COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF)
NEW CINGULAR WIRELESS PCS, LLC,)
A DELAWARE LIMITED LIABILITY COMPANY,)
D/B/A AT&T MOBILITY)
AND UNITI TOWERS LLC, A DELAWARE)
LIMITED LIABILITY COMPANY)
FOR ISSUANCE OF A CERTIFICATE OF PUBLIC) CASE NO.: 2020-00310
CONVENIENCE AND NECESSITY TO CONSTRUCT)
A WIRELESS COMMUNICATIONS FACILITY)
IN THE COMMONWEALTH OF KENTUCKY)
IN THE COUNTY OF PULASKI)

SITE NAME: HAPPY RIDGE RELO

* * * * * * *

APPLICATION FOR CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY FOR CONSTRUCTION OF A WIRELESS COMMUNICATIONS FACILITY

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility and Uniti Towers LLC, a Delaware limited liability company ("Applicants"), by counsel, pursuant to (i) KRS §§ 278.020, 278.040, 278.650, 278.665, and other statutory authority, and the rules and regulations applicable thereto, and (ii) the Telecommunications Act of 1996, respectfully submit this Application requesting issuance of a Certificate of Public Convenience and Necessity ("CPCN") from the Kentucky Public Service Commission ("PSC") to construct, maintain, and operate a Wireless Communications Facility ("WCF") to serve the customers of the Applicants with wireless communications services.

In support of this Application, Applicants respectfully provide and state the following

information:

- 1. The complete names and addresses of the Applicants are: New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility, having an address of Meidinger Tower, 462 S. 4th Street, Suite 2400, Louisville, Kentucky 40202 and Uniti Towers LLC, a Delaware limited liability company having an address of 10802 Executive Center Drive, Benton Building, Suite 300, Little Rock, Arkansas 72211.
- 2. Applicants propose construction of an antenna tower for communications services, which is to be located in an area outside the jurisdiction of a planning commission, and Applicants submit this application to the PSC for a certificate of public convenience and necessity pursuant to KRS §§ 278.020(1), 278.040, 278.650, 278.665, and other statutory authority.
- 3. AT&T Mobility is a limited liability company organized in the State of Delaware on October 20, 1994. Uniti Towers is a limited liability company organized in the State of Delaware on December 2, 2015.
- 4. Applicants attest that they are in good standing in the state in which they are organized and further state that they are authorized to transact business in Kentucky.
- 5. The Certificates of Authority filed with the Kentucky Secretary of State for both Applicants are attached as part of **Exhibit A** pursuant to 807 KAR 5:001: Section 14(3).
- 6. AT&T Mobility operates on frequencies licensed by the Federal Communications Commission ("FCC") pursuant to applicable FCC requirements. Copies of AT&T Mobility's FCC licenses to provide wireless services are attached to this Application or described as part of **Exhibit A**, and the facility will be constructed and operated in

accordance with applicable FCC regulations.

- 7. The public convenience and necessity require the construction of the proposed WCF. The construction of the WCF will bring or improve AT&T Mobility's services to an area currently not served or not adequately served by AT&T Mobility by increasing coverage or capacity and thereby enhancing the public's access to innovative and competitive wireless communications services. The WCF will provide a necessary link in AT&T Mobility's communications network that is designed to meet the increasing demands for wireless services in Kentucky's wireless communications service area. The WCF is an integral link in AT&T Mobility's network design that must be in place to provide adequate coverage to the service area.
- 8. To address the above-described service needs, Applicants propose to construct a WCF at 240 Happy Ridge Road, Nancy, Kentucky 42544 (37° 06' 00.76" North latitude, 84° 46' 36.42" West longitude), on a parcel of land located entirely within the county referenced in the caption of this application. The property on which the WCF will be located is owned by Gladys Molden (1/2 interest), Terry Molden (1/4 interest) and Charlotte Wells (1/4 interest) pursuant to a deed recorded at Deed Book 897, Page 539 in the office of the County Clerk. The proposed WCF will consist of a 305-foot tall tower, with an approximately 12-foot tall lightning arrestor attached at the top, for a total height of 317-feet. The WCF will also include concrete foundations and a shelter or cabinets to accommodate the placement of AT&T Mobility's radio electronics equipment and appurtenant equipment. The Applicants' equipment cabinet or shelter will be approved for use in the Commonwealth of Kentucky by the relevant building inspector. The WCF

compound will be fenced and all access gate(s) will be secured. A description of the manner in which the proposed WCF will be constructed is attached as **Exhibit B** and **Exhibit C**.

- 9. A list of utilities, corporations, or persons with whom the proposed WCF is likely to compete is attached as **Exhibit D**.
- 10. The site development plan and a vertical profile sketch of the WCF signed and sealed by a professional engineer registered in Kentucky depicting the tower height, as well as a proposed configuration for AT&T Mobility's antennas has also been included as part of **Exhibit B**.
- 11. Foundation design plans signed and sealed by a professional engineer registered in Kentucky and a description of the standards according to which the tower was designed are included as part of **Exhibit C**.
- 12. Applicants have considered the likely effects of the installation of the proposed WCF on nearby land uses and values and have concluded that there is no more suitable location reasonably available from which adequate services can be provided, and that there are no reasonably available opportunities to co-locate AT&T Mobility's antennas on an existing structure. When suitable towers or structures exist, AT&T Mobility attempts to co-locate on existing structures such as communications towers or other structures capable of supporting AT&T Mobility's facilities; however, no other suitable or available co-location site was found to be located in the vicinity of the site.
- 13. A copy of the Determination of No Hazard to Air Navigation issued by the Federal Aviation Administration ("FAA") is attached as **Exhibit E**.

- 14. A copy of the approval issued by the Kentucky Airport Zoning Commission ("KAZC") is attached as **Exhibit F**.
- 15. A geotechnical engineering firm has performed soil boring(s) and subsequent geotechnical engineering studies at the WCF site. A copy of the geotechnical engineering report, signed and sealed by a professional engineer registered in the Commonwealth of Kentucky, is attached as **Exhibit G**. The name and address of the geotechnical engineering firm and the professional engineer registered in the Commonwealth of Kentucky who supervised the examination of this WCF site are included as part of this exhibit.
- 16. Clear directions to the proposed WCF site from the County seat are attached as **Exhibit H**. The name and telephone number of the preparer of **Exhibit H** are included as part of this exhibit.
- 17. Uniti Towers LLC, pursuant to a written agreement, has acquired the right to use the WCF site and associated property rights. A copy of the agreements or abbreviated agreements recorded with the County Clerk are attached as **Exhibit I**.
- 18. Personnel directly responsible for the design and construction of the proposed WCF are well qualified and experienced. The tower and foundation drawings for the proposed tower submitted as part of **Exhibit C** bear the signature and stamp of a professional engineer registered in the Commonwealth of Kentucky. All tower designs meet or exceed the minimum requirements of applicable laws and regulations.
- 19. The Construction Manager for the proposed facility is Jeremy Culpepper and the identity and qualifications of each person directly responsible for design and

construction of the proposed tower are contained in **Exhibits B & C**.

- 20. As noted on the Survey attached as part of **Exhibit B**, the surveyor has determined that the site is not within any flood hazard area.
- 21. **Exhibit B** includes a map drawn to an appropriate scale that shows the location of the proposed tower and identifies every owner of real estate within 500 feet of the proposed tower (according to the records maintained by the County Property Valuation Administrator). Every structure and every easement within 500 feet of the proposed tower or within 200 feet of the access road including intersection with the public street system is illustrated in **Exhibit B**.
- 22. Applicants have notified every person who, according to the records of the County Property Valuation Administrator, owns property which is within 500 feet of the proposed tower or contiguous to the site property, by certified mail, return receipt requested, of the proposed construction. Each notified property owner has been provided with a map of the location of the proposed construction, the PSC docket number for this application, the address of the PSC, and has been informed of his or her right to request intervention. A list of the notified property owners and a copy of the form of the notice sent by certified mail to each landowner are attached as **Exhibit J** and **Exhibit K**, respectively.
- 23. Applicants have notified the applicable County Judge/Executive by certified mail, return receipt requested, of the proposed construction. This notice included the PSC docket number under which the application will be processed and informed the County Judge/Executive of his/her right to request intervention. A copy of this notice is attached as **Exhibit L**.

- 24. Notice signs meeting the requirements prescribed by 807 KAR 5:063, Section 1(2) that measure at least 2 feet in height and 4 feet in width and that contain all required language in letters of required height, have been posted, one in a visible location on the proposed site and one on the nearest public road. Such signs shall remain posted for at least two weeks after filing of the Application, and a copy of the posted text is attached as **Exhibit M**. A legal notice advertisement regarding the location of the proposed facility has been published in a newspaper of general circulation in the county in which the WCF is proposed to be located. A copy of the newspaper legal notice advertisement is attached as part of **Exhibit M**.
- 25. The general area where the proposed facility is to be located is rural and heavily wooded.
- 26. The process that was used by AT&T Mobility's radio frequency engineers in selecting the site for the proposed WCF was consistent with the general process used for selecting all other existing and proposed WCF facilities within the proposed network design area. AT&T Mobility's radio frequency engineers have conducted studies and tests in order to develop a highly efficient network that is designed to handle voice and data traffic in the service area. The engineers determined an optimum area for the placement of the proposed facility in terms of elevation and location to provide the best quality service to customers in the service area. A radio frequency design search area prepared in reference to these radio frequency studies was considered by the Applicants when searching for sites for its antennas that would provide the coverage deemed necessary by AT&T Mobility. A map of the area in which the tower is proposed to be located which is drawn to scale and

clearly depicts the necessary search area within which the site should be located pursuant to radio frequency requirements is attached as Exhibit N.

- 27. The tower must be located at the proposed location and proposed height to provide necessary service to wireless communications users in the subject area.
- 28. All Exhibits to this Application are hereby incorporated by reference as if fully set out as part of the Application.
- 29. All responses and requests associated with this Application may be directed to:

David A. Pike Pike Legal Group, PLLC 1578 Highway 44 East, Suite 6 P. O. Box 369 Shepherdsville, KY 40165-0369 Telephone: (502) 955-4400 Telefax:

(502) 543-4410

Email:

dpike@pikelegal.com

WHEREFORE, Applicants respectfully request that the PSC accept the foregoing Application for filing, and having met the requirements of KRS §§ 278.020(1), 278.650, and 278.665 and all applicable rules and regulations of the PSC, grant a Certificate of Public Convenience and Necessity to construct and operate the WCF at the location set forth herein.

Respectfully submitted,

David A. Pike

Pike Legal Group, PLLC

1578 Highway 44 East, Suite 6

P. O. Box 369

Shepherdsville, KY 40165-0369

Telephone: (502) 955-4400

rid a Pelse

(502) 543-4410 Telefax: Email: dpike@pikelegal.com

Attorney for Applicants

LIST OF EXHIBITS

A - Certificate of Authority & FCC License Documentation

B - Site Development Plan:

500' Vicinity Map Legal Descriptions Flood Plain Certification

Site Plan

Vertical Tower Profile

C - Tower and Foundation Design

D - Competing Utilities, Corporations, or Persons List

E - FAA

F - Kentucky Airport Zoning Commission

G - Geotechnical Report

H - Directions to WCF Site

Copy of Real Estate Agreement

J - Notification Listing

K - Copy of Property Owner Notification

Copy of County Judge/Executive Notice

Copy of Posted Notices and Newspaper Notice Advertisement

N - Copy of Radio Frequency Design Search Area

EXHIBIT A CERTIFICATE OF AUTHORITY & FCC LICENSE DOCUMENTATION

Commonwealth of Kentucky Alison Lundergan Grimes, Secretary of State

Alison Lundergan Grimes Secretary of State P. O. Box 718 Frankfort, KY 40602-0718 (502) 564-3490 http://www.sos.ky.gov

Certificate of Authorization

Authentication number: 216299

Visit https://app.sos.ky.gov/ftshow/certvalidate.aspx to authenticate this certificate.

I, Alison Lundergan Grimes, Secretary of State of the Commonwealth of Kentucky, do hereby certify that according to the records in the Office of the Secretary of State,

NEW CINGULAR WIRELESS PCS, LLC

, a limited liability company authorized under the laws of the state of Delaware, is authorized to transact business in the Commonwealth of Kentucky, and received the authority to transact business in Kentucky on October 14, 1999.

I further certify that all fees and penalties owed to the Secretary of State have been paid; that an application for certificate of withdrawal has not been filed; and that the most recent annual report required by KRS 14A.6-010 has been delivered to the Secretary of State.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my Official Seal at Frankfort, Kentucky, this 28th day of May, 2019, in the 227th year of the Commonwealth.

Alison Lundergan Grimes

Secretary of State

 $Commonwealth\ of\ Kentucky$

216299/0481848

0972004.06

mstratton

Alison Lundergan Grimes Kentucky Secretary of State Received and Filed: 1/3/2017 3:10 PM Fee Receipt: \$90.00

COMMONWEALTH OF KENTUCKY ALISON LUNDERGAN GRIMES, SECRETARY OF STATE

Division of Business Filings Business Filings PO Box 718 Frankfort, KY 40602 (502) 564-3490 www.sos.ky.gov	Certificate of Authority (Foreign Business Enti	ty)		F8	E
Pursuant to the provisions of KRS 14A a on behalf of the entity named below and,	nd KRS 271B, 273, 274,275, 362 and 3 for that purpose, submits the following	386 the undersigned h statements:	ereby applies for au	ithority to transact b	usiness in Kentucky
bustness t limited par	ruet (KRS 386).	orporation (KRS 273). ility company (KRS 27		nal service corporal nal limited liability c	• •
2. The name of the entity is Uniti Tov					<u> </u>
	at be identical to the name on record with	the Secretary of State.)		
3. The name of the entity to be used in h	(Only provide	if "real name" is unava	liable for use; otherw	ise, leave blank.)	·
4. The state or country under whose law	the entity is organized is Delaware) 	·		
5. The date of organization is 12/2/20	115		da - la		
a. The date of organization is	· · · · · · · · · · · · · · · · · · ·	and the period of durat	ion is(if	left blank, the period	of duration
6. The mailing address of the entity's pri	ncinal office is			is considered perp	etual.)
10802 Executive Center Drive	,	Little Rock	AR	72211	
Street Address	,	City	State	Zip Code	
7. The street address of the entity's regis	stared office in Kentucky is				
306 West Main Street - Suite	•	Frankfort	KY	40601	
Street Address (No P.O. Box Numbers)		City	State	Zip Code	·
and the name of the registered agent at t	hat affect to C T Corporation S		-	шр	
					· · · · · · · · · · · · · · · · · · ·
8. The names and business addresses of	of the entity's representatives (secretar)	y, officers and director	s, managers, truste	es or general partne	rs):
Daniel L. Heard	0802 Executive Canter Drive, Benton Building, Suite 300	Little Rock	AR	72211	
Name	Street or P.O. Box	City	State	Zip Code	
Kenneth Gunderman	10802 Executive Center Drive, Benton Building, Suite 300	Little Rock	AR	72211	•
Name	Street or P.O. Box	City	State	Zip Code	
Mark A. Wallace	10802 Executive Center Drive, Benton Building, Suite 300	Little Rock	AR	72211	
Name	Street or P.O. Box	City	State	Zip Code	
9. If a professional service corporation, all the Indimore states or territories of the United States or Di					r are licensed in one or
10. I certify that, as of the date of filing th	is application, the above-named entity	validly exists under the	a laws of the jurisdic	tion of its formation.	
11. If a limited partnership, it elects to I	be a limited liability limited partnershi	p. Check the box if	applicable:		
12. If a limited liability company, check	box if manager-managed:				
 This application will be effective upon The effective date or the delayed effective 					
The elective date of the delayed electiv	e date carriot na bitoi to the date the a	pplication is ineo. The	date and/or time is	(Delayed effective d	ate and/or time)
7	→ Keith H	larvey, VP - Deputy	General Counsel	12/30/2016	
Signature of Authorized Representative		Printed Name & Title		Date	· · · · · · · · · · · · · · · · · · ·
, C T Corporation System	, cons	ent to serve as the reg	listered agent on be	half of the business	entity.
Type/Print Name of Registered Agent	· —				
Vister Fruit	Tristan Emric	ch	Assistant Sec	retary	12/30/2016
Signature of Registeres Agent	Printed Name		Title		Date
(09/15)					

<u>Delaware</u>

Page 1

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF

DELAWARE, DO HEREBY CERTIFY "UNITI TOWERS LLC" IS DULY FORMED UNDER

THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD STANDING AND HAS A

LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS OFFICE SHOW, AS OF

THE THIRTIETH DAY OF DECEMBER, A.D. 2016.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE BEEN PAID TO DATE.

5896640 8300 N SR# 20167345793

You may verify this certificate online at corp.delaware.gov/authver.shtml

Authentication: 203613650

Date: 12-30-16

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: LESLIE WILSON NEW CINGULAR WIRELESS PCS, LLC 208 S AKARD ST., RM 1016 DALLAS, TX 75202

Call Sign KNKN965	File Number
	Service Cellular
Market Numer CMA448	Channel Block B
Sub-Marke	t Designator

FCC Registration Number (FRN): 0003291492

Market Name Kentucky 6 - Madison

Grant Date 08-30-2011 Effective Date 08-31-2018 Expiration Date 10-01-2021 Five Yr Build-Out Date	Print Date
---	------------

Site Information:

LocationLatitudeLongitudeGround Elevation (meters)Structure Hgt to Tip (meters)Antenna Structure Registration No.437-24-34.0 N084-19-48.0 W449.6110.01043626

Address: Burdette Rd (105167)

City: WILDIE County: ROCKCASTLE State: KY Construction Deadline:

Antenna: 2					- comment to			
Maximum Transmitting ERP in Watts:	140.820					i Maria		
Azimuth(from true north)	0	45	90	135	180	22 5	270	315
Antenna Height AAT (meters)	211.200	144.500	148.400	190.800	163,400	1 70 .700	205.900	192,000
Transmitting ERP (watts) Antenna: 3	61.200	28.600	3.100	0.200	0.122	0.20 0	3.900	32.100
Maximum Transmitting ERP in Watts:	140.820					*		
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	211.200	144.500	148.400	190.800	163,400	170.700	205.900	192,000
Transmitting ERP (watts)	0.400	0.500	13.000	99.800	198.200	83.200	6.800	0.900
Antenna: 4								
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	211.200	144.500	148.400	190.800	163.400	170.700	20 5.900	192,000
Transmitting ERP (watts)	6.800	0.900	0.400	0.500	13.000	99.800	198 .200	83.200
							-0.156.0257	

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Call Sign: KNKN965 **Print Date:** File Number:

	FIRE	Mulliber.		Time Date.				
Location Latitude 10 37-21-02.1 N	Longitude 084-19-46.3 W	(m	round Elev teters) 50.8	(Structure Hg meters) 77.4	to Tip	Antenna St Registratio 1242832	
Address: 208 DAVIS LANE		••		,	,,,		12002	
City: Mount Vernon Cour	10 CO	E State:	KY Con	struction	Deadline:			
Antenna: 1 Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	0	45 137.500 52.400	90 148.900 5.400	135 151.500 0.300	180 164.200 0.245	225 185.600 0.300	270 160.000 8.700	315 178.000 63.000
Antenna: 2 Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3) 0 1 93 .700 1.600	45 137.500 18.200	90 148.900 93.100	135 151.500 111.900		225 185.600 2.500	270 160.000 0.300	315 178.000 0.400
Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	0	45 137:500 0.400	90 148.900 0.400	135 151.500 6.700	180 164,200 55,500	225 185.600 186.500	270 160.000 141.700	315 178.000 15.300
Location Latitude	Longitude	(n	cound Elev leters)	(Structure Hg meters)	to Tip	Antenna St Registratio	
37-30 14,014	084-19-39.5 W	33	9.2	1	10.3		1204267	
Address: 151 JIM LAMBER City: MOUNT VERNON	County: ROCKCA	STIF &	tate: KY	Constru	ıction Deadli	no:		
Antenna: 1 Maximum Transmitting ERP Azimuth(from true north)	in Watts: 140.820	45	90	135	180	225	270	315
Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2	132.000 74.600	123.500 66.500	30.000 10.300	52.900 0.900	101.900 0.149	117.900 0.200	108.700 2.100	136.400 19.600
Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3	0	45 123.500 0.500	90 30.000 11.300	135 52.900 108.100	180 101.900 236.600	225 117.900 118.500	270 108.700 7.800	315 136.400 1.100
Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters)	0	45 123,500	90 30.000	135 52.900	180 101.900	225 11 7 .900	270 108.700	315 136.400

Call Sign: KNKN965 File Number: Print Date:

Location	Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
18	37-06-2 8.8 N	083-58-14.2 W	429.8	59.7	1251801
Address:	1250 Lick Fork Road	(114153)			
City: Lon	idon County: LAU	REL State: KY	Construction Deadline:		

Antenna: 1							
Maximum Transmitting ERP in Watts: 140.820							
Azimuth(from true north)	45	90	135	180	225	270	315
Antenna Height AAT (meters) 133.300	116.400	135.500	105.700	114.900	136.800	115.700	116.100
Transmitting ERP (watts) 26,000 Antenna: 2	16.100	1.700	0.200	0.100	0.200	2.000	16.100
Maximum Transmitting ERP in Watts: 140.820							
Azimuth(from true north)	45	90	135	180	225	270	315
Antenna Height AAT (meters) 133.300	116.400	135.500	105.700	114.900	136.800	115.700	116.100
Transmitting ERP (watts) Antenna: 3	20.600	105.700	127.100	29.900	2.900	0.300	0.400
Maximum Transmitting ERP in Watts: 140,820							
Azimuth(from true north)	45	90	135	180	225	270	315
Antenna Height AAT (meters) 133.300	116.400	135.500	105.700	114.900	136,800	115.700	116.100
Transmitting ERP (watts) 2.100	0.423	0.423	7.600	63.000	211.700	160.900	17.400

Location	Latitude	Longitude	Ground Elevation		
19	37-06-39.3 N	084-02-46.7 W	(mêters) 463.2	(meters) 30.5	Registration No.
A 11.	102 CTONELIEN CE			3 0.0	1229 .00

Address: 102 STONEHENGE DRIVE (37535)

City: LONDON County: LAUREL State: KY Construction Deadline:

Antenna: 1								
Maximum Transmitting ERP in Watts:	140.820			****				
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	144.000	126.500	122.000	126.400	140,600	130,100	134.900	129.600
Transmitting ERP (watts) Antenna: 2	70.300	32.900	3.500	0.200	0.140	0.200	4.500	36.900
	1.40.000		*					
Maximum Transmitting ERP in Watts:	140.820		9					
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	144.000	126.500	122.000	126,400	140.600	130.100	134.900	129.600
Transmitting ERP (watts) Antenna: 3	4.500	36.900	70.300	32.900	3.500	0.200	0.140	0.200
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	144.000	126.500	122.000	126,400	140.600	130 .100	134.900	129,600
Transmitting ERP (watts)	0.249	0.300	3.500	32.800	124.700	111.200	17.200	1.500

Call Sign: KNKN965

File Number:

Print Date:

Can Sign. River Vos	THE	Mullibel.			•	imi Date	•	
Location Latitude	Longitude		round Elev leters)	ation	Structure Hg (meters)	t to Tip	Antenna Se Registratio	
20 37-06-0 3.7 N	084-46-43.5 W	34	10.2		106.4		1247464	
Address: 499 Happy Ridge Ro								
City: Nancy County: PULA	SKI State: KY	Constr	uction Dea	dline:				
Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	Watts: 140.820 0 113.200 16.300	45 126.700	90 136.700	135 137.90		225 130.800	270 101.800	315 102.000
Antenna: 2		10.100	1.100	0.100	0.100	0.100	1.200	10.100
Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERP in	0 113.200 2.800	45 126.700 38.100	90 136.700 190.900	135 137.90 224.30		225 130.800 2.100	270 101.800 0.500	315 102.000 0.500
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters) Transmitting ERP (watts)	113.200	126.700 0.100	136.700	137.90		130.800	101.800	102.000
	0.100	0.100	0.100	0.300	1.300	1.700	1.900	0.700
Location Latitude 21 37-11-18.1 N	Longitude 084-08-34.4 W	(m	round Elev leters) 17.0	ation	Structure Hg (meters) 75.0	t to Tip	Antenna St Registratio 1227530	
Address: 233 US 25 North (37		***			70.0		122/330	
	•	te: KY	Constructi	on Dea	dline:			
Antenna: 1 Maximum Transmitting ERP in	Watts: 140.820							
Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2	0 109.000 116.900	45 105.900 5.400	90 96.400 1.300	135 83,500 0,706	90.300 2.000	225 96.500 31.400	270 101.200 227.900	315 103.800 353.200
Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3	Watts: 140.820 0 109.000 8.800	45 105.900 72.700	90 96.400 203.500	135 83.500 125.80		225 96.500 1.500	270 101.200 0.407	315 103.800 0.407
Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	Watts: 140.820 0 109.000 0.100	45 105.900 0.200	90 96.400 0.400	135 83.500 1.700	180 90.300 2.700	225 96, 500 2,800	270 101.200 1.300	315 103.800 0.200

Maximum Transmitting ERP in Watts: 140.820
Azimuth(from true north)
Antenna Height AAT (meters)
123.200
Transmitting ERP (watts)
13.600

0 123.200

13.600

45

125.000

1.600

90

89.000 0.331

135

126.700 0.331

Call Sign. KNKN965 Print Date: File Number

Call Sign: KNKN965	File	Number:		Print Date:				
Location Latitude	Longitude	(n	round Elev neters)	ation	Structure Hg (meters)	t to Tip	Antenna S Registratio	
22 37-14-1 3.8 N	084-13-43.8 W	36	59.7		97.5		1201300	
Address: Route #1, Box 119	V (37534)							
City: East Bernstadt Coun	ty: LAUREL Sta	ate: KY	Constructi	on Dea	dline:			
Antenna: 1								
Maximum Transmitting ERP i	A CONTRACTOR OF THE PROPERTY O							
Azimuth(from true north) Antenna Height AAT (meters)	0 110.700	45	90	135	180	225	270	315
Transmitting ERP (watts)	64.7 00	99.200 126.200	115.800 53.800	90.900 5.500	91.900 0.300	120.600 0.300	111.300 0.300	82.000 8.900
Antenna: 2	04.7 00	120.200	23.800	3.300	0.300	0.300	0.300	8.900
Maximum Transmitting ERP i	n Watts: 140.820							
Azimuth(from true north) Antenna Height AAT (meters)		45	90	135	180	225	270	315
Transmitting ERP (watts)	110.700	99.200	115.800	90.900		120.600	111.300	82.000
Antenna: 3	2.000	31.000	224.800	348.30	00 115.300	5.300	1.200	0.700
Maximum Transmitting ERP i	n Watts: 140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters) Transmitting ERP (watts)	110.700	99.200	115.800	90,900		120.600	111.300	82.000
Transmitting ERF (watts)	147.600	9. 500	1.600	0.600	0.600	14.000	128.700	295.600
Location Latitude	Longitude	G	round Elev	ation	Structure Hg	t to Tip	Antenna S	tructure
Location Latitude	Dongitude	79.6% (SE) (SE)	ieters)	wwo.ii	(meters)		Registratio	
23 37-09-08.0 N	084-18-58.5 W	75.00	50.8		106.7		1229865	и 110.
37-05 00.014	00 4 -10-30.3 W		70.8		100.7		1229003	
Address: 31 Laddie (37716)	TT A CITE OF A		_					
City: Somerset County: Pl	ULASKI State:	KY Con	struction I	eadline	e: 	···		
		,-						
Antenna: 1 Marimum Tuansmittina EDD i	- W-44 140 930							
Maximum Transmitting ERP i Azimuth(from true north)	n watts: 140.820	45	90	135	180	225	270	315
Antenna Height AAT (meters)	123.200	125.000	89.000	126.70	424	130.600	152.500	128.900
Transmitting ERP (watts)	11.500	89.000	176.600	74.200	有效。	0.800	0.400	0.400
Antenna: 2							•••	
Maximum Transmitting ERP i Azimuth(from true north)		45	00		100	225	270	215
Azimuth(from true north) Antenna Height AAT (meters)	0 123.200	45 125.000	90	135	1 80 00 144.700	225 130.600	270 152.500	315 128,900
Transmitting ERP (watts)	0.400	0.400	89.000 11.700	126.70 89.800		74.900	6.100	0.800
Antenna: 3		5.700	11.700	07.000	, 1,9.200	4 T. 700	0.100	0.000
Maximum Transmitting FDD :	- XX/-44n, 140 000				- THE RESERVE OF THE	TENTA		

270

152.500

165.500

315

128.900

125.700

225 130.600 49.200

180 144.700

5.900

Call Sign: KNKN965 **Print Date:** File Number:

Antenna Height AAT (meters) 167.000 183.000 156.400 168.700 182.300 193.800 178.100 178.100 183.000 17.200 0.800 0.318 0.318 4	Can Sign: KNKN905	File	Number:			r	rint Date	•	
Address: 740 Fire Tower Rd (37718) City: Somerset		Longitude	(m	ieters)	ation	_	t to Tip	Registratio	
Antenna	57-00-20 IT		42	27.9		59.4		1279127	
Antenna: 1 Maximum Transmitting ERP in Watts: 140.820 Azimuth(from true north) Antenna Height AAT (meters) Info									
Maximum Transmitting ERP in Watts: 140,820 Azimuth(from true north)	City: Somerset County: PU	LASKI State: K	Y Con	struction I)eadlin	e:			
Antenna Height AAT (meters) 167,000 183,000 156,400 168,700 182,300 193,800 178,100 178,100 183,000 17,200 0.800 0.318 0.318 4 4 4 4 4 4 4 4 4	N. 45 (1) (1)	Watts: 140.820							
Transmitting ERP (watts) 52.800 159.300 116.300 17.200 0.800 0.318 0.318 4.800									315
Azimuth(from true north)	Transmitting ERP (watts)	96C							149.400 4.000
Antenna Height AAT (meters)									
Transmitting ERP (watts)	Azimuth(from true north) Antenna Height AAT (meters)								315 149.400
Maximum Transmitting ERP in Watts: 140,820 Azimuth(from true north) 0	Transmitting ERP (watts)	September 1995 April 1						- ,	1.500
Azimuth(from true north)		Watts: 140 820							
Contain Latitude Longitude Ground Elevation Structure Hgt to Tip (meters) Registration National N	Azimuth(from true north)	0		90	135	180	225	270	315
Location Latitude		A556.2							149.400 292.800
City: Somerset County: PULASKI State: KY Construction Deadline: County: PULASKI		84.90 V	4.600	0.000	0.700	1.900	34.400	223.900	292.000
Address: 1025 Hill Road (39215) City: Somerset County: PULASKI State: KY Construction Deadline: Antenna: 1 Maximum Transmitting ERP in Watts: 140.820 Azimuth(from true north)	Location Latitude	Longitude	-1000 M	No.	ation	_	t to Tip		
City: Somerset County: PULASKI State: KY Construction Deadline: Antenna: 1 Maximum Transmitting ERP in Watts: 140.820 140.820 140.820 140.820 140.820 140.820 140.820 140.820 180 140.820	25 37-01-12.7 N	084-34-43.7 W	- 39	8.4		77.7		1234225	
Antenna: 1 Maximum Transmitting ERP in Watts: 140.820 Azimuth(from true north)	Address: 1025 Hill Road (392	15)							
Maximum Transmitting ERP in Watts: 140.820 Azimuth(from true north) 0 45 90 135 180 225 270 3 Antenna Height AAT (meters) 172.600 159.800 160.600 194.400 199.300 176.400 199.200 1 Transmitting ERP (watts) 219.200 70.600 3.800 0.900 0.438 1.300 17.700 1 Antenna: 2 Maximum Transmitting ERP in Watts: 140.820 45 90 135 180 225 270 3 Antenna Height AAT (meters) 172.600 159.800 160.600 194.400 199.300 176.400 199.200 1 Transmitting ERP (watts) 0.300 1.700 14.200 43.300 50.200 49.700 10.000 3 Maximum Transmitting ERP in Watts: 140.820 45 90 135 180 225 270 3 Azimuth(from true north) 0 45 90 135 180 225 270 3	City: Somerset County: PU	LASKI State: K	CY Con	stru ction I)eadlin	e:			
Azimuth(from true north) 0 45 90 135 180 225 270 3 Antenna Height AAT (meters) 172.600 159.800 160.600 194.400 199.300 176.400 199.200 1 Transmitting ERP (watts) 219.200 70.600 3.800 0.900 0.438 1.300 17.700 1 Antenna: 2 Maximum Transmitting ERP in Watts: 140.820 45 90 135 180 225 270 3 Antenna Height AAT (meters) 172.600 159.800 160.600 194.400 199.300 176.400 199.200 1 Transmitting ERP (watts) 0.300 1.700 14.200 43.300 50.200 49.700 10.000 3 Antenna: 3 Maximum Transmitting ERP in Watts: 140.820 45 90 135 180 225 270 3 Azimuth(from true north) 0 45 90 135 180 225 270 3	·	Watter 140 820							
Transmitting ERP (watts) 219.200 70.600 3.800 0.900 0.438 1.300 17.700 1 Maximum Transmitting ERP in Watts: 140.820 45 90 135 180 225 270 3 Antenna Height AAT (meters) 172.600 159.800 160.600 194.400 199.300 176.400 199.200 1 Transmitting ERP (watts) 0.300 1.700 14.200 43.300 50.200 49.700 10.000 3 Maximum Transmitting ERP in Watts: 140.820 45 90 135 180 225 270 3 Azimuth(from true north) 0 45 90 135 180 225 270 3	Azimuth(from true north)		45	90	135	180	225	270	315
Maximum Transmitting ERP in Watts: 140.820 Azimuth(from true north) 0 45 90 135 180 225 270 3 Antenna Height AAT (meters) 172.600 159.800 160.600 194.400 199.300 176.400 199.200 1 Transmitting ERP (watts) 0.300 1.700 14.200 43.300 50.200 49.700 10.000 3 Antenna: 3 Maximum Transmitting ERP in Watts: 140.820 45 90 135 180 225 270 3 Azimuth(from true north) 0 45 90 135 180 225 270 3	Transmitting ERP (watts)					100 mm (100)			183.200 131.500
Antenna Height AAT (meters) 172.600 159.800 160.600 194.400 199.300 176.400 199.200 1 Transmitting ERP (watts) 0.300 1.700 14.200 43.300 50.200 49.700 10.000 3 Antenna: 3 Maximum Transmitting ERP in Watts: 140.820 Azimuth(from true north) 0 45 90 135 180 225 270 3	Maximum Transmitting ERP in	Watts: 140.820		W.					
Transmitting ERP (watts) 0.300 1.700 14.200 43.300 50.200 49.700 10.000 3 Antenna: 3 Maximum Transmitting ERP in Watts: 140.820 Azimuth(from true north) 0 45 90 135 180 225 270 3	Azimuth(from true north) Antenna Height AAT (meters)				CANADA CARENT				315
Maximum Transmitting ERP in Watts: 140.820 Azimuth(from true north) 0 45 90 135 180 225 270 3	Transmitting ERP (watts)								183.200 3.300
A	Maximum Transmitting ERP in								
						200 mm	Access 6756		
100.000 194.400 177.500 179.400 177.500 179.400 177.500 179.500 1						100 March 100 Ma			32.500
The state of the s	Azimuth(from true north) Antenna Height AAT (meters)	0 172.600	159.800	160.600	194.40	00 199.300	176 .400	199.200	315 183.200

Call Sign: KNKN965

File Number:

Print Date:

Location Latitude Lor	Situat	round Elev neters)		ructure Hg neters)	t to Tip	Antenna St Registratio	
26 37-02- 20.6 N 084	-38-44.1 W 3	41.4	29	9.3			
Address: 1399 W. HWY 914 (1104	83)						
City: Somerset County: PULAS		struction D	eadline:				
Antenna: 1 Maximum Transmitting ERP in Watt	s: 140.820		_				
Azimuth(from true north) Antenna Height AAT (meters)	0 45 39.000 70.700	90	135	180	225	270	315
Transmitting ERP (watts) Antenna: 2	39.000 70.700 193. 600 81.300	66.600 6.600	85.100 0.900	87.700 0.400	103.300 0.500	69.700 12.700	85.600 97.600
Maximum Transmitting ERP in Watt	The state of the s						
Azimuth(from true north) Antenna Height AAT (meters)	0 45 70.700	90 66.600	135 85.100	180 87.700	225 103.300	270 69.700	315 85.600
Transmitting ERP (watts) Antenna: 3	2.600 27.000	144.400	181.000	38.100	3.500	0.500	0.600
Maximum Transmitting ERP in Water	ts: 140,820						
Azimuth(from true north) Antenna Height AAT (meters)	0 39.000 70.700	90 66.600	135 85.100	180 87.700	225 103.300	270 69.700	315 85.600
Transmitting ERP (watts)	1.800 0.4 00	0.400	6.500	53.800	181.000	137.600	14.900

Control Points:

Control Pt. No. 3

Address: 500 W. Dove Rd.

Telephone Number: (800)264-6620 City: Southlake County: TARRANT State: TX

Waivers/Conditions:

NONE

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC freense.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: CECIL J MAT**HEW**NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 1015
DALLAS, TX 75202

Call Sign WPOI255	File Number
Radio	Service
CW - PCS	Broadband

FCC Registration Number (FRN): 0003291192

Grant Date 05-27-2015	Effective Date 03-12-2020	Expiration Date 06-23-2025	Print Date
Market Number MTA026	Channe A	Block	Sub-Market Designator 19
	Market! Louisville-Lexing		
st Build-out Date 06-23-2000	2nd Build-out Date 06-23-2005	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

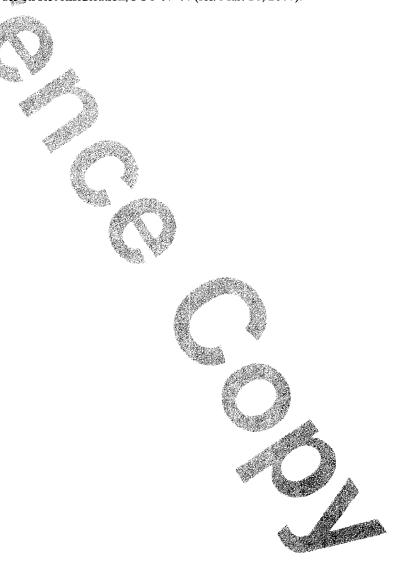
This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

This authorization is subject to the condition that the remaining balance of the winning bid amount will be paid in accordance with Part 1 of the Commission's rules, 47 C.F.R. Part 1.

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conterned by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the baide of version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.


Call Sign: WPOI255 File Number: Print Date:

This license is conditioned upon compliance with the provisions of Applications of AT&T Wireless Services, Inc. and Cingular Wireless Corporation For Consent to Transfer Control of Licenses and Authorizations, Memorandum Opinion and Order, FCC 04-255 (rel. Oct. 26, 2004).

Spectrum Lease Associated with this License. See Spectrum Leasing Arrangement Letter dated 12/06/2004 and File # 0001918558.

The Spectrum Leasing Arrangement, which became effective upon approval of application file number 0001918558, was terminated on 04/14/2005. See file number 0002135370.

Commission approval of this application and the licenses contained therein are subject to the conditions set forth in the Memorandum Opinion and Order, adopted on December 29, 2006 and released on March 26, 2007, and revised in the Order on Reconsideration, adopted and released on March 26, 2007. See AT&T Inc. and BellSouth Corporation Application for Transfer of Control, WC Docket No. 06-74, Memorandum Opinion and Order, FCC 06-189 (rel. Mar. 26, 2007); AT&T Inc. and BellSouth Corporation, WC Docket No. 06-74, Order on Reconsideration, FCC 07-44 (rel. Mar. 26, 2007).

Call Sign: WPOI255

File Number:

Print Date:

700 MHz Relicensed Area Information:

Market Name Buildout Deadline Buildout Notification Status

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: CECIL J MAT**HEW**NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 1015
DALLAS, TX 75202

Call Sign WPOK659	File Number 0008716070
Radio	Service
CW - PCS	Broadband

FCC Registration Number (FRN): 0003291192

Grant Date 09-12-2019	Effective Date 09-12-2019	Expiration Date 09-29-2029	Print Date 09-13-2019
Market Number BTA423	Channe	l Block	Sub-Market Designator
	Market Somerse		
st Build-out Date 09-29-2004	2nd Build-out Date 09-29-2009	3rd Build-out Date	4th Build-out Dat

Waivers/Conditions:

This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this ticense is subject to the following conditions: This license shall not vest in the licensee any right to operate the station for any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized hereh. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conterred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the thick of the control of the specific geographic area and spectrum authorized by this license, refer to the Spectrum and spectrum and the spectrum and the spectrum and the spectrum and s

Call Sign: WPOK659 File Number: 0008716070 Print Date: 09-13-2019

700 MHz Relicensed Area Information:

Market Name Buildout Deadline Buildout Notification Status

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: CECIL J MATHEW

NEW CINGULAR WIRELESS PCS, LLC

208 S AKARD ST., RM 1015

DALLAS, TX 75202

Call Sign WPXT205	File Number
Radio	Service
CW - PCS	Broadband

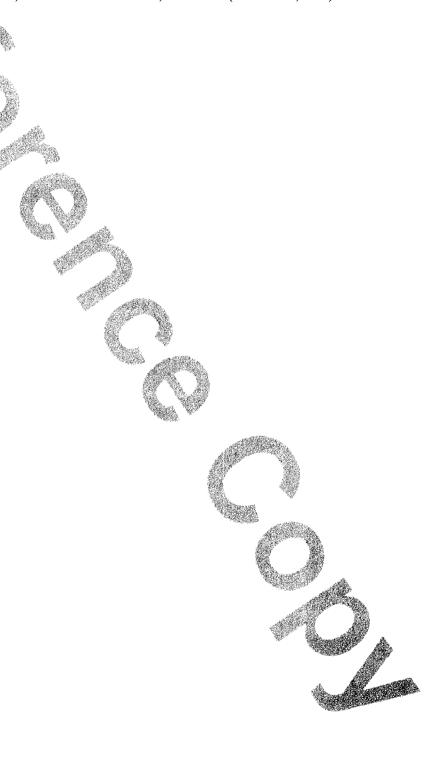
FCC Registration Number (FRN): 0003291192

Grant Date 06-02-2015	Effective Date 08-31-2018	Expiration Date 06-23-2025	Print Date
Market Number MTA026	Channe	el Block	Sub-Market Designator
	Market Louisville-Lexing		
st Build-out Date 06-23-2000	2nd Build-out Date 06-23-2005	3rd Build-out Date	4th Build-out Dat

Waivers/Conditions:

This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

This authorization is subject to the condition that the remaining balance of the winning bid amount will be paid in accordance with Part 1 of the Commission's rules, 47 C.F.R. Part 1.


Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any tight in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the didest existing. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Call Sign: WPXT205 File Number: Print Date:

Commission approval of this application and the licenses contained therein are subject to the conditions set forth in the Memorandum Opinion and Order, adopted on December 29, 2006 and released on March 26, 2007, and revised in the Order on Reconsideration, adopted and released on March 26, 2007. See AT&T Inc. and BellSouth Corporation Application for Transfer of Control, WC Docket No. 06-74, Memorandum Opinion and Order, FCC 06-189 (rel. Mar. 26, 2007); AT&T Inc. and BellSouth Corporation, WC Docket No. 06-74, Order on Reconsideration, FCC 07-44 (rel. Mar. 26, 2007).

Call Sign: WPXT205 File Number: Print Date:

700 MHz Relicensed Area Information:

Market Name Buildout Deadline Buildout Notification Status

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC heense.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: CECIL J MATHEW
NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST., RM 1015
DALLAS, TX 75202

Call Sign WQGD755	File Number				
Radio Service AW - AWS (1710-1755 MHz and					
2110-21:					

FCC Registration Number (FRN): 0003291192

Grant Date 12-18-2006	Effective Date 08-31-2018	Expiration Date 12-18-2021	Print Date
Market Number BEA047	Channe	l Block	Sub-Market Designator
	Market 1 Lexington, KY-		
st Build-out Date	2nd Build-out Date	3rd Build-out Date	4th Build-out Dat

Waivers/Conditions:

This authorization is conditioned upon the licensee, prior to initiating operations from any base or fixed station, making reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the 1710-1755 MHz band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the 1710-1755 MHz Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.

Grant of the request to update licensee name is conditioned on it not reflecting an assignment or transfer of control (see Rule 1.948); if an assignment or transfer occurred without proper notification or FCC approval, the grant is void and the station is licensed under the prior name.

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conterred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardest sersion. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Call Sign: WQGD755 File Number: Print Date:

700 MHz Relicensed Area Information:

Market Name Buildout Deadline Buildout Notification Status

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: CECIL J MAT**HEW**NEW CINGULAR WIRELESS PCS, LLC
208 S AKARD ST. RM 1015
DALLAS, TX 75202

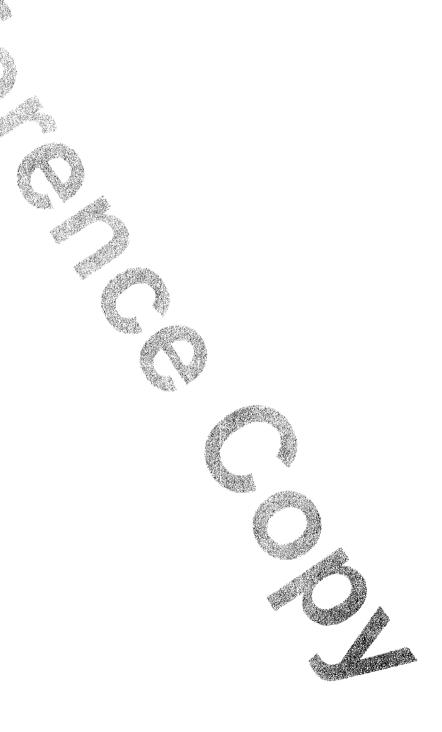
Call Sign WQUZ670	File Number			
Radio	Service			
AW - AWS (1710-1755 MHz and				
2110-2155 MHz)				

FCC Registration Number (FRN): 0003291192

Grant Date 09-26-2014	Effective Date 02-20-2019	Expiration Date 11-29-2021	Print Date
Market Number REA004	Channe D	l Block	Sub-Market Designator
	Market I Mississippi		
t Build-out Date	2nd Build-out Date	3rd Build-out Date	4th Build-out Dat

Waivers/Conditions:

This authorization is conditioned upon the licensee, prior to initiating operations from any base or fixed station, making reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the 1710-1755 MHz band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the 1710-1755 MHz Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.


Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any fight in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardest sion. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and the Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Call Sign: WQUZ670 File Number: Print Date:

The license is subject to compliance with the provisions of the January 12, 2001 Agreement between Deutsche Telekom AG, VoiceStream Wireless Corporation, VoiceStream Wireless Holding Corporation and the Department of Justice (DOJ) and the Federal Bureau of Investigation (FBI), which addresses national security, law enforcement, and public safety issues of the FBI and the DOJ regarding the authority granted by this license. Nothing in the Agreement is intended to limit any obligation imposed by Federal lawor regulation including, but not limited to, 47 U.S.C. Section 222(a) and (c)(1) and the FCC's implementing regulations. The Agreement is published at VoiceStream-DT Order, IB Docket No. 00-187, FCC 01-142, 16 FCC Rcd 9779, 9853 (2001).

Call Sign: WQUZ670 File Number: Print Date:

700 MHz Relicensed Area Information:

Market Market Name Buildout Deadline Buildout Notification Status

EXHIBIT B

SITE DEVELOPMENT PLAN:

500' VICINITY MAP
LEGAL DESCRIPTIONS
FLOOD PLAIN CERTIFICATION
SITE PLAN
VERTICAL TOWER PROFILE

FA NUMBER: 15145564 / SITE ID: KYLEX2038

PACE #: MRTNK047951


PROJECT TRACKING #: 10115694

SITE NAME: HAPPY RIDGE RELO

240 HAPPY RIDGE RD NANCY, KY 42544 **PULASKI COUNTY**

PROPOSED 305' GUYED TOWER

ZONING DRAWINGS

NO SCALE

TAKE RAMP ONTO LOUIE B NUNN CUMBERLAND PKWY 9.7 MI BOWLING GREEN / LOUIE B NUNN CUMBERLAND PKY WEST

DESIGN INFORMATION DRIVING DIRECTIONS DEPART COUNTY JUDGE EXECUTIVE'S OFFICE ON KY-1247 [100 N MAIN ST] (NORTH) 0.6 MI

A&E FIRM: B+T GROUP 1717 S. BOULDER SUITE 300

UNMANNED

TULSA, OK 74119 MIKE A. SPEEDIE, PE (918) 587-4630

SURVEYOR: POINT TO POINT 100 GOVERNORS TRACE, STE #103 PROVIDER: XXX-XXX-XXXX

PH. (678) 565-4440

PEACHTREE CITY, GA 30269

A/E DOCUMENT REVIEW STATUS

ACCEPTED: WITH OR NO COMMENTS, CONSTRUCTION MAY PROCEED

PROJECT SUMMARY

THE FOLLOWING PARTIES HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE CONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN. ALL DOCUMENTS ARE SUBJECT TO REVIEW BY THE LOCAL BUILDING DEPARTMENT AND MAY IMPOSE CHANGES OR MODIFICATIONS.

HAPPY RIDGE RELO

NANCY, KY 42544

PULASKI COUNTY

37.100211' N 84.776783' W

d/b/a AT&T MOBILITY

LOUISVILLE, KY 40202

FOR HUMAN HABITATION

MEIDINGER TOWER

240 HAPPY RIDGE ROAD

10802 EXECUTIVE CENTER DRIVE LITTLE ROCK, AR 72211

NEW CINGULAR WIRELESS, PCS, LLC, A

DELAWARE LIMITED LIABILITY COMPANY

462 S/ 4th STREET, SUITE 2400

FACILITY IS UNMANNED AND NOT

FA 15145564

019-0-0-32

NOT ACCEPTED: RESOLVE COMMENTS AND RESUBMIT

UNITI TOWERS PROP

INTERCONNECT:

STATUS CODE:

SITE NAME:

SITE NUMBER

SITE ADDRESS:

JURISDICTION: TOWER OWNER

LATITUDE

LONGITUDE

APPLICANT:

CO-APPLICANT:

OCCUPANCY TYPE:

A.D.A. COMPLIANCE:

TAX MAP PROPERTY ID:

PROPERTY OWNER:

UNITI TOWERS CONST. MGR.:

UNITI TOWERS SITE DEV. MGR .:

CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES.

CODE TYPE BUILDING/DWELLING STRUCTURA MECHANICAL

CODE IBC 2015 IBC 2015

THE ZONING DRAWINGS INCLUDES:

ARRIVE: HAPPY RIDGE RELO

KEEP RIGHT ONTO LOCAL ROAD(S) 65 YDS

TURN LEFT (WEST) ONTO LOCAL ROAD(S)21 YDS

ROAD NAME CHANGES TO LOCAL ROAD(S) 10 YDS

CONSTRUCT (1) NEW 305' GUYED TOWER CONSTRUCT FENCED GRAVEL UTILITY COMPOUND WITH LOCKING ACCESS GATE, 80' x 80' WITHIN 100' x 100'

PROJECT DESCRIPTION

TURN LEFT (WEST) ONTO KY-80 [E HIGHWAY 80] 0.7 MI

BEAR RIGHT (NORTH) ONTO US-27 [N HIGHWAY 27] 2.4 MI

AT EXIT 78, KEEP RIGHT ONTO RAMP 0.4 MI KY-80 / NANCY

TURN LEFT (SOUTH-EAST) ONTO KY-80 [W HIGHWAY 80] 1.6 MI

TURN LEFT (NORTH) ONTO KY-2993 [COLDWEATHER CHURCH RD] 0.7 MI

INSTALL (1) H-FRAME W/ UTILITY EQUIPMENT. INSTALL NEW POWER & TELCO UTILITY SERVICES. CONSTRUCT 12' WIDE GRAVEL ACCESS ROAD

DO NOT SCALE DRAWINGS

ALL DRAWINGS CONTAINED HEREIN ARE FORMATTED FOR 11X17. CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME

SHEET #	SHEET DESCRIPTION
T-1	TITLE SHEET
1-3	SURVEY
C-1	500' RADIUS & ADJOINER'S DRAWING
C-2	OVERALL SITE LAYOUT
C-3	ENLARGED COMPOUND LAYOUT
C-4	TOWER ELEVATION
	10.000 (10.000

(800) 752-6007

CALL 3 WORKING DAYS

BEFORE YOU DIG!

PROIECT NO: G0137330.00 CHECKED BY

REV DATE DRWN DESCRIPTION A 08/13/20 DLS ZONING DRAWINGS B 09/01/20 DLS ZONING DRAWINGS 0 09/03/20 DLS ZONING DRAWINGS

> B&T ENGINEERING, INC. Expires 12/31/20

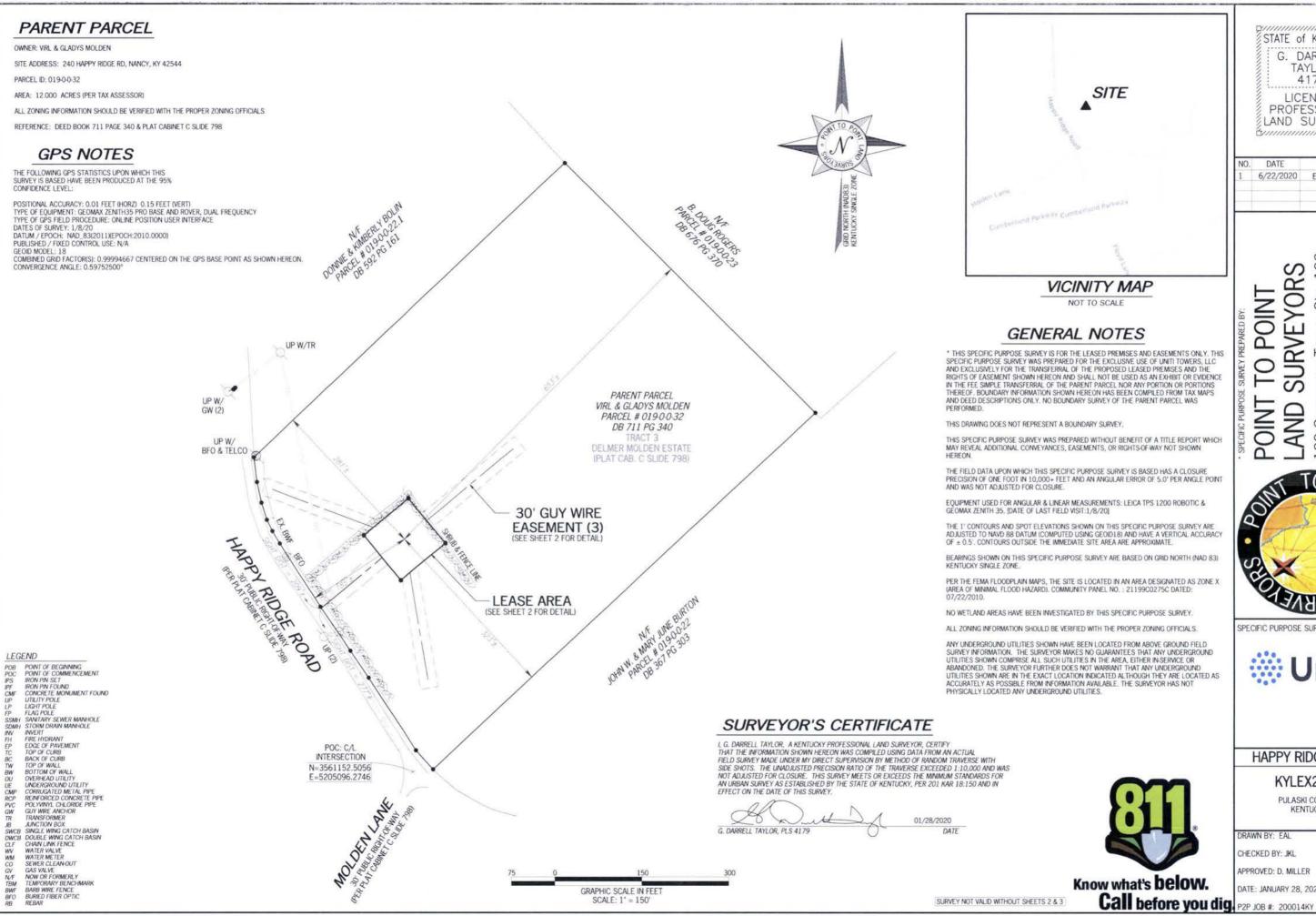
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLES THEY ARE ACTING UNDER THE DIRECTION OF A LICENS PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT

TITLE SHEET

SHEET NUMBER:

CALL KENTUCKY ONE CALL

DRAWING INDEX



MAS ISSUED FOR:



STATE of KENTUCKY G. DARRELL TAYLOR 4179 LICENSED **PROFESSIONAL** LAND SURVEYOR

DATE REVISION 6/22/2020 E911 ADDRESS

4497

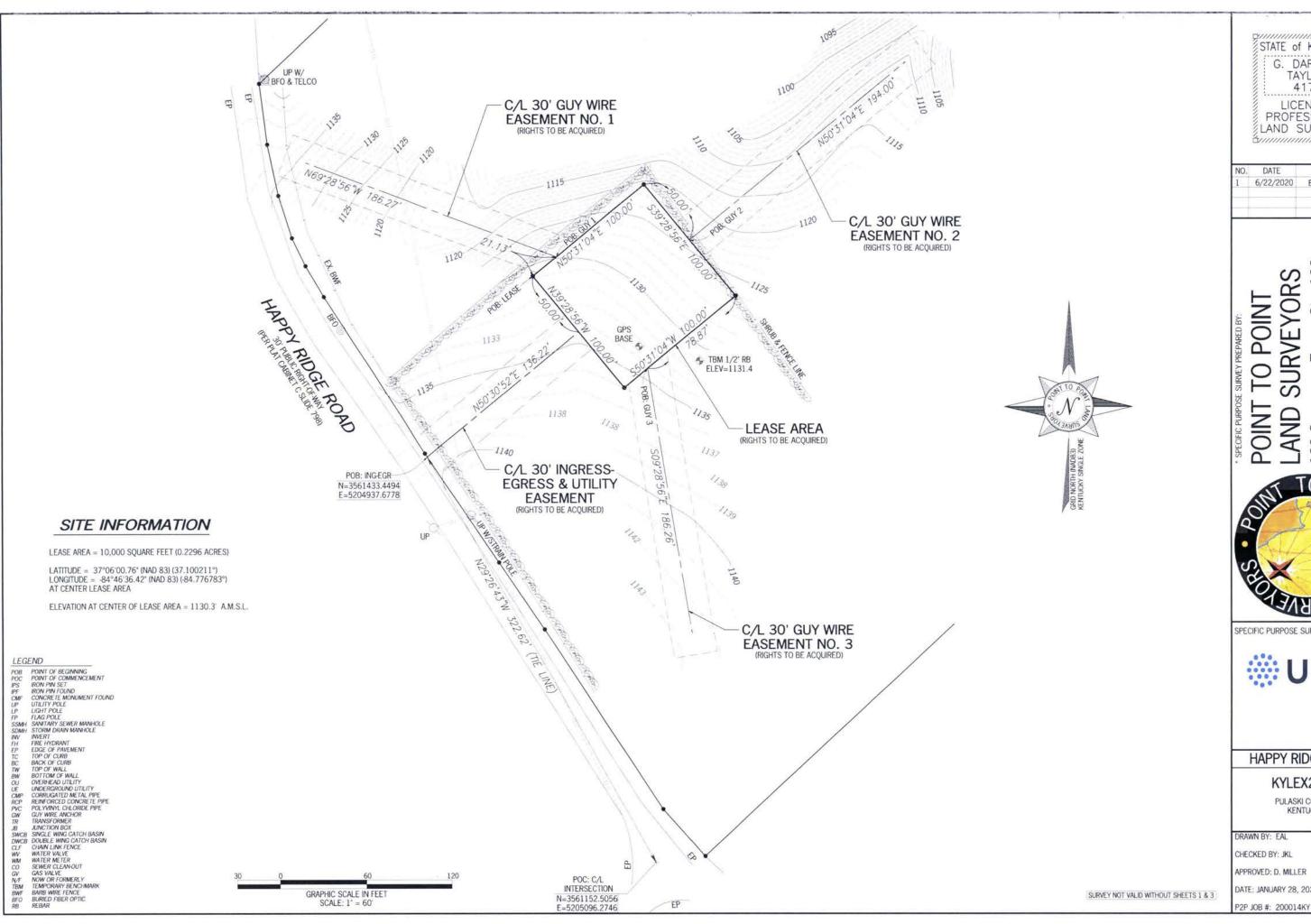
100 Governors Trace, Ste. 103 Peachtree City, GA 30269 (p) 678.565.4440 (f) 678.565.44 (w) pointtopointsurvey.com SURVEYORS POINT AND

SPECIFIC PURPOSE SURVEY PREPARED FOR

HAPPY RIDGE RELO

KYLEX2038

PULASKI COUNTY.


DRAWN BY: EAL

CHECKED BY: JKL

APPROVED: D. MILLER

DATE: JANUARY 28, 2020

SHEET:

STATE of KENTUCKY G. DARRELL TAYLOR 4179 LICENSED PROFESSIONAL LAND SURVEYOR

REVISION 6/22/2020 E911 ADDRESS

.565.4497

100 Governors Trace, Ste. 103 Peachtree City, GA 30269 (p) 678.565.4440 (f) 678.565.44 (w) pointtopointsurvey.com

HAPPY RIDGE RELO

KYLEX2038

PULASKI COUNTY, KENTUCKY

DATE: JANUARY 28, 2020

SHEET:

LEGAL DESCRIPTION SHEET

30' INGRESS-EGRESS & UTILITY EASEMENT

TOGETHER WITH A 30-FOOT WIDE INGRESS-EGRESS AND UTILITY EASEMENT (LYING 15 FEET EACH SIDE OF CENTERLINE) LYING AND BEING IN PULASKI COUNTY, KENTUCKY AND BEING A PORTION OF TRACT 3 OF THE DELMER MOLDEN ESTATE, AS RECORDED IN PLAT CABINET C, SLIDE 798, PULASKI COUNTY RECORDS, AND BEING MORE PARTICULARLY DESCRIBED BY THE FOLLOWING CENTERLINE DATA:

TO FIND THE POINT OF BEGINNING, COMMENCE AT THE CENTERLINE INTERSECTION OF HAPPY RIDGE ROAD (HAVING A 30-FOOT RIGHT-OF-WAY) AND MOLDEN LANE (HAVING A 30-FOOT RIGHT-OF-WAY), SAID POINT HAVING A KENTUCKY GRID NORTH, NAD83, SINGLE ZONE VALUE OF N: 3561152.5056 E: 5205096.2746; THENCE RUNNING ALONG A TIE LINE, NORTH 29°26'43" WEST, 322.62 FEET TO A POINT ON THE EASTERLY RIGHT-OF-WAY LINE OF HAPPY RIDGE ROAD. SAID POINT HAVING A KENTUCKY GRID NORTH, NAD83, SINGLE ZONE VALUE OF N: 3561433.4494 E: 5204937.6778 AND THE TRUE POINT OF BEGINNING; THENCE LEAVING SAID RIGHT-OF-WAY LINE AND RUNNING, NORTH 50°30'52" EAST, 136.22 FEET TO THE ENDING AT A POINT ON THE LEASE AREA.

BEARINGS BASED ON KENTUCKY GRID NORTH, NAD83, SINGLE ZONE.

LEASE AREA

ALL THAT TRACT OR PARCEL OF LAND LYING AND BEING IN PULASKI COUNTY, KENTUCKY AND BEING A PORTION OF TRACT 3 OF THE DELMER MOLDEN ESTATE, AS RECORDED IN PLAT CABINET C, SLIDE 798, PULASKI COUNTY RECORDS, AND BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

TO FIND THE POINT OF BEGINNING, COMMENCE AT THE CENTERLINE INTERSECTION OF HAPPY RIDGE ROAD (HAVING A 30-FOOT RIGHT-OF-WAY) AND MOLDEN LANE (HAVING A 30-FOOT RIGHT-OF-WAY), SAID POINT HAVING A KENTUCKY GRID NORTH, NAD83, SINGLE ZONE VALUE OF N: 3561152.5056 E: 5205096.2746; THENCE RUNNING ALONG A TIE LINE, NORTH 29°26'43' WEST, 322.62 FEET TO A POINT ON THE EASTERLY RIGHT-OF-WAY LINE OF HAPPY RIDGE ROAD, SAID POINT HAVING A KENTUCKY GRID NORTH, NAD83, SINGLE ZONE VALUE OF N: 3561433.4494 E: 5204937.6778; THENCE LEAVING SAID RIGHT-OF-WAY LINE AND RUNNING, NORTH 50°30'52" EAST, 136.22 FEET TO A POINT ON THE LEASE AREA: THENCE RUNNING ALONG SAID LEASE AREA, NORTH 39°28'56" WEST, 50.00 TO A POINT AND THE TRUE POINT OF BEGINNING: THENCE RUNNING, NORTH 50°31'04" EAST, 100.00 FEET TO A POINT; THENCE, SOUTH 39°28'56" EAST, 100.00 FEET TO A POINT; THENCE, SOUTH 50°31'04" WEST, 100.00 FEET TO A POINT; THENCE, NORTH 39°28'56" WEST, 100,00 FEET TO A POINT AND THE POINT OF BEGINNING.

BEARINGS BASED ON KENTUCKY GRID NORTH, NAD83, SINGLE ZONE.

SAID TRACT CONTAINS 0.2296 ACRES (10,000 SQUARE FEET), MORE OR LESS

30' GUY WIRE EASEMENT NO. 1

TOGETHER WITH A 30-FOOT GUY WIRE EASEMENT (LYING 15 FEET EACH SIDE OF CENTERLINE AND EXTENDING 15 FEET BEYOND THE POINT OF TERMINATION) LYING AND BEING IN PULASKI COUNTY, KENTUCKY AND BEING A PORTION OF TRACT 3 OF THE DELMER MOLDEN ESTATE, AS RECORDED IN PLAT CABINET C, SLIDE 798, PULASKI COUNTY RECORDS, AND BEING MORE PARTICULARLY DESCRIBED BY THE FOLLOWING CENTERLINE DATA:

TO FIND THE POINT OF BEGINNING, COMMENCE AT THE CENTERLINE INTERSECTION OF HAPPY RIDGE ROAD (HAVING A 30-FOOT RIGHT-OF-WAY) AND MOLDEN LANE (HAVING A 30-FOOT RIGHT-OF-WAY), SAID POINT HAVING A KENTUCKY GRID NORTH, NAD83, SINGLE ZONE VALUE OF N: 3561152.5056 E: 5205096.2746; THENCE RUNNING ALONG A TIE LINE, NORTH 29°26'43" WEST, 322.62 FEET TO A POINT ON THE EASTERLY RIGHT-OF-WAY LINE OF HAPPY RIDGE ROAD, SAID POINT HAVING A KENTUCKY GRID NORTH, NAD83, SINGLE ZONE VALUE OF N: 3561433.4494 E: 5204937.6778; THENCE LEAVING SAID RIGHT-OF-WAY LINE AND RUNNING, NORTH 50°30'52" EAST, 136.22 FEET TO A POINT ON THE LEASE AREA; THENCE RUNNING ALONG SAID LEASE AREA, NORTH 39°28'56" WEST, 50.00 TO A POINT; THENCE, NORTH 50°31'04" EAST, 21.13 FEET TO A POINT AND THE TRUE POINT OF BEGINNING; THENCE LEAVING SAID LEASE AREA AND RUNNING, NORTH 69°28'56' WEST, 186.27 FEET TO THE ENDING AT A

BEARINGS BASED ON KENTUCKY GRID NORTH, NAD83, SINGLE ZONE.

30' GUY WIRE EASEMENT NO. 2

TOGETHER WITH A 30-FOOT GUY WIRE EASEMENT (LYING 15 FEET EACH SIDE OF CENTERLINE AND EXTENDING 15 FEET BEYOND THE POINT OF TERMINATION) LYING AND BEING IN PULASKI COUNTY, KENTUCKY AND BEING A PORTION OF TRACT 3 OF THE DELMER MOLDEN ESTATE, AS RECORDED IN PLAT CABINET C, SLIDE 798, PULASKI COUNTY RECORDS, AND BEING MORE PARTICULARLY DESCRIBED BY THE FOLLOWING CENTERLINE DATA:

TO FIND THE POINT OF BEGINNING, COMMENCE AT THE CENTERLINE INTERSECTION OF HAPPY RIDGE ROAD (HAVING A 30-FOOT RIGHT-OF-WAY) AND MOLDEN LANE (HAVING A 30-FOOT RIGHT-OF-WAY), SAID POINT HAVING A KENTUCKY GRID NORTH, NAD83, SINGLE ZONE VALUE OF N: 3561152.5056 E: 5205096.2746; THENCE RUNNING ALONG A TIE LINE, NORTH 29°26'43' WEST. 322.62 FEET TO A POINT ON THE EASTERLY RIGHT-OF-WAY LINE OF HAPPY RIDGE ROAD, SAID POINT HAVING A KENTUCKY GRID NORTH, NAD83, SINGLE ZONE VALUE OF N: 3561433.4494 E: 5204937.6778; THENCE LEAVING SAID RIGHT-OF-WAY LINE AND RUNNING, NORTH 50°30'52" EAST, 136.22 FEET TO A POINT ON THE LEASE AREA; THENCE RUNNING ALONG SAID LEASE AREA, NORTH 39°28'56" WEST, 50.00 TO A POINT; THENCE, NORTH 50°31'04" EAST, 100.00 FEET TO A POINT; THENCE, SOUTH 39°28'56" EAST, 50.00 FEET TO A POINT AND THE TRUE POINT OF BEGINNING; THENCE LEAVING SAID LEASE AREA AND RUNNING, NORTH 50°31'04" EAST, 194.00 FEET TO THE ENDING AT A POINT.

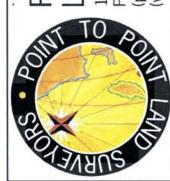
BEARINGS BASED ON KENTUCKY GRID NORTH, NAD83, SINGLE ZONE,

30' GUY WIRE EASEMENT NO. 3

TOGETHER WITH A 30-FOOT GUY WIRE EASEMENT (LYING 15 FEET EACH SIDE OF CENTERLINE AND EXTENDING 15 FEET BEYOND THE POINT OF TERMINATION) LYING AND BEING IN PULASKI COUNTY, KENTUCKY AND BEING A PORTION OF TRACT 3 OF THE DELMER MOLDEN ESTATE, AS RECORDED IN PLAT CABINET C, SLIDE 798, PULASKI COUNTY RECORDS, AND BEING MORE PARTICULARLY DESCRIBED BY THE FOLLOWING CENTERLINE DATA:

TO FIND THE POINT OF BEGINNING, COMMENCE AT THE CENTERLINE INTERSECTION OF HAPPY RIDGE ROAD (HAVING A 30-FOOT RIGHT-OF-WAY) AND MOLDEN LANE (HAVING A 30-FOOT RIGHT-OF-WAY), SAID POINT HAVING A KENTUCKY GRID NORTH, NAD83, SINGLE ZONE VALUE OF N: 3561152.5056 E: 5205096.2746; THENCE RUNNING ALONG A TIE LINE, NORTH 29°26'43" WEST, 322.62 FEET TO A POINT ON THE EASTERLY RIGHT-OF-WAY LINE OF HAPPY RIDGE ROAD, SAID POINT HAVING A KENTUCKY GRID NORTH, NAD83, SINGLE ZONE VALUE OF N: 3561433.4494 E: 5204937.6778; THENCE LEAVING SAID RIGHT-OF-WAY LINE AND RUNNING, NORTH 50°30'52" EAST, 136.22 FEET TO A POINT ON THE LEASE AREA; THENCE RUNNING ALONG SAID LEASE AREA NORTH 39°28'56" WEST, 50.00 TO A POINT; THENCE, NORTH 50°31'04" EAST, 100.00 FEET TO A POINT; THENCE, SOUTH 39°28'56" EAST, 100.00 FEET TO A POINT; THENCE, SOUTH 50°31'04" WEST, 78.87 FEET TO A POINT AND THE TRUE POINT OF BEGINNING: THENCE LEAVING SAID LEASE AREA AND RUNNING, SOUTH 09°28'56" EAST, 186.26 FEET TO THE ENDING AT A

BEARINGS BASED ON KENTUCKY GRID NORTH, NAD83, SINGLE ZONE.



NO.	DATE	REVISION
1	6/22/2020	E911 ADDRESS

565.

100 Governors Trace, Ste. 1 Peachtree City, GA 30269 (p) 678.565.4440 (f) 678.56 (w) pointtopointsurvey.com ĺШ

0

HAPPY RIDGE RELO

KYLEX2038

PULASKI COUNTY, KENTUCKY

DRAWN BY: EAL CHECKED BY: JKL APPROVED: D. MILLER DATE: JANUARY 28, 2020

2P JOB #: 200014KY

SHEET:

#	OWNER	ADDRESS	PID	REF
1	VIRL & GLADYS MOLDEN	2128 HWY 2993 NANCY, KY 42544	019-0-0-32	DB 711 PG 340
2	DONNIE & KIMBERLY BOLIN	380 HAPPY RIDGE RD NANCY, KY 42544	019-0-0-22.1	DB 592 PG 161
3	B. DOUG ROGERS	626 HAPPY RIDGE RD NANCY, KY 42544	019-0-0-23	DB 676 PG 370
4	JOHN W. & MAY JUNE BURTON	757 HWY 2993 NANCY, KY 42544	019-0-0-22	DB 367 PG 303
5	VERTREES & SHIRLEY MOLDEN	3185 HWY 80 SOMERSET, KY 42501	019-0-0-32.1	DB 711 PG 458
6	SHANNON & LESIA COOK	303 HAPPY RIDGE RD NANCY, KY 42544	019-0-0-30	DB 775 PG 706
7	RONNY BOLIN	499 HAPPY RIDGE RD NANCY, KY 42544	019-0-0-29	DB 635 PG 033
8	DONALD & JANET TARTER	82 N FLOYD LN NANCY, KY 42544	019-0-0-31	DB 633 PG 601

NOTE:

- PVA INFORMATION WAS OBTAINED ON 5/31/2020 FROM THE OFFICIAL RECORDS OF THE COUNTY'S PROPERTY VALUATION ADMINISTRATOR.
- THIS MAP IS FOR GENERAL INFORMATION PURPOSES ONLY AND IS NOT A BOUNDARY SURVEY.
- 3. NOT FOR RECORDING OR PROPERTY TRANSFER.

FLOOD ZONE NOTE:

PER THE FEMA FLOODPLAIN MAPS, THE SITE IS LOCATED IN AN AREA DESIGNATED AS ZONE X (AREA OF MINIMAL FLOOD HAZARD). COMMUNITY PANEL NO. 21199C0275C DATED: 07/22/2010

CALL KENTUCKY ONE CALL (800) 752-6007 CALL 3 WORKING DAYS BEFORE YOU DIG!

FAP IS 145564

PACE# NRTNK047951

PT# 10115694

240 HAPPY RIDGE ROAD

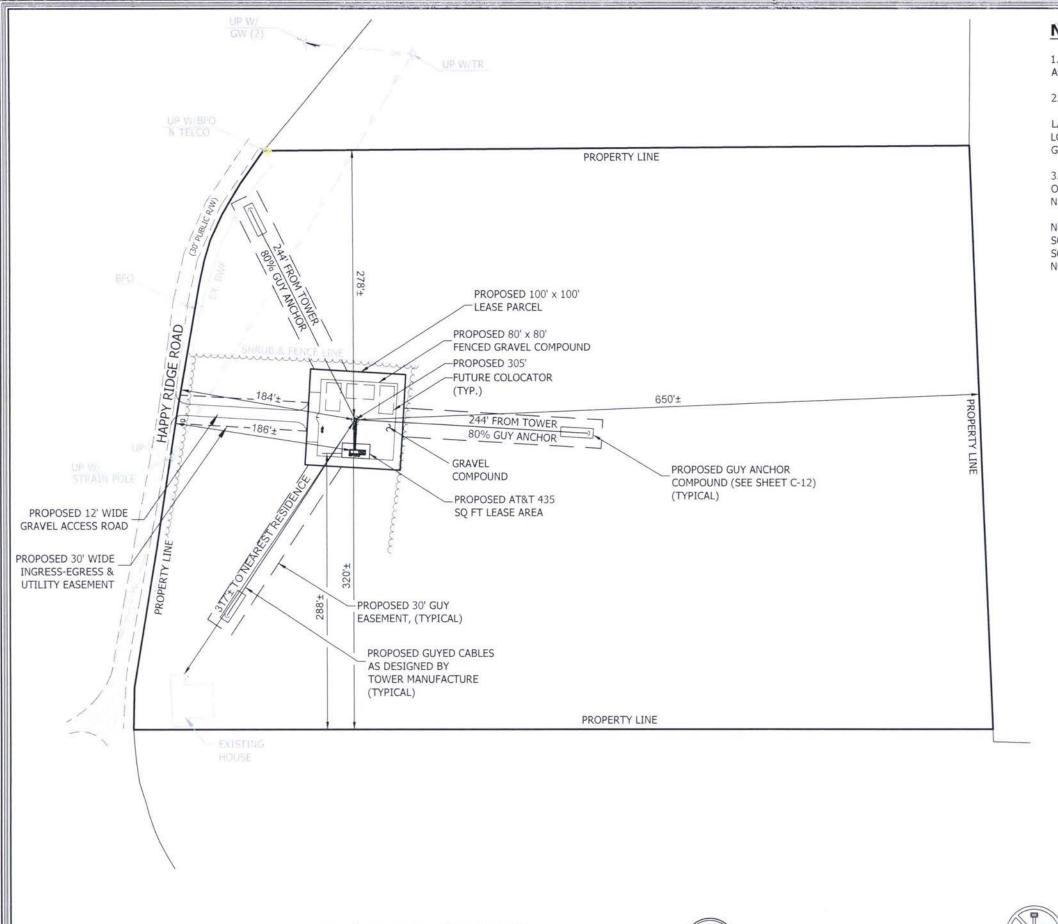
NANCY, KY 42544

PULASKI COUNTY

PROJECT NO: G0137330.00 CHECKED BY: MAS

| ISSUED FOR:
REV	DATE	DRWN	DESCRIPTION
A	08/13/20	DLS	ZONING DRAWINGS
B	09/01/20	DLS	ZONING DRAWINGS
O	09/03/20	DLS	ZONING DRAWINGS

B&T ENGINEERING, INC. COA 4011 Expires 12/31/20


IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSE! PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

> 500' RADIUS & ADJOINER'S DRAWING

> > SHEET NUMBER:

OVERALL SITE LAYOUT

NOTES:

 TOWER LATITUDE, LONGITUDE & ELEVATION MEET FAA"1-A" ACCURACY REQUIREMENTS.

2. CENTER OF TOWER:

LATITUDE: NORTH 37°06'00.76" (37.100211) NAD 83 LONGITUDE: WEST -84°46'36.42" (-84.776783) NAD 83 GROUND ELEVATION @ 1130.3' A.M.S.L. NAVD 88

3. THE APPROXIMATE PERPENDICULAR DISTANCES FROM THE OUTER EDGE OF THE PROPOSED TOWER TO PARENT TRACT NEAREST PROPERTY LINE ARE AS FOLLOWS:

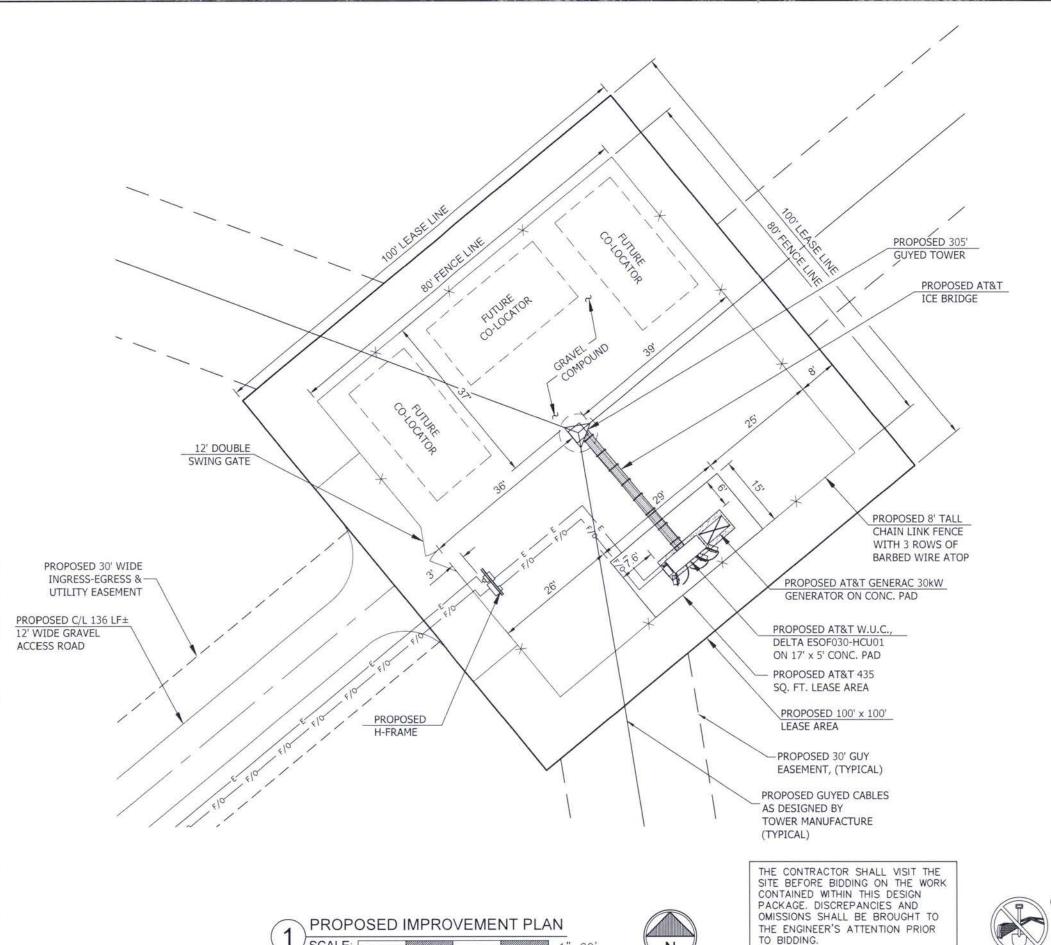
NORTHWEST: 278' \pm SOUTHWEST: 184' \pm SOUTHEAST: 320' \pm NORTHEAST: 650' \pm

HAPPY RIDGE RELO
FA# 15145564
PACE# MRTNK047951
PT# 10115694
240 HAPPY RIDGE ROAD
NANCY, KY 42544
PULASKI COUNTY

PRO	DJECT NO);	G0137330.00
CHI	ECKED BY	(:	MAS
	ISS	SUED	FOR:
REV	DATE	DRWN	DESCRIPTION
A.	08/13/20	DLS	ZONING DRAWINGS
В	09/01/20	DLS	ZONING DRAWINGS
0	09/03/20	DLS	ZONING DRAWINGS

B&T ENGINEERING, INC. COA 4011 Expires 12/31/20

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSE PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.


OVERALL SITE LAYOUT

C-2

CALL KENTUCKY ONE CALL (800) 752-6007 CALL 3 WORKING DAYS BEFORE YOU DIG!

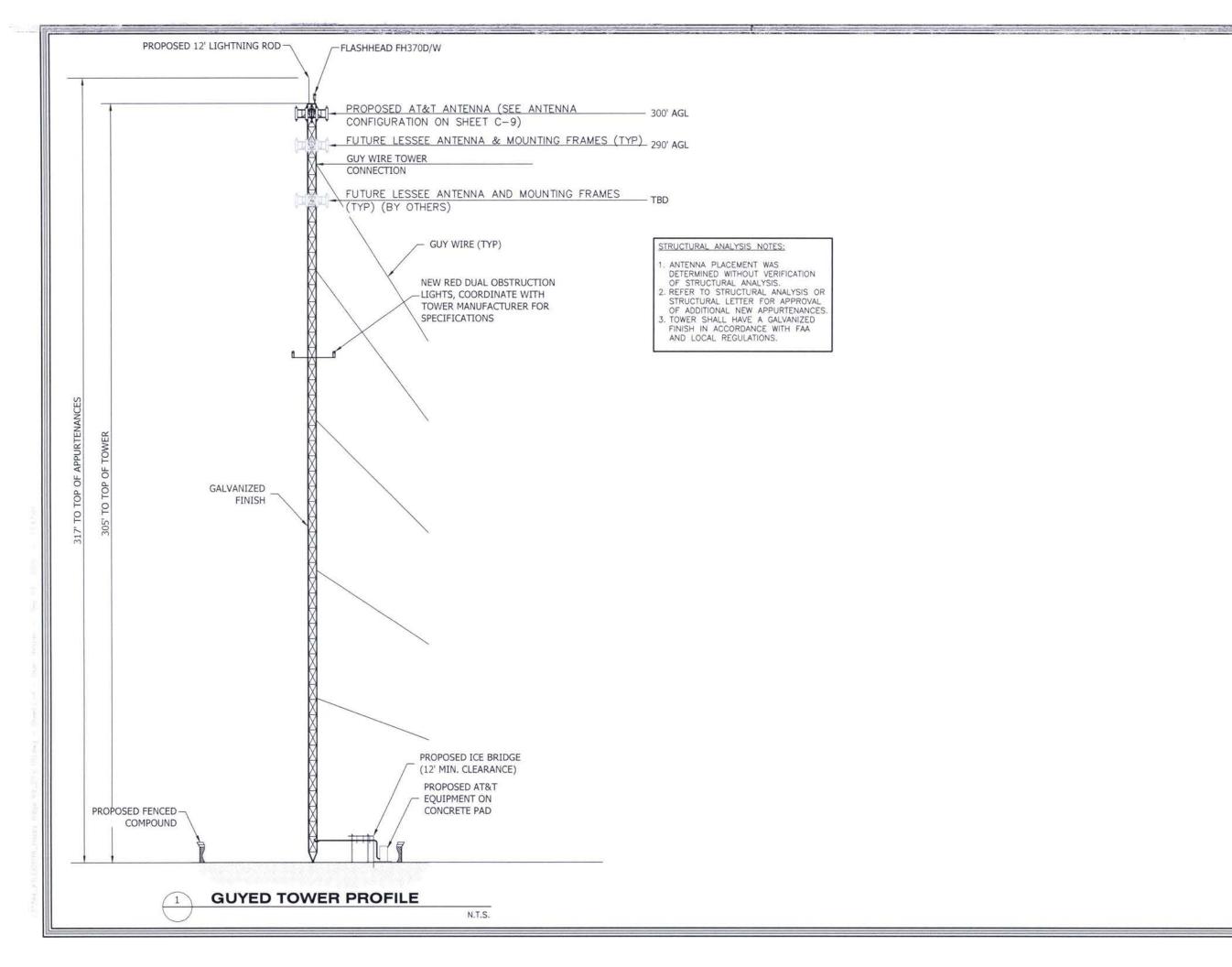
HAPPY RIDGE RELO

PROJECT NO: G0137330.00 CHECKED BY: MAS ISSUED FOR: REV DATE DRWN DESCRIPTION A 08/13/20 DLS ZONING DRAWINGS

> B&T ENGINEERING, INC. COA 4011 Expires 12/31/20

B 09/01/20 DLS ZONING DRAWINGS 0 09/03/20 DLS ZONING DRAWINGS

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSET PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.


ENLARGED COMPOUND LAYOUT

SHEET NUMBER:

CALL KENTUCKY ONE CALL CALL 3 WORKING DAYS BEFORE YOU DIG!

(800) 752-6007

UNITI TOWERS
HAPPY RIDGE RELO
FA# 15145564
PACE# NRTNK047951
PT# 10115694
240 HAPPY RIDGE ROAD
NANCY, KY 42544
PULASKI COUNTY

PROJECT NO: G0137330,00 CHECKED BY: MAS

> B&T ENGINEERING, INC. COA 4011 Expires 12/31/20

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSEI PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

TOWER ELEVATION

SHEET NUMBER:

C-4

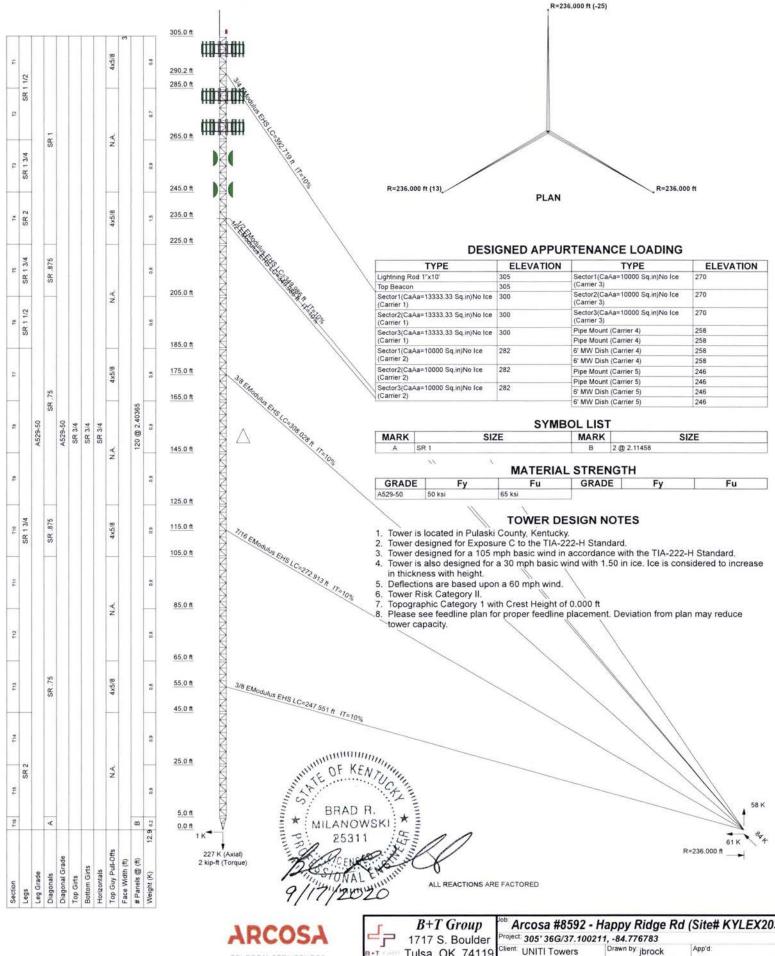
EXHIBIT C TOWER AND FOUNDATION DESIGN

July 16,2020

Kentucky Public Service Commission 211 Sower Blvd. P.O. Box 615 Frankfort, KY 40602-0615

RE: Site Name – Happy Ridge Relo Proposed Cell Tower 37.100211 North Latitude, 84.776783 West Longitude

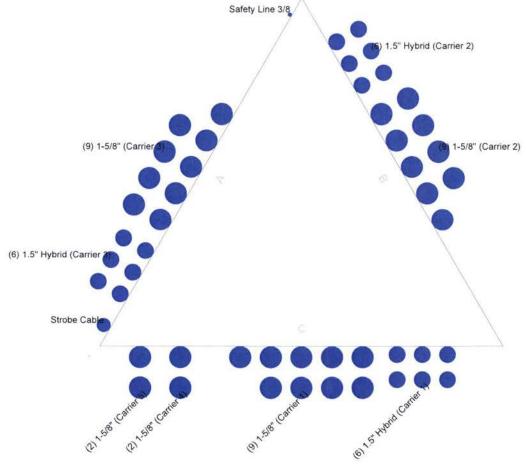
Dear Commissioners:


The Construction Manager for the proposed new communications facility will be Jeremy Culpepper. His contact information is (985) 707-6175 or Jeremy.Culpepper@uniti.com.

Jeremy has been in the industry completing civil construction and constructing towers since 1998. He has worked at Uniti Towers LLC since 2018 completing project and construction management on new site build projects.

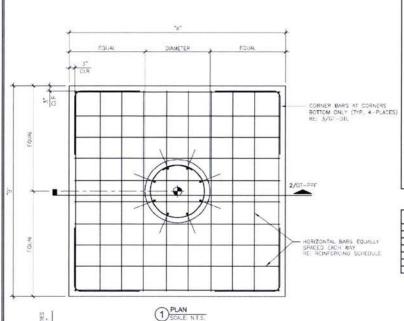
Thank you,

Jeremy Culpepper Culpepper Culpepper Date: 2020.07.16 09:08:39 -05'00'


Jeremy Culpeper Construction Manager – Tennessee/Kentucky Market Uniti Towers LLC (985) 707-6175

r	B+T Group	Arcosa #8592 -	Happy Ridge Ro	d (Site# KYLEX203
	1717 S. Boulder	Project: 305' 36G/37.100		
B+T	Tulsa, OK 74119	Client: UNITI Towers	Drawn by: jbrock	App'd:
B+T Group	Phone: 918.587.4630	Code: TIA-222-H	Date: 09/16/20	Scale: NTS
В т отобр		Path:	6 hame promissor, 15,25200029-055, 30536G, 116001-Riv	Dwg No. E-1

Round Flat App In Face App Out Face



г	B+T Group
	1717 S. Boulder
B+T CHE	Tulsa, OK 74119
B+T Group	Phone: 918.587.4630
	FAX:

Arcosa #8592 -	Happy Ridge R	d (Site# KYLEX203
Project: 305' 36G/37.100		
Client: UNITI Towers	Drawn by: jbrock	App'd:
Code: TIA-222-H	Date: 09/16/20	Scale: NTS
Path:	NAME OF THE OWNER OF THE PERSON AND ADDRESS OF THE OWNER, AND THE	Dwg No. E-7

- NOTES:

 1. REINFORCEMENT STEEL SHALL CONFORM TO THE REQUIREMENT OF ASTM A-615 (GRADE 60) EXCEPT THAT TIES MAY BE ASTM-615 (GRADE 40) WITH 3
- MINIMUM CLEAR COVER
 THE CONTRACTOR SHALL THOROUGHLY REVIEW THE GEOTECH REPORT FOR THIS PROJECT AND FOLLOW THE RECOMMENDATIONS IN THAT REPORT WHEN CONSTRUCTING THE FOUNDATION
 GEOTECHNICAL PROPERTIES BY: DELTA DAKS GROUP

GEO 20-06844-08 REV, 0

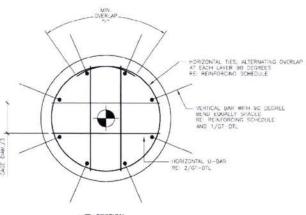
DATE: AUGUST 18, 2020
THIS POUNDATION HAS BEEN DESIGNED, IN ACCORDANCE WITH THE TIA 222-H STANDARD, SPECIFICALLY FOR THE TOWER AND SOIL CONDITION. REFERENCED ABOVE. IF ANYTHING DIFFERS THIS DESIGN SHALL BE CONSIDERED INVALID AND MUST BE REDESIGNED PRIOR TO CONSTRUCTION.
CONCRETE VOLUME IN CUBIC YARDS: 4.98

ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 4000 PSI AT 28 DAYS.

- CONCRETE MIXTURES SHALL MEET DURABILITY REQUIREMENTS OF CHAPTER 19 OF THE ACI 318-14.
 ALL CONCRETE TESTING SHALL BE IN ACCORDANCE WITH ACI 318-14. A MINIMUM OF [2] 6"X12" OR [3] 4"X8" CONCRETE CYLINDERS PER INDIVIDUAL. FOUNDATION AND A MINIMUM OF (6) 6"X12" OR (6) 4"X8" CYLINDERS PER BATCH REQUIRED.
 SLUMP TEST SHALL BE MADE IN ACCORDANCE WITH ASTM C143. THE ALLOWABLE CONCRETE SLUMP SHALL BE 4 INCHES (£1") UNLESS ADMIXTURES.
- ARE USED, ADMIXTURE SHALL BE IN ACCORDANCE WITH ASTIM CASH STANDARD TYPES A, B. C. D. OR E. THE THE HONNERS HALL PRE APPROVE SUPER PLASTICIZER USED. DOT USE CHLORIDE-CONTAINING ADMIXTURES, AIR ENTRAINED ADMIXTURES SHALL CONFORM TO ASTM CISE.

 BACKFILL MATERIAL SHALL BE COMPACTED TO A MINIMUM UNIT WEIGHT SPECIFED IN GOTOCH REPORT. THE SOIL SHALL BE INSTALLED IN 6°TO, BETTER THE SOIL SHALL BE THE SOIL SHALL BE INSTALLED IN 6°TO, BETTER THE SOIL SHALL BE SOIL SHALL BE
- LIFTS AND COMPACTED THOROUGHLY TO ACHIEVE APPROPRIATE UNIT WEIGHT UNLESS GEOTECH SPECIFIES OTHER COMPACTION REQUIREMENTS.

VERIFY ALL DIMENSIONS AGAINST MANUFACTURER'S DRAWINGS.


STIPULATION FOR REUSE:

1. THIS DRAWING WAS SPECIFICALLY DESIGNED FOR USE BY THE CUSTOMER ON THIS DRAWING AT THE SPECIFIED LOCATION, USE OF THIS DRAWING FOR REFERENCE OR EXAMPLE ON ANOTHER PROJECT REQUIRES THE SERVICES OF A PROPERLY LICENSED ENGINEER.

A	7.6"
8	7'6'
	0'6'
D	6'0'
E	210
MIN, OVERLAP "F"	2'3'
DIAMETER	216

REINFORCING SCHEDULE	SIZE	TOTAL QTY
VERTICAL BARS	#7	7
HORIZONTAL TIES	#4	14
U-BAR HORIZONTAL (PEDESTAL)	#4	4
BOTTOM HORIZONTAL BARS	#8	16
CODNED DADE	# 4	- 7

BASE REACTIONS: (FAC	TORED	OADS
VERTICAL	227	KIPS
HORIZONTAL	-1	KIPS

1717 S BOULDER AVE #300, TULSA, DK 74119 (918) 587-4630

4020 TULL AVE. MUSKOGEE, OK 74403

REV	DATE	DESCRIPTION
0	09/17/20	ISSUED FOR CONSTRUCTION
1	U3/11/20	ISSUED FUR CONSTRUCTIO

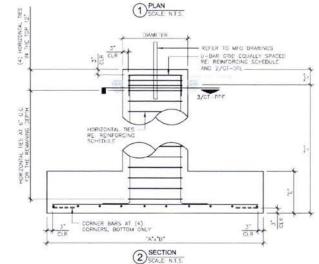
IT IS A VIOLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DIRECTIONS OF A LICENSES PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT

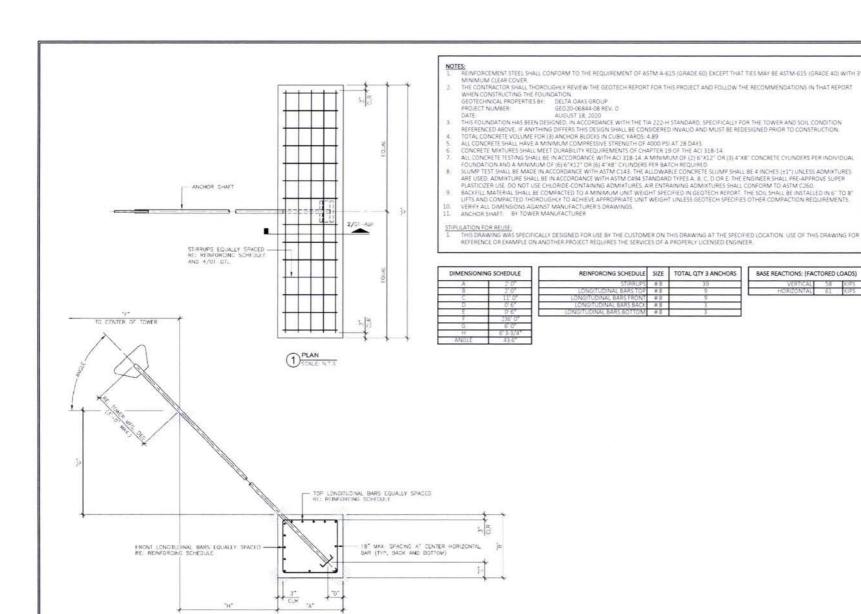
PROJECT INFORMATION:

PROJECT NO: 145172.001 SITE NAME: HAPPY RIDGE ROAD SITE NO: 8592

CLIENT NAME: ARCOSA TELECOM STRUCTURES

DRAWN BY 18 CHECKED BY: TO


SHEET TITLE


PIER AND PAD FOUNDATION

SHEET NUMBER:

REVISION 0

GT-PPF

2) SECTION

1717'S BOULDER AVE #300, TULSA, OK 74119 (918) 587-4630

4020 TULL AVE. MUSKOGEE, OK 74403

REV	DATE	DESCRIPTION
-0	09/17/20	ISSUED FOR CONSTRUCTION

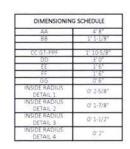
BASE REACTIONS: (FACTORED LOADS)

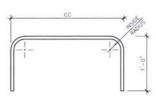
T IS A VIOLATION OF LAW FOR ANY PERSON LINLESS THEY ARE ACTING UNDER THE DIRECTIONS OF A LICENSES PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT

PROJECT INFORMATION:

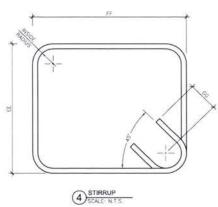
PROJECT NO: 145172.001 SITE NAME: HAPPY RIDGE ROAD SITE NO: 8592 CLIENT NAME: ARCOSA TELECOM STRUCTURES

DRAWN BY: JB CHECKED BY: TC


SHEET TITLE:


ANCHOR BLOCK FOUNDATION

SHEET NUMBER


REVISION: 0

GT-ABF

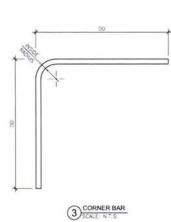
1717 S BOULDER AVE #300, TULSA, OK 74119 (918) 587-4630

4020 TULL AVE. MUSKOGEE, DK 74403

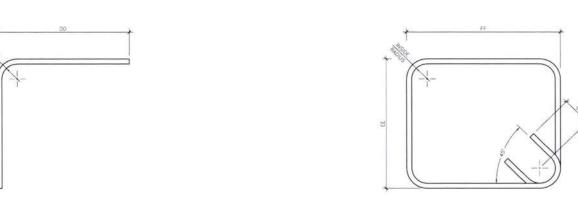
BEV	DATE	DESCRIPTION
.0.	09/17/20	ISSUED FOR CONSTRUCTION

IT IS A VIOLATION OF LAW FOR ANY PERSON UNLESS. THEY ARE ACTING UNDER THE DIRECTIONS OF A UCENSES PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT

PROJECT INFORMATION:


PROJECT NO: 145172.001 SITE NAME: HAPPY RIDGE ROAD SITE NO: 8592 CLIENT NAME: ARCOSA TELECOM STRUCTURES

DRAWN BY: /B CHECKED BY: TO


SHEET TITLE:

DIMENSIONING DETAIL

SHEET NUMBER: DTL REVISION: 0

1 SCALE: N.T.S.

Pier and Pad Foundation

TIA-222 Revision:	Н
Tower Type:	Guyed

Top & Bot, Pad Rein, Different?:	
Block Foundation?:	

Superstructure An		Reactio	ns
Compression	, P _{comp} :	227	kips
Base Shear, Vu	_comp:	1	kips
Mome	ent, M _u :	- Valle	ft-kips
Tower He	ight, H:	305	ft
BP Dist. Above Fdn	, bp _{dist} :	6	in
Bolt Circle / Bearing Plate Wid	th, BC:		in

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, dpier:	2.5	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, Sc:	7	
Pier Rebar Quantity, mc:	7	i -
Pier Tie/Spiral Size, St:	4	
Pier Tie/Spiral Quantity, mt:	10	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, ccpier:	3	in

Pad Properties		
Depth, D:	6	ft
Pad Width, W:	7.5	ft
Pad Thickness, T:	2	ft
Pad Rebar Size (Bottom), Sp:	8	
Pad Rebar Quantity (Bottom), mp:	8	
Pad Clear Cover, ccpad:	3	in

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δc:	150	pcf

Soil Properties		
Total Soil Unit Weight, γ:	105	pcf
Ultimate Net Bearing, Qnet:	12.960	ksf
Cohesion, Cu:	1.250	ksf
Friction Angle, ф :		degrees
SPT Blow Count, N _{blows} :	J& 1977	
Base Friction, µ:	0.3	T .
Neglected Depth, N:	2.50	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	N/A	ft

	Capacity	Demand	Rating	Check
Lateral (Sliding) (kips)	88.78	1.00	1.1%	Pass
Bearing Pressure (ksf)	8.15	4.98	61.0%	Pass
Overturning (kip*ft)	387.33	7.00	1.8%	Pass
Pier Flexure (Comp.) (kip*ft)	362.10	4.50	1.2%	Pass
Pier Compression (kip)	2343.24	230.98	9.9%	Pass
Pad Flexure (kip*ft)	531.08	97.02	18.3%	Pass
Pad Shear - 1-way (kips)	144.19	27.24	18.9%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.034	20.8%	Pass
Flexural 2-way (Comp) (kip*ft)	1062.17	2.70	0.3%	Pass

Soil Rating:	61.0%
Structural Rating:	20.8%

<-- Toggle between Gross and Net

Guyed Anchor Block Foundation

Checks capacity of anchor blocks for a guyed tower.

TIA-222 Revision: H

Design Read	ctions	
Shear, S:	61.00	kips
Uplift, Ua:	58.00	kips
Resultant Force, Rf:	84.2	kips
Tower Height, H:	305.00	ft
Guy Anchor Radius, R:	236.00	ft
Resultant Angle to Horizontal, θ:	43.6	deg

Guy Anchor Properties		
Depth to Bottom of Deadman, Da:	8	ft
Anchor Width, Wa:	2	ft
Anchor Thickness, Ta:	2	ft
Anchor Length, La:	11	ft
Concrete Volume, Vc:	1.0	yd ³
Toe Width, toe:		ft
Guyed Anchor Top Rebar Size, Sat:	8	
No. of Bars in Top of Block:	3	
Guyed Anchor Front Rebar Size, Saf:	8	
No. of Bars in Front of Block:	3	
Stirrup Size:	4	

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Strength, F'c:	4	ksi
Wt. Avg.Concrete Density, δx:	0:150	kcf
Clear Cover, cc:	3	in

Design Checks						
	Capacity	Demand	Rating	Check		
Lateral Capacity (kips):	66.29	61.00	92.0%	Pass		
Uplift Capacity (kips):	90.46	58.00	64.1%	Pass		
Lateral Flexural Capacity (ft*kips):	204.01	83.88	41.1%	Pass		
Uplift Flexural Capacity (ft*kips):	204.01	79.75	39.1%	Pass		

Soil Rating:	92.0%
Structural Rating:	41.1%
Anchor Shaft Rating:	N/A

Neglect Depth, Neg:	2.5	ft
Groundwater Level, gw:	None	ft

Soil Properties:	No. of Soil Layers?			6	FIRST TAILS.	
Layer	φ, deg	cu, ksf	δ, pcf	d, ft	Ultimate fs (ksf)	N (blows/ft)
1		0.000	105	0.60		
2		1.000	110	1.50		
3		2.000	115	2.50		
4		2.000	115	4.00		
5		1.500	110	6.50		
6		1.000	110	8.00		

*key: φ = Internal Angle of Friction

cu = Cohesion / Undrained Shear Strength

 δ = Buoyant Soil Unit Weight

d = Depth to Bottom of Layer

Ultimate fs = Geotechnical Report-provided skin friction / adhesion

N = SPT Blow Count

4		
fuv	Towe	2 24
UI U.V.		

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 1 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Tower Input Data

The main tower is a 3x guyed tower with an overall height of 305.000 ft above the ground line.

The base of the tower is set at an elevation of 0.000 ft above the ground line.

The face width of the tower is 3.000 ft at the top and tapered at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Pulaski County, Kentucky.

Tower base elevation above sea level: 1130.000 ft.

Basic wind speed of 105 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.000 ft.

Nominal ice thickness of 1.500 in.

Ice thickness is considered to increase with height.

Ice density of 56.000 pcf.

A wind speed of 30 mph is used in combination with ice.

Temperature drop of 50.000 °F.

Deflections calculated using a wind speed of 60 mph.

Please see feedline plan for proper feedline placement. Deviation from plan may reduce tower capacity..

Pressures are calculated at each section.

Safety factor used in guy design is 1.

Stress ratio used in tower member design is 1.

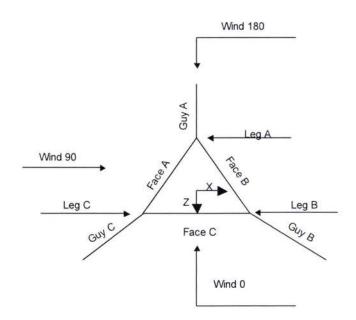
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile
- √ Include Bolts In Member Capacity
- √ Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric

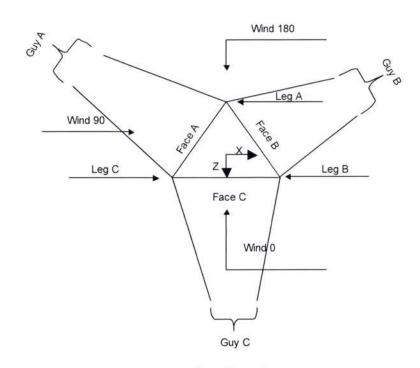
- Distribute Leg Loads As Uniform Assume Legs Pinned
- V Assume Rigid Index Plate
- V Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
- √ Retension Guys To Initial Tension
- Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- V Project Wind Area of Appurt
- Autocalc Torque Arm Areas
 Add IBC 6D+W Combination
- V Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs


- Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
- √ Consider Feed Line Torque
- √ Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

2	F 11 7
ful	1014101
ulla	Tower

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:


Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 2 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Corner & Starmount Guyed Tower

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job	WORDS III BILON WIGHT EVOCASI	Page 3 of 55
Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	3 01 33
Project		Date
	305' 36G/37.100211, -84.776783	15:47:38 09/16/20
Client	TOURDON DATE SAN DESVE	Designed by
	UNITI Towers	jbrock

Face Guyed

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of	Section Length	
					Sections	Order ar most	
ft				ft		ft	
T1	305.000-285.000			3.000	1	20.000	
T2	285.000-265.000			3.000	1	20.000	
T3	265.000-245.000			3.000	1	20.000	
T4	245.000-225.000			3.000	1	20.000	
T5	225.000-205.000			3.000	1	20.000	
T6	205.000-185.000			3.000	1	20.000	
T7	185.000-165.000			3.000	1	20.000	
T8	165.000-145.000			3.000	1	20.000	
T9	145.000-125.000			3.000	1	20.000	
T10	125.000-105.000			3.000	1	20.000	
T11	105.000-85.000			3.000	1	20.000	
T12	85.000-65.000			3.000	1	20.000	
T13	65.000-45.000			3.000	I	20.000	
T14	45.000-25.000			3.000	1	20.000	
T15	25.000-5.000			3.000	I	20.000	
T16	5.000-0.000			3.000	I	5.000	

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 4 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section Elevation	ion Spacing Type		K Brace End			Offset	
	ft	ft		Panels		in	in
T1	305.000-285.000	2.404	K Brace Right	No	Yes	4.625	4.625
T2	285.000-265.000	2.404	K Brace Right	No	Yes	4.625	4.625
T3	265.000-245.000	2.404	K Brace Right	No	Yes	4.625	4.625
T4	245.000-225.000	2.404	K Brace Right	No	Yes	4.625	4.625
T5	225.000-205.000	2.404	K Brace Right	No	Yes	4.625	4.625
T6	205.000-185.000	2.404	K Brace Right	No	Yes	4.625	4.625
T7	185.000-165.000	2.404	K Brace Right	No	Yes	4.625	4.625
T8	165.000-145.000	2.404	K Brace Right	No	Yes	4.625	4.625
T9	145.000-125.000	2.404	K Brace Right	No	Yes	4.625	4.625
T10	125.000-105.000	2.404	K Brace Right	No	Yes	4.625	4.625
TII	105.000-85.000	2.404	K Brace Right	No	Yes	4.625	4.625
T12	85.000-65.000	2.404	K Brace Right	No	Yes	4.625	4.625
T13	65,000-45,000	2.404	K Brace Right	No	Yes	4.625	4.625
T14	45.000-25.000	2.404	K Brace Right	No	Yes	4.625	4.625
T15	25.000-5.000	2.404	K Brace Right	No	Yes	4.625	4.625
T16	5.000-0.000	2.115	K Brace Right	No	Yes	4.625	4.625

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Type	Size	Grade
ft						
T1	Solid Round	1 1/2	A529-50	Solid Round	1	A529-50
305.000-285.000			(50 ksi)			(50 ksi)
T2	Solid Round	1 1/2	A529-50	Solid Round	1	A529-50
285.000-265.000			(50 ksi)			(50 ksi)
T3	Solid Round	1 3/4	A529-50	Solid Round	1	A529-50
265.000-245.000			(50 ksi)			(50 ksi)
T4	Solid Round	2	A529-50	Solid Round	1	A529-50
245.000-225.000			(50 ksi)			(50 ksi)
T5	Solid Round	1 3/4	A529-50	Solid Round	.875	A529-50
225.000-205.000			(50 ksi)			(50 ksi)
T6	Solid Round	1 1/2	A529-50	Solid Round	.75	A529-50
205.000-185.000			(50 ksi)			(50 ksi)
T7	Solid Round	1 3/4	A529-50	Solid Round	.75	A529-50
185.000-165.000			(50 ksi)			(50 ksi)
T8	Solid Round	1 3/4	A529-50	Solid Round	.75	A529-50
165.000-145.000			(50 ksi)			(50 ksi)
T9	Solid Round	1 3/4	A529-50	Solid Round	.75	A529-50
145.000-125.000			(50 ksi)			(50 ksi)
T10	Solid Round	1 3/4	A529-50	Solid Round	.875	A529-50
125.000-105.000			(50 ksi)			(50 ksi)
T11	Solid Round	1 3/4	A529-50	Solid Round	.75	A529-50
105.000-85.000			(50 ksi)			(50 ksi)
T12	Solid Round	1.3/4	A529-50	Solid Round	.75	A529-50
85.000-65.000			(50 ksi)			(50 ksi)
T13	Solid Round	1 3/4	A529-50	Solid Round	.75	A529-50
65.000-45.000			(50 ksi)			(50 ksi)
T14	Solid Round	2	A529-50	Solid Round	.75	A529-50
45.000-25.000			(50 ksi)			(50 ksi)

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 5 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T15 25 000-5 000	Solid Round	2	A529-50	Solid Round	-75	A529-50
T17 5 000 0 000	C-UIDI	2	(50 ksi)	0.1.10	4	(50 ksi)
T16 5.000-0.000	Solid Round	2	A529-50 (50 ksi)	Solid Round	1	A529-50 (50 ksi)

Tower Section Geometry (cont'd)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Type	Size	Grade	Type	Size	Grade
ft						
T1	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
305.000-285.000			(50 ksi)			(50 ksi)
T2	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
285.000-265.000			(50 ksi)			(50 ksi)
T3	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
265.000-245.000			(50 ksi)			(50 ksi)
T4	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
245.000-225.000			(50 ksi)			(50 ksi)
T5	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
225.000-205.000			(50 ksi)			(50 ksi)
Т6	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
205.000-185.000			(50 ksi)			(50 ksi)
T7	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
185.000-165.000			(50 ksi)			(50 ksi)
T8	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
165.000-145.000			(50 ksi)			(50 ksi)
T9	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
145.000-125.000			(50 ksi)			(50 ksi)
T10	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
125.000-105.000			(50 ksi)			(50 ksi)
T11	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
105.000-85.000			(50 ksi)			(50 ksi)
T12	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
85.000-65.000			(50 ksi)			(50 ksi)
T13	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
65.000-45.000			(50 ksi)			(50 ksi)
T14	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
45.000-25.000			(50 ksi)			(50 ksi)
T15 25.000-5.000	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
			(50 ksi)			(50 ksi)
T16 5.000-0.000	Solid Round	3/4	A529-50	Solid Round	3/4	A529-50
			(50 ksi)			(50 ksi)

Tower Elevation	No. of	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizonta Grade
ft	Mid Girts						
T1 5.000-285.000	None	Flat Bar		A36 (36 ksi)	Solid Round	3/4	A529-50 (50 ksi)

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job		Page
Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	6 of 55
Project		Date
	305' 36G/37.100211, -84.776783	15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of Mid	Type	Size	Grade	Type	Size	Grade
ft	Girts						
T2	None	Flat Bar		A36	Solid Round	3/4	A529-50
285.000-265.000				(36 ksi)			(50 ksi)
T3	None	Flat Bar		A36	Solid Round	3/4	A529-50
265.000-245.000				(36 ksi)			(50 ksi)
T4	None	Flat Bar		A36	Solid Round	3/4	A529-50
245.000-225.000				(36 ksi)			(50 ksi)
T5	None	Flat Bar		A36	Solid Round	3/4	A529-50
225.000-205.000				(36 ksi)			(50 ksi)
T6	None	Flat Bar		A36	Solid Round	3/4	A529-50
205.000-185.000				(36 ksi)			(50 ksi)
T7	None	Flat Bar		A36	Solid Round	3/4	A529-50
185.000-165.000				(36 ksi)			(50 ksi)
Т8	None	Flat Bar		A36	Solid Round	3/4	A529-50
165.000-145.000				(36 ksi)			(50 ksi)
T9	None	Flat Bar		A36	Solid Round	3/4	A529-50
145.000-125.000				(36 ksi)			(50 ksi)
T10	None	Flat Bar		A36	Solid Round	3/4	A529-50
125.000-105.000				(36 ksi)			(50 ksi)
T11	None	Flat Bar		A36	Solid Round	3/4	A529-50
105.000-85.000				(36 ksi)			(50 ksi)
T12	None	Flat Bar		A36	Solid Round	3/4	A529-50
85.000-65.000				(36 ksi)			(50 ksi)
T13	None	Flat Bar		A36	Solid Round	3/4	A529-50
65.000-45.000				(36 ksi)			(50 ksi)
T14	None	Flat Bar		A36	Solid Round	3/4	A529-50
45.000-25.000				(36 ksi)			(50 ksi)
T15 25.000-5.000	None	Flat Bar		A36	Solid Round	3/4	A529-50
				(36 ksi)			(50 ksi)
T16 5.000-0.000	None	Flat Bar		A36	Solid Round	3/4	A529-50
				(36 ksi)			(50 ksi)

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A ₁	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in					in	in	in
TI	0.000	0.000	A36	1	1	1	36.000	36.000	36.000
305.000-285.0 00			(36 ksi)						
T2	0.000	0.000	A36	1	1	1	36.000	36.000	36.000
285.000-265.0 00			(36 ksi)						
T3	0.000	0.000	A36	1	1	1	36.000	36.000	36.000
265.000-245.0 00			(36 ksi)						
T4	0.000	0.000	A36	1	1	1	36 000	36.000	36,000
245.000-225.0 00			(36 ksi)						
T5	0.000	0.000	A36	1	1	Ĭ.	36.000	36.000	36.000
225.000-205.0 00			(36 ksi)						
Т6	0.000	0.000	A36	1	1	1	36.000	36.000	36.000
205.000-185.0			(36 ksi)						

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job		Page
Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	7 of 55
Project		Date
	305' 36G/37.100211, -84.776783	15:47:38 09/16/20
Client	LINUTLT	Designed by
	UNITI Towers	jbrock

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in					in	in	in
00	111 1111								
T7	0.000	0.000	A36	1	1	1	36.000	36.000	36.000
185.000-165.0			(36 ksi)						
00									
T8	0.000	0.000	A36	1	1	1	36.000	36.000	36.000
165.000-145.0			(36 ksi)						
00									
T9	0.000	0.000	A36	1	1	1	36.000	36.000	36.000
145.000-125.0			(36 ksi)						
00									
T10	0.000	0.000	A36	1	1	1	36.000	36.000	36.000
125.000-105.0			(36 ksi)						
00									
T11	0.000	0.000	A36	1	1	1	36.000	36.000	36.000
105 000-85 00			(36 ksi)						
0									
T12	0.000	0.000	A36	1	1	1	36.000	36.000	36.000
85.000-65.000			(36 ksi)						
T13	0.000	0.000	A36	1	I	1	36.000	36.000	36.000
65.000-45.000			(36 ksi)						
T14	0.000	0.000	A36	1	1	1	36.000	36.000	36.000
45.000-25.000			(36 ksi)						
T15	0.000	0.000	A36	1	1	1	36.000	36.000	36 000
25.000-5.000			(36 ksi)						
T16	0.000	0.000	A36	1	1	1	36.000	36.000	36.000
5.000-0.000			(36 ksi)						

			K Factors ¹									
Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	Legs	X Brace Diags X	K Brace Diags X	Single Diags X	Girts X	Horiz.	Sec. Horiz. X	Inner Brace X		
ft	Angles	Rounus		Y	Y	Y	Y	Y	Y	Y		
T1 305.000-285.0 00	No	Yes	1	1 1	1	1	1 1	1 1	1 1	1		
T2 285.000-265.0 00	No	Yes	Ê	1	1	1	1	1	1	1		
T3 265.000-245.0 00	No	Yes	1	1 1	1	1	1	1	1	1		
T4 245.000-225.0 00	No	Yes	I	1	1	1	1	1 1	1	$\frac{1}{1}$		
T5 225.000-205.0 00	No	Yes	1	1	1	1	1	1	1	1		
T6 205.000-185.0 00	No	Yes	1	1	1	1	1	1	1	1		
T7 185.000-165.0	No	Yes	1.	1	1	1	1 1	1 1	1 1	1		

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 8 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

						K Fa	ctors1			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
ft	Angles	Rounds		X	X Y	X	X	X	X Y	X
00						•			•	
T8	No	Yes	1	1	1	1	1	1	1	1
165.000-145.0 00				1	1	1	1	1	1	1
T9	No	Yes	1	1	1	1	1	1	1	I
145.000-125.0 00				1	1	1	1	1	1	1
T10	No	Yes	1	1	1	1	1	1	1	1
125.000-105.0 00				1	1	1	1	1	1	I
T11	No	Yes	1	1	1	1	1	1	1	1
105.000-85.00				1	1	1	1	1	1	I
T12	No	Yes	1	1	1	1	1	1	1	1
85.000-65.000				1	1	1	1	1	1	1
T13	No	Yes	1	1	1	1	1	1	1	1
65.000-45.000				1	1	1	1	1	1	1
T14	No	Yes	1	1	1	1	1	1	1	1
45.000-25.000				1	1	1	1	1	1	1
T15	No	Yes	1	1	1	1	1	1	1	1
25.000-5.000				1	1	1	1	1	1	1
T16 5.000-0.000	No	Yes	1	1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Elevation ft	Leg		Diagon	nal	Top Gi	rt	Bottom	Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
74	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 305.000-285.0 00	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	1	0.000	0.75
T2 285.000-265.0 00	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	1	0.000	0.75
T3 265.000-245.0 00	0.000	1	0.000	1	0.000	1	0.000	i	0.000	0.75	0.000	1	0.000	0.75
T4 245.000-225.0 00	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	1	0.000	0.75
T5 225.000-205.0	0.000	1	0.000	1	0.000	1	0.000	Ĭ	0.000	0.75	0.000	1	0.000	0.75
T6 205 000-185 0 00	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	1	0.000	0.75

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 9 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Tower Elevation ft	Leg		Diagon	al	Top Gi	irt	Bottom	Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
,	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T7 185.000-165.0	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	1	0.000	0.75
00 T8 165.000-145.0	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	Ľ	0.000	0.75
00 T9 145.000-125.0	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	18	0.000	0.75
00 T10 125,000-105.0	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	1	0.000	0.75
00 T11 105.000-85.00	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	1	0.000	0.75
T12 85.000-65.000	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	1	0.000	0.75
T13 65 000-45 000	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	1	0.000	0.75
T14 45.000-25.000	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	16	0.000	0.75
T15 25.000-5.000	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	1	0.000	0.75
T16 5.000-0.000	0.000	1	0.000	1	0.000	1	0.000	1	0.000	0.75	0.000	I	0.000	0.75

Tower Elevation ft	Leg Connection Type	Leg		Diagonal		Top G	Top Girt		Bottom Girt		Mid Girt		Long Horizontal		l Short Horizontal	
7	53)	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	
T1 305.000-285.0 00	Flange	0.750 A325N	0	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0	
T2 285.000-265.0 00	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0	
T3 265.000-245.0 00	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0	
T4 245.000-225.0 00	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0	
T5 225.000-205.0 00	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0	
T6 205 000-185 0 00	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0	

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 10 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Tower Elevation ft	Leg Connection Type	Leg		Diago	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hor	izontal	Short Hor	izontai
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
T7 185.000-165.0 00	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0
T8 165.000-145.0 00	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0
T9 145.000-125.0 00	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0
T10 125 000-105 0 00	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0
T11 105.000-85.00 0	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0
T12 85.000-65.000	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0
T13 65.000-45.000	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0
T14 45.000-25.000	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0
T15 25.000-5.000	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0
T16 5.000-0.000	Flange	0.750 A325N	3	0.000 A325N	0	0.000 A325N	0	0.000 A325N	0	0.625 A325N	0	0.000 A325N	0	0.625 A325N	0

G	uy	D	a	ta

Guy Elevation	Guy Grade		Guy Size	Initial Tension	%	Guy Modulus	Guy Weight	L_u	Anchor Radius	Anchor Azimuth Adj.	Anchor Elevation	End Fitting Efficiency
ft				K		ksi	plf	ft	ft	o	ft	%
55	EHS	A	3/8	1.540	10%	21000.000	0.273	247.338	236.000	0.000	-25.000	100%
		B	EModulus	1.540	10%	21000.000	0.273	240.431	236.000	0.000	0.000	100%
		С	3/8 EModulus 3/8 EModulus	1.540	10%	21000.000	0.273	237.799	236.000	0.000	13.000	100%
115	EHS	Α	7/16	2.080	10%	21000.000	0.399	272.699	236.000	0.000	-25.000	100%
1.10	Litto	В	EModulus	2.080		21000.000	0.399	260.768	236.000	0.000	0.000	100%
		C	7/16 EModulus 7/16 EModulus	2.080		21000.000	0.399	255 310	236.000	0.000	13.000	100%
175	EHS	Α	3/8	1.540	10%	21000.000	0.273	307.760	236.000	0.000	-25.000	100%
		В	EModulus	1.540		21000.000	0.273	292.161	236.000	0.000	0.000	100%
		C	3/8 EModulus 3/8 EModulus	1.540	10%	21000.000	0.273	284.578	236.000	0.000	13.000	100%

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job	Page
Arcosa #8592 - Happy Ridge Rd (Site# KYLEX2038)	11 of 55
Project	Date
305' 36G/37.100211, -84.776783	15:47:38 09/16/20
Client UNITI Towers	Designed by
UNIT Towers	ibrock

235	EHS	A	1/2	2.690	10%	21000.000	0.517	349.708	236.000	0.000	-25.000	100%
		B	EModulus	2.690	10%	21000.000	0.517	331.573	236.000	0.000	0.000	100%
		C	1/2	2.690	10%	21000.000	0.517	322.505	236.000	0.000	13.000	100%
			EModulus									
			1/2									
			EModulus									
290.193	EHS	A	3/4	5.830	10%	19000.000	1.155	392.382	236.000	0.000	-25.000	100%
		В	EModulus	5.830	10%	19000.000	1.155	372.633	236.000	0.000	0.000	100%
		C	3/4	5.830	10%	19000.000	1.155	362.619	236,000	0.000	13.000	100%
			EModulus									
			3/4									
			EModulus									

			G	uy Data	(cont'd)		
Guy	Mount	Torque-Arm	Torque-Arm	Torque-Arm	Torque-Arm	Torque-Arm	Torque-A
Elevation	Type	Spread	Leg Angle	Style	Grade	Type	

Guy Elevation ft	Mount Type	Torque-Arm Spread	Torque-Arm Leg Angle	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size
		ft	0				
55	Corner						
115	Corner						
175	Corner						
235	Torque Arm	6.000	0.000	Channel	A529-50 (50 ksi)	Channel	C12x20.7
290.193	Corner				30,000000		

Guy	Data	(cont'd)
		1

Guy Elevation ft	Diagonal Grade	Diagonal Type	Upper Diagonal Size	Lower Diagonal Size	Is Strap.	Pull-Off Grade	Pull-Off Type	Pull-Off Size
55.000	A572-50 (50 ksi)	Solid Round			Yes	A529-50 (50 ksi)	Flat Bar	4x5/8
115.000	A572-50 (50 ksi)	Solid Round			Yes	A529-50 (50 ksi)	Flat Bar	4x5/8
175.000	A572-50 (50 ksi)	Solid Round			Yes	A529-50 (50 ksi)	Flat Bar	4x5/8
235.000	A572-50 (50 ksi)	Solid Round			Yes	A529-50 (50 ksi)	Flat Bar	4x5/8
290.193	A572-50 (50 ksi)	Solid Round			Yes	A529-50 (50 ksi)	Flat Bar	4x5/8

	Guy	Data	(cont'd
--	-----	------	---------

Guy Elevation	Cable Weight	Cable Weight	Cable Weight	Cable Weight	Tower Intercept	Tower Intercept	Tower Intercept	Tower Intercep
	A	B	Č	D	A	В	C	D
ft	K	K	K	K	ft	ft	fi	ft
55	0.068	0.066	0.065		5.390	5.104	4.999	
					4.0 sec/pulse	3.9 sec/pulse	3.9 sec/pulse	

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 12 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by

Guy Elevation	Cable Weight	Cable Weight	Cable Weight	Cable Weight	Tower Intercept	Tower Intercept	Tower Intercept	Tower Intercept
	A	B	C	D	A	B	C	D
ft	K	K	K	K	ft	ft	ft	ft
115	0.109	0.104	0.102		7.045	6.458	6.198	
					4.6 sec/pulse	4.4 sec/pulse	4.3 sec/pulse	
175	0.084	0.080	0.078		8.258	7.458	7.084	
					5.0 sec/pulse	4.7 sec/pulse	4.6 sec/pulse	
235	0.181	0.171	0.167		11.478	10.343	9.797	
					5.8 sec/pulse	5.6 sec/pulse	5.4 sec/pulse	
290.193	0.453	0.430	0.419		14.806	13.385	12.692	
					6.6 sec/pulse	6.3 sec/pulse	6.2 sec/pulse	

Guy Data (cont'd)

			Torqu	e Arm	Pull	Off	Diag	onal
Guy Elevation ft	Calc K Single Angles	Calc K Solid Rounds	K _x	Κ,	K _x	К,	K _x	Κ,
55	No	No			0.8	0.8	1	1
115	No	No			0.8	0.8	1	1
175	No	No			0.8	0.8	1	1
235	No	No	1	1	0.8	0.8	1	1
290.193	No	No			0.8	0.8	1	1

Guy Data (cont'd)

		Torqu	ue-Arm			Pul	l Off			Diag	gonal	
Guy Elevation ft	Bolt Size in	Number	Net Width Deduct in	U	Bolt Size	Number	Net Width Deduct in	U	Bolt Size	Number	Net Width Deduct in	U
55	0.625 A325N	0	0.000	0.75	0.625 A325N	0	0.000	1	0.625 A325N	0	0.000	1
115	0.625 A325N	0	0.000	0.75	0.625 A325N	0	0.000	1	0.625 A325N	0	0.000	1
175	0.000 A325N	0	0.000	0.75	0.625 A325N	0	0.000	1	0.625 A325N	0	0.000	1
235	0.000 A325N	0	0.000	0.75	0.625 A325N	0	0.000	1	0.625 A325N	0	0.000	1
290.193	0.625 A325N	0	0.000	0.75	0.625 A325N	0	0.000	1	0.625 A325N	0	0.000	1

Guy Pressures

Guy Elevation	Guy Location	Z	q_z	q₌ Ice	Ice Thickness
ft		ft	ksf	ksf	in
55	A	15.000	0.020	0.002	1.386
	В	27.500	0.022	0.002	1.473
	C	34.000	0.023	0.002	1.504
115	A	45.000	0.025	0.002	1.547
	В	57.500	0.026	0.002	1.586

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 13 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Guy Elevation	Guy Location	2	q_z	q: Ice	Ice Thickness	
ft		ft	ksf	ksf	in	
	C	64.000	0.027	0.002	1.603	
175	A	75.000	0.027	0.002	1.628	
	В	87.500	0.028	0.002	1.654	
	C	94.000	0.029	0.002	1.666	
235	A	105.000	0.029	0.002	1.684	
	В	117.500	0.030	0.002	1.703	
	C	124.000	0.030	0.002	1.712	
290.193	A	132.596	0.031	0.003	1.724	
	В	145.096	0.032	0.003	1.739	
	C	151.596	0.032	0.003	1.747	

Guy-Mast Forces (Excluding Wind) - No Ice	Guy-Mast	Forces	(Excluding	Wind) - No	Ice
---	----------	--------	------------	------	--------	-----

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom K	F_x	F_y	F_z	M_x	M_{ν}	M_z
ft		0		K	K	K	kip-ft	kip-ft	kip-ft
55	Α	18.854	1.562 1.540	0.000	0.535	-1.467	-0.927	0.000	0.000
	В	13.212	1.555 1.540	1.304	0.386	0.753	0.335	0.000	-0.580
	С	10.164	1.551 1.540	-1.317	0.305	0.761	0.264	0.000	0.458
			Sum:	-0.013	1.227	0.046	-0.327	0.000	-0.122
115	Α	30.863	2.136 2.080	0.000	1.136	-1,809	-1.967	0.000	0.000
	В	26.146	2.126 2.080	1.634	0.979	0.944	0.848	0.000	-1.468
	C	23.528	2.121 2.080	-1.667	0.889	0.963	0.770	0.000	1.334
			Sum:	-0.033	3.004	0.097	-0.349	0.000	-0.134
175	Α	40.488	1.595 1.540	0.000	1.060	-1.192	-1.835	0.000	0.000
	В	36.760	1.588 1.540	1.085	0.976	0.626	0.845	0.000	-1.464
	C	34.664	1.584 1.540	-1.112	0.927	0.642	0.803	0.000	1.391
			Sum:	-0.028	2.963	0.077	-0.187	0.000	-0.073
235	Α	47.978	2.824 2.690	-0.024	2 138	-1.845	-3.704	5.575	-6.415
	Α	47.978	2.824 2.690	0.024	2 138	-1.845	-3.704	-5.575	6.415
	В	45.087	2.811 2.690	1.694	2.034	0.949	7.044	5.866	0.000
	В	45.087	2.811 2.690	1.669	2.034	0.992	-3.522	-5.866	-6.101
	С	43.457	2.805 2.690	-1.714	1.973	1.019	-3.417	6.024	5.919
	C	43,457	2.805 2.690	-1.739	1.973	0.975	6.834	-6.024	0.000
			Sum:	-0.091	12.290	0.245	-0.468	0.000	-0.182
290.193	Α	53.378	6.194 5.830	0.000	5.051	-3.584	-8.749	0.000	0.000
	В	51.087	6.165 5.830	3.261	4.881	1.883	4.227	0.000	-7.322
	C	49.797	6.150 5.830	-3.347	4.784	1.932	4.143	-0.000	7.176

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 14 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Guy Elevation	Location Location	Chord Angle	Guy Tension Top Bottom K	F_{π}	F_{y}	F_z	M_x	M_y	M_{z}
ft		0		K	K	K	kip-ft	kip-ft	kip-fi

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top	F_x	F_{ν}	F_z	M_x	M_y	M_{ε}
sic runon	Locuiton	angic	Bottom K						
ft		0		K	K	K	kip-ft	kip-ft	kip-ft
55	A	18.854	4.371 4.111	0.000	1.771	-3.996	-3.068	0.000	0.000
	В	13.212	4.565 4.368	3.749	1.452	2.164	1.257	0.000	-2.178
	C	10.164	4.628 4.472	-3.861	1.245	2,229	1.078	-0.000	1.867
			Sum:	-0.112	4.468	0.397	-0.732	0.000	-0.310
115	Α	30.863	5.978 5.398	0.000	3.480	-4.861	-6.028	0.000	0.000
	В	26.146	6.050 5.554	4.491	3.117	2.593	2.699	0.000	-4.675
	C	23.528	6.076 5.629	-4 627	2.894	2.671	2.507	-0.000	4.341
			Sum:	-0.136	9.491	0.403	-0.823	0.000	-0.333
175	Α	40.488	5.333 4.484	0.000	3.837	-3.704	-6.646	0.000	0.000
	В	36.760	5.357 4.594	3.427	3.611	1.978	3.127	0.000	-5.416
	C	34.664	5.364 4.649	-3.541	3.472	2.044	3.007	-0.000	5.208
225	.25	15.050	Sum:	-0.114	10.920	0.318	-0.512	0.000	-0.208
235	Α .	47.978	7.780 6.480	-0.061	6.167	-4.743	-10.681	14.334	-18.500
	A B	47.978	7.780 6.480	0.061 4.401	6.167 5.929	-4.743 2.466	-10.681 20.540	-14.334 15.245	0.000
	В	45.087 45.087	7.785 6.589 7.785	4.336	5.929	2.578	-10.270	-15.245	-17.788
	С	43.457	6.589 7.784	-4.476	5.786	2.661	-10.021	15.736	17.357
	С	43.457	6.644 7.784	-4.543	5.786	2.546	20.042	-15.736	0.000
		15,757	6.644 Sum:	-0.281	35.763	0.765	-1.071	0.000	-0.431
290.193	A	53.378	12 827 10 824	0.000	10.733	-7.023	-18.591	0.000	0.000
	В	51.087	12.810 10.943	6.434	10.436	3.715	9.037	0.000	-15.653
	C	49.797	12.799 11.004	-6.627	10.259	3.826	8.885	-0.000	15.389
			Sum:	-0.193	31.428	0.518	-0.668	0.000	-0.264

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job	- #0500 H Bid Bd (Ct-# IV/I 5/2020)	Page 15 of 55
annematics:	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	DOMESTIC OF STREET
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Guy-Mast Forces (Excluding Wi	ind) - Service
-------------------	--------------	----------------

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom K	F_x	F_{ν}	F_z	M_x	M_{y}	M_z
fi		0		K	K	K	kip-ft	kip-ft	kip-ft
55	A	18.854	1 562 1 540	0.000	0.535	-1.467	-0.927	0.000	0.000
	В	13.212	1.555 1.540	1.304	0.386	0.753	0.335	0.000	-0.580
	C	10.164	1.551	-1.317	0.305	0.761	0.264	0.000	0.458
			Sum	-0.013	1.227	0.046	-0.327	0.000	-0.122
115	Α	30.863	2.136 2.080	0.000	1.136	-1.809	-1.967	0.000	0.000
	В	26.146	2.126 2.080	1.634	0.979	0.944	0.848	0.000	-1.468
	C	23.528	2.121 2.080	-1.667	0.889	0.963	0.770	0.000	1.334
			Sum	-0.033	3.004	0.097	-0.349	0.000	-0.13
175	Α	40.488	1.595 1.540	0.000	1.060	-1.192	-1.835	0.000	0.000
	В	36.760	1.588	1.085	0.976	0.626	0.845	0.000	-1.46
	С	34.664	1.584 1.540	-1.112	0.927	0.642	0.803	0.000	1.391
			Sum	-0.028	2.963	0.077	-0.187	0.000	-0.073
235	Α	47.978	2.824 2.690	-0.024	2.138	-1.845	-3.704	5.575	-6.41
	Α	47.978	2.824 2.690	0.024	2.138	-1.845	-3.704	-5.575	6.415
	В	45.087	2.811 2.690	1.694	2.034	0.949	7.044	5.866	0.000
	В	45.087	2.811	1.669	2.034	0.992	-3.522	-5.866	-6.10
	C	43.457	2.805 2.690	-1.714	1.973	1.019	-3.417	6.024	5.919
	C	43.457	2.805 2.690	-1.739	1.973	0.975	6.834	-6.024	0.000
			Sum	-0.091	12.290	0.245	-0.468	0.000	-0.182
290.193	Α	53,378	6.194 5.830	0.000	5.051	-3.584	-8.749	0.000	0.000
	В	51.087	6.165 5.830	3.261	4.881	1.883	4.227	0.000	-7.322
	C	49,797	6.150 5.830	-3.347	4.784	1.932	4.143	-0.000	7.176
			Sum	-0.086	14.717	0.231	-0.379	0.000	-0.140

Guy-Tensioning Information

									Тетре	rature At T	ime Of Tens	ioning					
				0	F	20) F	40	0 F	60	0 F	80) F	10	0 F	12	0 F
Guy Elevation	į.	Н	V	Initial Tension	Intercept	Initial Tension	Intercept	Initial Tension	Intercept	Initial Tension	Intercept	Initial Tension	Intercept	Initial Tension	Intercept	Initial Tension	Intercept
ft		ft	ft	K	ft	K	ft	K	ft	K	ft	K	ft	K	ft	K	ft
55	A	234.27	80.00	2.069	4.02	1.888	4.40	1.712	4.85	1.540	5.39	1.376	6.03	1.221	6.79	1.079	7.67
	B	234.27	55.00	2 101	3.74	1.909	4.12	1.722	4.57	1.540	5.10	1.367	5.75	1.204	6.52	1.057	7.43
	C	234 27	42.00	2 114	3 64	1.918	4 02	1 726	4.46	1.540	5.00	1 363	5.65	1 198	6.42	1.048	7.34

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job		Page
Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	16 of 55
Project		Date
	305' 36G/37.100211, -84.776783	15:47:38 09/16/20
Client	UNITI Towers	Designed by

									Tempe	rature At T	ime Of Tensi	oning					
				0	F	-20	F	40	F	66	0 F	80) F	10	0 F	12	0 F
Guy Elevation ft		H ft	V fi	Initial Tension K	Intercept ft												
115	A	234.27	140.00	2.698	5.44	2.486	5.90	2 280	6.43	2 080	7.05	1.889	7.75	1.709	8.55	1.542	9.47
	В	234.27	115.00	2.758	4.88	2 5 2 5	5 3 3	2 299	5.85	2 080	6.46	1 872	7.17	1.677	7 99	1 499	8 93
	C	234.27	102 00	2.789	4.63	2.545	5.07	2.308	5.59	2.080	6.20	1.863	6.91	1.661	7.74	1.477	8.70
175	A	234.27	200.00	1.878	6.79	1.763	7.23	1.650	7.71	1.540	8.26	1.432	8.87	1.326	9.56	1.227	10.33
	В	234.27	175 00	1 916	6.01	1.788	6.43	1.663	6.91	1 540	7.46	1.421	8 07	1.307	8 77	1 198	9.55
	C	234 27	162.00	1.937	5.65	1.802	6.07	1.669	6.54	1.540	7.08	1.415	7.70	1.295	8.41	1.181	9.21
235	A	234.29	260.00	3.171	9.77	3.007	10.29	2.847	10.86	2 690	11.48	2.537	12.15	2.389	12.89	2.246	13.69
	В	234.29	235.00	3 227	8 65	3 044	9 16	2 865	9.72	2.690	10.34	2.520	11 02	2.357	11.77	2.200	12.59
	C	234 29	222.00	3.258	8.11	3.065	8.62	2.875	9.18	2.690	9.80	2.511	10 48	2.339	11.24	2.174	12.07
290 193	A	234.27	315.19	6.601	13.12	6.340	13.64	6.083	14.21	5.830	14.81	5.582	15.45	5.339	16.13	5.103	16.85
	B	234.27	290 19	6.687	11.71	6.396	12.23	6.110	12.79	5.830	13.39	5.556	14.03	5.288	14.72	5.028	15.46
	C	234.27	277.19	6.735	11.02	6.428	11 54	6 126	12.09	5.830	12 69	5.541	13.34	5.259	14.03	4.985	14.78

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#	# Per		Width or Diameter	Perimeter	Weight
	Leg		Torque Calculation		fi	in	(Frac FW)		Row	in	in	in	klf
1-5/8" (Carrier 1)	С	No	No	Ar (CaAa)	300.000 - 10.000	0.000	0	9	5	0.750	1.980		0.001
1.5" Hybrid (Carrier 1)	C	No	No	Ar (CaAa)	300.000 - 10.000	0.000	-0.3	6	3	0.750	1.500		0.001
1-5/8" (Carrier 2)	В	No	No	Ar (CaAa)	282.000 - 10.000	0.000	0	9	5	0.750	1.980		0.001
1.5" Hybrid (Carrier 2)	В	No	No	Ar (CaAa)	282 000 - 10 000	0.000	-0.3	6	3	0.750	1.500		0.001
1-5/8" (Carrier 3)	A	No	No	Ar (CaAa)	270.000 - 10.000	0.000	0	9	5	0.750	1.980		0.001
1.5" Hybrid (Carrier 3)	Α	No	No	Ar (CaAa)	270.000 - 10.000	0.000	-0.3	6	3	0.750	1.500		0.001
1-5/8" (Carrier 4) **	C	No	No	Ar (CaAa)	258.000 - 10.000	0.000	0.3	2	1	0.750	1.980		0.001
1-5/8" (Carrier 5) **	C	No	No	Ar (CaAa)	246.000 - 10.000	0.000	0.4	2	1	0.750	1.980		0.001
Safety Line 3/8	Α	No	No	Ar (CaAa)	305.000 - 10.000	0.000	0.45	1	1	0.375	0.375		0.000
Strobe Cable	A	No	No	Ar (CaAa)	305.000 - 10.000	0.000	-0.45	1	1	1.250	1.250		0.001

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation	Face	A_R	A_F	C ₄ A ₄ In Face	C_AA_A Out Face	Weight
	ft		ft²	ft²	ft²	ft ²	K
T1	305.000-285.000	A	0.000	0.000	3.250	0.000	0.018
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	40.230	0.000	0.182
T2	285.000-265.000	A	0.000	0.000	16.660	0.000	0.079

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job	#0500 H Pid Pd (01-# KV/ EV0000)	Page 17 of 55
Project	#8592 - Happy Ridge Rd (Site# KYLEX2038) 305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by ibrock

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C_AA_A Out Face	Weigh
	ft		ft²	ft ²	ft²	ft²	K
		В	0.000	0.000	45.594	0.000	0.206
		C	0.000	0.000	53.640	0.000	0.242
T3	265.000-245.000	Α	0.000	0.000	56.890	0.000	0.261
		В	0.000	0.000	53.640	0.000	0.242
		C	0.000	0.000	59.184	0.000	0.263
T4	245.000-225.000	Α	0.000	0.000	56.890	0.000	0.261
		В	0.000	0.000	53.640	0.000	0.242
		C	0.000	0.000	69 480	0.000	0.300
T5	225.000-205.000	A	0.000	0.000	56.890	0.000	0.261
		В	0.000	0.000	53.640	0.000	0.242
		C	0.000	0.000	69.480	0.000	0.300
T6	205.000-185.000	Α	0.000	0.000	56.890	0.000	0.261
		В	0.000	0.000	53.640	0.000	0.242
		C	0.000	0.000	69.480	0.000	0.300
T7	185.000-165.000	A	0.000	0.000	56.890	0.000	0.261
		В	0.000	0.000	53.640	0.000	0.242
		C	0.000	0.000	69.480	0.000	0.300
T8	165.000-145.000	A	0.000	0.000	56.890	0.000	0.261
		В	0.000	0.000	53.640	0.000	0.242
		C	0.000	0.000	69.480	0.000	0.300
T9	145.000-125.000	A	0.000	0.000	56.890	0.000	0.261
		В	0.000	0.000	53.640	0.000	0.242
		C	0.000	0.000	69.480	0.000	0.300
T10	125.000-105.000	A	0.000	0.000	56.890	0.000	0.261
		В	0.000	0.000	53.640	0.000	0.242
		C	0.000	0.000	69.480	0.000	0.300
T11	105.000-85.000	A	0.000	0.000	56.890	0.000	0.261
		В	0.000	0.000	53.640	0.000	0.242
		C	0.000	0.000	69.480	0.000	0.300
T12	85.000-65.000	A	0.000	0.000	56.890	0.000	0.261
		В	0.000	0.000	53.640	0.000	0.242
		C	0.000	0.000	69.480	0.000	0.300
T13	65.000-45.000	A	0.000	0.000	56.890	0.000	0.261
		В	0.000	0.000	53.640	0.000	0.242
		C	0.000	0.000	69.480	0.000	0.300
T14	45.000-25.000	A	0.000	0.000	56.890	0.000	0.261
		В	0.000	0.000	53.640	0.000	0.242
		C	0.000	0.000	69 480	0.000	0.300
T15	25.000-5.000	A	0.000	0.000	42 667	0.000	0.196
		В	0.000	0.000	40.230	0.000	0.182
		C	0.000	0.000	52.110	0.000	0.225
T16	5.000-0.000	A	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	0.000

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C_AA_A In Face	C_AA_A Out Face	Weight
	ft	Leg	in	ft²	ft ²	ft²	ft²	K
T1	305.000-285.000	Α	1.867	0.000	0.000	18.189	0.000	0.263
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	58.003	0.000	1.074
T2	285.000-265.000	A	1.854	0.000	0.000	37.374	0.000	0.616
		В		0.000	0.000	65.584	0.000	1.211
		C		0.000	0.000	77.158	0.000	1.424
T3	265.000-245.000	A	1.840	0.000	0.000	94.939	0.000	1.673
		В		0.000	0.000	76.966	0.000	1.416

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 18 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C_AA_A In Face	C_AA_A Out Face	Weight
	fi	Leg	in	ft	ft ²	ft²	ft²	K
		C		0.000	0.000	94.679	0.000	1.677
T4	245.000-225.000	A	1.825	0.000	0.000	94.613	0.000	1.661
		В		0.000	0.000	76.761	0.000	1.408
		C		0.000	0.000	127.161	0.000	2.144
T5	225.000-205.000	A	1.809	0.000	0.000	94 262	0.000	1.649
		В		0.000	0.000	76.539	0.000	1.399
		C		0.000	0.000	126.714	0.000	2.126
T6	205.000-185.000	A	1.792	0.000	0.000	93.880	0.000	1.635
		В		0.000	0.000	76.298	0.000	1.389
		C		0.000	0.000	126.229	0.000	2.107
T7	185.000-165.000	A	1.772	0.000	0.000	93.462	0.000	1 620
		В		0.000	0.000	76.033	0.000	1.378
		C		0.000	0.000	125.697	0.000	2.085
T8	165.000-145.000	Α	1.751	0.000	0.000	92.997	0.000	1.603
		В		0.000	0.000	75.740	0.000	1.366
		C		0.000	0.000	125.107	0.000	2.062
T9	145.000-125.000	A	1.727	0.000	0.000	92.476	0.000	1.585
		В		0.000	0.000	75.410	0.000	1.352
		C		0.000	0.000	124.445	0.000	2.035
T10	125.000-105.000	A	1.699	0.000	0.000	91.879	0.000	1.564
		В		0.000	0.000	75.033	0.000	1.337
		C		0.000	0.000	123.687	0.000	2.005
T11	105.000-85.000	A	1.667	0.000	0.000	91.181	0.000	1.539
		В		0.000	0.000	74.593	0.000	1.319
		C		0.000	0.000	122.801	0.000	1.971
T12	85.000-65.000	A	1.628	0.000	0.000	90.336	0.000	1.510
		В		0.000	0.000	74.059	0.000	1.297
		C		0.000	0.000	121.727	0.000	1.929
T13	65.000-45.000	A	1.579	0.000	0.000	89.257	0.000	1.473
		В		0.000	0.000	73.378	0.000	1.270
		C		0.000	0.000	120.358	0.000	1.876
T14	45.000-25.000	A	1.509	0.000	0.000	87.744	0.000	1.421
		В		0.000	0.000	72.423	0.000	1.232
		C		0.000	0.000	118.438	0.000	1.804
T15	25.000-5.000	A	1.386	0.000	0.000	63.815	0.000	1.000
		В		0.000	0.000	53.060	0.000	0.874
		C		0.000	0.000	86.301	0.000	1.260
T16	5.000-0.000	A	1 159	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	0.000

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
Tl	305.000-285.000	1.151	4.439	0.062	1.658
T2	285.000-265.000	2.228	-0.927	1.040	-0.478
T3	265.000-245.000	-0.279	-1.240	-0.811	-0.431
T4	245.000-225.000	-0.845	-0.255	-1.441	0.604
T5	225.000-205.000	-0.881	-0.264	-1.545	0.644
T6	205.000-185.000	-0.897	-0.269	-1.577	0.657
T7	185.000-165.000	-0.861	-0.260	-1.492	0.624
T8	165.000-145.000	-0.886	-0.265	-1.562	0.651
T9	145.000-125.000	-0.886	-0.265	-1.563	0.651
T10	125.000-105.000	-0.858	-0.259	-1.490	0.623
T11	105.000-85.000	-0.886	-0.265	-1.567	0.653

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 19 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Section	Elevation	CP_X	CP_Z	CP _X Ice	CP _Z Ice
	fi	in	in	in	in
T12	85 000-65 000	-0.886	-0.265	-1.568	0.653
T13	65.000-45.000	-0.861	-0.260	-1.510	0.631
T14	45.000-25.000	-0.874	-0.262	-1.551	0.646
T15	25.000-5.000	-0.824	-0.248	-1.404	0.587
T16	5.000-0.000	0.000	0.000	0.000	0.000

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	K_{α}
Section	Record No.		Segment Elev.	No Ice	Ice
T1	1	1-5/8"	285.00 -	0.6000	0.4092
70.1			300.00	0.0000	0.4000
TI	2	1.5" Hybrid	285 00 -	0.6000	0.4092
T1	14	Safety Line 3/8	300.00 285.00 -	0.6000	0.4092
1.1	14	Salety Line 3/6	305.00	0.0000	0.4092
T1	15	Strobe Cable	285.00 -	0.6000	0.4092
			305.00		
T2	1	1-5/8"	265.00 -	0.6000	0.4389
1000000			285.00	A24.000000000	Waterstein
T2	2	1.5" Hybrid	265.00 -	0.6000	0.4389
ma		1.700	285.00	0.4000	0.1200
T2	4	1-5/8"	265.00 -	0.6000	0.4389
T2	5	1.5" Hybrid	282.00 265.00 -	0.6000	0.4389
15	3	1.5 Hyond	282.00	0.0000	0.4362
T2	7	1-5/8"	265.00 -	0.6000	0.4389
			270.00		
T2	8	1.5" Hybrid	265.00 -	0.6000	0.4389
Atlanta		2410200-0000-0000-00000	270.00	W. 1777-001	VARIANTEN
T2	14	Safety Line 3/8	265.00 -	0.6000	0.4389
Т2	15	Strobe Cable	285.00	0.6000	0.4389
12	13	Strobe Cable	265.00 - 285.00	0.6000	0.4389
T3	1	1-5/8"	245.00 -	0.6000	0.4352
•		1-5/0	265.00	0.0000	0.1332
T3	2	1.5" Hybrid	245.00 -	0.6000	0.4352
273.5			265.00		
T3	4	1-5/8"	245.00 -	0.6000	0.4352
		12/12/2012/19/19/19	265.00		
T3	.5	1.5" Hybrid	245.00 -	0.6000	0.4352
Т3	7	1-5/8"	265.00 245.00 -	0.6000	0.4352
1.5	'	1-3/6	265.00	0.6000	0.4332
Т3	8	1.5" Hybrid	245.00 -	0.6000	0.4352
		112.112.112	265.00	21222	1000000
T3	10	1-5/8"	245.00 -	0.6000	0.4352
155365	1000		258.00		No. Company
Т3	12	1-5/8"	245.00 -	0.6000	0.4352
			246.00	2000	0.42
Т3	14	Safety Line 3/8	245.00 -	0.6000	0.4352
Т3	15	Strobe Cable	265,00	0.6000	0.4352
13	13	Strobe Cable	245.00 - 265.00	0.0000	0.4552
T4	1	1-5/8"		0.6000	0.4058

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job		Page
Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	20 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Tower	Feed Line	Description	Feed Line	K _a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
1000		N 2002202 NO	245.00	0.0000	01941120
T4	2	1.5" Hybrid		0.6000	0.4058
70.4		1.5/011	245.00	0.7000	0.405
T4	4	1-5/8"	225.00 -	0.6000	0.405
T4		1.60.71-0-04	245.00	0.0000	0.405
14	5	1.5" Hybrid	225.00 -	0.6000	0.405
T4	7	1-5/8"	245.00 225.00 -	0.6000	0.405
1.4	1	1-5/6	245.00	0.0000	0.403
T4	8	1.5" Hybrid	225.00 -	0.6000	0.405
50.00			245.00	0.0000	0.100
T4	10	1-5/8"	225.00 -	0.6000	0.405
	1,555	5.25730	245.00	200000000000000000000000000000000000000	
T4	12	1-5/8"	225.00 -	0.6000	0.405
sev			245.00		
T4	14	Safety Line 3/8	225.00 -	0.6000	0.405
0430		950 900 900	245.00	20.0000000	
T4	15	Strobe Cable	225.00 -	0.6000	0.405
170.0		g 10 12 10 2 2 1	245.00	0.7000	W 122
T5	1	1-5/8"	205.00 -	0.6000	0.445
Т5	2	1.67.11.4	225.00	0.6000	0.445
15	2	1.5" Hybrid	205.00 - 225.00	0.6000	0.445
T5	4	1-5/8"	205.00 -	0.6000	0.445
1.5	7	1-5/0	225.00	0.0000	0.443
T5	5	1.5" Hybrid	205.00 -	0.6000	0.445
5.70		1.5 Hyona	225.00	0.0000	0.113
T5	7	1-5/8"	205.00 -	0.6000	0.445
			225.00		
T5	8	1.5" Hybrid	205.00 -	0.6000	0.445
10,452.61	20074	21 No. 10 No.	225.00	VA - 100 TO CO.	
T5	10	1-5/8"	205.00 -	0.6000	0.445
			225.00	no managaran I	V3200000102
T5	12	1-5/8"	205.00 -	0.6000	0.445
me		0.0.1. 2/0	225.00	0.4000	0.445
T5	14	Safety Line 3/8	205.00 -	0.6000	0.445
T5	15	Strobe Cable	225.00 205.00 -	0.6000	0.445
1.5	13	Strove Cavie	225.00	0.0000	0.443
Т6	1	1-5/8"	185.00 -	0.6000	0.460
		1-3/0	205.00	0.3000	V.100
Т6	2	1.5" Hybrid	185.00 -	0.6000	0.460
		19070 S201922714	205.00	12300000	
T6	4	1-5/8"	185.00 -	0.6000	0.460
Georgia		or sometiment	205.00	V	
Т6	5	1.5" Hybrid	185.00 -	0.6000	0.460
100	_	27.47000	205.00	7007 (270070)	12012024
Т6	7	1-5/8"	185.00 -	0.6000	0.460
TP/C		1.70.71.1.2.1	205.00	0.5000	0.120
Т6	8	1.5" Hybrid	185.00 -	0.6000	0.460
Т6	10	1-5/8"	205.00	0.6000	0.460
10	10	1-5/8	185.00 - 205.00	0.0000	0.460
Т6	12	1-5/8"	185.00 -	0.6000	0.460
* 56		1-3/0	205.00	0.000	0.400
Т6	14	Safety Line 3/8	185.00 -	0.6000	0.460
220	5370		205.00	204444	
Т6	15	Strobe Cable	185.00 -	0.6000	0.460
			205.00		
T7	1	1-5/8"	165.00 -	0.6000	0.431
1.0000		55 4MW 177050 1270	185.00	gg resummer	
T7	2	1.5" Hybrid	165.00 -	0.6000	0.431

Јоь Arcosa #8592 - Нарру Ri	dge Rd (Site# KYLEX2038)	Page 21 of 55
Project 305' 36G/37.10	00211, -84.776783	Date 15:47:38 09/16/20
Client	I Towers	Designed by

ower ection	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K., Ice
			185.00		
Т7	4	1-5/8"	165.00 - 185.00	0.6000	0.4318
T7	5	1.5" Hybrid	165.00 -	0.6000	0.4318
Т7	7	1-5/8"	185.00 165.00 -	0.6000	0.4318
T7	8	1.5" Hybrid	185.00 165.00 -	0.6000	0.4318
T7	10	1-5/8"	185.00 165.00 -	0.6000	0.4318
Т7	12	1-5/8"	185.00 165.00 -	0.6000	0.4318
Т7	14	Safety Line 3/8	185.00 165.00 -	0.6000	0 4318
Т7	15	Strobe Cable	185.00 165.00 -	0.6000	0.4318
Т8	Î	1-5/8"	185.00 145.00 -	0.6000	0.4622
Т8	2	1.5" Hybrid	165.00 145.00 -	0.6000	0.4622
Т8	4	1-5/8"	165.00 145.00 -	0.6000	0.4622
Т8	5	1.5" Hybrid	165.00 145.00 -	0.6000	0.4622
Т8	7	1-5/8"	165.00 145.00 - 165.00	0.6000	0.4622
Т8	8	1.5" Hybrid	145.00 - 165.00	0.6000	0.4622
Т8	10	1-5/8"	145.00 - 165.00	0.6000	0.4622
Т8	12	1-5/8"	145.00 - 165.00	0.6000	0.4622
Т8	14	Safety Line 3/8	145.00 - 165.00	0.6000	0.4622
Т8	15	Strobe Cable	145.00 - 165.00	0.6000	0.4622
Т9	1	1-5/8"	125.00 - 145.00	0.6000	0.4671
Т9	2	1.5" Hybrid	125.00 - 145.00	0.6000	0.4671
Т9	4	1-5/8"	125.00 - 145.00	0.6000	0.4671
Т9	5	1.5" Hybrid	125.00 - 145.00	0.6000	0.4671
Т9	7	1-5/8"	125.00 - 145.00	0.6000	0.4671
Т9	8	1.5" Hybrid	125.00 - 145.00	0.6000	0.4671
Т9	10	1-5/8"	125.00 - 145.00	0.6000	0.4671
Т9	12	1-5/8"	125.00 - 145.00	0.6000	0.4671
Т9	14	Safety Line 3/8	125.00 - 145.00	0.6000	0.4671
Т9	1.5	Strobe Cable 125.00 145.0		0.6000	0.4671
T10	1	1-5/8"	105.00 - 125.00	0.6000	0.4426
T10	2	1.5" Hybrid	105.00 - 125.00	0.6000	0.4426
T10	4	1-5/8"	105.00 -	0.6000	0.4426

Job Arcosa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 22 of 55
Project 305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client UNITI Towers	Designed by

Tower	Feed Line	Description	Feed Line	K_{α}	Ka	
Section	Record No.		Segment Elev.	No Ice	Ice	
11-24-730	60		125.00			
T10	5	1.5" Hybrid	105.00 -	0.6000	0.442	
			125.00			
T10	7	1-5/8"	105.00 -	0.6000	0.442	
200000	0.5		125.00	- 11.0000000		
T10	8	1.5" Hybrid	105.00 -	0.6000	0.442	
			125.00	C-12000		
T10	10	1-5/8"	105.00 -	0.6000	0.442	
0.500			125.00			
T10	12	1-5/8"	105.00 -	0.6000	0.442	
.,	7100		125.00	0.0000000000000000000000000000000000000		
T10	14	Safety Line 3/8	105.00 -	0.6000	0.442	
		25	125.00			
T10	15	Strobe Cable	105.00 -	0.6000	0.442	
2.82.30,0	773.51		125.00	0.200.000.00		
T11	i	1-5/8"	85.00 - 105.00	0.6000	0.479	
T11			85.00 - 105.00	0.6000	0.479	
T11	2 4	1-5/8"	85 00 - 105 00	0.6000	0.479	
T11	5		85.00 - 105.00	0.6000	0.479	
Tii	7	1.5 Hybrid	85.00 - 105.00	0.6000	0.479	
Tii	8		85.00 - 105.00	0.6000	0.479	
T11	10	1.5 Hybrid 1-5/8"	85.00 - 105.00	0.6000		
Tii	12	1-5/8"	85.00 - 105.00	The state of the s	0.479	
0.54,55,50				0.6000		
TII	14 15	Safety Line 3/8		0.6000	0.479	
T11	320		85.00 - 105.00	0.6000	0.479	
T12	1	1-5/8"	65.00 - 85.00	0.6000	0.487	
T12	2 4	1.5" Hybrid	65.00 - 85.00	0.6000	0.487	
T12	4	1-5/8"	65.00 - 85.00	0.6000	0.487	
T12	5	1.5" Hybrid	65.00 - 85.00	0.6000	0.487	
T12	7	1-5/8"	65.00 - 85.00	0.6000	0.487	
T12	8	1.5" Hybrid	65.00 - 85.00	0.6000	0.487	
T12	10	1-5/8"	65.00 - 85.00	0.6000	0.487	
T12	12	1-5/8"	65.00 - 85.00	0.6000	0.487	
T12	14	Safety Line 3/8	65.00 - 85.00	0.6000	0.487	
T12	15	Strobe Cable	65.00 - 85.00	0.6000	0.487	
T13	1	1-5/8"	45.00 - 65.00	0.6000	0,472	
T13	2	1.5" Hybrid	45.00 - 65.00	0.6000	0.472	
T13	4	1-5/8"	45.00 - 65.00	0.6000	0.472	
T13	5	1.5" Hybrid	45.00 - 65.00	0.6000	0.472	
T13	7	1-5/8"	45.00 - 65.00	0.6000	0.472	
T13	8	1.5" Hybrid	45.00 - 65.00	0.6000	0.472	
T13	10	1-5/8"	45.00 - 65.00	0.6000	0.472	
T13	12	1-5/8"	45.00 - 65.00	0.6000	0.472	
T13	14	Safety Line 3/8	45.00 - 65.00	0.6000	0.472	
T13	15	Strobe Cable	45.00 - 65.00	0.6000	0.472	
T14	1	1-5/8"	25.00 - 45.00	0.6000	0.504	
T14	2	1.5" Hybrid	25.00 - 45.00	0.6000	0.504	
T14	4	1-5/8"	25.00 - 45.00	0.6000	0.504	
T14	5	1.5" Hybrid	25.00 - 45.00	0.6000	0.504	
T14	7	1-5/8"	25.00 - 45.00	0.6000	0.504	
T14	8	1.5" Hybrid	25.00 - 45.00	0.6000	0.504	
T14	10		25.00 - 45.00			
	12	1-5/8"		0.6000	0.504	
T14		1-5/8" Safaty Line 3/8	25.00 - 45.00	0.6000	0.504	
T14	14	Safety Line 3/8	25.00 - 45.00	0.6000	0.504	
T14	15	Strobe Cable	25.00 - 45.00	0.6000	0.504	
T15	1	1-5/8"	10.00 - 25.00	0.6000	0.530	
T15	2	1.5" Hybrid	10.00 - 25.00	0.6000	0.530	
T15	4	1-5/8"	10.00 - 25.00	0.6000	0.530	
T15	2 4 5 7	1.5" Hybrid	10.00 - 25.00	0.6000	0.530	
T15		1-5/8"	10.00 - 25.00	0.6000	0.530	
T15	8	1.5" Hybrid	10.00 - 25.00	0.6000	0.530	
		1-5/8"	10.00 - 25.00	0.6000	0.530	

Job Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 23 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
T15	12	1-5/8"	10.00 - 25.00	0.6000	0.5303
T15	14	Safety Line 3/8	10.00 - 25.00	0.6000	0.5303
T15	15	Strobe Cable	10.00 - 25.00	0.6000	0.5303

			Di	screte 1	ower L	oads				
Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	C_AA_A	Weight	*
	or	Type	Horz Lateral	Adjustment			Front	Side		
	Leg		Vert							
			ft	0	ft		ft^2	ft ²	K	
			ft		Ji		Ju	Ji	A	
			ft							
Lightning Rod 1"x10"	C	From Leg	0.000	0.000	305.000	No Ice	1.000	1.000	0.040	
			0.000			1/2" Ice	2.017	2.017	0.049	
			5.000			I" Ice	3.050	3.050	0.065	
						2" Ice	5.148	5.148	0.116	
Top Beacon	В	From Leg	0.000	0.000	305.000	No Ice	2.700	2.700	0.050	
			0.000			1/2" Ice	3.100	3.100	0.070	
			1.000			I" Ice	3.500	3.500	0.090	
**						2" Ice	4.300	4.300	0.130	
Sector1(CaAa=13333.33	Α	From Leg	4.000	0.000	300.000	No Ice	92.600	62.040	0.700	
Sq.in)No Ice	/1	From Leg	0.000	0.000	300.000	1/2" Ice	115.750	77.550	1.400	
(Carrier 1)			0.000			I" Ice	138.900	93.060	2.100	
(Currer 1)			0.000			2" Ice	185.200	124.080	3.500	
Sector2(CaAa=13333.33	В	From Leg	4.000	0.000	300.000	No Ice	92.600	62.040	0.700	
Sq.in)No Ice		riom Leg	0.000	0.000	500.000	1/2" Ice	115.750	77.550	1.400	
(Carrier 1)			0.000			1" Ice	138.900	93.060	2.100	
						2" Ice	185.200	124 080	3.500	
Sector3(CaAa=13333.33	C	From Leg	4.000	0.000	300.000	No Ice	92.600	62.040	0.700	
Sq.in)No Ice			0.000			1/2" Ice	115.750	77.550	1.400	
(Carrier 1)			0.000			1" Ice	138.900	93.060	2.100	
						2" Ice	185.200	124.080	3.500	
**	27	420	102222	12/0000	5000 1000	12'6 '51'	2022332	100512010	121212	
Sector1(CaAa=10000	A	From Leg	4.000	0.000	282.000	No Ice	69.440	46.525	0.700	
Sq in)No Ice			0.000			1/2" Ice	86.800	58.156	1.400	
(Carrier 2)			0.000			I" Ice	104.160	69.787	2.100	
Sector2(CaAa=10000	В	Com Los	4.000	0.000	282.000	2" Ice No Ice	138.880 69.440	93.050 46.525	3.500 0.700	
Sq.in)No Ice	В	From Leg	0.000	0.000	282.000	1/2" Ice	86.800	58.156	1.400	
(Carrier 2)			0.000			1" Ice	104.160	69.787	2.100	
(Carrer 2)			0.000			2" Ice	138.880	93.050	3.500	
Sector3(CaAa=10000	C	From Leg	4.000	0.000	282.000	No Ice	69.440	46.525	0.700	
Sq.in)No Ice		1 Tom Leg	0.000	0.000	202.000	1/2" Ice	86.800	58.156	1.400	
(Carrier 2)			0.000			1" Ice	104.160	69.787	2.100	
7			4.444			2" Ice	138.880	93.050	3.500	
**								SEXOCUS.	2.7070707.	
Sector1(CaAa=10000	A	From Leg	4.000	0.000	270.000	No Ice	69.440	46.525	0.700	
Sq.in)No Ice			0.000			1/2" Ice	86.800	58.156	1.400	
(Carrier 3)			0.000			1" Ice	104.160	69.787	2.100	
Maria II Na Maria II Na Maria						2" Ice	138.880	93.050	3.500	
Sector2(CaAa=10000	В	From Leg	4.000	0.000	270.000	No Ice	69.440	46.525	0.700	
Sq in)No Ice			0.000			1/2" Ice	86.800	58.156	1.400	
(Carrier 3)			0.000			1" Ice	104.160	69.787	2.100	

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 24 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weigh
			ft ft ft	0	ft		ft²	ft²	K
			-			2" Ice	138.880	93.050	3.500
Sector3(CaAa=10000	C	From Leg	4.000	0.000	270.000	No Ice	69.440	46.525	0.700
Sq.in)No Ice			0.000			1/2" Ice	86.800	58 156	1.400
(Carrier 3)			0.000			1" Ice	104.160	69.787	2.100
**						2" Ice	138.880	93.050	3.500
Pipe Mount	C	From Leg	0.500	0.000	258.000	No Ice	1.650	1.650	0.05
(Carrier 4)		Maria di Professionia (Maria	0.000			1/2" Ice	2.207	2.207	0.074
Same Property States and States a			0.000			1" Ice	2.543	2.543	0.094
						2" Ice	3.241	3.241	0.148
Pipe Mount	В	From Leg	0.500	0.000	258.000	No Ice	1.650	1.650	0.05
(Carrier 4)			0.000			1/2" Ice	2.207	2.207	0.074
			0.000			1" Ice	2.543	2.543	0.094
**						2" Ice	3.241	3.241	0.148
Pipe Mount	C	From Leg	0.500	0.000	246 000	No Ice	1.650	1.650	0.05
(Carrier 5)			0.000			1/2" Ice	2.207	2.207	0.074
V			0.000			1" Ice	2.543	2.543	0.094
						2" Ice	3.241	3.241	0.148
Pipe Mount	В	From Leg	0.500	0.000	246.000	No Ice	1.650	1.650	0.057
(Carrier 5)			0.000			1/2" Ice	2.207	2.207	0.074
40			0.000			1" Ice	2.543	2.543	0.094
						2" Ice	3.241	3.241	0.148
**									

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weigh
				ft	0	0	ft	ft		ft ²	K
6' MW Dish	C	Paraboloid w/o	From	1.000	0.000		258.000	6.000	No Ice	28.270	0.140
(Carrier 4)		Radome	Leg	0.000					1/2" Ice	29.050	0.290
55 55			~	0.000					1" Ice	29.830	0.440
									2" Ice	31.390	0.740
6' MW Dish	В	Paraboloid w/o	From	1.000	0.000		258.000	6.000	No Ice	28.270	0.140
(Carrier 4)		Radome	Leg	0.000					1/2" Ice	29.050	0.290
		SPAGNINA, MC		0.000					I" Ice	29.830	0.440
**									2" Ice	31.390	0.740
6' MW Dish	C	Paraboloid w/o	From	1.000	0.000		246.000	6.000	No Ice	28.270	0.140
(Carrier 5)		Radome	Leg	0.000	0.000		_ ,0		1/2" Ice	29.050	0.290
(Currier 5)		radome	200	0.000					I" Ice	29.830	0.440
									2" Ice	31.390	0.740
6' MW Dish	В	Paraboloid w/o	From	1.000	0.000		246.000	6.000	No Ice	28.270	0.140
(Carrier 5)		Radome	Leg	0.000					1/2" Ice	29.050	0.290
(Currer 5)				0.000					I" Ice	29.830	0.440
									2" Ice	31.390	0.740

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcosa	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 25 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Load Combinations

Comb.	Description						
No.							
1	Dead Only						
2	1.2 Dead+1.0 Wind 0 deg - No Ice+1.0 Guy						
3	1.2 Dead+1.0 Wind 30 deg - No Ice+1.0 Guy						
4	1.2 Dead+1.0 Wind 60 deg - No Ice+1.0 Guy						
5	1.2 Dead+1.0 Wind 90 deg - No Ice+1.0 Guy						
6	1.2 Dead+1.0 Wind 120 deg - No Ice+1.0 Guy						
7	1.2 Dead+1.0 Wind 150 deg - No Ice+1.0 Guy						
8	1.2 Dead+1.0 Wind 180 deg - No Ice+1.0 Guy						
9	1.2 Dead+1.0 Wind 210 deg - No Ice+1.0 Guy						
10	1.2 Dead+1.0 Wind 240 deg - No Ice+1.0 Guy						
11	1.2 Dead+1.0 Wind 270 deg - No Ice+1.0 Guy						
12	1.2 Dead+1.0 Wind 300 deg - No Ice+1.0 Guy						
13	1.2 Dead+1.0 Wind 330 deg - No Ice+1.0 Guy						
14	1.2 Dead+1.0 Ice+1.0 Temp+Guy						
15	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp+1.0 Guy						
16	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp+1.0 Guy						
17	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp+1.0 Guy						
18	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy						
19	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp+1.0 Guy						
20	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp+1.0 Guy						
21	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy						
22	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0 Guy						
23	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0 Guy						
24	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy						
25	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp+1.0 Guy						
26	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0 Guy						
27	Dead+Wind 0 deg - Service+Guy						
28	Dead+Wind 30 deg - Service+Guy						
29	Dead+Wind 60 deg - Service+Guy						
30	Dead+Wind 90 deg - Service+Guy						
31	Dead+Wind 120 deg - Service+Guy						
32	Dead+Wind 150 deg - Service+Guy						
33	Dead+Wind 180 deg - Service+Guy						
34	Dead+Wind 210 deg - Service+Guy						
35	Dead+Wind 240 deg - Service+Guy						
36	Dead+Wind 270 deg - Service+Guy						
37	Dead+Wind 300 deg - Service+Guy						
38	Dead+Wind 330 deg - Service+Guy						

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
T1	305 - 285	Leg	Max Tension	8	21.047	-0.013	0.023
			Max. Compression	2	-23.462	0.033	-0.300
			Max. Mx	11	-17.895	1.207	0.051
			Max. My	2	-16.348	-0.069	1.182
			Max. Vy	11	3.126	1.207	0.051
			Max Vx	2	3.023	-0.069	1.182
		Diagonal	Max Tension	5	8.322	0.000	0.000
		3 33 3 4 4 CO CO CO	Max. Compression	11	-8.417	0.000	0.000
			Max Mx	16	0.875	0.014	0.000

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 26 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial v	Major Axis Moment	Minor Axi Moment
			Mon Mon	Comb.	2.905	kip-ft	kip-ft
			Max My	13 16	-0.015	0.000	0.000
			Max. Vy Max. Vx	13	-0.000	0.000	0.000
		Horizontal	Max Tension	8	2.228	0.000	0.000
		Horizontai	Max Compression	2	-2.226	0.000	0.000
			Max. Mx	14	0.246	0.009	0.000
			Max. My	13	0.345	0.000	-0.000
			Max. Vy	14	-0.012	0.000	0.000
			Max Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	9	0.077	0.000	0.000
		The state of the s	Max Compression	3	-0.076	0.000	0.000
			Max. Mx	14	0.001	0.009	0.000
			Max. My	13	-0.043	0.000	-0.000
			Max. Vy	14	-0.012	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	12	3.745	0.000	0.000
			Max. Compression	10	-3.436	0.000	0.000
			Max. Mx	14	0.054	0.009	0.000
			Max. My	13	-2.316	0.000	-0.000
			Max. Vy	14	-0.012	0.000	0.000
		<u> </u>	Max. Vx	13	0.000	0.000	0.000
		Guy A	Bottom Tension	9	30.541		
			Top Tension	9	30.898		
			Top Cable Vert	9	24.913		
			Top Cable Norm	9	18.276		
			Top Cable Tan Bot Cable Vert	9	0.032 -24.185		
			Bot Cable Norm	9	18.646		
			Bot Cable North	9	0.363		
		Guy B	Bottom Tension	13	29.510		
		Guy D	Top Tension	13	29.840		
			Top Cable Vert	13	23.343		
			Top Cable Norm	13	18.589		
			Top Cable Tan	13	0.013		
			Bot Cable Vert	13	-22.646		
			Bot Cable Norm	13	18.918		
			Bot Cable Tan	13	0.327		
		Guy C	Bottom Tension	3	29.040		
			Top Tension	3	29.355		
			Top Cable Vert	3	22.549		
			Top Cable Norm	3	18.795		
			Top Cable Tan	3	0.021		
			Bot Cable Vert	3	-21.869		
			Bot Cable Norm	3	19.103		
			Bot Cable Tan	3	0.326	0.000	0.000
		Top Guy Pull-Off	Max Tension	3	9.637	0.000	0.000
			Max Compression	1	0.000	0.000	0.000
			Max. Mx	14	3.118	0.027	0.000
			Max. My	13	8.206	0.000	-0.000 0.000
			Max. Vy	14	-0.036	0.000	
T2	285 - 265	Lea	Max Vx Max Tension	13 10	0.000 8.554	0.000 -0.049	0.000 -0.014
14	205 - 205	Leg	Max. Compression	11	-39.472	0.075	0.054
			Max. Mx	5	-4.891	1.229	-0.096
			Max. My	2	-10.959	-0.069	-1.177
			Max. Vy	11	3.125	0.003	-0.032
			Max. Vx	2	3.024	0.018	0.017
		Diagonal	Max Tension	11	8.282	0.000	0.000
			Max Compression	5	-8.415	0.000	0.000
			Max. Mx	16	0.550	0.014	0.000
			Max. My	13	0.199	0.000	0.000

Job		Page
Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	27 of 55
Project		Date
	305' 36G/37.100211, -84.776783	15:47:38 09/16/20
Client	UNITI Towers	Designed by

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	2000	1.080#C01		Comb.	K	kip-ft	kip-ft
			Max. Vy	16	-0.015	0.000	0.000
			Max. Vx	13	-0.000	0.000	0.000
		Horizontal	Max Tension	4	2.624	0.000	0.000
			Max. Compression	10	-2.527	0.000	0.000
			Max. Mx	14	0.402	0.009	0.000
			Max. My	13	0.659	0.000	-0.000
			Max. Vy	14	-0.012	0.000	0.000
			Max Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	10	3.485	0.000	0.000
			Max Compression	12	-3.695	0.000	0.000
			Max Mx	14	0.000	0.009	0.000
			Max. My	13	2.356	0.000	-0.000
			Max. Vy	14	-0.012	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	13	1.376	0.000	0.000
			Max. Compression	8	-1.410	0.000	0.000
			Max. Mx	14	0.071	0.009	0.000
			Max. My	13	1.376	0.000	-0.000
			Max. Vy	14	-0.012	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
T3	265 - 245	Leg	Max Tension	8	9.771	0.118	0.847
			Max Compression	9	-41.614	0.246	-0.224
			Max. Mx	5	-30.687	1.140	-0.210
			Max. My	2	-35.643	-0.255	-0.985
			Max. Vy	5	4.070	-0.428	0.035
			Max. Vx	2	-3.599	-0.030	0.402
		Diagonal	Max Tension	11	8.394	0.000	0.000
			Max. Compression	5	-8.614	0.000	0.000
			Max Mx	16	0.393	0.014	0.000
			Max. My	12	-0.450	0.000	0.000
			Max Vy	16	-0.014	0.000	0.000
		grupos (6.07.02.)	Max. Vx	12	0.000	0.000	0.000
		Horizontal	Max Tension	4	1.447	0.000	0.000
			Max. Compression	10	-1.071	0.000	0.000
			Max. Mx	23	0.452	0.009	0.000
			Max. My	13	0.620	0.000	-0.000
			Max. Vy	23	-0.011	0.000	0.000
		т. С.	Max. Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	8	1.681	0.000	0.000
			Max Compression	13	-1.495	0.000	0.000
			Max. Mx	14	0.022	0.009	0.000
			Max. My	13	-1.495	0.000	-0.000
			Max. Vy	14	-0.011	0.000	0.000
		Bottom Girt	Max. Vx	13	0.000 3.132	0.000	0.000
		Bottom Girt	Max Tension	2 12	-2.938	0.000	0.000
			Max Compression	14	0.097	0.009	0.000
			Max Mx	13	2.095	0.000	-0.000
			Max_My Max_Vy	14	-0.011	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
T4	245 - 225	Lan	Max Tension	8	38.584	0.017	-0.003
14	243 - 223	Leg	Max Compression	2	-77.201	0.241	0.000
			Max. Mx	11	3.605	2.029	-0.061
			Max My	2	-45.849	0.198	1.775
			Max My	5	4.037	-1.984	0.279
			Max. Vx	2	-3.564	0.198	1.775
		Diagonal	Max Tension	5	11.293	0.198	0.000
		Diagonal		11	-11.593	0.000	0.000
			Max. Compression	15	0.695	0.000	0.000
			Max Mx	12		0.000	0.000
			Max. My	15	-1.664		0.000
			Max. Vy	13	-0.014	0.000	0.000

Job		Page
Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	28 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
	9575	22000000		Comb.	K	kip-ft	kip-ft
			Max. Vx	12	0.000	0.000	0.000
		Horizontal	Max Tension	3	1.653	0.000	0.000
			Max Compression	13	-1.650	0.000	0.000
			Max. Mx	14	0.705	0.008	0.000
			Max. My	13	1.180	0.000	-0.000
			Max. Vy	14	0.011	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	12	4.347	0.000	0.000
		rop Citt	Max Compression	2	-3.975	0.000	0.000
			Max Mx	14	0.051	0.008	0.000
			Max. My	13	-2.247	0.000	-0.000
			Max Vy	14	0.011	0.000	0.000
		Dattom Cirt	Max. Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	13	2.089	0.000	0.000
			Max. Compression	6	-2.090	0.000	0.000
			Max Mx	15	0.295	0.008	0.000
			Max My	13	-0.901	0.000	-0.000
			Max. Vy	15	-0.011	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Guy A	Bottom Tension	7	14.672		
			Top Tension	7	14.803		
			Top Cable Vert	7	11.070		
			Top Cable Norm	7	9.829		
			Top Cable Tan	7	0.013		
			Bot Cable Vert	7	-10.736		
			Bot Cable Norm	7	9.998		
			Bot Cable Tan	7	0.170		
		Guy B	Bottom Tension	13	14.622		
			Top Tension	13	14.741		
			Top Cable Vert	13	10.512		
			Top Cable Norm	13	10.334		
			Top Cable Tan	13	0.014		
			Bot Cable Vert	13	-10.196		
			Bot Cable Norm	13	10.480		
			Bot Cable Tan	13	0.158		
		Guy C	Bottom Tension	3	14.115		
		2000 to \$1,00000	Top Tension	3	14.228		
			Top Cable Vert	3	9.862		
			Top Cable Norm	3	10.256		
			Top Cable Tan	3	0.011		
			Bot Cable Vert	3	-9.555		
			Bot Cable Norm	3	10.389		
			Bot Cable Norm	3	0.156		
		Top Guy Pull-Off	Max Tension	3	9.352	0.000	0.000
		top Guy Pull-Off		13	-9.338	0.000	0.000
			Max Compression				
			Max. Mx	14	0.211	0.026	0.000
			Max. My	13	2.525	0.000	-0.000
			Max. Vy	14	0.035	0.000	0.000
		Torque A. T.	Max. Vx	13	0.000	0.000	0.000
		Torque Arm Top	Max Tension	11	11.504	0.000	0.000
			Max. Compression	11	-5.539	0.000	0.000
			Max. Mx	9	-0.191	-32.240	0.000
			Max. My	13	-2.426	-15.169	-0.000
			Max. Vy	9	10.784	-32.240	0.000
			Max. Vx	13	-0.000	-15.169	-0.000
T5	225 - 205	Leg	Max Tension	8	4.061	-0.057	-0.153
			Max. Compression	2	-62.575	-0.135	-0.429
			Max. Mx	6	-60.747	0.569	-0.022
			Max. My	7	-25.981	0.288	0.591
			Max. Vy	6	-1.766	-0.111	-0.159

Job Arcosa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 29 of 55
Project 305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client UNITI Towers	Designed by

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
		Diagonal	Max Tension	12	4.030	0.000	0.000
		₹.	Max. Compression	6	-4.600	0.000	0.000
			Max Mx	15	-0.444	0.012	0.000
			Max. My	13	-2.285	0.000	0.000
			Max. Vy	15	-0.013	0.000	0.000
			Max. Vx	13	-0.000	0.000	0.000
		Horizontal	Max Tension	2	1.053	0.000	0.000
			Max Compression	2	-1.053	0.000	0.000
			Max. Mx	24	0.796	0.008	0.000
			Max. My	13	0.919	0.000	-0.000
			Max. Vy	24	0.011	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	6	2.004	0.000	0.000
			Max Compression	13	-1.712	0.000	0.000
			Max. Mx	15	-0.066	0.008	0.000
			Max. My	13	0.905	0.000	-0.000
			Max. Vy	15	-0.011	0.000	0.000
			Max Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	13	1.220	0.000	0.000
			Max. Compression	7	-1.250	0.000	0.000
			Max. Mx	18	0.158	0.008	0.000
			Max. My	13	-0.278	0.000	-0.000
			Max. Vy	18	0.011	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
T6	205 - 185	Leg	Max Tension	1	0.000	0.000	0.000
			Max. Compression	15	-49.194	-0.124	0.004
			Max. Mx	11	-27.380	-0.281	0.010
			Max. My	7	-26.784	0.194	0.352
			Max. Vy	6	-0.796	-0.041	-0.092
			Max. Vx	7	-1.034	-0.014	-0.046
		Diagonal	Max Tension	13	1.903	0.000	0.000
			Max Compression	7	-2.281	0.000	0.000
			Max. Mx	15	-0.142	0.011	0.000
			Max My	13	-0.352	0.000	0.000
			Max. Vy	15	-0.011	0.000	0.000
		1990-000-000-00	Max Vx	13	-0.000	0.000	0.000
		Horizontal	Max Tension	15	0.846	0.000	0.000
			Max. Compression	15	-0.846	0.000	0.000
			Max. Mx	19	0.842	0.008	0.000
			Max. My	13	0.600	0.000	-0.000
			Max. Vy	19	-0.011	0.000	0.000
		T	Max. Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	7	1.138	0.000	0.000
			Max. Compression	13	-0.901	0.000	0.000
			Max. Mx	18	-0.022	0.008	0.000
			Max. My	13	0.289	0.000	-0.000
			Max. Vy	18	-0.011	0.000	0.000
		D	Max Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	13	0.409	0.000	0.000
			Max. Compression	7	-0.420	0.000	0.000
			Max. Mx	22	0.054	0.008	0.000
			Max. My	13	0.409	0.000	-0.000
			Max Vy	22	-0.011	0.000	0.000
TO	105 175		Max. Vx	13	0.000	0.000	0.000
T7	185 - 165	Leg	Max Tension	1	0.000	0.000	0.000
			Max. Compression	15	-53.935	0.231	0.002
			Max. Mx	5	-34.011	-0.415	-0.054
			Max. My	2	-36.012	0.030	0.466
			Max. Vy	6	-0.926	-0.307	-0.178
			Max. Vx	2	0.970	0.030	0.466
		Diagonal	Max Tension	3	2.488	0.000	0.000

Job Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 30 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by ibrock

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
				Comb.	K	kip-ft	kip-ft
			Max Compression	6	-3.100	0.000	0.000
			Max. Mx	18	-0.033	0.010	0.000
			Max. My	13	-1.915	0.000	0.000
			Max. Vy	18	0.011	0.000	0.000
			Max Vx	13	-0.000	0.000	0.000
		Horizontal	Max Tension	15	0.934	0.000	0.000
			Max. Compression	15	-0.934	0.000	0.000
			Max. Mx	21	0 909	0.008	0.000
			Max My	13	0.612	0.000	-0.000
			Max. Vy	21	-0.011	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	7	0.659	0.000	0.000
		rop Girt		13	-0.411	0.000	0.000
			Max Compression	22	0.071		
			Max. Mx			0.008	0.000
			Max. My	13	-0.411	0.000	-0.000
			Max. Vy	22	-0.011	0.000	0.000
		D-44- C	Max. Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	13	1.079	0.000	0.000
			Max Compression	6	-1.055	0.000	0.000
			Max Mx	21	0.286	0.008	0.000
			Max. My	13	-0.488	0.000	-0.000
			Max. Vy	21	-0.011	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Guy A	Bottom Tension	7	8.207		
			Top Tension	7	8.260		
			Top Cable Vert	7	5.407		
			Top Cable Norm	7	6.244		
			Top Cable Tan	7	0.011		
			Bot Cable Vert	7	-5.237		
			Bot Cable Norm	7	6.318		
			Bot Cable Tan	7	0.090		
		Guy B	Bottom Tension	1.1	8.170		
		1000 4 0 100	Top Tension	11	8.216		
			Top Cable Vert	11	4.960		
			Top Cable Norm	11	6.550		
			Top Cable Tan	11	0.001		
			Bot Cable Vert	11	-4.802		
			Bot Cable Norm	11	6.609		
			Bot Cable Tan	11	0.094		
		Guy C	Bottom Tension	5	7.966		
		ouj c	Top Tension	5	8.009		
			Top Cable Vert	5	4.599		
			Top Cable Norm	5	6.557		
			Top Cable Tan	5	0.002		
			Bot Cable Vert	5	-4.447		
				5			
			Bot Cable Norm		6.608		
		T - C - D II OC	Bot Cable Tan	5	0.090	0.000	0.000
		Top Guy Pull-Off	Max Tension	7	3.378	0.000	0.000
			Max. Compression	1	0.000	0.000	0.000
			Max. Mx	21	2.022	0.026	0.000
			Max. My	13	2.922	0.000	-0.000
			Max. Vy	21	-0.034	0.000	0.000
	varanan varanan	war on the same of	Max. Vx	13	0.000	0.000	0.000
T8	165 - 145	Leg	Max Tension	1	0.000	0.000	0.000
			Max Compression	22	-56.659	-0.176	0.001
			Max. Mx	11	-34.728	-0.403	-0.012
			Max. My	7	-32.211	0.226	0.419
			Max. Vy	6	-0.918	0.050	-0.086
			Max. Vx	2	0.981	0.054	0.093
		Diagonal	Max Tension	3	2.014	0.000	0.000
			Max. Compression	6	-2.496	0.000	0.000

Job Arcosa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 31 of 55
Project 305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client UNITI Towers	Designed by ibrock

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
				Comb.	K	kip-ft	kip-ft
			Max Mx	20	-0.277	0.010	0.000
			Max. My	13	-0.068	0.000	0.000
			Max. Vy	20	-0.011	0.000	0.000
			Max. Vx	13	-0.000	0.000	0.000
		Horizontal	Max Tension	22	0.975	0.000	0.000
			Max Compression	22	-0.975	0.000	0.000
			Max. Mx	21	0.974	0.008	0.000
			Max. My	13	0.733	0.000	-0.000
			Max. Vy	21	0.011	0.000	0.000
			Max Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	6	1.067	0.000	0.000
			Max Compression	13	-0.796	0.000	0.000
			Max. Mx	21	-0.067	0.008	0.000
			Max. My	13	0.547	0.000	-0.000
			Max Vy	21	0.011	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	4	0.327	0.000	0.000
			Max. Compression	12	-0.209	0.000	0.000
			Max. Mx	17	0.157	0.008	0.000
			Max. My	13	0.224	0.000	-0.000
			Max. Vy	17	0.011	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
T9	145 - 125	Leg	Max Tension	1	0.000	0.000	0.000
			Max. Compression	23	-58.132	-0.184	0.000
			Max Mx	5	-32.777	0.553	-0.110
			Max. My	8	-28.201	-0.003	0.524
			Max. Vy	5	1.333	0.039	-0.087
			Max. Vx	8	1.196	0.047	0.064
		Diagonal	Max Tension	12	2.973	0.000	0.000
			Max. Compression	5	-3.447	0.000	0.000
			Max. Mx	20	-0.114	0.010	0.000
			Max. My	13	1 706	0.000	0.000
			Max. Vy	20	0.011	0.000	0.000
		Quarter support	Max. Vx	13	-0.000	0.000	0.000
		Horizontal	Max Tension	23	1.002	0.000	0.000
			Max. Compression	23	-1.002	0.000	0.000
			Max. Mx	24	0.995	0.008	0.000
			Max My	13	0.723	0.000	-0.000
			Max. Vy	24	-0.011	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	12	0.484	0.000	0.000
			Max Compression	4	-0.269	0.000	0.000
			Max. Mx	14	0.062	0.008	0.000
			Max. My	13	-0.169	0.000	-0.000
			Max. Vy	14	-0.011	0.000	0.000
		Care Control Control Control	Max. Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	6	1.296	0.000	0.000
			Max. Compression	12	-1.284	0.000	0.000
			Max. Mx	23	0.084	0.008	0.000
			Max. My	13	0.942	0.000	-0.000
			Max. Vy	23	-0.011	0.000	0.000
TIO	105 105	· Constant	Max. Vx	13	0.000	0.000	0.000
T10	125 - 105	Leg	Max Tension	1	0.000	0.000	0.000
			Max. Compression	23	-65.870	-0.208	-0.001
			Max. Mx	11	-35.380	0.624	-0.092
			Max. My	2	-38.950	0.008	0.669
			Max. Vy	11	1.461	0.624	-0.092
		D: 1	Max. Vx	2	1.442	0.008	0.669
		Diagonal	Max Tension	3	3.492	0.000	0.000
			Max Compression	3	-4.091	0.000	0.000
			Max. Mx	20	-0.682	0.011	0.000

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 32 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by ibrock

Section No.	Elevation ft	particular transfer that the second transfer transfer to the second transfer transfer to the second transfer tr		Gov. Load Comb.	Axial K	Major Axis Moment	Minor Axis Moment
			May Mr.	William Control of the Control of th	701700	kip-ft 0.000	kip-ft
			Max. My	13 20	1.530 -0.012	0.000	0.000
			Max Vy Max Vx	13	-0.012	0.000	0.000
		Horizontal	Max Tension	23	1.132	0.000	0.000
		Horizontai	Max Compression	23	-1.132	0.000	0.000
			Max. Mx	18	1.105	0.008	0.000
			Max My	13	0.718	0.000	-0.000
			Max. Vy	18	0.010	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	12	1.545	0.000	0.000
		rop one	Max Compression	6	-1.262	0.000	0.000
			Max Mx	23	0.139	0.008	0.000
			Max My	13	-0.866	0.000	-0.000
			Max. Vy	23	0.010	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	4	1.569	0.000	0.000
		Donom Ont	Max. Compression	6	-1.419	0.000	0.000
			Max. Mx	15	-0.037	0.008	0.000
			Max. My	13	-1.092	0.000	-0.000
			Max. Vy	15	0.010	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Guy A	Bottom Tension	7	11.696	0.000	
		22.03(12.0)	Top Tension	7	11.751		
			Top Cable Vert	7	6.074		
			Top Cable Norm	7	10.060		
			Top Cable Tan	7	0.007		
			Bot Cable Vert	7	-5.901		
			Bot Cable Norm	7	10.098		
			Bot Cable Tan	7	0.091		
		Guy B	Bottom Tension	11	11.428		
			Top Tension	11	11.473		
			Top Cable Vert	11	5.103		
			Top Cable Norm	11	10.276		
			Top Cable Tan	11	0.017		
			Bot Cable Vert	11	-4.945		
			Bot Cable Norm	11	10.303		
			Bot Cable Tan	11	0.096		
		Guy C	Bottom Tension	5	11.173		
			Top Tension	5	11.213		
			Top Cable Vert	5	4.524		
			Top Cable Norm	5	10.260		
			Top Cable Tan	5	0.016		
			Bot Cable Vert	5	-4.374		
			Bot Cable Norm	5	10.281		
			Bot Cable Tan	5	0.092		920000
		Top Guy Pull-Off	Max Tension	7	5.382	0.000	0.000
			Max Compression	1	0.000	0.000	0.000
			Max. Mx	17	2.384	0.025	0.000
			Max. My	13	4.589	0.000	-0.000
			Max. Vy	17	-0.033	0.000	0.000
TIL	10- 0-	¥	Max. Vx	13	0.000	0.000	0.000
T11	105 - 85	Leg	Max Tension	1	0.000	0.000	0.000
			Max Compression	21	-72.352	-0.218	0.006
			Max. Mx	5	-30.117	0.592	-0.066
			Max. My	9	-30.524	-0.238	0.551
			Max. Vy	11	1.469	0.061	-0.100
		Discount	Max. Vx	2	1.459	0.064	0.114
		Diagonal	Max Tension	3	3.436	0.000	0.000
			Max Compression	13	-3.542	0.000	0.000
			Max. Mx	22	-0.653	0.010	0.000
			Max. My	13	-0.451	0.000	0.000

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 33 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by ibrock

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	AIC .	11000000		Comb.	K	kip-ft	kip-ft
			Max Vy	22	0.010	0.000	0.000
			Max. Vx	13	-0.000	0.000	0.000
		Horizontal	Max Tension	21	1.242	0.000	0.000
			Max. Compression	21	-1.242	0.000	0.000
			Max. Mx	15	1.152	0.008	0.000
			Max. My	13	0.898	0.000	-0.000
			Max. Vy	15	0.010	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	6	1.458	0.000	0.000
			Max. Compression	4	-1.315	0.000	0.000
			Max Mx	15	0.240	0.008	0.000
			Max. My	13	1.175	0.000	-0.000
			Max. Vy	15	0.010	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	4	0.653	0.000	0.000
			Max Compression	13	-0.396	0.000	0.000
			Max. Mx	16	0.150	0.008	0.000
			Max. My	13	-0.396	0.000	-0.000
			Max. Vy	16	0.010	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
T12	85 - 65	Leg	Max Tension	1	0.000	0.000	0.000
			Max Compression	21	-75.031	-0.227	0.006
			Max. Mx	11	-41.863	-0.356	-0.012
			Max. My	7	-41.662	0.205	0.436
			Max. Vy	6	0.710	0.067	-0.087
			Max. Vx	7	0.820	0.061	0.120
		Diagonal	Max Tension	12	1.677	0.000	0.000
			Max Compression	6	-2.068	0.000	0.000
			Max Mx	22	-0.198	0.009	0.000
			Max. My	13	1.255	0.000	0.000
			Max. Vy	22	0.010	0.000	0.000
			Max. Vx	13	-0.000	0.000	0.000
		Horizontal	Max Tension	21	1.294	0.000	0.000
			Max. Compression	21	-1.294	0.000	0.000
			Max. Mx	16	1.142	0.007	0.000
			Max. My	13	0.930	0.000	-0.000
			Max. Vy	16	0.010	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	13	0.451	0.000	0.000
			Max. Compression	4	-0.388	0.000	0.000
			Max. Mx	16	0.052	0.007	0.000
			Max. My	13	0.451	0.000	-0.000
			Max. Vy	16	0.010	0.000	0.000
		Sast 10 (152) 10	Max. Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	7	0.895	0.000	0.000
			Max Compression	12	-0.716	0.000	0.000
			Max Mx	18	0.071	0.007	0.000
			Max. My	13	0.287	0.000	-0.000
			Max. Vy	18	0.010	0.000	0.000
Tr. a	20.00	W-1555	Max. Vx	13	0.000	0.000	0.000
T13	65 - 45	Leg	Max Tension	1	0.000	0.000	0.000
			Max. Compression	21	-78.655	-0.244	0.010
			Max. Mx	19	-75.777	0.337	0.002
			Max. My	13	-39.452	0.180	0.391
			Max. Vy	6	0.718	-0.209	-0.144
		1984 (1995)	Max. Vx	7	0.844	-0.087	-0.204
		Diagonal	Max Tension	12	2.099	0.000	0.000
			Max. Compression	6	-2.715	0.000	0.000
			Max. Mx	22	-0.385	0.009	0.000
			Max. My	13	1.151	0.000	0.000
			Max Vy	22	0.009	0.000	0.000

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 34 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
			Max Vx	13	-0.000	0.000	0.000
		Horizontal	Max Tension	21	1.353	0.000	0.000
			Max. Compression	21	-1.353	0.000	0.000
			Max. Mx	18	1.282	0.007	0.000
			Max. My	13	0.895	0.000	-0.000
			Max. Vy	18	-0.009	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	12	0.992	0.000	0.000
		000 3 16500	Max. Compression	7	-0.864	0.000	0.000
			Max. Mx	18	0.167	0.007	0.000
			Max. My	13	-0.224	0.000	-0.000
			Max Vy	18	-0.009	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	7	0.869	0.000	0.000
		. a. ottom . ott	Max Compression	13	-0.564	0.000	0.000
			Max. Mx	26	0.165	0.007	0.000
			Max. My	13	-0.564	0.000	-0.000
			Max. Vy	26	-0.009	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Com A	Bottom Tension	9	6.430	0.000	0.000
		Guy A		9			
			Top Tension		6.452		
			Top Cable Vert	9	2.120		
			Top Cable Norm	9	6.093		
			Top Cable Tan	9	0.004		
			Bot Cable Vert	9	-2.029		
			Bot Cable Norm	9	6.101		
		27172	Bot Cable Tan	9	0.041		
		Guy B	Bottom Tension	11	6.229		
			Top Tension	11	6.244		
			Top Cable Vert	11	1.462		
			Top Cable Norm	11	6.070		
			Top Cable Tan	11	0.003		
			Bot Cable Vert	11	-1.379		
			Bot Cable Norm	11	6.074		
			Bot Cable Tan	11	0.042		
		Guy C	Bottom Tension	5	6.095		
			Top Tension	5	6.106		
			Top Cable Vert	5	1.112		
			Top Cable Norm	5	6.004		
			Top Cable Tan	5	0.005		
			Bot Cable Vert	5	-1.034		
			Bot Cable Norm	5	6.006		
			Bot Cable Tan	5	0.041		
		Top Guy Pull-Off	Max Tension	7	3.333	0.000	0.000
		* *	Max Compression	1	0.000	0.000	0.000
			Max. Mx	18	2.430	0.024	0.000
			Max. My	13	2.803	0.000	-0.000
			Max. Vy	18	0.032	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
T14	45 - 25	Leg	Max Tension	1	0.000	0.000	0.000
* 307.	10 60	LUS	Max Compression	21	-79.349	-0.284	0.007
			Max. Mx	12	-27.654	-0.405	-0.187
			Max. My	7	-42.185	0.183	0.414
				12	0.631	-0.405	-0.187
			Max. Vy		-0.693	0.076	0.101
		Diagramal	Max. Vx	13			
		Diagonal	Max Tension	7	1.812	0.000	0.000
			Max. Compression	13	-2.224	0.000	0.000
			Max. Mx	22	-0.179	0.009	0.000
			Max. My	13	-0.090	0.000	0.000
			Max. Vy	22 13	0.009	0.000	0.000
			Max Vx		-0.000	0.000	0.000

Job Arcosa	#8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 35 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	1477.	-22-2-2		Comb.	K	kip-ft	kip-ft
		Horizontal	Max Tension	21	1.373	0.000	0.000
			Max Compression	21	-1.373	0.000	0.000
			Max. Mx	26	1.247	0.007	0.000
			Max My	13	0.951	0.000	-0.000
			Max. Vy	26	-0.009	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	13	0.717	0.000	0.000
			Max Compression	7	-0.640	0.000	0.000
			Max. Mx	26	0.119	0.007	0.000
			Max. My	13	0.716	0.000	-0.000
			Max. Vy	26	-0.009	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	7	0.805	0.000	0.000
			Max. Compression	13	-0.494	0.000	0.000
			Max. Mx	26	0.230	0.007	0.000
			Max. My	13	0.002	0.000	-0.000
			Max. Vy	26	-0.009	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
T15	25 - 5	Leg	Max Tension	1	0.000	0.000	0.000
		10.000 ATT	Max. Compression	21	-79.353	-0.238	-0.054
			Max Mx	24	-76.096	3.764	2.146
			Max. My	22	-76.716	-0.013	-4.375
			Max. Vy	18	11.678	-3.737	2.182
			Max. Vx	22	13.562	-0.013	-4.375
		Diagonal	Max Tension	12	2.970	0.000	0.000
			Max. Compression	6	-3.420	0.000	0.000
			Max. Mx	22	0.275	0.008	0.000
			Max. My	13	0.957	0.000	0.000
			Max. Vy	22	0.008	0.000	0.000
			Max. Vx	13	-0.000	0.000	0.000
		Horizontal	Max Tension	21	1.371	0.000	0.000
			Max Compression	21	-1.371	0.000	0.000
			Max. Mx	26	1.295	0.006	0.000
			Max. My	13	0.911	0.000	-0.000
			Max. Vy	26	0.008	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	13	0.833	0.000	0.000
			Max Compression	7	-0.676	0.000	0.000
			Max. Mx	26	0.139	0.006	0.000
			Max. My	13	0.160	0.000	-0.000
			Max. Vy	26	0.008	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	23	8.162	0.000	0.000
			Max. Compression	1	0.000	0.000	0.000
			Max Mx	26	7.741	0.006	0.000
			Max. My	13	4.227	0.000	-0.000
			Max. Vy	26	0.008	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
T16	5 - 0	Leg	Max Tension	1	0.000	0.000	0.000
	480 350		Max. Compression	20	-81.342	0.155	0.465
			Max. Mx	22	-76.846	4.375	-0.013
			Max. My	7	-47.402	-0.285	2.069
			Max. Vy	23	12.819	-0.864	0.069
			Max. Vx	7	-3.954	-0.202	2.034
		Diagonal	Max Tension	7	1.830	0.000	0.000
		Diagonal	Max. Compression	20	-12.180	0.000	0.000
			Max. Mx	23	-0.168	0.005	0.000
			Max. My	13	-2.372	0.000	0.000
			May Vi	22	_() ////7	U UUU	0.000
			Max. Vy Max. Vx	23 13	-0.007 -0.000	0.000	0.000

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 36 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axi Moment kip-ft
			Max. Compression	20	-1 469	0.000	0.000
			Max. Mx	26	1.430	0.001	0.000
			Max My	13	0.822	0.000	-0.000
			Max. Vy	26	-0.003	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Top Girt	Max Tension	23	8.145	0.000	0.000
		2010-#C1002003V	Max. Compression	1	0.000	0.000	0.000
			Max. Mx	26	7.940	0.004	0.000
			Max. My	13	4.731	0.000	-0.000
			Max. Vy	26	-0.006	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000
		Bottom Girt	Max Tension	7	3 474	0.000	0.000
			Max. Compression	12	-0.066	0.000	0.000
			Max. Mx	26	2.890	0.000	0.000
			Max. Vy	26	-0.001	0.000	0.000
			Max. Vx	13	0.000	0.000	0.000

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load Comb.	K	K	K
Mast	Max. Vert	23	227.317	-0.406	0.434
	Max. H _x	12	103.294	0.617	0.320
	Max. H.	11	125.035	-0.119	0.537
	Max. M _x	1	0.000	-0.004	0.004
	Max M,	1	0.000	-0.004	0.004
	Max. Torsion	13	2.116	0.360	-0.123
	Min. Vert	1	65.137	-0.004	0.004
	Min. H _x	4	101.444	-0.692	0.382
	Min. H _z	8	105.637	0.001	-0.528
	Min. Mx	1	0.000	-0.004	0.004
	Min. Mz	1	0.000	-0.004	0.004
	Min. Torsion	7	-2.321	0.447	0.011
Guy C @ 236 ft Elev 13 ft	Max. Vert	10	-0.536	-0.493	0.284
Azimuth 240 deg					
	$Max. H_x$	10	-0.536	-0.493	0.284
	Max. H _z	3	-49.981	-52.920	31.504
	Min. Vert	5	-50.344	-54.414	30.385
	$Min. H_x$	5	-50.344	-54.414	30.385
	Min. Hz	10	-0.536	-0.493	0.284
Guy B @ 236 ft Elev 0 ft	Max. Vert	6	-0 717	0.553	0.319
Azimuth 120 deg				500000000	12010560
	$Max. H_x$	11	-53.632	54.470	30.379
	$Max. H_z$	13	-53.038	52.805	31.440
	Min. Vert	11	-53.632	54.470	30.379
	Min_x	6	-0.717	0.553	0.319
	$Min. H_z$	6	-0.717	0.553	0.319
Guy A @ 236 ft Elev -25 ft	Max. Vert	2	-1,102	0.000	-0.786
Azimuth 0 deg					
	$Max. H_x$	10	-50.038	1.512	-52.311
	Max. H _z	2	-1.102	0.000	-0.786
	Min. Vert	9	-58.363	0.925	-60.735
	Min H _x	6	-49.848	-1.470	-52.124

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 37 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
	Min. H,	9	-58.363	0.925	-60.735

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M_x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	65 137	0.004	-0.004	0.000	0.000	0.09
1.2 Dead+1.0 Wind 0 deg - No	130.481	0.043	0.297	0.000	0.000	-0.22
Ice+1.0 Guy						
1.2 Dead+1.0 Wind 30 deg - No	118.730	0.437	0.051	0.000	0.000	1.12
Ice+1.0 Guy						
1.2 Dead+1.0 Wind 60 deg - No	101.444	0.692	-0.382	0.000	0.000	0.55
Ice+1.0 Guy						
1.2 Dead+1.0 Wind 90 deg - No	122.065	0.042	-0.525	0.000	0.000	0.08
Ice+1.0 Guy						
1.2 Dead+1.0 Wind 120 deg -	135.243	-0.498	-0.477	0.000	0.000	1.51
No Ice+1.0 Guy						
1.2 Dead+1.0 Wind 150 deg -	125.386	-0.447	-0.011	0.000	0.000	2.32
No Ice+1 0 Guy						
1.2 Dead+1.0 Wind 180 deg -	105.637	-0.001	0.528	0.000	0.000	0.66
No Ice+1.0 Guy						
1.2 Dead+1.0 Wind 210 deg -	127.146	0.517	-0.034	0.000	0.000	-0.52
No Ice+1.0 Guy						
1.2 Dead+1.0 Wind 240 deg -	138.447	0.661	-0.518	0.000	0.000	0.15
No Ice+1.0 Guy						
1.2 Dead+1.0 Wind 270 deg -	125.035	0.119	-0.537	0.000	0.000	0.30
No Ice+1 0 Guy		250000	272.23			67.3
1.2 Dead+1.0 Wind 300 deg -	103.294	-0.617	-0.320	0.000	0.000	-1.69
No Ice+1.0 Guy						
1.2 Dead+1.0 Wind 330 deg -	119.960	-0.360	0.123	0.000	0.000	-2.11
No Ice+1 0 Guy		0.500	M. 1 22	0.000	35.55.55	0700.0
1.2 Dead+1.0 Ice+1.0	225.284	0.101	-0.253	0.000	0.000	0.37
Temp+Guy		. 0.1.0.1	0.200	.0.10.00		
1.2 Dead+1.0 Wind 0 deg+1.0	225.984	0.097	0.026	0.000	0.000	0.26
Ice+1.0 Temp+1.0 Guy	223.707	0.077	0.020	0.000	0.000	0.20
1.2 Dead+1.0 Wind 30 deg+1.0	225.483	-0.040	-0.017	0.000	0.000	0.43
Ice+1.0 Temp+1.0 Guy	223,103	0.040	-0.017	0.000	0.000	0.13
1.2 Dead+1.0 Wind 60 deg+1.0	225.213	-0.151	-0.122	0.000	0.000	0.40
Ice+1.0 Temp+1.0 Guy	223.213	0.151	-0.122	0.000	0.000	9
1.2 Dead+1.0 Wind 90 deg+1.0	225 984	-0.204	-0.271	0.000	0.000	0.39
Ice+1.0 Temp+1.0 Guy	223.704	0.204	-0.271	0.000	0,000	0.55
1.2 Dead+1.0 Wind 120	226.818	-0.188	-0.420	0.000	0.000	0.56
deg+1.0 Ice+1.0 Temp+1.0 Guy	220.010	-0.100	-0.720	0.000	0.000	0.50.
1.2 Dead+1.0 Wind 150	226.565	-0.056	-0.496	0.000	0.000	0.65
deg+1.0 Ice+1.0 Temp+1.0 Guy	220.303	-0.050	-0.420	0.000	0.000	0.05
1.2 Dead+1.0 Wind 180	226.290	0.110	-0.523	0.000	0.000	0.49
deg+1.0 Ice+1.0 Temp+1.0 Guy	220.230	0.110	-0.323	0.000	0.000	0.47
1.2 Dead+1.0 Wind 210	226.853	0.275	-0.504	0.000	0.000	0.33
deg+1.0 Ice+1.0 Temp+1.0 Guy	220.033	0.275	-0.504	0.000	0.000	0.55
1.2 Dead+1.0 Wind 240	227.317	0.406	-0.434	0.000	0.000	0.37
deg+1.0 Ice+1.0 Temp+1.0 Guy	221.311	0.400	-0.434	0.000	0,000	0.37
1.2 Dead+1.0 Wind 270	226.501	0.415	-0 286	0.000	0.000	0.36
	220.301	0.413	-0.280	0.000	0.000	0.30
deg+1.0 Ice+1.0 Temp+1.0 Guy 1.2 Dead+1.0 Wind 300	225.625	0.353	-0.132	0.000	0.000	0.17
	223.023	0.333	-0.132	0.000	0.000	0.17
deg+1.0 Ice+1.0 Temp+1.0 Guy	225 700	0.225	0.020	0.000	0.000	0.00
1.2 Dead+1.0 Wind 330	225.708	0.235	-0.020	0.000	0.000	0.08

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job	- #9502 Harry Bidge Bd (Cita# IVVI EV2020)	Page 38 of 55
	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Date
Project	305' 36G/37.100211, -84.776783	15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Load Combination	Vertical	Shear _x	Shear:	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
deg+1.0 Ice+1.0 Temp+1.0 Guy						
Dead+Wind 0 deg -	68.229	0.008	-0.359	0.000	0.000	-0.077
Service+Guy						
Dead+Wind 30 deg -	67.890	0.206	-0.321	0.000	0.000	0.495
Service+Guy						
Dead+Wind 60 deg -	67.955	0.347	-0.197	0.000	0.000	0.236
Service+Guy						
Dead+Wind 90 deg -	68.393	0.378	-0.024	0.000	0.000	0.072
Service+Guy						
Dead+Wind 120 deg -	69.604	0.300	0.151	0.000	0.000	0.658
Service+Guy						
Dead+Wind 150 deg -	68.698	0.167	0.298	0.000	0.000	0.963
Service+Guy						
Dead+Wind 180 deg -	68.233	0.002	0.351	0.000	0.000	0.274
Service+Guy						
Dead+Wind 210 deg -	69.087	-0.157	0.298	0.000	0.000	-0.218
Service+Guy						
Dead+Wind 240 deg -	70.579	-0.275	0.147	0.000	0.000	0.052
Service+Guy						
Dead+Wind 270 deg -	68.910	-0.357	-0.021	0.000	0.000	0.119
Service+Guy						
Dead+Wind 300 deg -	68.156	-0.331	-0.187	0.000	0.000	-0.562
Service+Guy						
Dead+Wind 330 deg -	68.017	-0.191	-0.313	0.000	0.000	-0.848
Service+Guy						

Solution Summary

	Sui	m of Applied Forces			Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.000	-34.057	0.000	-0.000	34.057	0.001	0.004%
2	-0.019	-40.438	-54.059	0.019	40.438	54.050	0.014%
3	28.119	-40.172	-45.981	-28.119	40.172	45.974	0.011%
4	47.622	-39.920	-27.211	-47.620	39.920	27.216	0.008%
5	54.600	-40.219	-1.278	-54.594	40.219	1.282	0.011%
6	48.352	-40.525	25.416	-48.346	40.525	-25.412	0.012%
7	26.495	-40.297	45.804	-26.488	40.297	-45.799	0.012%
8	0.019	-40.061	52.595	-0.025	40.061	-52.595	0.009%
9	-26.574	-40.327	45.958	26.568	40.326	-45.954	0.011%
10	-48.525	-40.579	25.494	48.518	40.578	-25.489	0.011%
11	-54.600	-40.279	-1.295	54.594	40.279	1.299	0.011%
12	-47.450	-39.974	-27.133	47.447	39.974	27.138	0.008%
13	-28.039	-40.202	-45.827	28.039	40.201	45.819	0.011%
14	0.000	-167.751	0.000	-0.002	167.751	0.004	0.003%
15	-0.015	-167.876	-9.569	0.015	167.876	9.569	0.000%
16	4.841	-167.708	-8.181	-4.840	167.708	8.181	0.001%
17	8.303	-167.547	-4.799	-8.302	167.547	4.800	0.001%
18	9.558	-167.733	-0.109	-9.557	167.733	0.110	0.001%
19	8.383	-167.923	4.661	-8.381	167.923	-4.660	0.001%
20	4.718	-167.776	8.193	-4.717	167.776	-8.192	0.001%
21	0.015	-167,625	9.440	-0.016	167.625	-9.439	0.001%
22	-4.702	-167.793	8.179	4.701	167.793	-8.178	0.001%
23	-8.382	-167.955	4.643	8.380	167.954	-4.642	0.001%
24	-9.558	-167.768	-0 122	9.557	167.768	0.123	0.001%
25	-8.304	-167.578	-4.817	8.303	167.578	4.818	0.001%
26	-4.857	-167,725	-8.195	4.853	167.725	8.196	0.002%
27	-0.006	-34.118	-17.652	0.006	34.118	17.651	0.004%

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job		Page
Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	39 of 55
Project		Date
N.S. 1	305' 36G/37.100211, -84.776783	15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

	Sur	n of Applied Force.	S		Sum of Reaction	ıs	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
28	9.182	-34.032	-15.014	-9.182	34.031	15.012	0.005%
29	15.550	-33.949	-8.885	-15.549	33.949	8.887	0.004%
30	17.828	-34.047	-0.417	-17.827	34.047	0.419	0.005%
31	15.788	-34.147	8.299	-15.787	34.147	-8.298	0.006%
32	8.651	-34.072	14.956	-8.649	34.072	-14.955	0.005%
33	0.006	-33 995	17.174	-0.007	33.995	-17.172	0.005%
34	-8.677	-34.082	15.007	8.676	34.082	-15.006	0.005%
35	-15.845	-34.164	8.324	15.843	34.164	-8.323	0.006%
36	-17.828	-34.067	-0.423	17.827	34.067	0.424	0.004%
37	-15.494	-33.967	-8.860	15.492	33.967	8.862	0.007%
38	-9.156	-34.041	-14.964	9.156	34.041	14.962	0.006%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	11	0.00000001	0.00006560
2 3 4	Yes	28	0.00012377	0.00014815
3	Yes	28	0.00011091	0.00011848
4	Yes	26	0.00012915	0.00006233
5 6 7 8	Yes	30	0.00011269	0.00012309
6	Yes	31	0.00009774	0.00012043
7	Yes	30	0.00010816	0.00012585
8	Yes	25	0.00013247	0.00008756
9	Yes	31	0.00010288	0.00011985
10	Yes	32	0.00009435	0.00011786
11	Yes	31	0.00010689	0.00012024
12	Yes	28	0.00012802	0.00006435
13	Yes	28	0.00010998	0.00012087
14	Yes	20	0.00015000	0.00004782
15	Yes	24	0.00000001	0.00003778
16	Yes	19	0.00015000	0.00012692
17	Yes	25	0.00000001	0.00002186
18	Yes	27	0.00013616	0.00002851
19	Yes	27	0.00014129	0.00003598
20	Yes	25	0.00013803	0.00004524
21	Yes	24	0.00010717	0.00002547
22	Yes	27	0.00012057	0.00002812
23	Yes	28	0.00013598	0.00002999
24	Yes	28	0.00012334	0.00002389
25	Yes	26	0.00013471	0.00001875
26	Yes	19	0.00015000	0.00013510
27	Yes	21	0.00000001	0.00004718
28	Yes	19	0.00013150	0.00006203
29	Yes	15	0.00000001	0.00004469
30	Yes	21	0.00011641	0.00005493
31	Yes	23	0.00012896	0.00006601
32	Yes	21	0.00012043	0.00006360
33	Yes	15	0.00000001	0.00005485
34	Yes	22	0.00010382	0.00005461
35	Yes	24	0.00012011	0.00006324
36	Yes	22	0.00010655	0.00005233
37	Yes	15	0.00014032	0.00006957
38	Yes	19	0.00013728	0.00006791

. 7	17
thv	ower
	UNCI

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 40 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
T1	305 - 285	8.696	35	0.152	0.770
T2	285 - 265	8.314	35	0.121	0.776
T3	265 - 245	7.871	35	0 193	0.795
T4	245 - 225	7.059	35	0.194	0.765
T5	225 - 205	6.470	35	0.106	0.757
T6	205 - 185	6.227	35	0.065	0.851
T7	185 - 165	6.021	35	0.063	0.944
T8	165 - 145	5.821	35	0.063	1.010
T9	145 - 125	5.539	35	0.094	1.049
T10	125 - 105	5.057	35	0.120	1.055
T11	105 - 85	4.586	35	0.108	1.046
T12	85 - 65	4.095	35	0.146	1.018
T13	65 - 45	3.364	35	0.197	0.962
T14	45 - 25	2.474	35	0.226	0.888
T15	25 - 5	1.463	35	0.260	0.802
T16	5 - 0	0.300	35	0.284	0.695

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
305.000	Lightning Rod 1"x10"	35	8.696	0.152	0.770	200110
300.000	Sector1(CaAa=13333.33 Sq.in)No	35	8.598	0.137	0.770	200110
	Ice					
290.193	Guy	35	8.409	0.119	0.772	67571
282.000	Sector1(CaAa=10000 Sq in)No Ice	35	8.261	0.127	0.779	122403
270.000	Sector1(CaAa=10000 Sq.in)No Ice	35	8.015	0.174	0.793	9739
258 000	6' MW Dish	35	7.608	0.206	0.789	14802
246.000	6' MW Dish	35	7.099	0.197	0.767	12533
235.000	Guy	35	6.713	0.154	0.750	10758
175.000	Guy	35	5.922	0.061	0.980	135831
115.000	Guy	35	4.814	0.113	1.052	34590
55.000	Guy	35	2.933	0.213	0.950	40211

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
T1	305 - 285	52.238	10	0.884	1.934
T2	285 - 265	49.107	10	0.789	1.960
T3	265 - 245	45.794	10	1.027	2.054
T4	245 - 225	41.404	10	1.046	2.003
T5	225 - 205	37.811	10	0.751	1.923
T6	205 - 185	35.437	10	0.561	2.038
T7	185 - 165	33.363	10	0.488	2.253

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 41 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by ibrock

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	fi	in	Comb.	o	0
T8	165 - 145	31.444	10	0.469	2.405
T9	145 - 125	29.323	10	0.579	2.495
T10	125 - 105	26.601	10	0.662	2.485
T11	105 - 85	23.939	10	0.628	2.461
T12	85 - 65	21.149	10	0.787	2.415
T13	65 - 45	17.344	10	1.019	2.278
T14	45 - 25	12.716	10	1.183	2.101
T15	25 - 5	7.435	10	1.339	1.895
T16	5 - 0	1.515	10	1.436	1.618

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	Q	0	ft
305.000	Lightning Rod 1"x10"	10	52.238	0.884	1.934	68659
300.000	Sector1(CaAa=13333.33 Sq.in)No Ice	10	51.447	0.837	1.934	68659
290.193	Guy	10	49.908	0.781	1.944	23184
282.000	Sector1(CaAa=10000 Sq.in)No Ice	10	48.650	0.811	1.974	38639
270.000	Sector1(CaAa=10000 Sq in)No Ice	10	46.723	0.964	2.037	3137
258.000	6' MW Dish	10	44.315	1.079	2.054	4813
246.000	6' MW Dish	10	41.620	1.055	2.008	3790
235.000	Guy	10	39.431	0.910	1.946	3251
175.000	Guy	10	32.395	0.467	2.335	22146
115.000	Guy	10	25.247	0.639	2.471	10724
55.000	Guy	10	15.114	1.148	2.246	7171

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Rati Loa		Allowable Ratio	Criteria
	ft	9		in	Bolts	per Bolt K	per Bolt K	Allowa	able		
T2	285	Leg	A325N	0.750	3	2.096	30 101	0.070	V	1	Bolt Tension
T3	265	Leg	A325N	0.750	3	4.139	30.101	0.138	V	1	Bolt Tension
T4	245	Leg	A325N	0.750	3	4.625	30.101	0.154	V	1	Bolt Tension
T5	225	Leg	A325N	0.750	3	6.953	30.101	0.231	V	1	Bolt Tension
Т6	205	Leg	A325N	0.750	3	5.300	30.101	0.176	V	1	Bolt Tension
T7	185	Leg	A325N	0.750	3	5.466	30 101	0.182	V	1	Bolt Tension
T8	165	Leg	A325N	0.750	3	5.955	30.101	0.198	V	1	Bolt Tension
T9	145	Leg	A325N	0.750	3	6.296	30.101	0.209	V	1	Bolt Tension
T10	125	Leg	A325N	0.750	3	6.459	30.101	0.215	1	1	Bolt Tension
T11	105	Leg	A325N	0.750	3	7.319	30.101	0.243	V	1	Bolt Tension
T12	85	Leg	A325N	0.750	3	8.039	30.101	0.267	V	1	Bolt Tension
T13	65	Leg	A325N	0.750	3	8.337	30.101	0.277	~	1	Bolt Tension

Job Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 42 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Rati Loa		Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt K	per Bolt K	Allow	able		
T14	45	Leg	A325N	0.750	3	8.740	30.101	0.290	V	1	Bolt Tension
T15	25	Leg	A325N	0.750	3	8.817	30.101	0.293		1	Bolt Tension
T16	5	Leg	A325N	0.750	3	8.539	30.101	0.284	V	I,	Bolt Tension

_			1	
Guy	110	CIM	-	1242
Guv	UE	SIU		Dala
,				

Section No.	Elevation ft	Size	Initial Tension K	Breaking Load K	Actual T _u K	Allowable \$\phi T_n K	Required S.F.	Actual S.F.
T1	290.193 (A)	3/4	5.830	58.300	30.898	34.980	1.000	1.132
	(867)	EModulus EHS						F-1020
	290.193 (B)	3/4	5.830	58.300	29.840	34.980	1.000	1.172
	(866)	EModulus EHS						State 1
	290.193 (C)	3/4	5.830	58.300	29.355	34.980	1.000	1.192
227	(862)	EModulus EHS	A409A000	944 to 2000 to	9/08/08/04	100000000000000000000000000000000000000	1-2/13/02/2	
T4	235.000 (A)	1/2	2.690	26.900	14.707	16.140	1.000	1.097
	(858)	EModulus EHS						
	235.000 (A)	1/2	2.690	26.900	14.803	16.140	1.000	1.090
	(859)	EModulus EHS						1.020
	235.000 (B)	1/2	2.690	26.900	14.741	16.140	1.000	1.095
	(854)	EModulus EHS						
	235,000 (B)	1/2	2.690	26.900	14.348	16.140	1.000	1.125
	(855)	EModulus EHS						
	235.000 (C)	1/2	2.690	26.900	13.959	16.140	1.000	1.156
	(847)	EModulus EHS						
	235.000 (C)	1/2	2.690	26.900	14.228	16.140	1.000	1.134
	(848)	EModulus EHS						attent a
T7	175.000 (A)	3/8	1.540	15.400	8.260	9.240	1.000	1.119
	(846)	EModulus EHS						111616
	175.000 (B)	3/8	1.540	15.400	8.216	9.240	1.000	1.125
	(845)	EModulus EHS						
	175.000 (C)	3/8	1.540	15.400	8.009	9.240	1.000	1.154
	(841)	EModulus EHS						
T10	115.000 (A)	7/16	2.080	20.800	11.751	12.480	1.000	1.062
	(840)	EModulus EHS						11000
	115.000 (B)	7/16	2.080	20.800	11.474	12 480	1.000	1.088
	(839)	EModulus EHS						1.000
	115.000 (C)	7/16	2.080	20.800	11.213	12.480	1.000	1.113
	(835)	EModulus						1.112

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 43 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Section No.	Elevation	Size	Initial Tension	Breaking Load	Actual T_u	Allowable ϕT_n	Required S.F.	Actual S.F.
	ft		K	K	K	K		
		EHS						
T13	55.000 (A)	3/8	1.540	15.400	6.452	9.240	1.000	1.432
	(834)	EModulus						1.432
	Account of the second	EHS						
	55.000 (B)	3/8	1.540	15.400	6.244	9.240	1.000	1.480
	(833)	EModulus						1.480
	200000000	EHS						
	55.000 (C)	3/8	1.540	15.400	6.106	9.240	1.000	1.513
	(829)	EModulus						1.513
	30000000	EHS						

Compression Checks

Lea	Design	Data	(Compression)	١
5			10011101001011	,

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_a	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
TI	305 - 285	1 1/2	20.000	2.404	76.9 K=1.00	1.767	-23.462	51.596	0.455
T2	285 - 265	1 1/2	20.000	2.404	76.9 K=1.00	1.767	-39.472	51.596	0.765 1
T3	265 - 245	1 3/4	20.000	2.404	65.9 K=1.00	2.405	-38.838	78.769	0.493 1
T4	245 - 225	2	20.000	2,404	57.7 K=1.00	3.142	-77.201	110.838	0.697
T5	225 - 205	1 3/4	20.000	2.404	65.9 K=1.00	2.405	-60.787	78.769	0.772 1
T6	205 - 185	1 1/2	20.000	2.404	76.9 K=1.00	1.767	-48.866	51.596	0.947 1
T7	185 - 165	1 3/4	20.000	2,404	65.9 K=1.00	2.405	-53.935	78.769	0.685
Т8	165 - 145	1 3/4	20.000	2.404	65.9 K=1.00	2.405	-56.298	78.769	0.715
Т9	145 - 125	1 3/4	20.000	2.404	65.9 K=1.00	2.405	-57.828	78.769	0.734 1
T10	125 - 105	1 3/4	20.000	2.404	65.9 K=1.00	2.405	-65.356	78.769	0.830 1
TII	105 - 85	1 3/4	20.000	2,404	65.9 K=1.00	2.405	-71.713	78.769	0.910 1
T12	85 - 65	1 3/4	20.000	2.404	65.9 K=1.00	2.405	-74.717	78.769	0.949
T13	65 - 45	1 3/4	20.000	2.404	65.9 K=1.00	2 405	-78.110	78.769	0.992
T14	45 - 25	2	20,000	2,404	57.7 K=1.00	3.142	-79.296	110.838	0.715
T15	25 - 5	2	20.000	2.404	57.7 K=1.00	3.142	-79.127	110.838	0.714

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 44 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by ibrock

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T16	5 - 0	2	5.292	2.238	53.7 K=1.00	3.142	-81.342	114.489	0.710 1

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Diagonal Design Data (Compression)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
T1	305 - 285	1	3.844	3.684	123.8 K=0.70	0.785	-8.417	11.580	0.727
T2	285 - 265	1	3.844	3.684	123.8 K=0.70	0.785	-8.415	11.580	0.727
T3	265 - 245	1	3 844	3.657	122.9 K=0.70	0.785	-8.614	11.750	0.733
T4	245 - 225	1	3.844	3.631	122.0 K=0.70	0.785	-11.593	11.923	0.972
T5	225 - 205	.875	3 844	3.657	140.4 K=0.70	0.601	-4.600	6.888	0.668
T6	205 - 185	.75	3.844	3.684	165.0 K=0.70	0.442	-2.281	3.664	0.623
T7	185 - 165	.75	3.844	3.657	163.8 K=0.70	0.442	-3.100	3.718	0.834
T8	165 - 145	.75	3 844	3.657	163.8 K=0.70	0.442	-2.496	3.718	0.671
T9	145 - 125	.75	3.844	3.657	163.8 K=0.70	0.442	-3.447	3.718	0.927
T10	125 - 105	.875	3.844	3.657	140.4 K=0.70	0.601	-4 091	6.888	0.594
T11	105 - 85	.75	3.844	3.657	163.8 K=0.70	0.442	-3.542	3.718	0.953
T12	85 - 65	.75	3.844	3.657	163.8 K=0.70	0.442	-2.068	3.718	0.556
T13	65 - 45	.75	3.844	3.657	163.8 K=0.70	0.442	-2.715	3.718	0.730
T14	45 - 25	.75	3.844	3.631	162.6 K=0.70	0.442	-2.224	3.773	0.589
T15	25 - 5	.75	3.844	3.631	162.6 K=0.70	0.442	-3.420	3.773	0.907
T16	5 - 0	1	2.314	1.904	90.1 K=0.99	0.785	-12.180	19.517	0.624

 $P_u / \phi P_n$ controls

Horizontal Design Data (Compression)

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 45 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P.,
	ft		ft	ft		in^2	K	K	ϕP_n
TI	305 - 285	3/4	3.000	2.875	128.8 K=0.70	0.442	-2.226	6.016	0.370 1
T2	285 - 265	3/4	3.000	2.875	128.8 K=0.70	0.442	-2 527	6.016	0.420
T3	265 - 245	3/4	3.000	2.854	127.9 K=0.70	0.442	-1.071	6.104	0.176
T4	245 - 225	3/4	3.000	2.833	126.9 K=0.70	0.442	-1.650	6.194	0.266
T5	225 - 205	3/4	3.000	2.854	127.9 K=0.70	0.442	-1.053	6.104	0.172
T6	205 - 185	3/4	3.000	2.875	128.8 K=0.70	0.442	-0.846	6.016	0.141
T7	185 - 165	3/4	3.000	2.854	127.9 K=0.70	0.442	-0.934	6.104	0.153
T8	165 - 145	3/4	3.000	2.854	127.9 K=0.70	0.442	-0.975	6.104	0.160
T9	145 - 125	3/4	3,000	2.854	127.9 K=0.70	0.442	-1.002	6.104	0.164
T10	125 - 105	3/4	3.000	2.854	127.9 K=0.70	0.442	-1.132	6.104	0.185
T11	105 - 85	3/4	3.000	2.854	127.9 K=0.70	0.442	-1.242	6.104	0.203
T12	85 - 65	3/4	3.000	2.854	127.9 K=0.70	0.442	-1.294	6.104	0.212
T13	65 - 45	3/4	3.000	2.854	127.9 K=0.70	0.442	-1.353	6.104	0.222
T14	45 - 25	3/4	3.000	2.833	126.9 K=0.70	0.442	-1.373	6.194	0.222
T15	25 - 5	3/4	3.000	2.833	126.9 K=0.70	0.442	-1.371	6.194	0.221
T16	5 - 0	3/4	1.500	1.333	89.3 K=1.05	0.442	-1.469	11.095	0.132

 $^{^{1}}P_{u}$ / ϕP_{n} controls

Ton	Cirt	Docian	Data	(Compress	ion
TOP	GIIL	Design	Dala	(Compress	1011)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		fi	ft		in^2	K	K	ϕP_n
TI	305 - 285	3/4	3.000	2.875	128.8 K=0.70	0.442	-0.076	6.016	0.013
T2	285 - 265	3/4	3.000	2.875	128.8 K=0.70	0.442	-3.695	6.016	0.614
Т3	265 - 245	3/4	3.000	2.854	127.9 K=0.70	0.442	-1.495	6.104	0.245
T4	245 - 225	3/4	3.000	2.833	126.9 K=0.70	0.442	-3.975	6.194	0.642
T5	225 - 205	3/4	3.000	2.854	127.9	0.442	-1.712	6.104	0.280

Job		Page
Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	46 of 55
Project		Date
	305' 36G/37.100211, -84.776783	15:47:38 09/16/20
Client	UNITI Towers	Designed by ibrock

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
					K=0.70				V
T6	205 - 185	3/4	3.000	2.875	128.8 K=0.70	0.442	-0.901	6.016	0.150
T7	185 - 165	3/4	3.000	2.854	127.9 K=0.70	0.442	-0.411	6.104	0.067
T8	165 - 145	3/4	3.000	2.854	127.9 K=0.70	0.442	-0.796	6.104	0.130
T9	145 - 125	3/4	3.000	2.854	127.9 K=0.70	0.442	-0.269	6.104	0.044
T10	125 - 105	3/4	3.000	2.854	127.9 K=0.70	0.442	-1 262	6.104	0.207
T11	105 - 85	3/4	3.000	2.854	127.9 K=0.70	0.442	-1.315	6.104	0.215
T12	85 - 65	3/4	3.000	2.854	127.9 K=0.70	0.442	-0.388	6,104	0.064
T13	65 - 45	3/4	3.000	2.854	127.9 K=0.70	0.442	-0.864	6.104	0.142
T14	45 - 25	3/4	3 000	2.833	126.9 K=0.70	0.442	-0.640	6.194	0.103
T15	25 - 5	3/4	3.000	2.833	126.9 K=0.70	0.442	-0.676	6 194	0.109

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Bottom G	Firt Design	Data (Con	npression)
----------	-------------	-----------	------------

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
TI	305 - 285	3/4	3.000	2.875	128.8 K=0.70	0.442	-3.436	6.016	0.571
T2	285 - 265	3/4	3.000	2.875	128.8 K=0.70	0.442	-1.410	6.016	0.234
T3	265 - 245	3/4	3.000	2.854	127.9 K=0.70	0.442	-2.938	6.104	0.481
T4	245 - 225	3/4	3.000	2.833	126.9 K=0.70	0.442	-2.090	6.194	0.337 1
T5	225 - 205	3/4	3.000	2.854	127.9 K=0.70	0.442	-1.250	6.104	0.205
T6	205 - 185	3/4	3.000	2.875	128.8 K=0.70	0.442	-0.420	6.016	0.070
T7	185 - 165	3/4	3.000	2.854	127.9 K=0.70	0.442	-1.055	6.104	0.173 1
T8	165 - 145	3/4	3.000	2.854	127.9 K=0.70	0.442	-0.209	6.104	0.034
Т9	145 - 125	3/4	3.000	2.854	127.9 K=0.70	0.442	-1.284	6.104	0.210
T10	125 - 105	3/4	3.000	2.854	127.9 K=0.70	0.442	-1.419	6.104	0.232

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 47 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
T11	105 - 85	3/4	3.000	2.854	127.9 K=0.70	0.442	-0.396	6.104	0.065
T12	85 - 65	3/4	3.000	2.854	127.9 K=0.70	0.442	-0.716	6.104	0.117
T13	65 - 45	3/4	3.000	2.854	127.9 K=0.70	0.442	-0.564	6.104	0.092
T14	45 - 25	3/4	3.000	2.833	126.9 K=0.70	0.442	-0 494	6.194	0.080 1
T16	5 - 0	3/4	0.231	0.065	4.5 K=1.10	0.442	-0.066	19.850	0.003

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Top Guy Pull-Off Design Data (Compression)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
T4	245 - 225	4x5/8	3.000	2.833	150.8 K=0.80	2.500	-9.338	24.850	0.376

¹ P_u / ϕP_u controls

	Torque-Arm Top Design Data											
Section No.	Elevation	Size	Ĺ	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u			
	ft		ft	ft		in ²	K	K	ϕP_n			
T4	245 - 225 (849)	C12x20.7	3.000	2.917	43.8 K=1.00	6.090	-4.912	238.176	0.021			
T4	245 - 225 (850)	C12x20.7	3.000	2.917	43.8 K=1.00	6.090	-0.148	238.176	0.001			
T4	245 - 225 (856)	C12x20.7	3.000	2.917	43.8 K=1.00	6.090	-5.539	238.176	0.023			
T4	245 - 225 (857)	C12x20.7	3.000	2.917	43.8 K=1.00	6.090	-5.484	238 176	0.023			
T4	245 - 225 (860)	C12x20.7	3.000	2.917	43.8 K=1.00	6.090	-0.162	238.176	0.001			
T4	245 - 225 (861)	C12x20.7	3.000	2.917	43.8 K=1.00	6.090	-4.732	238.176	0.020			

Torque-Arm Top Bending Design Data

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 48 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	$Ratio$ M_{ux}	M_{uy}	ϕM_{nv}	Ratio M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{nv}
T4	245 - 225 (849)	C12x20.7	-31.925	94.764	0.337	-0.000	9.731	0.000
T4	245 - 225 (850)	C12x20.7	-29.542	94.764	0.312	-0.000	9.731	0.000
T4	245 - 225 (856)	C12x20.7	-30.933	94.764	0.326	-0.000	9.731	0.000
T4	245 - 225 (857)	C12x20.7	-29 165	94.764	0.308	0.000	9.731	0.000
T4	245 - 225 (860)	C12x20.7	-31.177	94.764	0.329	0.000	9.731	0.000
T4	245 - 225 (861)	C12x20.7	-31.527	94.764	0.333	0.000	9.731	0.000

Torque-Arm	Top	Interaction	Design	Data
------------	-----	-------------	--------	------

Section No.	Elevation	Size	Ratio P_u	Ratio M_{ux}	Ratio M_{uv}	Comb. Stress	Allow. Stress	Criteria
	ft		ϕP_n	ϕM_{nx}	$\phi M_{n\nu}$	Ratio	Ratio	
T4	245 - 225 (849)	C12x20.7	0.021	0.337	0.000	0.347	1.000	4.8.1
T4	245 - 225 (850)	C12x20.7	0.001	0.312	0.000	0.312	1.000	4.8.1
T4	245 - 225 (856)	C12x20.7	0.023	0.326	0.000	0.338	1,000	4.8.1
T4	245 - 225 (857)	C12x20.7	0.023	0.308	0.000	0.319	1.000	4.8.1
T4	245 - 225 (860)	C12x20.7	0.001	0.329	0.000	0.329	1.000	4.8.1
T4	245 - 225 (861)	C12x20.7	0.020	0.333	0.000	0.343	1.000	4.8.1

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in^2	K	K	ϕP_n
TI	305 - 285	1 1/2	20.000	2,404	76.9	1.767	21.047	79.522	0.265
T2	285 - 265	1 1/2	20 000	2.404	76.9	1 767	8.554	79.522	0.108
T3	265 - 245	1 3/4	20.000	0.385	10.6	2.405	9.771	108.238	0.090
T4	245 - 225	2	20.000	2.404	57.7	3.142	38.584	141.372	0.273
T5	225 - 205	1 3/4	20.000	0.385	10.6	2.405	4.061	108.238	0.038

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Job		Page
Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	49 of 55
Project		Date
	305' 36G/37.100211, -84.776783	15:47:38 09/16/20
Client	LINUTE T	Designed by
	UNITI Towers	jbrock

	Diagonal Design Data (Tension)											
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u			
	ft		ft	ft		in^2	K	K	ϕP_n			
TI	305 - 285	I	3.844	3.684	176.8	0.785	8.322	35.343	0.235			
T2	285 - 265	1	3.844	3.684	176.8	0.785	8.282	35.343	0.234			
Т3	265 - 245	1	3.844	3.657	175.6	0.785	8.394	35.343	0.238			
T4	245 - 225	1	3.844	3.631	174.3	0.785	11.293	35.343	0.320			
T5	225 - 205	.875	3.844	3.657	200.6	0 601	4.030	27.059	0.149			
Т6	205 - 185	.75	3 844	3.684	235.8	0.442	1.903	19.880	0.096			
T7	185 - 165	.75	3.844	3.657	234.1	0.442	2.488	19.880	0.125			
Т8	165 - 145	.75	3.844	3.657	234.1	0.442	2.014	19.880	0.101			
T9	145 - 125	.75	3.844	3.657	234.1	0.442	2.973	19.880	0.150			
T10	125 - 105	.875	3.844	3.657	200.6	0.601	3 492	27.059	0.129			
T11	105 - 85	.75	3.844	3.657	234 1	0.442	3.436	19.880	0.173			
T12	85 - 65	.75	3.844	3.657	234.1	0.442	1.677	19.880	0.084			
T13	65 - 45	.75	3.844	3.657	234.1	0.442	2.099	19.880	0.106			
T14	45 - 25	.75	3.844	3.631	232.4	0.442	1.812	19.880	0.091			
T15	25 - 5	75	3.844	3.631	232.4	0.442	2.970	19 880	0.149			
T16	5 - 0	1	3.027	2.616	125.6	0.785	1.830	35.343	0.052			

 $^{^{1}}P_{n}/\phi P_{n}$ controls

		Но	rizontal	Desig	n Dat	ta (Ter	nsion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in ²	K	K	ϕP_n
TI	305 - 285	3/4	3.000	2.875	184.0	0.442	2.228	19.880	0.112
T2	285 - 265	3/4	3.000	2.875	184_0	0.442	2.624	19.880	0.132
Т3	265 - 245	3/4	3.000	2.854	182.7	0.442	1.447	19.880	0.073

Job Arcosa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 50 of 55
Project 305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client UNITI Towers	Designed by

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T4	245 - 225	3/4	3.000	2.833	181.3	0.442	1.653	19.880	0.083
									~
T5	225 - 205	3/4	3.000	2.854	182.7	0.442	1.053	19.880	0.053
2000	000 000	200	aven.	0960203037	41271.0231.	5/2010/03/2017	7030703	5/2/(2/2/2/	V
T6	205 - 185	3/4	3.000	2.875	184.0	0.442	0.846	19.880	0.043
Total	105 165	2/4	2.000	2.051	102.7	0.413	0.024	10.000	0.017
T7	185 - 165	3/4	3.000	2.854	182.7	0.442	0.934	19.880	0.047
Т8	165 - 145	3/4	3.000	2.854	182.7	0.442	0.975	19.880	0.049
10	103 - 143	3/4	3.000	2.034	102.7	0.442	0.975	19.000	V
Т9	145 - 125	3/4	3.000	2.854	182.7	0.442	1.002	19.880	0.050
									V
T10	125 - 105	3/4	3.000	2.854	182.7	0.442	1.132	19.880	0.057
									V
T11	105 - 85	3/4	3.000	2.854	182.7	0.442	1.242	19.880	0.062
									V
T12	85 - 65	3/4	3.000	2.854	182.7	0.442	1.294	19.880	0.065
132002	1221 02								V
T13	65 - 45	3/4	3.000	2.854	182.7	0.442	1.353	19.880	0.068
error a	15 25	22/4	2.000	2.022	101.2	0.112	1.272	10.000	0.069
T14	45 - 25	3/4	3.000	2.833	181.3	0.442	1.373	19.880	0.069
T15	25 - 5	3/4	3.000	2.833	181.3	0.442	1.371	19.880	0.069
1.15	25-5	3/4	3.000	2.033	101.5	0.442	1.271	12.000	~
T16	5 - 0	3/4	1.500	1.333	85.3	0.442	1.469	19.880	0.074
257	20 2	-55.05	2005.5		977/25/		72525	1000000	V

 $^{{}^{1}}P_{u}/\phi P_{n}$ controls

		T	op Girt [)esigr	n Data	(Tens	sion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
Т1	305 - 285	3/4	3.000	2.875	184.0	0.442	0.077	19.880	0.004
T2	285 - 265	3/4	3.000	2.875	184.0	0.442	3.485	19.880	0.175
Т3	265 - 245	3/4	3.000	2.854	182.7	0.442	1.681	19.880	0.085
T4	245 - 225	3/4	3.000	2.833	181.3	0,442	4,347	19.880	0.219
T5	225 - 205	3/4	3.000	2.854	182.7	0.442	2.004	19.880	0.101
Т6	205 - 185	3/4	3.000	2.875	184.0	0.442	1.138	19.880	0.057
T7	185 - 165	3/4	3.000	2.854	182.7	0.442	0.659	19.880	0.033
T8	165 - 145	3/4	3.000	2.854	182.7	0.442	1.067	19.880	0.054

Job	#0502 Harry Bidge Dd (Cita# IVVI 5V2020)	Page 51 of 55
Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	31 01 33
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Section No.	Elevation	Sìze	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in ²	K	K	ϕP_n
									V
T9	145 - 125	3/4	3.000	2.854	182.7	0.442	0.484	19.880	0.024
									V
T10	125 - 105	3/4	3.000	2.854	182.7	0.442	1.545	19.880	0.078
									~
T11	105 - 85	3/4	3.000	2.854	182.7	0.442	1.458	19.880	0.073
									V
T12	85 - 65	3/4	3.000	2.854	182.7	0.442	0.451	19.880	0.023
									V
T13	65 - 45	3/4	3.000	2.854	182.7	0.442	0.992	19.880	0.050
									~
T14	45 - 25	3/4	3.000	2.833	181.3	0.442	0.717	19.880	0.036
									V
T15	25 - 5	3/4	3,000	2.833	181.3	0.442	0.833	19.880	0.042
									V
T16	5 - 0	3/4	2.769	2.602	166.5	0.442	8.145	19.880	0.410
									V

 $^{^{1}}P_{u}/_{\phi}P_{n}$ controls

		Bott	tom Girt	Desi	gn Da	ta (Te	nsion)			
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P	
(81566	ft		ft	ft		in ²	K	K	ϕP_n	

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in ²	K	K	ϕP_n
TI	305 - 285	3/4	3.000	2.875	184.0	0.442	3.745	19.880	0.188 1
T2	285 - 265	3/4	3.000	2.875	184.0	0 442	1.376	19.880	0.069 1
Т3	265 - 245	3/4	3 000	2.854	182.7	0.442	3.132	19.880	0.158 1
T4	245 - 225	3/4	3 000	2.833	181.3	0 442	2.089	19.880	0.105 1
T5	225 - 205	3/4	3.000	2.854	182.7	0.442	1.220	19.880	0.061
Т6	205 - 185	3/4	3.000	2.875	184.0	0.442	0.409	19.880	0.021
T7	185 - 165	3/4	3.000	2.854	182.7	0.442	1.079	19.880	0.054
Т8	165 - 145	3/4	3 000	2.854	182.7	0.442	0.327	19.880	0.016 1
Т9	145 - 125	3/4	3.000	2.854	182.7	0.442	1.296	19.880	0.065
T10	125 - 105	3/4	3 000	2.854	182.7	0.442	1.569	19.880	0.079
T11	105 - 85	3/4	3.000	2.854	182.7	0.442	0.653	19.880	0.033 1
T12	85 - 65	3/4	3.000	2.854	182.7	0.442	0.895	19.880	0.045 1

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcosa	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 52 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
T13	65 - 45	3/4	3.000	2.854	182.7	0.442	0.869	19.880	0.044
T14	45 - 25	3/4	3.000	2.833	181.3	0.442	0.805	19.880	0.040 1
T15	25 - 5	3/4	3.000	2.833	181.3	0,442	8.162	19.880	0.411
T16	5 - 0	3/4	0.231	0.065	4.1	0 442	3.474	19.880	0.175

¹ $P_u / \phi P_n$ controls

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	K	K	ϕP_n
TI	305 - 285	4x5/8	3.000	2.875	191.2	2.500	9.637	112.500	0.086
T4	245 - 225	4x5/8	3.000	2.833	188.4	2.500	9.352	112.500	0.083
T7	185 - 165	4x5/8	3.000	2.854	189.8	2.500	3.378	112.500	0.030
T10	125 - 105	4x5/8	3.000	2.854	189.8	2.500	5.382	112.500	0.048
T13	65 - 45	4x5/8	3.000	2.854	189.8	2.500	3.333	112.500	0.030

 $^{^{1}}P_{u}/\phi P_{n}$ controls

		Т	orque-A	rm To	op De	sign C)ata		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T4	245 - 225 (849)	C12x20.7	3.000	2.917	43.8	4.568	4.992	222.666	0.022
T4	245 - 225 (850)	C12x20.7	3.000	2.917	43.8	4.568	4.394	222.666	0.020
T4	245 - 225 (856)	C12x20.7	3.000	2.917	43.8	4.568	4.590	222.666	0.021
T4	245 - 225 (857)	C12x20.7	3.000	2.917	43.8	4.568	4.784	222,666	0.021
T4	245 - 225 (860)	C12x20.7	3.000	2.917	43.8	4.568	4.137	222.666	0.019
T4	245 - 225 (861)	C12x20.7	3.000	2.917	43.8	4.568	5.294	222.666	0.024

Torque-Arm Top Bending Design Data

B+T Group 1717 S. Boulder Tulsa, OK 74119 Phone: 918.587.4630 FAX:

Job Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 53 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M_{ux}	M_{uy}	ϕM_{nv}	Ratio Muy
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
T4	245 - 225 (849)	C12x20.7	-27.525	94.764	0.290	-0.000	9.731	0.000
T4	245 - 225 (850)	C12x20.7	-26.721	94.764	0.282	-0.000	9.731	0.000
T4	245 - 225 (856)	C12x20.7	-26.589	94.764	0.281	0.000	9.731	0.000
T4	245 - 225 (857)	C12x20.7	-25 201	94 764	0.266	0.000	9.731	0.000
T4	245 - 225 (860)	C12x20.7	-27.963	94.764	0.295	0.000	9.731	0.000
T4	245 - 225 (861)	C12x20.7	-28.061	94.764	0.296	0.000	9.731	0.000

Torque-Arm Top Interaction Design Data

Section No.	Elevation	Size	$Ratio$ P_u	Ratio M_{ux}	Ratio M_{uv}	Comb. Stress	Allow. Stress	Criteria
	ft		ϕP_n	ϕM_{nx}	ϕM_m	Ratio	Ratio	
T4	245 - 225 (849)	C12x20.7	0.022	0.290	0.000	0.302	1.000	4.8.1
T4	245 - 225 (850)	C12x20.7	0.020	0.282	0.000	0.292	1.000	4.8.1
T4	245 - 225 (856)	C12x20.7	0.021	0 281	0.000	0.291	1.000	4.8.1
T4	245 - 225 (857)	C12x20.7	0.021	0.266	0.000	0.277	1.000	4.8.1
T4	245 - 225 (860)	C12x20.7	0.019	0.295	0.000	0.304	1.000	4.8.1
T4	245 - 225 (861)	C12x20.7	0.024	0.296	0.000	0.308	1.000	4.8.1

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\sigma P_{allow} K$	% Capacity	Pass Fail
TI	305 - 285	Leg	1 1/2	3	-23.462	51.596	45.5	Pass
T2	285 - 265	Leg	1 1/2	56	-39.472	51.596	76.5	Pass
T3	265 - 245	Leg	1 3/4	110	-38.838	78.769	49.3	Pass
T4	245 - 225	Leg	2	165	-77.201	110.838	69.7	Pass
T5	225 - 205	Leg	1 3/4	219	-60 787	78.769	77.2	Pass
T6	205 - 185	Leg	1 1/2	273	-48.866	51.596	94.7	Pass
T7	185 - 165	Leg	1 3/4	327	-53.935	78.769	68.5	Pass
T8	165 - 145	Leg	1 3/4	381	-56.298	78.769	71.5	Pass
T9	145 - 125	Leg	1 3/4	435	-57.828	78.769	73.4	Pass
T10	125 - 105	Leg	1 3/4	489	-65.356	78.769	83.0	Pass
T11	105 - 85	Leg	1 3/4	543	-71.713	78.769	91.0	Pass
T12	85 - 65	Leg	1 3/4	597	-74.717	78.769	94.9	Pass
T13	65 - 45	Leg	1 3/4	651	-78.110	78.769	99.2	Pass
T14	45 - 25	Leg	2	705	-79.296	110.838	71.5	Pass
T15	25 - 5	Leg	2	759	-79.127	110.838	71.4	Pass
T16	5 - 0	Leg	2	813	-81.342	114.489	71.0	Pass
T1	305 - 285	Diagonal	1	10	-8.417	11.580	72.7	Pass
T2	285 - 265	Diagonal	1	106	-8.415	11.580	72.7	Pass
T3	265 - 245	Diagonal	1	118	-8.614	11.750	73.3	Pass
T4	245 - 225	Diagonal	1	214	-11.593	11.923	97.2	Pass
T5	225 - 205	Diagonal	.875	268	-4.600	6.888	66.8	Pass

Job Arcos	sa #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 54 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\sigma P_{allow} \ K$	% Capacity	Pas. Fai
T6	205 - 185	Diagonal	.75	322	-2.281	3.664	62.3	Pas
T7	185 - 165	Diagonal	.75	352	-3.100	3.718	83.4	Pas
T8	165 - 145	Diagonal	.75	430	-2.496	3.718	67.1	Pas
T9	145 - 125	Diagonal	75	442	-3.447	3.718	92.7	Pas
T10	125 - 105	Diagonal	875	498	-4.091	6.888	59.4	Pas
T11	105 - 85	Diagonal	.75	593	-3.542	3.718	95.3	Pas
T12	85 - 65	Diagonal	.75	604	-2.068	3.718	55.6	Pas
T13	65 - 45	Diagonal	75	682	-2.715	3.718	73.0	Pas
T14	45 - 25	Diagonal	.75	755	-2.224	3.773	58.9	Pas
T15	25 - 5	Diagonal	.75	766	-3.420	3.773	90.7	Pas
T16	5 - 0	Diagonal	1	822	-12.180	19.517	62.4	Pas
T1	305 - 285	Horizontal	3/4	44	-2.226	6.016	37.0	Pas
T2	285 - 265	Horizontal	3/4	103	-2.527	6.016	42.0	Pas
T3	265 - 245	Horizontal	3/4	121	-1.071	6.104	17.6	Pas
T4	245 - 225	Horizontal	3/4	193	-1.650	6 194	26.6	Pas
T5	225 - 205	Horizontal	3/4	230	-1.053	6.104	17.2	Pas
T6	205 - 185	Horizontal	3/4	284	-0.846	6.016	14.1	Pas
T7	185 - 165	Horizontal	3/4	339	-0.934	6.104	15.3	Pas
T8	165 - 145	Horizontal	3/4	393	-0.975	6.104	16.0	Pas
T9	145 - 125	Horizontal	3/4	452	-1.002	6.104	16.4	Pas
T10	125 - 105	Horizontal	3/4	500	-1.132	6.104	18.5	Pas
T11	105 - 85	Horizontal	3/4	554	-1.242	6.104	20.3	Pas
T12	85 - 65	Horizontal	3/4	609	-1.294	6.104	21.2	Pas
T13	65 - 45	Horizontal	3/4	668	-1.353	6.104	22.2	Pas
T14	45 - 25	Horizontal	3/4	716	-1.373	6.194	22.2	Pas
T15	25 - 5	Horizontal	3/4	770	-1.371	6.194	22.1	Pas
T16	5 - 0	Horizontal	3/4	824	-1.469	11.095	13.2	Pas
T1	305 - 285	Top Girt	3/4	5	-0.076	6.016	1.3	Pas
T2	285 - 265	Top Girt	3/4	58	-3.695	6.016	61.4	Pas
T3	265 - 245	Top Girt	3/4	113	-1.495	6.104	24.5	Pas
T4	245 - 225	Top Girt	3/4	167	-3.975	6.194	64.2	Pas
T5	225 - 205	Top Girt	3/4	220	-1.712	6.104	28.0	Pas
T6	205 - 185	Top Girt	3/4	274	-0.901	6.016	15.0	Pas
T7	185 - 165	Top Girt	3/4	329	-0.411	6.104	6.7	Pas
T8	165 - 145	Top Girt	3/4	382	-0.796	6.104	13.0	Pas
T9	145 - 125	Top Girt	3/4	437	-0.269	6.104	4.4	Pas
T10	125 - 105	Top Girt	3/4	490	-1.262	6.104	20.7	Pas
T11	105 - 85	Top Girt	3/4	546	-1.315	6.104	21.5	Pas
T12	85 - 65	Top Girt	3/4	600	-0.388	6.104	6.4	Pas
T13	65 - 45	Top Girt	3/4	652	-0.864	6.104	14.2	Pas
T14	45 - 25	Top Girt	3/4	707	-0.640	6.194	10.3	Pas
T15	25 - 5	Top Girt	3/4	760	-0.676	6.194	10.9	Pas
T16	5 - 0	Top Girt	3/4	815	8.145	19.880	41.0	Pas
T1	305 - 285	Bottom Girt	3/4	9	-3.436	6.016	57.1	Pas
T2	285 - 265	Bottom Girt	3/4	62	-1.410	6.016	23.4	Pas
T3	265 - 245	Bottom Girt	3/4	115	-2.938	6.104	48.1	Pas
T4	245 - 225	Bottom Girt	3/4	169	-2.090	6.194	33.7	Pas
T5	225 - 205	Bottom Girt	3/4	223	-1.250	6.104	20.5	Pas
T6	205 - 185	Bottom Girt	3/4	278	-0.420	6.016	7.0	Pas
T7	185 - 165	Bottom Girt	3/4	331	-1.055	6.104	17.3	Pas
T8	165 - 145	Bottom Girt	3/4	385	-0.209	6.104	3.4	Pas
T9	145 - 125	Bottom Girt	3/4	439	-1.284	6 104	21.0	Pas
T10	125 - 105	Bottom Girt	3/4	493	-1.419	6.104	23.2	Pas
T11	105 - 85	Bottom Girt	3/4	548	-0.396	6.104	6.5	Pas
T12	85 - 65	Bottom Girt	3/4	601	-0.716	6.104	11.7	Pas
T13	65 - 45	Bottom Girt	3/4	656	-0.564	6.104	9.2	Pas
T14	45 - 25	Bottom Girt	3/4	709	-0 494	6.194	8.0	Pas
T15	25 - 5	Bottom Girt	3/4	765	8.162	19.880	41.1	Pas
T16	5 - 0	Bottom Girt	3/4	819	3.474	19.880	17.5	Pas
TI	305 - 285	Guy A@290.193	3/4 EModulus	867	30.898	34.980	88.3	Pas
T4	245 - 225	Guy A@235	1/2 EModulus	859	14.803	16.140	91.7	Pas

Job Arcos	a #8592 - Happy Ridge Rd (Site# KYLEX2038)	Page 55 of 55
Project	305' 36G/37.100211, -84.776783	Date 15:47:38 09/16/20
Client	UNITI Towers	Designed by jbrock

Section	Elevation ft	Component Type	Size	Critical Element	P K	$ olimits_{allow} $	% Capacity	Pass Fail
No. T7	185 - 165		2/0 534 - 1 1				- 5	
T10	125 - 105	Guy A@175	3/8 EModulus	846 840	8.260 11.751	9.240	89.4 94.2	Pass
T13	65 - 45	Guy A@115	7/16 EModulus	840	6.452	12.480 9.240	69.8	Pass Pass
TI	305 - 45	Guy A@55 Guy B@290.193	3/8 EModulus	866	29.840	34.980	85.3	
T4	245 - 225		3/4 EModulus	854	14.741	16.140	91.3	Pass Pass
T7	185 - 165	Guy B@235	1/2 EModulus	845	8.216	9.240	88.9	Pass
T10		Guy B@175	3/8 EModulus				91.9	
T13	125 - 105	Guy B@115	7/16 EModulus	839	11.474	12.480		Pass
T1	65 - 45	Guy B@55	3/8 EModulus	833	6.244	9.240	67.6 83.9	Pass
	305 - 285 245 - 225	Guy C@290.193	3/4 EModulus	862	29.355	34.980		Pass
T4 T7		Guy C@235	1/2 EModulus	848	14.228	16.140	88.2	Pass
T10	185 - 165	Guy C@175	3/8 EModulus	841	8.009	9.240	86.7	Pass
T13	125 - 105	Guy C@115	7/16 EModulus	835	11.213	12.480	89.8	Pass
	65 - 45	Guy C@55	3/8 EModulus	829	6.106	9.240	66.1	Pass
TI	305 - 285	Top Guy Pull-Off@290.193	4x5/8	863	9.637	112.500	8.6	Pass
T4	245 - 225	Top Guy Pull-Off@235	4x5/8	851	-9.338	24.850	37.6	Pass
T7	185 - 165	Top Guy Pull-Off@175	4x5/8	844	3.378	112.500	3.0	Pass
T10	125 - 105	Top Guy Pull-Off@115	4x5/8	838	5.382	112.500	4.8	Pass
T13	65 - 45	Top Guy Pull-Off@55	4x5/8	832	3.333	112.500	3.0	Pass
T4	245 - 225	Torque Arm Top@235	C12x20.7	849	4.992	222.666	34.7	Pass
							Summary	
						Leg (T13)	99.2	Pass
						Diagonal (T4)	97.2	Pass
						Horizontal (T2)	42.0	Pass
						Top Girt (T4)	64.2	Pass
						Bottom Girt (T1)	57.1	Pass
						Guy A (T10)	94.2	Pass
						Guy B (T10)	91.9	Pass
						Guy C (T10)	89.8	Pass
						Top Guy	37.6	Pass
						Pull-Off (T4)	31.0	1 433
							34.7	Pass
						Torque Arm Top (T4)		
						Bolt Checks	29.3	Pass
						RATING =	99.2	Pass

COMPETING UTILITIES,	EXHIBIT D CORPORATIONS,	OR PERSONS LIST

KY Public Service Commission

Master Utility Search

- Search for the utility of interest by using any single or combination of criteria.
- Enter Partial names to return the closest match for Utility Name and Address/City/Contact entries.

Utility ID Utility Name

Address/City/Contact Utility Type

Status

 ✓ Active ✓

Search


	Utility ID	Utility Name	Utility Type	Class	City	State
View	4111300	2600Hz, Inc. dba ZSWITCH	Cellular	D	San Francisco	CA
View	4108300	Air Voice Wireless, LLC	Cellular	В	Bloomfield Hill	MI
View	4110650	Alliant Technologies of KY, L.L.C.	Cellular	D	Morristown	NJ
View		ALLNETAIR, INC.	Cellular	С	West Palm Beach	FL
View	44451184	Alltel Corporation d/b/a Verizon Wireless	Cellular	А	Lisle	IL
View	4110850	AltaWorx, LLC	Cellular	D	Fairhope	AL
View	4107800	American Broadband and Telecommunications Company	Cellular	D	Toledo	ОН
View	4108650	AmeriMex Communications Corp.	Cellular	D	Dunedin	FL
View	4105100	AmeriVision Communications, Inc. d/b/a Affinity 4	Cellular	D	Virginia Beach	VA
View	4110700	Andrew David Balholm dba Norcell	Cellular	D	Buford	GA
View	4105700	Assurance Wireless USA, L.P.	Cellular	Α	Atlanta	GA
View	4108600	BCN Telecom, Inc.	Cellular	D	Morristown	NJ
View	4106000	Best Buy Health, Inc. d/b/a GreatCall d/b/a Jitterbug	Cellular	A	San Diego	CA
View	4110550	Blue Casa Mobile, LLC	Cellular	D	Santa Barbara	CA
View	4111050	BlueBird Communications, LLC	Cellular	D	New York	NY
View	4202300	Bluegrass Wireless, LLC	Cellular	Α	Elizabethtown	KY

View	4107600	Boomerang Wireless, LLC	Cellular	D	Hiawatha	IA
View	4105500	BullsEye Telecom, Inc.	Cellular	D	Southfield	MI
View	4100700	Cellco Partnership dba Verizon Wireless	Cellular	A	Basking Ridge	NJ
View	4111150	Comcast OTR1, LLC	Cellular	С	Phoeniexville	PA
View	4101900	Consumer Cellular, Incorporated	Cellular	A	Portland	OR
View	4106400	Credo Mobile, Inc.	Cellular	Α	San Francisco	CA
View	4108850	Cricket Wireless, LLC	Cellular	Α	San Antonio	TX
View	4111500	CSC Wireless, LLC d/b/a Altice Wireless	Cellular	D	Long Island City	NY
View	10640	Cumberland Cellular Partnership	Cellular	Α	Elizabethtown	KY
View	4111650	DataBytes, Inc.	Cellular	D	Rogers	AR
View	4112000	DISH Wireless L.L.C.	Cellular	С	Englewood	СО
View	4111200	Dynalink Communications, Inc.	Cellular	С	Brooklyn	NY
View	4111800	Earthlink, LLC	Cellular	С	Atlanta	GA
View	4101000	East Kentucky Network, LLC dba Appalachian Wireless	Cellular	Α	Ivel	KY
View	4002300	Easy Telephone Service Company dba Easy Wireless	Cellular	D	Ocala	FL
View	4109500	Enhanced Communications Group, LLC	Cellular	D	Bartlesville	ок
View	4110450	Excellus Communications, LLC	Cellular	D	Chattanooga	TN
View	4105900	Flash Wireless, LLC	Cellular	С	Concord	NC
View		France Telecom Corporate Solutions L.L.C.	Cellular	D	Oak Hill	VA
View	4111750	Gabb Wireless, Inc.	Cellular	D	Provo	UT
View	4109350	Global Connection Inc. of America	Cellular	D	Norcross	GA
View	4102200	Globalstar USA, LLC	Cellular	В	Covington	LA
View	4112050	GLOTELL US, Corp.	Cellular	С	Hallandale	FL
View	4109600	Google North America Inc.	Cellular	A	Mountain View	CA
View	33350363	Granite Telecommunications, LLC	Cellular	D	Quincy	MA
View	10630	GTE Wireless of the Midwest dba Verizon Wireless	Cellular	A	Basking Ridge	NJ
View	4111350	HELLO MOBILE TELECOM LLC	Cellular	D	Dania Beach	FL
View		i-Wireless, LLC	Cellular	В	Newport	KY
View		IM Telecom, LLC d/b/a Infiniti Mobile	Cellular	D	Dallas	TX
View	4111950	J Rhodes Enterprises LLC	Cellular	С	Gulf Breeze	FL
View	22215360	KDDI America, Inc.	Cellular	D	Staten Island	NY
View	10872	Kentucky RSA #1 Partnership	Cellular	Α	Basking Ridge	ΙJ
View	10680	Kentucky RSA #3 Cellular General	Cellular	A	Elizabethtown	KY
View	10681	Kentucky RSA #4 Cellular	Cellular	Α	Elizabethtown	KY

		General				
View	4109550	Kynect Communications, LLC	Cellular	D	Dallas	TX
View	4111250	Liberty Mobile Wireless, LLC	Cellular	D	Sunny Isles Beach	FL
View	4111400	Locus Telecommunications, LLC	Cellular	Α	Fort Lee	NJ
View	4107300	Lycamobile USA, Inc.	Cellular	D	Newark	NJ
View	4108800	MetroPCS Michigan, LLC	Cellular	Α	Bellevue	WA
View	4111700	Mint Mobile, LLC	Cellular	D	Costa Mesa	CA
View	4109650	Mitel Cloud Services, Inc.	Cellular	D	Mesa	ΑZ
View	4111850	Mobi, Inc.	Cellular	С	Honolulu	HI
View	4202400	New Cingular Wireless PCS, LLC dba AT&T Mobility, PCS	Cellular	Α	San Antonio	тх
View	4000800	Nextel West Corporation	Cellular	D	Overland Park	KS
View	4001300	NPCR, Inc. dba Nextel Partners	Cellular	D	Overland Park	KS
View	4001800	OnStar, LLC	Cellular		Detroit	MI
View	4110750	Onvoy Spectrum, LLC	Cellular	D	Chicago	IL
View	4109050	Patriot Mobile LLC	Cellular	D	Irving	TX
View	4110250	Plintron Technologies USA LLC	Cellular	D	Bellevue	WA
View	33351182	PNG Telecommunications, Inc. dba PowerNet Global Communications	Cellular	D	Cincinnati	ОН
View	4107700	Puretalk Holdings, LLC	Cellular	Α	Covington	GA
View	4106700	Q Link Wireless, LLC	Cellular	Α	Dania	FL
View	4108700	Ready Wireless, LLC	Cellular	С	Hiawatha	ΙA
View	4110500	Republic Wireless, Inc.	Cellular	Α	Raleigh	NC
View	4106200	Rural Cellular Corporation	Cellular	}	Basking Ridge	NJ
View	4108550	Sage Telecom Communications, LLC dba TruConnect	Cellular	D	Los Angeles	CA
View	4109150	SelecTel, Inc. d/b/a SelecTel Wireless	Cellular	D	Fremont	NE
View	4110150	Spectrotel, Inc. d/b/a Touch Base Communications	Cellular	D	Neptune	NJ
View	4111450	Spectrum Mobile, LLC	Cellular	Α	St. Louis	МО
View	4200100	Sprint Spectrum, L.P.	Cellular		Atlanta	GA
View	4200500	SprintCom, Inc.	Cellular		Atlanta	GA
View	4111600	STX Group LLC dba Twigby	Cellular	D	Murfreesboro	TN
View	4110200	T C Telephone LLC d/b/a Horizon Cellular	Cellular	D	Red Bluff	CA
View	4202200	T-Mobile Central, LLC dba T- Mobile	Cellular		Bellevue	WA
View	4002500	TAG Mobile, LLC	Cellular	D	Plano	TX
View	4109700	Telecom Management, Inc. dba Pioneer Telephone	Cellular	D	Portland	ME
View	4107200	Telefonica USA, Inc.	Cellular	D	Miami	FL
View	4108900	Telrite Corporation	Cellular	D	Covington	GA

View	4108450	Tempo Telecom, LLC	Cellular	В	Atlanta	GA
View	4109000	Ting, Inc.	Cellular	Α	Toronto	OV
View	4110400	Torch Wireless Corp.	Cellular	D	Jacksonville	FL
View	4103300	Touchtone Communications, Inc.	Cellular	D	Whippany	NJ
View	4104200	TracFone Wireless, Inc.	Cellular	D	Miami	FL
View	4002000	Truphone, Inc.	Cellular	D	Durham	NC
View	4110300	UVNV, Inc. d/b/a Mint Mobile	Cellular	D	Costa Mesa	CA
View	4110800	Visible Service LLC	Cellular	D	Basking Ridge	NJ
View	4106500	WiMacTel, Inc.	Cellular	D	Palo Alto	CA
View	4110950	Wing Tel Inc.	Cellular	D	New York	NY

EXHIBIT E FAA

Issued Date: 03/31/2020

Kristy Hurst B+T Group Holdings, Inc. 1717 S. Boulder Ave. Suite 300 Tulsa, OK 74119

** DETERMINATION OF NO HAZARD TO AIR NAVIGATION **

The Federal Aviation Administration has conducted an aeronautical study under the provisions of 49 U.S.C., Section 44718 and if applicable Title 14 of the Code of Federal Regulations, part 77, concerning:

Structure: Antenna Tower KYLEX2038 Happy Ridge Rd

Location: Nancy, KY

Latitude: 37-06-00.80N NAD 83

Longitude: 84-46-36.40W

Heights: 1131 feet site elevation (SE)

317 feet above ground level (AGL) 1448 feet above mean sea level (AMSL)

This aeronautical study revealed that the structure does not exceed obstruction standards and would not be a hazard to air navigation provided the following condition(s), if any, is(are) met:

As a condition to this Determination, the structure is to be marked/lighted in accordance with FAA Advisory circular 70/7460-1 L Change 2, Obstruction Marking and Lighting, a med-dual system - Chapters 4,8(M-Dual),&12.

Any failure or malfunction that lasts more than thirty (30) minutes and affects a top light or flashing obstruction light, regardless of its position, should be reported immediately to (877) 487-6867 so a Notice to Airmen (NOTAM) can be issued. As soon as the normal operation is restored, notify the same number.

It is required that FAA Form 7460-2, Notice of Actual Construction or Alteration, be e-filed any time the project is abandoned or:

	At least 10 days prior to start of construction (7460-2, Part 1)
X_	Within 5 days after the construction reaches its greatest height (7460-2, Part 2)

This determination expires on 10/01/2021 unless:

- (a) the construction is started (not necessarily completed) and FAA Form 7460-2, Notice of Actual Construction or Alteration, is received by this office.
- (b) extended, revised, or terminated by the issuing office.

(c) the construction is subject to me incensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within 6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for completion of construction, or the date the FCC denies the application.

NOTE: REQUEST FOR EXTENSION OF THE EFFECTIVE PERIOD OF THIS DETERMINATION MUST BE E-FILED AT LEAST 15 DAYS PRIOR TO THE EXPIRATION DATE. AFTER RE-EVALUATION OF CURRENT OPERATIONS IN THE AREA OF THE STRUCTURE TO DETERMINE THAT NO SIGNIFICANT AERONAUTICAL CHANGES HAVE OCCURRED, YOUR DETERMINATION MAY BE ELIGIBLE FOR ONE EXTENSION OF THE EFFECTIVE PERIOD.

This determination is based, in part, on the foregoing description which includes specific coordinates, heights, frequency(ies) and power. Any changes in coordinates, heights, and frequencies or use of greater power, except those frequencies specified in the Colo Void Clause Coalition; Antenna System Co-Location; Voluntary Best Practices, effective 21 Nov 2007, will void this determination. Any future construction or alteration, including increase to heights, power, or the addition of other transmitters, requires separate notice to the FAA. This determination includes all previously filed frequencies and power for this structure.

If construction or alteration is dismantled or destroyed, you must submit notice to the FAA within 5 days after the construction or alteration is dismantled or destroyed.

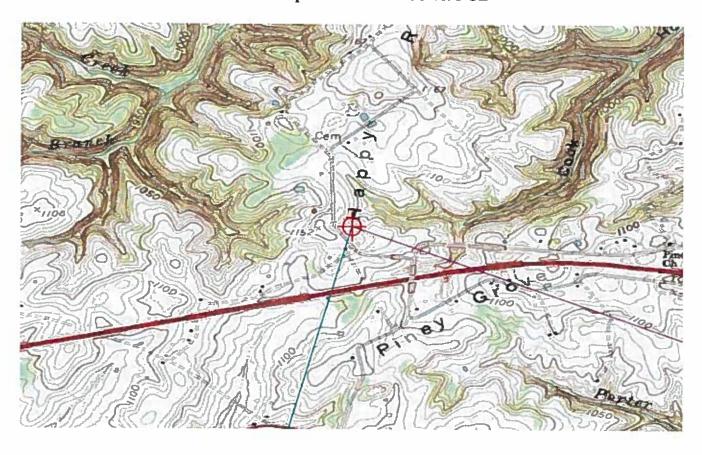
This determination does include temporary construction equipment such as cranes, derricks, etc., which may be used during actual construction of the structure. However, this equipment shall not exceed the overall heights as indicated above. Equipment which has a height greater than the studied structure requires separate notice to the FAA.

This determination concerns the effect of this structure on the safe and efficient use of navigable airspace by aircraft and does not relieve the sponsor of compliance responsibilities relating to any law, ordinance, or regulation of any Federal, State, or local government body.

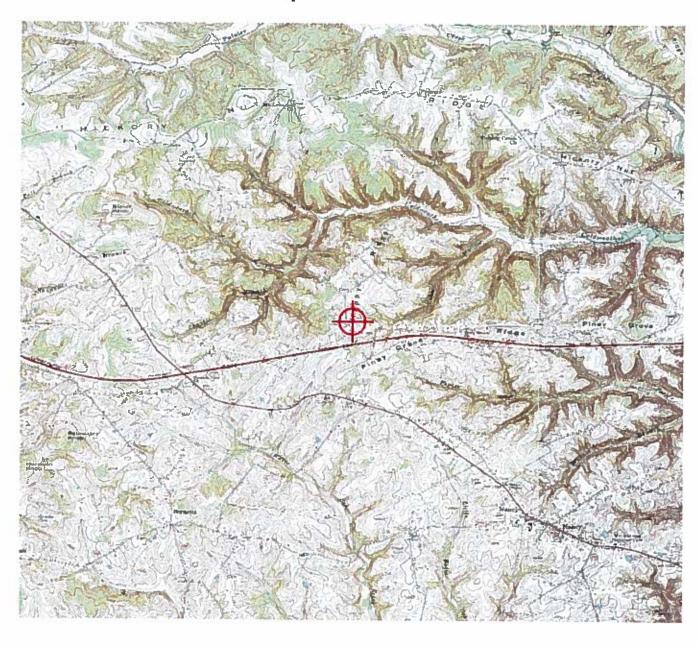
A copy of this determination will be forwarded to the Federal Communications Commission (FCC) because the structure is subject to their licensing authority.

If we can be of further assistance, please contact our office at (718) 553-2611, or angelique.eersteling@faa.gov. On any future correspondence concerning this matter, please refer to Aeronautical Study Number 2020-ASO-7891-OE.

Signature Control No: 433766624-435168743 (DNE)


Angelique Eersteling Technician

Attachment(s) Frequency Data Map(s)


cc: FCC

LOW FREQUENCY	HIGH FREQUENCY	FREQUENCY UNIT	ERP	ERP UNIT
_				
6	7	GHz	55	dBW
6	7	GHz	42	dBW
10	11.7	GHz	55	dBW
10	11.7	GHz	42	dBW
17.7	19.7	GHz	55	dBW
17.7	19.7	GHz	42	dBW
21.2	23.6	GHz	55	dBW
21.2	23.6	GHz	42	dBW
614	698	MHz	1000	W
614	698	MHz	2000	W
698	806	MHz	1000	W
806	901	MHz	500	W
806	824	MHz	500	W
824	849	MHz	500	W
851	866	MHz	500	W
869	894	MHz	500	W
896	901	MHz	500	W
901	902	MHz	7	W
929	932	MHz	3500	W
930	931	MHz	3500	W
931	932	MHz	3500	W
932	932.5	MHz	17	dBW
935	940	MHz	1000	W
940	941	MHz	3500	W
1670	1675	MHz	500	W
1710	1755	MHz	500	W
1850	1910	MHz	1640	W
1850	1990	MHz	1640	W
1930	1990	MHz	1640	W
1990	2025	MHz	500	W
2110	2200	MHz	500	W
2305	2360	MHz	2000	W
2305	2310	MHz	2000	W
2345	2360	MHz	2000	W
2496	2690	MHz	500	W

Verified Map for ASN 2020-ASO-7891-OE

TOPO Map for ASN 2020-ASO-7891-OE

EXHIBIT F KENTUCKY AIRPORT ZONING COMMISSION

KENTUCKY AIRPORT ZONING COMMISSION

ANDY BESHEAR Governor

Office of Audits, 200 Mero Street, 4th floor Frankfort, KY 40622 www.transportation.ky.gov 502-782-4043

APPROVAL OF APPLICATION

August 13, 2020

APPLICANT Uniti Towers B&T Group - Patricia Parr 10802 Executive Center Dr. Ste 300 Little Rock, AR 72211

SUBJECT: AS-PULASKI-SME-2020-099

STRUCTURE:

Antenna Tower

LOCATION:

Nancy, KY

COORDINATES: 37° 6' 0.8" N / 84° 46' 36.4" W

HEIGHT:

317' AGL/1448' AMSL

The Kentucky Airport Zoning Commission has approved your application for a permit to construct 317' AGL/1448' AMSL Antenna Tower near Nancy, KY 37° 6' 0.8" N / 84° 46' 36.4" W.

This permit is valid for a period of 18 Month(s) from its date of issuance. If construction is not completed within said 18-Month period, this permit shall lapse and be void, and no work shall be performed without the issuance of a new permit.

Duel - Red & Medium Intensity White Obstruction Lighting Required

Randall S. Royer

Randall S. Royer, Executive Director Office of Audits Acting Administrator Randall.Royer@ky.gov Jason.Salazar-Munoz@ky.gov

EXHIBIT G GEOTECHNICAL REPORT

GEOTECHNICAL INVESTIGATION REPORT

August 18, 2020

Prepared For:

B+T Group

Happy Ridge Road KYLEX2038

Proposed 305-Foot Guyed Tower

240 Happy Ridge Road, Nancy (Pulaski County), Kentucky 42544 Latitude N 37° 06' 00.8" Longitude W 84° 46' 36.4"

> Delta Oaks Group Project GEO20-06844-08 Revision 0 geotech@deltaoaksgroup.com

Performed By:

Justin Brosseau, E.I.

Reviewed By:

Joseph V. Borrelli, Jr., P.E.

DROKESSIONAL INCENTION OF THE PROPERTY OF THE

JOSEPH V BORRELLI

DELTA OAKS

DELTA OAKS GROUP

INTRODUCTION

This geotechnical investigation report has been completed for the proposed 305-foot, single ring, guyed tower located at 240 Happy Ridge Road in Nancy (Pulaski County), Kentucky. The purpose of this investigation was to provide engineering recommendations and subsurface condition data at the proposed tower location. A geotechnical engineering interpretation of the collected information was completed and utilized to suggest design parameters regarding the adequacy of the structure's proposed foundation capacity under various loading conditions. This report provides the scope of the geotechnical investigation; geologic material identification; results of the geotechnical laboratory testing; and design parameter recommendations for use in the design of the telecommunication facility's foundation and site development.

SITE CONDITION SUMMARY

The proposed tower and compound are located on a grassy hill exhibiting a gradually sloping topography from the southwest to northeast across the tower compound and subject property.

REFERENCES

- Survey Drawings, prepared by Point to Point Land Surveyors, dated January 28. 2020
- TIA Standard (TIA-222-G), dated August 2005

SUBSURFACE FIELD INVESTIGATION SUMMARY

The subsurface field investigation was conducted through the advancement of four mechanical soil test borings to the termination depth of 20.0 feet bgs. Samples were obtained at selected intervals in accordance with ASTM D 1586. The sampling was conducted at the staked centerline of the proposed tower mast and guy anchors. Soil samples were transported to our laboratory and classified by a geotechnical engineer in accordance with ASTM D 2487. A detailed breakdown of the material encountered in our subsurface field investigation can be found in the boring logs presented in the Appendix of this report.

A boring plan portraying the spatial location of the borings in relation to the proposed tower, guy anchors, tower compound and immediate surrounding area can be found in the Appendix.

DELTA OAKS

DELTA OAKS GROUP

SUBSURFACE CONDITION SUMMARY

The following provides a general overview of the site's subsurface conditions based on the data obtained during our field investigation.

FILL

Topsoil was encountered during the subsurface field investigation from the existing ground surface to a depth of 0.6 feet bgs in borings B-1 and B-3 and to a depth of 0.8 feet bgs in borings T-1 and B-2.

SOIL

The residual soil encountered in the subsurface field investigation began at a depth of 0.6 feet bgs in borings B-1 and B-3 and to a depth of 0.8 feet bgs in borings T-1 and B-2 and consisted of clayey silt and sandy lean clay. The materials ranged from a firm to very stiff cohesion.

Auger advancement refusal was not encountered during the subsurface field investigation.

ROCK

Rock was not encountered during the subsurface field investigation.

SUBSURFACE WATER

At the time of drilling, subsurface water was not encountered during the subsurface investigation. However, subsurface water elevations can fluctuate throughout the year due to variations in climate, hydraulic parameters, nearby construction activity and other factors.

FROST PENETRATION

The frost penetration depth for Pulaski County, Kentucky is 30 inches (2.5 feet).

CORROSIVITY

Soil resistivity was performed in accordance with ASTM G187 with a test result of 16,000 ohmscm for the tower base.

FOUNDATION DESIGN SUMMARY

In consideration of the provided tower parameters and the determined soil characteristics, Delta Oaks Group recommends utilizing a shallow foundation and/or drilled shaft foundation for the proposed tower mast structure and concrete blocks or drilled shaft foundations for the guy anchors. The strength parameters presented in the following sections can be utilized for design of the foundation.

GENERAL SUBSURFACE STRENGTH PARAMETERS

Boring	Depth (bgs)	uscs	Moist/Buoyant Unit Weight (pcf)	Phi Angle (degrees)	Cohesion (pst)
	0.0 - 0.8	TOPSOIL	105	0	0
	0.8 - 1.5	CL-ML	105	0	750
T-1	1.5 - 4.0	CL	115	0	1,750
1-1	4.0 - 9.0	CL	115	0	2,000
	9.0 - 19.0	CL	110	0	1,500
	19.0 - 20.0	CL	115	0	1,750

Boring	Depth (bgs)	USCS	Maist/Buoyant Unit Weight (pcf)	Phi Angle (degrees)	Cahesion (psf)
	0.0 - 0.6	TOPSOIL	105	0	0
	0.6 - 1.5	CL	110	0	1,000
	1.5 – 4.0	CL	115	0	2,000
B-1	4.0 - 6.5	CL	110	0	1,500
	6.5 - 9.0	CL	110	0	1,000
	9.0 - 14.0	CL	115	0	1,750
	14.0 - 20.0	CL	115	0	2,000

Boring	Depth (bgs)	USCS	Moist/Buoyant Unit Weight (pcf)	Phi Angle (degrees)	Cohesion (psf)
	0.0 - 0.8	TOPSOIL	105	0	0
	0.8 - 1.5	CL-ML	110	0	1,000
	1.5 - 4.0	CL	115	0	1,750
B-2	4.0 - 6.5	CL	110	0	1,500
B-Z	6.5 – 9.0	CL	110	0	1,250
	9.0 - 14.0	CL	110	0	1,500
	14.0 – 19.0	CL	115	0	2,000
	19.0 – 20.0	CL	120	0	2,500

Boring	Depth (bgs)	uscs	Moist/Buoyant Unit Weight (pcf)	Phi Angle (degrees)	Cohesion (psi)
	0.0 - 0.6	TOPSOIL	105	0	0
	0.6 - 1.5	CL-ML	105	0	750
	1.5 – 4.0	CL-ML	115	0	2,000
0.0	4.0 - 6.5	CL	115	0	2,000
B-3	6.5 - 9.0	CL	115	0	2,250
	9.0 - 14.0	CL	120	0	2,500
	14.0 - 19.0	CL	120	0	3,000
	19.0 - 20.0	CL	110	0	1,500

- The unit weight provided assumes overburden soil was compacted to a minimum of 95% of the maximum dry density as obtained by the standard Proctor method (ASTM D 698) and maintained a moisture content within 3 percent of optimum
- The values provided for phi angle and cohesion should be considered ultimate.

SUBSURFACE STRENGTH PARAMETERS - SHALLOW TOWER FOUNDATION

Boring	Dimensions (feet)	Depth (feet bgs)	Net Ultimate Bearing Capacity (psf)
		3.0	12,080
	50.50	4.0	14,310
	5.0 x 5.0	5.0	14,800
		6.0	15,290
		3.0	11,440
	100100	4.0	13,320
	10.0 x 10.0	5.0	13,570
		6.0	11,600
		3.0	11,220
		4.0	11,860
T-1	15.0 x 15.0	5.0	11,340
		6.0	10,820
		3.0	11,110
	00.0	4.0	11,210
	20.0 × 20.0	5.0	10,820
		6.0	10,420
		3.0	11,050
	25.0 25.0	4.0	10,820
	25.0 x 25.0	5.0	10,500
		6.0	10,190

- Delta Oaks Group recommends the foundation bear a minimum of 3.0 feet bgs.
- A sliding friction factor of 0.30 can be utilized along the base of the proposed tower mast foundation.
- The bearing capacity can be increased by 1/3 for transient loading.
- Ultimate Passive Pressure Tables, for the tower mast and guy anchors, with a reduction due to frost penetration to a depth of 2.5 feet bgs are presented on the following pages.
- Delta Oaks Group recommends an appropriate factor of safety be utilized for the design of the foundation.

ULTIMATE PASSIVE PRESSURE VS. DEPTH - TOWER FOUNDATION

Soil Laye	ers (feet)	Moist Unit Weight	Phi Angle	Cohesion	PV	KP	Ph
Тор	0.0	105	0	0	0.00	1.00	0.00
Bottom	0.8	105	0	0	84.00	1.00	42.00
Тор	0.8	105	0	750	84.00	1.00	792.00
Bottom	1.5	105	0	750	157.50	1.00	828.75
Тор	1.5	115	0	1750	157.50	1.00	1828.75
Bottom	2.5	115	0	1750	272.50	1.00	1886.25
Тор	2.5	115	0	1750	272.50	1.00	3772.50
Bottom	4.0	115	0	1750	445.00	1.00	3945.00
Тор	4.0	115	0	2000	445.00	1.00	4445.00
Bottom	9.0	115	0	2000	1020.00	1.00	5020.00
Тор	9.0	110	0	1500	1020.00	1.00	4020.00
Bottom	10.0	110	0	1500	1130.00	1.00	4130.00

ULTIMATE PASSIVE PRESSURE VS. DEPTH - NORTHEAST GUY ANCHOR

Soil Laye	ers (feet)	Moist Unit Weight	Phi Angle	Cohesion	PV	KP	Ph
Тор	0.0	105	0	0	0.00	1.00	0.00
Bottom	0.6	105	0	0	63.00	1.00	31.50
Тор	0.6	110	0	1000	63.00	1.00	1031.50
Bottom	1.5	110	0	1000	162.00	1.00	1081.00
Тор	1.5	115	0	2000	162.00	1.00	2081.00
Bottom	2.5	115	0	2000	277.00	1.00	2138.50
Тор	2.5	115	0	2000	277.00	1.00	4277.00
Bottom	4.0	115	0	2000	449.50	1.00	4449.50
Тор	4.0	110	0	1500	449.50	1.00	3449.50
Bottom	6.5	110	0	1500	724.50	1.00	3724.50
Тор	6.5	110	0	1000	724.50	1.00	2724.50
Bottom	9.0	110	0	1000	999.50	1.00	2999.50
Тор	9.0	115	0	1750	999.50	1.00	4499.50
Bottom	10.0	115	0	1750	1114.50	1.00	4614.50

ULTIMATE PASSIVE PRESSURE VS. DEPTH - SOUTHWEST GUY ANCHOR

Soil Laye	ers (feet)	Moist Unit Weight	Phi Angle	Cohesion	PV	KP	Ph
Тор	0.0	105	0	0	0.00	1.00	0.00
Bottom	0.8	105	0	0	84.00	1.00	42.00
Тор	0.8	110	0	1000	84.00	1.00	1042.00
Bottom	1.5	110	0	1000	161.00	1.00	1080.50
Тор	1.5	115	0	1750	161.00	1.00	1830.50
Bottom	2.5	115	0	1750	276.00	1.00	1888.00
Тор	2.5	115	0	1750	276.00	1.00	3776.00
Bottom	4.0	115	0	1750	448.50	1.00	3948.50
Тор	4.0	110	0	1500	448.50	1.00	3448.50
Bottom	6.5	110	0	1500	723.50	1.00	3723.50
Тор	6.5	110	0	1250	723.50	1.00	3223.50
Bottom	9.0	110	0	1250	998.50	1.00	3498.50
Тор	9.0	110	0	1500	998.50	1.00	3998.50
Bottom	10.0	110	0	1500	1108.50	1.00	4108.50

ULTIMATE PASSIVE PRESSURE VS. DEPTH - SOUTHEAST GUY ANCHOR

Soil Laye	ers (feef)	Moist Unit Weight	Phi Angle	Cohesion	PV	KP	Ph
Тор	0.0	105	0	0	0.00	1.00	0.00
Bottom	0.6	105	0	0	63.00	1.00	31.50
Тор	0.6	105	0	750	63.00	1.00	781.50
Bottom	1.5	105	0	750	157.50	1.00	828.75
Тор	1.5	115	0	2000	157.50	1.00	2078.75
Bottom	2.5	115	0	2000	272.50	1.00	2136.25
Тор	2.5	115	0	2000	272.50	1.00	4272.50
Bottom	4.0	115	0	2000	445.00	1.00	4445.00
Тор	4.0	115	0	2250	445.00	1.00	4945.00
Bottom	9.0	115	0	2250	1020.00	1.00	5520.00
Тор	9.0	120	0	2500	1020.00	1.00	6020.00
Bottom	10.0	120	0	2500	1140.00	1.00	6140.00

SUBSURFACE STRENGTH PARAMETERS - DRILLED SHAFT FOUNDATION

Boring	Depth (bgs)	Net Ultimate Bearing Capacity (psf)	Ultimate Skin Friction – Compression (psf)			
	0.0 – 3.0		= =			
	3.0 - 4.0	16,720	960			
	4.0 - 6.0	14,520	1,090			
T-1	6.0 - 9.0	13,180	1,100			
	9.0 – 14.0	13,020	820			
	14.0 - 19.0	13,960	820			
	19.0 – 20.0	15,000	960			

- The top 3.0 feet of soil should be ignored due to the frost penetration and the potential soil disturbance during construction.
- The bearing capacity can be increased by 1/3 for transient loading.
- The values presented assume the concrete is cast-in-place against earth walls and any casing utilized during construction of the foundation was removed.
- Delta Oaks Group recommends an appropriate factor of safety be utilized for the design of the foundation.

SUBSURFACE STRENGTH PARAMETERS NORTHEAST GUY ANCHOR DRILLED SHAFT FOUNDATION

Boring	Depth (bgs)	Ultimate Skin Friction Uplift (psf)
	0.0 - 3.0	-
	3.0 – 4.0	1,090
	4.0 - 6.0	820
B-1	6.0 – 9.0	640
	9.0 – 14.0	960
	14.0 – 19.0	1,100
	19.0 – 20.0	1,090

SUBSURFACE STRENGTH PARAMETERS – NORTHWEST GUY ANCHOR DRILLED SHAFT FOUNDATION

Boring	Depth (bgs)	Ultimate Skin Friction Uplift (psf)					
	0.0 – 3.0	:=					
	3.0 - 4.0	960					
	4.0 - 6.0	820					
B-2	6.0 – 9.0	730					
	9.0 – 14.0	820					
	14.0 – 19.0	1,100					
	19.0 – 20.0	1,370					

SUBSURFACE STRENGTH PARAMETERS SOUTHEAST GUY ANCHOR DRILLED SHAFT FOUNDATION

Boring	Depth (bgs)	Ultimate Skin Friction – Uplift (psf)						
	0.0 – 3.0	-						
	3.0 – 4.0	1,090						
	4.0 - 6.0	1,100						
B-3	6.0 - 9.0	1,190						
	9.0 – 14.0	1,370						
	14.0 – 19.0	1,650						
	19.0 – 20.0	820						

- The top 3.0 feet of soil should be ignored due to the frost penetration and the potential soil disturbance during construction.
- The values presented assume the concrete is cast-in-place against earth walls and any casing utilized during construction of the foundation was removed.
- Delta Oaks Group recommends an appropriate factor of safety be utilized for the design of the foundation.

SUBSURFACE STRENGTH PARAMETERS - SUPPORT STRUCTURE FOUNDATION

Boring	Depth (bgs)	Net Ultimate Bearing Capacity (psf)	Minimum Design Footing Width (ff)	Modulus of Subgrade Reaction (pci)			
	2.0 10,900			250			
T-1	3.0	11,810	0.0	350			
1-1	4.0	14.530	2.0	luna.			
	5.0	15,000		400			

- Delta Oaks Group recommends utilizing a slab on grade in conjunction with continuous perimeter footings that bear on residual soil or properly compacted structural fill placed in accordance with the recommendations provided in the CONSTRUCTION section of this report.
- The slab on grade should be properly reinforced to prevent concrete cracking and shrinkage.
- The foundation should bear a minimum of 2.0 feet bgs.
- A sliding friction factor of 0.30 can be utilized along the base of the proposed foundation.
- An Ultimate Passive Pressure Table is presented on the following page. An appropriate reduction should be considered in accordance with local building code frost penetration depth.
- Delta Oaks Group recommends an appropriate factor of safety be utilized for the design of the foundation.

ULTIMATE PASSIVE PRESSURE VS. DEPTH - SUPPORT STRUCTURE FOUNDATION

Soil Laye	ers (feef)	Moist Unit Weight	Phi Angle	Cohesion	PV	KP	Ph
Тор	0.0	105	0	0	0.00	1.00	0.00
Bottom	0.8	105	0	0	84.00	1.00	42.00
Тор	0.8	105	0	750	84.00	1.00	792.00
Bottom	1.5	105	0	750	157.50	1.00	828.75
Тор	1.5	115	0	1750	157.50	1.00	1828.75
Bottom	2.5	115	0	1750	272.50	1.00	1886.25
Тор	2.5	115	0	1750	272.50	1.00	3772.50
Bottom	4.0	115	0	1750	445.00	1.00	3945.00
Тор	4.0	115	0	2000	445.00	1.00	4445.00
Bottom	9.0	115	0	2000	1020.00	1.00	5020.00
Тор	9.0	110	0	1500	1020.00	1.00	4020.00
Bottom	10.0	110	0	1500	1130.00	1.00	4130.00

CONSTRUCTION

SITE DEVELOPMENT

The proposed access road and tower compound should be evaluated by a Geotechnical Engineer, or their representative, after the removal or "cutting" of the areas to design elevation but prior to the placement of any structural fill material to verify the presence of unsuitable or weak material. Unsuitable or weak materials should be undercut to a suitable base material as determined by a Geotechnical Engineer, or their representative. Backfill of any undercut area(s) should be conducted in accordance with the recommendations provided in the STRUCTURAL FILL PLACEMENT section of this report.

Excavations should be sloped or shored in accordance and compliance with OSHA 29 CFR Part 1926, Excavation Trench Safety Standards as well as any additional local, state and federal regulations.

STRUCTURAL FILL PLACEMENT

Structural fill materials should be verified, prior to utilization, to have a minimum unit weight of 110 pcf (pounds per cubic foot) when compacted to a minimum of 95% of its maximum dry density and within plus or minus 3 percentage points of optimum moisture. Materials utilized should not contain more than 5 percent by weight of organic matter, waste, debris or any otherwise deleterious materials. The Liquid Limit should be no greater than 40 with a Plasticity Index no greater than 20. Structural fill material should contain a maximum particle size of 4 inches with 20 percent or less of the material having a particle size between 2 and 4 inches. Backfill should be placed in thin horizontal lifts not to exceed 8 inches (loose) in large grading areas and 4 inches (loose) where small handheld or walk-behind compaction equipment will be utilized. The potential suitability of on-site materials to be utilized as fill should be evaluated by a Geotechnical Engineer, or their representative just prior to construction.

During construction structural fill placement should be monitored and tested. This should include at minimum, visual observation as well as a sufficient amount of in-place field density tests by a Geotechnical Engineer, or their representative. Materials should be compacted to a minimum of 95% of the maximum dry density as determined by ASTM D 698 (standard Proctor method). Moisture contents should be maintained to within plus or minus 3 percentage points of the optimum moisture content.

SHALLOW FOUNDATIONS

Foundation excavation(s) should be evaluated by a Geotechnical Engineer, or their representative, prior to reinforcing steel and concrete placement. This evaluation should include visual observation to verify a level bearing surface; vertical side-walls with no protrusions, sloughing or caving; and the exposed bearing surface is free of deleterious material, loose soil and standing water. Excavation dimensions should be verified and testing performed on the exposed bearing surface to verify compliance with design recommendations. Bearing testing should be conducted in accordance with ASTM STP399 (Dynamic Cone Penetrometer). A 6-inch layer of compacted crushed stone should be installed prior to reinforcing steel and concrete placement. If subsurface water is encountered during excavation dewatering methods such as sump pumps or well points may be required.

DELTA OAKS

DELTA OAKS GROUP

DRILLED SHAFT FOUNDATIONS

Drilled shaft foundations (caissons) are typically installed utilizing an earth auger to reach the design depth of the foundation. Specialized roller bits or core bits can be utilized to penetrate boulders or rock. The equipment utilized should have cutting teeth to result in an excavation with little or no soil smeared or caked on the excavation sides with spiral-like corrugated walls. The drilled shaft design diameter should be maintained throughout the excavation with a plumbness tolerance of 2 percent of the length and an eccentricity tolerance of 3 inches from plan location. A removable steel casing can be installed in the shaft to prevent caving of the excavation sides due to soil relaxation. Upon completion of the drilling and casing placement, loose soils and subsurface water greater than 3-inches in depth should be removed from the bottom of the excavation for the "dry" installation method. The drilled shaft installation should be evaluated by a Geotechnical Engineer, or their representative, to verify suitable end bearing conditions, design diameter and bottom cleanliness. The evaluation should be conducted immediately prior to as well as during concrete placement operations.

The drilled shaft should be concreted as soon as reasonably practical after excavation to reduce the deterioration of the supporting soils to prevent potential caving and water intrusion. A concrete mix design with a slump of 6 to 8 inches employed in conjunction with the design concrete compressive strength should be utilized for placement. Super plasticizer may be required to obtain the recommended slump range. During placement, the concrete may fall freely through the open area in the reinforcing steel cage provided it does not strike the reinforcing steel and/or the casing prior to reaching the bottom of the excavation. The removable steel casing should be extracted as concrete is placed. During steel casing removal a head of concrete should be maintained above the bottom of the casing to prevent soil and water intrusion into the concrete below the bottom of the casing.

If subsurface water is anticipated and/or weak soil layers are encountered drilled shafts are typically installed utilizing the "wet" method by excavating beneath a drilling mud slurry. The drilling mud slurry is added to the drilled shaft excavation after groundwater has been encountered and/or the sides of the excavation are observed to be caving or sloughing. Additional inspection by a Geotechnical Engineer, or their representative, during the "wet" method should consist of verifying maintenance of sufficient slurry head, monitoring the specific gravity, pH and sand content of the drilling slurry, and monitoring any changes in the depth of the excavation between initial approval and just prior to concreting.

Concrete placement utilizing the "wet" method is conducted through a tremie pipe at the bottom of the excavation with the drilling mud slurry level maintained at a minimum of 5 feet or one shaft diameter, whichever is greater, above the ground water elevation. The bottom of the tremie should be set one tremie pipe diameter above the excavation. A closure flap at the bottom of the tremie or a sliding plug introduced into the tremie before the concrete is recommended to reduce the potential contamination of the concrete by the drilling mud slurry. The bottom of the tremie must be maintained in the concrete during placement. Additional concrete should be placed through the tremie causing the slurry to overflow from the excavation in order to reduce the potential for the development of "slurry pockets" remaining in the drilled shaft.

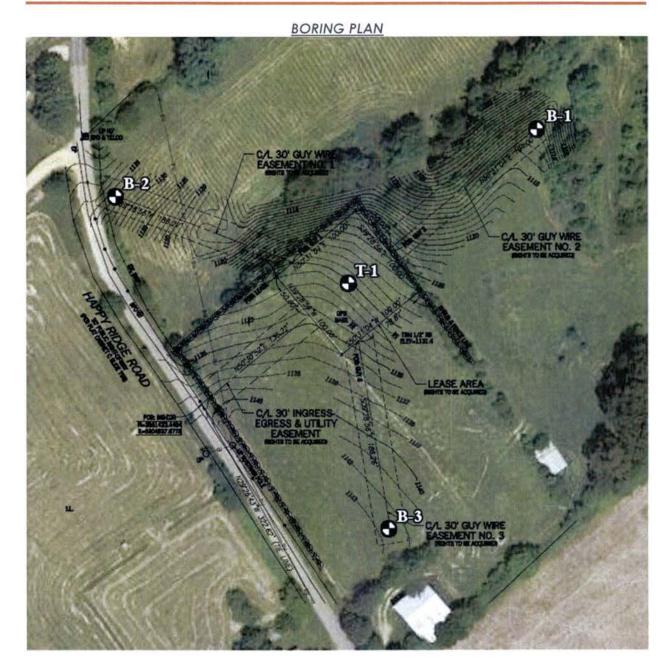
DELTA OAKS

DELTA OAKS GROUP

QUALIFICATIONS

The design parameters and conclusions provided in this report have been determined in accordance with generally accepted geotechnical engineering practices and are considered applicable to a rational degree of engineering certainty based on the data available at the time of report preparation and our practice in this geographic region. All recommendations and supporting calculations were prepared based on the data available at the time of report preparation and knowledge of typical geotechnical parameters in the applicable geographic region.

The subsurface conditions used in the determination of the design recommendations contained in this report are based on interpretation of subsurface data obtained at specific boring locations. Irrespective of the thoroughness of the subsurface investigation, the potential exists that conditions between borings will differ from those at the specific boring locations, that conditions are not as anticipated during the original analysis, or that the construction process has altered the soil conditions. That potential is significantly increased in locations where existing fill materials are encountered. Additionally, the nature and extent of these variations may not be evident until the commencement of construction. Therefore, a geotechnical engineer, or their representative, should observe construction practices to confirm that the site conditions do not differ from those conditions anticipated in design. If such variations are encountered, Delta Oaks Group should be contacted immediately in order to provide revisions and/or additional site exploration as necessary


Samples obtained during our subsurface field investigation will be retained by Delta Oaks Group for a period of 30 days unless otherwise instructed by B+T Group. No warranty, expressed or implied, is presented.

Delta Oaks Group appreciates the opportunity to be of service for this Geotechnical Investigation Report. Please do not hesitate to contact Delta Oaks Group with any questions or should you require additional service on this project.

APPENDIX

PROJECT NAME Happy Ridge Road

PROJECT NUMBER GEO20-06844-08

CLIENT B+T Group

Boring No.: B-1

PAGE 1 OF 1

PROJECT LOCATION 240 Happy Ridge Road, Nancy (Pulaski County), Kentucky 42544

DAT	DATE DRILLED: 8/13/2020			GROUND WATER LEVELS:											
DRII	DRILLING METHOD: Hollow Stem Auger			AT TIME OF DRILLING: Not Encountered											
GRO	OUND ELEVATION: 1135			ND OF	DRIL	LING	3 :	- Not	Encou	ntered	i				
BOF	RING DEPTH (ft): 20		▼ AFTE	94.0	LLIN	G: -	No	t Enc	ountere	ed					
о ОЕРТН (ft)	MATERIAL DESCRIPTION	SAMPLE TYPE	MATERIAL	Pocket Penetrometer (tsf)	BLOWS 1st	BLOWS 2nd	BLOWS 3rd	N VALUE	10.2	▲ \$	6PT N				90
	TOPSOIL	1	71/2						10 2		1			7 30	30
	SANDY LEAN CLAY (CL), firm, reddish brown, trace gravel,	1X	CL		3	3	5	_8_	1						
	moist														
	Very stiff	1			6	8	8	16	1						
		X						5,0-1							
	Stiff	1			4	6	6	12							
5	*.	IX				ð	2	105	$-\Gamma$		+			\perp	\perp
	Firm	1						_							
		IX			3	4	4	8	1						
	- Stiff														
10	2	IX			4	6	8	14	 						
		1													
- 14															
	Very stiff														
15	voly sun	IV			6	6	10	16	🛉						
13	-										+			\top	+
-															
-	With ground														
20	With gravel	X			6	8	8	16							
20	Bottom of borehole at 20.0 feet.		///	1							+			+	+

PROJECT NAME Happy Ridge Road

PROJECT NUMBER GEO20-06844-08

CLIENT B+T Group

Boring No.: B-2

PAGE 1 OF 1

PROJECT LOCATION 240 Happy Ridge Road, Nancy (Pulaski County), Kentucky 42544

DRIL	E DRILLED: 8/13/2020 LLING METHOD: Hollow Stem Auger DUND ELEVATION: 1135 RING DEPTH (ft): 20		GR	AT EN	ME OF	DRIL	LLING	3: - i:	- Not	t Encou Encou	nterec					
o DEPTH (ft)	MATERIAL DESCRIPTION	SAMP SAMP CLASSI 00000000000000000000000000000000000						10 2	▲ SPT N VALUE ▲ 10 20 30 40 50 60 70 80 9							
Ť	TOPSOIL	1	37,			3	4	5	9						T	T
	CLAYEY SILT (CL - ML), stiff, brown, with sand, moist	X		CL-ML					1	1						
	SANDY LEAN CLAY (CL), stiff, reddish brown, trace gravel, moist	X		CL		5	6	8	14							
5		X				3	4	7	11	A					+	
		X				2	4	6	10	†						
10		X				4	4	7	11	1					_	
	Very stiff	V				5	8	8	16							
	MATTER TOTAL															
20	With gravel	X				6	8	12	20	4						
	Bottom of borehole at 20.0 feet.		7///													

PROJECT NAME Happy Ridge Road

PROJECT NUMBER GEO20-06844-08

CLIENT B+T Group

Boring No.: B-3

PAGE 1 OF 1

PROJECT LOCATION 240 Happy Ridge Road, Nancy (Pulaski County), Kentucky 42544

DAT	DATE DRILLED: 8/13/2020			GROUND WATER LEVELS:											
5-4-31-50-5	DRILLING METHOD: Hollow Stem Auger		AT TIME OF DRILLING: Not Encountered												
	GROUND ELEVATION: 1135		AT END OF DRILLING: Not Encountered												
BOR	ING DEPTH (ft): 20	AFTER DRILLING : Not Encountered									-				
о ОЕРТН (#)	MATERIAL DESCRIPTION	SAMPLE TYPE		MATERIAL	Pocket Penetrometer (tsf)	BLOWS 1st	BLOWS 2nd	BLOWS 3rd	N VALUE	10 20	▲ SPT				90
	TOPSOIL	1	31,	T .							1 1			T	1
	CLAYEY SILT (CL - ML), firm, brown, with sand, trace organics, moist	X		CL-ML		2	_3_	_4_	7						
	Trace gravel	X				6	8	9	17	1					
	SANDY LEAN CLAY (CL), very stiff, reddish brown, trace														
5	gravel, moist	X		CL		4	8	8	16			+		1	+
-															
		X				5	8	10	18						
						2000	_		200						
10		X				4	7	12	19	+		+	Н		
15		V				6	6	17	23						
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\													
	Stiff	X				4	4	8	12						
20	Bottom of borehole at 20.0 feet.	/ \	1//	1		~					-	+	+	-	
	Social of potentie at 20.0 feet.														
											\perp	_			

PROJECT NAME Happy Ridge Road

PROJECT NUMBER GEO20-06844-08

CLIENT B+T Group

Boring No.: T-1

PAGE 1 OF 1

PROJECT LOCATION 240 Happy Ridge Road, Nancy (Pulaski County), Kentucky 42544

DAT	DATE DRILLED: 8/13/2020		GROUND WATER LEVELS:															
DRII	DRILLING METHOD: Hollow Stem Auger		AT TIME OF DRILLING: Not Encountered															
GRO	OUND ELEVATION: 1135	AT END OF DRILLING: Not Encountered																
BOF	RING DEPTH (ft): 20	_	AFTER DRILLING: Not Encountered								_							
O DEPTH	MATERIAL DESCRIPTION	SAMPLE TYPE		MATERIAL CLASSIFICATION	Pocket Penetrometer (tsf)	BLOWS 1st	BLOWS 2nd	BLOWS 3rd	N VALUE	10) 20	▲ S			UE ▲		90	
	TOPSOIL	1	<u>, 17,</u>			3	3	4	7	•	Ī		T			T	Ť	
	CLAYEY SILT (CL - ML), firm, brown, with sand, moist	X		CL-ML		,	3			7								
-	SANDY LEAN CLAY (CL), stiff, reddish brown, trace gravel, moist	X		CL		6	7	7	14									
	Very stiff						750	5000										
5	-	X				5	7	9	16		1							
	Stiff	X				5	6	9	15		<u> </u>							
10	With gravel	V				3	5	6	11									
15	Trace gravel	X				4	5	6	11	2								
		/ \																
		X				5	6	8	14									
20	Bottom of borehole at 20.0 feet.	1	1///							H	+				\forall	+	+	\dashv
		-	-	4			_	_	_	-	_	_	-	_	-	_	\rightarrow	_

EXHIBIT H DIRECTIONS TO WCF SITE

Driving Directions to Proposed Tower Site:

- 1. Beginning at 100 North Main Street, Somerset, KY, head south on N. Main Street (toward W. Mt. Vernon St) and travel approximately 62 feet.
- 2. Turn right onto W. Mt. Vernon St and travel approximately 0.3 miles.
- 3. Stay straight to continue onto Ohio St. and travel approximately 0.2 miles.
- Make a slight left to continue onto Ogden St. and travel approximately 0.5 miles.
- 5. Turn right onto US-27 N and travel approximately 377 feet.
- 6. Turn left onto KY-80 W and travel approximately 2.4 miles.
- Turn right onto KY-914 and travel approximately 1.0 miles. KY-914 merges into the ramp to the Cumberland Parkway West.
- 8. Merge onto the Cumberland Parkway West and continue for approximately 7.7 miles.
- 9. Take exit 78 for Ky-80 toward Nancy. Continue onto the exit ramp for approximately 0.3 miles.
- 10. Turn left onto KY-80 E and travel approximately 1.6 miles.
- 11. Turn left onto KY-2993 and travel approximately 0.7 miles.
- 12. Turn left onto Happy Ridge Road and travel approximately 0.3 miles
- 13. The site is on the right at 240 Happy Ridge Road.
- 14. The site coordinates are
 - a. 37 deg 06 min 00.76 sec N
 - b. 84 deg 46 min 36.42 sec W

Prepared by: Aaron L. Roof Pike Legal Group PLLC 1578 Highway 44 East, Suite 6 PO Box 369 Shepherdsville, KY 40165-0369

Telephone: 502-955-4400 or 800-516-4293

EXHIBIT I COPY OF REAL ESTATE AGREEMENT

UNITI Site ID: KYLEX2038 Uniti Site Name: Happy Ridge Rd

FA No.: 15145564

OPTION AND LEASE AGREEMENT

THIS OPTION AND LEASE AGREEMENT ("Agreement"), dated as of the latter of the signature dates below (the "Effective Date"), is entered into by Gladys Molden, 1/2 interest, Terry Molden, 1/4 interest and Charlotte Wells 1/4 interest, having a mailing address of 2128 Highway 2993, Nancy, KY 42544, ("Landlord") and Uniti Towers LLC, a Delaware limited liability company having a mailing address of 10802 Executive Center Drive, Benton Building, Suite 300, Little Rock AR 72211 ("Tenant").

BACKGROUND

Landlord owns or controls that certain plot, parcel or tract of land, as described on **Exhibit 1**, together with all rights and privileges arising in connection therewith, located at 244 Happy Ridge Road in the City/Town of Nancy, County of Pulaski, State of Kentucky (collectively, the "**Property**"). Landlord desires to grant to Tenant the right to use a portion of the Property in accordance with this Agreement.

The parties agree as follows:

1. OPTION TO LEASE.

- (a) Landlord grants to Tenant an exclusive option (the "**Option**") to lease a certain portion of the Property containing approximately 10,000 square feet including the air space above such ground space, as described on attached **Exhibit 1**, (the "**Premises**"), for the placement of a Communication Facility.
- (b) During the Option Term, and during the Term, Tenant and its agents, engineers, surveyors and other representatives will have the right to enter upon the Property to inspect, examine, conduct soil borings, drainage testing, material sampling, radio frequency testing and other geological or engineering tests or studies of the Property (collectively, the "Tests"), to apply for and obtain licenses, permits, approvals, or other relief required of or deemed necessary or appropriate at Tenant's sole discretion for its use of the Premises and include, without limitation, applications for zoning variances, zoning ordinances, amendments, special use permits, and construction permits (collectively, the "Government Approvals"), initiate the ordering and/or scheduling of necessary utilities, and otherwise to do those things on or off the Property that, in the opinion of Tenant, are necessary in Tenant's sole discretion to determine the physical condition of the Property, the environmental history of the Property, Landlord's title to the Property and the feasibility or suitability of the Property for Tenant's Permitted Use, all at Tenant's expense. Tenant will not be liable to Landlord or any third party on account of any pre-existing defect or condition on or with respect to the Property, whether or not such defect or condition is disclosed by Tenant's inspection. Tenant will restore the Property to its condition as it existed at the commencement of the Option Term, reasonable wear and tear and loss by casualty or other causes beyond Tenant's control excepted.
- (c) In consideration of Landlord granting Tenant the Option, Tenant agrees to pay Landlord the sum of within thirty (30) business days after the Effective Date. The Option may be exercised during an initial term of one (1) year commencing on the Effective Date (the "Initial Option Term") which term may be renewed by Tenant for an additional one (1) year (the "Renewal Option Term") upon written notification to Landlord and the payment of an additional

no later than five (5) days prior to the expiration date of the Initial Option Term. The Initial Option Term and any Renewal Option Term are collectively referred to as the "Option Term."

- (d) The Option may be sold, assigned or transferred at any time by Tenant without the written consent of Landlord. Upon notification to Landlord of such sale, assignment, or transfer, Tenant shall immediately be released from any and all liability under this Agreement, including the payment of any rental or other sums due, without any further action.
- (e) During the Option Term, Tenant may exercise the Option by notifying Landlord in writing. If Tenant exercises the Option, then Landlord leases the Premises to Tenant subject to the terms and conditions of this Agreement. If Tenant does not exercise the Option during the Initial Option Term or any extension thereof, this Agreement will terminate, and the parties will have no further liability to each other.

- (f) If during the Option Term, or during the Term if the Option is exercised, Landlord decides to subdivide, sell, or change the status of the zoning of the Premises, Property or any of Landlord's contiguous, adjoining or surrounding property (the "Surrounding Property,") or in the event of a threatened foreclosure, Landlord shall immediately notify Tenant in writing. Landlord agrees that during the Option Term, or during the Term if the Option is exercised, Landlord shall not initiate or consent to any change in the zoning of the Premises, Property or Surrounding Property or impose or consent to any other use or restriction that would prevent or limit Tenant from using the Premises for the Permitted Use. Any and all terms and conditions of this Agreement that by their sense and context are intended to be applicable during the Option Term shall be so applicable.
- 2. PERMITTED USE. Tenant may use the Premises for the transmission and reception of communications signals and the installation, construction, maintenance, operation, repair, replacement and upgrade of communications fixtures and related equipment, cables, accessories and improvements, which may include a suitable support structure ("Structure"), associated antennas, equipment shelters or cabinets and fencing and any other items necessary to the successful and secure use of the Premises (collectively, the "Communication Facility"), as well as the right to test, survey and review title on the Property; Tenant further has the right but not the obligation to add, modify and/or replace equipment in order to be in compliance with any current or future federal, state or local mandated application, including, but not limited to, emergency 911 communication services, at no additional cost to Tenant or Landlord (collectively, the "Permitted Use"). Landlord and Tenant agree that any portion of the Communication Facility that may be conceptually described on Exhibit 1 will not be deemed to limit Tenant's Permitted Use. If Exhibit 1 includes drawings of the initial installation of the Communication Facility, Landlord's execution of this Agreement will signify Landlord's approval of Exhibit 1. For a period of ninety (90) days following the start of construction, Landlord grants Tenant, its subtenants, licensees and sublicensees, the right to use such portions of the Surrounding Property as may reasonably be required during construction and installation of the Communication Facility. Tenant has the right to install and operate transmission cables from the equipment shelter or cabinet to the antennas, electric lines from the main feed to the equipment shelter or cabinet and communication lines from the Property's main entry point to the equipment shelter or cabinet, install a generator and to make other improvements, alterations, upgrades or additions appropriate for Tenant's Permitted Use including the right to construct a fence around the Premises or equipment, install warning signs to make individuals aware of risks, install protective barriers, install any other control measures reasonably required by Tenant's safety procedures or applicable law, and undertake any other appropriate means to secure the Premises or equipment at Tenant's expense. Tenant has the right to modify, supplement, replace, upgrade, expand the Communication Facility (including, for example, increasing the number of antennas or adding microwave dishes) or relocate the Communication Facility within the Premises at any time during the Term. Tenant will be allowed to make such alterations to the Property in order to ensure that the Communication Facility complies with all applicable federal, state or local laws, rules or regulations. In the event Tenant desires to modify or upgrade the Communication Facility, in a manner that requires an additional portion of the Property (the "Additional Premises") for such modification or upgrade, Landlord agrees to lease to Tenant the Additional Premises, upon the same terms and conditions set forth herein, except that the Rent shall increase, in conjunction with the lease of the Additional Premises by the amount equivalent to the then-current per square foot rental rate charged by Landlord to Tenant times the square footage of the Additional Premises. Landlord agrees to take such actions and enter into and deliver to Tenant such documents as Tenant reasonably requests in order to effect and memorialize the lease of the Additional Premises to Tenant.

3. TERM.

- (a) The initial lease term will be five (5) years (the "Initial Term"), commencing on the effective date of written notification by Tenant to Landlord of Tenant's exercise of the Option (the "Term Commencement Date"). The Initial Term will terminate on the fifth (5th) anniversary of the Term Commencement Date.
- (b) This Agreement will automatically renew for seventeen (17) additional five (5) year term(s) (each additional five (5) year term shall be defined as an "Extension Term"), upon the same terms and

conditions set forth herein unless Tenant notifies Landlord in writing of Tenant's intention not to renew this Agreement at least sixty (60) days prior to the expiration of the Initial Term or then-existing Extension Term.

- (c) Unless (i) Landlord or Tenant notifies the other in writing of its intention to terminate this Agreement at least six (6) months prior to the expiration of the final Extension Term, or (ii) the Agreement is terminated as otherwise permitted by this Agreement prior to the end of the final Extension Term, this Agreement shall continue in force upon the same covenants, terms and conditions for a further term of one (1) year, and for annual terms thereafter ("Annual Term") until terminated by either party by giving to the other party written notice of its intention to so terminate at least six (6) months prior to the end of any such Annual Term. Monthly rent during such Annual Terms shall be equal to the Rent paid for the last month of the final Extension Term. If Tenant remains in possession of the Premises after the termination of this Agreement, then Tenant will be deemed to be occupying the Premises on a month-to-month basis (the "Holdover Term"), subject to the terms and conditions of this Agreement.
- (d) The Initial Term, any Extension Terms, any Annual Terms and any Holdover Term are collectively referred to as the "Term".

4. RENT.

- (a) Commencing on the first day of the month following the date that Tenant commences construction (the "Rent Commencement Date"), Tenant will pay Landlord on or before the fifth (5th) day of each calendar month in advance, (the "Rent"), at the address set forth above. In any partial month occurring after the Rent Commencement Date, Rent will be prorated. The initial Rent payment will be forwarded by Tenant to Landlord within forty-five (45) days after the Rent Commencement Date.
- (b) In the first year of an Extension Term, the monthly Rent will increase by over the Rent paid during the previous five (5) year term, effective the first day of the month in which the anniversary of the Term Commencement Date occurs.
- (c) All charges payable under this Agreement such as utilities and taxes shall be billed by Landlord within one (1) year from the end of the calendar year in which the charges were incurred; any charges beyond such period shall not be billed by Landlord, and shall not be payable by Tenant. The foregoing shall not apply to monthly Rent which is due and payable without a requirement that it be billed by Landlord. The provisions of this subsection shall survive the termination or expiration of this Agreement.

APPROVALS.

- (a) Landlord agrees that Tenant's ability to use the Premises is contingent upon the suitability of the Premises and Property for the Permitted Use and Tenant's ability to obtain and maintain all Government Approvals. Landlord authorizes Tenant to prepare, execute and file all required applications to obtain Government Approvals for the Permitted Use and agrees to reasonably assist Tenant with such applications and with obtaining and maintaining the Government Approvals.
- (b) Tenant has the right to obtain a title report or commitment for a leasehold title policy from a title insurance company of its choice and to have the Property surveyed by a surveyor of its choice.
- (c) Tenant may also perform and obtain, at Tenant's sole cost and expense, soil borings, percolation tests, engineering procedures, environmental investigation or other tests or reports on, over, and under the Property, necessary to determine if Tenant's use of the Premises will be compatible with Tenant's engineering specifications, system, design, operations or Government Approvals.
- 6. TERMINATION. This Agreement may be terminated, without penalty or further liability, as follows:
- (a) by either party on thirty (30) days prior written notice, if the other party remains in default under Section 15 of this Agreement after the applicable cure periods;
- (b) by Tenant upon written notice to Landlord, if Tenant is unable to obtain, or maintain, any required approval(s) or the issuance of a license or permit by any agency, board, court or other governmental authority necessary for the construction or operation of the Communication Facility as now or hereafter intended by Tenant; or if Tenant determines, in its sole discretion that the cost of or delay in obtaining or retaining the same is commercially unreasonable;

- (c) by Tenant, upon written notice to Landlord, if Tenant determines, in its sole discretion, due to the title report results or survey results, that the condition of the Premises is unsatisfactory for its intended uses;
- (d) by Tenant upon written notice to Landlord for any reason or no reason, at any time prior to commencement of construction by Tenant; or
- (e) by Tenant upon sixty (60) days' prior written notice to Landlord for any reason or no reason, so long as Tenant pays Landlord a termination fee equal provided, however, that no such termination fee will be payable on account of the termination of this Agreement by Tenant under any termination provision contained in any other Section of this Agreement, including the following: Section 5 Approvals, Section 6(a) Termination, Section 6(b) Termination, Section 6(c) Termination, Section 6(d) Termination, Section 11(d) Environmental, Section 18 Condemnation or Section 19 Casualty.
- 7. <u>INSURANCE</u>. During the Option Term and throughout the Term, Tenant will purchase and maintain in full force and effect such general liability policy as Tenant may deem necessary. Said policy of general liability insurance will at a minimum provide a combined single limit of

Notwithstanding the foregoing, Tenant shall have the right to self-insure such general liability coverage.

8. INTERFERENCE.

- (a) Prior to or concurrent with the execution of this Agreement, Landlord has provided or will provide Tenant with a list of radio frequency user(s) and frequencies used on the Property as of the Effective Date. Tenant warrants that its use of the Premises will not interfere with those existing radio frequency uses on the Property, as long as the existing radio frequency user(s) operate and continue to operate within their respective frequencies and in accordance with all applicable laws and regulations.
- (b) Landlord will not grant, after the Effective Date, a lease, license or any other right to any third party, if the exercise of such grant may in any way adversely affect or interfere with the Communication Facility, the operations of Tenant or the rights of Tenant under this Agreement. Landlord will notify Tenant in writing prior to granting any third party the right to install and operate communications equipment on the Property.
- (c) Landlord will not, nor will Landlord permit its employees, tenants, licensees, invitees, agents or independent contractors to interfere in any way with the Communication Facility, the operations of Tenant or the rights of Tenant under this Agreement. Landlord will cause such interference to cease within twenty-four (24) hours after receipt of notice of interference from Tenant. In the event any such interference does not cease within the aforementioned cure period, Landlord shall cease all operations which are suspected of causing interference (except for intermittent testing to determine the cause of such interference) until the interference has been corrected.
- (d) For the purposes of this Agreement, "interference" may include, but is not limited to, any use on the Property or Surrounding Property that causes electronic or physical obstruction with, or degradation of, the communications signals from the Communication Facility.

9. INDEMNIFICATION.

- (a) Tenant agrees to indemnify, defend and hold Landlord harmless from and against any and all injury, loss, damage or liability, costs or expenses in connection with a third party claim (including reasonable attorneys' fees and court costs) arising directly from the installation, use, maintenance, repair or removal of the Communication Facility or Tenant's breach of any provision of this Agreement, except to the extent attributable to the negligent or intentional act or omission of Landlord, its employees, invitees, agents or independent contractors.
- (b) Landlord agrees to indemnify, defend and hold Tenant harmless from and against any and all injury, loss, damage or liability, costs or expenses in connection with a third party claim (including reasonable attorneys' fees and court costs) arising directly from the actions or failure to act of Landlord, its employees, invitees agents or independent contractors, or Landlord's breach of any provision of this Agreement, except to the extent attributable to the negligent or intentional act or omission of Tenant, its employees, agents or

independent contractors.

(c) The indemnified party: (i) shall promptly provide the indemnifying party with written notice of any claim, demand, lawsuit, or the like for which it seeks indemnification pursuant to this Section and provide the indemnifying party with copies of any demands, notices, summonses, or legal papers received in connection with such claim, demand, lawsuit, or the like; (ii) shall not settle any such claim, demand, lawsuit, or the like without the prior written consent of the indemnifying party; and (iii) shall fully cooperate with the indemnifying party in the defense of the claim, demand, lawsuit, or the like. A delay in notice shall not relieve the indemnifying party of its indemnity obligation, except (1) to the extent the indemnifying party can show it was prejudiced by the delay; and (2) the indemnifying party shall not be liable for any settlement or litigation expenses incurred before the time when notice is given.

10. WARRANTIES.

- (a) Each of Tenant and Landlord (to the extent not a natural person) acknowledge and represent that it is duly organized, validly existing and in good standing and has the right, power and authority or capacity, as applicable, to enter into this Agreement and bind itself hereto through the party or individual set forth as signatory for the party below.
- (b) Landlord represents, warrants and agrees that: (i) Landlord solely owns the Property as a legal lot in fee simple, or controls the Property by lease or license; (ii) the Property is not and will not be encumbered by any liens, restrictions, mortgages, covenants, conditions, easements, leases, or any other agreements of record or not of record, which would adversely affect Tenant's Permitted Use and enjoyment of the Premises under this Agreement; (iii) as long as Tenant is not in default then Landlord grants to Tenant sole, actual, quiet and peaceful use, enjoyment and possession of the Premises without hindrance or ejection by any persons lawfully claiming under Landlord; (iv) Landlord's execution and performance of this Agreement will not violate any laws, ordinances, covenants or the provisions of any mortgage, lease or other agreement binding on Landlord; and (v) if the Property is or becomes encumbered by a deed to secure a debt, mortgage or other security interest, Landlord will provide promptly to Tenant a mutually agreeable subordination, non-disturbance and attornment agreement executed by Landlord and the holder of such security interest in the form attached hereto as **Exhibit 10(b)**.

11. ENVIRONMENTAL.

- (a) Landlord represents and warrants, except as may be identified in **Exhibit 11** attached to this Agreement, (i) the Property, as of the Effective Date, is free of hazardous substances, including asbestoscontaining materials and lead paint, and (ii) the Property has never been subject to any contamination or hazardous conditions resulting in any environmental investigation, inquiry or remediation. Landlord and Tenant agree that each will be responsible for compliance with any and all applicable governmental laws, rules, statutes, regulations, codes, ordinances, or principles of common law regulating or imposing standards of liability or standards of conduct with regard to protection of the environment or worker health and safety, as may now or at any time hereafter be in effect, to the extent such apply to that party's activity conducted in or on the Property.
- (b) Landlord and Tenant agree to hold harmless and indemnify the other from, and to assume all duties, responsibilities and liabilities at the sole cost and expense of the indemnifying party for, payment of penalties, sanctions, forfeitures, losses, costs or damages, and for responding to any action, notice, claim, order, summons, citation, directive, litigation, investigation or proceeding ("Claims"), to the extent arising from that party's breach of its obligations or representations under Section 11(a). Landlord agrees to hold harmless and indemnify Tenant from, and to assume all duties, responsibilities and liabilities at the sole cost and expense of Landlord for, payment of penalties, sanctions, forfeitures, losses, costs or damages, and for responding to any Claims, to the extent arising from subsurface or other contamination of the Property with hazardous substances prior to the Effective Date or from such contamination caused by the acts or omissions of Landlord during the Term. Tenant agrees to hold harmless and indemnify Landlord from, and to assume all duties, responsibilities and liabilities at the sole cost and expense of Tenant for, payment of penalties, sanctions, forfeitures, losses, costs or damages, and for responding to any Claims, to the extent arising from hazardous substances brought onto the Property by Tenant.

- (c) The indemnification provisions contained in this Section 11 specifically include reasonable costs, expenses and fees incurred in connection with any investigation of Property conditions or any clean-up, remediation, removal or restoration work required by any governmental authority. The provisions of this Section 11 will survive the expiration or termination of this Agreement.
- (d) In the event Tenant becomes aware of any hazardous materials on the Property, or any environmental, health or safety condition or matter relating to the Property, that, in Tenant's sole determination, renders the condition of the Premises or Property unsuitable for Tenant's use, or if Tenant believes that the leasing or continued leasing of the Premises would expose Tenant to undue risks of liability to a government agency or other third party, Tenant will have the right, in addition to any other rights it may have at law or in equity, to terminate this Agreement upon written notice to Landlord.
- 12. ACCESS. At all times throughout the Term of this Agreement, and at no additional charge to Tenant, Tenant and its employees, agents, and subcontractors, will have twenty-four (24) hour per day, seven (7) day per week pedestrian and vehicular access ("Access") to and over the Property, from an open and improved public road to the Premises, for the installation, maintenance and operation of the Communication Facility and any utilities serving the Premises. As may be described more fully in Exhibit 1, Landlord grants to Tenant an easement for such Access and Landlord agrees to provide to Tenant such codes, keys and other instruments necessary for such Access at no additional cost to Tenant. Upon Tenant's request, Landlord will execute a separate recordable easement evidencing this right. Landlord shall execute a letter granting Tenant Access to the Property substantially in the form attached as Exhibit 12; upon Tenant's request, Landlord shall execute additional letters during the Term. Landlord acknowledges that in the event Tenant cannot obtain Access to the Premises, Tenant shall incur significant damage. If Landlord fails to provide the Access granted by this Section 12, such failure shall be a default under this Agreement. In connection with such default, in addition to any other rights or remedies available to Tenant under this Agreement or at law or equity, Landlord shall pay Tenant, as liquidated damages and not as a penalty, in consideration of Tenant's damages until Landlord cures such default. Landlord and Tenant agree that Tenant's damages in the event of a denial of Access are difficult, if not impossible, to ascertain, and the liquidated damages set forth above are a reasonable approximation of such damages.
- 13. REMOVAL/RESTORATION. All portions of the Communication Facility brought onto the Property by Tenant will be and remain Tenant's personal property and, at Tenant's option, may be removed by Tenant at any time during or after the Term. Landlord covenants and agrees that no part of the Communication Facility constructed, erected or placed on the Premises by Tenant will become, or be considered as being affixed to or a part of, the Property, it being the specific intention of Landlord that all improvements of every kind and nature constructed, erected or placed by Tenant on the Premises will be and remain the property of Tenant and may be removed by Tenant at any time during or after the Term. Tenant will repair any damage to the Property resulting from Tenant's removal activities. Any portions of the Communication Facility that Tenant does not remove within one hundred twenty (120) days after the later of the end of the Term and cessation of Tenant's operations at the Premises shall be deemed abandoned and owned by Landlord. Notwithstanding the foregoing, Tenant will not be responsible for the replacement of any trees, shrubs or other vegetation.

14. MAINTENANCE/UTILITIES.

- (a) Tenant will keep and maintain the Premises in good condition, reasonable wear and tear and damage from the elements excepted. Landlord will maintain and repair the Property and access thereto and all areas of the Premises where Tenant does not have exclusive control, in good and tenantable condition, subject to reasonable wear and tear and damage from the elements. Landlord will be responsible for maintenance of landscaping on the Property, including any landscaping installed by Tenant as a condition of this Agreement or any required permit.
- (b) Tenant will be responsible for paying on a monthly or quarterly basis all utilities charges for electricity, telephone service or any other utility used or consumed by Tenant on the Premises. In the event Tenant cannot secure its own metered electrical supply, Tenant will have the right, at its own cost and expense,

to sub-meter from Landlord. When sub-metering is required under this Agreement, Landlord will read the meter and provide Tenant with an invoice and usage data on a monthly basis. Tenant shall reimburse Landlord for such utility usage at the same rate charged to Landlord by the utility service provider. Landlord further agrees to provide the usage data and invoice on forms provided by Tenant and to send such forms to such address and/or agent designated by Tenant. Tenant will remit payment within sixty (60) days of receipt of the usage data and required forms. Landlord shall maintain accurate and detailed records of all utility expenses, invoices and payments applicable to Tenant's reimbursement obligations hereunder. Within fifteen (15) days after a request from Tenant, Landlord shall provide copies of such utility billing records to the Tenant in the form of copies of invoices, contracts and cancelled checks. If the utility billing records reflect an overpayment by Tenant, Tenant shall have the right to deduct the amount of such overpayment from any monies due to Landlord from Tenant.

- (c) As noted in Section 4(c) above, any utility fee recovery by Landlord is limited to a twelve (12) month period. If Tenant submeters electricity from Landlord, Landlord agrees to give Tenant at least twenty-four (24) hours advance notice of any planned interruptions of said electricity. Landlord acknowledges that Tenant provides a communication service which requires electrical power to operate and must operate twenty-four (24) hours per day, seven (7) days per week. If the interruption is for an extended period of time, in Tenant's reasonable determination, Landlord agrees to allow Tenant the right to bring in a temporary source of power for the duration of the interruption. Landlord will not be responsible for interference with, interruption of or failure, beyond the reasonable control of Landlord, of such services to be furnished or supplied by Landlord.
- (d) Tenant will have the right to install utilities, at Tenant's expense, and to improve present utilities on the Property and the Premises. Landlord hereby grants to any service company providing utility or similar services, including electric power and telecommunications, to Tenant an easement over the Property, from an open and improved public road to the Premises, and upon the Premises, for the purpose of constructing, operating and maintaining such lines, wires, circuits, and conduits, associated equipment cabinets and such appurtenances thereto, as such service companies may from time to time require in order to provide such services to the Premises. Upon Tenant's or service company's request, Landlord will execute a separate recordable easement evidencing this grant, at no cost to Tenant or the service company.

15. DEFAULT AND RIGHT TO CURE.

- (a) The following will be deemed a default by Tenant and a breach of this Agreement: (i) non-payment of Rent if such Rent remains unpaid for more than thirty (30) days after written notice from Landlord of such failure to pay; or (ii) Tenant's failure to perform any other term or condition under this Agreement within forty-five (45) days after written notice from Landlord specifying the failure. No such failure, however, will be deemed to exist if Tenant has commenced to cure such default within such period and provided that such efforts are prosecuted to completion with reasonable diligence. Delay in curing a default will be excused if due to causes beyond the reasonable control of Tenant. If Tenant remains in default beyond any applicable cure period, Landlord will have the right to exercise any and all rights and remedies available to it under law and equity.
- (b) The following will be deemed a default by Landlord and a breach of this Agreement: (i) Landlord's failure to provide Access to the Premises as required by Section 12 within twenty-four (24) hours after written notice of such failure; (ii) Landlord's failure to cure an interference problem as required by Section 8 within twenty-four (24) hours after written notice of such failure; or (iii) Landlord's failure to perform any term, condition or breach of any warranty or covenant under this Agreement within forty-five (45) days after written notice from Tenant specifying the failure. No such failure, however, will be deemed to exist if Landlord has commenced to cure the default within such period and provided such efforts are prosecuted to completion with reasonable diligence. Delay in curing a default will be excused if due to causes beyond the reasonable control of Landlord. If Landlord remains in default beyond any applicable cure period, Tenant will have: (i) the right to cure Landlord's default and to deduct the costs of such cure from any monies due to Landlord from Tenant, and (ii) any and all other rights available to it under law and equity.

- 16. <u>ASSIGNMENT/SUBLEASE</u>. Tenant will have the right to assign this Agreement or sublease the Premises and its rights herein, in whole or in part, without Landlord's consent. Upon notification to Landlord of such assignment, Tenant will be relieved of all future performance, liabilities and obligations under this Agreement to the extent of such assignment.
- 17. NOTICES. All notices, requests and demands hereunder will be given by first class certified or registered mail, return receipt requested, or by a nationally recognized overnight courier, postage prepaid, to be effective when properly sent and received, refused or returned undelivered. Notices will be addressed to the parties as follows:

If to Tenant:

Uniti Towers LLC

Attn: Real Estate

10801 Executive Center Drive Shannon Building, Suite 100

Little Rock AR 72211

501.458.4724

CC:

Uniti Towers LLC

ATTN: Keith Harvey, Deputy General Counsel

10802 Executive Center Drive Benton Building, Suite 300 Little Rock AR 72211

For Emergencies:

NOC 1-844-398-9716

If to Landlord:

Gladys Molden, Terry Molden, and Charlotte Wells

2128 Highway 2993 Nancy, KY 42544

Telephone: (606) 875-8722

Either party hereto may change the place for the giving of notice to it by thirty (30) days' prior written notice to the other party as provided herein.

- 18. CONDEMNATION. In the event Landlord receives notification of any condemnation proceedings affecting the Property, Landlord will provide notice of the proceeding to Tenant within twenty-four (24) hours. If a condemning authority takes all of the Property, or a portion sufficient, in Tenant's sole determination, to render the Premises unsuitable for Tenant, this Agreement will terminate as of the date the title vests in the condemning authority. The parties will each be entitled to pursue their own separate awards in the condemnation proceeds, which for Tenant will include, where applicable, the value of its Communication Facility, moving expenses, prepaid Rent, and business dislocation expenses. Tenant will be entitled to reimbursement for any prepaid Rent on a pro rata basis.
- 19. <u>CASUALTY.</u> Landlord will provide notice to Tenant of any casualty or other harm affecting the Property within twenty-four (24) hours of the casualty or other harm. If any part of the Communication Facility or Property is damaged by casualty or other harm as to render the Premises unsuitable, in Tenant's sole determination, then Tenant may terminate this Agreement by providing written notice to Landlord, which termination will be effective as of the date of such casualty or other harm. Upon such termination, Tenant will be entitled to collect all insurance proceeds payable to Tenant on account thereof and to be reimbursed for any prepaid Rent on a *pro rata* basis. Landlord agrees to permit Tenant to place temporary transmission and reception facilities on the Property, but only until such time as Tenant is able to activate a replacement transmission facility at another location; notwithstanding the termination of this Agreement, such temporary facilities will be governed by all of the terms and conditions of this Agreement, including Rent. If Landlord or

Tenant undertakes to rebuild or restore the Premises and/or the Communication Facility, as applicable, Landlord agrees to permit Tenant to place temporary transmission and reception facilities on the Property at no additional Rent until the reconstruction of the Premises and/or the Communication Facility is completed. If Landlord determines not to rebuild or restore the Property, Landlord will notify Tenant of such determination within thirty (30) days after the casualty or other harm. If Landlord does not so notify Tenant and Tenant decides not to terminate under this Section, then Landlord will promptly rebuild or restore any portion of the Property interfering with or required for Tenant's Permitted Use of the Premises to substantially the same condition as existed before the casualty or other harm. Landlord agrees that the Rent shall be abated until the Property and/or the Premises are rebuilt or restored, unless Tenant places temporary transmission and reception facilities on the Property.

20. WAIVER OF LANDLORD'S LIENS. Landlord waives any and all lien rights it may have, statutory or otherwise, concerning the Communication Facility or any portion thereof. The Communication Facility shall be deemed personal property for purposes of this Agreement, regardless of whether any portion is deemed real or personal property under applicable law; Landlord consents to Tenant's right to remove all or any portion of the Communication Facility from time to time in Tenant's sole discretion and without Landlord's consent.

21. TAXES.

- (a) Landlord shall be responsible for (i) all taxes and assessments levied upon the lands, improvements and other property of Landlord including any such taxes that may be calculated by a taxing authority using any method, including the income method (ii) all sales, use, license, value added, documentary, stamp, gross receipts, registration, real estate transfer, conveyance, excise, recording, and other similar taxes and fees imposed in connection with this Agreement and (iii) all sales, use, license, value added, documentary, stamp, gross receipts, registration, real estate transfer, conveyance, excise, recording, and other similar taxes and fees imposed in connection with a sale of the Property or assignment of Rent payments by Landlord. Tenant shall be responsible for (y) any taxes and assessments attributable to and levied upon Tenant's leasehold improvements on the Premises if and as set forth in this Section 21 and (z) all sales, use, license, value added, documentary, stamp, gross receipts, registration, real estate transfer, conveyance, excise, recording, and other similar taxes and fees imposed in connection with an assignment of this Agreement or sublease by Tenant. Nothing herein shall require Tenant to pay any inheritance, franchise, income, payroll, excise, privilege, rent, capital stock, stamp, documentary, estate or profit tax, or any tax of similar nature, that is or may be imposed upon Landlord.
- (b) In the event Landlord receives a notice of assessment with respect to which taxes or assessments are imposed on Tenant's leasehold improvements on the Premises, Landlord shall provide Tenant with copies of each such notice immediately upon receipt, but in no event later than thirty (30) days after the date of such notice of assessment. If Landlord does not provide such notice or notices to Tenant in a timely manner and Tenant's rights with respect to such taxes are prejudiced by the delay, Landlord shall reimburse Tenant for any increased costs directly resulting from the delay and Landlord shall be responsible for payment of the tax or assessment set forth in the notice, and Landlord shall not have the right to reimbursement of such amount from Tenant. If Landlord provides a notice of assessment to Tenant within such time period and requests reimbursement from Tenant as set forth below, then Tenant shall reimburse Landlord for the tax or assessments identified on the notice of assessment on Tenant's leasehold improvements, which has been paid by Landlord. If Landlord seeks reimbursement from Tenant, Landlord shall, no later than thirty (30) days after Landlord's payment of the taxes or assessments for the assessed tax year, provide Tenant with written notice including evidence that Landlord has timely paid same, and Landlord shall provide to Tenant any other documentation reasonably requested by Tenant to allow Tenant to evaluate the payment and to reimburse Landlord.
- (c) For any tax amount for which Tenant is responsible under this Agreement, Tenant shall have the right to contest, in good faith, the validity or the amount thereof using such administrative, appellate or other proceedings as may be appropriate in the jurisdiction, and may defer payment of such obligations, pay same under protest, or take such other steps as permitted by law. This right shall include the ability to institute any legal, regulatory or informal action in the name of Landlord, Tenant, or both, with respect to the valuation of the Premises. Landlord shall cooperate with respect to the commencement and prosecution of any such

proceedings and will execute any documents required therefor. The expense of any such proceedings shall be borne by Tenant and any refunds or rebates secured as a result of Tenant's action shall belong to Tenant, to the extent the amounts were originally paid by Tenant. In the event Tenant notifies Landlord by the due date for assessment of Tenant's intent to contest the assessment, Landlord shall not pay the assessment pending conclusion of the contest, unless required by applicable law.

- (d) Landlord shall not split or cause the tax parcel on which the Premises are located to be split, bifurcated, separated or divided without the prior written consent of Tenant.
- (e) Tenant shall have the right but not the obligation to pay any taxes due by Landlord hereunder if Landlord fails to timely do so, in addition to any other rights or remedies of Tenant. In the event that Tenant exercises its rights under this Section 21(e) due to such Landlord default, Tenant shall have the right to deduct such tax amounts paid from any monies due to Landlord from Tenant as provided in Section 15(b), provided that Tenant may exercise such right without having provided to Landlord notice and the opportunity to cure per Section 15(b).
- (f) Any tax-related notices shall be sent to Tenant in the manner set forth in Section 17. Promptly after the Effective Date of this Agreement, Landlord shall provide the Notice address set forth in Section 17 to the taxing authority for the authority's use in the event the authority needs to communicate with Tenant. In the event that Tenant's tax address changes by notice to Landlord, Landlord shall be required to provide Tenant's new tax address to the taxing authority or authorities.
- (g) Notwithstanding anything to the contrary contained in this Section 21, Tenant shall have no obligation to reimburse any tax or assessment for which the Landlord is reimbursed or rebated by a third party.

22. SALE OF PROPERTY.

- (a) Landlord may sell the Property or a portion thereof to a third party, provided: (i) the sale is made subject to the terms of this Agreement; and (ii) if the sale does not include the assignment of Landlord's full interest in this Agreement, the purchaser must agree to perform, without requiring compensation from Tenant or any subtenant, any obligation of Landlord under this Agreement, including Landlord's obligation to cooperate with Tenant as provided hereunder.
- (b) If Landlord, at any time during the Term of this Agreement, decides to rezone or sell, subdivide or otherwise transfer all or any part of the Premises, or all or any part of the Property or Surrounding Property, to a purchaser other than Tenant, Landlord shall promptly notify Tenant in writing, and such rezoning, sale, subdivision or transfer shall be subject to this Agreement and Tenant's rights hereunder. In the event of a change in ownership, transfer or sale of the Property, within ten (10) days of such transfer, Landlord or its successor shall send the documents listed below in this Section 22(b) to Tenant. Until Tenant receives all such documents, Tenant's failure to make payments under this Agreement shall not be an event of default and Tenant reserves the right to hold payments due under this Agreement.
 - i. Old deed to Property
 - ii. New deed to Property
 - iii. Bill of Sale or Transfer
 - iv. Copy of current Tax Bill
 - v. New IRS Form W-9
 - vi. Completed and Signed Tenant Payment Direction Form
 - vii. Full contact information for new Landlord including phone number(s)
- (c) Landlord agrees not to sell, lease or use any areas of the Property or Surrounding Property for the installation, operation or maintenance of other wireless communication facilities if such installation, operation or maintenance would interfere with Tenant's Permitted Use or communications equipment as determined by radio propagation tests performed by Tenant in its sole discretion. Landlord or Landlord's prospective purchaser shall reimburse Tenant for any costs and expenses of such testing. If the radio frequency propagation tests demonstrate levels of interference unacceptable to Tenant, Landlord shall be prohibited from selling, leasing or using any areas of the Property or the Surrounding Property for purposes of any installation, operation or maintenance of any other wireless communication facility or equipment.

- (d) The provisions of this Section shall in no way limit or impair the obligations of Landlord under this Agreement, including interference and access obligations.
- 23. RIGHT OF FIRST REFUSAL. Notwithstanding the provisions contained in Section 22, if at any time after the Effective Date, Landlord receives a bona fide written offer from a third party seeking any sale, conveyance, assignment or transfer, whether in whole or in part, of any property interest in or related to the Premises, including without limitation any offer seeking an assignment or transfer of the Rent payments associated with this Agreement or an offer to purchase an easement with respect to the Premises ("Offer"), Landlord shall immediately furnish Tenant with a copy of the Offer. Tenant shall have the right within ninety (90) days after it receives such copy to match the financial terms of the Offer and agree in writing to match such terms of the Offer. Such writing shall be in the form of a contract substantially similar to the Offer, but Tenant may assign its rights to a third party. If Tenant chooses not to exercise this right or fails to provide written notice to Landlord within the ninety (90) day period, Landlord may sell, convey, assign or transfer such property interest in or related to the Premises pursuant to the Offer, subject to the terms of this Agreement. If Landlord attempts to sell, convey, assign or transfer such property interest in or related to the Premises without complying with this Section 23, the sale, conveyance, assignment or transfer shall be void. Tenant shall not be responsible for any failure to make payments under this Agreement and reserves the right to hold payments due under this Agreement until Landlord complies with this Section 23. Tenant's failure to exercise the right of first refusal shall not be deemed a waiver of the rights contained in this Section 23 with respect to any future proposed conveyances as described herein.

24. MISCELLANEOUS.

- (a) Amendment/Waiver. This Agreement cannot be amended, modified or revised unless done in writing and signed by Landlord and Tenant. No provision may be waived except in a writing signed by both parties. The failure by a party to enforce any provision of this Agreement or to require performance by the other party will not be construed to be a waiver, or in any way affect the right of either party to enforce such provision thereafter.
- (b) **Memorandum.** Contemporaneously with the execution of this Agreement, the parties will execute a recordable Memorandum of Lease substantially in the form attached as **Exhibit 24b**. Either party may record this Memorandum of Lease at any time during the Term, in its absolute discretion. Thereafter during the Term, either party will, at any time upon fifteen (15) business days' prior written notice from the other, execute, acknowledge and deliver to the other a recordable Memorandum of Lease.
- (c) Limitation of Liability. Except for the indemnity obligations set forth in this Agreement, and otherwise notwithstanding anything to the contrary in this Agreement, Tenant and Landlord each waives any claims that each may have against the other with respect to consequential, incidental or special damages, however caused, based on any theory of liability.
- (d) Compliance with Law. Tenant agrees to comply with all federal, state and local laws, orders, rules and regulations ("Laws") applicable to Tenant's use of the Communication Facility on the Property. Landlord agrees to comply with all Laws relating to Landlord's ownership and use of the Property and any improvements on the Property.
- (e) Bind and Benefit. The terms and conditions contained in this Agreement will run with the Property and bind and inure to the benefit of the parties, their respective heirs, executors, administrators, successors and assigns.
- (f) Entire Agreement. This Agreement and the exhibits attached hereto, all being a part hereof, constitute the entire agreement of the parties hereto and will supersede all prior offers, negotiations and agreements with respect to the subject matter of this Agreement. Exhibits are numbered to correspond to the Section wherein they are first referenced. Except as otherwise stated in this Agreement, each party shall bear its own fees and expenses (including the fees and expenses of its agents, brokers, representatives, attorneys, and accountants) incurred in connection with the negotiation, drafting, execution and performance of this Agreement and the transactions it contemplates.
- (g) Governing Law. This Agreement will be governed by the laws of the state in which the Premises are located, without regard to conflicts of law.

- (h) Interpretation. Unless otherwise specified, the following rules of construction and interpretation apply: (i) captions are for convenience and reference only and in no way define or limit the construction of the terms and conditions hereof; (ii) use of the term "including" will be interpreted to mean "including but not limited to"; (iii) whenever a party's consent is required under this Agreement, except as otherwise stated in the Agreement or as same may be duplicative, such consent will not be unreasonably withheld, conditioned or delayed; (iv) exhibits are an integral part of this Agreement and are incorporated by reference into this Agreement; (v) use of the terms "termination" or "expiration" are interchangeable; (vi) reference to a default will take into consideration any applicable notice, grace and cure periods; (vii) to the extent there is any issue with respect to any alleged, perceived or actual ambiguity in this Agreement, the ambiguity shall not be resolved on the basis of who drafted the Agreement; (viii) the singular use of words includes the plural where appropriate and (ix) if any provision of this Agreement is held invalid, illegal or unenforceable, the remaining provisions of this Agreement shall remain in full force if the overall purpose of the Agreement is not rendered impossible and the original purpose, intent or consideration is not materially impaired.
- (i) Affiliates. All references to "Tenant" shall be deemed to include any Affiliate of Uniti Towers LLC using the Premises for any Permitted Use or otherwise exercising the rights of Tenant pursuant to this Agreement. "Affiliate" means with respect to a party to this Agreement, any person or entity that (directly or indirectly) controls, is controlled by, or under common control with, that party. "Control" of a person or entity means the power (directly or indirectly) to direct the management or policies of that person or entity, whether through the ownership of voting securities, by contract, by agency or otherwise.
- (j) Survival. Any provisions of this Agreement relating to indemnification shall survive the termination or expiration hereof. In addition, any terms and conditions contained in this Agreement that by their sense and context are intended to survive the termination or expiration of this Agreement shall so survive.
- (k) W-9. As a condition precedent to payment, Landlord agrees to provide Tenant with a completed IRS Form W-9, or its equivalent, upon execution of this Agreement and at such other times as may be reasonably requested by Tenant, including any change in Landlord's name or address.
- (l) Execution/No Option. The submission of this Agreement to any party for examination or consideration does not constitute an offer, reservation of or option for the Premises based on the terms set forth herein. This Agreement will become effective as a binding Agreement only upon the handwritten legal execution, acknowledgment and delivery hereof by Landlord and Tenant. This Agreement may be executed in two (2) or more counterparts, all of which shall be considered one and the same agreement and shall become effective when one or more counterparts have been signed by each of the parties. All parties need not sign the same counterpart.
- (m) Attorneys' Fees. In the event that any dispute between the parties related to this Agreement should result in litigation, the prevailing party in such litigation shall be entitled to recover from the other party all reasonable fees and expenses of enforcing any right of the prevailing party, including reasonable attorneys' fees and expenses. Prevailing party means the party determined by the court to have most nearly prevailed even if such party did not prevail in all matters. This provision will not be construed to entitle any party other than Landlord, Tenant and their respective Affiliates to recover their fees and expenses.
- (n) WAIVER OF JURY TRIAL. EACH PARTY, TO THE EXTENT PERMITTED BY LAW, KNOWINGLY, VOLUNTARILY AND INTENTIONALLY WAIVES ITS RIGHT TO A TRIAL BY JURY IN ANY ACTION OR PROCEEDING UNDER ANY THEORY OF LIABILITY ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS AGREEMENT OR THE TRANSACTIONS IT CONTEMPLATES.
- (o) Incidental Fees. Unless specified in this Agreement, no unilateral fees or additional costs or expenses are to be applied by either party to the other party, including review of plans, structural analyses, consents, provision of documents or other communications between the parties.
- (p) Further Acts. Upon request, Landlord will cause to be promptly and duly taken, executed, acknowledged and delivered all such further acts, documents, and assurances as Tenant may request from time to time in order to effectuate, carry out and perform all of the terms, provisions and conditions of this Agreement and all transactions and permitted use contemplated by this Agreement.
- (q) Force Majeure. No party shall be liable or responsible to the other party, nor be deemed to have defaulted under or breached this Agreement, for any failure or delay in fulfilling or performing any term

of this Agreement, when and to the extent such failure or delay is caused by or results from acts beyond the affected party's reasonable control, including, without limitation: (a) acts of God; (b) flood, fire, earthquake, or explosion; (c) war, invasion, hostilities (whether war is declared or not), terrorist threats or acts, riot, or other civil unrest; (d) government order or law; (e) embargoes, or blockades in effect on or after the date of this Agreement; (f) action by any governmental authority; (g) national or regional emergency; and (h) strikes, labor stoppages or slowdowns, or other industrial disturbances. The party suffering a force majeure event shall give written notice to the other party, stating the period of time the occurrence is expected to continue and shall use diligent efforts to end the failure or delay and ensure the effects of such force majeure event are minimized.

[SIGNATURES APPEAR ON NEXT PAGE]

IN WITNESS WHEREOF, the parties have caused this Agreement to be effective as of the last date written below.

"LANDLORD"

Gladys Molden, 1/2 interest, Terry Molden, 1/4 interest and Charlotte Wells 1/4 interest

By: Bladys Ynolder-Print Name: Gladys Molden

Date: 3-2-2020

Print Name. Terry Molden
Date: J. 2 - 2029

Print Name: Charlotte Wells
Date: 3-3-2000

"TENANT"

Uniti Towers LLC

By: // M

Print Name: Its:

Date: 3 13 7

[ACKNOWLEDGMENTS APPEAR ON NEXT PAGE]

TENANT ACKNOWLEDGMENT

STATE OF ARKANSAS

COUNTY OF PULASKI

On the day of day of acknowledged under oath that he/ she is the NP-Plate of Uniti Towers LLC, the Tenant named in the attached instrument, and as such was authorized to execute this instrument on behalf of the Tenant.

MICHELLE SUTTON
Pulaski County
Commission Number 12704183
Notary Public - Arkansas
My Commission Expires April 30, 2028

My Commission Expires:

LANDLORD ACKNOWLEDGMENT

STATE OF LONTUCKY COUNTY OF PULLASK

BE IT REMEMBERED, that on this Q day of Month, 20 00 before me, the subscriber, a person authorized to take oaths in the State of Wondow, personally appeared Gladys Molden who, being duly sworn on his/her/their oath, deposed and made proof to my satisfaction that he/she/they is/are the person(s) named in the within instrument; and I, having first made known to him/her/them the contents thereof, he/she/they did acknowledge that he/she/they signed, sealed and delivered the same as his/her/their voluntary act and deed for the purposes therein contained.

Notary Public: Kody Reys

My Commission Expires: _

588755

LANDLORD ACKNOWLEDGMENT

STATE OF <u>Kentucky</u>
COUNTY OF PULLISKI
BE IT REMEMBERED, that on this day of mound and person authorized to take oaths in the State of day of mound appeared to take oaths in the State of day of made proof to my satisfaction that he/she/they is/are the person(s) named in the within instrument; and I, having first made known to him/her/them the contents thereof, he/she/they did acknowledge that he/she/they signed, sealed and delivered the same as his/her/their voluntary act and deed for the purposes therein contained.
My Commission Expires: 115 01
Notary 50: 588755
LANDLORD ACKNOWLEDGMENT
STATE OF LINUCKY COUNTY OF PULAZICI
BE IT REMEMBERED, that on this day of much, 2020 before me, the subscriber, a person authorized to take oaths in the State of day of made, personally appeared Charlotte Wells who, being duly sworn on his/her/their oath, deposed and made proof to my satisfaction that he/she/they is/are the person(s) named in the within instrument; and I, having first made known to him/her/them the contents thereof, he/she/they did acknowledge that he/she/they signed, sealed and delivered the same as his/her/their voluntary act and deed for the purposes therein contained.
Kenty Klynolds
Notary Public: Hocly Roygolds My Commission Expires: 11/5/21 Notary ID: 58755

EXHIBIT 1

DESCRIPTION OF PREMISES

Page 1 of 6

to the Option and Lease Agreement dated World , 2020, by and between Gladys Molden, 1/2 interest, Terry Molden, 1/4 interest and Charlotte Wells 1/4 interest, as Landlord, and Uniti Towers LLC, a Delaware limited liability company, as Tenant.

The Property is legally described as follows:

Tract I:

A certain tract or parcel of land located on the West side of Happy Ridge Road and on the North side of Molden Lane in Pulaski County, Kentucky, at the junction of Happy Ridge Road and Molden Lane, and being more particularly described as follows:

BEING ALL OF TRACT 1 of property designated as Delmer Molden Estate Project having an area of 1.0356 acres, as evidenced by Plat of said property of record in Plat Cabinet C, Slide 798, Pulaski County Court Clerk's Office, Kentucky.

All corners or witness monuments referred to on said Plat as Iron Pins Set, are one-half inch rebar 18 inches long and capped with an orange cap marked LS 1253, except as otherwise noted. All bearings are referenced to the meridian.

This property is subject to any and all Rights of Way and/or easements of record or in existence as this time and regulations that may apply through planning and zoning.

Tract II:

A certain tract or parcel of land located on the East side of Happy Ridge Road in Pulaski County, Kentucky, at the junction of Happy Ridge Road and Molden Lane, and being more particularly described as follows:

BEING ALL OF TRACT 3 of property designated as Delmer Molden Estate Project having an area of 11.6297 acres, as

evidenced by Plat of said property of record in Plat Cabinet C, Slide 798, Pulaski County Court Clerk's Office, Kentucky.

All corners or witness monuments referred to on said Plat as Iron Pins Set, are one-half inch rebar 18 inches long and capped with an orange cap marked LS 1253, except as otherwise noted. All bearings are referenced to the meridian.

This property is subject to any and all Rights of Way and/or easements of record or in existence as this time and regulations that may apply through planning and zoning.

AND BEING the same property conveyed to Virl Dean Molden and Gladys Molden from Virl Dean Molden and Gladys Molden, Vertrees Molden and Shirley Molden, Larry Molden and Rita Molden, Delmer Molden, Jr. and Lynn Molden, Linda Joy Adams and Thomas Jeffrey Adams, Lisa Jill Fothergill and Mark David Fothergill, Debra Molden Carrington and Frank Carrington by Deed dated April 26, 2002 and recorded February 21, 2003 in Deed Book 711, Page 340; AND FURTHER CONVEYED to Gladys Molden, 1/2 interest, Terry Molden, 1/4 interest and Charlotte Wells 1/4 interest from Virl Dean Molden by Affidavit of Descent dated April 23, 2013 and recorded April 23, 2013 in Deed Book 897, Page 539.

Tax Parcel No. 019-0-0-32

The Premises are described and/or depicted as follows:

LEASE AREA

All that tract or parcel of land lying and being in Pulaski County, Kentucky and being a portion of Tract 3 of the Delmer Molden Estate, as recorded in Plat Cabinet C, Slide 798, Pulaski County records, and being more particularly described as follows:

To find the point of beginning, COMMENCE at the centerline intersection of Happy Ridge Road (having a 30-foot right-of-way) and Molden Lane (having a 30-foot right-of-way), said point having a Kentucky Grid North, NAD83, Single Zone value of N: 3561152.5056 E: 5205096.2746; thence running along a tie line, North 29°26'43" West, 322.62 feet to a point on the easterly right-of-way line of Happy Ridge Road, said point having a Kentucky Grid North, NAD83, Single Zone

value of N: 3561433.4494 E: 5204937.6778; thence leaving said right-of-way line and running, North 50°30'52" East, 136.22 feet to a point on the Lease Area; thence running along said Lease Area, North 39°28'56" West, 50.00 to a point and the true POINT OF BEGINNING; Thence running, North 50°31'04" East, 100.00 feet to a point; Thence, South 39°28'56" East, 100.00 feet to a point; Thence, South 50°31'04" West, 100.00 feet to a point; Thence, North 39°28'56" West, 100.00 feet to a point and the POINT OF BEGINNING.

Bearings based on Kentucky Grid North, NAD83, Single Zone.

Said tract contains 0.2296 acres (10,000 square feet), more or less, as shown in a survey prepared for Uniti Towers, LLC by POINT TO POINT LAND SURVEYORS, INC. dated January 28, 2020.

30' INGRESS-EGRESS & UTILITY EASEMENT

Together with a 30-foot wide Ingress-Egress and Utility Easement (lying 15 feet each side of centerline) lying and being in Pulaski County, Kentucky and being a portion of Tract 3 of the Delmer Molden Estate, as recorded in Plat Cabinet C, Slide 798, Pulaski County records, and being more particularly described by the following centerline data:

To find the point of beginning, COMMENCE at the centerline intersection of Happy Ridge Road (having a 30-foot right-of-way) and Molden Lane (having a 30-foot right-of-way), said point having a Kentucky Grid North, NAD83, Single Zone value of N: 3561152.5056 E: 5205096.2746; thence running along a tie line, North 29°26'43" West, 322.62 feet to a point on the easterly right-of-way line of Happy Ridge Road, said point having a Kentucky Grid North, NAD83, Single Zone value of N: 3561433.4494 E: 5204937.6778 and the true POINT OF BEGINNING; Thence leaving said right-of-way line and running, North 50°30'52" East, 136.22 feet to the ENDING at a point on the Lease Area.

Bearings based on Kentucky Grid North, NAD83, Single Zone.

As shown in a survey prepared for Uniti Towers, LLC by POINT TO POINT LAND SURVEYORS, INC. dated January 28, 2020.

30' GUY WIRE EASEMENT NO. 1

Together with a 30-foot Guy Wire Easement (lying 15 feet each side of centerline and extending 15 feet beyond the point of termination) lying and being in Pulaski County, Kentucky and being a portion of Tract 3 of the Delmer Molden Estate, as recorded in Plat Cabinet C, Slide 798, Pulaski County records, and being more particularly described by the following centerline data:

To find the point of beginning, COMMENCE at the centerline intersection of Happy Ridge Road (having a 30-foot right-of-way) and Molden Lane (having a 30-foot right-of-way), said point having a Kentucky Grid North, NAD83, Single Zone value of N: 3561152.5056 E: 5205096.2746; thence running along a tie line, North 29°26'43" West, 322.62 feet to a point on the easterly right-of-way line of Happy Ridge Road, said point having a Kentucky Grid North, NAD83, Single Zone value of N: 3561433.4494 E: 5204937.6778; thence leaving said right-of-way line and running, North 50°30'52" East, 136.22 feet to a point on the Lease Area; thence running along said Lease Area, North 39°28'56" West, 50.00 to a point; thence, North 50°31'04" East, 21.13 feet to a point and the true POINT OF BEGINNING; Thence leaving said Lease Area and running, North 69°28'56" West, 186.27 feet to the ENDING at a point.

Bearings based on Kentucky Grid North, NAD83, Single Zone.

As shown in a survey prepared for Uniti Towers, LLC by POINT TO POINT LAND SURVEYORS, INC. dated January 28, 2020.

30' GUY WIRE EASEMENT NO. 2

Together with a 30-foot Guy Wire Easement (lying 15 feet each side of centerline and extending 15 feet beyond the point of termination) lying and being in Pulaski County, Kentucky and being a portion of Tract 3 of the Delmer Molden Estate, as recorded in Plat Cabinet C, Slide 798, Pulaski County records, and being more particularly described by the following centerline data:

To find the point of beginning, COMMENCE at the centerline intersection of Happy Ridge Road (having a 30-foot right-of-way) and Molden Lane (having a 30-foot right-of-way), said point having a Kentucky Grid North, NAD83, Single Zone

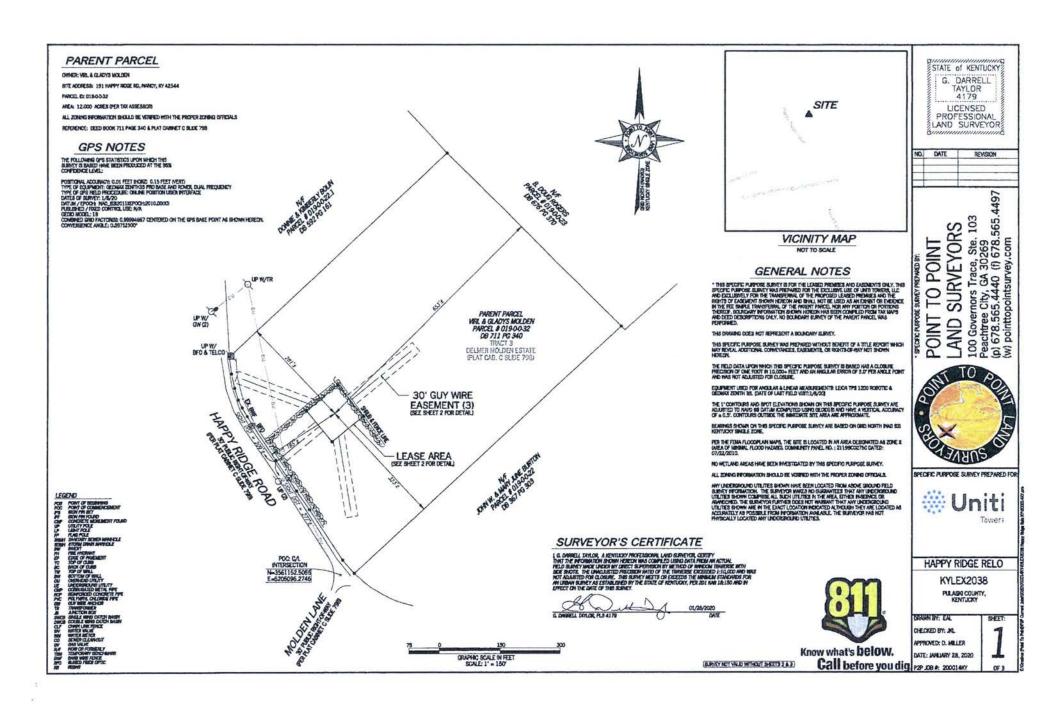
value of N: 3561152.5056 E: 5205096.2746; thence running along a tie line, North 29°26'43" West, 322.62 feet to a point on the easterly right-of-way line of Happy Ridge Road, said point having a Kentucky Grid North, NAD83, Single Zone value of N: 3561433.4494 E: 5204937.6778; thence leaving said right-of-way line and running, North 50°30'52" East, 136.22 feet to a point on the Lease Area; thence running along said Lease Area, North 39°28'56" West, 50.00 to a point; thence, North 50°31'04" East, 100.00 feet to a point; thence, South 39°28'56" East, 50.00 feet to a point and the true POINT OF BEGINNING; Thence leaving said Lease Area and running, North 50°31'04" East, 194.00 feet to the ENDING at a point.

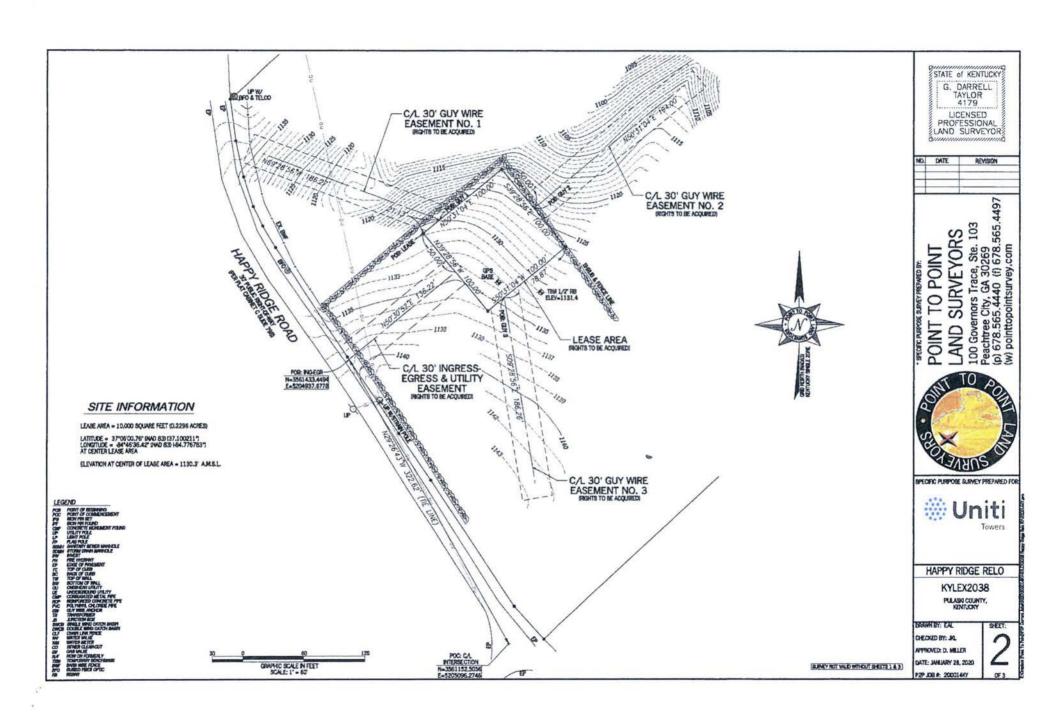
Bearings based on Kentucky Grid North, NAD83, Single Zone.

As shown in a survey prepared for Uniti Towers, LLC by POINT TO POINT LAND SURVEYORS, INC. dated January 28, 2020.

30' GUY WIRE EASEMENT NO. 3

Together with a 30-foot Guy Wire Easement (lying 15 feet each side of centerline and extending 15 feet beyond the point of termination) lying and being in Pulaski County, Kentucky and being a portion of Tract 3 of the Delmer Molden Estate, as recorded in Plat Cabinet C, Slide 798, Pulaski County records, and being more particularly described by the following centerline data:


To find the point of beginning, COMMENCE at the centerline intersection of Happy Ridge Road (having a 30-foot right-of-way) and Molden Lane (having a 30-foot right-of-way), said point having a Kentucky Grid North, NAD83, Single Zone value of N: 3561152.5056 E: 5205096.2746; thence running along a tie line, North 29°26'43" West, 322.62 feet to a point on the easterly right-of-way line of Happy Ridge Road, said point having a Kentucky Grid North, NAD83, Single Zone value of N: 3561433.4494 E: 5204937.6778; thence leaving said right-of-way line and running, North 50°30'52" East, 136.22 feet to a point on the Lease Area; thence running along said Lease Area, North 39°28'56" West, 50.00 to a point; thence, North 50°31'04" East, 100.00 feet to a point; thence, South 39°28'56" East, 100.00 feet to a point; thence, South 50°31'04" West, 78.87 feet to a point and the true POINT OF BEGINNING; Thence leaving said Lease Area and running, South 09°28'56" East, 186.26 feet to the ENDING at a point.


Bearings based on Kentucky Grid North, NAD83, Single Zone.

As shown in a survey prepared for Uniti Towers, LLC by POINT TO POINT LAND SURVEYORS, INC. dated January 28, 2020.

Notes:

- THIS EXHIBIT MAY BE REPLACED BY A LAND SURVEY AND/OR CONSTRUCTION DRAWINGS OF THE PREMISES ONCE RECEIVED BY TENANT.
- ANY SETBACK OF THE PREMISES FROM THE PROPERTY'S BOUNDARIES SHALL BE THE DISTANCE REQUIRED BY THE
 APPLICABLE GOVERNMENT AUTHORITIES.
- WIDTH OF ACCESS ROAD SHALL BE THE WIDTH REQUIRED BY THE APPLICABLE GOVERNMENT AUTHORITIES, INCLUDING POLICE AND FIRE DEPARTMENTS.
- THE TYPE, NUMBER AND MOUNTING POSITIONS AND LOCATIONS OF ANTENNAS AND TRANSMISSION LINES ARE ILLUSTRATIVE ONLY. ACTUAL TYPES, NUMBERS AND MOUNTING POSITIONS MAY VARY FROM WHAT IS SHOWN ABOVE.

LEGAL DESCRIPTION SHEET

30' INGRESS-EGRESS & UTILITY EASEMENT

TOGETHER WITH A 30-FOOT WIDE INGRESS-EGPESS AND UTILITY EASEMENT (LYING 15 FEET EACH SIDE OF CENTERLINE) LYING AND BEING IN PULASIN COUNTY, KENTUCKY AND BEING A PORTION OF TRACT 3 OF THE DELINER MOLDEN ESTATE, AS RECORDED IN PLAT CABINET C, SUDE 798, PULASIC COUNTY RECORDS, AND BEING MORE PARTICULARLY DESCRIBED BY THE FOLLOWING CENTERLINE DATA

TO FIND THE POINT OF BEGINNING, COMMENCE AT THE CENTERLINE INTERSECTION OF HAPPY RIDGE ROAD BHAVING A 30-FOOT RIGHT-OF-WAY), AND MICLIDEN LIME PHAVING A 30-FOOT RIGHT-OF-WAY), SAD POINT HAVING A SENTLICKY GRID NORTH, NORSA, SINGLE ZONE VALUE OF IN \$561152.5056 E: \$205066,2746: THENCE RIGHT AND A THE LINE, NORTH 59*26*4.5" WEST, 322.52 FEET TO A POINT ON THE EASTERLY RIGHT-OF-WAY LINE OF HAPPY RIDGE ROAD, SAD POINT HAVING A REXTILICKY GROED HOSTEN, MADRIS, SINGLE ZONE VALUE OF IN \$551433, 4846 E: \$504837, 6778 AND THE TRUE POINT GROWN A REXTILICKY GROED HOSTEN, MADRIS, SINGLE ZONE VALUE OF IN \$551433, 4846 E: \$504837, 6778 AND THE TRUE POINT OF BEGINNING; THENCE LEAVING SAD RIGHT-OF-WAY LINE AND RUNNING, NORTH 50*30*52* EAST, 136.22 FFFT TO THE ENDING AT A POINT ON THE LEASE AREA.

BEARINGS BASED ON KENTUCKY GRID NORTH, NAD83, SINGLE ZONE.

LEASE AREA

ALL THAT TRACT OR PARCEL OF LAND LYING AND BEING IN PULASKI COUNTY, KENTUCKY AND BEING A PORTION OF TRACT 3 OF THE DELIMER MOLDEN ESTATE, AS RECORDED IN PLAT CABINET C, SLIDE 798, PULASKI COUNTY RECORDS, AND BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

TO FIND THE POINT OF BEGINNING, COMMENCE AT THE CENTERLINE INTERSECTION OF HAPPY RIDGE ROAD (HAVING A 30-FOOT RIGHT-OF-WAY), AND MOLDEN LAWE DHAYING A 30-FOOT RIGHT-OF-WAY), SAID POINT HAVING A RENTUCKY GRID NORTH, NADOS, SINGLE ZONE VALUE OF R. SSSI1152-S0S E: 520-50S GZY-6F. THENCE RIGHT AND A TIE LINE, NORTH 59*92-63* WEST, 322-52 FEET TO A POINT ON THE EASTERLY RIGHT-OF-WAY LINE OF HAPPY RIDGE ROAD, SAID POINT HAVING A KENTUCKY GRID HORTH, NADOS, SINGLE ZONE VALUE OF R: SSS1433,4494 E: 5204937.6778: THENCE LEAWING SAID RIGHT-OF-WAY LINE AND RUNNING, MORTH 50*30 SZ: EAST, LSS-62 FEET TO A POINT ON THE LEASE AREA; THENCE RUNNING ALONG SAID LEASE AREA, NORTH 39*28'56" WEST, 50,00 TO A POINT AND THE TRUE POINT OF BEGINNING, THENCE RUNNING, NORTH 30*28'56" EAST, 100,00 FEET TO A POINT, THENCE, SOUTH 38*28'56" EAST, 100,00 FEET TO A POINT, THENCE, SOUTH 38*28'56" EAST, 100,00 FEET TO A POINT, THENCE, NORTH 38*28'56" EAST, 100,00 F WEST, 100,00 FEET TO A POINT AND THE POINT OF BEGINNING

BEARINGS BASED ON KENTUCKY GRID NORTH, NAD83, SINGLE ZONE.

SAID TRACT CONTAINS 0.2296 ACRES (10,000 SQUARE FEET), MORE OR LESS.

30' GUY WIRE EASEMENT NO. 1

TOGETHER WITH A 30-FOOT GUY WIRE EASEMENT (LYING 15 FEET EACH SIDE OF CENTERLINE AND EXTENDING 15 FEET BEYOND THE POINT OF TERMINATION LYING AND BEING IN PULASIC COUNTY, KENTUCKY AND BEING A PORTION OF TRACT 3 OF THE DELINER MOLDEN ESTATE, AS RECORDED IN PLAT CABINET C, SLIDE 798, PULASIC COUNTY RECORDS, AND BEING MORE PARTICULARLY DESCRIBED BY THE FOLLOWING CENTERLINE DATA:

TO FIND THE PONT OF BEGINNING, COMMENCE AT THE CENTERLINE INTERSECTION OF HAPPY RIDGE ROAD (HAWING A SO-FDOT RIGHT-OF-WAY) AND MOLDEN LAKE (HAWING A SO-FDOT RIGHT-OF-WAY), AND MOLDEN LAKE (HAWING A SO-FDOT RIGHT-OF-WAY). AND POINT HAVING A KENTICKY GRID NOTHING HADDS, SINGLE ZONE SEGLISE 2056 ES 2505065 2745. THENCE RIGHNING ALONG A THE LINE, NORTH 157°25'45" WEST, 322.62 FEET TO A POINT ON THE EASTERLY RIGHT-OF-WAY LINE OF HAPPY RIDGE ROAD, SAID POINT HAVING A REINTICKY GRID NORTH, HORDS, SINGLE ZONE VALLE OF IN \$561.433.4496 ES 2504397. 5778. THENCE LEAWING SAID RICHOF-WAY LINE AND RINNING, NORTH 50°30'52' EAST, 136.22 FEET TO A POINT ON THE LEASE AREA, THENCE RIJENING ALONG SAID LEASE AREA, NORTH \$50°30'55' ESSES' WEST, 500.00 TO A POINT THENCE, NORTH \$50°310'E BEST, 21.13 RESET TO A POINT AND THE TRUE POINT OF BEGINNING; THENCE LEAWING SAID LEASE AREA, NO BRUNNING, NORTH 69°20'55' WEST, 186.27 FEET TO THE ENDING AT A POINT AND THE ENDING AT A SOURCE SAID THE ENDING AT A POINT AND THE ENDING AT A SOURCE SAID THE ENDING AT A POINT AND THE POINT AND T

BEARINGS BASED ON KENTUCKY GRID NORTH, NAD83, SINGLE ZONE.

30' GUY WIRE EASEMENT NO. 2

TOGETHER WITH A 30-FOOT GUY WIRE EASEMENT (LYING 15 FEET EACH SIDE OF CENTERLINE AND EXTENDING 15 FEET BEYOND THE POINT OF TERMINATION LYING AND BEING IN PULASIC COUNTY, KENTUCKY AND BEING A PORTION OF TRACT 3 OF THE DELMER MOLDEN ESTATE, AS RECORDED IN PLAT CABINET C, SUDE 798, PULASIC COUNTY RECORDS, AND BEING MORE PARTICULARLY DESCREED BY THE FOLLOWING CENTERLINE DATA:

TO FIND THE POINT OF BEGINNING, COMMENCE AT THE CENTERLINE INTERSECTION OF HAPPY RIDGE ROAD QUANING A 30-FOOT RIGHTOF-WAY) AND MICLIEN LINE QUANING A 30-FOOT RIGHT-OF-WAYN, SAID FOOT HAVING A KEYTILDICKY GROUNGTHIS, MADBS, SKICLE ZOINE VALUE OF N. 3561,152-2006 5: \$20.5096,2745, TREMCE, RINNING ALONGA OT IE LINE, INSTITU 297:26-45 YEST. STRAIL ZOILE YOUR O'N IT SOULISSOOD IS SOURCED FOR THE MATERIAL PRINTED FROM THE LINE FOR HIS YEST, 322.55 PET TO A POINT ON THE EASTERY REST-GIVEN LIVE OF HAPPY RIDGE ROUD. SHO POINT HAVING A KENTILOKY GROUN NORTH, MODRS, SHOUL ZONE VALLE O'N. 3561433.4494 E. 5204937.6778; THENCE LEAVING SAID ROUTH-GIVEN RINNING ALONG AND LIKE AND RINNING SAID LIKE AND ROUTH 59°255°E WEST, 30.00 TO A POINT, THENCE, NORTH 50°31 DE EAST, 406.25 PET TO A POINT ON THE TIME POINT OF EGENNING, THENCE SOUTH 39°255°E WEST, 50.00 TO A POINT THE TIME POINT OF EGENNING THENCE SOUTH RUMING, NORTH 50"31"C4" EAST, 194.00 FEET TO THE ENDING AT A POINT.

BEARINGS BASED ON KENTUCKY GRID NORTH, NADRS, SINGLE ZONE.

30' GUY WIRE EASEMENT NO. 3

TOGETHER WITH A 30-FOOT GUY WIRE EASEMENT ILYING 15 FEET EACH SIDE OF CENTERLINE AND EXTENDING 15 FEET BEYOND THE PORT OF TERMINATION LYING AND BEING IN PLASKI COUNTY, KENTUCKY AND BEING A PORTION OF TRACT 3 OF THE DELINER MOLDEN ESTATE, AS RECORDED IN PLAT CABINET C, SLIDE 796, PLASKI COUNTY RECORDS, AND BEING MORE PARTICULARLY DESCRIBED BY THE FOLLOWING CENTERLINE DATA:

TO PIND THE POINT OF BEGINNING, COMMENCE AT THE CENTERLINE INTERSECTION OF HAPPY RIDGE ROAD DIAWING A 30-FOOT RIGHT-OF-WAY) AND MOLDEN LAVE HAVING A 30-FOOT RIGHT-OF-WAY), SAID POINT HAVING A KENTUCKY GRID NORTH, ANDAS, SINGLE ZONE VALUE OF IN 3561152-5056 E-5020596-2746; THENDE RINNING ALONG A TE LIVE, NIRTH 129"26"43" WEST, 322.62 FEET TO A POINT ON THE FESTERLY RIGHT-OF-WAY LINE OF HAPPY RIDGE ROAD, SAID POINT HAVING A KENTUCKY GRID NORTH, NORS, SINGLE ZONE VALUE OF IN SSE1433, 4049 E-5040491.575; THENCE LEAVING SAID REFORMAY LIVE AND RUPHINNA, PIORTH 50"30"52" EAST, 136-22 FEET TO A POINT ON THE LEASE AREA, THENCE RUNNING ALONG SAID LEASE AREA, NORTH SOTO-50"52" EAST, 136-22 FEET TO A POINT ON THE LEASE AREA, THENCE RUNNING ALONG SAID LEASE AREA, NORTH SOTO-50"52" EAST, 136-22 FEET TO A POINT ON THE LEASE AREA, THENCE RUNNING ALONG SAID LEASE AREA, NORTH SOTO-50"52" EAST, 136-22 FEET TO A POINT ON THE LEASE AREA, THENCE RUNNING ALONG SAID LEASE AREA, NORTH SOTO-50"52" EAST, 136-22 FEET TO A POINT ON THE LEASE AREA, THENCE RUNNING ALONG SAID LEASE AREA. NORTH 39"28"56" WEST, 50.00 TO A POINT; THENCE, NORTH 50"33 "O4" EAST, 100.00 FEET TO A POINT; THENCE SOUTH 39"28"56" LAST, 100.00 FEET TO A POINT; THENCE SOUTH 50"31"04" WEST, 78.80" FEET TO A POINT AND THE TIME POINT OF BEGINNING; THENCE LEAVING OA AND EAST-AND ENDINGER, SOUTH 09"2556" EAST, 165.25 FEET TO THE ENDING AT A

BEARINGS BASED ON KENTUCKY GRID NORTH, NADB3, SINGLE ZONE.

STATE of KENTUCKY G. DARRELL TAYLOR 4179 LICENSED PROFESSIONAL LAND SURVEYOR

NO.	DATE	REVISION
1		

100 Governors Trace, Ste. 103 Peachtree City, GA 30269 (p) 678.565.4440 (f) 678.565.44 (w) pointtopointsurvey.com SURVEYOR POINT 0 POINT LAND

SPECIFIC PURPOSE SURVEY PREPARED FOR

HAPPY RIDGE RELO

KYLEX2038 PULASKI COUNTY, KENTUCKY

FROMM BY- F.D. CHECKED BY: JAL PROVED: D. MILLER DATE: JAMLIARY 28, 2020

P2P JOB #: 200014KY

SUMMEY NOT VALID WITHOUT SHEETS 1 & 2)

SHEE

EXHIBIT 12 STANDARD ACCESS LETTER [FOLLOWS ON NEXT PAGE]

Gladys Molden, Terry Molden and Charlotte Wells 2128 Highway 2993 Nancy, KY 42544

Telephone: (606) 875-8722

February 25, 2020

Building Staff / Security Staff Landlord, Lessee, Licensee

Re: Authorized Access granted to UNITI Towers LLC Dear Building and Security Staff,

Please be advised that we have signed a lease with UNITI Towers LLC permitting UNITI Towers LLC to install, operate and maintain telecommunications equipment at the property. The terms of the lease grant UNITI Towers LLC and its representatives, employees, agents and subcontractors ("representatives") 24 hour per day, 7 day per week access to the leased area.

To avoid impact on telephone service during the day, UNITI Towers LLC representatives may be seeking access to the property outside of normal business hours. UNITI Towers LLC representatives have been instructed to keep noise levels at a minimum during their visit.

Please grant the bearer of a copy of this letter access to the property and to leased area. Thank you for your assistance.

Bladys Molden, Joury D. Molden, Charlotte A. Well

EXHIBIT J NOTIFICATION LISTING

Happy Ridge Relo – Notice List

Molden Virl & Gladys 2128 Hwy 2993 Nancy, KY 42544

Bolin Donnie & Kimberly 380 Happy Ridge Rd Nancy, KY 42544

Bolin Jacob 380 Happy Ridge Rd Nancy, KY 42544

Rogers B Doug 626 Happy Ridge Rd Nancy, KY 42544

Burton John Wayne & Mary June 757 Hwy 2993 Nancy, KY 42544

Burton Mary 757 Hwy 2993 Nancy, KY 42544

Molden Vertrees & Shirley 3185 W Hwy 80 Somerset, KY 42501

Cook Shannon & Lesia 303 Happy Ridge Rd Nancy, KY 42544

Bolin Ronnie 499 Happy Ridge Rd Nancy, KY 42544

Tarter Donald & Janet 82 N Floyd Ln Nancy, KY 42544

Ronnie Bolin 8051 Congress Avenue Boca Raton, FL 33487 c/o SBA Infrastructure/Tax Dept 8051 Congress Ave Boca Raton, FL 33487

Ronnie Bolin c/o SBA Infrastructure/Tax Dept 8051 Congress Ave Boca Raton, FL 33487

EXHIBIT K COPY OF PROPERTY OWNER NOTIFICATION

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

Notice of Proposed Construction of Wireless Communications Facility Site Name: Happy Ridge Relo

Dear Landowner:

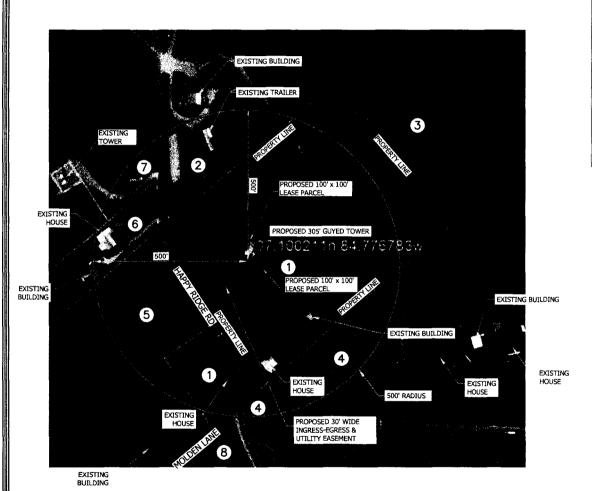
New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility and Uniti Tower LLC, a Delaware limited liability company have filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at 240 Happy Ridge Road, Nancy, Kentucky 42544 (37° 06' 00.76" North latitude, 84° 46' 36.42" West longitude). The proposed facility will include a 305-foot tall tower, with an approximately 12-foot tall lightning arrestor attached at the top, for a total height of 317-feet, plus related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

This notice is being sent to you because the County Property Valuation Administrator's records indicate that you may own property that is within a 500' radius of the proposed tower site or contiguous to the property on which the tower is to be constructed. You have a right to submit testimony to the Kentucky Public Service Commission ("PSC"), either in writing or to request intervention in the PSC's proceedings on the application. You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00310 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. AT&T Mobility's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us toll free at (800) 516-4293 if you have any comments or questions about this proposal.

Sincerely, David A. Pike Attorney for Applicants

enclosures


Driving Directions to Proposed Tower Site:

- 1. Beginning at 100 North Main Street, Somerset, KY, head south on N. Main Street (toward W. Mt. Vernon St) and travel approximately 62 feet.
- 2. Turn right onto W. Mt. Vernon St and travel approximately 0.3 miles.
- 3. Stay straight to continue onto Ohio St. and travel approximately 0.2 miles.
- Make a slight left to continue onto Ogden St. and travel approximately 0.5 miles.
- 5. Turn right onto US-27 N and travel approximately 377 feet.
- 6. Turn left onto KY-80 W and travel approximately 2.4 miles.
- 7. Turn right onto KY-914 and travel approximately 1.0 miles. KY-914 merges into the ramp to the Cumberland Parkway West.
- 8. Merge onto the Cumberland Parkway West and continue for approximately 7.7 miles.
- 9. Take exit 78 for Ky-80 toward Nancy. Continue onto the exit ramp for approximately 0.3 miles.
- 10. Turn left onto KY-80 E and travel approximately 1.6 miles.
- 11. Turn left onto KY-2993 and travel approximately 0.7 miles.
- 12. Turn left onto Happy Ridge Road and travel approximately 0.3 miles
- 13. The site is on the right at 240 Happy Ridge Road.
- 14. The site coordinates are
 - a. 37 deg 06 min 00.76 sec N
 - b. 84 deg 46 min 36.42 sec W

Prepared by: Aaron L. Roof Pike Legal Group PLLC 1578 Highway 44 East, Suite 6 PO Box 369 Shepherdsville, KY 40165-0369

Telephone: 502-955-4400 or 800-516-4293

500' RADIUS & ADJOINER'S DRAWING

#	OWNER	ADDRESS	PID	REF
1	VIRL & GLADYS MOLDEN	2128 HWY 2993 NANCY, KY 42544	019-0-0-32	DB 711 PG 340
2	DONNIE & KIMBERLY BOLIN	380 HAPPY RIDGE RD NANCY, KY 42544	019-0-0-22.1	DB 592 PG 161
3	B, DOUG ROGERS	626 HAPPY RIDGE RD NANCY, KY 42544	019-0-0-23	DB 676 PG 370
4	JOHN W. & MAY JUNE BURTON	757 HWY 2993 NANCY, KY 42544	019-0-0-22	DB 367 PG 303
5	VERTREES & SHIRLEY MOLDEN	3185 HWY 80 SOMERSET, KY 42501	019-0-0-32.1	DB 711 PG 458
6	SHANNON & LESIA COOK	303 HAPPY RIDGE RD NANCY, KY 42544	019-0-0-30	DB 775 PG 706
7	RONNY BOLIN	499 HAPPY RIDGE RD NANCY, KY 42544	019-0-0-29	DB 635 PG 033
8	DONALD & JANET TARTER	82 N FLOYD LN NANCY, KY 42544	019-0-0-31	DB 633 PG 601

NOTE:

- 1. PVA INFORMATION WAS OBTAINED ON 5/31/2020 FROM THE OFFICIAL RECORDS OF THE COUNTY'S PROPERTY VALUATION ADMINISTRATOR.
- 2. THIS MAP IS FOR GENERAL INFORMATION PURPOSES ONLY AND IS NOT A BOUNDARY SURVEY.
- 3. NOT FOR RECORDING OR PROPERTY TRANSFER.

WUniti Towers

HAPPY RIDGE

PRO	JECT NO	G01	37330.00	
CHECKED BY:				MAS
	ISS			
REV	DATE	DRWN	DESCRIP	TION
A	08/13/20	DLS	ZONING	DRAWINGS
В	09/01/20	کا0	ZONING	DRAWINGS
0	09/03/20	DLS	ZONING	DRAWINGS

500' RADIUS & ADJOINER'S DRAWING

SHEET NUMBER:

FLOOD ZONE NOTE:

PER THE FEMA FLOODPLAIN MAPS, THE SITE IS LOCATED IN AN AREA DESIGNATED AS ZONE X (AREA OF MINIMAL FLOOD HAZARD). COMMUNITY PANEL NO. 21199C0275C DATED: 07/22/2010

(800) 752-6007 CALL 3 WORKING DAYS BEFORE YOU DIG!

CALL KENTUCKY ONE CALL

EXHIBIT L COPY OF COUNTY JUDGE/EXECUTIVE NOTICE

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

VIA CERTIFIED MAIL

Stephen B. Kelley County Judge Executive P.O. Box 712 Somerset, KY 42502

RE: Notice of Proposal to Construct Wireless Communications Facility

Kentucky Public Service Commission Docket No. 2020-00310

Site Name: Happy Ridge Relo

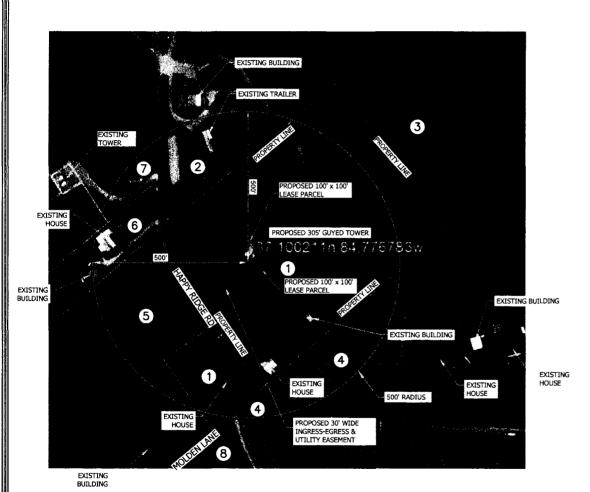
Dear Judge/Executive:

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility and Uniti Tower LLC, a Delaware limited liability company have filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at 240 Happy Ridge Road, Nancy, Kentucky 42544 (37° 06' 00.76" North latitude, 84° 46' 36.42" West longitude). The proposed facility will include a 305-foot tall tower, with an approximately 12-foot tall lightning arrestor attached at the top, for a total height of 317-feet, plus related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

You have a right to submit comments to the PSC or to request intervention in the PSC's proceedings on the application. You may contact the PSC at: Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00310 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. AT&T Mobility's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us with any comments or questions you may have.

Sincerely,
David A. Pike
Attorney for Applicants
enclosures


Driving Directions to Proposed Tower Site:

- Beginning at 100 North Main Street, Somerset, KY, head south on N. Main Street (toward W. Mt. Vernon St) and travel approximately 62 feet.
- 2. Turn right onto W. Mt. Vernon St and travel approximately 0.3 miles.
- 3. Stay straight to continue onto Ohio St. and travel approximately 0.2 miles.
- Make a slight left to continue onto Ogden St. and travel approximately 0.5 miles.
- 5. Turn right onto US-27 N and travel approximately 377 feet.
- 6. Turn left onto KY-80 W and travel approximately 2.4 miles.
- Turn right onto KY-914 and travel approximately 1.0 miles. KY-914 merges into the ramp to the Cumberland Parkway West.
- Merge onto the Cumberland Parkway West and continue for approximately 7.7 miles.
- Take exit 78 for Ky-80 toward Nancy. Continue onto the exit ramp for approximately 0.3 miles.
- 10. Turn left onto KY-80 E and travel approximately 1.6 miles.
- 11. Turn left onto KY-2993 and travel approximately 0.7 miles.
- 12. Turn left onto Happy Ridge Road and travel approximately 0.3 miles
- 13. The site is on the right at 240 Happy Ridge Road.
- 14. The site coordinates are
 - a. 37 deg 06 min 00.76 sec N
 - b. 84 deg 46 min 36.42 sec W

Prepared by:
Aaron L. Roof
Pike Legal Group PLLC
1578 Highway 44 East, Suite 6
PO Box 369
Shepherdsville, KY 40165-0369

Telephone: 502-955-4400 or 800-516-4293

500' RADIUS & ADJOINER'S DRAWING

			_	
#	OWNER ADDRESS		PID	REF
1	VIRL & GLADYS MOLDEN	2128 HWY 2993 NANCY, KY 42544	019-0-0-32	DB 711 PG 340
2	DONNIE & KIMBERLY BOLIN	380 HAPPY RIDGE RD NANCY, KY 42544	019-0-0-22.1	DB 592 PG 161
3	B. DOUG ROGERS	626 HAPPY RIDGE RD NANCY, KY 42544	019-0-0-23	DB 676 PG 370
4	JOHN W. & MAY JUNE BURTON	757 HWY 2993 NANCY, KY 42544	019-0-0-22	DB 367 PG 303
5	VERTREES & SHIRLEY MOLDEN	3185 HWY 80 SOMERSET, KY 42501	019-0-0-32.1	DB 711 PG 458
6	SHANNON & LESIA COOK	303 HAPPY RIDGE RD NANCY, KY 42544	019-0-0-30	DB 775 PG 706
7	RONNY BOLIN	499 HAPPY RIDGE RD NANCY, KY 42544	019-0-0-29	DB 635 PG 033
8	DONALD & JANET TARTER	82 N FLOYD LN NANCY, KY 42544	019-0-0-31	DB 633 PG 601

NOTE:

- 1. PVA INFORMATION WAS OBTAINED ON 5/31/2020 FROM THE OFFICIAL RECORDS OF THE COUNTY'S PROPERTY VALUATION ADMINISTRATOR.
- 2. THIS MAP IS FOR GENERAL INFORMATION PURPOSES ONLY AND IS NOT A BOUNDARY SURVEY.
- 3, NOT FOR RECORDING OR PROPERTY TRANSFER,

HAPPY RIDGE RELO

PRO	JECT NO	G0137330.00					
CIII	CKED BY	MAS					
	ISS	SUED	FOR:				
REV	DATE	DRWN	DESCRIPTION				
A	08/13/20	DLS	ZONING DRAWINGS				
8	09/01/20	DLS	ZONING DRAWINGS				
0	09/03/20	DLS	ZONING DRAWINGS				

B&T ENGINEERING, INC. COA 4011 Expires 12/31/20

500' RADIUS & ADJOINER'S DŘAWING

SHEET NUMBER:

FLOOD ZONE NOTE:

PER THE FEMA FLOODPLAIN MAPS, THE SITE IS LOCATED IN AN AREA DESIGNATED AS ZONE X (AREA OF MINIMAL FLOOD HAZARD). COMMUNITY PANEL NO. 21199C0275C DATED: 07/22/2010

CALL KENTUCKY ONE CALL (800) 752-6007 CALL 3 WORKING DAYS BEFORE YOU DIG!

EXHIBIT M COPY OF POSTED NOTICES AND NEWSPAPER NOTICE ADVERTISEMENT

SITE NAME: HAPPY RIDGE RELO NOTICE SIGNS

The signs are at least (2) feet by four (4) feet in size, of durable material, with the text printed in black letters at least one (1) inch in height against a white background, except for the word "tower," which is at least four (4) inches in height.

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility and Uniti Tower LLC, a Delaware limited liability company propose to construct a telecommunications **tower** on this site. If you have questions, please contact Pike Legal Group, PLLC, P.O. Box 369, Shepherdsville, KY 40165; telephone: (800) 516-4293, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00310 in your correspondence.

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility and Uniti Tower LLC, a Delaware limited liability company propose to construct a telecommunications **tower** near this site. If you have questions, please contact Pike Legal Group, PLLC, P.O. Box 369, Shepherdsville, KY 40165; telephone: (800) 516-4293, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00310 in your correspondence.

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

VIA TELEPHONE: (606) 678-8191

VIA EMAIL: news@somerset-kentucky.com

Somerset Commonwealth Journal 110-112 E. Mt. Vernon Street Somerset, KY 42501

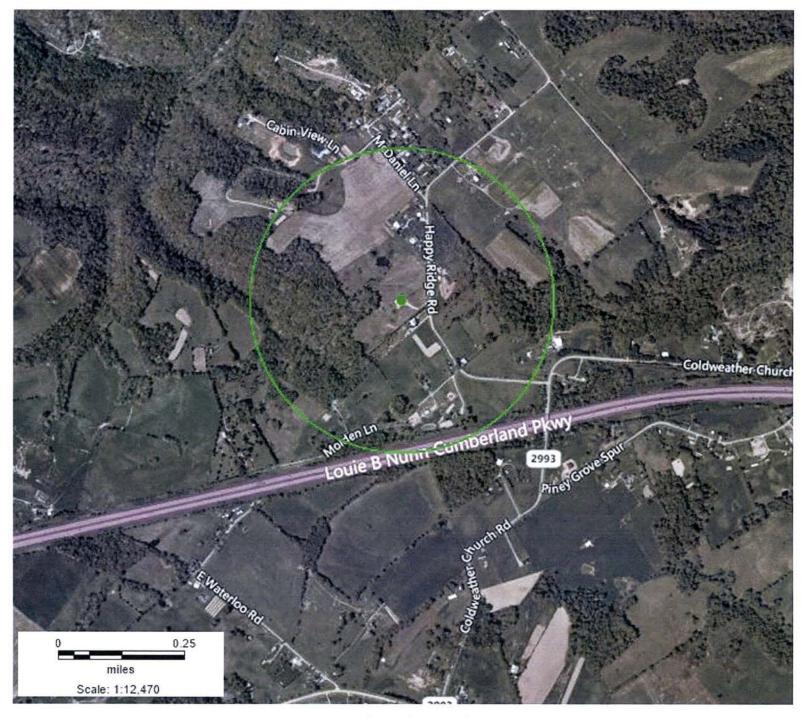
RE:

Legal Notice Advertisement

Site Name: Happy Ridge Relo

Dear Somerset Commonwealth Journal:

Please publish the following legal notice advertisement in the next edition of *The Somerset* Commonwealth Journal:


NOTICE

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility and Uniti Tower LLC, a Delaware limited liability company have filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located on 240 Happy Ridge Road, Nancy, KY 42544 (37° 06' 00.76" North latitude, 84° 46' 36.42" West longitude). You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00310 in any correspondence sent in connection with this matter.

After this advertisement has been published, please forward a tearsheet copy, affidavit of publication, and invoice to Pike Legal Group, PLLC, P. O. Box 369, Shepherdsville, KY 40165. Please call me at (800) 516-4293 if you have any questions. Thank you for your assistance.

Sincerely, Aaron L. Roof Pike Legal Group, PLLC

EXHIBIT N COPY OF RADIO FREQUENCY DESIGN SEARCH AREA

Lat: 37.101028 Happy Ridge Relo Search Area

Lon: -84.77875 Radius: .3 miles