Expense	Customer Service \& Info.	Sales Expense
Description	Name	Vector	Demand Cust						

Labor Expenses (Continued)
Transmission Labor Expenses
560 OPERATION SUPERVISION AND ENG
561 LOAD DISPATCHING
562 STATION EXPENSES
563 OVERHEAD LINE EXPENSES
566 MISC. TRANSMISSION EXPENSES
569 MAITENACE OF STRUCTURES
570 MAINT OF STATION EQUIPMENT
571 MAINT OF OVERHEAD LINES
573 MAINT OF MISC. TRANSMISSION PLANT

Total Transmission Labor Expenses
Distribution Operation Labor Expense
580 OPERATION SUPERVISION AND ENGI
581 LOAD DISPATCHING
583 OVERHEAD LINE EXPENSES
584 UNDERGROUND LINE EXPENSE
585 STREET LIGHTING EXPENSE
586 METER EXPENSES
586 METER EXPENSES - LOAD MANAGEMENT 587 CUSTOMER INSTALLATIONS EXPENSE 88 MIISCELLANEOUS DISTRIBUTION EXP

LB560	PTRAN
LB561	PTRAN
LB562	PRRAN
LB563	PTRAN
LB566	PRAN
LB569	PTRAN
LB570	PTRAN
LB571	PTRAN
LB573	PTRAN
LBTRAN	

LB580	F023		11,354		6,329		4,046		367,356		13,341		-		-		-
LB581	P362		-		-				-		-						
LB582	P362		-		-						-						
LB583	P365		-		-		-		-		-						
LB584	P367		-		-		-		-		-		-				
LB585	P373		-		-		-		-		-		-				
LB586	P370						-		3,140,532								
LB586x	F012		-		-		-		-		-						
LB587	P371		-		-		-		-		-						
LB588	PDIST		98,167		54,719		34,986		35,680		115,350		-				
LB589	PDIST		-		-		-		-		-		-		-		-
LBDO		\$	109,521	\$	61,048	\$	39,032	\$	3,543,567	\$	128,691	\$	-	\$	-	\$	-

Description	Name	Functional Vector		$\begin{array}{r} \text { Total } \\ \text { System } \\ \hline \end{array}$		$\begin{array}{r} \begin{array}{r} \text { Production } \\ \text { Demand } \end{array} \\ \hline \text { LOLP } \end{array}$		$\begin{array}{r} \text { Production } \\ \text { Energy } \\ \hline \end{array}$		$\substack{\text { Transmission } \\ \text { Demand } \\ \text { Demand }}$	$\begin{array}{r} \begin{array}{r} \text { Distribution } \\ \text { Substation } \end{array} \\ \hline \text { General } \\ \hline \end{array}$			Distribution Primary Lines					Distribution Sec. Lines			
								Energy						Specific		Demand		Customer		Demand		Customer
Labor Expenses (Continued)																						
Distribution Maintenance Labor Expense																						
590 MAINTENANCE SUPERVISION AND EN	LB590	F024	\$	-		-		-		-		-		-		-		-		-		
591 MAINTENANCE OF STRUCTURES	LB591	P362		-		-		-		-		-		-		-		-		-		
592 MAINTENANCE OF STATION EQUIPME	LB592	P362		374,744		-		-		-		374,744		-		-		-		-		-
593 MAINTENANCE OF OVERHEAD LINES	LB593	P365		1,642,806		-		-		-		-		-		417,178		741,328		174,396		309,903
594 MAINTENANCE OF UNDERGROUND LIN	LB594	P367		619,769		-		-		-		-		-		219,096		326,734		29,679		44,260
595 MAINTENANCE OF LINE TRANSFORME	LB595	P368		72,618		-		-		-		-		-		-		-		-		-
596 MAINTENANCE OF ST LIGHTS \& SIG SYSTEMS	LB596	P373		5,976		-		-		-		-		-		-		-		-		-
597 MAINTENANCE OF METERS	LB597	P370		-		-		-		-		-				-						
598 MAINTENANCE OF MISC DISTR PLANT	LB598	PDIST		-		-		-		-		-		-		-		-		-		-
Total Distribution Maintenance Labor Expense	LBDM		\$	2,715,913	\$	-	\$	-	\$	-	\$	374,744	\$	-	\$	636,275	\$	1,068,063	\$	204,075	\$	354,163
Total Distribution Operation and Maintenance Labor Expenses		PDIST	\$	11,896,170		-		-		-		1,736,429		-		1,722,281		2,910,349		571,478		995,179
Transmission and Distribution Labor Expenses			\$	16,068,302		-		-		4,172,132		1,736,429		-		1,722,281		2,910,349		571,478		995,179
Production, Transmission and Distribution Labor Expenses	LBSUB		\$	49,525,423	\$	18,103,460	\$	15,353,661	\$	4,172,132	\$	1,736,429	\$	-	\$	1,722,281	\$	2,910,349	\$	571,478	\$	995,179
Customer Accounts Expense																						
901 SUPERVISION/CUSTOMER ACCTS	LB901	F025	\$	1,093,166		-		-		-		-		-		-						
902 METER READING EXPENSES	LB902	F025		370,757		-		-		-		-		-		-		-		-		-
903 RECORDS AND COLLECTION	LB903	F025		3,518,496		-		-		-		-		-		-		-		-		-
904 UNCOLLECTIBLE ACCOUNTS	LB904	F025				-		-		-		-		-		-		-		-		-
905 MISC CUST ACCOUNTS	LB903	F025		-		-		-		-		-		-		-		-		-		-
Total Customer Accounts Labor Expense	LBCA		\$	4,982,419	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer Service Expense																						
907 SUPERVISION	LB907	F026	\$	145,428		-		-		-				-		-						
908 CUSTOMER ASSISTANCE EXPENSES	LB908	F026		617,471		-		-		-		-		-		-		-		-		-
908 CUSTOMER ASSISTANCE EXP-LOAD MGMT	LB908x	F026		-		-		-		-		-		-		-		-		-		-
909 INFORMATIONAL AND INSTRUCTIONA	LB909	F026		-		-		-		-		-		-		-		-		-		-
909 INFORM AND INSTRUC -LOAD MGMT	LB909x	F026		-		-		-		-		-		-		-				-		-
910 MISCELLANEOUS CUSTOMER SERVICE	LB910	F026		322,553		-		-		-		-		-		-		-		-		-
911 DEMONSTRATION AND SELLING EXP	L8911	${ }^{\text {F026 }}$				-		-		-		-		-		-		-		-		
912 DEMONSTRATION AND SELLING EXP	LB912	F026		-		-		-		-		-		-		-		-		-		-
913 WATER HEATER - HEAT PUMP PROGRAM	LB913	F026		-		-		-		-		-		-		-		-		-		
915 MDSE-JOBBING-CONTRACT	LB915	F026		-		-		-		-		-		-		-		-		-		-
916 MISC SALES EXPENSE	LB916	F026		-		-		-		-		-		-		-		-		-		-
Total Customer Service Labor Expense	LBCS		\$	1,085,452	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Sub-Total Labor Exp	LBSUB7		\$	55,593,293		18,103,460		15,353,661		4,172,132		1,736,429		-		1,722,281		2,910,349		571,478		995,179

12 Months Ended

June 30, 2022

Labor Expenses (Continued)

Distribution Maintenance Labor Expense
590 MAINTENANCE SUPRVVIION AND EN
591 MAINTENANCE OF STRUCTURES
592 MAITENANCE OF STATTON EQUIPME
593 MAINTENANCE OF OVERHEAD LINES
594 MAINTENANCE OF UNDERGROUND LIN
595 MANTENANCE OF LINE TRANSFORME
596 MAINTENANCE OF ST LIGHTS \& SIG SYSTEMS
597 MAITENANCE OF METERS
598 MAINTENANCE OF MISC DISTR PLANT

Total Distribution Maintenance Labor Expense
Total Distribution Operation and Maintenance Labor Expenses

Transmission and Distribution Labor Expenses
Production, Transmission and Distribution Labor Expenses

901 SUPERVISION/CUSTOMER ACCTS
902 METER READING EXPENSES
33 RECORDS AND COLLECTION 905 MISC CUST ACCOUNTS

Total Customer Accounts Labor Expense
Customer Service Expens
907 SUPERVISION
8 CUSTOMER ASSISTANCE EXPENSES
09 INFORMATIONAL AND INSTRUCTIONA
09 INFORM AND INSTRUC -LOAD MGMT
910 MISCELLANEOUS CUSTOMER SERVIC
911 DEMONSTRATION AND SELLING EXP
913 WATER HEATER - HEAT PUMP PROGRAM 915 MDSE-JOBBING-CONTRACT
916 MISC SALES EXPENSE
Total Customer Service Labor Expense
Sub-Total Labor Exp

LBSUB

LB901
 3595

M
sub

LB904
LB903
LBCA

LB907

LB908x
LB908x
LB909
LB909x
LB909x
LB910
LB911
LB912 LB913
LB915 LB916
LBCS
LBSUB7

F024

P365
P367
P367
P368
P373
P373
P370
PDIST
PDIST

PDIST

F025
F025
F025
Fo25

F026

\square - $\quad 1,093,166$ $1,093,166$
370,757 3,518,496

4,982,419 \$ - \$

- $\$$ \square

\qquad

$$
\begin{array}{cc}
- & 145,428 \\
- & 617,471 \\
- & -
\end{array}
$$

--

156,149 87,039

12 Months Ended

June 30, 2022

12 Months Ended

June 30, 2022

Description	Name	Functional Vector	Distribution Line Trans.				DistributionServices			Distribution Meters	Distribution St. \& Cust. Lighting			Customer Expense	Customer Service \& Info.		Sales Expense	
				Demand		Customer												
Labor Expenses (Continued)																		
Administrative and General Expense																		
920 ADMIN. \& GEN. SALARIES-	LB920	LBSUB7		56,177		31,313		14,042		1,274,847		48,448		1,792,494		390,506		-
921 OFFICE SUPPLIES AND EXPENSES	LB920	LBSUB7		-												-		-
922 ADMIN. EXPENSES TRANSFERRED - CREDIT	LB922	LBSUB7		$(8,125)$		$(4,529)$		$(2,031)$		$(184,393)$		$(7,008)$		$(259,265)$		$(56,483)$		-
923 OUTSIDE SERVICES EMPLOYED	LB923	LBSUB7		-		-		-		-		-		-				
924 PROPERTY INSURANCE	LB924	TUP		-		-		-		-		-		-		-		-
925 INJURIES AND DAMAGES	LB925	LBSUB7		-		-		-		-		-		-		-		-
926 EMPLOYEE BENEFITS	LB926	LBSUB7		-		-		-		-		-		-		-		-
928 REGULATORY COMMISSION FEES	LB928	TUP		-		-				-		-						
929 DUPLICATE CHARGES-CR	LB929	LBSUB7		-		-		-		-		-		-		-		
930 MISCELLANEOUS GENERAL EXPENSES	LB930	LBSUB7		465		259		116		10,543		401		14,824		3,229		-
931 RENTS AND LEASES	LB931	PGP		-		-		-		-		-		-		-		-
935 MAINTENANCE OF GENERAL PLANT	LB932	PGP		9,721		5,419		3,465		3,533		11,423		-				
Total Administrative and General Expense	LBAG		\$	58,237	\$	32,462	\$	15,592	\$	1,104,530		\$ 53,265	\$	1,548,053	\$	337,253	\$	-
Total Operation and Maintenance Expenses	tLB		\$	214,386	\$	119,501	\$	54,624	\$	4,648,098	\$	\$ 187,932	\$	6,530,471	\$	1,422,705	\$	-
Operation and Maintenance Expenses Less Purchase Power	LBLPP		\$	214,386	\$	119,501	\$	54,624	\$	4,648,098	\$	\$ 187,932	\$	6,530,471	\$	1,422,705	\$	-

Description		FunctionalVector	Total	Production Demand	Production Energy	Transmission Demand	Distribution Substation	Distribution Primary Lines			Distribution Sec. Lines	
	Name			LOLP	Energy	Demand	General	Specific	Demand	Customer	Demand	Cust

Other Expenses

Depreciation Expense

Steam Production
Hydraulic Productio
ransmission - Kentucky System Property
Transmission - Virginia Property
General \& Common Plant
Intangible Plant
Total Depreciation Expense
Regulatory Credits
Production
Transmission
Distribution
Distribution
Common
Accretion Expense
Production
Transmission
Distribution
comm
Property Taxes \& Other
Amortization of Investment Tax Credit
Gain on Disposition of Allowances
Interest
Other Deductions
Total Other Expenses
Total Cost of Service (O\&M + Other Expenses)

DEPRTP	PPRTL
DEPRDP1	PPRTL
DEPRDP2	PPRLL
DEPRDP3	PTRAN
DEPRDP4	PTRAN
DEPRDP5	PDIST
DEPRDP6	PGP
DEPRDP7	PINT
TDEPR	
RCTNP	F017
RCTNT	PTRAN
RDTND	PDIST
RCTNC	PGP
TRCTN	
ACRTNP	F017
ACRTNT	PTRAN
ACRTND	PDIST
ACRTNC	PGP
TACRTN	
PTAX	TUP
OTAX	TUP
OT	TUP
INTLTD	TUP
DEDUCT	TUP
TOE	

\$	179,722,988		179,722,988		-		-		-		-		-		-		-		-
	5,725,980		5,725,980		-		-		-				-		-		-		-
	12,399,786		12,399,786		-		-		-				-		-		-		-
	12,287,717		-		-		12,287,717		-				-		-		-		-
	-		-		-		-						-						-
	42,603,324		-		-		-		5,312,707				8,155,954		13,346,638		2,275,586		3,888,419
	24,383,040		14,884,317		-		2,286,078		899,429				1,380,784		2,259,555		385,251		658,300
			-		-		-												-
\$	277,122,836		212,733,072		-		14,573,795		6,212,136		-		9,536,738		15,606,193		2,660,837		4,546,719
\$	-		-		-		-		-		-		-		-		-		-
	-		-		-		-		-		-		-		-		-		-
	-		-		-		-		-		-		-		-		-		-
	-		-																
\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
\$	-		-		-		-		-		-		-		-		-		-
	-		-		-		-		-				-		-		-		-
	-		-		-		-		-				-		-		-		-
	-		-		-		-		-		-		-		-		-		-
\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
\$	42,336,722		25,721,711		-		4,076,189		1,563,612		-		2,400,424		3,928,124		669,740		1,144,422
\$	$(916,996)$		$(557,122)$		-		$(88,289)$		$(33,867)$		-		$(51,992)$		$(85,082)$		$(14,506)$		$(24,788)$
\$	-		-		-		-		-		-		-		-		-		-
\$	75,433,705		45,829,811		-		7,262,774		2,785,976		-		4,276,970		6,998,958		1,193,314		2,039,081
\$	-		-		-		-		-		-		-		-		-		-
\$	393,976,267	\$	283,727,472	\$	-	\$	25,824,469	\$	10,527,856	\$	-	\$	16,162,141	\$	26,448,193	\$	4,509,385	\$	7,705,435
\$	1,037,412,928	\$	395,685,570	\$	397,495,519	\$	60,290,462	\$	18,602,235	\$	-	\$	29,362,316	\$	48,540,917	\$	8,678,514	\$	14,929,226

Description	Name	Functional Vector	$\begin{array}{r} \text { Total } \\ \text { System } \end{array}$		$\begin{array}{r} \text { Production } \\ \text { Energy } \\ \hline \text { Energy } \\ \hline \end{array}$	$\begin{array}{r} \text { Transmission } \\ \text { Demand } \end{array}$	$\begin{array}{r} \begin{array}{r} \text { Distribution } \\ \text { Substation } \end{array} \\ \hline \text { General } \end{array}$	Distribution Primary Lines			Distribution Sec. Lines	
								Specific	Demand	Customer	Demand	Customer
External Functional Vectors												
Station Equipment	F001		1.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Poles, Towers and Fixtures	F002		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.253943	0.451257	0.106157	0.188643
Overhead Conductors and Devices	F003		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.253943	0.451257	0.106157	0.188643
Underground Conductors and Devices	F004		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.353513	0.527187	0.047887	0.071413
Line Transformers	F005		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Services	F006		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Meters	F007		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Street Lighting	F008		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Meter Reading	F009		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Billing	F010		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Transmission	F011		1.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Load Management	F012		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Production Plant	F017		1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Provar	PROVAR		1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Fuel	F018		1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Steam Generation Operation Labor	F019		12,601,985	11,007,917	1,594,068							
PROFIX	PROFIX		1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Steam Generation Maintenance Labor	F020		7,744,702	30,396	7,714,306	-	-	-	-	-	-	-
Hydraulic Generation Operation Labor	F021		262,377	262,377	-	-	-	-	-	-	-	
Hydraulic Generation Maintenance Labor	F022		158,283	86,045	72,238							
Distribution Operation Labor	F023		8,228,555	-	-	-	1,220,520.97	-	973,421.84	1,651,299.68	329,314.48	574,563.39
Distribution Maintenance Labor	F024		2,715,913	-	-	-	374,744.00	-	636,274.68	1,068,062.67	204,075.04	354,162.61
Customer Accounts Expense	F025		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Customer Service Expense	F026		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Customer Advances	F027		1,160,271,505	-	-	-	-	-	342,041,384	559,726,383	95,432,668	163,071,070
Purchase Power Demand		F017	27,272,357	27,272,357	-	-	-	-	-	-	-	-
Purchase Power Energy		F018	22,555,449	7, ${ }^{\text {- }}$	22,555,449	-	-	-	-	-	-	-
Purchased Power Expenses	OMPP		49,827,806	27,272,357	22,555,449	-	-	-	-		-	
Intallations on Customer Premises - Plant in Service	F013		1.00000	-	-	-	-	-	-	-	-	-
Intallations on Customer Premises - Accum Depr	F014		1.00000	-	-	-	-	-	-	-	-	
Generators -Energy	F015		1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Generators - Demand	F016		1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	Energy		1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Internally Generated Functional Vectors												
Total Prod, Trans, and Dist Plant		PT\&D	1.000000	0.610437	-	0.093757	0.036887	-	0.056629	0.092669	0.015800	0.026998
Total Distribution Plant		PDIST	1.000000	-	-	-	0.124702	-	0.191439	0.313277	0.053413	0.091270
Total Transmission Plant		PTRAN	1.000000	-	-	1.000000	-	-	-	-	-	-
Operation and Maintenance Expenses Less Purchase Power		OMLPP	1.000000	0.147080	0.629675	0.057428	0.013454	-	0.021994	0.036811	0.006947	0.012036
Total Plant in Service		TPIS	1.000000	0.610168		0.093710	0.036927		0.056689	0.092768	0.015817	0.027027
Total Operation and Maintenance Expenses (Labor)		TLB	1.000000	0.327591	0.274288	0.075175	0.031273	-	0.031156	0.052627	0.010317	0.017963
Sub-Total Prod, Trans, Dist, Cust Acct and Cust Service		OMSUB2	1.000000	0.144948	0.676053	0.049836	0.009548	-	0.018387	0.030749	0.005782	0.010014
Total Steam Power Operation Expenses (Labor)		LBSUB1	1.000000	0.873507	0.126493							
Total Steam Power Generation Maintenance Expense (Labor)		LBSUB2	1.000000	0.003925	0.996075	-	-	-	-	-	-	-
Total Hydraulic Power Operation Expenses (Labor)		LBSUB3	1.000000	1.000000	-	-	-	-	-	-	-	-
Total Hydraulic Power Generation Maint. Expense (Labor)		LBSUB4	1.000000	0.543615	0.456385	-	-	-	-	-	-	-
Total Other Power Generation Expenses (Labor)		LBSUB5	1.000000	1.000000	-	-000	-	-	-	-	-	-
Total Transmission Labor Expenses		LBTRAN	1.000000	-	-	1.0000000		-	-		-	
Total Distribution Operation Labor Expense		LBDO	1.000000	-	-	-	0.148327	-	0.118298	0.200679	0.040021	0.069826
Total Distribution Maintenance Labor Expense		LBDM	1.000000	-	-	-	0.137981	-	0.234277	0.393261	0.075140	0.130403
Sub-Total Labor Exp		LBSUB7	1.000000	0.325641	0.276178	0.075047	0.031234		0.030980	0.052351	0.010280	0.017901
Total General Plant		PGP	1.000000	0.610437	-	0.093757	0.036887	-	0.056629	0.092669	0.015800	0.026998
Total Production Plant		PPRTL	1.000000	1.000000	-	-	-	-	-	-	-	-
Total Intangible Plant		PINT	1.000000	0.610437	-	0.093757	0.036887	-	0.056629	0.092669	0.015800	0.026998

Description	Name	Functional Vector	Distribution Line Trans.		$\begin{array}{r}\text { Distribution } \\ \text { Services }\end{array}$Customer	DistributionMeters	$\begin{array}{\|} \begin{array}{r} \text { Distribution St. \& } \\ \text { Cust. Lighting } \end{array} \\ \hline \end{array}$	Customer Accounts Expense	Customer Service \& Info.	Sales Expense
			Demand	Customer						
External Functional Vectors										
Station Equipment	F001		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Poles, Towers and Fixtures	F002		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Overhead Conductors and Devices	F003		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Underground Conductors and Devices	F004		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Line Transformers	F005		0.642093	0.357907	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Services	F006		0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Meters	F007		0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000
Street Lighting	F008		0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000
Meter Reading	F009		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000
Billing	F010		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000
Transmission	F011		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Load Management	F012		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000
Production Plant	F017		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Provar	PROVAR		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Fuel	F018		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Steam Generation Operation Labor	F019									
PROFIX	PROFIX		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Steam Generation Maintenance Labor	F020		-	-	-	-	-	-	-	-
Hydraulic Generation Operation Labor	F021		-	-	-	-	-	-	-	-
Hydraulic Generation Maintenance Labor	F022		-	-	-	-	-	-	-	-
Distribution Operation Labor	F023		98,167.48	54,719.33	34,985.95	3,176,211.63	115,350.25	-	-	-
Distribution Maintenance Labor	F024		46,627.48	25,990.52	-	-	5,976.00	-	-	-
Customer Accounts Expense	F025		0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000
Customer Service Expense	F026		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000
Customer Advances	F027		-	-	-	-	-	-	-	-
Purchase Power Demand		F017	-	-	-	-	-	-	-	
Purchase Power Energy		F018	-	-		-	-	-	-	-
Purchased Power Expenses	OMPP		-	-		-	-	-	-	-
Intallations on Customer Premises - Plant in Service	F013		-	-	-	-	-	1.00000	-	-
Intallations on Customer Premises - Accum Depr	F014		-				-	1.00000	-	
Generators -Energy	F015		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Generators - Demand	F016		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	Energy		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Internally Generated Functional Vectors										
Total Prod, Trans, and Dist Plant		PT\&D	0.019356	0.010789	0.006898	0.007035	0.022744	-	-	-
Total Distribution Plant		PDIST	0.065434	0.036474	0.023320	0.023783	0.076888	-	-	-
Total Transmission Plant		PTRAN	-	-	-	-	-	-	-	-
Operation and Maintenance Expenses Less Purchase Power		OMLPP	0.001861	0.001037	0.000555	0.023191	0.002789	0.036996	0.008146	-
Total Plant in Service		TPIS	0.019376	0.010801	0.006906	0.007043	0.022768		-	-
Total Operation and Maintenance Expenses (Labor)		TLB	0.002922	0.001629	0.000745	0.063353	0.002561	0.089009	0.019391	-
Sub-Total Prod, Trans, Dist, Cust Acct and Cust Service		OMSUB2	0.001241	0.000692	0.000366	0.016248	0.002225	0.027768	0.006142	
Total Steam Power Operation Expenses (Labor)		LBSUB1	-	-	-	-	.	.		-
Total Steam Power Generation Maintenance Expense (Labor)		LBSUB2	-	-	-	-	-	-	-	-
Total Hydraulic Power Operation Expenses (Labor)		LBSUB3	-	-	-	-	-	-	-	-
Total Hydraulic Power Generation Maint. Expense (Labor)		LBSUB4	-	-	-	-	-	-	-	-
Total Other Power Generation Expenses (Labor)		LBSUB5	-	-	-	-	-	-	-	-
Total Transmission Labor Expenses		LBTRAN	-	-	-	-	-	-	-	-
Total Distribution Operation Labor Expense		LBDO	0.011930	0.006650	0.004252	0.385999	0.014018	-	-	-
Total Distribution Maintenance Labor Expense		LBDM	0.017168	0.009570	70	74	0.002200		5	-
Sub-Total Labor Exp		LBSUB7	0.002809	0.001566	0.000702	0.063741	0.002422	0.089623	0.019525	-
Total General Plant		PGP	0.019356	0.010789	0.006898	0.007035	0.022744	-	-	-
Total Production Plant		PPRTL						-	-	-
Total Intangible Plant		PINT	0.019356	0.010789	0.006898	0.007035	0.022744	-	-	-

Exhibit WSS-31

Electric Cost of Service Study
Class Allocation
(Kentucky Utilities)

\begin{tabular}{|c|}
\hline Description \& \& Name \& \begin{tabular}{l}
Allocation \\
Vector
\end{tabular} \& \& \[
\begin{array}{r}
\text { Total } \\
\text { System } \\
\hline
\end{array}
\] \& \& Residential Rate RS \& \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { General Service } \\
\text { GS } \\
\hline
\end{gathered}
\]} \& \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { All Electric Schools } \\
\text { AES } \\
\hline
\end{gathered}
\]} \& \multicolumn{2}{|r|}{Power Service PS-Secondary} \& \multicolumn{2}{|r|}{Power Service PS-Primary} \& \multicolumn{2}{|r|}{Time of Day
TOD-Secondary} \& \multicolumn{2}{|r|}{Time of Day TOD-Primary} \\
\hline \multicolumn{20}{|l|}{Plant in Service} \\
\hline \multicolumn{20}{|l|}{Power Production Plant} \\
\hline Production Demand - LOLP \& TPIS \& PLPPDB \& GPLOLPDA \& s \& 6,073,014,123 \& \$ \& 2,490,784,384 \& \$ \& 670,878,802 \& \$ \& 43,048,460 \& \$ \& 625,621,337 \& \$ \& 27,180,233 \& \$ \& 601,676,613 \& \$ \& 1,101,435,630 \\
\hline Production Energy \& TPIS \& PLPPEB \& E01 \& \& \& \$ \& \& \$ \& \& \$ \& \& \$ \& \& \$ \& \& \$ \& \& \$ \& \\
\hline Total Power Production Plant \& \& PLPPT \& \& s \& 6,073,014,123 \& \$ \& 2,490,784,384 \& S \& 670,878,802 \& \$ \& 43,048,460 \& \$ \& 625,621,337 \& \$ \& 27,180,233 \& \$ \& 601,676,613 \& \$ \& 1,101,435,630 \\
\hline \multicolumn{20}{|l|}{Transmission Plant} \\
\hline Transmission Demand \& TPIS \& PLTRB \& NCPT \& s \& 1,314,530,303 \& \$ \& 581,215,750 \& \$ \& 149,186,114 \& \$ \& 15,268,347 \& \$ \& 133,087,047 \& S \& 5,718,859 \& \$ \& 117,737,434 \& \$ \& 191,751,289 \\
\hline \multicolumn{20}{|l|}{Distribution Poles} \\
\hline Specific \& TPIS \& PLDPS \& NCPP \& s \& - \& \$ \& - \& \$ \& - \& \$ \& - \& \$ \& - \& \$ \& - \& \$ \& - \& \$ \& - \\
\hline \multicolumn{20}{|l|}{Distribution Substation} \\
\hline General \& TPIS \& PLDSG \& NCPP \& s \& 354,760,183 \& \$ \& 171,330,235 \& \$ \& 43,976,943 \& \$ \& 4,500,789 \& \$ \& 39,231,275 \& \$ \& 1,685,800 \& \$ \& 34,706,531 \& \$ \& 56,524,266 \\
\hline \multicolumn{20}{|l|}{Distribution Primary \& Secondary Lines} \\
\hline Primary Specific \& TPIS \& PLDPLS \& NCPP \& s \& \& \$ \& \& \$ \& \& \$ \& \& \$ \& \& \$ \& - \& \$ \& 27,603, \({ }^{-}\) \& \$ \& - \\
\hline Primary Demand \& TPIS \& PLDPLD \& NCPP \& \& 282,159,692 \& \$ \& 136,268,073 \& \$ \& 34,977,208 \& \$ \& 3,579,718 \& \$ \& 31,202,725 \& \$ \& 1,340,807 \& \$ \& 27,603,955 \& \$ \& 44,956,763 \\
\hline Primary Customer \& TPIS \& PLDPLC \& PCust08 \& \& 548,452,178 \& \$ \& 440,598,864 \& \$ \& 82,429,964 \& \$ \& 422,398 \& \$ \& 4,425,216 \& \$ \& 203,229 \& \$ \& 762,109 \& \$ \& 255,033 \\
\hline Secondary Demand \& TPIS \& PLDSLD \& SICD \& \& 127,023,977 \& \$ \& 105,210,533 \& \$ \& 19,625,864 \& \$ \& 1,422,586 \& \$ \& - \& \$ \& - \& \$ \& \& \$ \& - \\
\hline Secondary Customer \& TPIS \& Pldstc \& PCust07 \& \& 256,429,859 \& \$ \& 208,143,126 \& s \& 38,940,705 \& \$ \& 199,545 \& \$ \& - - \& s \& - \& \$ \& - \& \$ \& - \\
\hline Total Distribution Primary \& \& Lines \& PLDLT \& \& s \& 1,214,065,706 \& \$ \& 890,220,596 \& \$ \& 175,973,741 \& \$ \& 5,624,246 \& \$ \& 35,627,941 \& s \& 1,544,036 \& \$ \& 28,366,064 \& \$ \& 45,211,795 \\
\hline \multicolumn{20}{|l|}{Distribution Line Transformers} \\
\hline Demand \& TPIS \& PLDLTD \& SICDT \& s \& 185,167,208 \& \$ \& 126,572,323 \& s \& 23,610,670 \& \$ \& 1,711,426 \& \$ \& 17,444,145 \& \$ \& - \& \$ \& 14,887,651 \& \$ \& - \\
\hline Customer

Tostamer \& TPIS \& ${ }^{\text {PLDLLTC }}$ \& PCust09 \& \& $153,841,916$
399009 \& \$ \& 123,622,201 \& \$ \& ${ }_{2}^{23,141,103}$ \& \$ \& 111,583 \& s \& $1,242,320$
18,68465 \& \$ \& - \& \$ \& ${ }_{1}^{215,10,503}$ \& \$ \& -

\hline Total Line Transformers \& \& PLDLTT \& \& s \& 339,009,124 \& \$ \& 250,264,524 \& s \& 46,751,773 \& \$ \& 1,830,008 \& \$ \& 18,686,465 \& \$ \& - \& \$ \& 15,101,603 \& \$ \& -

\hline \multicolumn{20}{|l|}{Distribution Services}

\hline Customer \& TPIS \& PLDSC \& C02 \& \$ \& 129,708,296 \& \$ \& 102,581,566 \& \$ \& 23,061,068 \& \$ \& 208,650 \& \$ \& 2,996,910 \& \$ \& - \& \$ \& 857,403 \& \$ \& -

\hline \multicolumn{19}{|l|}{Distribution Meters} \&

\hline Customer \& TPIS \& PLDMC \& MGPA \& s \& 77,142,557 \& \$ \& 46,508,310 \& \$ \& 18,767,490 \& \$ \& 383,084 \& \$ \& 5,867,892 \& \$ \& 1,147,531 \& \$ \& 1,049,543 \& \$ \& 2,032,818

\hline \multicolumn{20}{|l|}{Distribution Street \& Customer Lighting}

\hline Customer \& TPIS \& PLDSCL \& PCust04 \& s \& 148,542,746 \& \$ \& - \& s \& - \& \$ \& - \& \$ \& - \& \$ \& - \& \$ \& - \& \$ \& -

\hline \multicolumn{20}{|l|}{Customer Accounts Expense}

\hline \multicolumn{18}{|l|}{Customer Service \& Info.} \& \& -

\hline \multicolumn{20}{|l|}{Sales Expense}

\hline \multicolumn{2}{|l|}{Total} \& PLT \& \& s \& 9,650,773,038 \& \$ \& 4,532,905, 364 \& S \& 1,128,595,931 \& \$ \& 70,863,586 \& \$ \& 861,118,868 \& \$ \& 37,276,458 \& \$ \& 799,495,189 \& \$ \& 1,396,955,797

\hline
\end{tabular}

12 Months Ended June 30, 2022

Description		Name	Allocation Vector		$\begin{array}{r} \text { Total } \\ \text { System } \end{array}$		Residential Rate RS		$\begin{gathered} \text { General Service } \\ \text { GS } \\ \hline \end{gathered}$		All Electric Schools AES		Power Service PS-Secondary		Power Service PS-Primary		Time of Day TOD-Secondary		Time of Day TOD-Primary
Labor Expenses																			
Power Production Plant																			
Production Demand - LOLP	TLB	LBPPDB	LOLP	\$	57,141,438	\$	23,450,372	\$	6,316,226	\$	405,295	\$	5,890,134	\$	255,898	\$	5,664,698	\$	10,369,856
Production Energy	TLB	LBPPEB	E01		38,829,580	\$	13,407,602	\$	3,785,566	\$	289,980	\$	3,833,036	\$	173,227	\$	4,024,799	\$	8,696,200
Total Power Production Plant		LBPPT		s	95,971,017	\$	36,857,973	\$	10,101,792	\$	695,275	\$	9,723,169	\$	429,125	\$	9,689,497	\$	19,066,056
Transmission Plant																			
Transmission Demand	TLB	LBTRB	NCPT	s	12,471,453	\$	5,514,217	\$	1,415,386	\$	144,857	\$	1,262,648	\$	54,257	\$	1,117,020	\$	1,819,218
Distribution PolesSpecific																			
Distribution Substation																			
General	TLB	LBDSG	NCPP	s	5,205,663	\$	2,514,057	s	645,307	\$	66,043	\$	575,670	\$	24,737	\$	509,275	\$	829,423
Distribution Primary \& Secondary Lines																			
Primary Specific	TLB	LBDPLS	NCPP	s		\$		s		\$	5 -	\$		s		\$	-	\$	
Primary Demand	TLB	LBDPLD	NCPP		4,140,341	\$	1,999,564	\$	513,247	\$	52,528	\$	457,861	\$	19,675	\$	405,054	\$	659,684
Primary Customer	TLB	LBDPLC	Cust08		8,047,851	\$	6,464,957	\$	1,209,912	\$	6,197	\$	64,907	S	2,982	\$	11,195	\$	3,742
Secondary Demand	TLB	LBDSLD	SICD		1,863,918	\$	1,543,833	\$	287,985	\$	20,875	\$	-	\$	-	\$		\$	-
Secondary Customer	TLB	LBDSLC	Cust07		3,762,788	\$	3,025,230	\$	566,170	\$	2,900	\$	30,373	s	-	\$	5,239	\$	-
Total Distribution Primary \& S	Lines	LBDLT		s	17,814,899	\$	13,033,584	\$	2,577,314	\$	82,499	\$	553,140	\$	22,656	\$	421,488	\$	663,426
Distribution Line Transformers																			
Demand	TLB	LbDLTD	SICDT	\$	2,717,098	\$	1,857,291	s	346,457	\$	25,113	\$	255,971	\$	-	\$	218,458	\$	-
Customer	TLB	LbDLTC	Cust09		2,257,438	\$	1,814,949	\$	339,667	\$	1,740	\$	18,222	s	-	\$	3,143	\$	-
Total Line Transformers		LBDLTT		s	4,974,536	\$	3,672,240	s	686,124	\$	26,853	\$	274,193	\$	-	\$	221,601	\$	-
Distribution Services																			
Customer	TLB	LBDSC	C02	s	1,903,307	\$	1,505,256	\$	338,392	\$	3,062	\$	43,976	S	-	\$	12,581	\$	-
Distribution Meters																			
Customer	TLB	LBDMC	C03	s	1,131,971	\$	683,863	\$	275,959	\$	5,633	\$	86,282	\$	16,873	\$	15,433	\$	29,891
Distribution Street \& Customer Lighting																			
Customer	TLB	LBDSCL	C04	s	2,179,679	\$	-	S	-	\$	5 -	\$	-	\$	-	\$	-	\$	-
Customer Accounts Expense																			
Customer Service \& Info.																			
Customer	TLB	LBCSI	C05	s	3,368,178	\$	2,188,017	\$	818,972	\$	20,973	\$	109,836	\$	5,045	\$	94,724	\$	31,657
Sales Expense																			
Customer	TLB	LBSEC	C06	\$		\$		s	-	\$	5 -	\$	-	\$	-	\$	-	\$	-
Total		LBT		s	173,228,432	\$	84,293,357	S	23,717,949	\$	1,220,838	\$	13,548,762	\$	594,947	\$	12,874,913	\$	22,704,793

12 Months Ended June 30, 2022

12 Months Ended June 30, 2022

12 Months Ended June 30, 2022

Description	Ref	Name	Allocation Vector		$\begin{array}{r} \text { Tota } \\ \text { System } \end{array}$		Residential Rate RS			General Service GS		All Electric Sc AES			Power Service PS-Secondary		Power Service PS-Primary		Time of Day TOD-Secondary			$\begin{gathered} \text { Time of Day } \\ \text { TOD-Primary } \\ \hline \end{gathered}$	
Accretion Expenses																							
Power Production Plant																							
Production Demand - LOLP	TACRT	ACPPDB	LOLP	\$	-	\$		-	\$	-			-	\$		\$	-			-	\$		-
Production Energy	TACRT	ACPPEB	E01		-	\$		-	\$	-	\$		-	\$		\$	-	\$		-	\$		
Total Power Production Plant		ACPPT		\$		\$		-	\$		\$		-	\$		\$		\$		-	\$		
Transmission Plant																							
Transmission Demand	TACRT	ACTRB	NCPT	s	-	\$		-	\$	-	\$		-	\$		\$	-	\$		-	\$		-
Distribution Poles																							
Specific	TACRT	ACDPS	NCPP	s	-	\$		-	\$	-	\$		-	\$		\$	-	\$		-	\$		-
Distribution Substation																							
General	TACRT	ACDSG	NCPP	\$	-	\$		-	\$	-	\$		-	\$		\$	-	\$		-	\$		-
Distribution Primary \& Seco																							
Primary Specific	TACRT	ACDPLS	NCPP	s		\$		-	\$		\$		-	\$		\$		\$		-	\$		
Primary Demand	TACRT	ACDPLD	NCPP		-	\$		-	\$		\$		-	\$		\$		\$		-	\$		
Primary Customer	TACRT	ACDPLC	Cust08			\$		-	\$	-	\$		-	\$		\$		\$		-	\$		
Secondary Demand	TACRT	ACDSLD	SICD			\$			\$	-	\$		-	\$		\$		\$		-	\$		
Secondary Customer	TACRT	ACDSLC	Cust07			\$		-	\$	-	\$		-	\$		\$		\$		-	\$		
Total Distribution Primary \&	Lines	ACDLT		s		\$		-	\$	-	\$		-	\$		\$	-	\$		-	\$		
Distribution Line Transform																							
Demand	TACRT	ACDLTD	SICDT	\$	-	\$		-	\$	-	\$		-	\$		\$	-	\$		-	\$		
Customer	TACRT	ACDLTC	Cust09			\$			\$		\$		-	\$		\$		\$		-	\$		
Total Line Transformers		ACDLTT		s		\$		-	s	-	\$		-	\$		\$	-	\$		-	\$		
Distribution Services																							
Customer	TACRT	ACDSC	C02	s	-	\$		-	\$	-	\$		-	\$		\$	-	\$		-	\$		-
Distribution Meters																							
Customer	TACRT	ACDMC	C03	s		\$		-	\$	-	\$		-	\$		\$	-	\$		-	\$		-
Distribution Street \& Custon																							
Customer	TACRT	ACDSCL	C04	s	-	\$		-	s	-	\$		-	\$		\$	-	\$		-	\$		
Customer Accounts Expense																							
Customer	TACRT	ACCAE	C05	s		\$		-	\$	-	\$		-	\$		\$	-	\$		-	\$		-
Customer Service \& Info. Customer	TACRT	ACCSI	C05	s	-	\$		-	\$	-	\$		-	\$	-	\$	-	\$		-	\$		-
Sales Expense			C06	s																			
	TACRT	DESEC									s		-	\$		s		s		-	s		
Total		ACT		s	-	\$		-	\$	-	\$		-	\$		\$	-	\$		-	\$		-

12 Months Ended June 30, 2022

Description	Ref	Name	Allocation Vector		Retail Transmission Service RTS - Transmission		Fluctuating Load Service FLS - Transmission		Outdoor Lighting LS \& RLS		Lighting Energy LE		Traffic Energy TE		Outdoor Sports Lighting OSL		Electric Vehicle Charging EV		$\begin{gathered} \text { Solar Share } \\ \text { SSP } \\ \hline \end{gathered}$		$\begin{gathered} \text { Business Solar } \\ \text { BS } \end{gathered}$
Accretion Expenses																					
Power Production Plant																					
Production Demand - LoLP	TACRT	ACPPDB	LOLP	\$	-	\$	-	\$	-	\$		\$	-	\$	-	\$	-	\$	-	\$	-
Production Energy	TACRT	ACPPEB	E01	s		\$	-	\$	-	\$		\$	-	s	-	\$	-	\$		s	
Total Power Production Plant		ACPPT		s	-	\$	-	\$	-	\$		\$	-	s	-	\$	-	\$		\$	-
Transmission Plant																					
Transmission Demand	TACRT	ACTRB	NCPT	s	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
$\underset{\substack{\text { Distribution Poles } \\ \text { Specific }}}{\text { ceme }}$	TACRT	ACDPS	NCPP	s	-	\$	-	\$	-	\$	-	\$	-	s	-	s	-	\$		s	-
Distribution Substation																					
General	TACRT	ACDSG	NCPP	s	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Primary \& Secondary Lines																					
Primary Specific	TACRT	ACDPLS	NCPP	s	-	\$	-	\$	-	s	-	\$	-	s	-	s	-	\$		\$	-
${ }^{\text {Primary }}$ Demand	${ }_{\text {TACRT }}$	${ }^{\text {ACDPLD }}$	${ }^{\text {NCPP }}$	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-		-
Primary Customer Secondary Demand	$\xrightarrow{\text { TACRT }}$	ACDPLC ACDSLD	${ }_{\text {Cust08 }}^{\text {SICD }}$	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Secondary Customer	TACRT	ACDSLC	Cust07	\$	-		-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	s	-
Total Distribution Primary \& S	Lines	ACDLT		s	-	\$	-	\$	-	s		\$	-	s	-	\$	-	\$	-	\$	-
Distribution Line Transformers																					
Demand	TACRT	ACDLTD	SICDT	\$	-	\$	-	s	-	\$		\$	-	\$	-	\$	-	\$		\$	-
Customer Total Line Transformers	TACRT	${ }_{\text {ACDLTC }}^{\text {ACDLTT }}$	Cust09	\$	-	\$:	\$	-	\$:	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Services																					
Customer	TACRT	ACDSC	C02	s	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Meters																					
Customer	tacrt	ACDMC	C03	s	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	s	-
Distribution Street \& Customer Lighting																					
Customer	TACRT	ACDSCL	C04	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer Accounts Expense																					
Customer	TACRT	ACCAE	C05	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer Service \& Info.																					
Sales Expense																					
Customer	TACRT	DESEC	C06	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Total		ACT		s	-	\$	-	\$	-	\$	-	\$	-	\$	-	s	-	\$	-	\$	-

12 Months Ended June 30, 2022

Description	Ref	Name	Allocation Vector		Retail Transmission Service RTS - Transmission		Fluctuating Load Service FLS - Transmission		Outdoor Lighting LS \& RLS		Lighting Energy LE		Traffic Energy TE		Outdoor Sports Lighting OSL		Electric Vehicle Charging EV		Solar Share SSP		$\begin{gathered} \text { Business Solar } \\ \text { BS } \\ \hline \end{gathered}$
Gain Disposition of Allowances																					
Power Production Plant																					
Production Demand - LOLP	GAIN	OTPPDB	LOLP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Production Energy	GAIN	OTPPEB	E01	s	-	\$	-	\$	-	\$		\$	-	s	-	\$	-	\$	-	s	
Total Power Production Plant		OTPPT		s	-	\$	-	\$	-	\$		\$	-	s	-	\$	-	\$	-	\$	-
Transmission Plant																					
Transmission Demand	GAIN	OtTRB	NCPT	s	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Poles																					
Specific	GAIN	OTDPS	NCPP	s	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	s	-
Distribution Primary \& Secondary Lines																					
Primary Specific	GAIN	OTDPLS	NCPP	s	-	\$	-	\$	-	s	-	\$	-	s	-	s	-	\$	-	\$	-
Primary Demand	GAIN	OTDPLD	NCPP	s	-	\$	-	\$	-	\$	-	\$	-	s	-	\$	-	\$	-	\$	
Primary Customer	GAIN	OTDPLC	Cust08	s	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Secondary Demand	GAIN	OTDSLD	SICD	s	-	\$	-	\$	-	\$	-	\$	-	s	-	\$	-	\$	-	\$	-
Secondary Customer	GAIN	OTDSLC	Cust07	s	-	\$	-	s	-	\$	-	\$	-	s	-	\$	-	\$	-	\$	
Total Distribution Primary \& S	Lines	OTDLT		s	-	\$	-	\$	-	\$	-	\$	-	s	-	\$	-	\$	-	\$	-
Distribution Line Transformers																					
Demand	GAIN	OTDLTD	SICDT	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer	GAIN	OTDLTC	Cust09	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	s	-
Total Line Transformers		otdlt		\$	-	\$	-	\$	-	\$	-	\$	-	s	-	\$	-	\$	-	s	-
Distribution Services																					
Customer	GAIN	OTDSC	C02	\$	-	\$	-	\$	-	\$	-	\$	-	s	-	\$	-	\$	-	\$	-
Distribution Meters																					
Customer	GAIN	Oṫm	C03	\$	-	\$	-	\$	-	\$	-	\$	-	s	-	\$	-	\$	-	\$	-
Distribution Street \& Customer Lighting																					
Customer	GAIN	OTDSCL	C04	\$	-	\$	-	\$	-	\$	-	\$	-	s	-	\$	-	\$	-	\$	-
Customer Accounts Expense																					
Customer	GAIN	OTCAE	C05	s	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer Service \& Info.																					
Sales Expense																					
Customer	GAIN	OTSEC	C06	\$	-	\$	-	\$	-	\$	-	\$	-	s	-	\$	-	\$	-	\$	-
Total		отт		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-

12 Months Ended June 30, 2022

12 Months Ended June 30, 2022

			Allocation	Retail Transmission Service	Fluctuating Load Service	Outdoor Lighting	Lighting Energy	Traffic Energy	Outdoor Sports Lighting	Electric Vehicle Charging	Solar Share	Business Solar
Description	Ref	Name	Vector	RTS - Transmission	FLS - Transmission	LS \& RLS	LE	TE	OSL	EV	SSP	BS

Operating Revenues																				
Sales	REVUC	R01	s	82,247,981	\$	32,956,814	\$	30,555,893	\$	307,246	\$	271,291	s	92,320	\$	1,533	\$	162,504	\$	38,355
Sales for Resale		Energy		690,878		298,012		61,868		2,251		1,232		168		6				
Curtailable Service Rider				$(3,386,120)$		$(14,215,494)$														
Late payment charges		${ }_{\text {LPAY }}$		848		42		3,262		-		-		-		-		-		-
RECONNECT CHARGES OTHER SERVICE CHARGES		${ }_{\text {MISCSER }}$		13 214		11		193 474		-		-		-		-		-		-
RENT FROM ELEC PROPERTY		RFEP		127,744		59,097		64,194		226		349		99						
TRANSMISSION SERVICE		PLTRT		1,343,580		900,302		181,331		6,597		1,777		2,503		16				-
ANCILLARY SER VICES		LOLP		83,967		34,771		227		8		135		17		1				
TAX REMITTANCE COMPENSATION		MISCSERV		1		0		3												-
SOLAR REC		ENERGY		7,053		3,042		${ }^{632}$		23		13		2		0		-		-
RETURN CHECK CHARGES		RETURN		${ }^{2}$		${ }^{0}$		18						-						-
OTHER MISC REVENUES		MISCSERV		380		19		841												
EXCESS FACILITIES CHARGES		MISCSERV		70		4		156		-				-		-				
REFINED COAL LICENSE FEES EV CHARGING STATION RENTAL		LOLP		-		-		-		-		-		-		5,191		-		-
Total Operating Revenues	TOR		s	81,116,612	\$	20,036,620	\$	30,869,092	\$	316,351	\$	274,796	s	95,109	\$	6,746	\$	162,504	\$	38,355
Operating Expenses																				
Operation and Maintenance Expenses Depreciation and Amortization Expenses			\$	54,272,685 18,833,077	\$	$\begin{array}{r} 23,902,778 \\ 8,245,658 \end{array}$	\$	$\begin{aligned} & 9,699,480 \\ & 4,191,495 \end{aligned}$	\$	$\begin{array}{r} 167,482 \\ 15,849 \end{array}$	\$	$\begin{gathered} 140,707 \\ 39,221 \end{gathered}$	s	$\begin{gathered} 22,991 \\ 8,924 \end{gathered}$	\$	$\begin{aligned} & 21,464 \\ & 16,555 \end{aligned}$	\$	$\begin{array}{r} 91,514 \\ 106.487 \end{array}$	s	7,000 14,444
Regulatory Credits and Accretion Expenses																				
Property Taxes		NPT		1,584,815		721,230		738,731		2,381		4,173		1,132		2,076		4,039		569
Other Taxes				602,412		274,142		280,751		905		1,587		430		34		-		
Gain Disposition of Allowances				-												-		(5,737)		-
State and Federal Income Taxes		TAXINC	\$	142,880	\$	$(2,221,620)$	\$	1,988,583	\$	17,772	\$	11,081	s	8,443	\$	$(4,883)$	\$	$(5,737)$	\$	2,371
Total Operating Expenses	TOE		s	75,435,869	\$	30,922,189	\$	16,899,039	\$	204,388	\$	196,768	s	41,919	s	35,245	\$	196,303	\$	24,385
Net Operating Income (Unadjusted)	том		\$	5,680,743	\$	(10,885,569)	\$	13,970,052	\$	111,963	\$	78,028	S	53,190	S	$(28,498)$	\$	$(33,799)$	S	13,970
Net Cost Rate Base			s	225,552,349	\$	104,343,933	\$	113,343,713	\$	398,777	\$	615,338	\$	174,679	\$	105,539	\$	2,576,969	\$	290,934
Taxable Income Unadjusted																				
Total Operating Revenue			s	81,116,612	\$	20,036,620	\$	30,869,092	\$	316,351	\$	274,796	S	95,109	\$	6,746	\$	162,504	\$	38,355
Operating Expenses			s	75,292,989	\$	33,143,809	\$	14,910,456	\$	186,617	\$	185,688	s	33,476	\$	40,128	\$	202,040	\$	22,013
Interst Expense	INTEXP		s	4,839,028	\$	2,202,118	\$	2,255,198	S	7,269	\$	12,751	S	3,455	S	269	\$	-	S	-
Taxable Income	TAXINC		S	984,595	\$	$(15,309,306)$	\$	13,703,437	\$	122,466	\$	76,358	\$	58,178	\$	(33,651)	\$	(39,536)	\$	16,342

Description Ref	Name	Allocation Vector	Retail Transmission Service		$\begin{gathered} \text { Fluctuating Load } \\ \text { Service } \\ \text { FLS - Transmission } \end{gathered}$		Outdoor Lighting LS \& RLS		$\underset{\text { LE }}{\text { Lighting Energy }}$		Traffic Energy TE		Outdoor Sports Lighting OSL		Electric Vehicle Charging EV		$\begin{gathered} \text { Solar Share } \\ \text { SSP } \\ \hline \end{gathered}$		Business SolarBS	
Cost of Service Summary -- Pro-Forma																				
Operating Revenues																				
Total Pro-Forma Operating Revenue			s	81,116,612	\$	20,036,620	\$	30,869,092	\$	316,351	\$	274,796	s	95,109	\$	6,746	\$	162,504	\$	38,355
Operating Expenses																				
Operation and Maintenance Expenses			s	54,272,685	\$	23,902,778	\$	9,699,480	s	167,482	\$	140,707	s	22,991	s	21,464	\$	91,514	\$	7,000
Depreciation and Amortization Expenses				18,833,077		8,245,658		4,191,495		15,849		39,221		8,924		16,555		106,487		14,444
Regulatory Credits and Accretion Expenses																				
Property Taxes		NPT		1,584,815		721,230		738,731		2,381		4,173		1,132		2,076		4,039		569
Other Taxes				602,412		274,142		280,751		905		1,587		430		34		-		-
Gain Disposition of Allowances																				
State and Federal Income Taxes Specific Assignment of Curtailable Service Rider Credit		TAXINC	\$	$\begin{gathered} 142,880 \\ (3,386,120) \end{gathered}$	\$	$\begin{array}{r} (2,221,620) \\ (14,215,494) \end{array}$	\$	1,988,583	\$	17,772	\$	11,081	s	8,443	s	$(4,883)$	\$	(5,737)	\$	$\stackrel{2,371}{ }$
Total Operating Expenses	тоE		s	73,150,529	\$	17,162,527	\$	16,902,010	\$	204,496	\$	198,536	\$	42,146	S	35,245	\$	196,303	\$	24,385
Net Operating Income (Adjusted)			s	7,966,082	\$	2,874,093	\$	13,967,081	\$	111,854	\$	76,260	S	52,963	S	$(28,498)$	\$	$(33,799)$	\$	13,970
Adjusted Net Cost Rate Base			s	225,552,349	\$	104,343,933	\$	113,343,713	\$	398,777	\$	615,338	s	174,679	S	105,539	\$	2,576,969	\$	290,934
Rate of Return				3.53\%		2.75\%		12.32\%		28.05\%		12.39\%		30.32\%		-27.00\%		-1.31\%		4.80\%
Taxable Income Pro-Forma																				
Total Operating Revenue			s	81,116,612	\$	20,036,620	\$	30,869,092	\$	316,351	\$	274,796	\$	95,109	s	6,746	\$	162,504	s	38,355
Operating Expenses			s	73,007,649	\$	19,384,147	\$	14,913,427	s	186,725	\$	187,455	s	33,704	s	40,128	\$	202,040	s	22,013
Interest Expense	INTEXP		\$	4,839,028	\$	2,202,118	\$	2,255,198	\$	7,269	\$	12,751	S	3,455	\$	269	\$	-	s	-
Interest Syncronization Adjustment		INTEXP	s	275,579	\$	125,409	\$	128,432	S	414	\$	726	S	197	S	15	\$	-	s	-
Taxable Income	TXINCPF		s	2,994,356	\$	$(1,675,053)$	\$	13,572,034	\$	121,944	\$	73,864	\$	57,754	\$	$(33,666)$	\$	$(39,536)$	\$	16,342

Description	Ref	Name	Allocation Vector		$\begin{array}{r} \text { Total } \\ \text { System } \end{array}$		Residential Rate RS	General Service GS		All Electric Schools AES		Power Service PS-Secondary		Power Service PS-Primary		Time of Day TOD-Secondary		Time of Day TOD-Primary	
Cost of Service Summary -- Adjusted for P	opos	crease																	
Operating Revenue																			
Total Operating Revenue				s	1,586,186,238	\$	633,400,015	\$	229,949,160	\$	12,341,223	\$	174,079,627	\$	9,618,615	\$	137,919,298	\$	255,962,116
Proposed Increase				s	169,747,179	\$	68,196,266	\$	26,734,943	\$	1,453,830	\$	18,553,034	\$	1,039,687	\$	14,530,948	\$	26,942,083
Revenue Adjustment for Solar Share and EV				S	353,856	\$		\$		\$,	\$	-	\$		\$		\$	
Changes to EVSE-R						\$	-	s	-	\$	-	\$	-	s	-	\$	-	\$	-
Changes in Other Service Revenues			MISCSERV	s	366,528	\$	38,188	\$	71,491	\$	17,684	\$	185,297	\$	8,503	\$	31,975	\$	10,663
Changes in Miscellaneous Charges			MISCSERV	s	5,899	\$	615	\$	1,151	\$	285	\$	2,982	\$	137	\$	515	\$	172
Total Pro-Forma Operating Revenue				\$	1,756,659,700	\$	701,635,083	\$	256,756,745	\$	13,813,022	\$	192,820,941	\$	10,666,942	\$	152,482,735	\$	282,915,033
Operating Expenses																			
Total Operating Expenses				s	1,336,211,708	\$	567,877,412	\$	162,506,339	\$	10,060,573	\$	128,433,409	\$	6,055,835	\$	121,127,446	\$	232,234,517
Pro-Forma Adjustments																			
Increase in Uncollectible Expense			0.316\%	s	538,696	\$	215,623	\$	${ }_{5}^{84,712}$	\$	4,651	\$	59,223	\$	3,313	\$	46,020	\$	${ }^{85,171}$
Increase in PSC Fees			0.200\%	s	340,947	\$	136,470	\$	53,615	\$	2,944	\$	37,483	\$	2,097	\$	29,127	\$	53,906
Incremental Income Taxes			24.83\%	\$	42,323,441	\$	16,940,718	S	6,655,518	\$	365,403	\$	4,652,905	\$	260,268	\$	3,615,664	\$	6,691,600
Total Pro-Forma Operating Expenses				S	1,379,414,792	\$	585,170,224	\$	169,300,185	\$	10,433,571	\$	133,183,019	S	6,321,512	\$	124,818,257	\$	239,065,194
Net Operating Income				s	377,244,908	\$	116,464,860	\$	87,456,560	\$	3,379,451	\$	59,637,921	\$	4,345,430	\$	27,664,478	\$	43,849,839
Net Cost Rate Base				s	5,197,832,023	\$	2,457,262,896	\$	610,215,074	\$	38,745,077	\$	458,917,674	\$	19,889,476	\$	424,876,670	\$	740,522,922
Kate orketurn					7.26\%		4.74\%		14.33\%		8.72\%		13.00\%		21.85\%		6.51\%		5.92\%

12 Months Ended June 30, 2022

Description Ref	Name	Allocation Vector	$\begin{array}{r} \text { Total } \\ \text { System } \\ \hline \end{array}$	Residential Rate RS	$\begin{gathered} \text { General Service } \\ \text { GS } \\ \hline \end{gathered}$	$\begin{aligned} & \text { All Electric Schools } \\ & \text { AES } \\ & \hline \end{aligned}$	Power Service PS-Secondary	Power Service PS-Primary	$\begin{gathered} \text { Time of Day } \\ \text { TOD-Secondary } \\ \hline \end{gathered}$	$\begin{gathered} \text { Time of Day } \\ \text { TOD-Primary } \\ \hline \end{gathered}$
Allocation Factors										
Energy Allocation Factors Energy Usage by Class	E01	Energy	1.000000	0.345294	0.097492	0.007468	0.098714	0.004461	0.103653	0.223958
Customer Allocation Factors										
Customer Services -- Weighted cost of Services	CO_{0}		1.000000	0.790864	0.177792	${ }^{0.0001609}$	${ }^{0.023105}$	- ${ }^{-1}$	${ }^{0.006610}$	
Meter Costs -- Weighted Cost of Meters	C03		1.000000	0.604135	0.243786	0.004976	0.076223	0.014906	0.013633	0.026406
Lighting Systems -- Lighting Customers	C04	Cust04	1.000000							
Meter Reading and Billing -- Weighted Cost	c05	Cust05	1.000000	0.64961	0.24315	0.00623	${ }^{0.03261}$	0.00150	${ }^{0.02812}$	0.00940
Marketing/Economic Development	C06	Cust06	1.000000	0.80328	0.15033	0.00077	0.00806	0.00037	0.00139	0.00046
Total billed revenue per Billing Determinants	R01		1,558,608,458	611,492,797	224,799,513	11,901,436	169,760,857	9,429,915	134,172,118	250,417,886
Energy (at the Meter)			17,402,124,383	5,943,619,831	1,678,149,896	128,548,999	1,699,193,305	78,721,459	1,784,202,424	3,951,918,371
Energy (Loss Adjusted)(at Source)	Energy		18,429,987,351	6,363,754,932	1,796,772,839	137,635,708	1,819,303,738	82,219,916	1,910,321,874	4,127,545,429
O\&M Customer Allocators										
Customers (Monthly Bills)			8,471,803	5,308,105	993,413	5,086	53,288	2,445	9,195	3,066
Average Customers (Bills 12)			705,984	442,342	82,784	424	4,441	204	766	256
Average Customers (Lighting $=$ Lights)			705,984	442,342	82,784	424	4,441	204	766	256
Weighted Average Customers (Lighting $=9$ Lights per Cu	Cust05		680,930	442,342	165,568	4,240	22,205	1,020	19,150	6,400
Street Lighting	Cust04		143,087,299							
Average Customers	Cust01		705,984	442,342	82,784	424	4,441	204	766	${ }_{256}$
Average Customers (Lighting = 9 Lights per Cust)	Cust06		550,667 50,186	442,342	82,784	424	4,441	204	776	256
Average Secondary Customers	Cust07		550,186	442,342	82,784	424	4,441		766	
Average Primary Customers	Cust08		550,646	442,342	82,784	424	4,441	204	766	256
Average Transformer Customers	Cust09		550,186	442,342	82,784	424	4,441	-	766	-
Plant Customer Allocators										
Average Customers			705,871	442,270	82,743	424	4,442	204	765	256
Average Customers (Lighting $=$ Lights) ${ }^{\text {a }}$ (${ }^{\text {a }}$			705, 771	442,270	82,743	424	4,442	204	765	256
Weighted Average Customers (Lighting $=9$ Lights per Cu Street Lighting	PCust05		680,755	442,270	165,485	4,240	22,210	1,020	19,125	6,400
Street Lighting Average Customers	PCust04 PCust01		$143,087,299$ 705,871	442,270	82,743	424	4,442	204	765	256
Average Customers (Lighting $=9$ Lights per Cust)	PCustu6		550,553	442,270	82,743	424	4,442	204	765	256
Average Secondary Customers	PCust07		544,871	442,270	82,743	424				
Average Primary Customers	PCust08		550,532	442,270	82,743	424	4,442	204	765	256
Average Transformer Customers	PCust09		550,072	442,270	82,743	424	4,442	-	765	-
Demand Allocators										
Maximum Class Non-Coincident Peak Demands (Transm	NCPT		4,393,697	1,942,660	498,641	51,033	444,831	19,115	393,527	640,911
Maximum Class Non-Coincident Peak Demands (Primary	NCPP		4,022,516	1,942,660	498,641	51,033	444,831	19,115	393,527	640,911
Sum of the Individual Customer Demands (Transformer)	SICDT		6,314,351	4,316,218	805,143 805,143	58,361	594,859	-	507,681	-
LOLP Demand Allocator	LOLP		2,463,591	1,011,037	272,317	17,474	253,947	11,033	244,227	447,085

12 Months Ended June 30, 2022

			Allocation	Retail Transmission Service	Fluctuating Load Service	Outdoor Lighting	Lighting Energy	Traffic Energy	Outdoor Sports Lighting	Electric Vehicle Charging	Solar Share	Business Solar
Description	Ref	Name	Vector	RTS - Transmission	FLS - Transmission	LS \& RLS	LE	TE	OSL	EV	SSP	BS

Allocation Factors

Energv Allocation Factors											
Energy Usage by Class	E01	Energy	0.077946	0.033622	0.006980	0.000254	0.000139	0.000019	0.000001	-	-
Customer Allocation Factors											
Primary Distribution Plant -- Average Number of Custom		Cust08	-		0.03497	0.00002	0.00027	0.00001	0.00002		
Customer Services -- Weighted cost of Services	C02		- \square^{-1309}					0.000021			
Meter Costs -- Weighted Cost of Meters	${ }^{\text {co3 }}$		0.013092	0.000808	-	0.000148	0.001818	0.000069	-		
Lighting Systems -- Lighting Customers	C04	Cust04	7073		1.00000			00003	003		
Meter Reading and Billing -- Weighted Cost	C05	Cust05	0.00073	0.00007	0.02828	0.00002	0.00022	0.00003	0.00003		
Marketing Economic Development	C06	Cust06	0.00004	0.00000	0.03497	0.00002	0.00027	0.00001	0.00002		-
Total billed revenue per Billing Determinants	R01		82,247,981	32,956,814	30,555,893	307,246	271,291	92,320	1,533	162,504	38,355
Energy (at the Meter) ${ }_{\text {Energy }}$ (Loss Adjusted)(at Source)			$1,404,629,847$ $1,436,535,296$	$605,890,405$ 619652896	${ }_{1}^{120,148,466}$	4,371,371	$\stackrel{\text { 2,392,654 }}{2,561783}$	326,405	10,950		-
Energy (Loss Adjusted)(at Source)	Energy		1,436,535,296	619,652,896	128,641,369	4,680,369	2,561,783	349,478	11,724		-
O\&M Customer Allocators											
Customers (Monthly Bills)			240	12	2,079,516	1,296	15,972	48	120		
Average Customers (Bills/12)			20	1	173,293	108	1,331	4	10		-
Average Customers (Lighting $=$ Lights)			20	1	173,293 19255	108	1,331	20	10		
Average Customers	Cust01		20	1	173,293	108	1,331	4	10		
Average Customers (Lighting $=9$ Lights per Cust)	Cust06		20	1	19,255	12	148	4	10		
Average Secondary Customers	Cust07			-	19,255	12	148	4	10		
Average Primary Customers	Cust08		-		19,255	12	148	4	10		
Average Transformer Customers	Cust09		-		19,255	12	148	4	10		
Plant Customer Allocators											
Average Customers			20	1	173,293	108	1,331	4	10		
Average Customers (Lighting $=$ Lights) Weighted Average Customers (Lighting $=9$ Lights per Cu	PCust05		20 500	1 50	173,293 19,255	108 12	1,331 148	4 20	10 20	-	-
Street Lighting	PCust04				143,087,299						
Average Customers	PCust01		20	1	173,293	108	1,331	4	10		
Average Customers (Lighting $=9$ Lights per Cust)	PCust06		20	1	19,255	12	148	4	10		
Average Secondary Customers	${ }^{\text {PCust07 }}$				19,255	12	148		20		
Average Primary Customers	PCust08				19,255	12	148	4	10		
Average Transformer Customers	PCust09		-	-	19,255	12	148	4	10	-	-
Demand Allocators											
Maximum Class Non-Coincident Peak Demands (Transm	NCPT		222,254	148,927	29,996 29996	1,091	294	414 414	3		
Maximum Class Non-Coincident Peak Demands (Primary	NCPP		-	-	29,996 29,996	1,091 1,091	294	414	3 3	\div	$:$
Sum of the Individual Customer Demands (Secondary)	SICD		--		29,996	1,091	294	-	3	-	-
LOLP Demand Allocator	LOLP		145,533	60,265	393	14	234	30	2	-	-

12 Months Ended June 30, 2022

Description Ref	Allocation Name Vector		Retail Transmission Service RTS - Transmission		Fluctuating Load Service FLS - Transmission		Outdoor Lighting LS \& RLS		Lighting Energy LE		Traffic Energy TE		Outdoor Sports Lighting OSL		Electric Vehicle Charging EV		$\begin{aligned} & \text { Solar Share } \\ & \text { SSP } \\ & \hline \end{aligned}$		Business Solar BS
Production Demand Cost Allocation																			
Gross Plant Production Residual LOLP Demand Allocato	GPPLOLPDRA		145,533		60,265		393		14		234		30		2		-		-
Gross Plant Production LOLP Demand Costs																			
Customer Specific Assignment																\$	3,325,058	\$	403,543
Gross Plant Production LOLP Demand Residual	GPPLOLPDRA	s	358,533,878	\$	148,468,386	\$	967,726	\$	35,209	\$	575,745	s	74,108	\$	5,011	\$		\$	
Gross Plant Production LOLP Demand Total	GPPLOLPDT	\$	358,533,878	\$	148,468,386	\$	967,726	\$	35,209	\$	575,745	S	74,108	\$	5,011	\$	3,325,058		403,543
Gross Plant Production LOLP Demand Allocator	GPLOLPDA GPPLOLPDT		0.05904		0.02445		0.00016		0.00001		0.00009		0.00001		0.00000		0.00055		0.00007
Net Production Residual LOLP Demand Allocator	NPPLOLPDRA		145,533		60,265		393		14		234		30		2				
Net Production LOLP Demand Costs																			
Customer Specific Assignment																\$	3,141,953	\$	371,427
Net Production LOLP Demand Residual	NPPLOLPDRA	\$	217,184,547	\$	89,935,822	\$	586,207	\$	21,328	\$	348,762	\$	44,892	\$	3,036	\$			
Net Production LOLP Demand Total	NPPLOLPDT	\$	217,184,547	\$	89,935,822	\$	586,207	\$	21,328	\$	348,762	S	44,892	\$	3,036	\$	3,141,953	\$	371,427
Net Production LOLP Demand Allocator	NPLOLPDA NPPLOLPDT		0.05902		0.02444		0.00016		0.00001		0.00009		0.00001		0.00000		0.00085		0.00010
Rate Base Production Residual LoLP Demand Allocator	Rblolpdra		145,533		60,265		393		14		234		30		2				-
Rate Base Production LOLP Demand Costs Customer Specific Assignment																			
Customer Specific Assignment																\$	2,576,969	\$	290,934
Rate Base Production LOLP Demand Residual	RBLOLPDRA	s	175,600,115	\$	72,715,766	\$	473,966	\$	17,244	\$	281,984	\$	36,296	\$	2,454	\$		\$	
Rate Base Production LOLP Demand Total	RBLOLPDT	s	175,600,115	\$	72,715,766	\$	473,966	\$	17,244	\$	281,984	S	36,296	S	2,454	\$	2,576,969	\$	290,934
Rate Base Production LOLP Demand Allocator	RBLOLPDA RBLOLPDT		0.05902		0.02444		0.00016		0.00001		0.00009		0.00001		0.00000		0.00087		
Production O\&M Residual LOLP Demand Allocator	POMLOLPDRA		145,533		60,265		393		14		234		30		2				
Production O\&M LOLP Demand Costs																			0
Customer Specific Assignment																\$	91,514		
Production O\&M LOLP Demand Residual	POMLOLPDRA	\$	7,862,942	\$	3,256,034	\$	21,223	s	772	\$	12,627	s	1,625	\$	110	\$		\$	
Production O\&M LOLP Demand Total	POMLOLPDT	s	7,862,942	\$	3,256,034	\$	21,223	\$	772	\$	12,627	s	1,625	\$	110	\$	91,514	\$	-
Production O\&M LOLP Demand Allocator	POMLOLPD $/$ POMLOLPDT		0.05903		0.02445		0.00016		0.00001		0.00009		0.00001		0.00000		0.00069		-
Production Depreciation Residual LOLP Demand Allocat	PDEPLOLPDRA		145,533		60,265		393		14		234		30		2		-		-
Production Depreciation LOLP Demand Costs																			
Customer Specific Assignment																\$	106,487	\$	14,444
Production Depreciation LOLP Demand Residual	PDEPLOLPDRA	s	17,037,942	\$	7,055,388	\$	45,987	\$	1,673	\$	27,360	s	3,522	\$	238	\$			
Production Depreciation LOLP Demand Total	PUEPLOLPDT	s	17,037,942	\$	7,055,388	\$	45,987	\$	1,673	\$	27,360	s	3,522	\$	238	\$	106,487	\$	14,444
Production Depreciation LOLP Demand Allocator	PDEPLOLPD PDEPLOLPDT		0.05905		0.02445		0.00016		0.00001		0.00009		0.00001		0.00000		0.00037		0.00005
Production Prop Tax Residual LOLP Demand Allocator	PPTLOLPDRA		145,533		60,265		393		14		234		30		2		-		
Production Prop Tax LOLP Demand Costs																			0
Customer Specitic Assignment																\$	4,039	\$	569
Production Prop Tax LOLP Demand Residual	PPTLOLPDRA	s	1,322,185	\$	547,515	\$	3,569	\$	130	\$	2,123	\$	273	\$	18	\$		\$	
Production Prop Tax LOLP Demand Total	PPTLOLPDT	s	1,322,185	\$	547,515	\$	3,569	s	130	\$	2,123	\$	273	\$	18	\$	4,039	\$	569
Production Prop Tax LOLP Demand Allocator	PPTLOLPDA PPTLOLPDT		0.05906		0.02446		0.00016		0.00001		0.00009		0.00001		0.00000		0.00018		0.00003

Description	Ref	Name	Allocation Vector		$\begin{array}{r} \text { Total } \\ \text { System } \\ \hline \end{array}$		Residential Rate RS		General Service GS		All Electric Schools AES		Power Service PS-Secondary		Power Service PS-Primary		Time of Day TOD-Secondary		Time of Day TOD-Primary
Meter Cost Allocation																			
Meters Gross Plant Residual Allocator Meters Giross Plant Costs		MGPRA		s	$\begin{aligned} & 49,194,750 \\ & 77,142,557 \end{aligned}$		29,720,264		11,993,013		244,803		3,749,767		733,308		670,691		1,299,034
Customer Specific Assignment				s	159,234														
Meters Gross Plant Residual			MGPRA	s	76,983,323	\$	46,508,310	s	18,767,490	\$	383,084	\$	5,867,892	\$	1,147,531	\$	1,049,543	\$	2,032,818
Meters Gross Plant Total		MGPT		\$	77,142,557	\$	46,508,310	\$	18,767,490	\$	383,084	\$	5,867,892	\$	1,147,531	\$	1,049,543	\$	2,032,818
Meters Gross Plant Allocator		MGPA	MGPT		1.000000		0.60289		0.24328		0.00497		0.07607		0.01488		0.01361		0.02635
Meters Net Plant Residual Allocator		MNPRA			49,194,750		29,720,264		11,993,013		244,803		3,749,767		733,308		670,691		1,299,034
Meters Net Plant Costs ${ }_{\text {coser }}$				s	53,653,152														
Customer Speciific Assignment				\$	${ }_{5}^{120,013}$														
Meters Net Plant Residual			MNPRA	\$	53,533,140	\$	32,341,236	\$	13,050,653	\$	266,391	\$	4,080,451	\$	797,977	\$	729,838	\$	1,413,594
Meters Net Plant Total		MNPT		s	53,653,152	\$	32,341,236	S	13,050,653	\$	266,391	\$	4,080,451	\$	797,977	\$	729,838	\$	1,413,594
Meters Net Plant Allocator		MNPA	MNPT		1.000000		0.60278		0.24324		0.00497		0.07605		0.01487		0.01360		0.02635
Meters Rate Base Residual Allocator		MRBRA			49,194,750		29,720,264		11,993,013		244,803		3,749,767		733,308		670,691		1,299,034
Meters Rate Base Costs				\$	45,031,431														
Customer Specific Assignment				s	89,399														
Meters Rate Base Residual			MRBRA	s	44,942,032	\$	27,151,049	s	10,956,258	\$	223,640	\$	3,425,612	\$	669,916	\$	612,712	\$	1,186,737
Meters Rate Base Total		MRBT		s	45,031,431	\$	27,151,049	s	10,956,258	\$	223,640	\$	3,425,612	S	669,916	\$	612,712	\$	1,186,737
Meters Rate Base Allocator		MRBA	MRBT		1.000000		0.60294		0.24330		0.00497		0.07607		0.01488		0.01361		0.02635
Meters O\&M Residual Allocator		MOMRA			49,194,750		29,720,264		11,993,013		244,803		3,749,767		733,308		670,691		1,299,034
Meters O\&M Costs				\$	11,537,188														
Customer Specific Assignment				s															
Meters O\&M Residual			MOMRA	\$	11,537,188	\$	6,970,017	\$	2,812,610	\$	57,411	\$	879,398	\$	171,976	\$	157,291	\$	304,650
Meters O\&M Total		MOMT		s	11,537,188	\$	6,970,017	\$	2,812,610	\$	57,411	\$	879,398	\$	171,976	\$	157,291	\$	304,650
Meters O\&M Allocator		moma	момт		1.000000		0.60413		0.24379		0.00498		0.07622		0.01491		0.01363		0.02641
Meters Depreciation Residual Allocator		MDRA			49,194,750		29,720,264		11,993,013		244,803		3,749,767		733,308		670,691		1,299,034
Meters Depreciation Costs				s	1,599,033														
Customer Specific Assignment				\$	15,923														
Meters Depreciation Residual Meters Depreciation Total			MDRA	S	$1,583,110$ $1,599,033$	\$	${ }_{9}^{956,412}$	\$	385,941 385,941	\$	7,878 7,878	\$	120,669 120,669	\$	23,598	\$	${ }_{21,583}^{21,583}$	\$	41,804 41,804
Meters Deprecelation Iotal Meters Depreciation Allocator		MDA	MDT	s	1.000000		0.59812		0.24136		0.00493		0.07546		0.01476		0.01350		0.02614
Meters Prop Tax Residual Allocator		MPTRA			49,194,750		29,720,264		11,993,013		244,803		3,749,767		733,308		670,691		1,299,034
Meters Prop Tax Costs				\$	286,653														
Customer Specific Assignment				s	1,987														
Meters Prop Tax Residual			MPTRA	s	284,666	\$	171,977	\$	69,398	\$	1,417	\$	21,698	\$	4,243	\$	3,881	\$	7,517
Meters Prop Tax Total		${ }_{\text {MPTT }}$		\$	286,653	\$	171,977	\$	69,398	\$	1,417	\$	${ }^{21,698}$	\$	4,243	\$	${ }^{3,881}$	\$	7,517
Meters Prop Tax Allocator		MPTA	MPTT		1.000000		0.59995		0.24210		0.00494		0.07569		0.01480		0.01354		0.02622
Customer Service O\&M Cost Allocation																			
Customer Service Residual Allocator		CSRA			550,667		442,342		82,784		424		4,441		204		766		256
Customer Service O\&M Costs				s	7,173,760														
Customer Specific Assignment				s	25,500														
Customer Service O\&M Residual			CSRA	s	7,148,260	\$	5,742,083	\$	1,074,627	\$	5,504	\$	57,649	\$	2,648	\$	9,944	\$	3,323
Customer Service O\&M Total		CSOT		s	7,173,760	\$	5,742,083	S	1,074,627	\$	5,504	\$	57,649	\$	2,648	\$	9,944	\$	3,323
Customer Service O\&M Allocator		C10	CSOT		1.000000		0.80043		0.14980		0.00077		0.00804		0.00037		0.00139		0.00046

12 Months Ended June 30, 2022

12 Months Ended June 30, 2022

Description	Ref	Name	Allocation Vector		$\begin{array}{r} \text { Total } \\ \text { System } \\ \hline \end{array}$	Residential Rate RS	$\begin{gathered} \text { General Service } \\ \text { GS } \\ \hline \end{gathered}$	$\begin{gathered} \text { All Electric Schools } \\ \text { AES } \\ \hline \end{gathered}$	Power Service PS-Secondary	Power Service PS-Primary	Time of Day TOD-Secondary	$\begin{aligned} & \text { Time of Day } \\ & \text { TOD-Primary } \end{aligned}$
Revenue Adjustment Allocators												
Late Payment Revenue		LPAY			3,985,852	3,094,551	620,986	18,514	193,986	8,902	33,474	11,163
Misc Service Revenue Allocator		MISCSERV			1,671,784	174,180	326,081	80,661	845,167	38,783	145,842	48,635
Reconnect Charges		RECON			1,827,840	1,740,900	83,412	233	2,442	112	421	140
Return Check Charges		RETURN			86,978	81,062	5,025	60	629	29	109	36
Rent From Electric Property		RFEP			5,194,858,581	2,457,262,896	610,215,074	38,745,077	458,917,674	19,889,476	424,876,670	740,522,922
Interuptible Credit Allocator		INTCRE			6,069,280,510	2,490,784,384	670,878,802	43,048,460	625,621,337	27,180,233	601,676,613	1,101,435,630
Base Rate Revenue					1,558,570,103	611,492,797	224,799,513	11,901,436	169,760,857	9,429,915	134,172,118	250,417,886
Operation and Maintenance Less Fuel		OMLF			336,831,286	177,368,926	48,629,289	2,429,334	25,390,922	1,221,079	22,575,247	36,974,577
CSR Avoided Cost												
Interruptible Demand					3,184,853							${ }^{201,529}$
Avoided Cost per kW Avoided Cost												${ }_{(1,032,456)}^{(5.12)}$
Avoided Cost				s	(18,634,070)							$(1,032,456)$

12 Months Ended June 30, 2022

Exhibit WSS-32

Electric Cost of Service Study
Class Allocation
(Louisville Gas and Electric Company)

			2		4	5	6	7	8	9	10	11
Description	Ref	Name	Allocation Vector	$\begin{aligned} & \text { Total } \\ & \text { System } \end{aligned}$	Residential Rate RS	General Service Rate GS	Rate PS Primary	Rate PS Secondary	Rate TOD Primary	Rate TOD Secondary	Rate RTS Transmission	Special Contract Customer

Net Utility Plant

Power Production Plant																					
Production Demand - LOLP	NTPLANT	UPPPLOLP	NPLOLPDA	\$	2,495,383,413	\$	1,189,374,765	\$	280,705,913	\$	19,006,428	\$	314,311,316	\$	298,719,616	\$	245,608,030	\$	136,737,701	\$	7,518,447
Production Energy	NTPLANT	UPPPEB	E01		-		-		-		-		-		-		-				-
Total Power Production Plant		UPPPT		\$	2,495,383,413	\$	1,189,374,765	\$	280,705,913	\$	19,006,428	\$	314,311,316	\$	298,719,616	\$	245,608,030	\$	136,737,701	\$	7,518,447
Transmission Plant																					
Transmission Demand	NTPLANT	UPTRB	NCPT	\$	422,249,551	\$	199,774,530	\$	48,798,564	\$	3,203,291	\$	54,297,755	\$	45,535,407	\$	43,110,172	\$	22,481,197	\$	1,444,657
Distribution Poles																					
Specific	NTPLANT	UPDPS	NCPP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Substation																					
General	NTPLANT	UPDSG	NCPP	\$	158,088,627	\$	79,000,953	\$	19,297,421	\$	1,266,743	\$	21,472,079	\$	18,007,003	\$	17,047,943	\$	-	\$	571,291
Distribution Primary \& Secondary Lines																					
Primary Specific	NTPLANT	UPDPLS	NCPP	\$	-	\$		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Primary Demand	NTPLANT	UPDPLD	NCPP		242,694,290		121,280,579		29,624,989		1,944,677		32,963,477		27,643,967		26,171,638		-		877,033
Primary Customer	NTPLANT	UPDPLC	PCust08		397,151,933		344,214,691		41,328,701		63,818		2,537,231		120,343		460,403		11,852		1,823
Secondary Demand	NTPLANT	UPDSLD	SICD		67,713,921		51,327,269		8,203,043		-		7,769,425		-		-		-		-
Secondary Customer	NTPLANT	UPDSLC	PCust07		115,706,517		101,050,166		12,132,754		18,735		-		35,329		-		-		-
Total Distribution Primary \& Secondary Lines		UPDLT		\$	823,266,661	\$	617,872,706	\$	91,289,486	\$	2,027,230	\$	43,270,134	\$	27,799,639	\$	26,632,041	\$	11,852	\$	878,857
Distribution Line Transformers																					
Demand	NTPLANT	UPDLTD	SICDT	\$	82,953,368	\$	57,386,324	\$	9,171,391	\$	-	\$	8,686,587	\$	-	\$	7,245,988	\$	-	\$	-
Customer	NTPLANT	UPDLTC	PCust09		46,238,863		40,095,558		4,814,139		-		295,547		-		53,630		-		-
Total Distribution Line Transformers		UPDLTT		\$	129,192,231	\$	97,481,882	\$	13,985,530	\$	-	\$	8,982,134	\$	-	\$	7,299,618	\$	-	\$	-
Distribution Services																					
Customer	NTPLANT	UPDSC	C02	\$	29,563,787	\$	25,463,932	\$	3,626,678	\$	-	\$	373,036	\$	-	\$	100,007	\$	-	\$	-
Distribution Meters																					
Customer	NTPLANT	UPDMC	MNPA	\$	30,149,962	\$	20,513,748	\$	6,373,699	\$	208,332	\$	1,782,389	\$	416,122	\$	352,367	\$	294,071	\$	6,324
Distribution Street \& Customer Lighting																					
Customer	NTPLANT	UPDSCL	PCust04	\$	97,473,132	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer Accounts Expense																					
Customer	NTPLANT	UPCAE	PCust05	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer Service \& Info.																					
Customer	NTPLANT	UPCSI	PCust06	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Sales Expense																					
Customer	NTPLANT	UPSEC	PCust06	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Total		UPT		\$	4,185,367,364	\$	2,229,482,516	\$	464,077,292	\$	25,712,025	\$	444,488,843	\$	390,477,788	\$	340,150,178	\$	159,524,821	\$	10,419,576

Description	Ref	Name		Street Lighting Rate RLS, LS			13 Street Lighting Rate LE	Traffic Street Lighting Rate TLE			Lighting Rate OSL	16 Electric Vehicle Charging Rate EV			Solar Share Rate SSP	18 Business Solar Rate BS	
Net Utility Plant																	
Power Production Plant																	
Production Demand - LOLP	NTPLANT	UPPPLOLP	NPLOLPDA	\$	417,308	\$	14,535	\$	404,956	\$	963	\$	4,371	\$	2,486,734	\$	72,329
Production Energy	NTPLANT	UPPPEB	E01		-		-		-		-		-		-		-
Total Power Production Plant		UPPPT		\$	417,308	\$	14,535	\$	404,956	\$	963	\$	4,371	\$	2,486,734	\$	72,329
Transmission Plant																	
Transmission Demand	NTPLANT	UPTRB	NCPT	\$	3,423,449	\$	119,239	\$	54,736	\$	5,957	\$	596	\$	-	\$	-
Distribution Poles																	
Specific	NTPLANT	UPDPS	NCPP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Substation																	
General	NTPLANT	UPDSG	NCPP	\$	1,353,805	\$	47,153	\$	21,645	\$	2,356	\$	236	\$	-	\$	-
Distribution Primary \& Secondary Lines																	
Primary Specific	NTPLANT	UPDPLS	NCPP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Primary Demand	NTPLANT	UPDPLD	NCPP		2,078,332		72,388		33,230		3,616		362		-		-
Primary Customer	NTPLANT	UPDPLC	PCust08		8,297,193		14,678		91,169		912		9,117		-		-
Secondary Demand	NTPLANT	UPDSLD	SICD		393,437		13,703		6,291		685		69		-		-
Secondary Customer	NTPLANT	UPDSLC	PCust07		2,435,784		4,309		26,764		-		2,676		-		-
Total Distribution Primary \& Secondary Lines		UPDLT		\$	13,204,747	\$	105,079	\$	157,453	\$	5,213	\$	12,224	\$	-	\$	
Distribution Line Transformers																	
Demand	NTPLANT	UPDLTD	SICDT	\$	439,882	\$	15,321	\$	7,033	\$	765	\$	77	\$	-	\$	-
Customer	NTPLANT	UPDLTC	PCust09		966,492		1,710		10,620		106		1,062		-		
Total Distribution Line Transformers		UPDLTT		\$	1,406,373	\$	17,031	\$	17,653	\$	872	\$	1,139	\$	-	\$	-
Distribution Services																	
Customer	NTPLANT	UPDSC	C02	\$	-	\$	-	\$	-	\$	134	\$	-	\$	-	\$	
Distribution Meters																	
Customer	NTPLANT	UPDMC	MNPA	\$	-	\$	8,747	\$	54,327	\$	641	\$	139,194	\$	-	\$	-
Distribution Street \& Customer Lighting																	
Customer Accounts Expense																	
Customer	NTPLANT	UPCAE	PCust05	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer Service \& Info.																	
Customer	NTPLANT	UPCSI	PCust06	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Sales Expense																	
Customer	NTPLANT	UPSEC	PCust06	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Total		UPT		\$	117,278,814	\$	311,783	\$	710,771	\$	16,135	\$	157,760	\$	2,486,734	\$	72,329

Description	Ref		Name	Allocation Vector			13 Street Lighting Rate LE		14 Traffic Street Lighting Rate TLE				16 Electric Vehicle Charging Rate EV			17 Solar Share Rate SSP	18 Business Solar Rate BS	
Net Cost Rate Base																		
Power Production Plant																		
Production Demand - LOLP	RB		RBPPLOLP	RBLOLPDA	\$	336,015	\$	11,703	\$	326,069	\$	776	\$	3,520	\$	2,314,622	\$	60,677
Production Energy	RB		RBPPEB	E01		688,717		23,988		22,371		80		127		-		-
Total Power Production Plant			RBPPT		\$	1,024,731	\$	35,691	\$	348,440	\$	856	\$	3,646	\$	2,314,622	\$	60,677
Transmission Plant																		
Transmission Demand	RB		RBTRB	NCPT	\$	2,812,363	\$	97,955	\$	44,966	\$	4,893	\$	490	\$	-	\$	-
Distribution Poles																		
Specific	RB		RBDPS	NCPP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Substation																		
General	RB		RBDSG	NCPP	\$	1,089,684	\$	37,954	\$	17,423	\$	1,896	\$	190	\$	-	\$	-
Distribution Primary \& Secondary Lines																		
Primary Specific	RB		RBDPLS	NCPP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Primary Demand	RB		RBDPLD	NCPP		1,668,307		58,107		26,674		2,903		291		-		-
Primary Customer	RB		RBDPLC	PCust08		6,662,406		11,786		73,206		732		7,321		-		-
Secondary Demand	RB		RBDSLD	SICD		316,403		11,020		5,059		551		55		-		-
Secondary Customer	RB		RBDSLC	PCust07		1,959,301		3,466		21,529		-		2,153		-		-
Total Distribution Primary \& Secondary Lines			RBDLT		\$	10,606,417	\$	84,380	\$	126,467	\$	4,185	\$	9,819	\$	-	\$	
Distribution Line Transformers																		
Demand	RB		RBDLTD	SICDT	\$	350,632	\$	12,213	\$	5,606	\$	610	\$	61	\$	-	\$	-
Customer	RB		RBDLTC	PCust09		770,396		1,363		8,465		85		847		-		
Total Distribution Line Transformers			RBDLTT		\$	1,121,028	\$	13,575	\$	14,071	\$	695	\$	908	\$	-	\$	-
Distribution Services																		
Customer	RB		RBDSC	C02	\$	-	\$	-	\$	-	\$	107	\$	-	\$	-	\$	
Distribution Meters																		
Customer	RB		RBDMC	MRBA	\$	-	\$	7,790	\$	48,387	\$	571	\$	105,259	\$	-	\$	-
Distribution Street \& Customer Lighting																		
Customer Accounts Expense																		
Customer	RB		RBCAE	PCust05	\$	82,488	\$	146	\$	906	\$	45	\$	181	\$	-	\$	-
Customer Service \& Info.																		
Customer	RB		RBCSI	PCust06	\$	21,179	\$	37	\$	233	\$	2	\$	23	\$	-	\$	-
Sales Expense																		
Customer	RB		RBSEC	PCust06	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Total			RBT		\$	94,529,248	\$	277,529	\$	600,893	\$	13,251	\$	120,516	\$	2,314,622	\$	60,677

Description	Ref	Name			$\begin{gathered} 12 \\ \begin{array}{c} \text { Street Lighting } \\ \text { Rate RLS, LS } \end{array} \end{gathered}$		13 Street Lighting Rate LE		Lighting Rate TLE		$\begin{array}{r} 15 \\ \text { Outdoor Sports } \\ \text { Lighting } \\ \text { Rate OSL } \end{array}$	16 Electric Vehicle Charging Rate EV			17 Solar Share Rate SSP	18 Business Solar Rate BS	
Depreciation Expenses																	
Power Production Plant																	
Production Demand - LOLP	TDEPR	DEPPLOLP	PDEPLOLPDA	\$	35,598	\$	1,240	\$	34,544	\$	82	\$	373	\$	83,870	\$	3,154
Production Energy	TDEPR	DEPPEB	E01		-		-		-		-		-		-		-
Total Power Production Plant		DEPPT		\$	35,598	\$	1,240	\$	34,544	\$	82	\$	373	\$	83,870	\$	3,154
Transmission Plant																	
Transmission Demand	TDEPR	DETRB	NCPT	\$	118,159	\$	4,115	\$	1,889	\$	206	\$	21	\$	-	\$	-
Distribution Poles																	
Specific	TDEPR	DEDPS	NCPP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Substation																	
General	TDEPR	DEDSG	NCPP	\$	53,198	\$	1,853	\$	851	\$	93	\$	9	\$	-	\$	-
Distribution Primary \& Secondary Lines																	
Primary Specific	TDEPR	DEDPLS	NCPP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Primary Demand	TDEPR	DEDPLD	NCPP		81,669		2,845		1,306		142		14		-		-
Primary Customer	TDEPR	DEDPLC	Cust08		361,372		639		3,971		36		357		-		-
Secondary Demand	TDEPR	DEDSLD	SICD		15,460		538		247		27		3		-		-
Secondary Customer	TDEPR	DEDSLC	Cust07		106,131		188		1,166		-		105		-		-
Total Distribution Primary \& Secondary Lines		DEDLT		\$	564,632	\$	4,210	\$	6,690	\$	205	\$	479	\$	-	\$	-
Distribution Line Transformers																	
Demand	TDEPR	DEDLTD	SICDT	\$	17,285	\$	602	\$	276	\$	30	\$	3	\$	-	\$	-
Customer	TDEPR	DEDLTC	Cust09		42,093		74		463		4		42		-		-
Total Distribution Line Transformers		DEDLTT		\$	59,378	\$	677	\$	739	\$	34	\$	45	\$	-	\$	-
Distribution Services																	
Customer	TDEPR	DEDSC	C02	\$	-	\$	-	\$	-	\$	5	\$	-	\$	-	\$	
Distribution Meters																	
Customer	TDEPR	DEDMC	MDT	\$	-	\$	340	\$	2,111	\$	25	\$	18,339	\$	-	\$	-
Distribution Street \& Customer Lighting																	
Customer Accounts Expense																	
Customer	TDEPR	DECAE	C05	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer Service \& Info.																	
Customer	TDEPR	DECSI	C05	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Sales Expense																	
Customer	TDEPR	DESEC	C06	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Total		DET		\$	4,661,198	\$	12,435	\$	46,824	\$	649	\$	19,265	\$	83,870	\$	3,154

		1	2				4		5				7		8		9		10		
Description	Ref	Name	Allocation Vector		$\begin{array}{r} \text { Total } \\ \text { System } \\ \hline \end{array}$		$\begin{gathered} \text { Residential } \\ \text { Rate RS } \end{gathered}$		General Service Rate GS		Rate PS Primary		Rate PS Secondary		Rate TOD Primary		Rate TOD Secondary		$\begin{array}{r} \text { Rate RTS } \\ \text { Transmission } \\ \hline \end{array}$		tract omer
Regulatory Credits																					
Power Production Plant																					
Production Demand - LOLP	TRCTN	RCPLOLP	LOLP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Production Energy	TRCTN	RCPEB	E01		-		-		-		-		-		-		-		-		-
Total Power Production Plant		RCPT		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Transmission Plant																					
Transmission Demand	TRCTN	RCRB	NCPT	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Poles																					
Specific	TRCTN	RCPS	NCPP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Substation																					
General	TRCTN	RCSG	NCPP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Primary \& Secondary Lines																					
Primary Specific	TRCTN	RCPLS	NCPP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Primary Demand	TRCTN	RCPLD	NCPP		-		-		-		-		-		-		-		-		-
Primary Customer	TRCTN	RCPLC	Cust08		-		-		-		-		-		-		-		-		-
Secondary Demand	TRCTN	RCSLD	SICD		-		-		-		-										-
Secondary Customer	TRCTN	RCSLC	Cust07		-		-		-		-		-		-		-		-		-
Total Distribution Primary \& Secondary Lines		RCLT		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Line Transformers																					
Demand	TRCTN	RCLTD	SICDT	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer	TRCTN	${ }_{\text {RCLTC }}$	Cust09		-		-		-		-		-		-		-		-		-
Total Distribution Line Transformers		RCLTT		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Services																					
Customer	TRCTN	RCSC	C02	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Meters																					
Customer	TRCTN	RCMC	C03	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Street \& Customer Lighting																					
Customer Accounts Expense																					
Customer	TRCTN	RCCAE	C05	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer Service \& Info.																					
Customer	TRCTN	RCCSI	C05	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Sales Expense																					
Customer	TRCTN	RCSEC	C06	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Total		RCT		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-

Description	Ref	Name	Allocation Vector		12 Street Lighting Rate RLS, LS		13 Street Lighting Rate LE		14 Traffic Street Lightin Rate TL		15 Outdoor Sports Lighting Rate OSL		16 Electric Vehicl Charging Rate EV		17 Solar Share Rate SSP		18 Business Solar Rate BS
Regulatory Credits																	
Power Production Plant																	
Production Demand - LOLP	TRCTN	RCPLOLP	LOLP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Production Energy	TRCTN	RCPEB	E01		-		-		-		-		-		-		
Total Power Production Plant		RCPT		\$		\$		\$	-	\$	-	\$	-	\$	-	\$	-
Transmission Plant																	
Transmission Demand	TRCTN	RCRB	NCPT	\$		\$		\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Poles																	
Specific	TRCTN	RCPS	NCPP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	
Distribution Substation																	
General	TRCTN	RCSG	NCPP	\$	-	\$		\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Primary \& Secondary Lines																	
Primary Specific	TRCTN	RCPLS	NCPP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Primary Demand	TRCTN	RCPLD	NCPP		-		-		-		-		-		-		-
Primary Customer	TRCTN	RCPLC	Cust08		-		-		-		-		-		-		-
Secondary Demand	TRCTN	RCSLD	SICD		-		-		-		-		-		-		-
Secondary Customer	TRCTN	RCSLC	Cust07		-		-		-		-		-		-		-
Total Distribution Primary \& Secondary Lines		RCLT		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Line Transformers																	
Demand	TRCTN	RCLTD	SICDT	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer	TRCTN	RCLTC	Cust09		-		-		-		-		-		-		-
Total Distribution Line Transformers		RCLTT		\$		\$		\$		\$		\$	-	\$	-	\$	
Distribution Services																	
Customer	TRCTN	RCSC	C02	\$	-	\$		\$	-	\$	-	\$	-	\$	-	\$	
Distribution Meters																	
Customer	TRCTN	RCMC	C03	\$		\$		\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Street \& Customer Lighting																	
Customer	TRCTN	RCSCL	C04	\$		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer Accounts Expense																	
Customer	TRCTN	RCCAE	C05	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer Service \& Info.																	
Customer	TRCTN	RCCSI	C05	\$		\$		\$	-	\$	-	\$	-	\$	-	\$	-
Sales Expense																	
Customer	TRCTN	RCSEC	C06	\$		\$		\$	-	\$	-	\$	-	\$	-	\$	-
Total		RCT		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-

			2		4	5	6	7	8	9	10	11
Description	Ref	Name	Allocation Vector	$\begin{array}{r} \text { Total } \\ \text { System } \end{array}$	Residential Rate RS	General Service Rate GS	Rate PS Primary	Rate PS Secondary	Rate TOD Primary	Rate TOD Secondary	Rate RTS Transmission	Special Contract Customer

Accretion Expenses

Description	Ref	Name		12 Street Lighting Rate RLS, LS		13 Street Lighting Rate LE			14 Traffic Street Lighting Rate TLE		$\begin{array}{r} 15 \\ \text { Outdoor Sports } \\ \text { Lighting } \\ \text { Rate OSL } \end{array}$	16 Electric Vehicle Charging Rate EV			17 Solar Share Rate SSP	Business SolarRate BS	
Amortization of ITC																	
Power Production Plant																	
Production Demand - LOLP	OTAX	OTPPLOLP	PITCLOLPDA	\$	(91)	\$	(3)	\$	(88)	\$	(0)	\$	(1)	\$	$(13,728)$	\$	(399)
Production Energy	OTAX	OTPPEB	E01				-								-		-
Total Power Production Plant		OTPPT		\$	(91)	\$	(3)	\$	(88)	\$	(0)	\$	(1)	\$	$(13,728)$	\$	(399)
Transmission Plant																	
Transmission Demand	OTAX	OTTRB	NCPT	\$	(716)	\$	(25)	\$	(11)	\$	(1)	\$	(0)	\$	-	\$	-
Distribution Poles																	
Specific	OTAX	OTDPS	NCPP	\$	-	\$	-	\$		\$		\$		\$	-	\$	-
Distribution Substation																	
General	OTAX	OTDSG	NCPP	\$	(290)	\$	(10)	\$	(5)	\$	(1)	\$	(0)	\$	-	\$	-
Distribution Primary \& Secondary Lines																	
Primary Specific	OTAX	OTDPLS	NCPP	\$	-	\$	-	\$		\$		\$		\$	-	\$	-
Primary Demand	OTAX	OTDPLD	NCPP		(445)		(16)		(7)		(1)		(0)		-		-
Primary Customer	OTAX	OTDPLC	Cust08		$(1,970)$		(3)		(22)		(0)		(2)		-		-
Secondary Demand	OTAX	OTDSLD	SICD		(84)		(3)		(1)		(0)		(0)		-		
Secondary Customer	OTAX	OTDSLC	Cust07		(579)		(1)		(6)				(1)		-		-
Total Distribution Primary \& Secondary Lines		OTDLT		\$	$(3,078)$	\$	(23)	\$	(36)	\$	(1)	\$	(3)	\$	-	\$	-
Distribution Line Transformers																	
Demand	otax	OTDLTD	SICDT	\$	(94)	\$	(3)	\$	(2)	\$	(0)	\$	(0)	\$	-	\$	-
Customer	OTAX	OTDLTC	Cust09		(229)		(0)		(3)		(0)		(0)		-		-
Total Distribution Line Transformers		OTDLTT		\$	(324)	\$	(4)	\$	(4)	\$	(0)	\$	(0)	\$	-	\$	-
Distribution Services																	
Customer	OTAX	OTDSC	C02	\$	-	\$	-	\$		\$	(0)	\$		\$	-	\$	-
Distribution Meters																	
Customer	otax	OTDMC	C03	\$	-	\$	(2)	\$	(12)	\$	(0)	\$		\$	-	\$	-
Distribution Street \& Customer Lighting																	
Customer	OTAX	OTDSCL	C04	\$	$(20,882)$	\$		\$	-	\$		\$		\$	-	\$	-
Customer Accounts Expense																	
Customer	OTAX	OTCAE	C05	\$	-	\$	-	\$	-	\$		\$			-	\$	-
Customer Service \& Info.																	
Customer	OTAX	OTCSI	C05	\$	-	\$	-	\$		\$		\$	-	\$	-	\$	-
Sales Expense																	
Customer	OtAX	OTSEC	C06	\$	-	\$		\$		\$		\$		\$	-	\$	-
Total		отT		\$	$(25,380)$	\$	(67)	\$	(156)	\$	(3)	\$	(4)		$(13,728)$	\$	(399)

			2		4	5	6	7	8	9	10	11
Description	Ref	Name	Allocation Vector	$\begin{array}{r} \text { Total } \\ \text { System } \end{array}$	Residential Rate RS	General Service Rate GS	Rate PS Primary	Rate PS Secondary	Rate TOD Primary	Rate TOD Secondary	Rate RTS Transmission	Special Contract Customer

Other Expenses

		1	2		3		4		5		6		7		8		9		10		11
Description	Ref	Name	Allocation Vector		$\begin{array}{r} \text { Total } \\ \text { System } \end{array}$		$\begin{array}{r} \text { Residential } \\ \text { Rate RS } \\ \hline \end{array}$		General Service Rate GS		Rate PS Primary		Rate PS Secondary		Rate TOD Primary		$\begin{array}{r} \text { Rate TOD } \\ \text { Secondary } \\ \hline \end{array}$		Rate RTS Transmission		Special Contract Customer
Interest Expenses																					
Power Production Plant																					
Production Demand - LOLP	INTLTD	INTPLOLP	LOLP	\$	45,829,811	\$	21,866,290	\$	5,160,692	\$	349,427	\$	5,778,517	\$	5,491,868	\$	4,515,428	\$	2,513,881	\$	138,224
Production Energy	INTLTD	INTPEB	E01																		
Total Power Production Plant		INTPT		\$	45,829,811	\$	21,866,290	\$	5,160,692	\$	349,427	\$	5,778,517	\$	5,491,868	\$	4,515,428	\$	2,513,881	\$	138,224
Transmission Plant																					
Transmission Demand	INTLTD	INTTRB	NCPT	\$	7,262,774	\$	3,436,160	\$	839,345	\$	55,097	\$	933,932	\$	783,218	\$	741,503	\$	386,681	\$	24,848
Distribution Poles																					
Specific	INTLTD	INTDPS	NCPP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Distribution Substation																					
General	INTLTD	INTDSG	NCPP	\$	2,785,976	\$	1,392,224	\$	340,076	\$	22,324	\$	378,400	\$	317,335	\$	300,434	\$	-	\$	10,068
Distribution Primary \& Secondary Lines																					
Primary Specific	INTLTD	INDPLS	NCPP	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Primary Demand	INTLTD	INDPLD	NCPP		4,276,970		2,137,312		522,077		34,271		580,911		487,166		461,219		-		15,456
Primary Customer	INTLTD	INDPLC	Cust08		6,998,958		6,051,730		726,968		1,122		44,593		2,109		8,094		-		32
Secondary Demand	INTLTD	INDSLD	SICD		1,193,314		904,534		144,561		-		136,920		-		-		-		-
Secondary Customer	INTLTD	INDSLC	Cust07		2,039,081		1,777,327		213,503		-				-		-		-		-
Total Distribution Primary \& Secondary Lines		INDLT		\$	14,508,323	\$	10,870,903	\$	1,607,110	\$	35,393	\$	762,424	\$	489,275	\$	469,313	\$	-	\$	15,488
Distribution Line Transformers																					
Demand	INTLTD	INDLTD	SICDT	\$	1,461,877	\$	1,011,312	\$	161,626	\$	-	\$	153,083	\$	-	\$	127,695	\$	-	\$	-
Customer	INTLTD	INDLTC	Cust09		814,862		704,908		84,678		-		5,194		-		943		-		-
Total Distribution Line Transformers		INDLTT		\$	2,276,738	\$	1,716,220	\$	246,304	\$	-	\$	158,277	\$	-	\$	128,638	\$	-	\$	-
Distribution Services																					
Customer	INTLTD	INDSC	C02	\$	520,999	\$	448,748	\$	63,912	\$	-	\$	6,574	\$	-	\$	1,762	\$	-	\$	-
Distribution Meters																					
Customer	INTLTD	INDMC	C03	\$	531,329	\$	363,188	\$	112,844	\$	3,688	\$	31,557	\$	7,367	\$	6,239	\$	5,206	\$	112
Distribution Street \& Customer Lighting																					
Customer	INTLTD	INDSCL	C04	\$	1,717,757	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer Accounts Expense																					
Customer	INTLTD	INCAE	C05	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Customer Service \& Info.																					
Customer	INTLTD	INCSI	C05	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Sales Expense																					
Customer	INTLTD	INSEC	C06	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Total		INTT		\$	75,433,705	\$	40,093,733	\$	8,370,283	\$	465,929	\$	8,049,680	\$	7,089,064	\$	6,163,317	\$	2,905,768	\$	188,740

			2		4	5	6	7	8	9	10	11
Description	Ref	Name	Allocation Vector	$\begin{array}{r} \text { Total } \\ \text { System } \end{array}$	$\begin{gathered} \text { Residential } \\ \text { Rate RS } \end{gathered}$	General Service Rate GS	Rate PS Primary	Rate PS Secondary	Rate TOD Primary	Rate TOD Secondary	Rate RTS Transmission	Special Contract Customer

Cost of Service Summary -- Unadjusted

Operating Revenues
Sales to Ulttimate Consumers
Sales for Resale
Transmission Revenue
Ancillary Services
Curtailable Service Rider
Forfeited Discounts
Misc Service Revenues
Rent From Electric Property
Other Electric Revenue
Electric Vehicle Charging Fees
tal Operating Revenues

perating Expenses

Operation and Maintenance Expenses
Depreciation Expenses
Regulatory Credits
Accretion Expense
Depreciation for Asset Retirement Costs
Amortization Expense
Amortization of Investment Tax Credit
Other Expenses

REVUC	R01 Energy
	PLTRT
	LOLP

TOR

\$	1,066,653,012	\$	431,824,736	\$	148,100,588	\$	10,054,862	\$	147,448,878	\$	136,688,085	\$	101,626,163	\$	64,286,867	\$	3,635,160
	34,405,720		12,366,967		3,656,201		309,759		4,608,468		5,957,248		3,934,269		3,081,524		168,465
	12,094,529		5,722,158		1,397,741		91,752		1,555,255		1,304,274		1,234,808		643,931		41,379
	665,560		317,551		74,946		5,075		83,918		79,755		65,575		36,508		2,007
	$(2,468,360)$										$(142,467)$				$(2,325,893)$		
	2,706,693		2,147,240		209,025		7,005		278,420		13,168		50,533		1,301		
	1,545,789		1,474,975		58,585		244		9,717		460		1,764		45		
	3,799,537		2,011,449		421,907		23,601		405,923		361,224		311,611		149,299		9,665
	662,367		350,653		73,550		4,114		70,764		62,972		54,323		26,027		1,685
	11,088																
\$	1,120,075,935	\$	456,215,729	\$	153,992,543	\$	10,496,412	\$	154,461,344	\$	144,324,718	\$	107,279,046	\$	65,899,608	\$	3,858,362
\$	643,436,661	\$	283,536,077	\$	72,621,803	\$	4,979,918	\$	76,879,988	\$	88,717,355	\$	63,134,706	\$	43,724,366	\$	2,482,051
	277,122,836		141,321,587		30,910,647		1,868,663		31,666,501		28,868,139		24,459,931		12,451,532		748,439
	-		-		-		-		-		-		-		-		-
	-		-		-		-		-		-		-		-		-
	-		-														
	- -		- -		-		-		-		-		-		-		-
	$\begin{array}{r} 42,336,722 \\ (916,996) \end{array}$		$22,498,958$		$4,696,829$ $(100,161)$		$261,456$		$\begin{gathered} 4,517,259 \\ (96,073) \end{gathered}$		$3,978,262$ $(84,484)$		$\begin{aligned} & 3,458,769 \\ & \hline \end{aligned}$		$\begin{aligned} & 1,630,638 \\ & \hline 141549) \end{aligned}$		$\begin{array}{r} 105,919 \\ (2) \end{array}$
	-		-		-		-		-		-		-		-		-
	7,757,584		$(2,886,134)$		3,518,578		274,593		3,138,581		1,478,672		951,208		490,049		31,482

Total Operating Expenses TOE
Utility Operating Income TOM
Net Cost Rate Base
Taxable Income Unadjusted
Total Operating Revenue
Operating Expenses
Interest Expense
TAXINC

12 Months Ended

June 30, 2022

Description	Ref	Name		Street Lighting Rate RLS, LS		Street LightingRate LE		Traffic Street Lighting Rate TLE			15 Outdoor Sports Lighting Rate OSL	16 Electric Vehicle Charging Rate EV	Charging Rate EV		Solar Share Rate SSP	18 Business Solar Rate BS	
Cost of Service Summary -- Unadjusted																	
Operating Revenues																	
Sales to Ultimate Consumers		REVUC	R01	\$	22,160,940	\$	243,959	\$	318,742	\$	15,468	\$	1,533	\$	237,096	\$	9,936
Sales for Resale			Energy		302,375		10,532		9,822		35		56		-		-
Transmission Revenue			PLTRT		98,058		3,415		1,568		171		17		-		-
Ancillary Services			LOLP		111		4		108		0		1		-		-
Curtailable Service Rider																	
Forfeited Discounts		FORDIS	FDIS		0		-								-		
Misc Service Revenues		REVMISC	MISCR		-										-		
Rent From Electric Property			RFEP		103,878		305		660		15						
Other Electric Revenue			OER		18,109		53		115		3		-		-		-
Electric Vehicle Charging Fees													11,088		-		-
Total Operating Revenues		TOR		\$	22,683,471	\$	258,268	\$	331,014	\$	15,692	\$	12,695	\$	237,096	\$	9,936
Operating Expenses																	
Operation and Maintenance Expenses				\$	6,925,874	\$	145,720	\$	178,418	\$	1,886	\$	26,596	\$	71,903	\$	10,000
Depreciation Expenses					4,661,198		12,435		46,824		649		19,265		83,870		3,154
Regulatory Credits					-		-		-		-		-		-		-
Accretion Expense					-		-		-		-		-		-		-
Depreciation for Asset Retirement Costs			DET		-		-				-		-				
Amortization Expense			DET		-		-		-		-		-		-		-
Property and Other Taxes Amortization of Investment Tax Credit			NPT		$\begin{gathered} 1,171,890 \\ (25,380) \end{gathered}$		$\begin{gathered} 3,083 \\ (67) \end{gathered}$		$\begin{gathered} 7,325 \\ (156) \end{gathered}$		$\begin{gathered} 159 \\ (3) \end{gathered}$		$\begin{array}{r} 2,875 \\ (4) \end{array}$		$\begin{gathered} 3,190 \\ (13,728) \end{gathered}$		$\begin{gathered} 111 \\ (399) \end{gathered}$
Other Expenses					-		(6)		(1)		-		-		-		-
State and Federal Income Taxes			TAXINC		737,804		8,596		8,028		1,194		$(3,413)$		8,621		(275)
Total Operating Expenses		TOE		\$	13,471,385	\$	169,768	\$	240,439	\$	3,884	\$	45,319	\$	153,856	\$	12,591
Utility Operating Income		том		\$	9,212,086	\$	88,500	\$	90,576	\$	11,807	\$	$(32,624)$	\$	83,240	\$	$(2,655)$
Net Cost Rate Base				\$	94,529,248	\$	277,529	\$	600,893	\$	13,251	\$	120,516	\$	2,314,622	\$	60,677
Taxable Income Unadjusted																	
Total Operating Revenue				\$	22,683,471	\$	258,268	\$	331,014	\$	15,692	\$	12,695	\$	237,096	\$	9,936
Operating Expenses				\$	12,733,581	\$	161,171	\$	232,411	\$	2,691	\$	48,732	\$	145,235	\$	12,866
Interest Expense		intexp		\$	2,088,022	\$	5,495	\$	13,061	\$	283	\$	330	\$	-	\$	-
Taxable Income		TAXINC		\$	7,861,868	\$	91,601	\$	85,542	\$	12,718	\$	$(36,366)$	\$	91,861	\$	$(2,930)$

			2		4	5	6	7	8	9	10	11
Description	Ref	Name	Allocation Vector	$\begin{array}{r} \text { Total } \\ \text { System } \end{array}$	Residential Rate RS	General Service Rate GS	Rate PS Primary	Rate PS Secondary	Rate TOD Primary	Rate TOD Secondary	Rate RTS Transmission	Special Contract Customer

Cost of Service Summary -- Pro-Form

Operating Revenues

Total Pro-Forma Operating Revenue			\$	1,120,075,935	\$	456,215,729	\$	153,992,543	\$	10,496,412	\$	154,461,344	\$	144,324,718	\$	107,279,046	\$	65,899,608	\$	3,858,362
Operating Expenses																				
Operation and Maintenance Expenses			\$	643,436,661	\$	283,536,077	\$	72,621,803	\$	4,979,918	\$	76,879,988	\$	88,717,355	\$	63,134,706	\$	43,724,366		2,482,051
Depreciation and Amortization Expenses				277,122,836		141,321,587		30,910,647		1,868,663		31,666,501		28,868,139		24,459,931		12,451,532		748,439
Property and Other Taxes		NPT		42,336,722		22,498,958		4,696,829		261,456		4,517,259		3,978,262		3,458,769		1,630,638		105,919
Amortization of Investment Tax Credit				$(916,996)$		$(480,652)$		$(100,161)$		$(5,556)$		$(96,073)$		$(84,484)$		$(73,531)$		$(34,549)$		$(2,252)$
State and Federal Income Taxes		TAXINC		7,757,584		$(2,886,134)$		3,518,578		274,593		3,138,581		1,478,672		951,208		490,049		31,482
Specific Assignment of Interruptible Credit				$(2,468,360)$		-		-		-		-		$(142,467)$		-		$(2,325,893)$		-
Allocation of Interruptible Credits		INTCRE		2,468,360		1,177,704		277,952		18,820		311,227		295,789		243,198		135,396		7,445
Total Operating Expenses	toe		\$	969,736,807	\$	445,167,540	\$	111,925,647	\$	7,397,894	\$	116,417,484	\$	123,111,266	\$	92,174,281	\$	56,071,540	\$	3,373,084
Net Operating Income -- Pro-Forma			\$	150,339,128	\$	11,048,190	\$	42,066,897	\$	3,098,518	\$	38,043,860	\$	21,213,452	\$	15,104,765	\$	9,828,068	\$	485,278
Cost of Service Summary -- Pro-Forma																				
Net Operating Income -- Pro-Forma			\$	150,339,128	\$	11,048,190	\$	42,066,897	\$	3,098,518	\$	38,043,860	\$	21,213,452	\$	15,104,765	\$	9,828,068	\$	485,278
Adjusted Net Cost Rate Base			\$	3,460,077,816	\$	1,830,420,621	\$	383,935,310	\$	21,476,777	\$	369,390,342	\$	328,714,071	\$	283,566,435	\$	135,862,169		8,795,357
Rate of Return				4.34\%		0.60\%		10.96\%		14.43\%		10.30\%		6.45\%		5.33\%		7.23\%		5.52\%

Taxable Income Pro-Forma

Total Operating Revenue
Operating Expenses
Interest Expense INTEXP
Interest Syncronization Adjustment INTEXP
Taxable Income

$\$$	$1,120,075,935$	$\$$	$456,215,729$	$\$$	$153,992,543$	$\$$	$10,496,412$	$\$$	$154,461,344$	$\$$	$144,324,718$	$\$$	$107,279,046$	$\$$
$\$$	$961,979,223$	$\$$	$448,053,674$	$\$$	$108,407,069$	$\$$	$7,123,301$	$\$$	$113,278,903$	$\$$	$121,632,594$	$\$$	$91,223,073$	$\$$
$\$$	$75,433,705$	$\$$	$40,093,733$	$\$$	$8,370,283$	$\$$	465,929	$\$$	$8,049,680$	$\$$	$7,089,064$	$\$$	$6,163,317$	$\$$
	$6,215,728$	$\$$	$3,303,719$	$\$$	689,710	$\$$	38,393	$\$$	663,293	$\$$	584,138	$\$$	507,858	$\$$
$\$$	$76,447,279$	$\$$	$(35,235,396)$	$\$$	$36,525,482$	$\$$	$2,868,789$	$\$$	$32,469,469$	$\$$	$15,018,922$	$\$$	$9,384,800$	$\$$

12 Months Ended

June 30, 2022

			2	12	13	14	15	16	17	18
	Ref	Name	Allocation Vector	Street Lighting Rate RLS, LS	Street Lighting	Traffic Street Lighting Rate TLE	Outdoor Sports Lighting Rate OSL	Electric Vehicle Charging Rate EV	Solar Share Rate SSP	Business Solar Rate BS
Description	Ref	Name								

Cost of Service Summary -- Pro-Forma

Operating Revenues

Total Pro-Forma Operating Revenue			\$	22,683,471	\$	258,268	\$	331,014	\$	15,692	\$	12,695	\$	237,096	\$	9,936
Operating Expenses																
Operation and Maintenance Expenses			\$	6,925,874	\$	145,720	\$	178,418	\$	1,886	\$	26,596	\$	71,903	\$	10,000
Depreciation and Amortization Expenses				4,661,198		12,435		46,824		649		19,265		83,870		3,154
Property and Other Taxes		NPT		1,171,890		3,083		7,325		159		2,875		3,190		111
Amortization of Investment Tax Credit				$(25,380)$		(67)		(156)		(3)		(4)		$(13,728)$		(399)
State and Federal Income Taxes		TAXINC		737,804		8,596		8,028		1,194		$(3,413)$		8,621		(275)
Specific Assignment of Interruptible Credit				-		-		-		-		-		-		-
Allocation of Interruptible Credits		INTCRE		413		14		401		1		-		-		
Total Operating Expenses	toe		\$	13,471,798	\$	169,782	\$	240,840	\$	3,885	\$	45,319	\$	153,856	\$	12,591
Net Operating Income -- Pro-Forma			\$	9,211,673	\$	88,486	\$	90,175	\$	11,806	\$	$(32,624)$	\$	83,240	\$	$(2,655)$
Cost of Service Summary -- Pro-Forma																
Net Operating Income -- Pro-Forma			\$	9,211,673	\$	88,486	\$	90,175	\$	11,806	\$	$(32,624)$	\$	83,240	\$	$(2,655)$
Adjusted Net Cost Rate Base			\$	94,529,248	\$	277,529	\$	600,893	\$	13,251	\$	120,516	\$	2,314,622	\$	60,677
Rate of Return				9.74\%		31.88\%		15.01\%		89.10\%		-27.07\%		3.60\%		-4.38\%
Taxable Income Pro-Forma																
Total Operating Revenue			\$	22,683,471	\$	258,268	\$	331,014	\$	15,692	\$	12,695	\$	237,096	\$	9,936
Operating Expenses			\$	12,733,994	\$	161,186	\$	232,812	\$	2,692	\$	48,732	\$	145,235	\$	12,866
Interest Expense	INTEXP		\$	2,088,022	\$	5,495	\$	13,061	\$	283	\$	330	\$	-	\$	-
Interest Syncronization Adjustment		INTEXP	\$	172,053	\$	453	\$	1,076	\$	23	\$	27	\$	-	\$	-
Taxable Income	TXINCPF		\$	7,689,402	\$	91,134	\$	84,065	\$	12,694	\$	$(36,394)$	\$	91,861	\$	$(2,930)$

			2		4	5	6	7	8	9	10	11
Description	Ref	Name	Allocation Vector	$\begin{aligned} & \text { Total } \\ & \text { System } \end{aligned}$	$\begin{gathered} \text { Residential } \\ \text { Rate RS } \\ \hline \end{gathered}$	General Service Rate GS	Rate PS Primary	Rate PS Secondary	Rate TOD Primary	Rate TOD Secondary	Rate RTS Transmission	Special Contract Customer

Cost of Service Summary -- Pro-Forma (Adjusted for Proposed Increase)

Operating Revenues

Total Operating Revenue -- Actual
Pro-Forma Adjustments
Proposed Increase
evenue Adjustment for Solar Share and EV
hanges in Late Payment Fees
Changes in Rent on Electric Property
Changes in Miscellaneous Charges
Total Pro-Forma Operating Revenue
FDIS

RFEP
MISCR
$\begin{array}{lllllllllllll}\$ 1,120,075,935 & \$ 456,215,729 & \$ & 153,992,543 & \$ 10,496,412 & \$ & 154,461,344 & \$ 144,324,718 & \$ & 107,279,046 & \$ & 65,899,608 & \\end{array}

Operating Expenses

Total Operating Expenses

0.182\%		238,844		96,904		34,780		2,231		32,612		29,779		22,235		13,997		792
0.200\%		262,466		106,488		38,220		2,451		35,837		32,724		24,434		15,381		870
24.85\%		32,610,703		13,230,857		4,748,676		304,567		4,452,645		4,065,891		3,035,874		1,911,066		108,125
	\$	1,002,848,820	\$	458,601,789	\$	116,747,322	\$	7,707,143	\$	120,938,578	\$	127,239,660	\$	95,256,824	\$	58,011,984	\$	3,482,872
	\$	248,460,201	\$	50,858,000	\$	56,355,002	\$	4,014,916	\$	51,441,252	\$	33,447,152	\$	24,239,288	\$	15,578,200	\$	810,612
	\$	3,460,077,816	\$	1,830,420,621	\$	383,935,310	\$	21,476,777	\$	369,390,342	\$	328,714,071	\$	283,566,435	\$	135,862,169	\$	8,795,357
		7.18\%		2.78\%		14.68\%\|		18.69\%		13.93\%		10.18\%		8.55\%		11.47\%		9.22\%

12 Months Ende

June 30, 2022

			2	12	13	14	15	16	17	18
Description	Ref	Name	Allocation Vector	Street Lighting Rate RLS, LS	Street Lighting	Traffic Street Lighting Rate TLE	Outdoor Sports Lighting Rate OSL	Electric Vehicle Charging Rate EV	Solar Share	Business Solar Rate BS

Cost of Service Summary -- Pro-Forma (Adjusted for Proposed Increase)

Operating Revenues

Total Operating Revenue -- Actual			\$	22,683,471	\$	258,268	\$	331,014	\$	15,692	\$	12,695	\$	237,096	\$	9,936
Pro-Forma Adjustments:																
Proposed Increase			\$	2,856,239	\$	3	\$	(14)	\$	$(1,638)$	\$	-	\$	-	\$	-
Revenue Adjustment for Solar Share and EV			\$	-	\$	-	\$		\$	-	\$	55,206	\$	110,942	\$	9,378
Changes in Late Payment Fees	FDIS		\$	-	\$		\$		\$	-	\$	-		-	\$	
Changes to EVSE-R			\$		\$		\$		\$	-	\$			-	\$	
Changes in Rent on Electric Property	RFEP		\$	140	\$	0	\$	1	\$	0	\$	-	\$	-	\$	-
Changes in Miscellaneous Charges	MISCR		\$	-	\$		\$		\$		\$	-		-	\$	-
Total Pro-Forma Operating Revenue			\$	25,539,850	\$	258,271	\$	331,001	\$	14,054	\$	67,901	\$	348,038	\$	19,314
Operating Expenses																
Total Operating Expenses			\$	13,471,798	\$	169,782	\$	240,840	\$	3,885	\$	45,319	\$	153,856	\$	12,591
Total Pro-Forma Adjustments																
Incremental Uncollectible Accounts Expense		0.182\%		5,199		0		(0)		(3)		100		202		17
Incremental Commission Fees		0.200\%		5,713		0		(0)		(3)		110		222		19
Incremental Income Taxes		24.85\%		709,794		1		(3)		(407)		13,718		27,568		2,330
Total Pro-forma Operating Expenses			\$	14,192,504	\$	169,783	\$	240,836	\$	3,472	\$	59,248	\$	181,848	\$	14,957
Net Operating Income -- Pro-Forma			\$	11,347,346	\$	88,488	\$	90,165	\$	10,582	\$	8,653	\$	166,190	\$	4,357
Net Cost Rate Base			\$	94,529,248	\$	277,529	\$	600,893	\$	13,251	\$	120,516	\$	2,314,622	\$	60,677
Rate of Return				12.00\%		31.88\%		15.01\%		79.86\%		7.18\%		7.18\%		7.18\%

	1	2	3	4	5	6	7	8	9	10	11
Description Ref	Name	Allocation Vector	$\begin{array}{r} \text { Total } \\ \text { System } \\ \hline \end{array}$	$\begin{array}{r} \text { Residential } \\ \text { Rate RS } \\ \hline \end{array}$	General Service Rate GS	Rate PS Primary	Rate PS Secondary	Rate TOD Primary	Rate TOD Secondary	$\begin{array}{r} \text { Rate RTS } \\ \text { Transmission } \\ \hline \end{array}$	Special Contract \qquad
Allocation Factors											
Energy Allocation Factors											
Energy Usage by Class	E01	Energy	1.000000	0.359445	0.106267	0.009003	0.133945	0.173147	0.114349	0.089564	0.004896
Customer Allocation Factors											
Primary Distribution Plant -- Average Number of Customers	C01	Cust08	1.000000	0.86466	0.10387	0.00016	0.00637	0.00030	0.00116	-	0.00000
Customer Services -- Weighted cost of Services	C02		1.000000	0.86132	0.12267	-	0.01262	-	0.00338	-	-
Meter Costs -- Weighted Cost of Meters	C03		1.000000	0.68355	0.21238	0.00694	0.05939	0.01387	0.01174	0.00980	0.00021
Lighting Systems -- Lighting Customers	C04	Cust04	1.000000					-	-	-	-
Meter Reading and Billing -- Weighted Cost	C05	Cust05	1.000000	0.74171	0.17820	0.00069	0.02733	0.00646	0.02480	0.00064	0.00002
Marketing/Economic Development	C06	Cust06	1.000000	0.86464	0.10386	0.00016	0.00637	0.00030	0.00116	0.00003	0.00000
Revenue per Billing Determinants	R01		1,066,653,012	431,824,736	148,100,588	10,054,862	147,448,878	136,688,085	101,626,163	64,286,867	3,635,160
Energy			11,352,592,561	4,049,109,440	1,197,088,880	103,621,086	1,508,873,858	1,992,826,476	1,288,132,009	1,050,890,542	56,355,100
Energy (Loss Adjusted)	Energy		11,999,883,068	4,313,299,004	1,275,194,546	108,036,539	1,607,322,352	2,077,743,868	1,372,177,906	1,074,760,983	58,756,477
O\&M Customer Allocators											
Customers (Monthly Bills)			6,223,717	4,531,186	544,312	840	33,389	1,579	6,060	156	24
Average Customers (Bills/12)			518,643	377,599	45,359	70	2,782	132	505	13	2
Average Customers (Lighting $=$ Lights)			518,643	377,599	45,359	70	2,782	132	505	13	2
Weighted Average Customers (Lighting $=9$ Lights per Cust	Cust05		509,096	377,599	90,719	350	13,912	3,290	12,625	325	10
Street Lighting	Cust04		91,009						-		
Average Customers	Cust01		518,643	377,599	45,359	70	2,782	132	505	13	2
Average Customers (Lighting $=9$ Lights per Cust)	Cust06		436,714	377,599	45,359	70	2,782	132	505	13	2
Average Secondary Customers	Cust07		433,209	377,599	45,359	-	-	-	-	-	
Average Primary Customers	Cust08		436,701	377,599	45,359	70	2,782	132	505	-	2
Average Transformer Customers	Cust09		436,498	377,599	45,359	-	2,782	-	505	-	-
Plant Customer Allocators											
Average Customers			518,575	377,557	45,332	70	2,783	132	505	13	2
Average Customers (Lighting = 9 Lights)			435,622	377,557	45,332	70	2,783	132	505	13	2
Weighted Average Customers	PCust05		507,988	377,557	90,664	350	13,915	3,300	12,625	325	10
Street Lighting (plant in service balance)	PCust04		126,670,914						-		-
Average Customers	PCust01		518,575	377,557	45,332	70	2,783	132	505	13	2
Average Customers (Lighting $=9$ Lights per Cust)	PCust06		435,622	377,557	45,332	70	2,783	132	505	13	2
Average Secondary Customers	PCust07		432,318	377,557	45,332	70	-	132	-	-	
Average Primary Customers	PCust08		435,622	377,557	45,332	70	2,783	132	505	13	2
Average Transformer Customers	PCust09		435,405	377,557	45,332	-	2,783	-	505	-	-
Demand Allocators											
Max Class Non-Coincident Peak Demands (Transmission)	NCPT		2,982,631	1,411,141	344,697	22,627	383,541	321,647	304,516	158,800	10,205
Max Class Non-Coincident Peak Demands (Primary)	NCPP		2,823,831	1,411,141	344,697	22,627	383,541	321,647	304,516	-	10,205
Sum of the Individual Customer Demands (Transformers)	SICDT		4,560,291	3,154,764	504,189	-	477,538	-	398,342	-	
Sum of the Individual Customer Demands (Secondary)	SICD		4,161,949	3,154,764	504,189		477,538	-	-	-	
LOLP Demand Allocator	LOLP		1,891,712	902,573	213,017	14,423	238,519	226,687	186,383	103,765	5,705

Description Ref	Name	Allocation Vector	12 Street Lighting Rate RLS, LS	13 Street Lighting Rate LE	Traffic Street Lighting Rate TLE	15 Outdoor Sports Lighting Rate OSL	16 Electric Vehicle Charging Rate EV	17 Solar Share Rate SSP	\qquad
Allocation Factors									
Energy Allocation Factors									
Energy Usage by Class	E01	Energy	0.008788	0.000306	0.000285	0.000001	0.000002	-	-
Customer Allocation Factors									
Primary Distribution Plant -- Average Number of Customers	C01	Cust08	0.02316	0.00004	0.00025	0.00000	0.00002		
Customer Services -- Weighted cost of Services	C02		-			0.00000	-	-	
Meter Costs -- Weighted Cost of Meters	C03		-	0.00029	0.00181	0.00002	-		-
Lighting Systems -- Lighting Customers	C04	Cust04	1.00000	-	-	-	-		
Meter Reading and Billing -- Weighted Cost	C05	Cust05	0.01986	0.00004	0.00022	0.00001	0.00004	-	-
Marketing/Economic Development	C06	Cust06	0.02315	0.00004	0.00025	0.00000	0.00002	-	-
Revenue per Billing Determinants	R01		22,160,940	243,959	318,742	15,468	1,533	237,096	9,936
Energy			99,001,435	3,448,222	3,215,713	11,550	18,250	-	-
Energy (Loss Adjusted)	Energy		105,460,916	3,673,206	3,425,526	12,304	19,441	-	-
O\&M Customer Allocators									
Customers (Monthly Bills)			1,092,108	1,932	12,000	12	120	-	-
Average Customers (Bills/12)			91,009	161	1,000	1	10	-	
Average Customers (Lighting $=$ Lights)			91,009	161	1,000	1	10		
Weighted Average Customers (Lighting $=9$ Lights per Cust	Cust05		10,112	18	111	5	20	-	-
Street Lighting	Cust04		91,009		-	-			
Average Customers	Cust01		91,009	161	1,000	1	10	-	-
Average Customers (Lighting $=9$ Lights per Cust)	Cust06		10,112	18	111	1	10	-	
Average Secondary Customers	Cust07		10,112	18	111	-	10	-	-
Average Primary Customers	Cust08		10,112	18	111	1	10	-	-
Average Transformer Customers	Cust09		10,112	18	111	1	10	-	-
Plant Customer Allocators									
Average Customers			91,009	161	1,000	1	10	-	-
Average Customers (Lighting $=9$ Lights)			9,101	16	100	1	10	-	-
Weighted Average Customers	PCust05		9,101	16	100	5	20		
Street Lighting (plant in service balance)	PCust04		126,670,914						
Average Customers	PCust01		91,009	161	1,000	1	10	-	-
Average Customers (Lighting = 9 Lights per Cust)	PCust06		9,101	16	100	1	10	-	-
Average Secondary Customers	PCust07		9,101	16	100	-	10	-	-
Average Primary Customers	PCust08		9,101	16	100	1	10	-	-
Average Transformer Customers	PCust09		9,101	16	100	1	10	-	-
Demand Allocators									
Max Class Non-Coincident Peak Demands (Transmission)	NCPT		24,182	842	387	42	4	-	-
Max Class Non-Coincident Peak Demands (Primary)	NCPP		24,182	842	387	42	4	-	-
Sum of the Individual Customer Demands (Transformers)	SICDT		24,182	842	387	42	4	-	-
Sum of the Individual Customer Demands (Secondary)	SICD		24,182	842	387	42	4	-	-
LOLP Demand Allocator	LOLP		317	11	307	1	3	-	-

Description Ref	Name			$\begin{array}{r} 12 \\ \text { Street Lighting } \\ \text { Rate RLS, LS } \\ \hline \end{array}$		13 Street Lighting Rate LE		Lighting Rate TLE		15 Outdoor Sports Lighting Rate OSL		C Vehicle Charging Rate EV				
Allocation Factors (Continued)																
Production Demand Cost Allocation																
Gross Plant Production Residual LOLP Demand Allocator GPPLOLPDRA 317 Gross Plant Production LOLP Demand Costs 11																
Customer Specific Assignment				-		-								2,630,743		84,972
Gross Plant Production LOLP Demand Residual		GPPLOLPDRA	\$	646,656	\$	22,523	\$	627,517	\$	1,493	\$	6,773	\$	-	\$	-
Gross Plant Production LOLP Demand Total	GPPLOLPDT		\$	646,656	\$	22,523	\$	627,517	\$	1,493	\$	6,773	\$	2,630,743	\$	84,972
Gross Plant Production LOLP Demand Allocator	GPLOLPDA	GPPLOLPDT		0.00017		0.00001		0.00016		0.00000		0.00000		0.00068		0.00002
Net Plant Production Residual LOLP Demand Allocator	NPPLOLPDRA			317		11		307		1		3		-		
Net Plant Production LOLP Demand Costs																
Customer Specific Assignment				-		-								2,486,734		72,329
Net Plant Production LOLP Demand Residual		NPPLOLPDRA	\$	417,308	\$	14,535	\$	404,956	\$	963	\$	4,371	\$	-	\$	-
Net Plant Production LOLP Demand Total	NPPLOLPDT		\$	417,308	\$	14,535	\$	404,956	\$	963	\$	4,371	\$	2,486,734	\$	72,329
Net Plant Production LOLP Demand Allocator	NPLOLPDA	NPPLOLPDT		0.00017		0.00001		0.00016		0.00000		0.00000		0.00100		0.00003
Rate Base Production ResidualRate Base Production LOLP Demand Costs																
Customer Specific Assignment				-		-								2,314,622		60,677
Rate Base Production LOLP Demand Residual		RBPLOLPDRA	\$	336,015	\$	11,703	\$	326,069	\$	776	\$	3,520	\$		\$	
Rate Base Production LOLP Demand Total	RBPLOLPDT		\$	336,015	\$	11,703	\$	326,069	\$	776	\$	3,520	\$	2,314,622	\$	60,677
Rate Base Production LOLP Demand Allocator	RBLOLPDA	RBPLOLPDT		0.00017		0.00001		0.00016		0.00000		0.00000		0.00115		0.00003
Production O\&M Residual LoLP Demand Allocator	POMLOLPDRA			317		11		307		1		3		-		-
Production O\&M LOLP Demand Costs																
Customer Specific Assignment				-		-								71,903		-
Production O\&M LOLP Demand Residual		POMLOLPDRA	\$	18,730	\$	652	\$	18,176	\$	43	\$	196	\$	-	\$	-
Production O\&M LOLP Demand Total	POMLOLPDT		\$	18,730	\$	652	\$	18,176	\$	43	\$	196	\$	71,903	\$	-
Production O\&M LOLP Demand Allocator	POMLOLPDA	POMLOLPDT		0.00017		0.00001		0.00016		0.00000		0.00000		0.00064		
Production Depreciation LOLP Demand Costs																
Customer Specific Assignment				-		-								83,870		3,154
Production Depreciation LOLP Demand Residual		PDEPLOLPDRA	\$	35,598		1,240	S	34,544	\$	82	\$	373	\$	-	\$	-
Production Depreciation LOLP Demand Total	PDEPLOLPDT		\$	35,598	\$	1,240	\$	34,544	\$	82	\$	373	\$	83,870	\$	3,154
Production Depreciation LOLP Demand Allocator	PDEPLOLPDA	PDEPLOLPDT		0.00017		0.00001		0.00016		0.00000		0.00000		0.00039		0.00001
Production Prop Tax Residual LOLP Demand Allocator	PPTLOLPDRA			317		11		307		1		3		-		-
Production Prop Tax LOLP Demand Costs																
Customer Specific Assignment				-		-								3,190		111
Production Prop Tax LOLP Demand Residual		PPTLOLPDRA	\$	4,305	\$	150	\$	4,178	\$	10	\$	45	\$	-	\$	-
Production Prop Tax LOLP Demand Total	PPTLOLPDT		\$	4,305	\$	150	\$	4,178	\$	10	\$	45	\$	3,190	\$	111
Production Prop Tax LOLP Demand Allocator	PPTLOLPDA	PPTLOLPDT		0.00017		0.00001		0.00016		0.00000		0.00000		0.00012		0.00000
Production ITC Residual LOLP Demand Allocator	PITCLOLPDRA			317		11		307		1		3		-		-
Production ITC LOLP Demand Costs																
Customer Specific Assignment				-		-								$(13,728)$		(399)
Production ITC LOLP Demand Residual		PITCLOLPDRA	\$	(91)	\$	(3)	\$	(88)	\$	(0)	\$	(1)	\$	-	\$	
Production ITC LOLP Demand Total	PItclolpdt		\$	(91)	\$	(3)	\$	(88)	\$	(0)	\$	(1)	\$	$(13,728)$	\$	(399)
Production ITC LOLP Demand Allocator	PITCLOLPDA	PITCLOLPDT		0.00016		0.00001		0.00016		0.00000		0.00000		0.02464		0.00072

		1	2		3		4		5		6		7		8		9		10	11		
Description	Ref	Name	Allocation Vector		$\begin{array}{r} \text { Total } \\ \text { System } \\ \hline \end{array}$		$\begin{array}{r} \text { Residential } \\ \text { Rate RS } \\ \hline \end{array}$		General Service Rate GS		Rate PS Primary		Rate PS Secondary		Rate TOD Primary		Rate TOD Secondary		$\begin{array}{r} \text { Rate RTS } \\ \text { Transmission } \\ \hline \end{array}$		Special Contract Customer	
Meter Cost Allocation																						
Meters Gross Plant Residual Allocator		MGPRA			38,550,020		26,350,722		8,187,269		267,611		2,289,550		534,525		452,630		377,746			8,124
Meters Gross Plant Costs				\$	44,815,612																	
Customer Specific Assignment				\$	183,388				-	\$	-		-		-		-					-
Meters Gross Plant Residual			MGPRA	\$	44,632,225	\$	30,508,190	\$	9,479,010	\$	309,833	\$	2,650,782	\$	618,860	\$	524,043	\$	437,345	\$		9,406
Meters Gross Plant Total		MGPT		\$	44,815,612	\$	30,508,190	\$	9,479,010	\$	309,833	\$	2,650,782	\$	618,860	\$	524,043	\$	437,345	\$		9,406
Meters Gross Plant Allocator		MGPA	MGPT		1.000000		0.68075		0.21151		0.00691		0.05915		0.01381		0.01169		0.00976			0.00021
Meters Net Plant Residual Allocator		MNPRA			38,550,020		26,350,722		8,187,269		267,611		2,289,550		534,525		452,630		377,746			8,124
Meters Net Plant Costs				\$	30,149,962																	
Customer Specific Assignment				\$	139,194				-	\$	-				-							-
Meters Net Plant Residual			MNPRA	\$	30,010,768	\$	20,513,748	\$	6,373,699	\$	208,332	\$	1,782,389	\$	416,122	\$	352,367	\$	294,071	\$		6,324
Meters Net Plant Total		MNPT		\$	30,149,962	\$	20,513,748	\$	6,373,699	\$	208,332	\$	1,782,389	\$	416,122	\$	352,367	\$	294,071	\$		6,324
Meters Net Plant Allocator		MNPA	MNPT		1.000000		0.68039		0.21140		0.00691		0.05912		0.01380		0.01169		0.00975			0.00021
Meters Rate Base Residual Allocator		mRBRA			38,550,020		26,350,722		8,187,269		267,611		2,289,550		534,525		452,630		377,746			8,124
Meters Rate Base Costs				\$	26,834,745																	
Customer Specific Assignment				\$	105,259				-	\$	-		-		-		-		-			
Meters Rate Base Residual			MRBRA	\$	26,729,486	\$	18,270,840	\$	5,676,819	\$	185,554	\$	1,587,509	\$	370,625	\$	313,841	\$	261,918	\$		5,633
Meters Rate Base Total		MRBT		\$	26,834,745	\$	18,270,840	\$	5,676,819	\$	185,554	\$	1,587,509	\$	370,625	\$	313,841	\$	261,918	\$		5,633
Meters Rate Base Allocator		MRBA	MRBT		1.000000		0.68087		0.21155		0.00691		0.05916		0.01381		0.01170		0.00976			0.00021
Meters O\&M Residual Allocator		MOMRA			38,550,020		26,350,722		8,187,269		267,611		2,289,550		534,525		452,630		377,746			8,124
Meters O\&M Costs				\$	13,918,315																	
Customer Specific Assignment				\$	-				-	\$	-		-		-							
Meters O\&M Residual			MOMRA	\$	13,918,315	\$	9,513,812	\$	2,955,978	\$	96,620	\$	826,632	\$	192,988	\$	163,420	\$	136,384	\$		2,933
Meters O\&M Total		момт		\$	13,918,315	\$	9,513,812	\$	2,955,978	\$	96,620	\$	826,632	\$	192,988	\$	163,420	\$	136,384	\$		2,933
Meters O\&M Allocator		MOMA	момт		1.000000		0.68355		0.21238		0.00694		0.05939		0.01387		0.01174		0.00980			0.00021
Meters Depreciation Residual Allocator		MDRA			38,550,020		26,350,722		8,187,269		267,611		2,289,550		534,525		452,630		377,746			8,124
Meters Depreciation Costs				\$	1,184,751																	
Customer Specific Assignment				\$	18,339				-	\$	-		-		-		-		-			-
Meters Depreciation Residual			MDRA	\$	1,166,412	\$	797,297	\$	247,723	\$	8,097	\$	69,275	\$	16,173	\$	13,695	\$	11,430	\$		246
Meters Depreciation Total		MDT		\$	1,184,751	\$	797,297	\$	247,723	\$	8,097	\$	69,275	\$	16,173	\$	13,695	\$	11,430	\$		246
Meters Depreciation Allocator		MDA	MDT		1.000000		0.67297		0.20909		0.00683		0.05847		0.01365		0.01156		0.00965			0.00021
Meters Prop Tax Residual Allocator		MPTRA			38,550,020		26,350,722		8,187,269		267,611		2,289,550		534,525		452,630		377,746			8,124
Meters Prop Tax Costs				\$	298,205																	
Customer Specific Assignment				\$	2,689				-	\$	-		-		-		-		-			-
Meters Prop Tax Residual			MPTRA	\$	295,516	\$	201,999	\$	62,762	\$	2,051	\$	17,551	\$	4,098	\$	3,470	\$	2,896	\$		62
Meters Prop Tax Total		MPTT		\$	298,205	\$	201,999	\$	62,762	\$	2,051	\$	17,551	\$	4,098	\$	3,470	\$	2,896	\$		62
Meters Prop Tax Allocator		MPTA	MPTT		1.000000		0.67738		0.21046		0.00688		0.05886		0.01374		0.01164		0.00971			0.00021
Customer Service O\&M Cost Allocation																						
Customer Service Residual Allocator		CSRA			436,714		377,599		45,359		70		2,782		132		505		13			2
Customer Service O\&M Costs					4,888,693																	
Customer Specific Assignment Customer Service O\&M Residual				\$	34,000 4,854	\$																
Customer Service O\&M Residual Customer Service O\&M Total		CSOT	Cska	\$	$4,854,693$ $4.888,693$	\$	4,197,542	\$	504,233	\$	778	\$	30,930 30,930	\$	1,463 1,463	\$	5,614	\$	145	\$		${ }_{22}^{22}$
Customer Service O\&M Allocator		C10	CSOT		1.000000		0.85862		0.10314		0.00016		0.00633		0.00030		0.00115		0.00003			0.00000

12 Months Ended

June 30, 2022

Description	Ref	Name			12 Street Lighting Rate RLS, LS		13 Street Lighting Rate LE		Rate TLE		15 Outdoor Sports Lighting Rate OSL		16 Electric Vehicle Charging Rate EV		17 Solar Share Rate SSP		18 Business Solar Rate BS
Meter Cost Allocation																	
Meters Gross Plant Residual Allocator MGPRA - 11,235 69,785 Meters Gross Plant Costs 823																	
Customer Specific Assignment					-		-						\$183,388				
Meters Gross Plant Residual			MGPRA	\$	-	\$	13,008	\$	80,795	\$	953	\$	-	\$	-	\$	-
Meters Gross Plant Total		MGPT		\$	-	\$	13,008	\$	80,795	\$	953	\$	183,388	\$	-	\$	-
Meters Gross Plant Allocator		MGPA	MGPT		-		0.00029		0.00180		0.00002		0.00409		-		-
Meters Net Plant Residual Allocator		MNPRA			-		11,235		69,785		823		-		-		-
Meters Net Plant Costs																	
Customer Specific Assignment					-		-						\$139,194				
Meters Net Plant Residual			MNPRA	\$	-	\$	8,747	\$	54,327	\$	641	\$	-	\$	-	\$	-
Meters Net Plant Total		MNPT		\$	-	\$	8,747	\$	54,327	\$	641	\$	139,194	\$	-	\$	-
Meters Net Plant Allocator		MNPA	MNPT		-		0.00029		0.00180		0.00002		0.00462		-		-
Meters Rate Base Residual Allocator MRBRA - 11,235 Meters Rate Base Costs																	
Customer Specific Assignment					-		-						\$105,259				
Meters Rate Base Residual			MRBRA	\$	-	\$	7,790	\$	48,387	\$	571	\$	-	\$	-	\$	-
Meters Rate Base Total		MRBT		\$	-	\$	7,790	\$	48,387	\$	571	\$	105,259	\$	-	\$	-
Meters Rate Base Allocator		MRBA	MRBT		-		0.00029		0.00180		0.00002		0.00392		-		
Meters O\&M Residual Allocator		MOMRA			-		11,235		69,785		823		-		-		-
Meters O\&M Costs																	
Meters O\&M Residual			MOMRA	\$	-	\$	4,056	\$	25,196	\$	297	\$	-	\$	-	\$	-
Meters O\&M Total		MOMT		\$	-	\$	4,056	\$	25,196	\$	297	\$	-	\$	-	\$	-
Meters O\&M Allocator		MOMA	MOMT		-		0.00029		0.00181		0.00002		-		-		-
Customer Specific Assignment					-		-						\$18,339				
Meters Depreciation Residual			MDRA	\$	-	\$	340	\$	2,111	\$	25	\$		\$	-	\$	
Meters Depreciation Total		MDT		\$	-	\$	340	\$	2,111	\$	25	\$	18,339	\$	-		-
Meters Depreciation Allocator		MDA	MDT		-		0.00029		0.00178		0.00002		0.01548		-		-
Meters Prop Tax Residual Allocator		MPTRA			-		11,235		69,785		823		-		-		-
Meters Prop Tax Costs																	
Customer Specific Assignment					-		-						\$2,689				
Meters Prop Tax Residual			MPTRA	\$	-	\$	86	\$	535	\$	6	\$	-	\$	-	\$	-
Meters Prop Tax Total		MPTT		\$	-	\$	86	\$	535	\$	6	\$	2,689	\$	-	\$	-
Meters Prop Tax Allocator		MPTA	MPTT		-		0.00029		0.00179		0.00002		0.00902		-		-
Customer Service O\&M Cost Allocation																	
Customer Service Residual Allocator		CSRA			10,112		18		111		1		10		-		-
Customer Specific Assignment													\$24,000	\$	-		\$10,000
Customer Service O M M Residual			CSRA	\$	112,410	\$	199	\$	1,235	\$	11	\$	111	\$	-	\$	
Customer Service O\&M Total Customer Service O\&M Allocator		$\underset{\text { C10 }}{\text { CSOT }}$		\$	112,410 0.02299	\$	199 0.00004	\$	1,235	\$		\$	24,111	\$	-	\$	10,000
Customer Service O\&M Allocator		C10	CSOT		0.02299		0.00004		0.00025		0.00000		0.00493				0.00205

12 Months Ended
June 30, 2022

		1	2	3	4	5	6	7	8	9	10	11
Description	Ref	Name	Allocation Vector	$\begin{array}{r} \text { Total } \\ \text { System } \end{array}$	Residential Rate RS	General Service Rate GS	Rate PS Primary	Rate PS Secondary	Rate TOD Primary	Rate TOD Secondary	Rate RTS Transmission	Special Contract Customer
Revenue Adjustment Allocators												
Forfeited Discounts		FDIS		2,707,235	2,147,670	209,067	7,006	278,476	13,171	50,543	1,301	-
Misc Service Revenue Allocator		MISCR		1,837,730	1,753,541	69,649	291	11,552	546	2,097	54	-
Rent From Electric Property		RFEP		3,457,582,001	1,830,420,621	383,935,310	21,476,777	369,390,342	328,714,071	283,566,435	135,862,169	8,795,357
Other Electric Revenue		OER		3,457,582,001	1,830,420,621	383,935,310	21,476,777	369,390,342	328,714,071	283,566,435	135,862,169	8,795,357
Expense Adjustment Allocators												
Interruptible Credit Allocator (Prod Plant)		INTCRE		3,862,851,117	1,843,044,295	434,979,325	29,452,187	487,053,951	462,893,194	380,591,965	211,887,495	11,650,517
O\&M less fuel		OMLF		245,941,143	140,658,266	30,381,048	1,401,213	23,637,517	19,892,195	17,681,383	8,122,963	535,746
Base Rate Revenue at Current Rates				1,066,653,012	431,824,736	148,100,588	10,054,862	147,448,878	136,688,085	101,626,163	64,286,867	3,635,160
CSR Avoided Cost												
Interruptible Demands				433,038					38,819		394,219	
Avoided Cost per kW									3.67		5.90	
Avoided Cost				2,468,360					142,467		2,325,893	

Exhibit WSS-33

Gas Transmission Plant

Functional Assignment for the
Cost of Service Study
(Louisville Gas and Electric Company)

Allocation of Gas Transmission between Storage and Non-Storage

Account 367 Balance from July 2020

Engineering Estimate of Storage Related Transmission as of July 2020
Amount Included in Account 353
Storage Related Transmission Included in Account 367

Additional Storage Related Transmission Investment Included in Account 367 June 2022 Balance
Estimated Storage Related Transmission Included in Account 367 June 2022 Balance

Account 367 Forecasted Balance June 2022

Percent of Account 367 Forecasted Balance as of June 2022 Related to Storage 30.15\%

Percent of Account 367 Forecasted Balance as of June 2022 Not Related to Storage 69.85\% Total

Exhibit WSS-34

Zero Intercept Analysis of
 Distribution Mains

(Louisville Gas and Electric Company)

Type of Main	Pipe Size	Net Cost of Plant	Quantity	Avg Cost	n	y	\mathbf{x}	est y	$\mathrm{y}^{\star} \mathrm{n}^{\wedge} .5$	n^. 5	xn^. 5
PIPE, CAST IRON, 10	10	77,658.52	45,547	1.70501943	45,547	1.70502	10.00	24.776	363.88	213.42	2134.17431
PIPE, CAST IRON, 12	12	66,566.15	31,106	2.139977818	31,106	2.13998	12.00	27.549	377.43	176.37	2116.42718
PIPE, CAST IRON, 14	14	21,255.50	7,950	2.673647799	7,950	2.67365	14.00	30.322	238.39	89.16	1248.27882
PIPE, CAST IRON, 16	16	90,103.45	28,376	3.175340076	28,376	3.17534	16.00	33.095	534.89	168.45	2695.22838
PIPE, CAST IRON, 18	18	34,815.59	8,985	3.874856984	8,985	3.87486	18.00	35.868	367.29	94.79	1706.20632
PIPE, CAST IRON, 24	24	6,523.65	1,220	5.347254098	1,220	5.34725	24.00	44.186	186.77	34.93	838.283961
PIPE, CAST IRON, 4	4	232,011.34	284,533	0.815411007	284,533	0.81541	4.00	16.457	434.95	533.42	2133.66539
PIPE, CAST IRON, 6	6	30,092.75	29,657	1.01469299	29,657	1.01469	6.00	19.230	174.74	172.21	1033.27247
PIPE, CAST IRON, 8	8	38,666.69	27,960	1.382928827	27,960	1.38293	8.00	22.003	231.24	167.21	1337.69952
PIPE, PLASTIC, 1	1	71,808.18	3,000	23.93606	3,000	23.93606	1.00	12.298	1311	54.77	54.7722558
PIPE, PLASTIC, 2	2	147,496,076.13	8,888,931	16.59322995	8,888,931	16.59323	2.00	13.684	49472	2,981.43	5962.86206
PIPE, PLASTIC, 4	4	106,786,944.81	4,014,837	26.59807728	4,014,837	26.59808	4.00	16.457	53295	2,003.71	8014.82327
PIPE, PLASTIC, 6	6	39,493,513.89	878,431	44.95915318	878,431	44.95915	6.00	19.230	42138	937.25	5623.47899
PIPE, PLASTIC, 8	8	25,702,840.01	290,920	88.3501994	290,920	88.35020	8.00	22.003	47653	539.37	4314.96002
PIPE, PLASTIC, 10	10	19,616.26	46	426.4404348	46	426.44043	10.00	24.776	2892.3	6.78	67.8232998
PIPE, STEEL, 1	1	1,792,624.37	72,839	24.61077678	72,839	24.61078	1.00	12.298	6642.1	269.89	269.887013
PIPE, STEEL, 1 1/2	1.5	25,393.20	652	38.94662577	652	38.94663	1.50	12.991	994.47	25.53	38.301436
PIPE, STEEL, 1 1/4	1.25	11,352.19	403	28.16920596	403	28.16921	1.25	12.645	565.49	20.07	25.0935749
PIPE, STEEL, 10	10	92,683.96	5,185	17.87540212	5,185	17.87540	10.00	24.776	1287.2	72.01	720.069441
PIPE, STEEL, 12	12	14,656,557.38	521,083	28.12710716	521,083	28.12711	12.00	27.549	20304	721.86	8662.32948
PIPE, STEEL, 16	16	8,006,093.90	257,321	31.11325504	257,321	31.11326	16.00	33.095	15783	507.27	8116.29078
PIPE, STEEL, 2	2	18,128,004.78	4,099,373	4.422140844	4,099,373	4.42214	2.00	13.684	8953.5	2,024.69	4049.38168
PIPE, STEEL, 2 1/2	2.5	9,087.67	480	18.93264583	480	18.93265	2.50	14.378	414.79	21.91	54.7722558
PIPE, STEEL, 20	20	4,002,792.28	154,201	25.95827705	154,201	25.95828	20.00	38.641	10193	392.68	7853.68703
PIPE, STEEL, 22	22	56,616.99	3,497	16.19016014	3,497	16.19016	22.00	41.413	957.41	59.14	1300.97963
PIPE, STEEL, 24	24	122,746.10	871	140.9254879	871	140.92549	24.00	44.186	4159.1	29.51	708.305019
PIPE, STEEL, 4	4	38,014,082.75	4,721,852	8.050672226	4,721,852	8.05067	4.00	16.457	17494	2,172.98	8691.92913
PIPE, STEEL, 6	6	11,373,827.64	825,294	13.7815465	825,294	13.78155	6.00	19.230	12520	908.46	5450.7416
PIPE, STEEL, 8	8	30,776,488.82	1,967,573	15.6418536	1,967,573	15.64185	8.00	22.003	21941	1,402.70	11221.6163
PIPE, WROUGHT IRON, 1 1/2	1.5	906.81	2,276	0.398422671	2,276	0.39842	1.50	12.991	19.008	47.71	71.5611627
PIPE, WROUGHT IRON, 1 1/4	1.25	3,455.93	8,636	0.400177165	8,636	0.40018	1.25	12.645	37.188	92.93	116.162602
PIPE, WROUGHT IRON, 10	10	49,167.84	26,553	1.851686815	26,553	1.85169	10.00	24.776	301.73	162.95	1629.50913
PIPE, WROUGHT IRON, 12	12	14,816.90	5,786	2.560819219	5,786	2.56082	12.00	27.549	194.79	76.07	912.789132
PIPE, WROUGHT IRON, 16	16	46,942.53	14,045	3.342294767	14,045	3.34229	16.00	33.095	396.1	118.51	1896.18564
PIPE, WROUGHT IRON, 2	2	1,268.21	3,617	0.350624827	3,617	0.35062	2.00	13.684	21.087	60.14	120.283
PIPE, WROUGHT IRON, 3	3	1,348.82	2,388	0.564832496	2,388	0.56483	3.00	15.071	27.602	48.87	146.601501
PIPE, WROUGHT IRON, 4	4	43,896.76	39,947	1.098875009	39,947	1.09888	4.00	16.457	219.63	199.87	799.469824
PIPE, WROUGHT IRON, 8	8	120,947.42	85,164	1.420170729	85,164	1.42017	8.00	22.003	414.45	291.83	2334.62974

Weighted Linear Regression Statistics

	Standard Size Coefficient (\$ per Foot)\quad Estimate			

Plant Classification

Total All Distribution Mains		$27,360,535$
Zero Intercept		10.9114934
Zero Intercept Cost	$\$$	$298,544,296$
Total Cost of Sample	$\$$	$447,519,596$

Exhibit WSS-35

Analysis of Low-, Medium-, and HighPressure Distribution Mains for the Cost of Service Study (Louisville Gas and Electric Company)

Actual	Residential Rate RGS	Commercial Rate CGS	Industrial Rate IGS	Rate AAGS	IntraCompany	Rate FT (1)	Total
Total Mcf Sales and Transportation	17,994,912	9,880,285	1,523,000	326,085	246,837	13,791,319	43,762,438
Non-Temp. Sensitive Sales \& Transportation - Jul. \& Aug.	640,087	525,363	183,067	32,292	27,294	1,638,503	3,046,606
Annualized Non-Temperature Sensitive Sales \& Transport.	3,840,523	3,152,175	1,098,400	193,753	163,765	9,831,019	18,279,635
Non-Temperature Sensitive Sales \& Transportation per Day	10,522	8,636	3,009	531	449	26,934	50,081
Temperature Sensitive Sales \& Transportation	14,154,388	6,728,110	424,600	132,332	-	3,960,300	25,482,803
Degree Days	3,585	3,585	3,677	3,677	3,677	3,677	
Temperature Sensitive Sales \& Transportation per Degree Day	3,949	1,877	115	36	-	1,077	7,054
Calculated Daily Customer Deliveries (Demands) @ -14 Degrees (79 Degree Days)							
Total Demands	322,467	156,915	12,132	3,374	449	112,021	607,357.06
Percentage of Total	53.09\%	25.84\%	2.00\%	0.56\%	0.07\%	18.44\%	100.00\%
Demands - High Pressure Distribution System	322,467	156,915	12,132	3,374	449	112,021	607,357
Demands - Low/Medium Pressure Distribution System	322,467	156,489	11,621	3,281	-	14,146	508,004

(1) Rate FT includes LG\&E Transportation Special Contract

	Residential Rate RGS	Commercial Rate CGS	Industrial Rate IGS	Rate AAGS	Rate FT (1)	Total
Actual						
Total Mcf Sales and Transportation	-	253,887	186,563	33,884	11,336,626	11,810,960
Non-Temp. Sensitive Sales \& Transportation - Jul. \& Aug.	-	279	38,652	6,601	1,295,371	1,340,903
Annualized Non-Temperature Sensitive Sales \& Transport.	-	1,674	186,563	33,884	7,772,228	7,994,349
Non-Temperature Sensitive Sales \& Transportation per Day	-	5	511	93	21,294	21,902
Temperature Sensitive Sales \& Transportation	-	252,213	-	-	3,564,398	3,816,611
Degree Days	3,585	3,585	3,677	3,677	3,677	
Temperature Sensitive Sales \& Transportation per Degree Day	-	-	-	-	969	969
Calculated Daily Customer Deliveries (Demands) @ -14 Degrees (79 Degree Days)						
Total Demands/MDQ	-	426	511	93	97,875	98,483
Percentage of Total	0\%	0\%	1\%	0\%	99\%	100\%

Exhibit WSS-36

Gas Cost of Service Study

Functional Assignment and Classification
(Louisville Gas and Electric Company)

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

	A	B	C	D		S		T		U		V		
$\frac{1}{2}$	Description		Name	Vector		Services Customer		$\begin{array}{r} \text { Meters } \\ \text { Customer } \end{array}$		Customer Accounts		Customer Service Expense Customer		
3	Gas Plant at Original Cost													
5														
6	Underground Storage Plant													
7	350-357	Underground Storage Plant	PT350	F003		-		-		-		-		
-	358	Asset Retire Obligation Gas Plant	PT350	F003		-		-		-		-		
9														
10	Total Storage Plant		PTST		\$	-	s	-	\$	-	\$	-		
11														
12	Transmission Plant													
13	365-372	Transmission	PT365	F005		-		-		-		-		
14														
$\frac{15}{16}$	Distribution Plant													
	374	Land and Land Rights	PT374	F008		-		-		-				
17	375	Structures \& Improvements	PT375	F008		-		-		-		-		
8	376	Mains	PT376	F009		-		-		-		-		
9	378	Meas. \& Reg. Sta. Equip. - General	PT378	F008		-		-		-		-		
20	379	Meas. \& Reg. Sta. Equip. - City Gate	PT379	F008		-		-		-		-		
21	380	Services	PT380	F010		422,716,510		-		-		-		
22	381	Meters	PT381	F011		-		69,454,781		-		-		
23	382	Meter Installations	PT382	F011		-								
$\frac{24}{24}$	383	House Regulators	PT383	F011		-		27,617,358		-		-		
25	384	House Regulator Installations	PT384	F011		-		-		-		-		
$\frac{25}{26}$	385	Industrial Meas. \& Reg. Equip.	PT385	F011		-		2,155,727		-		-		
$\frac{27}{27}$	387	Other Equipment	PT387	F011		-		1,990,118		-		-		
$\frac{27}{28}$	388	Asset Retire Obligation Gas Plant-City Gate	PT388	F008		-		-		-		-		
$\begin{array}{\|l} \hline \frac{28}{29} \\ \hline \end{array}$	388	Asset Retire Obligation Gas Plant-Mains	PT388	F009		-		-		-		-		
$\begin{array}{\|} \hline 29 \\ \hline 30 \\ \hline \end{array}$														
31	Sub-Total D	stribution Plant	PTDSUB		\$	422,716,510	s	101,217,983	\$	-	\$	-		
32														
$\frac{33}{34}$	U-T-D Subt		PTSUB			422,716,510		101,217,983		-		-		
	35													
36	117 \& 352	Gas Stored UndergroundNon-Current	PT117	F003		-		-		-		-		
37	301-303	Intangible Plant	PT301	PTSUB		109		26		-		-		
$\frac{37}{38}$	392-396	General Plant	PT389	PTSUB		4,736,115		1,134,046		-		-		
39	301-399	Common Utility Plant	PTCP	PTSUB		29,242,805		7,002,087		-		-		
4														
41	Total Plant	Service	PTIS			456,695,539		109,354,142		-		-		
42														
$\frac{43}{44}$														
$\frac{44}{45}$														
46														
47														
$\frac{48}{49}$														
$\frac{49}{50}$														

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

	A	B	C	D		S			T			U		V	
$\frac{1}{2}$	Description		Name	Vector			$\begin{array}{r} \text { Services } \\ \text { Customer } \\ \hline \end{array}$			$\begin{aligned} & \text { Meters } \\ & \text { Customer } \end{aligned}$		Customer Accounts Customer		Customer Service Expense Customer	
3															
$\frac{141}{142}$	Labor Expenses														
$\frac{142}{143}$															
144	807 \& 810	Procurement Expenses	LB807	DMCM			-			-		-		-	
145															
146	Storage Expenses														
147	Operation														
148	814	Operations Supervision and Engineer	LB814	OSE			-			-		-		-	
149	815	Maps and Records	LB815	F003			-			-		-		-	
150	816	Well Expenses	LB816	F003			-			-		-		-	
151	817	Lines Expenses	LB817	F003			-			-		-		-	
152	818	Compressor Station Exp - Payroll	LB818	F004			-			-		-		-	
153	819	Compressor Station Fuel and Power	LB819	F004			-			-		-		-	
154	820	Measurement and Regulator Station	LB820	F003			-			-		-		-	
155	821	Purification of Natural Gas	LB821	F004			-			-		-		-	
156	823	Gas losses	LB823	F004			-			-		-		-	
157	824	Other Expenses	LB824	F004			-			-		-		-	
158	825	Storage Well Royalities	LB825	F003			-			-		-		-	
159	826	Rents	LB826	F003			-			-		-		-	
160	Total Storage Operation Labor		LBSO				-	\$		-	\$	-		.	
161			\$												
162															
163															
164	Storage Expense														
165															
166	Maintenance														
167	830	Maintenance Super and Eng.	LB830	MSE			-			-		-		-	
168	831	Maintenance of Structures	LB831	F003			-			-		-		-	
169	832	Maintenance of Resevoirs	LB832	F003			-			-		-		-	
170	833	Maintenance of Lines	LB833	F003			-			-		-		-	
171	834	Main of Compressor Station Equipment	LB834	F004			-			-		-		-	
172	835	Main of Meas and Reg Sta. Equip	LB835	F003			-			-		-		-	
173	836	Main of Purification Equip	LB836	F004			-			-		-		-	
174	837	Main of Other Equipment	LB837	F003			-			-		-		-	
$\frac{175}{176}$	Total Maintenance Labor														
$\frac{176}{177}$			LBSM		s			\$			\$	-	\$	-	
178	Total Storage Labor		LBS				-			-		-			
179												-			
180															
181															
$\frac{182}{183}$															

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

	A	B	C	D		S			T			U		V
$\frac{1}{2}$	Description		Name	Vector			$\begin{array}{r} \text { Services } \\ \text { Customer } \end{array}$			$\begin{array}{r} \text { Meters } \\ \text { Customer } \end{array}$		Customer Accounts Customer		Customer Service Expense Customer
3														
227														
$\frac{228}{229}$	Labor Expenses (Continued)													
$\frac{230}{230}$														
231														
232 (entenance Expense -- Distribution														
233	885	Maintenance Supr and Engr	LB885	DMES			-			-		-		-
234	886	Maintenance Structures	LB886	F008			-			-		-		-
235	887	Maintenance Mains	LB887	F009			-			-		-		-
2368	888	Maintenance Comp. Station Equip.	LB888	F007			-			-		-		-
237	889	Maintenance Meas and Reg. General	LB889	F008			-			-		-		-
238	890	Maintenance Meas and Reg - Industrial	LB890	F011			-			188,595		-		-
2398	891	Maintenance Meas and Reg.-City Gate	LB891	F008			-			-		-		-
240	892	Maintenance Services	LB892	F010			537,961			-		-		-
241	893	Maintenance Meters and House Reg.	LB893	F011			-			-		-		-
2428	894	Maintenance Other Equipment	LB894	PTDSUB			33,661			8,060		-		-
$\frac{243}{244}$														
	Total Maintenance Labor		LBDM		s		571,622	s		196,655	\$	-	s	-
245														
246	Total Transmission \& Distribution Labor		LBTD		s		2,480,889	\$		2,012,124	\$	-	s	-
247														
248														
$\frac{249}{250}$														
	901	Supervision	LB901	F012			-			-		858,916		-
	902	Meter Reading	LB902	F012			-			-		291,309		-
251	903	Customer Records and Collections	LB903	F012			-			-		2,764,532		-
252 253		Uncollectible Accounts	LB904	F012			-			-		-		-
$\frac{254}{255}$	905	Misc. Cust Account Expenses	LB905	F012			-			-		-		-
-256	Total Customer Accounts Labor		LBCA		s		-	\$		-	s	3,914,757	s	-
257	Customer Service Expenses													
$\frac{258}{259}$														
	907-910	Customer Service	LB907	F013			-			-		-		240,990
259	Sales Expenses													
260														
262	911-916	Sales Expenses	LB911	F013			-			-		-		-
26 26														
$\frac{26}{26}$														
$\frac{26}{\frac{26}{26}}$														
$\frac{26}{26}$														

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

	A	B	C	D	E		F		G		H		I			J		K		L
$\frac{1}{2}$	Descript		Name	Vector			$\begin{array}{r} \text { Total } \\ \text { Company } \end{array}$		Procurement Demand		Procurement Commodity			Storage Demand		$\begin{array}{r} \text { Storage } \\ \text { Commodity } \end{array}$		Transmission NonStorage Related Demand		Transmission Storage Related Demand
3 356																				
$\frac{357}{358}$ Operation \& Maintenance Expenses (Continued)																				
359																				
360 Transmission																				
361	850-867	Transmission Expenses	OM850	F005		\$	18,074,099		-		-			-		-		15,102,338		2,971,761
363 Distribution Expenses																				
365	870	Operation Supr and Engr	OM870	Does		\$	-		-		-			-		-		-		-
366	871	Dist Load Dispatching	OM871	F007			1,075,433		-		-			-		-		-		-
367	872	Compr. Station Labor and Exp.	OM872	F007			,		-		-			-		-		-		-
368	873	Compr. Station Fuel and Power	OM873	F007			-		-		-			-		-		-		-
369	874.01	Other Mains/Serv. Expenses	OM874.01	CADAL			9,885,996		-		-			-		-		-		-
370	874.02	Leak Survey-Mains	OM874.02	F009			9,85,		-		-			-		-		-		-
371	874.03	Leak Survey - Service	OM874.03	F010			-		-		-			-		-		-		-
372	874.04	Locate Main per Request	OM874.04	CADAL			-		-		-			-		-		-		-
373	874.05	Check Stop Box Access	OM874.05	F010			-		-		-			-		-		-		-
374	874.06	Patrolling Mains	OM874.06	F009			-		-		-			-		-		-		-
375	874.07	Check/Grease Valves	OM874.07	F009			-		-		-			-		-		-		-
376	874.08	Opr. Odor Equipment	OM874.08	F007			-		-		-			-		-		-		-
377	874.09	Locate and Inspect Valve Boxes	OM874.09	F009			-		-		-			-		-		-		-
378	874.1	Cut Grass - Right of Way	OM874.10	F009			-		-		-			-		-		-		-
379		Meas and Reg Station Exp.- General	OM875	F008			1,439,892		-		-			-		-		-		-
380	876	Meas and Reg Station Exp.- Industrial	OM876	F011			649,731		-		-			-		-		-		-
381	877	Meas and Reg Station Exp. - City Gate	OM877	F008			269,704		-		-			-		-		-		-
	878	Meter and House Reg. Expense	OM878	F011			2,254,644		-		-			-		-		-		-
383	879	Customer Installation Expense	OM879	F011			234,605		-		-			-		-		-		-
384	880	Other Expenses	OM880	PTDSUB			7,923,534		-		-			-		-		-		-
385	881	Rents	OM881	PTDSUB			26,536		-		-			-		-		-		-
386	Total Operations Distribution Expense																			
$\frac{387}{388}$			OMDO			\$	23,760,075		-		-			-		-		-		-
$\frac{388}{389}$												\$								2,971,761
389 390	Total Transmission and Distribution Oper Exp		OMTDO				41,834,174 \$	\$		\$							\$	15,102,338	\$	
391																				
$\frac{392}{393}$																				
394																				
395																				
$\frac{396}{397}$																				
$\underline{398}$																				

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

		A	B	C	D		M		N		0		P		Q		R
$\frac{1}{2}$	Descrip	iption		Name	Vector		Distribution Commodity		ution Structures \& Equipment Demand		Distribution Mains Low \& Med. Pressure Demand		Distribution Mains Low \& Med. Pressure Customer		Distribution Mains High Pressure Demand		Distribution Mains High Pressure Customer
35																	
$\frac{357}{358}$ Operation \& Maintenance Expenses (Continued)																	
359																	
360 Transmission																	
361	850-867		Transmission Expenses	OM850	F005		-		-		-		-		-		-
363 Distribution Expenses																	
364	Operation																
365	870		Operation Supr and Engr	OM870	does		-		-		-		-		-		-
366	871		Dist Load Dispatching	OM871	F007		1,075,433		-		-		-		-		-
367	872		Compr. Station Labor and Exp.	OM872	F007		-		-		-		-		-		-
368	873		Compr. Station Fuel and Power	OM873	F007		-		-		-		-		-		-
369	874.01		Other Mains/Serv. Expenses	OM874.01	CADAL		-		-		1,507,846		3,310,059		261,762		236,209
370	874.02		Leak Survey-Mains	OM874.02	F009		-		-		-		-		-		-
371	874.03		Leak Survey - Service	OM874.03	F010		-		-		-		-		-		-
372	874.04		Locate Main per Request	OM874.04	CADAL		-		-		-		-		-		-
373	874.05		Check Stop Box Access	OM874.05	F010		-		-		-		-		-		-
374	874.06		Patrolling Mains	OM874.06	F009		-		-		-		-		-		-
375	874.07		Check/Grease Valves	OM874.07	F009		-		-		-		-		-		-
$\frac{376}{37}$	874.08		Opr. Odor Equipment	OM874.08	F007		-		-		-		-		-		-
377	874.09		Locate and Inspect Valve Boxes	OM874.09	F009		-		-		-		-		-		-
378	874.1		Cut Grass - Right of Way	OM874.10	F009		-		-		-		-		-		-
379	875		Meas and Reg Station Exp.- General	OM875	F008		-		1,439,892		-		-		-		-
380	876		Meas and Reg Station Exp.- Industrial	OM876	F011		-				-		-		-		-
381	877		Meas and Reg Station Exp. - City Gate	OM877	F008		-		269,704		-		-		-		-
382	878		Meter and House Reg. Expense	OM878	F011		-		-		-		-		-		-
383	879		Customer Installation Expense	OM879	F011		-		-		2		-		, 6		2
384	880		Other Expenses	OM880	PTDSUB		-		472,187		1,023,241		2,246,242		177,634		160,294
385	881		Rents	OM881	PTDSUB		-		1,581		3,427		7,523		595		537
-3878	Total Operations Distribution Expense			OMDO			1,075,433	2,183,364		2,534,514		5,563,824		439,991			397,039
388 389				OMTDO			1,075,433	\$	2,183,364				5,563,824	\$	439,991	\$	397,039
390								\$		\$ 2,534,514	\$						
$\frac{392}{}$																	
393																	
394																	
-395																	
$\frac{397}{397}$																	
398																	

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

	A	B	C	D		S		T		U		V
$\frac{1}{2}$	Description		Name	Vector		$\begin{array}{r} \text { Services } \\ \text { Customer } \end{array}$		$\begin{array}{r} \text { Meters } \\ \text { Customer } \\ \hline \end{array}$	Customer AccountsCustomer			Customer Service Expense Customer
3												
357 Operation \& Maintenance Expenses (Continued)												
358												
359												
360 Transmission												
361	850-867	Transmission Expenses	OM850	F005		-		-		-		-
362												
363 Distribution Expenses												
364	Operatio											
365	870	Operation Supr and Engr	OM870	does		-						-
3668	871	Dist Load Dispatching	OM871	F007		-		-		-		-
367	872	Compr. Station Labor and Exp.	OM872	F007		-		-		-		-
368	873	Compr. Station Fuel and Power	OM873	F007		-		-		-		-
369	874.01	Other Mains/Serv. Expenses	OM874.01	CADAL		4,570,120		-		-		-
370	874.02	Leak Survey-Mains	OM874.02	F009		-		-		-		-
371	874.03	Leak Survey - Service	OM874.03	F010		-		-		-		-
372	874.04	Locate Main per Request	OM874.04	CADAL		-		-		-		-
373	874.05	Check Stop Box Access	OM874.05	F010		-		-		-		-
374	874.06	Patrolling Mains	OM874.06	F009		-		-		-		-
375	874.07	Check/Grease Valves	OM874.07	F009		-		-				
376	874.08	Opr. Odor Equipment	OM874.08	F007		-		-		-		-
377	874.09	Locate and Inspect Valve Boxes	OM874.09	F009		-		-		-		-
378	874.1	Cut Grass - Right of Way	OM874.10	F009		-		-		-		-
379	875	Meas and Reg Station Exp.- General	OM875	F008		-		-		-		-
380	876	Meas and Reg Station Exp.- Industrial	OM876	F011		-		649,731		-		-
381		Meas and Reg Station Exp. - City Gate	OM877	F008		-		-		-		-
382	878	Meter and House Reg. Expense	OM878	F011		-		2,254,644		-		-
383	879	Customer Installation Expense	OM879	F011		-		234,605		-		-
384		Other Expenses	OM880	PTDSUB		3,101,333		742,603		-		-
385	881	Rents	OM881	PTDSUB		10,386		2,487		-		-
-386												
387	Total Operations Distribution Expense		OMDO			7,681,839		3,884,070		-		-
388												
	Total Tr	ission and Distribution Oper Exp	OMTDO		s	7,681,839	\$	3,884,070	\$	-	\$	-
392												
393												
394												
-395												
397												
398												

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

A	C	D		M		N		0		P		Q		R
1 2 Description	Name	Vector		Distribution Commodity		ution Structures \& Equipment Demand		$\begin{array}{r} \text { Distribution Mains - } \\ \text { Low \& Med. Pressure } \\ \text { Demand } \end{array}$		Distribution Mains Low \& Med. Pressure Customer		Distribution Mains High Pressure Demand		Distribution Mains High Pressure Customer
3														
619														
620 Internally Generated Functional Vectors														
622 Sub-Total Distribution Plant		PTDSUB		-		0.059593		0.129139		0.283490		0.022419		0.020230
623 Storage-Transmission-Distribution Subtotal		PTSUB		-		0.042868		0.092896		0.203928		0		0
624 Total Storage Plant		PTST		-		-		-		-		-		-
625 Transmission Plant		PT365		-		-		-		-				-
626 General Plant		PT389				0.042868		0.092896		0.203928		0		0
627 Total Distribution Plant		PTDSUB		-		0.059593		0.129139		0.283490		0		0
628 Sub-Total CWIP		CWIP		-		0.004501		0.111073		0.243829		0		0
629 Total Operation and Maintenance Expenses		омт		0.018068		0.047500		0.074178		0.162837		0		0
630 Total Depreciation Reserve		DEPR		-		0.018257		0.146856		0.251182		0		0
631 Storage-Transmission -Distribution Plant Subtotal		PTSUB		-		0.042868		0.092896		0.203928		0		0
632 Total Labor Expenses		LBtot		0.033197		0.066771		0.070373		0.154484		0		0
633 Transmission and Distribution Payroll		LBTD		0.051958		0.104021		0.109091		0.239479		0		0
634 Transmission and Distribution Mains		TDMSUB		-		-		0.195024		0.428122		0		0
635 Storage Operation Expenses Labor Subtotal	OSE			-				-		-				
636 Storage Maintenance Expenses Labor Subtotal	MSE			-		-		-		-		-		-
637 Mains \& Services	CADAL			-		-		139,469,306		306,166,312		24,211,839		21,848,279
638 Demand/Commodity Percent of Purchased Gas Cost	DMCM													
639 Distribution Operation Expenses Labor Subtotal	DOES			838,265		1,183,787		629,935		1,382,849		109,357		98,681
640 Distribution Maintenance Expenses Labor Subtotal	DMES			-		494,445		1,130,088		2,480,795		196,183		177,032
641 Subtotal Labor Expenses	LBSUB			838,265	\$	1,678,232		1,760,023	\$	3,863,645	s	305,540		275,713
642 Subtotal O\&M Expenses	omsub			1,075,433	\$	3,308,347		6,019,987	s	13,215,217	s	1,045,068		943,049
643 Depreciation Reserve - Distribution	DEPRDIS				s	4,247,160	S	42,919,420	s	71,843,810	s	6,245,561		4,501,029

Cost of Service Study
12 Months Ended June 30, 2022
Functional Assignment and Classification

Exhibit WSS-37

Gas Cost of Service Study
 Class Allocation

(Louisville Gas and Electric Company)

Cost of Service Study

12 Months Ended June 30, 2022

Class Allocation

Cost of Service Study
12 Months Ended June 30, 2022

Class Allocation

Cost of Service Study
12 Months Ended June 30, 2022

Class Allocation

Cost of Service Study
12 Months Ended June 30, 2022

Class Allocation

Cost of Service Study
12 Months Ended June 30, 2022

Class Allocation

Cost of Service Study
12 Months Ended June 30, 2022

Class Allocation

Cost of Service Study
12 Months Ended June 30, 2022

Class Allocation

Cost of Service Study
12 Months Ended June 30, 2022

Class Allocation

Cost of Service Study
12 Months Ended June 30, 2022

Class Allocation

Cost of Service Study
12 Months Ended June 30, 2022

Class Allocation

Cost of Service Study
12 Months Ended June 30, 2022

Class Allocation

Cost of Service Study
12 Months Ended June 30, 2022

Class Allocation

Cost of Service Study
12 Months Ended June 30, 2022
Class Allocation

Cost of Service Study
12 Months Ended June 30, 2022
Class Allocation

Cost of Service Study
12 Months Ended June 30, 2022

Class Allocation

Exhibit WSS-38

Gas Cost of Service Study
 Storage Allocation

(Louisville Gas and Electric Company)

Calculation of Maximum Class Demands On February 26th Design Day (4 Degrees) for Determination of Demand Allocation Factors

	Residential Rate	Commercial Rate CGS	Industrial Rate IGS	Rate FT 5 Percent Balancing	
Calculated Daily Requirements at 4 Degrees (61 HDDs)	Total	416,029	276,944	129,292	9,793

Allocation of Underground Storage

	Storage Withdrawals	Residential Rate RGS	Commercial Rate CGS	Industrial Rate IGS	Rate FT 5 Percent Balancing
Total Allocated Withdrawals Thru February 28th	8,316,075	5,485,002	2,542,658	218,439	69,976
Balance of Working Gas Allocated on the					
Basis of 4 Degrees (Feb. 26th)	3,363,925	2,239,365	1,045,508	79,052	0
Total Working Gas Cycled	11,680,000	7,724,367	3,588,166	297,491	69,976
Total Allocation Factor For Underground Storage	1.000000	0.661333	0.307206	0.025470	0.005991

Exhibit WSS-39

Summary Results of Lead-Lag Study

Kentucky Utilities Company
 Cash Working Capital Analysis
 2020 Kentucky Rate Case
 Revenue Lag Days Based on the Year Ended December 31, 2019
 Expense Lead Days Based on the Year Ended December 31, 2017

ead/Lag Days Summary	
	Lag Days
Revenue	
Meter Reading.	15.21
Billing...	4.20
Collection...	25.09
Bank...	1.00
Total.	45.50
	Lead Days
O\&M Expense	
Fuel: Coal..	27.28
Fuel: Gas.	39.32
Fuel: Oil...	17.32
Other Non-Fuel Commodities..	27.76
Purchased Power...	23.66
Payroll Expense...	13.01
Pension Expense..	-
OPEB Expense.....	-
Team Incentive Award Compensation...	244.79
401k Match Expense....	22.56
Retirement Income Account Expense..	283.50
Uncollectible Expense.	131.70
Major Storm Damage Expense...	41.74
Charges from Affiliates.	25.39
Other O\&M.....	48.05
Depreciation and Amortization Expense	
Depreciation and Amortization.......................................	-
Regulatory Debits...	-
Amortization of Regulatory Assets...............................	-
Amortization of Regulatory Liabilities..	-
Income Tax Expense	
Current: Federal...	37.50
Current: State...	37.50
Deferred: Federal and State (Including ITC)..	-
Taxes Other Than Income	
Property Tax Expense..	157.57
Payroll Tax Expense..	35.64
Other Taxes.	(152.00)
Interest Expense..	88.65
Sales Tax...	39.80
School Tax...	34.95
Franchise Fees...	67.16

Louisville Gas and Electric Company

Cash Working Capital Analysis
2020 Kentucky Rate Case
Revenue Lag Days Based on the Year Ended December 31, 2019
Expense Lead Days Based on the Year Ended December 31, 2017

Lead/Lag Days Summary		
	Lag Days	
	Electric	Gas
Revenue		
Meter Reading..	15.21	15.21
Billing.....	4.29	4.28
Collection..	23.77	23.77
Bank....	1.00	1.00
Total...	44.27	44.26
	Lead Days	
	Electric	Gas
O\&M Expense		
Fuel: Coal..	24.36	n/a
Fuel: Gas...	38.99	n/a
Fuel: Oil...	8.40	n / a
Other Non-Fuel Commodities...................................	26.87	n/a
Purchased Gas...	n/a	39.66
No-Notice Storage Injections and Withdrawals...............	n/a	-
Purchased Power...	28.37	n/a
Payroll Expense...	12.00	12.00
Pension Expense......	-	-
OPEB Expense...	-	-
Team Incentive Award Compensation.........................	245.22	245.22
401k Match Expense..	22.99	22.99
Retirement Income Account Expense...........................	283.50	283.50
Uncollectible Expense..	174.20	256.34
Major Storm Damage Expense...	35.32	35.32
Charges from Affiliates...	25.40	25.40
Other O\&M..	49.19	49.19
Depreciation and Amortization Expense		
Depreciation and Amortization...................................	-	-
Regulatory Debits...	-	-
Amortization of Regulatory Assets.................................	-	-
Amortization of Regulatory Liabilities............................	-	-
Income Tax Expense		
Current: Federal...	37.50	37.50
Current: State......	37.50	37.50
Deferred: Federal and State (Including ITC)...	-	-
Taxes Other Than Income		
Property Tax Expense...	216.26	216.26
Payroll Tax Expense....	35.48	35.48
Other Taxes...	(148.70)	(148.70)
Interest Expense..	87.50	87.50
Sales Taxes..	39.83	39.83
School Taxes..	35.05	35.05
Franchise Fees...	100.24	100.24

[^0]: ${ }^{1}$ In its Oder in Case No.2018-00295, the Commission required that the Basic Service Charge for both KU and LG\&E represent the same percentage of the customer-related costs from the Companies' cost of service studies. See Case No. 2018-00295, Order at 25 (Ky. P.S.C. April 30, 2019). The Companies' proposal in the current proceedings is consistent with that directive.

[^1]: ${ }^{2}$ Electronic Application of Jackson Energy Cooperative Corporation for a General Adjustment in Existing Rates, Case No. 2019-00066, Order at 8 (Ky. P.S.C. June 19, 2019).

[^2]: ${ }^{3}$ For accounting purposes, the Companies record a portion of the monthly conversion fees as revenue and a portion as a credit to net plant (viz., Account No. 108 - Accumulated Depreciation - Salvage). The portion credited to plant reflects the contribution that the conversion fees make toward the direct recovery of the stranded plant cost. Based on the current LED Conversion fee, for $\mathrm{KU} \$ 2.07$ of the fee is recorded as revenue and $\$ 3.96$ is recorded as a credit to plant, and for LG\&E, $\$ 2.56$ of the fee is recorded as revenue and $\$ 4.81$ is credited to plant. Based on the proposed LED Conversion Fee, for KU $\$ 1.72$ of the fee would be recorded as revenue and $\$ 3.29$ would be credited to plant, and for LG\&E $\$ 2.46$ of the fee would be recorded as revenue and $\$ 4.62$ would be credited to plant. While both charges are shown in Schedule M-2.3 for KU and LG\&E, only the revenue components of the conversion fees are included in test-year revenues.

[^3]: ${ }^{4}$ The 1.75% increase in monthly unit charges for non-LED fixtures reflects the effect of transferring cost recovery of eliminated ECR projects into base rates and the impact of the proposed adjustments in the charges for poles and LED fixtures to current customers. While there is an increase in the monthly unit charge for nonLED fixtures, there is a corresponding reduction in the ECR mechanism revenues that would be billed. Of the 1.75% increase, 1.63% is related to the transfer of cost recovery of ECR revenue into base revenue.

[^4]: ${ }^{5}$ The 16.57% increase in the monthly unit charges for non-LED fixtures reflects the effect of transferring cost recovery of eliminated ECR projects into base rates and the impact of the proposed adjustments in the charges for poles and LED fixtures to current customers. While there is an increase in the monthly unit charge for nonLED fixtures, there is a corresponding reduction in the ECR mechanism revenues that would be billed. Of the 16.57% increase, 4.53% is related to the transfer of cost recovery of ECR revenue into base revenue.

[^5]: ${ }^{6}$ See The Adoption of a Small Power Production and Cogeneration Regulation Pursuant to Section 210 of Public Utility Regulatory Policies Act, Admin. Case No. 244, Order (Ky. P.S.C. Feb. 10, 1981).

[^6]: ${ }^{7} \$ 0.2173$ per kWh is the current non-time-differentiated avoided cost rate in KU for Small Cogeneration and Small Power Production Qualifying Facilities (Standard Rate Rider SQF).

[^7]: ${ }^{8}$ KRS 278.466(5).

[^8]: ${ }^{9}$ Approval of the tariff was affirmed in Docket No. 18-WSEE-328-RTS after being considered in Docket No. 16-GIME-4030-GIE, which was an administrative case styled "In the Matter of the General Investigation to Examine Issues Surrounding Rate Design for Distributed Generation Customers."
 ${ }^{10}$ In 2018, Westar Energy received regulatory approval to be merged with Great Plains Energy to form Evergy, Inc. Evergy serves approximately 1.6 million customers in Kansas and Missouri.
 ${ }^{11}$ The date applicable to new distributed generation was subsequently moved to October 1, 2018, in the Kansas Corporation Commission's Order in Docket No. 18-WSEE-328-RTS.

[^9]: ${ }^{12}$ Final Order, Docket No. 16-GIME-403-GIE dated September 21, 2017, at p.

[^10]: ${ }^{13}$ For example, testimony was filed by Southwest Public Service Company and the New Mexico Public Regulation Staff in Case No. 17-00255-UT on the issue.

[^11]: ${ }^{14}$ The only exception to this is that all-electric schools taking service prior the KU system on or before July 1, 2011, were allowed to continue to be served under a two-part rate schedule. Except for this grandfathering provision, customers with demand greater than 50 kVA must be served under demand-based rates.
 ${ }^{15}$ See "Presidential Address to the Junior Engineering Society, $4{ }^{\text {th }}$ Nov., 1892, On the Cost of Electric Supply", Original Papers by the Late John Hopkinson, Vol 1 (1901), pp. 254-268.

[^12]: ${ }^{16}$ The meter was called the "Lincoln Demand Meter". See also, Paul M. Lincoln, "Rates and Rate Making", Transactions of the American Institute of Electrical Engineers, July to December 1915, at pp. 2279-2318. It is of historical interest that in responding to Lincoln's paper, the utility executive Louis R. Lee clearly described the basis for a four-part rate:
 [T]he idea of the demand charge is to cover fixed charges necessary to handle the demand both at power station in the distribution system and in service transformers. In the power station the portion of fixed cost which any individual customer should be charged with, would be based up his average demand during the peak load on the power plant. For the distribution system and service transformers, however, the amount which would be chargeable to the individual customer would depend upon his maximum demand regardless of the time of its occurrence. (Id., at p. 2354.)

[^13]: ${ }^{17}$ The meter design was eventually purchased by Sangamo Electric Company and was used in non-billing industrial applications until the 1960s.
 ${ }^{18}$ Id. at pp. 2319-2360.

[^14]: ${ }^{19}$ The sample includes customer loads for which the Companies have MV90 telemetering data. There were 20 residential net metering customers served by KU and 15 net metering customers served by LG\&E. The analysis of the data is intended to be illustrative. The Companies plan to collect more load data for net metering customers before evaluating four-part rates for distributed generation customers.

[^15]: ${ }^{20}$ California utilities rely heavily on utility- and customer-owned solar power to meet peak demands. In midAugust, a heat wave in California resulted in rolling blackouts on two consecutive days. The problem came in the evening when solar generation dropped off. The rolling outages affected several hundred thousand customers starting around 6:30 PM on August 14 and 15, 2020. Once solar power provided to the grid fell below 6 percent of the load, grid operators were required to institute rolling blackouts. A spokesperson for the California Independent System Operator said, "The peak demand was steady in late hours, and we had thousands of megawatts of solar reducing their output as the sun set." Forbes, August 15, 2020.

[^16]: ${ }^{21}$ See Exhibit WSS-9.
 ${ }^{22}$ According to the Electric Power Research Institute (EPRI), the number of electric vehicles registered in Kentucky grew to 4,133 in June 2020.

[^17]: ${ }^{23}$ See https://www.esource.com/429201ebtf/ev-charging-and-pricing-what-are-consumers-willing-pay, dated September 20, 2020.

[^18]: * Customers with 5 or more vehicles operating in the utility's service territory are eligible for a 25% discount.
 ** Rate is adjusted quarterly to reflect the average price charged in the service territory.
 *** Georgia Power charges $\$ 0.25$ per hour, which is equivalent to approximately \$0.30 per kWH for charging at its DC Fast Charging Stations.

[^19]: ${ }^{24}$ Rate T was implemented in 1988 pursuant to the Commission's Order in Case No. 10064 (Ky. P.S.C. Jul. 1, 1988).
 ${ }^{25}$ In 1995, Rate FT replaced Rate T, which also included a distribution charge of \$0.43. See The Tariff Filing of Louisville Gas and Electric Company to Modify Firm Transportation Service Tariff, Case No. 95-037, Order (Ky. P.S.C. Jun. 27, 1995).
 ${ }^{26}$ Case No. 2014-00372, Order (Ky. P.S.C. Jun. 30, 2015).
 ${ }^{27}$ Case No. 2016-00371, Order (Ky. P.S.C. Jun. 29, 2017).

[^20]: ${ }^{28}$ Electronic Application of Kentucky Utilities Company for an Adjustment of Its Electric Rates, Case No. 201800294, Testimony of Stephen J. Baron (Ky. P.S.C. Jan. 16, 2019); Electronic Application of Louisville Gas and Electric Company for an Adjustment of Its Electric and Gas Rates, Case No. 2018-00295, Testimony of Stephen J. Baron (Ky. P.S.C. Jan. 16, 2019).
 ${ }^{29}$ Case No. 2018-00294, Testimony of James T. Selecky (Ky. P.S.C. Jan. 16, 2019); Case No. 2018-00295, Testimony of James T. Selecky (Ky. P.S.C. Jan. 16, 2019).

[^21]: 30 "Scalar multiplication" is the multiplication of each element of a vector by a constant (scalar). Scalar multiplication is different from "vector multiplication," in which one vector is multiplied by another vector either as a dot product (whose product is a scalar) or as a cross product (whose product is another vector).

[^22]: ${ }^{31}$ The cost of service study used the zero intercept results from the detailed analysis that was performed based on plant records as of June 30, 2020.

[^23]: ${ }^{32}$ This allocation factor is determined as follows: First, customer accounts supervision (Account 901), meter reading (Account 902), customer records and collections (Account 903), and miscellaneous customer account expenses (Account 905) were allocated to each customer class using a customer weighting factor based on discussions with LG\&E's meter reading, billing and customer service departments. A cost weighting factor of 1.0 was utilized for Residential Gas Service, a cost weighting factor of 1.1 was utilized for Commercial Gas Service, a cost weighting factor of 10 was utilized for Rates IGS and AAGS, and a customer weighting factor of 20 was utilized for Rate FT and special contracts. Using a cost weighting factor of 20 for Rate FT and special contracts, for example, means that the cost of performing the meter reading, billing and customer service functions for customers served under Rate FT is 20 times more than the cost of performing these same services for customers served under Rate RGS.

[^24]: ${ }^{33}$ Virginia Administrative Code 20 VAC5-201-10 - Rules Governing Utility Rate Applications and Annual Information Filings with the VA SCC specifies that "Utilities required to use a lead/lag study should perform a complete lead/lag analysis every five years. Major items such as the revenue lag and balance sheet accounts should be reviewed every year."

[^25]: ${ }^{1}$ Order Opening General Investigation, p. 5 (July 12, 2016).
 ${ }^{2} I d$.
 ${ }^{3}$ Westar Energy, Inc. and Kansas Gas and Electric Company (collectively, Westar), Kansas City Power \& Light Company (KCP\&L), Southern Pioneer Electric Company (Southern Pioneer), Midwest Energy, Inc. (Midwest Energy), Empire District Electric Company (Empire).
 ${ }^{4}$ Order Opening General Investigation, p. 5.

[^26]: ${ }^{5}$ Order Setting Procedural Schedule, p. 3 (Feb. 16, 2017).
 ${ }^{6}$ Initial Comments of Midwest Energy, Inc., (March 17, 2017) (Initial Comments Midwest Energy).
 ${ }^{7}$ Initial Comments of Southern Pioneer Electric Company Joined by the Kansas Electric Cooperatives, Inc., (March 17, 2017) (Initial Comments Southern Pioneer and KEC).
 ${ }^{8}$ Initial Comments of Westar Energy, Inc. and Kansas Gas and Electric Company Regarding Cost-Based Rates for Customers with Distributed Generation, (March 17, 2017) (Initial Comments Westar).
 ${ }^{9}$ Brightergy elected not to provide a sponsoring witness for its comments and later withdrew its comments from the evidentiary record. Brightergy requested its comments be included with the public comments.
 ${ }^{10}$ Testimony of Dorothy Barnett on Behalf of the Climate + Energy Project, (March 17, 2017) (Initial Comments CEP).
 ${ }^{11}$ Initial Comments of Kansas City Power \& Light Company, (March 17, 2017) (Initial Comments KCP\&L).
 ${ }^{12}$ United Wind elected not to provide a sponsoring witness for its comments and later withdrew its comments from the evidentiary record. United Wind requested its comments be included with the public comments.
 ${ }^{13}$ Initial Comments of Cromwell Environmental, (March 17, 2017) (Initial Comments Cromwell).

[^27]: ${ }^{14}$ Initial Comments of Sunflower Electric Power Corporation and Mid-Kansas Electric Company, LLC, (March 17, 2017) (Initial Comments of Sunflower and Mid-Kansas).
 ${ }^{15}$ Notice of Filing of CURB'S Initial Comments, (March 17, 2017) (Initial Comments CURB).
 ${ }^{16}$ Affidavit of William G. Eichman on Behalf of The Empire District Electric Company, (March 17, 2017) (Initial Comments Empire).
 ${ }^{17}$ Notice of Filing Staff's Verified Initial Comments (March 17, 2017) (Initial Comments Staff).
 ${ }^{18}$ Reply Comments of Southem Pioneer Electric Company, (May 5, 2017) (Reply Comments Southem Pioneer).
 ${ }^{19}$ Reply Comments of Westar Energy, Inc. and Kansas Gas and Electric Company Regarding Cost-Based Rates for Customers with Distributed Generation, (May 5, 2017) (Reply Comments Westar).
 ${ }^{20}$ Reply Comments of Midwest Energy, Inc., (May 5, 2017) (Reply Comments Midwest).
 ${ }^{21}$ Notice of Filing Staff's Verified Reply Comments, (May 5, 2017) (Reply Comments Staff).
 ${ }^{22}$ Reply Comments of Sunflower Electric Power Corporation and Mid-Kansas Electric Company, LLC, (May 5, 2017) (Reply Comments Sunflower and Mid-Kansas).
 ${ }^{23}$ Reply Comments of Kansas City Power \& Light Company, (May 5, 2017) (Reply Comments KCP\&L).
 ${ }^{24}$ Affidavit of William G. Eichman Supporting Reply Comments on Behalf of The Empire District Electric Company, (May 5, 2017) (Reply Comments Empire).
 ${ }^{25}$ Brightergy elected not to provide a sponsoring witness for its comments and later withdrew its comments from the evidentiary record. Brightergy requested its comments be included with the public comments.
 ${ }^{26}$ Reply Comments of Cromwell Environmental, (May 5, 2017) (Reply Comments Cromwell).
 ${ }^{27}$ IBEW 304 elected not to provide a sponsoring witness for its comments and later withdrew its comments from the evidentiary record. IBEW 304 requested its comments be included with the public comments.
 ${ }^{28}$ Reply Comments of Climate and Energy, (May 5, 2017)(Reply Comments CEP).
 ${ }^{29}$ Testimony of Jeff Martin in Support of Stipulation and Agreement - Westar Energy, Inc. (June 20, 2017) (Testimony in Support Martin); On June 26, 2017, Westar late filed the Rebuttal Testimony of Ahmad Faruqui in Support of Stipulation and Agreement (Testimony in Support Faruqui).
 ${ }^{30}$ Testimony in Support of the Settlement Agreement of Bradley D. Lutz on behalf of Kansas City Power \& Light Company (June 20, 2017) (Testimony in Support Lutz).

[^28]: ${ }^{31}$ Testimony in Support of Stipulation and Agreement Prepared by Richard J. Macke (June 20, 2017) (Testimony in Support Macke).
 ${ }^{32}$ Testimony in Support of the Non-Unanimous Stipulation and Agreement Prepared by Robert H. Glass (June 20, 2017) (Testimony in Support Glass).
 ${ }^{33}$ Testimony in Opposition to Non-Unanimous Stipulation and Agreement of Cary Catchpole on Behalf of CURB (Jun. 20, 2017) (Testimony in Opposition Catchpole); Testimony in Opposition to Non-Unanimous Stipulation and Agreement of Brian Kalcic on Behalf of CURB (Jun. 20, 2017) (Testimony in Opposition Kalcic).
 ${ }^{34}$ Testimony of Aron Cromwell in Opposition to Non-Unanimous Stipulation and Agreement (Jun. 20, 2017) (Testimony in Opposition Cromwell).
 ${ }^{35}$ Testimony of the Climate and Energy Project Addressing Non-Unanimous Settlement (Jun. 20, 2017) (Testimony in Opposition CEP).
 ${ }^{36}$ K.S.A. 66-101b.
 ${ }^{37}$ Kansas Gas and Elec. Co. v. Kansas Corp. Comm'n., 239 Kan. 483, 488 (1986).
 ${ }^{38}$ Jones v. Kansas Gas \& Electric Co., 222 Kan. 390, 401 (1977).
 ${ }^{39}$ Docket No. 12-KCPE-764-RTS (Aug. 22, 2012); Docket No. 16-KCPE-446-TAR (Jun. 22, 2017); See also, Midwest Gas Users Ass'n v. Kansas Corp. Comm'n, 3 Kan. App.2d 376, 380 (1979).
 ${ }^{40}$ Federal Power Comm 'n v. Hope Natural Gas Co., 320 U.S. 591, 603 (1944); Kansas Gas and Electric Co., 239 Kan. At 501; Zinke \& Trumbo, Ltd. v. State Corp. Comm'n, 242 Kan. 470, 475 (1988).

[^29]: ${ }^{41}$ Farmland Indus., Inc. v. Kansas Corp. Comm'n., 25 Kan.App.2d 849, 852 (1999).
 ${ }^{42}$ Zinke \& Trumbo, Ltd. v. Kansas Corp. Comm'n, 242 Kan. 470, 474 (1988) (quoting Kansas-Nebraska Natural Gas Co. v. Kansas Corp. Comm 'n, 217 Kan. 604, 617).
 ${ }^{43}$ Id. at 475.
 ${ }^{44}$ Krantz v. Univ. of Kansas, 271 Kan. 234, 241-42 (2001).
 ${ }^{45}$ Citizens' Utility Ratepayer Board v. Kansas Corp. Comm'n., 28 Kan.App.2d 313, 316, (2000) rev. denied March 20, 2001.
 ${ }^{46}$ See K.S.A. 66-101b (providing the Commission with the power to "require all electric public utilities governed by this act to establish and maintain just and reasonable rates").
 ${ }^{47}$ See, K.S.A. 77-501 et seq.
 ${ }^{48}$ See, K.S.A. 77-601 et seq.

[^30]: ${ }^{49}$ Order Approving Contested Settlement Agreement, Docket No. 08-ATMG-280-RTS, p. 5 (May 12, 2008).
 ${ }^{50}$ Staff's Report and Recommendation p. 8 (March 11, 2016).
 ${ }^{51}$ Id. at pp. 7-8.
 ${ }^{52}$ Tr. Vol. 1, p. 177 Ins. 18-24; p. 178 lns. 16-19; pp. 126-127; pp. 178-179; pp. 180-82; p. $183 \operatorname{lns} .4-20$; Tr. Vol. 2, p. 335.
 ${ }_{53}$ Reply Brief of Commission Staff, pp.6-7 (Aug. 25, 2017) (Nothing in the S\&A limits or restricts a utility or the Commission to using a certain rate design. As discussed at hearing, Staff views the enumeration of rate design option in Paragraph 11 of the Stipulation and Agreement as merely that: options; not prescriptive requirements); Reply Brief of Citizens' Utility Ratepayer Board, p. 10 (Aug. 25, 2017); Post-Hearing Reply Brief of Kansas City Power \& Light Company, p. 12 (Aug. 25, 2017).

[^31]: ${ }^{54}$ See Generally, Testimony in Opposition CEP; Testimony in Opposition Cromwell; Testimony in Opposition Kalcic; Testimony in Opposition Catchpole.
 ${ }^{\text {ss }}$ See Generally, Testimony in Support Glass; Testimony in Support Martin; Testimony in Support Faruqui; Testimony in Support Lutz; Testimony in Support Macke.
 ${ }^{56}$ See, Reply Comments Westar; Reply Comments Empire; Reply Comments KCP\&L; Reply Comments Sunflower and Mid-Kansas; Reply Comments Midwest Energy; Reply Comments KEC; Reply Comments Southern Pioneer; Reply Comments Staff; Initial Comments Staff.
 ${ }^{57}$ The omission from this Order of any argument or portion of the record raised by the participants in their briefs does not mean that it has not been considered. All such arguments have been evaluated and found to either lack merit or significance to the extent that their inclusion would only tend to lengthen this Order without altering its substance or effect.

[^32]: ${ }^{58}$ Initial Comments Staff, p. 16, $\$ 41 ;$ Reply Comments of Commission Staff, pp. 5-6; Comments of Cary Catchpole for the Citizens' Utility Ratepayer Board on Distributed Generation Policy Matters, p. 7, §11, pp. 8-9, §12-13, (Mar. 17, 2017); Comments of Brian Kalcic for the Citizens' Utility Ratepayer Board on Distributed Generation Rate Design, p. 8, (Mar. 17, 2017); Reply Comments Kalcic, pp. 2-4; Initial Comments Westar Energy, pp. 3-8, (Mar. 17, 2017); Reply Comments Westar, pp. 3-6, Initial Comments Empire District Electric Company, pp. 2-3, Reply Comments Empire, p. 1, pp. 3-4; Initial Comments Sunflower and Mid-Kansas, pp. 2-3; Initial Comments Southern Pioneer and KEC, p. 5, p. 7, If 17; Reply Comments Southem Pioneer, p. 8, 9ff 19-20, (May 5, 2017); Initial Comments Midwest Energy, pp. 3, 5-6, and 8; Reply Comments Midwest Energy, pp. 2-4; Initial Comments KCP\&L, p. 24; Reply Comments of KCP\&L, p. 8.
 ${ }^{59}$ Direct Testimony in Support Lutz, p. 5.

[^33]: ${ }^{60}$ Initial Comments Staff, pp. 1-2; Initial Comments Westar Energy, pp. 7-13; Initial Comments Empire, p. 2; Initial Comments Southern Pioneer and KEC, pp. 5-7; Initial Comments Midwest Energy, $\mathbb{1} 13$; Initial Comments KCP\&L, pp. 23-24; Initial Comments of Cary Catchpole for the CURB, $\mathbb{q} 16$; Initial Comments of Brian Kalcic for the CURB, 97.
 ${ }_{61}$ Initial Comments Staff, pp. 1-4; Tr. Vol. 1, p. 112.
 ${ }^{62}$ See Faruqui Initial Affidavit, at pp. 12-22, Brown Initial Affidavit, at pp. 41-42, Martin Initial Affidavit, at pp. 45, Faruqui Reply Affidavit, at pp. 1-2, Brown Reply Affidavit, at pp. 1-4, Martin Reply Affidavit, at pp. 5-6.
 ${ }^{63}$ Initial Comments of Southern Pioneer and KEC, p. 7; Initial Comments of Sunflower and Mid-Kansas, p. 4.
 ${ }^{64}$ Initial Comments CURB, p. 5; Initial Comments Empire, p. 3; Initial Comments Sunflower and Mid-Kansas, p. 4.
 ${ }^{65}$ Direct Testimony in Support Lutz, p. 7.
 ${ }^{66}$ Direct Testimony in Support Lutz, p. 7.

[^34]: ${ }^{67}$ See, K.S.A. 66-101b; K.A.R. 82-1-231.
 ${ }^{68}$ Direct Testimony in Support Lutz, p. 8.
 ${ }^{69}$ Direct Testimony in Support Lutz, p. 8.
 ${ }^{70}$ Order Opening General Investigation, p. 5.
 ${ }^{71}$ Initial Comments Staff, pp. 2-3

[^35]: ${ }^{72}$ Initial Comments Staff, p. 8 (Mar. 17, 2017); Reply Comments Staff, p. 3; See also, Direct Testimony in Support Lutz, p. 8.
 ${ }^{73}$ Direct Testimony in Support Lutz, p. 9.
 ${ }^{74}$ Id.

[^36]: ${ }^{75}$ Direct Testimony in Support Lutz, p. 10.
 ${ }^{76} 1 \mathrm{~d}$.
 ${ }^{77}$ Tr. Vol. 1, p. 124.
 ${ }^{78}$ Direct Testimony in Support Lutz, p. 10.

[^37]: ${ }^{79}$ Direct Testimony in Support Glass, p. 7.
 ${ }^{80}$ S\&A, ITT 9-10.
 ${ }^{81}$ Id. at $\mathbb{1}$ 13; See also, K.A.R. 82-1-231.
 ${ }^{82}$ S\&A, at 914.
 ${ }^{83}$ Id. at $\mathbb{1} 11$.

[^38]: ${ }^{84}$ Initial Comments Staff, p. 1.
 ${ }^{85}$ Initial Comments Staff, pp. 1, 4; Tr. Vol. 1, p. 112.
 ${ }^{86} \mathrm{Tr}$. Vol. 1 pp. 113-120; p.130; pp. 298-299.

[^39]: ${ }^{87}$ K.S.A. 66-118b; K.S.A. 77-529(a)(1).

