4. State when the ambient noise study is expected to be completed and provide a copy of the ambient noise study when completed.

Original Response: The ambient noise study is expected to be performed during the week of April 19, 2021. A copy of the ambient noise study will be filed with the Siting Board no later than May 14, 2021.

Supplemental Response: Please see attached report.

Witness: Brad Sohm, P.E. Senior Air Quality Specialist, SWCA Environmental Consultants

Fleming Solar Facility Project: Baseline Sound Monitoring

MAY 2021

PREPARED FOR
AEUG Fleming Solar, LLC

PREPARED BY
SWCA Environmental Consultants

FLEMING SOLAR FACILITY PROJECT: BASELINE SOUND MONITORING

Prepared for AEUG Fleming Solar, LLC 55 East Monroe Street, Suite 1925 Chicago, Illinois 60603 (312) 673-3000

Prepared by SWCA Environmental Consultants 201 Chatham Street, Suite 3 Sanford, North Carolina 27330 (919) 292-2200 www.swca.com

SWCA Project No. 63271

May 2021

This page intentionally left blank.

CONTENTS

Co	ntentsi
	Appendicesi
	Tablesi
1	Introduction
2	Area Description1
3	Sound Fundamentals
	3.1 Sound Descriptors
	3.2 Sound Levels of Representative Sounds and Noises
4	Applicable noise regulations
5	Measurement Locations
6	Instrument Description
7	Calibration Checks
8	Meteorological Data
9	Readings
10	Results
11	Noise Impacts10
12	Literature Cited

Appendices

Appendix A. Monitoring LocationsAppendix B. Calibration CertificatesAppendix C. Weather DataAppendix D. Technitian Field Sheets

Tables

Table 1. Average Human Ability to Perceive Changes in Sound Levels	. 2
Table 2. Sound Levels of Representative Sounds and Noises	. 3
Table 3. Monitoring locations	.6
Table 4. Instrumentation	.6
Table 5. Pre- and Post-Instrument Response Checks	.7
Table 6. Weather conditions for April 19 through April 21, 2021	.8
Table 7. Summary of Ambient Sound Measurements	.9
Table 8. Calculated Sound Levels at Nearest NSA Due to Operation	10

This page intentionally left blank.

1 INTRODUCTION

At the request of AEUG Fleming Solar, LLC (AEUG Fleming Solar), SWCA Environmental Consultants (SWCA) conducted a sound monitoring survey on April 19-21, 2021 to document the acoustic environment in the area surrounding the proposed Fleming Solar Project (the Project) located in in Fleming County, Kentucky. The purpose of the sound monitoring survey was to determine the baseline or ambient sound levels experienced near the Project at the closest noise-sensitive areas (NSAs). This memorandum provides a summary of the baseline sound monitoring results for the area surrounding the Fleming Solar Project.

These following sections describe the area monitored and provide a map showing the location of the proposed Project and locations of the sound monitors, a description of the sound level meter (SLM) used, a description of the metrics recorded, and a summary of sound level readings collected at the monitoring locations.

The memorandum contains the following sections detailing the results of the sound monitoring:

- Section 2.0 provides a general project area description.
- Section 3.0 provides a basic introduction to the sound fundamentals and descriptors of time averaged sound levels.
- Section 4.0 presents a brief summary of the local applicable noise regulations.
- Section 5.0 contains a brief description of the sound monitoring locations.
- Section 6.0 provides a description of the sound level meter used.
- Section 7.0 includes a description of the calibration sequences.
- Section 8.0 includes a discussion of the survey weather conditions.
- Section 9.0 includes a discussion on how the sound meters were setup, the parameters used, and data collected.
- Section 10.0 includes a discussion of how the measured ambient data effects the noise impacts previously reported in the Noise and Traffic Study.
- Section 11.0 provides a discussion of how the measured ambient data effects the noise impacts previously reported in the Noise and Traffic Study.
- Appendix A provides photographs of the sound equipment at the monitoring locations.
- Appendix B contains the laboratory calibration certificates for the sound level meters.
- Appendix C provides summaries of the sound data collected and weather conditions.
- Appendix D contains daily field data sheets.

2 AREA DESCRIPTION

AEUG Fleming Solar proposes to develop the 188-megawatt (MW) photovoltaic (PV) Fleming Solar Project in Fleming County, Kentucky. The Project would be built on portions of approximately 1,590 acres (Project Area). The majority (94.7%) of the Project Area currently is in agricultural use (U.S. Geological Survey 2016).

The Project Area is located between Elizaville, Flemingsburg Junction, and Flemingsburg. It is roughly bounded by Old Convict Road on the north, Highway 32 on the south, Highway 11 on the east, and Nepton Road to the west. The topography in the area consists of a series of gently rolling hills and swales. Land use is primarily pasture and agricultural, as noted above, with no large, forested areas. Tree lines typically occur at parcel boundaries, in riparian zones, and along roadways. Scattered rural residential development, commercial and retail businesses, communication facilities, and vehicular transportation network are all present within and surrounding the Project Area.

3 SOUND FUNDAMENTALS

Sound is defined as a form of energy that is transmitted by pressure variations, which the animal or human ear can detect. Noise can be defined as any unpleasant or unwanted sound that is unintentionally added to a desired sound or environment. The noise effects in humans include interference with communication, learning, rest or sleep and physiological health effects.

There are two main properties of sound - the amplitude and the frequency. Amplitude refers to the level of energy that reaches the ear (how loud we perceive the sound, while frequency is the number of cycles or oscillations per unit of time completed by the source. Frequency is normally expressed in hertz (Hz).

Sound power is defined as the measurement of the ability of a source to make noise. It is independent of the acoustic environment in which is located. The sound power level (Lpw) of a source is the amount of energy it produces relative to a reference value and is normally expressed in decibels (dB). The decibel is a logarithmic scale to describe the sound pressure ratio. For example, on the decibel scale, the smallest audible sound is 0 dB. A sound 10 times more powerful is 10 dB, while a sound 100 times more powerful is 20 dB.

Humans perceive a frequency range of about 20 Hz to about 20,000 Hz. A-weighting scale – an internationally standardized frequency weighting was designed to approximate the audible range of frequencies of a healthy human ear. A-weighted scale corresponds to the fact that the human ear is not as sensitive to sound of the lower frequencies as it is at the higher frequencies.

3.1 Sound Descriptors

A number of different descriptors of-time averaged sound levels are used to account for fluctuations of sound intensity over time. The sound descriptors calculated by the sound meters and used in this report to describe environmental sound are defined below:

• A-weighted Sound Level describes a receiver's sound at any moment in time. A-weighting is an internationally standardized frequency weighting used to account for the relative loudness as perceived by the human ear at different frequencies.

- Maximum Sound Level (L_{max}) describes the highest sound level occurring during a single sound event.
- Minimum Sound Level (L_{min}) describes the lowest sound level occurring during a single sound event.
- The Equivalent Sound Level (L_{eq}) describes the average sound exposure from all events over a specified period of time.
- The Day-Night Average Sound Level (L_{dn}) describes the cumulative sound exposure from all events over a full 24 hours, with events between 10 p.m. (22:00) and 7 a.m. (07:00) increased by 10 decibels to account for greater nighttime sensitivity to noise.
- Daytime Sound Level (L_d) is defined as the equivalent sound level for a 15-hour period between 7 a.m. (07:00) and 10 p.m. (22:00).
- Nighttime Sound Level (L_n) is defined as the equivalent sound level for a 9-hour period between 10 p.m. (22:00) and 7 a.m. (07:00).
- Residual sound level (L₉₀) is the level that is exceeded 90% of the time over a specified period. The residual sound level excludes intruding sound from sporadic anthropogenic noises, wildlife, and wind gusts that raise the average and maximum levels over a measurement period.

3.2 Sound Levels of Representative Sounds and Noises

The U.S. Environmental Protection Agency (EPA) has developed an index to assess noise impacts from a variety of sources using residential receptors. If L_{dn} values exceed 65 dBA, residential development is not recommended (EPA 1974). Sound levels in a quiet rural area at night are typically between 32 and 35 dBA. Quiet urban night-time sound levels range from 40 to 50 dBA.

Sound levels during the day in a noisy urban area are frequently as high as 70 to 80 dBA. Sound levels above 110 dBA become intolerable; levels higher than 80 dBA over continuous periods can result in hearing loss. Levels above 70 dBA tend to be associated with task interference. Levels between 50 and 55 dBA are associated with raised voices in a normal conversation. Constant noises tend to be less noticeable than irregular or periodic noises.

Table 1 provides criteria that have been used to estimate an individual's perception to increases in sound. In general, an average person perceives an increase of 3 dBA or less as barely perceptible. An increase of 10 dBA is perceived as a doubling of the sound.

Increase in Sound Level (dBA)	Human Perception of Sound
2–3	Barely perceptible
5	Readily noticeable
10	Doubling of the sound
20	Dramatic change

Table 1. Average Human Ability to Perceive Changes in Sound Levels

Source: Bolt, Beranek, and Newman, Inc. (1973)

Table 2 presents sound levels for some common sound sources and the human response to those decibel levels.

Source and Distance	Sound Level (dBA)	Human Response
Jet takeoff (nearby)	150	
Jet takeoff (15 m/50 feet)	140	
50-hp siren (30 m/100 feet)	130	
Loud rock concert (near stage)	120	Pain threshold
Construction noise (3 m/10 feet)	110	Intolerable
Jet takeoff (610 m/2,000 feet)	100	
Heavy truck (8 m/25 feet)	90	
Garbage disposal (0.6 m/2 feet)	80	Constant exposure endangers hearing
Busy traffic	70	
Normal conversation	60	
Light traffic (30 m/100 feet)	50	Quiet
Library	40	
Soft whisper (4.5 m/15 feet)	30	Very quiet
Rustling leaves	20	
Normal breathing	10	Barely audible
Threshold of hearing	0	

Table 2. Sound Levels of Representative Sounds and Noises

Source: Beranek (1988)

4 APPLICABLE NOISE REGULATIONS

In 1974 the U.S. EPA published "Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin on Safety". In this publication, the U.S. EPA evaluated the effects of environmental noise with respect to health and safety and determined an L_{dn} of 55 dBA (equivalent to a continuous noise level of 48.6 dBA) to be the maximum sound level that will not adversely affect public health and welfare by interfering with speech or other activities in outdoor areas.

Since no other local, county, or state thresholds were identified, an L_{dn} of 55 dBA has been used to determine if the Project would adversely affect public health and welfare at identified residential NSAs.

5 MEASUREMENT LOCATIONS

Two (2) long-term and nine (9) short-term sound monitoring locations were selected to provide the existing ambient (or background) sound level, that represents the existing reference sound levels near and at the Project's site. The specific placement of the sound level meters was mainly determined by environmental and logistical constraints, and the location of the closest NSAs. The long-term sound monitors were placed at the closest Project property boundary to an NSA, and the Project property boundary nearest to the NSA with the greatest predicted operational noise impacts. Short-term monitors were placed at the neighboring NSAs to provide good coverage of the area surrounding the project. Sound levels at the long-term and short-

term monitoring sites are expressed as L_{90} , as use of the L_{90} level removes the influence of intruding sound from sporadic noises, as it is not a constant sound, thereby not considered part of the existing background sound level.

The following is a description of the sound measurement position near the NSAs:

- Long-term monitoring location 1 (LT-1): Monitor located approximately 100 feet east of Nepton Road. The area is a rural grassland with scattered trees.
- Long-term monitoring location 2 (LT-2): Monitor is located approximately 415 feet south of Kentucky 559. This region has a hilly and grassy landscape with scattered patches of trees.
- Short-term monitoring location 1 (NSA 2): Monitor located on a small neighborhood approximately 0.12 miles north of Highway 32. The area is hilly with patches of scattered trees.
- Short-term monitoring location 2 (NSA 14): Monitor located 0.3 miles NW of the proposed Project area. The area is hilly with patches of scattered trees.
- Short-term monitoring location 3 (NSA 16): Monitor located next to Kentucky 559, approximately 0.19 miles north of the Project site. The area is hilly with patches of scattered trees.
- Short-term monitoring location 4 (NSA 19): Monitor located 60 feet south of Kentucky 559, north of the central area of the Project site. The area is hilly with patches of scattered trees.
- Short-term monitoring location 5 (NSA 23): Monitor located approximately 770 feet northwest of the central section of the Project site. The area is hilly with patches of scattered trees.
- Short-term monitoring location 6 (NSA 26): Monitor located 0.35 miles west of the central section of the Project site. The area is hilly with patches of scattered trees.
- Short-term monitoring location 7 (NSA 29): Monitor located off Highway 57 and approximately 0.35 miles southwest of the central section of the Project site. The area is hilly with patches of scattered trees.
- Short-term monitoring location 8 (NSA 32/33): Monitor located near Highway 32, and approximately 0.12 miles south of the central area of the Project site. The area is hilly with patches of scattered trees.
- Short-term monitoring location 9 (NSA 35): Monitor located near small unnamed road off Kentucky 170, and 0.2 miles east of the west area of the Project site.

Monitoring locations are mapped on Figure 1 and described below in Table 3.

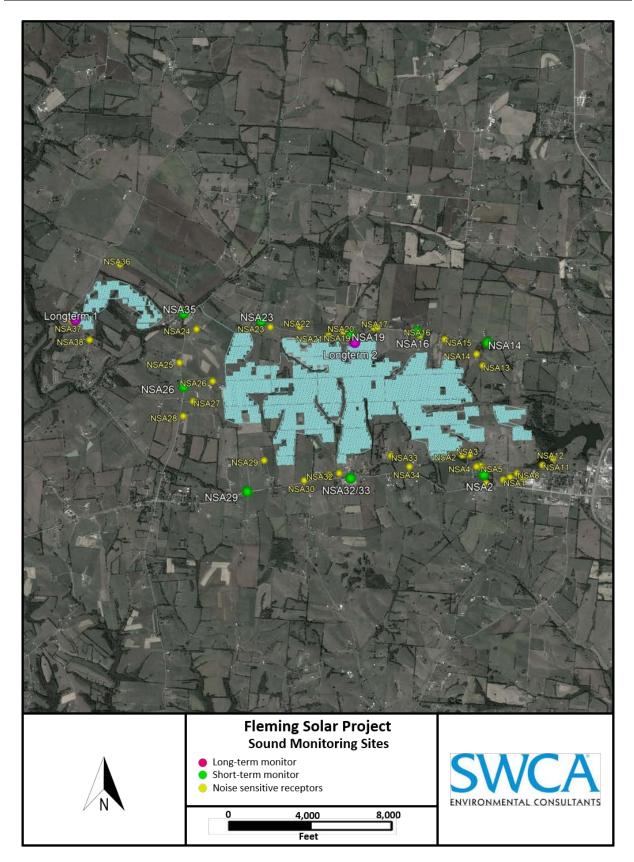


Figure 1. Monitoring Locations

Monitor	Monitor	Monitor Location		Dominant Bookground Naiss Source		
wonitor	Latitude	Longitude	Elevation	Dominant Background Noise Source		
LT-1	38.44288	-83.838902	890 ft	Traffic, birds.		
LT-2	38.439939	-83.792827	970 ft	Traffic, birds, insects, cattle.		
NS A2	38.422903	-83.771578	917 ft	Traffic, birds.		
NSA 14	38.439892	-83.770935	962 ft	Traffic, birds.		
NSA 16	38.441339	-83.782599	982 ft	Traffic, birds, cattle.		
NSA 19	38.440961	-83.793446	975 ft	Traffic, birds, roosters, insects.		
NSA 23	38.44292	-83.808264	924 ft	Traffic, light wind.		
NSA 26	38.434245	-83.821081	932 ft	Traffic, birds, cattle.		
NSA 29	38.420736	-83.810601	882 ft	Traffic, birds, cattle.		
NSA 32/33	38.422468	-83.793555	920 ft	Traffic.		
NSA 35	38.443702	-83.821043	856 ft	Traffic, birds, dogs.		

Table 3. Monitoring locations

6 INSTRUMENT DESCRIPTION

Sound measurements were collected using three (3) Larson Davis Precision Integrating Sound Level Meter Model 831C meeting the requirements of the American National Standards Institute (ANSI), one (1) PCB PRM831 preamplifier and one (1) PCB 377B02 free-field microphones as described in Table 4.

The microphone was fitted with an environmental windscreen and bird spikes and set upon a tripod at a height of 5 feet above ground and located as far from the influence of vertical reflective sources as possible. All cables were secured to prevent any sounds due to wiring hitting other objects. All clocks associated with the sound measurement were synchronized using the Larson Davis G4 LD Utility software.

Monitoring Location	Sound Level Meter	Preamplifier	1/2" free-field microphone
LT-1	Larson Davis 831C	PRM831	377B02
	(S/N 0010737)	(S/N 58503)	(S/N 311601)
LT-2	Larson Davis 831C	PRM831	377B02
	(S/N 0010739)	(S/N 58504)	(S/N 311602)
NSA 2 NSA 14 NSA 16 NSA 19 NSA 23 NSA 26 NSA 29 NSA 32/33 NSA 35	Larson Davis 831C (S/N 0011446)	PRM831 (S/N 29478)	377B02 (S/N 326325)

Table 4. Instrumentation

7 CALIBRATION CHECKS

The sound level meter was calibrated at the beginning and end of each measurement period using a Larson Davis Model CAL200 Precision Acoustic Calibrator. The Larson Davis CAL200 emits a 1 kHz tone at 114 dB against which the response can be checked. The calibrator has been designed for both field and laboratory use and the accuracy has been calibrated to a reference traceable to the National Institute of Standards and Technology (NIST).

Instrument calibration certificates for the 831C sound level meters, the microphone, and the Larson Davis CAL200 calibrator are included in Appendix B.

As recommended by Larson Davis, when using a free-field microphone, the pressure level at the microphone diaphragm will be slightly different. Thus, a free field correction of -0.12 dB was applied to the 114.0 dB tone. The LD 831C SLMs showed a response of less than the normal error of 0.50 dB. The results for the calibrations are shown in Table 5.

Monitoring Location	Test	Sound Level	Response	Error ¹
	Pre-Test (4-19-2021)	114 dB (113.88 dB)	114.01 dB	0.13 dB
LT-1	Post-Test (4-21-2021)	114 dB (113.88 dB)	113.89 dB	0.01 dB
	Pre-Test (4-19-2021)	114 dB (113.88 dB)	114.04 dB	0.16 dB
LT-2	Post-Test (4-21-2021)	114 dB (113.88 dB)	113.96 dB	0.08 dB
	Pre-Test (4-20-2021)	114 dB (113.88 dB)	113.75 dB	-0.13 dB
NSA 2	Post-Test (4-20-2021)	114 dB (113.88 dB)	113.88 dB	0.00 dB
	Pre-Test (4-20-2021)	114 dB (113.88 dB)	113.97 dB	0.09 dB
NSA 14	Post-Test (4-20-2021)	114 dB (113.88 dB)	113.77 dB	-0.11 dB
	Pre-Test (4-20-2021)	114 dB (113.88 dB)	113.89 dB	0.01 dB
NSA 16	Post-Test (4-20-2021)	114 dB (113.88 dB)	113.74 dB	-0.14 dB
	Pre-Test (4-20-2021)	114 dB (113.88 dB)	113.99 dB	0.11 dB
NSA 19	Post-Test (4-20-2021)	114 dB (113.88 dB) 114.01 dB 0. 114 dB (113.88 dB) 113.89 dB 0. 114 dB (113.88 dB) 114.04 dB 0. 114 dB (113.88 dB) 113.96 dB 0. 114 dB (113.88 dB) 113.96 dB 0. 114 dB (113.88 dB) 113.75 dB -0 114 dB (113.88 dB) 113.75 dB 0. 114 dB (113.88 dB) 113.77 dB 0. 114 dB (113.88 dB) 113.97 dB 0. 114 dB (113.88 dB) 113.77 dB 0. 114 dB (113.88 dB) 113.77 dB 0. 114 dB (113.88 dB) 113.89 dB 0. 114 dB (113.88 dB) 113.97 dB 0. 114 dB (113.88 dB) 113.89 dB 0. 114 dB (113.88 dB) 113.99 dB 0. 114 dB (113.88 dB) 113.85 dB 0. 114 dB (113.88 dB) 113.87 dB 0. 114 dB (113.88 dB) 113.90 dB 0. <td< td=""><td>0.04 dB</td></td<>	0.04 dB	
	Pre-Test (4-20-2021)	114 dB (113.88 dB)	113.85 dB	-0.03 dB
NSA 23	Post-Test (4-20-2021)	114 dB (113.88 dB) 114.01 dB 114 dB (113.88 dB) 113.89 dB 114 dB (113.88 dB) 114.04 dB 114 dB (113.88 dB) 113.96 dB 114 dB (113.88 dB) 113.75 dB 114 dB (113.88 dB) 113.75 dB 114 dB (113.88 dB) 113.75 dB 114 dB (113.88 dB) 113.77 dB 114 dB (113.88 dB) 113.99 dB 114 dB (113.88 dB) 113.85 dB 114 dB (113.88 dB) 113.87 dB 114 dB (113.88 dB) 113.90 dB 114 dB (113.88 dB) 113.90 dB 114 dB (113.88 dB) 113.90 dB <t< td=""><td>-0.03 dB</td></t<>	-0.03 dB	
	Pre-Test (4-20-2021)	114 dB (113.88 dB)	113.93 dB	0.05 dB
NSA 26	Post-Test (4-20-2021)	114 dB (113.88 dB)	114 dB (113.88 dB) 114.01 dB 114 dB (113.88 dB) 113.89 dB 114 dB (113.88 dB) 113.96 dB 114 dB (113.88 dB) 113.96 dB 114 dB (113.88 dB) 113.75 dB 114 dB (113.88 dB) 113.75 dB 114 dB (113.88 dB) 113.75 dB 114 dB (113.88 dB) 113.77 dB 114 dB (113.88 dB) 113.74 dB 114 dB (113.88 dB) 113.99 dB 114 dB (113.88 dB) 113.92 dB 114 dB (113.88 dB) 113.85 dB 114 dB (113.88 dB) 113.87 dB 114 dB (113.88 dB) 113.90 dB <t< td=""><td>-0.06 dB</td></t<>	-0.06 dB
	Pre-Test (4-20-2021)	114 dB (113.88 dB)	113.85 dB	-0.03 dB
NSA 29	Post-Test (4-20-2021)	114 dB (113.88 dB)	113.87 dB	-0.01 dB
NCA 22/22	Pre-Test (4-20-2021)	114 dB (113.88 dB)	113.90 dB	0.02 dB
NSA 32/33	Post-Test (4-20-2021)	114 dB (113.88 dB)	113.90 dB	0.02 dB
NOA 05	Pre-Test (4-20-2021)	114 dB (113.88 dB)	113.94 dB	0.06 dB
NSA 35	Post-Test (4-20-2021)	114 dB (113.88 dB)	113.91 dB	0.03 dB

¹ Calibration error indicates the difference between the values measured by the instrument and the tone emitted by the acoustic calibrator.

8 METEOROLOGICAL DATA

Meteorological data was not measured at the monitoring sites during the measurement period. Instead, sound data collected during the survey were validated against weather data from the Blue Grass Airport Station (KKYFLEMI5) located approximately 7 miles northeast of the Project in the city of Lexington, Kentucky. Hourly weather information is presented in Appendix C. A summary of the survey weather conditions are listed in Table 6.

Weather Station	Start	Start End		Wind Speed (mph)		Temperature (F)		Humidity (% relative humidity)	
			Range	Average	Range	Average	Range	Average	
Blue Grass Airport Station (KKYFLEMI5)	4/19/2021 14:00	4/21/2021 17:00	0.0-7.0	2.9	32.0-68.0	49.0	43-99	71	

The ASTM Standard Guide for Measurement of Outdoor A-Weighted Noise levels (ASTM E1014-12) specifies that data should not be used when steady wind speeds exceed 20 kilometers per hour (km/hr) (12.4 mph). Because wind speeds above 12.4 mph were identified, no hourly data points were removed from any of the sound data sets.

9 READINGS

Long-term monitoring was conducted from April 19 to April 21, 2021. Sound meter LD 831C – 0010737 was placed at the monitoring location LT-1 from 3:23 PM (EDT) on April 19 to 4:47 PM (EDT) on April 21. Data were collected for approximately 49 hours; sound levels were recorded over each 1-minute and 1- hour intervals. Sound meter LD 831C – 0010739 was placed at the monitoring location LT-2 from 2:35 PM (EDT) on April 19 to 4:08 PM (EDT) on April 21. Data were collected for approximately 49 hours; sound levels were recorded over each 1-minute and 1- hour intervals.

Short-term monitoring was conducted at nine (9) NSAs. Start and stop times for the nine (9) short-term monitoring sites are presented in Table 7 of the results section. Short-term sound levels were recorded for a single 15-minute interval.

The sound level meters were programmed to sample and store A-weighted sound level data including L_{eq} , percentile levels and community sound parameters. The following gives a brief description of the methodology used for the sound data collection:

- A-weighted sound level was selected.
- Sound meter was set on "slow" response.
- During sound measurements any dominant background noise source was noted.
- Weather conditions were observed and documented.

Field data sheets were completed during each visit and are provided in Appendix D of this report.

Observed sources of background noise that contributed to the existing sound level at the monitoring locations included road traffic, birds, insects, and cattle. A total of 29 non-consecutive 1-minute data points, ranging between 56.8 and 83.9 dBA, were excluded from the results at monitoring site LT-1 as they were "flagged" by the SLM as they were markedly higher from the values immediately before and after. No data points were excluded from the results at all the remaining monitoring sites due to interference.

Existing conditions at the long-term and short-term sound monitoring sites are better represented by the L_{90} parameter. As defined above, the 90th percentile-exceeded sound level, L_{90} , is a metric that indicates the single sound level that is exceeded during 90 percent of a measurement period although the actual instantaneous sound levels fluctuate continuously. The L_{90} sound level is typically considered the ambient sound level as it quantifies the acoustical character of an environment and represents the residual (i.e., ambient) sound level between discrete sound events of short duration, such as bird chirps, dog barks, car horns, etc. The measured L_{90} time-intervals are arithmetically averaged to present the background levels of the environment for day and night.

10 RESULTS

Data collection began on April 19, 2021 and continued through April 21, 2021. Table 7 summarizes the measured A-weighted L_{eq} , L_{dn} (calculated from the measured L_{eq}) for each of the monitoring locations.

Monitoring				Measured Sound Levels				5
Location	Monitoring Start Monitoring End	Elapsed Time	L_{eq}	L ₉₀	L _{dn}	L _d	Ln	
LT-1 ^(a)	4/19/2021 15:23	4/21/2021 16:47	49:23	41.7	24.7	46.4	42.6	39.4
LT-2 ^(a)	4/19/2021 14:35	4/21/2021 16:08	49:32	44.0	24.9	47.2	45.3	39.3
NSA 2	4/20/2021 9:04	4/20/2021 9:20	00:16	47.5	40.8	-	47.5	-
NSA 14	4/20/2021 15:05	4/20/2021 15:21	00:16	57.8	37.2	-	57.8	-
NSA 16	4/20/2021 12:45	4/20/2021 13:01	00:15	59.6	34.8	-	59.6	-
NSA 19	4/20/2021 13:18	4/20/2021 13:44	00:26	51.3	43.3	-	51.3	-
NSA 23	4/20/2021 14:08	4/20/2021 14:25	00:17	52.2	37.2	-	52.2	-
NSA 26	4/20/2021 15:43	4/20/2021 15:59	00:16	57.4	41.4	-	57.4	-
NSA 29	4/20/2021 10:30	4/20/2021 10:47	00:17	66.4	38.1	-	66.4	-
NSA 32/33	4/20/2021 16:19	4/20/2021 16:35	00:16	69.3	45.1	-	69.3	-
NSA 35	4/20/2021 11:26	4/20/2021 11:42	00:15	43.3	37.8	-	43.3	-

 Table 7. Summary of Ambient Sound Measurements

a) Data derived from the average 1-hour Leq calculated by logarithmic averaging the number of noise measurements taken at each specific hour.

A combination of two (2) long-term and nine (9) short-term sound measurements were collected at selected noise-sensitive areas. The ambient sound level measurement locations were selected to be representative of the environment most likely to be impacted.

11 NOISE IMPACTS

The Noise and Traffic Study presented in the Fleming Solar Project: Site Assessment Report (SAR) dated November 2020, presented estimated noise impacts at neighboring NSAs from the operation of the proposed Project. Standard acoustical engineering methods were used and were based on vendor-supplied equipment sound levels. The estimated sound levels were based on inverters, trackers, and transformers specified in the preliminary design. Predicted levels at the closest sensitive receptor were calculated based on geometric spreading attenuation using International Organization for Standardization (ISO) 9613-2, Acoustics – Sound Attenuation during Propagation Outdoors (ISO 1996).

Existing ambient sound levels at these NSAs were based on general ambient sound levels (L_{eq} and L_{dn}) based on land use categories published by The American National Standards Institute (ANSI 2013). The areas surrounding the Project were defined as a sparse suburban or rural area with very few (if any) near sources of sound; therefore, background sound levels were conservatively represented by those of *Category* 6: Very quiet suburban and rural residential of the ANSI Publication. Thus, the majority of the analysis area was expected to have background L_{dn} of about 42 dBA or less.

As shown in Table 7, measured L_{90} values in the vicinity of the Project range between 24.7 and 24.9 dBA. Table 8 provides a comparison between the present values in the SAR and the estimated noise impacts after updating the ambient sound levels based on the monitored values for the "as proposed" scenario at the nearest NSA. Daytime and nighttime L_{90} sound levels were calculated from recorded 1-minute L_{eq} values to determine an overall baseline L_{eq} and L_{dn} sound levels to estimate total sound levels at the nearest NSA.

Devenueter	Calculated Leg	Community Sound Level (dBA)			
Parameter	Total (dBA)	L_{day}	hity Sound Leve Lnight 48.0 34.0 48.3 14.3 20.3 48.0 27.7	L_{dn}	
Project Sound Contribution – As Proposed ^a	48.1	48.1	48.0	54.4	
SAR Estimated Ambient Sound Level ^b	38.6	40.0	34.0	42.0	
Total Sound Level at Nearest NSA (Project plus Ambient)	48.6	48.8	48.3	54.8	
Estimated Increase due to the Project	10.0	8.8	14.3	12.8	
Measured Ambient Sound Level (April 19-21, 2021 Survey) c.d	28.8	30.6	20.3	30.5	
Total Sound Level at Nearest NSA (Project plus ambient)	48.1	48.1	48.0	54.5	
Estimated Increase due to the Project	19.3	17.5	27.7	24.0	

Table 8. Calculated Sound Levels at Nearest NSA Due to Operation

^a Sound levels were estimated assuming the equipment locations as proposed in the Project layout. Presented values correspond to the maximum cumulative sound levels for all the evaluated NSAs. The nearest residential sensitive receptor is located approximately 157 feet from the property boundary and approximately 739 feet from the nearest inverter.

^b ANSI S12.9-2013/Part 3

^c L_{day} and L_{night} sound levels were derived from the average 1-min L_{eq} measurements and presented as the 90th percentile-exceeded sound level L₉₀ for the daytime and nighttime hours.

 d Representative L_{eq} and L_{dn} values were estimated from L_{day} and L_{night} values.

As presented above, the estimated sound contribution from the "as proposed" scenario L_{dn} at the nearest sensitive receptor, a residence on the north side of the Project 739 feet from the nearest inverter, has not changed (54.4 dBA L_{dn}).

As shown in Table 8, the L_{dn} value at the closest NSA when the monitored levels are used to represent the existing ambient conditions (30.5 dBA L_{dn}) was estimated as 54.5 dBA; hence, below the EPA's recommended 24-hour average day and night value of 55 dBA L_{dn} (EPA 1974).

12 LITERATURE CITED

- American National Standards Institute, Inc (ANSI). 2013. Quantities and Procedures for Description and Measurements with an Observer Present – Part 3: Short-term Measurements with an Observer Present, ANSI/ASA S12.9-2013/Part 3. ANSI S12.9-2013/Part 3, 2013.
- Beranek, L.L. (ed.). 1988. *Noise and Vibration Control*. Washington, D.C.: Institute of Noise Control Engineering.
- Bolt, Beranek and Newman, Inc. 1973. *Fundamentals and Abatement of Highway Traffic Noise*. Report Number PB-222-703. U.S. Department of Transportation, Federal Highway Administration.
- U.S. Environmental Protection Agency (EPA). 1974. Information on levels of environmental noise requisite to protect public health and welfare with an adequate margin of safety. Available at: http://www.nonoise.org/library/levels/levels.htm#levelsof_Accessed April 16, 2021.

This page intentionally left blank.

APPENDIX A

Monitoring Site Photographs

Figure A1. Long-term monitoring site LT-1

Figure A2. Long-term monitoring site LT-2

Figure A3. Short-term monitoring site NSA 2

Figure A4. Short-term monitoring site NSA 14

Figure A5. Short-term monitoring site NSA 16

Figure A6. Short-term monitoring site NSA 19

Figure A7. Short-term monitoring site NSA 23

Figure A8. Short-term monitoring site NSA 26

Figure A9. Short-term monitoring site NSA 29

Figure A10. Short-term monitoring site NSA 32/33

Figure A11. Short-term monitoring site NSA 35

APPENDIX B Equipment Calibration Certificates

Calibration Certificate

Certificate Number 2021001372 Customer: The Modal Shop 10310 AeroHub Boulevard Cincinnati, OH 45215, United States

Model Number	ber 18566		Procedure Number	Procedure Number D0001.8386				
Serial Number			Technician	Scott Montgomery				
Test Results			Calibration Date 4 Feb 2021					
	As Manufactured		Calibration Due					
Initial Condition			Temperature	23	°C	± 0.3 °C		
Description	Larson	Davis CAL200 Acoustic Calibrator	Humidity	31	%RH	± 3 %RH		
			Static Pressure	101.1	kPa	±1kPa		
<i>Evaluation Method</i> The data is aquired by the insert volta circuit sensitivity. Data reported in dB			he refere	nce mio	crophone's open			
Compliance Standards		Compliant to Manufacturer Specificatio	ns per D0001.8190 and the	following	g standa	ards:		

ANSI S1.40-2006

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2017. Test points marked with a **‡** in the uncertainties column do not fall within this laboratory's scope of accreditation.

IEC 60942:2017

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

	Standards Used	1	
Description	Cal Date	Cal Due	Cal Standard
Agilent 34401A DMM	08/04/2020	08/04/2021	001021
Larson Davis Model 2900 Real Time Analyzer	04/02/2020	04/02/2021	001051
Microphone Calibration System	03/03/2020	03/03/2021	005446
1/2" Preamplifier	08/27/2020	08/27/2021	006506
Larson Davis 1/2" Preamplifier 7-pin LEMO	08/06/2020	08/06/2021	006507
1/2 inch Microphone - RI - 200V	06/04/2020	06/04/2021	006510
Pressure Transducer	07/17/2020	07/17/2021	007368

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2/16/2021 11:37:42AM

Certificate Number 2021001372 **Output Level**

Nominal Level [dB]	Pressure [kPa]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result		
114	101.0	114.01	113.80	114.20	0.14	Pass		
94	101.1	94.01	93.80	94.20	0.15	Pass		
End of measurement results-								

-- End of measurement results--

Frequency

Nominal Level [dB]	Pressure [kPa]	Test Result [Hz]	Lower limit [Hz]	Upper limit [Hz]	Expanded Uncertainty [Hz]	Result		
114	101.0	1,000.03	990.00	1,010.00	0.20	Pass		
94	101.1	1,000.04	990.00	1,010.00	0.20	Pass		
End of measurement accult								

-- End of measurement results--

Total Harmonic Distortion + Noise (THD+N)

Nominal Level [dB]	Pressure [kPa]	Test Result [%]	Lower limit [%]	Upper limit [%]	Expanded Uncertainty [%]	Result
114	101.0	0.34	0.00	2.00	0.25 ‡	Pass
94	101.1	0.38	0.00	2.00	0.25‡	Pass

-- End of measurement results--

Level Change Over Pressure

Tested at: 114 dB, 25 °C, 27 %RH Lower limit Upper limit **Expanded Uncertainty Test Result** Nominal Pressure Pressure [dB] [**dB**] [dB] [dB][kPa] [kPa] -0.30 -0.03 0.30 0.04 ‡ 108.0 107.9 -0.30 0.00 0.30 0.04 ‡ 101.3 101.3 0.04 -0.30 0.30 0.04 ‡ 92.0 92.0 82.8 0.05 -0.30 0.30 0.04 ‡ 83.0 74.1 0.02 -0.30 0.30 0.04 ‡ 74.0 -0.30 65.1 -0.06 0.30 0.04 ‡

-- End of measurement results--

Frequency Change Over Pressure

Nominal Pressure [kPa]	Pressure [kPa]	Test Result [Hz]	Lower limit [Hz]	Upper limit [Hz]	Expanded Uncertainty [Hz]	Result
108.0	107.9	0.00	-10.00	10.00	0.20 ‡	Pass
101.3	101.3	0.00	-10.00	10.00	0.20 ‡	Pass
92.0	92.0	0.00	-10.00	10.00	0.20 ‡	Pass
33.0	82.8	-0.01	-10.00	10.00	0.20 ‡	Pass
74.0	74.1	-0.01	-10.00	10.00	0.20 ‡	Pass
65.0	65.1	-0.01	-10.00	10.00	0.20 ‡	Pass

-- End of measurement results--

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2/16/2021 11:37:42AM

65.0

Result

Pass

Pass

Pass

Pass

Pass

Pass

Certificate Number 2021001372 Total Harmonic Distortion + Noise (THD+N) Over Pressure

Tested at: 114 dB, 25 °C, 27 %RH

Nominal Pressure [kPa]	Pressure [kPa]	Test Result [%]	Lower limit [%]	Upper limit [%]	Expanded Uncertainty [%]	Result
108.0	107.9	0.33	0.00	2.00	0.25 ‡	Pass
101.3	101.3	0.33	0.00	2.00	0.25 ‡	Pass
92.0	92.0	0.34	0.00	2.00	0.25 ‡	Pass
83.0	82.8	0.34	0.00	2.00	0.25 ‡	Pass
74.0	74.1	0.36	0.00	2.00	0.25 ‡	Pass
65.0	65.1	0.38	0.00	2.00	0.25 ‡	Pass
			End of measureme	nt results		

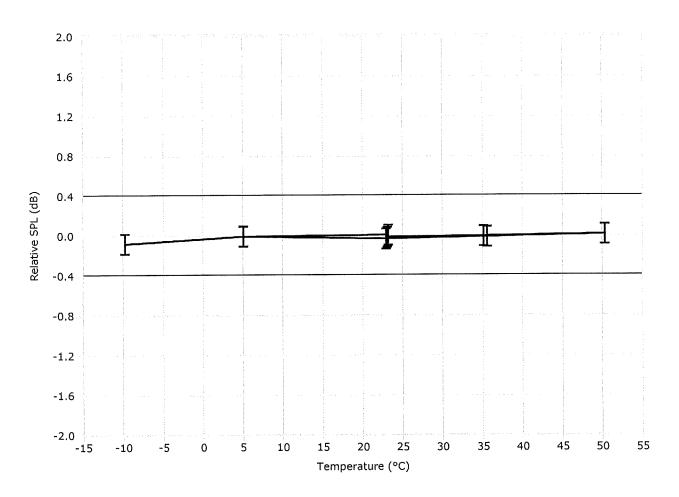
-- End of measurement results-

Signatory: _Scott Montgomery

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

A PCB PIEZOTRONICS DIV.

2/16/2021 11:37:42AM



Model CAL200 Relative SPL vs. Temperature

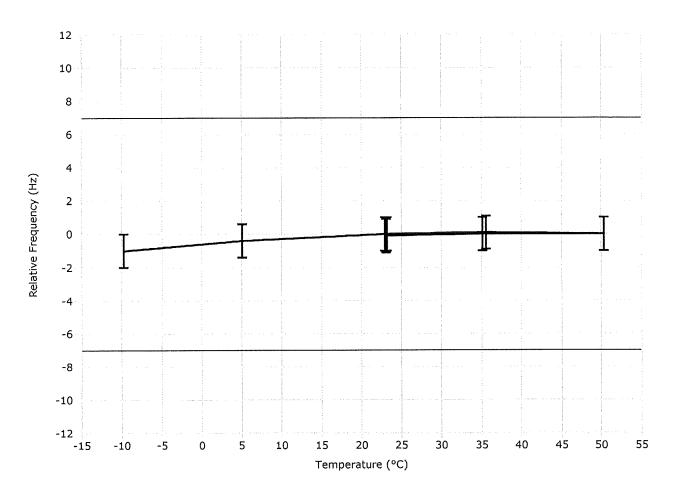
Larson Davis Model CAL200 Serial Number: 18566

Model CAL200 Relative SPL vs. Temperature at 50% RH.

A 2559 Mic (SN: 2915) with a PRM901 Preamp (SN: 0186), station 8 was used to check the levels.

Test Date: 08 Jan 2021 12:02:42 PM

0.1dB expanded uncertainty at ~95% confidence level (k=2)


Sequence File: CAL250w200.SEQ

Test Location: Larson Davis, a division of PCB Piezotronics, Inc. 1681 West 820 North, Provo, Utah 84601 Tel: 716 684-0001 www.LarsonDavis.com

Page 1 of 2

Model CAL200 Relative Frequency vs. Temperature at 50% RH. A 2559 Mic (SN: 2915) with a PRM901 Preamp (SN: 0186), station 8 was used to check the levels.

Test Date: 08 Jan 2021 12:02:42 PM

1.0 Hz expanded uncertainty at ~95% confidence level (k=2)

Sequence File: CAL250w200.SEQ

Test Location: Larson Davis, a division of PCB Piezotronics, Inc. 1681 West 820 North, Provo, Utah 84601 Tel: 716 684-0001 www.LarsonDavis.com

Page 2 of 2

Calibration Certificate

Certificate Number 2021002515 Customer: The Modal Shop 10310 AeroHub Boulevard Cincinnati, OH 45215, United States

Model Number Serial Number Test Results	377B02 326325 Pass	Procedure Number Technician Calibration Date	 D0001.8387 Abraham Ortega 8 Mar 2021 		a
Initial Condition Description	As Manufactured 1/2 inch Microphone - FF - 0V	Humidity 25.6 %RH			± 0.01 °C ± 0.5 %RH
Evaluation Metho	d Tested electrically using an electrostatic a	Static Pressure	101.43	kPa	± 0.03 kPa

Compliance Standards Compliant to Manufacturer Specifications.

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2017. Test points marked with a ‡ do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Standards Used						
Description	Cal Date	Cal Due	Cal Standard			
Larson Davis Model 2900 Real Time Analyzer	07/01/2020	07/01/2021	001230			
Microphone Calibration System	08/25/2020	08/25/2021	001233			
1/2" Preamplifier	12/18/2020	12/18/2021	001274			
Agilent 34401A DMM	12/08/2020	12/08/2021	001329			
Larson Davis CAL250 Acoustic Calibrator	09/01/2020	09/01/2021	003030			
1/2" Preamplifier	04/13/2020	04/13/2021	006506			
Larson Davis 1/2" Preamplifier 7-pin LEMO	07/09/2020	07/09/2021	006507			
1/2 inch Microphone - RI - 200V	06/04/2020	06/04/2021	006510			
1/2 inch Microphone - RI - 200V	07/31/2020	07/31/2021	006519			
Larson Davis 1/2" Preamplifier 7-pin LEMO	07/09/2020	07/09/2021	006530			
Larson Davis 1/2" Preamplifier 7-pin LEMO	07/24/2020	07/24/2021	006531			

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Certificate Number 2021002515

	Certificate Number 2021002515							
Frequency [Hz]	Actuator [dB]	Free Field [dB]	Lower limit [dB]	Upper limit [dB]	Result			
251.19	0.00	0.00	-0.50	0.50	Pass ‡			
316.23	-0.01	0.00	-0.50	0.50	Pass ‡			
398.11	-0.02	-0.02	-0.50	0.50	Pass ‡			
501.19	-0.03	0.01	-0.50	0.50	Pass ‡			
630.96	-0.04	0.00	-0.50	0.50	Pass ‡			
794.33	-0.06	0.03	-0.50	0.50	Pass ‡			
1,000.00	-0.09	0.03	-0.50	0.50	Pass ‡			
1,059.25	-0.10	0.03	-0.50	0.50	Pass ‡			
1,122.02	-0.11	0.03	-0.50	0.50	Pass ‡			
1,188.50	-0.12	0.03	-0.50	0.50	Pass ‡			
1,258.93	-0.13	0.03	-0.50	0.50	Pass ‡			
1,333.52	-0.14	0.04	-0.50	0.50	Pass ‡			
1,412.54	-0.16	0.03	-0.50	0.50	Pass ‡			
1,496.24	-0.18	0.02	-0.50	0.50	Pass ‡			
1,584.89	-0.19	0.02	-0.50	0.50	Pass ‡			
1,678.80	-0.21	0.02	-0.50	0.50	Pass ‡			
1,778.28	-0.24	0.01	-0.50	0.50	Pass ‡			
1,883.65	-0.26	0.02	-0.50	0.50	Pass ‡			
1,995.26	-0.29	0.02	-0.50	0.50	Pass ‡			
2,113.49	-0.32	0.02	-0.50	0.50	Pass ‡			
2,238.72	-0.35	0.02	-0.50	0.50	Pass ‡			
2,371.37	-0.39	0.02	-0.50	0.50	Pass ‡			
2,511.89	-0.43	0.03	-0.50	0.50	Pass ‡			
2,660.73	-0.47	0.04	-0.50	0.50	Pass ‡			
2,818.38	-0.53	0.03	-0.50	0.50	Pass ‡			
2,985.38	-0.58	0.04	-0.50	0.50	Pass ‡			
3,162.28	-0.65	0.03	-0.50	0.50	Pass ‡			
3,349.65	-0.72	0.02	-0.50	0.50	Pass ‡			
3,548.13	-0.80	0.02	-0.50	0.50	Pass ‡			
3,758.37	-0.88	0.02	-0.50	0.50	Pass ‡			
3,981.07	-0.98	0.02	-0.50	0.50	Pass ‡			
4,216.97	-1.08	0.03	-0.56	0.56	Pass ‡			
4,466.84	-1.20	0.03	-0.63	0.63	Pass ‡			
4,731.51	-1.33	0.04	-0.69	0.69	Pass ‡			
5,011.87	-1.48	0.05	-0.75	0.75	Pass ‡			
5,308.84	-1.63	0.07	-0.81	0.81	Pass ‡			
5,623.41	-1.81	0.07	-0.88	0.88	Pass ‡			
5,956.62	-2.00	0.07	-0.94	0.94	Pass ‡			
6,309.57	-2.21	0.08	-1.00	1.00	Pass ‡			
6,683.44	-2.44	0.08 0.10	-1.00	1.00	Pass ‡			
7,079.46	-2.68	0.10	-1.00	1.00	Pass ‡			
7,498.94	-2.96 -3.26	0.13	-1.00	1.00	Pass ‡			
7,943.28 8,413.95	-3.59	0.13	-1.00	1.00	Pass ‡ Pass ‡			
8,912.51	-3.99	0.14	-1.00	1.00	Pass ‡			
9,440.61	-4.43	0.09	-1.00 -1.00	1.00	Pass ‡			
10,000.00	-4.43	0.09	-1.00 -1.00	1.00	Pass ‡			
10,592.54	-5.51	-0.11	-1.13	1.00 1.13	Pass ‡			
11,220.19	-5.98	-0.12	-1.13	1.13	Pass ‡			
11,885.02	-6.40	-0.08	-1.38	1.38	Pass ‡			
12,589.25	-6.78	-0.08	-1.50	1.50	Pass ‡			
13,335.21	-6.99	0.20	-1.63	1.63	Pass ‡			
14,125.38	-7.16	0.20	-1.75	1.75	Pass ‡			
17,120.00	-7.1 U	0.70	-1.75	1.10	1 000 +			

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Calibration Certificate

Certificate Number 2021003381 Customer: The Modal Shop 10310 AeroHub Boulevard Cincinnati, OH 45215, United States

Model Number	831C		Procedure Number	D0001	.8378	
Serial Number	11446		Technician	Ron H	arris	
Test Results	Pass		Calibration Date	26 Ma	r 2021	
Initial Condition	As Man	ufactured	Calibration Due Temperature	23.47	°C	± 0.25 °C
Description		Davis Model 831C	Humidity	52.3	%RH	± 2.0 %RH
	Class 1	Sound Level Meter	Static Pressure	85.18	kPa	± 0.13 kPa
	Firmwa	re Revision: 04.6.0R0				
Evaluation Metho	od	Tested electrically using Larson Davis PF microphone capacitance. Data reported in mV/Pa.		-		
Compliance Stan	dards	Compliant to Manufacturer Specifications Calibration Certificate from procedure D0		rds whe	n combi	ned with
		IEC 60804:2000 Type 1 IEC 61672:2013 Class 1	ANSI S1.4-2014 Class 1 ANSI S1.4 (R2006) Type ANSI S1.43 (R2007) Typ ANSI S1.11-2014 Class 1	ə 1		

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2017. Test points marked with a **‡** in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

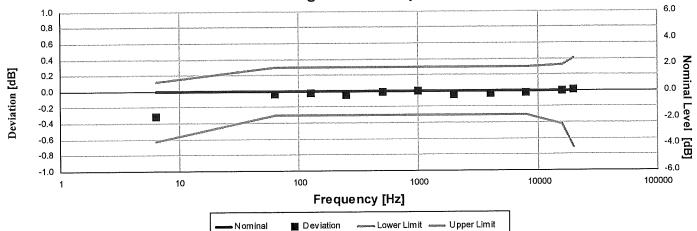
This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis SoundAdvisor Model 831C Reference Manual, I831C.01 Rev M, 2019-09-10

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa; Reference Range: 0 dB gain

	Standards Used		
Description	Cal Date	Cal Due	Cal Standard
Hart Scientific 2626-S Humidity/Temperature Sensor	2020-05-12	2021-05-12	006943
SRS DS360 Ultra Low Distortion Generator	2020-04-14	2021-04-14	007635

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001



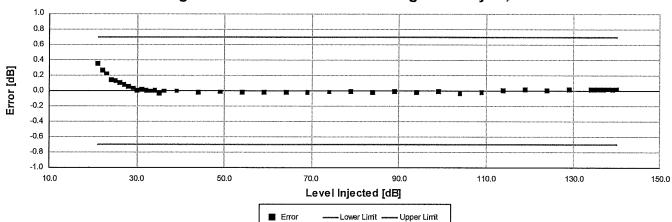
2021-3-26T10:43:24

D0001.8407 Rev E

Page 2 of 10

Z-weight Filter Response

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5


Frequency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result		
6.31	-0.31	-0.31	-0.63	0.12	0.15	Pass		
63.10	-0.03	-0.03	-0.30	0.30	0.15	Pass		
125.89	-0.03	-0.03	-0.30	0.30	0.15	Pass		
251.19	-0.04	-0.04	-0.30	0.30	0.15	Pass		
501.19	-0.01	-0.01	-0.30	0.30	0.15	Pass		
1,000.00	0.00	0.00	-0.30	0.30	0.15	Pass		
1,995,26	-0.04	-0.04	-0.30	0.30	0.15	Pass		
3,981,07	-0.04	-0.04	-0.30	0.30	0.15	Pass		
7,943,28	-0.03	-0.03	-0.30	0.30	0.15	Pass		
15.848.93	0.00	0.00	-0.42	0.32	0.15	Pass		
19,952,62	0.01	0.01	-0.71	0.41	0.15	Pass		
	End of measurement results							

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-3-26T10:43:24

A-weighted 0 dB Gain Broadband Log Linearity: 8,000.00 Hz

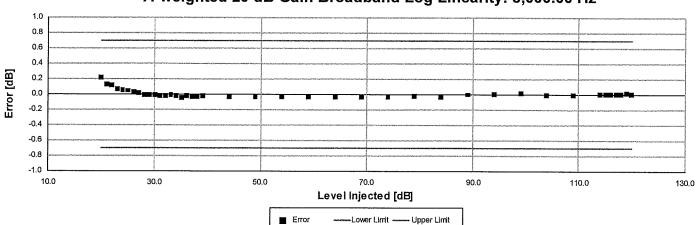
Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

5.6, IEC 60804:2000 6.2, IEC 61252:2	.002 8, ANSI 31.4 (R2008) 8.9	, ANOI 31.4-2014 Pall	1. 5.0, ANSI 51.45 (Expanded		
Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Uncertainty [dB]	Result	
21.00	0.36	-0.70	0.70	0.16	Pass	3020
22.00	0.27	-0.70	0.70	0.16	Pass	
23.00	0.22	-0.70	0.70	0.16	Pass	
24.00	0.15	-0.70	0.70	0.16	Pass	
25.00	0.13	-0.70	0.70	0.16	Pass	
26.00	0.10	-0.70	0.70	0.16	Pass	
27.00	0.08	-0.70	0.70	0.16	Pass	
28.00	0.06	-0.70	0.70	0.16	Pass	
29.00	0.04	-0.70	0.70	0.18	Pass	
30.00	0.00	-0.70	0.70	0.17	Pass	
31.00	0.01	-0.70	0.70	0.17	Pass	
32.00	0.00	-0.70	0.70	0.17	Pass	
33.00	0.00	-0.70	0.70	0.16	Pass	
34.00	0.01	-0.70	0.70	0.16	Pass	
35.00	-0.03	-0.70	0.70	0.16	Pass	
36.00	0.00	-0.70	0.70	0.16	Pass	
39.00	0.00	-0.70	0.70	0.16	Pass	
44.00	-0.02	-0.70	0.70	0.16	Pass	
49.00	-0.01	-0.70	0.70	0.16	Pass	
54.00	-0.02	-0.70	0.70	0.16	Pass	
59.00	-0.02	-0.70	0.70	0.16	Pass	
64.00	-0.02	-0.70	0.70	0.16	Pass	
69.00	-0.02	-0.70	0.70	0.16	Pass	
74.00	-0.01	-0.70	0.70	0.16	Pass	
79.00	-0.01	-0.70	0.70	0.16	Pass	
84.00	-0.02	-0.70	0.70	0.16	Pass	
89.00	-0.01	-0.70	0.70	0.16	Pass	
94.00	-0.02	-0.70	0.70	0.16	Pass	
99.00	-0.01	-0.70	0.70	0.16	Pass	
104.00	-0.03	-0.70	0.70	0.15	Pass	
109.00	-0.02	-0.70	0.70	0.15	Pass	
114.00	0.00	-0.70	0.70	0.15	Pass	
119.00	0.02	-0.70	0.70	0.15	Pass	
124.00	0.00	-0.70	0.70	0.15	Pass	
129.00	0.02	-0.70	0.70	0.15	Pass	
134.00	0.01	-0.70	0.70	0.15	Pass	

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-3-26T10:43:24

Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result		
135.00	0.02	-0.70	0.70	0.15	Pass		
136.00	0.02	-0.70	0.70	0.15	Pass		
137.00	0.02	-0.70	0.70	0.15	Pass		
138.00	0.02	-0.70	0.70	0.15	Pass		
139.00	0.02	-0.70	0.70	0.15	Pass		
140.00	0.02	-0.70	0.70	0.15	Pass		
End of measurement results							


LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-3-26T10:43:24

Page 5 of 10

A-weighted 20 dB Gain Broadband Log Linearity: 8,000.00 Hz

Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

5.6, IEC 60804:2000 6.2, IEC 61252:2002 8	8, ANSI S1.4 (R2006) 6.9,	ANSI S1.4-2014 Part	1: 5.6, ANSI S1.43 (I		
Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
20.00	0.21	-0.70	0.70	0.17	Pass
21.00	0.13	-0.70	0.70	0.16	Pass
22.00	0.12	-0.70	0.70	0.16	Pass
23.00	0.07	-0.70	0.70	0.16	Pass
24.00	0.05	-0.70	0.70	0.16	Pass
25.00	0.05	-0.70	0.70	0.16	Pass
26.00	0.03	-0.70	0.70	0.19	Pass
27.00	0.02	-0.70	0.70	0.18	Pass
28.00	-0.01	-0.70	0.70	0.19	Pass
29.00	-0.01	-0.70	0.70	0.18	Pass
30.00	-0.01	-0.70	0.70	0.17	Pass
31.00	-0.02	-0.70	0.70	0.17	Pass
32.00	-0.02	-0.70	0.70	0.17	Pass
33.00	-0.01	-0.70	0.70	0.16	Pass
34.00	-0.02	-0.70	0.70	0.16	Pass
35.00	-0.05	-0.70	0.70	0.16	Pass
36.00	-0.02	-0.70	0.70	0.16	Pass
37.00	-0.03	-0.70	0.70	0.16	Pass
38.00	-0.03	-0.70	0.70	0.16	Pass
39.00	-0.02	-0.70	0.70	0.16	Pass
44.00	-0.03	-0.70	0.70	0.16	Pass
	-0.03	-0.70	0.70	0.16	Pass
54.00	-0.03	-0.70	0.70	0.16	Pass
59.00	-0.04	-0.70	0.70	0.16	Pass
64.00	-0.03	-0.70	0.70	0.16	Pass
69.00	-0.03	-0.70	0.70	0.16	Pass
74.00	-0.03	-0.70	0.70	0.16	Pass
79.00	-0.02	-0.70	0.70	0.16	Pass
84.00	-0.04	-0.70	0.70	0.16	Pass
89.00	0.00	-0.70	0.70	0.16	Pass
94.00	0.00	-0.70	0.70	0.16	Pass
99.00	0.01	-0.70	0.70	0.16	Pass
104.00	-0.01	-0.70	0.70	0.15	Pass
109.00	-0.01	-0.70	0.70	0.15	Pass
114.00	0.00	-0.70	0.70	0.15	Pass
115.00	0.00	-0.70	0.70	0.15	Pass

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result		
116.00	0.00	-0.70	0.70	0.15	Pass		
117.00	0.01	-0.70	0.70	0.15	Pass		
118.00	0.01	-0.70	0.70	0.15	Pass		
119.00	0.02	-0.70	0.70	0.15	Pass		
120.00	0.01	-0.70	0.70	0.15	Pass		
End of measurement results							

Peak Rise Time

Peak rise time performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

Amplitude [dB] Dura	ation [µs]	Tes	t Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
139.00	40	Negative Pulse	135.89	134.64	136.64	0.15	Pass
,00.00		Positive Pulse	135.85	134.63	136.63	0.15	Pass
	30	Negative Pulse	135.10	134.64	136.64	0.15	Pass
		Positive Pulse	135.08	134.63	136.63	0.15	Pass
			End of meas	urement results			

Positive Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
138.00	3	OVLD	± 0.50	0.15 ‡	Pass
100.00	5	OVLD	± 1.00	0.15 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
128.00	3	-0,10	± 0.50	0.15 ‡	Pass
120.00	5	-0.09	± 1.00	0.15 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
118.00	3	-0.12	± 0.50	0.15 ‡	Pass
110.00	5	-0.12	± 1.00	0.15 ‡	Pass
	10	-0.17	± 1.50	0.15 ‡	Pass
108.00	3	-0.11	± 0.50	0.15 ±	Pass
100.00	5	-0.10	± 1.00	0.15 ‡	Pass
	10	-0.14	± 1.50	0.15 ‡	Pass
			neasurement results-	-	

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-3-26T10:43:24

Negative Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

3 5 10	OVLD OVLD	± 0.50	0.15 ±	Pass
	OVLD			газэ
10		± 1.00	0.15 ±	Pass
	OVLD	± 1.50	0.15 ±	Pass
3	-0.08	± 0.50	0.15 ±	Pass
5	-0.09	± 1.00	0.15 ±	Pass
10	OVLD	± 1.50	0.15 ±	Pass
3	-0.10	± 0.50	0.15 ±	Pass
5	-0.10	± 1.00	0.15 ±	Pass
10	-0.25	± 1.50	0.15 ±	Pass
3	-0.10	± 0.50	0.15 ±	Pass
5	-0.10	± 1.00	0.15 ±	Pass
10	0.04	± 1.50	,	Pass
	5	5 -0.10 10 0.04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5 -0.10 \pm 1.00$ $0.15 \pm$

Gain

Gain measured according to IEC 61672-3:2013 17.3 and 17.4 and ANSI S1.4-2014 Part 3: 17.3 and 17.4

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
0 dB Gain	94.01	93.91	94.11	0.15	Pass
0 dB Gain, Linearity	28.08	27.31	28.71	0.16	Pass
20 dB Gain	94.02	93.91	94.11	0.15	Pass
20 dB Gain, Linearity	23.09	22.31	23.71	0.16	Pass
OBA High Range	94.01	93.20	94.80	0.15	Pass
OBA Normal Range	94.01	93.91	94.11	0.15	Pass
	End	of measurement resu	ılts		

Broadband Noise Floor

Self-generated noise measured according to IEC 61672-3:2013 11.2 and ANSI S1.4-2014 Part 3: 11.2

Measurement		Upper limit [dB]	Result
A-weight Noise Floor	6.10	9.00	Pass
C-weight Noise Floor	11.90	15.00	Pass
Z-weight Noise Floor	21.68	25.00	Pass

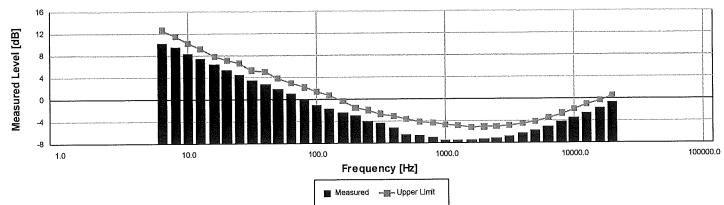
-- End of measurement results--

Total Harmonic Distortion

Measured using 1/3-Octave filters

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
10 Hz Signal	137.53	137.20	138.80	0.15	Pass
THD	-82.10		-60.00	1.30 ‡	Pass
THD+N	-80.31		-60.00	1.30 ‡	Pass
	T	and of magen romant roa	un lta		

-- End of measurement results--


LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-3-26T10:43:24

1/3-Octave Self-Generated Noise

The SLM is set to normal range and 20 dB gain.

Frequency [Hz]	Test Result [dB]	Upper limit [dB]	Result
6.30	10.31	12.60	Pass
8.00	9.58	11.50	Pass
10.00	8.36	10.20	Pass
12.50	7.55	9.20	Pass
16.00	6.36	7.90	Pass
20.00	5.42	7.20	Pass
25.00	4.48	6.60	Pass
31.50	3.48	5.30	Pass
40.00	2.87	5.00	Pass
50.00	1.85	3.80	Pass
63.00	1.00	3.00	Pass
80.00	-0.06	2.20	Pass
100.00	-1.00	1.40	Pass
125.00	-1.71	0.70	Pass
160.00	-2.36	-0.40	Pass
200.00	-2.94	-1.50	Pass
250.00	-4.06	-2.00	Pass
315.00	-4.36	-2.70	Pass
400.00	-5.28	-3.10	Pass
500.00	-6.37	-3.70	Pass
630.00	-6.63	-4.10	Pass
800.00	-6.94	-4.30	Pass
1,000.00	-7.39	-4.70	Pass
1,250.00	-7.41	-4.80	Pass
1,600.00	-7.49	-5.20	Pass
2,000.00	-7.37	-5.10	Pass
2,500.00	-7.16	-5.00	Pass
3,150.00	-6.72	-4.80	Pass
4,000.00	-6.22	-4.50	Pass
5,000.00	-5.66	-4.10	Pass
6,300.00	-4.96	-3.40	Pass
8,000.00	-4.13	-2.70	Pass
10,000.00	-3.41	-1.90	Pass
12,500.00	-2.56	-1.10	Pass
16,000.00	-1.67	-0.30	Pass
20,000.00	-0.70	0.60	Pass

-- End of measurement results--

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

-- End of Report--

Signatory: <u>Ron Harris</u>

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-3-26T10:43:24

Page 10 of 10

Calibration Certificate

Customer:						
SWCA						
Suite 1700						
20 East Thomas Ro	oad					
Phoenix, AZ 85012	, United	States				
Model Number	831C		Procedure Number	D0001	.8378	
Serial Number	10739		Technician	Ron H	arris	
Test Results	Pass		Calibration Date	29 Ma	r 2019	
In Mark Consultation			Calibration Due			
Initial Condition	As Ma	nufactured	Temperature	23.4	°C	± 0.25 °C
Description	Larson	Davis Model 831C	Humidity	49.7	%RH	± 2.0 %RH
a conference	Class	1 Sound Level Meter	Static Pressure	86.16	kPa	± 0.13 kPa
	Firmwa	are Revision: 03.3.0R3				
Evaluation Metho	od	Tested electrically using Larson I microphone capacitance. Data re mV/Pa.				
Compliance Stan	dards	Compliant to Manufacturer Specificate from procession Certificate from procession Certificate from procession of the second seco		irds when	n combi	ned with
		IEC 60651:2001 Type 1	ANSI S1.4-2014 Class 1			
		IEC 60804:2000 Type 1	ANSI S1.4 (R2006) Type	1		
		IEC 61260:2014 Class 1	ANSI S1.11-2014 Class	1		
		IEC 61672:2013 Class 1	ANSI S1.43 (R2007) Typ	e 1		
			a first the second of the second second second second			

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

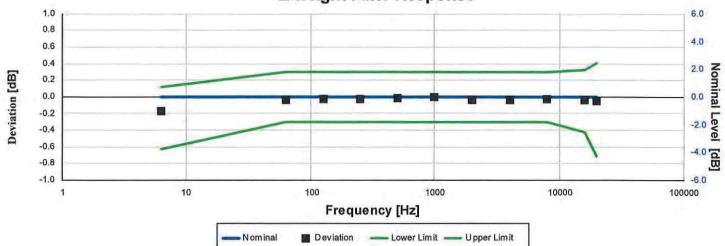
The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis SoundAdvisor Model 831C Reference Manual, I831C.01 Rev B, 2017-03-31

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa; Reference Range: 0 dB gain

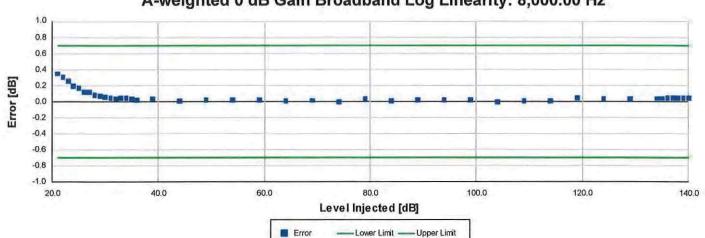
Standards Used							
Cal Date	Cal Due	Cal Standard					
2018-08-19	2019-08-19	006798					
2018-10-04	2019-10-04	007167					
	Cal Date 2018-08-19	Cal DateCal Due2018-08-192019-08-19	Cal Date Cal Due Cal Standard 2018-08-19 2019-08-19 006798				



2019-3-29T10:13:43

Page 2 of 10

D0001.8407 Rev C



Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
6.31	-0.17	-0.17	-0.63	0.12	0.15	Pass
63.10	-0.04	-0.04	-0.30	0.30	0.15	Pass
125.89	-0.02	-0.02	-0.30	0.30	0.15	Pass
251.19	-0.03	-0.03	-0.30	0.30	0.15	Pass
501.19	-0.01	-0.01	-0.30	0.30	0.15	Pass
1,000.00	0.00	0.00	-0.30	0.30	0.15	Pass
1,995.26	-0.04	-0.04	-0.30	0.30	0.15	Pass
3,981.07	-0.04	-0.04	-0.30	0.30	0.15	Pass
7,943.28	-0.03	-0.03	-0.30	0.30	0.15	Pass
15,848.93	-0.03	-0.03	-0.42	0.32	0.15	Pass
19,952.62	-0.05	-0.05	-0.71	0.41	0.15	Pass

A-weighted 0 dB Gain Broadband Log Linearity: 8,000.00 Hz

Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

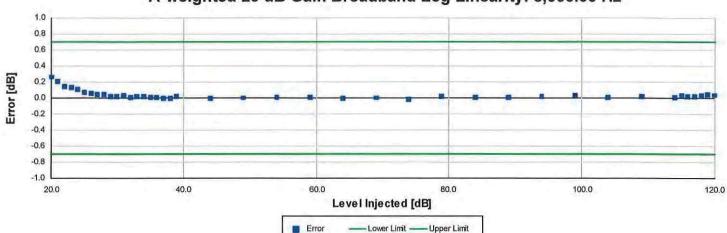
Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
21.00	0.35	-0.70	0.70	0.16	Pass
22.00	0.30	-0.70	0.70	0.16	Pass
23.00	0.25	-0.70	0.70	0.16	Pass
24.00	0.20	-0.70	0.70	0.16	Pass
25.00	0.16	-0.70	0.70	0.16	Pass
26.00	0.12	-0.70	0.70	0.16	Pass
27.00	0.11	-0.70	0.70	0.16	Pass
28.00	0.08	-0.70	0.70	0.16	Pass
29.00	0.07	-0.70	0.70	0.18	Pass
30.00	0.05	-0.70	0.70	0.17	Pass
31.00	0.04	-0.70	0.70	0.17	Pass
32.00	0.03	-0.70	0.70	0.17	Pass
33.00	0.05	-0.70	0.70	0.16	Pass
34.00	0.04	-0.70	0.70	0.16	Pass
35.00	0.03	-0.70	0.70	0.16	Pass
36.00	0.02	-0.70	0.70	0.16	Pass
39.00	0.03	-0.70	0.70	0.16	Pass
44.00	0.01	-0.70	0.70	0.16	Pass
49.00	0.01	-0.70	0.70	0.16	Pass
54.00	0.01	-0.70	0.70	0.16	Pass
59.00	0.01	-0.70	0.70	0.16	Pass
64.00	0.00	-0.70	0.70	0.16	Pass
69.00	0.01	-0.70	0.70	0.16	Pass
74.00	-0.01	-0.70	0.70	0.16	Pass
79.00	0.03	-0.70	0.70	0.16	Pass
84.00	0.01	-0.70	0.70	0.16	Pass
89.00	0.01	-0.70	0.70	0.16	Pass
94.00	0.01	-0.70	0.70	0.16	Pass
99.00	0.01	-0.70	0.70	0.16	Pass
104.00	-0.01	-0.70	0.70	0.15	Pass
109.00	0.01	-0.70	0.70	0.15	Pass
114.00	0.00	-0.70	0.70	0.15	Pass
119.00	0.04	-0.70	0.70	0.15	Pass
124.00	0.03	-0.70	0.70	0.15	Pass
129.00	0.03	-0.70	0.70	0.15	Pass
134.00	0.04	-0.70	0.70	0.15	Pass

LARSON DAVIS - A PCB PIEZOTRONICS DIV.

1681 West 820 North

Provo, UT 84601, United States 716-684-0001

Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
135.00	0.04	-0.70	0.70	0.15	Pass
136.00	0.04	-0.70	0.70	0.15	Pass
137.00	0.04	-0.70	0.70	0.15	Pass
138.00	0.04	-0.70	0.70	0.15	Pass
139.00	0.04	-0.70	0.70	0.15	Pass
140.00	0.04	-0.70	0.70	0.15	Pass
	En	d of measurement res	ults		



2019-3-29T10:13:43

D0001.8407 Rev C

Page 5 of 10

A-weighted 20 dB Gain Broadband Log Linearity: 8,000.00 Hz

Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
20.00	0.26	-0.70	0.70	0.17	Pass
21.00	0.20	-0.70	0.70	0.16	Pass
22.00	0.14	-0.70	0.70	0.16	Pass
23.00	0.12	-0.70	0.70	0.16	Pass
24.00	0.10	-0.70	0.70	0.16	Pass
25.00	0.07	-0.70	0.70	0.16	Pass
26.00	0.05	-0.70	0.70	0.19	Pass
27.00	0.04	-0.70	0.70	0.18	Pass
28.00	0.04	-0.70	0.70	0.19	Pass
29.00	0.02	-0.70	0.70	0.18	Pass
30.00	0.02	-0.70	0.70	0.17	Pass
31.00	0.03	-0.70	0.70	0.17	Pass
32.00	0.01	-0.70	0.70	0.17	Pass
33.00	0.01	-0.70	0.70	0.16	Pass
34.00	0.02	-0.70	0.70	0.16	Pass
35.00	0.00	-0.70	0.70	0.16	Pass
36.00	0.00	-0.70	0.70	0.16	Pass
37.00	-0.01	-0.70	0.70	0.16	Pass
38.00	-0.01	-0.70	0.70	0.16	Pass
39.00	0.01	-0.70	0.70	0.16	Pass
44.00	0.00	-0.70	0.70	0.16	Pass
49.00	0.00	-0.70	0.70	0.16	Pass
54.00	0.00	-0.70	0.70	0.16	Pass
59.00	0.00	-0.70	0.70	0.16	Pass
64.00	-0.01	-0.70	0.70	0.16	Pass
69.00	0.00	-0.70	0.70	0.16	Pass
74.00	-0.02	-0.70	0.70	0.16	Pass
79.00	0.01	-0.70	0.70	0.16	Pass
84.00	0.00	-0.70	0.70	0.16	Pass
89.00	0.01	-0.70	0.70	0.16	Pass
94.00	0.02	-0.70	0.70	0.16	Pass
99.00	0.03	-0.70	0.70	0.16	Pass
104.00	0.01	-0.70	0.70	0.15	Pass
109.00	0.02	-0.70	0.70	0.15	Pass
114.00	0.00	-0.70	0.70	0.15	Pass
115.00	0.03	-0.70	0.70	0.15	Pass

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
116.00	0.02	-0.70	0.70	0.15	Pass
117.00	0.02	-0.70	0.70	0.15	Pass
118.00	0.02	-0.70	0.70	0.15	Pass
119.00	0.04	-0.70	0.70	0.15	Pass
120.00	0.03	-0.70	0.70	0.15	Pass
- 10 Y 3 S 4	En	d of measurement res	sults		

Peak Rise Time

Peak rise time performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

Amplitude [dB]	Duration [µs]		Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
139.00	40	Negative Pulse	138.32	137.00	139.00	0.15	Pass
		Positive Pulse	138.26	137.00	139.00	0.15	Pass
	30	Negative Pulse	137.50	137.00	139.00	0.15	Pass
		Positive Pulse	137.49	137.00	139.00	0.15	Pass
			End of meas	surement results			

Positive Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
138.00	3	OVLD	± 0.50	0.15 ‡	Pass
	5	OVLD	± 1.00	0.15 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
128.00	3	-0.12	± 0.50	0.15 ‡	Pass
	5	-0.10	± 1.00	0.15 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
118.00	3	-0.13	± 0.50	0.15 ‡	Pass
	5	-0.11	± 1.00	0.15 ‡	Pass
	10	-0.26	± 1.50	0.15 ‡	Pass
108.00	3	-0.12	± 0.50	0.15 ‡	Pass
	5	-0.10	± 1.00	0.15 ‡	Pass
	10	-0.25	± 1.50	0.15 ‡	Pass
		End of n	neasurement results-		

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Negative Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

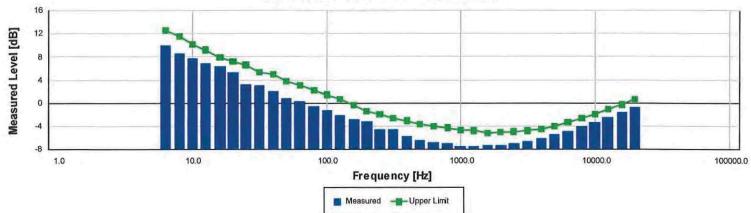
Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
138.00	3	OVLD	± 0.50	0.15 ±	Pass
	5	OVLD	± 1.00	0.15 ±	Pass
	10	OVLD	± 1.50	0.15 ±	Pass
128.00	3	-0.11	± 0.50	0.15 ‡	Pass
	5	-0.10	± 1.00	0.15 ±	Pass
	10	OVLD	± 1.50	0.15 ±	Pass
118.00	3	-0.14	± 0.50	0.15 ‡	Pass
	5	-0.15	± 1.00	0.15 ‡	Pass
	10	-0.09	± 1.50	0.15 ±	Pass
108.00	3	-0.11	± 0.50	0.15 ‡	Pass
	5	-0.12	± 1.00	0.15 ‡	Pass
	10	-0.08	± 1.50	0.16 ‡	Pass

-- End of measurement results--

Gain

Gain measured according to IEC 61672-3:2013 17.3 and 17.4 and ANSI S1.4-2014 Part 3: 17.3 and 17.4

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
0 dB Gain	94.00	93.89	94.09	0.15	Pass
0 dB Gain, Linearity	28.08	27.29	28.69	0.16	Pass
20 dB Gain	94.01	93.89	94.09	0.15	Pass
20 dB Gain, Linearity	23.13	22.29	23.69	0.16	Pass
OBA High Range	93.99	93.20	94.80	0.15	Pass
OBA Normal Range	93.95	93.89	94.09	0.15	Pass
	End	d of measurement res	ults		


LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Page 8 of 10

1/3-Octave Self-Generated Noise

The SLM is set to normal range and 20 dB gain.

requency [Hz]	Test Result [dB]	Upper limit [dB]	Result
6.30	10.07	12.60	Pass
8.00	8.56	11.50	Pass
10.00	7.65	10.20	Pass
12.50	6.92	9.20	Pass
16.00	6.37	7.90	Pass
20.00	5.23	7.20	Pass
25.00	3.27	6.60	Pass
31.50	3.12	5.30	Pass
40.00	2.11	5.00	Pass
50.00	0.90	3.80	Pass
63.00	0.30	3.00	Pass
80.00	-0.62	2.20	Pass
100.00	-1.34	1.40	Pass
125.00	-2.17	0.70	Pass
160.00	-2.89	-0.40	Pass
200.00	-3.15	-1.50	Pass
250.00	-4.64	-2.00	Pass
315.00	-4.57	-2.70	Pass
400.00	-5.79	-3.10	Pass
500.00	-6.53	-3.70	Pass
630.00	-6.79	-4.10	Pass
800.00	-6.96	-4.30	Pass
1,000.00	-7.46	-4.70	Pass
1,250.00	-7.45	-4.80	Pass
1,600.00	-7.40	-5.20	Pass
2,000.00	-7.30	-5.10	Pass
2,500.00	-6.99	-5.00	Pass
3,150.00	-6.58	-4.80	Pass
4,000.00	-6.10	-4.50	Pass
5,000.00	-5.50	-4.10	Pass
6,300.00	-4.89	-3.40	Pass
8,000.00	-4.12	-2.70	Pass
10,000.00	-3.32	-1.90	Pass
12,500.00	-2.52	-1.10	Pass
16,000.00	-1.63	-0.30	Pass
20,000.00	-0.70	0.60	Pass

Broadband Noise Floor

Self-generated noise measured according to IEC 61672-3:2013 11.2 and ANSI S1.4-2014 Part 3: 11.2

Measurement	Test Result [dB]	Upper limit [dB]	Result
A-weight Noise Floor	6.20	9.00	Pass
C-weight Noise Floor	11.65	15.00	Pass
Z-weight Noise Floor	21.50	25.00	Pass

-- End of measurement results--

Total Harmonic Distortion

Measured using 1/3-Octave filters

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
10 Hz Signal	137.56	137.20	138.80	0.15	Pass
THD	-81.11		-60.00	1.30 ‡	Pass
THD+N	-79.51		-60.00	1.30 ‡	Pass
		End of measurement r	esults		

-- End of Report--

Signatory: Ron Harris

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2019-3-29T10:13:43

Page 10 of 10

D0001.8407 Rev C

Calibration Certificate

Certificate Numb	er 20190	03906				
Customer:						
SWCA						
Suite 1700						
20 East Thomas R	oad					
Phoenix, AZ 85012	, United	States				
Model Number	831C		Procedure Number	D0001	.8378	
Serial Number	10737		Technician	Ron H	arris	
Test Results	Pass		Calibration Date	29 Mar 2019		
Initial Condition		nufactured	Calibration Due Temperature	23.48	°C	± 0.25 °C
Description	Larson	Davis Model 831C	Humidity	49.6	%RH	± 2.0 %RH
Description		1 Sound Level Meter	Static Pressure			± 0.13 kPa
		are Revision: 03.3.0R3	State Tressure	00.00	Ma	10.10 M a
Evaluation Metho	od	Tested electrically using Larson I microphone capacitance. Data re mV/Pa.				
Compliance Star	ndards	Compliant to Manufacturer Specificate from procession		ards when	n combi	ined with
		IEC 60651:2001 Type 1	ANSI S1.4-2014 Class 1			
		IEC 60804:2000 Type 1	ANSI S1.4 (R2006) Type	1		
		IEC 61260:2014 Class 1	ANSI S1.11-2014 Class	1		
		IEC 61672:2013 Class 1	ANSI S1.43 (R2007) Typ	e 1		

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

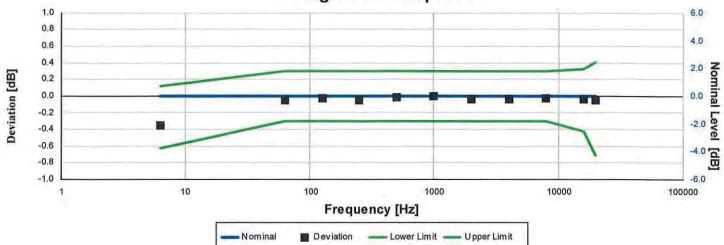
This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

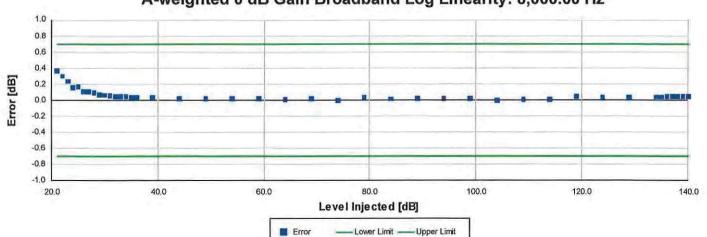
This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis SoundAdvisor Model 831C Reference Manual, I831C.01 Rev B, 2017-03-31

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa; Reference Range: 0 dB gain



Standards Used								
Description	Cal Date	Cal Due	Cal Standard					
Hart Scientific 2626-H Temperature Probe	2018-08-19	2019-08-19	006798					
SRS DS360 Ultra Low Distortion Generator	2018-10-04	2019-10-04	007167					


Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
6.31	-0.34	-0.34	-0.63	0.12	0.15	Pass
63.10	-0.05	-0.05	-0.30	0.30	0.15	Pass
125.89	-0.03	-0.03	-0.30	0.30	0.15	Pass
251.19	-0.05	-0.05	-0.30	0.30	0.15	Pass
501.19	-0.01	-0.01	-0.30	0.30	0.15	Pass
1,000.00	0.00	0.00	-0.30	0.30	0.15	Pass
1,995.26	-0.04	-0.04	-0.30	0.30	0.15	Pass
3,981.07	-0.04	-0.04	-0.30	0.30	0.15	Pass
7,943.28	-0.03	-0.03	-0.30	0.30	0.15	Pass
15,848.93	-0.03	-0.03	-0.42	0.32	0.15	Pass
19,952.62	-0.05	-0.05	-0.71	0.41	0.15	Pass
		- Fn	d of mossurement res	aulte		

-- End of measurement results--

A-weighted 0 dB Gain Broadband Log Linearity: 8,000.00 Hz

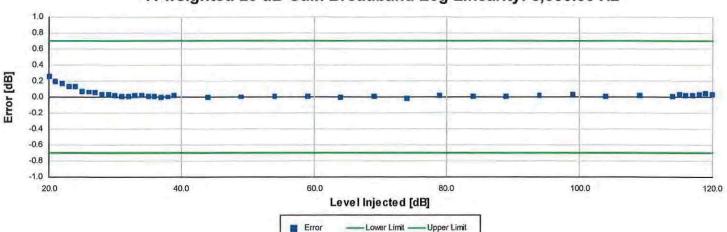
Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result	
21.00	0.36	-0.70	0.70	0.16	Pass	
22.00	0.30	-0.70	0.70	0.16	Pass	
23.00	0.24	-0.70	0.70	0.16	Pass	
24.00	0.16	-0.70	0.70	0.16	Pass	
25.00	0.16	-0.70	0.70	0.16	Pass	
26.00	0.10	-0.70	0.70	0.16	Pass	
27.00	0.10	-0.70	0.70	0.16	Pass	
28.00	0.09	-0.70	0.70	0.16	Pass	
29.00	0.07	-0.70	0.70	0.18	Pass	
30.00	0.06	-0.70	0.70	0.17	Pass	
31.00	0.05	-0.70	0.70	0.17	Pass	
32.00	0.05	-0.70	0.70	0.17	Pass	
33.00	0.05	-0.70	0.70	0.16	Pass	
34.00	0.04	-0.70	0.70	0.16	Pass	
35.00	0.03	-0.70	0.70	0.16	Pass	
36.00	0.03	-0.70	0.70	0.16	Pass	
39.00	0.03	-0.70	0.70	0.16	Pass	
44.00	0.01	-0.70	0.70	0.16	Pass	
49.00	0.01	-0.70	0.70	0.16	Pass	
54.00	0.02	-0.70	0.70	0.16	Pass	
59.00	0.02	-0.70	0.70	0.16	Pass	
64.00	0.01	-0.70	0.70	0.16	Pass	
69.00	0.01	-0.70	0.70	0.16	Pass	
74.00	-0.01	-0.70	0.70	0.16	Pass	
79.00	0.03	-0.70	0.70	0.16	Pass	
84.00	0.01	-0.70	0.70	0.16	Pass	
89.00	0.01	-0.70	0.70	0.16	Pass	
94.00	0.01	-0.70	0.70	0.16	Pass	
99.00	0.02	-0.70	0.70	0.16	Pass	
104.00	-0.01	-0.70	0.70	0.15	Pass	
109.00	0.01	-0.70	0.70	0.15	Pass	
114.00	0.00	-0.70	0.70	0.15	Pass	
119.00	0.04	-0.70	0.70	0.15	Pass	
124.00	0.03	-0.70	0.70	0.15	Pass	
129.00	0.03	-0.70	0.70	0.15	Pass	
134.00	0.04	-0.70	0.70	0.15	Pass	

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North

Provo, UT 84601, United States 716-684-0001

Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result	
135.00	0.04	-0.70	0.70	0.15	Pass	
136.00	0.04	-0.70	0.70	0.15	Pass	
137.00	0.04	-0.70	0.70	0.15	Pass	
138.00	0.04	-0.70	0.70	0.15	Pass	
139.00	0.04	-0.70	0.70	0.15	Pass	
140.00	0.04	-0.70	0.70	0.15	Pass	
	En	d of measurement res	sults			



2019-3-29T08:55:27

Page 5 of 10

D0001.8407 Rev C

A-weighted 20 dB Gain Broadband Log Linearity: 8,000.00 Hz

Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
20.00	0.25	-0.70	0.70	0.17	Pass
21.00	0.19	-0.70	0.70	0.16	Pass
22.00	0.16	-0.70	0.70	0.16	Pass
23.00	0.13	-0.70	0.70	0.16	Pass
24.00	0.12	-0.70	0.70	0.16	Pass
25.00	0.07	-0.70	0.70	0.16	Pass
26.00	0.06	-0.70	0.70	0.19	Pass
27.00	0.05	-0.70	0.70	0.18	Pass
28.00	0.02	-0.70	0.70	0.19	Pass
29.00	0.03	-0.70	0.70	0.18	Pass
30.00	0.01	-0.70	0.70	0.17	Pass
31.00	0.01	-0.70	0.70	0.17	Pass
32.00	0.01	-0.70	0.70	0.17	Pass
33.00	0.02	-0.70	0.70	0.16	Pass
34.00	0.02	-0.70	0.70	0.16	Pass
35.00	0.01	-0.70	0.70	0.16	Pass
36.00	0.00	-0.70	0.70	0.16	Pass
37.00	-0.01	-0.70	0.70	0.16	Pass
38.00	0.00	-0.70	0.70	0.16	Pass
39.00	0.01	-0.70	0.70	0.16	Pass
44.00	0.00	-0.70	0.70	0.16	Pass
49.00	0.00	-0.70	0.70	0.16	Pass
54.00	0.00	-0.70	0.70	0.16	Pass
59.00	0.00	-0.70	0.70	0.16	Pass
64.00	-0.01	-0.70	0.70	0.16	Pass
69.00	0.00	-0.70	0.70	0.16	Pass
74.00	-0.02	-0.70	0.70	0.16	Pass
79.00	0.01	-0.70	0.70	0.16	Pass
84.00	0.00	-0.70	0.70	0.16	Pass
89.00	0.01	-0.70	0.70	0.16	Pass
94.00	0.02	-0.70	0.70	0.16	Pass
99.00	0.03	-0.70	0.70	0.16	Pass
104.00	0.01	-0.70	0.70	0.15	Pass
109.00	0.02	-0.70	0.70	0.15	Pass
114.00	0.00	-0.70	0.70	0.15	Pass
115.00	0.03	-0.70	0.70	0.15	Pass

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
116.00	0.02	-0.70	0.70	0.15	Pass
117.00	0.02	-0.70	0.70	0.15	Pass
118.00	0.02	-0.70	0.70	0.15	Pass
119.00	0.04	-0.70	0.70	0.15	Pass
120.00	0.03	-0.70	0.70	0.15	Pass
	En	d of measurement res	ults		

Peak Rise Time

Peak rise time performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

Amplitude [dB]	Duration [µs]		Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
139.00	40	Negative Pulse	138.33	137.00	139.00	0.15	Pass
		Positive Pulse	138.33	137.00	139.00	0.15	Pass
	30	Negative Pulse	137.50	137.00	139.00	0.15	Pass
		Positive Pulse	137.50	137.00	139.00	0.15	Pass
			End of meas	surement results			

Positive Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
138.00	3	OVLD	± 0.50	0.15 ‡	Pass
	5	OVLD	± 1.00	0.15 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
128.00	3	-0.12	± 0.50	0.15 ‡	Pass
	5	-0.10	± 1.00	0.15 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
118.00	3	-0.13	± 0.50	0.15 ‡	Pass
	5	-0.14	± 1.00	0.15 ‡	Pass
	10	-0.18	± 1.50	0.15 ‡	Pass
108.00	3	-0.12	± 0.50	0.15 ‡	Pass
	5	-0.12	± 1.00	0.15 ‡	Pass
	10	0.01	± 1.50	0.15 ‡	Pass
		End of n	neasurement results		

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

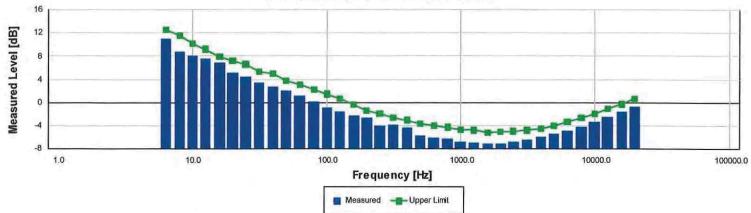
Negative Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
138.00	3	OVLD	± 0.50	0.15 ‡	Pass
	5	OVLD	± 1.00	0.15 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
128.00	3	-0.11	± 0.50	0.15 ‡	Pass
	5	-0.10	± 1.00	0.15 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
118.00	3	-0.13	± 0.50	0.15 ‡	Pass
	5	-0.13	± 1.00	0.15 ±	Pass
	10	-0.18	± 1.50	0.15 ‡	Pass
108.00	3	-0.12	± 0.50	0.15 ±	Pass
	5	-0.10	± 1.00	0.15 ±	Pass
	10	-0.08	± 1.50	0.16 ±	Pass

Gain


Gain measured according to IEC 61672-3:2013 17.3 and 17.4 and ANSI S1.4-2014 Part 3: 17.3 and 17.4

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
0 dB Gain	94.00	93.89	94.09	0.15	Pass
0 dB Gain, Linearity	28.11	27.29	28.69	0.16	Pass
20 dB Gain	94.00	93.89	94.09	0.15	Pass
20 dB Gain, Linearity	23.09	22.29	23.69	0.16	Pass
OBA High Range	93.99	93.20	94.80	0.15	Pass
OBA Normal Range	93.99	93.89	94.09	0.15	Pass
	End	d of measurement res	ults		

1/3-Octave Self-Generated Noise

The SLM is set to normal range and 20 dB gain.

Rest	Upper limit [dB]	Test Result [dB]	Frequency [Hz]
Pa	12.60	11.01	6.30
Pa	11.50	8.70	8.00
Pa	10.20	8.12	10.00
Pa	9.20	7.62	12.50
Pa	7.90	6.93	16.00
Pa	7.20	5.16	20.00
Pa	6.60	4.50	25.00
Pa	5.30	3.50	31.50
Pa	5.00	2.80	40.00
Pa	3.80	1.98	50.00
Pa	3.00	1.14	63.00
Pa	2.20	0.10	80.00
Pa	1.40	-0.84	100.00
Pas	0.70	-1.63	125.00
Pa	-0.40	-2.30	160.00
Pa	-1.50	-2.62	200.00
Pa	-2.00	-4.12	250.00
Pas	-2.70	-3.88	315.00
Pas	-3.10	-4.46	400.00
Pas	-3.70	-5.68	500.00
Pas	-4.10	-6.15	630.00
Pas	-4.30	-6.23	800.00
Pas	-4.70	-6.76	1,000.00
Pas	-4.80	-6.92	1,250.00
Pas	-5.20	-7.10	1,600.00
Pas	-5.10	-7.08	2,000.00
Pas	-5.00	-6.83	2,500.00
Pas	-4.80	-6.51	3,150.00
Pas	-4.50	-5.86	4,000.00
Pas	-4.10	-5.44	5,000.00
Pas	-3.40	-4.90	6,300.00
Pas	-2.70	-4.13	8,000.00
Pas	-1.90	-3.37	10,000.00
Pas	-1.10	-2.54	12,500.00
Pas	-0.30	-1.70	16,000.00
Pas	0.60	-0.70	20,000.00

Broadband Noise Floor

Self-generated noise measured according to IEC 61672-3:2013 11.2 and ANSI S1.4-2014 Part 3: 11.2

Measurement	Test Result [dB]	Upper limit [dB]	Result
A-weight Noise Floor	6.40	9.00	Pass
C-weight Noise Floor	12.00	15.00	Pass
Z-weight Noise Floor	22.14	25.00	Pass

-- End of measurement results--

Total Harmonic Distortion

Measured using 1/3-Octave filters

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
10 Hz Signal	137.55	137.20	138.80	0.15	Pass
THD	-77.70		-60.00	1.30 ‡	Pass
THD+N	-76.55		-60.00	1.30 ‡	Pass
		End of measurement r	esults		

-- End of Report--

Signatory: Ron Harris

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2019-3-29T08:55:27

Page 10 of 10

Calibration Certificate

Customer:

SWCA						
Suite 1700						
20 East Thomas R	oad					
Phoenix, AZ 8501	2, United	States				
Model Number	831C		Procedure Number	D0001	.8384	
Serial Number	10739		Technician	Ron H	arris	
Test Results	Pass		Calibration Date	29 Ma	r 2019	
Initial Condition	As Ma	nufactured	Calibration Due Temperature	23.5	°C	± 0.25 °C
Description	Larson	Davis Model 831C	Humidity	49.3	%RH	± 2.0 %RH
2 courte la courte de	Class	1 Sound Level Meter	Static Pressure	86.26	kPa	± 0.13 kPa
	Firmw	are Revision: 03.3.0R3				
Evaluation Meth	od	Tested with:	Data reported in dB re 20 µPa.			
		Larson Davis PRM831, S/N 058504 PCB 377B02, S/N 311602 Larson Davis CAL200, S/N 9079 Larson Davis CAL291, S/N 0108				
Compliance Sta	ndards	Compliant to Manufacturer Specifica Calibration Certificate from procedu		ards whe	n comb	ined with
		IEC 60651:2001 Type 1	ANSI S1.4-2014 Class 1			
		IEC 60804:2000 Type 1	ANSI S1.4 (R2006) Type	1		
		IEC 61260:2014 Class 1	ANSI S1.11-2014 Class	1		

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005.

Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis SoundAdvisor Model 831C Reference Manual, I831C.01 Rev B, 2017-03-31

For 1/4" microphones, the Larson Davis ADP024 1/4" to 1/2" adaptor is used with the calibrators and the Larson Davis ADP043 1/4" to

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

1/2" adaptor is used with the preamplifier.

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa; Reference Range: 0 dB gain

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.

No Pattern approval for IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 available.

The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3, for the environmental conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 because (a) evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 or correction data for acoustical test of frequency weighting were not provided in the Instruction Manual and (b) because the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3 cover only a limited subset of the specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2013 / ANSI/ASA S1.4-2014/Part 1 or correction data for acoustical test of frequency weighting were not provided in the Instruction Manual and (b) because the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3 cover only a limited subset of the specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1.

	Standards Used				
Description	Cal Date	Cal Due	Cal Standard		
Larson Davis CAL291 Residual Intensity Calibrator	2018-09-19	2019-09-19	001250		
SRS DS360 Ultra Low Distortion Generator	2018-06-21	2019-06-21	006311		
Hart Scientific 2626-H Temperature Probe	2018-08-19	2019-08-19	006798		
Larson Davis CAL200 Acoustic Calibrator	2018-07-24	2019-07-24	007027		
Larson Davis Model 831	2019-02-22	2020-02-22	007182		
PCB 377A13 1/2 inch Prepolarized Pressure Microphone	2019-03-06	2020-03-06	007185		

Acoustic Calibration

Measured according to IEC 61672-3:2013 10 and ANSI S1.4-2014 Part 3: 10

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
1000 Hz	114.01	113.80	114.20	0.14	Pass

Acoustic Signal Tests, C-weighting

Measured according to IEC 61672-3:2013 12 and ANSI S1.4-2014 Part 3: 12 using a comparison coupler with Unit Under Test (UUT) and reference SLM using slow time-weighted sound level for compliance to IEC 61672-1:2013 5.5; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Expected [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
125	-0.18	-0.20	-1.20	0.80	0.23	Pass
1000	0.12	0.00	-0.70	0.70	0.23	Pass
8000	-3.20	-3.00	-5.50	-1.50	0.32	Pass

-- End of measurement results--

Self-generated Noise

LARSON DAVIS - A PCB PIEZOTRONICS DIV.		MI ADCONDAVIC
	End of measurement results	
A-weighted, 20 dB gain	46.33	
Measurement	Test Result [dB]	
Measured according to IEC 61672-3:2013 11.1 and	ANSI S1.4-2014 Part 3: 11.1	

-- End of Report--

Signatory: Ron Harris

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2019-3-29T10:39:30

Page 3 of 3

D0001.8406 Rev C

Calibration Certificate

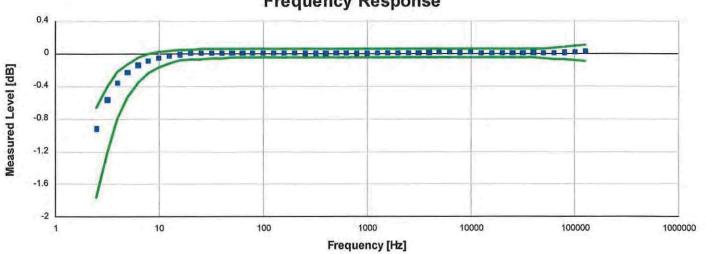
Certificate Numb	er 20190	01804				
Customer:						
SWCA						
Suite 1700						
20 East Thomas Ro	oad					
Phoenix,AZ 85012,	United St	tates				
Model Number	PRM8	31	Procedure Number	D0001	D0001.8383	
Serial Number	058504	4	Technician	Malinda Madsen		
Test Results	Pass		Calibration Date	12 Feb 2019		
	A. M.	nufactured	Calibration Due			
Initial Condition	AS IVIAI	luiactured	Temperature	23.25	°C	± 0.01 °C
Description	Larson	Davis 1/2" Preamplifier for Model 831	Humidity	49.3	%RH	± 0.5 %RH
The second second	Type 1		Static Pressure	86.16	kPa	± 0.03 kPa
Evaluation Metho	od	Tested electrically using a 12.0 pF cap Data reported in dB re 20 μPa assumir				
Compliance Standards Co		Compliant to Manufacturer Specificatio	ns			

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.


This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Standards Used						
Cal Date	Cal Due	Cal Standard				
02/16/2018	02/16/2019	001447				
08/19/2018	08/19/2019	006798				
07/11/2018	07/11/2019	007116				
03/16/2018	03/16/2019	007174				
	Cal Date 02/16/2018 08/19/2018 07/11/2018	Cal DateCal Due02/16/201802/16/201908/19/201808/19/201907/11/201807/11/2019	Cal DateCal DueCal Standard02/16/201802/16/201900144708/19/201808/19/201900679807/11/201807/11/2019007116			

Certificate Number 2019001804

Frequency Response

Frequency response electrically tested at 120.0 dB re 1 μ V

Frequency [Hz]	Test Result [dB re 1 kHz]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
2.50	-0.92	-1.76	-0.66	0.12	Pass
3.20	-0.57	-1.20	-0.40	0.12	Pass
4.00	-0.36	-0.81	-0.23	0.12	Pass
5.00	-0.23	-0.53	-0.13	0.12	Pass
6.30	-0.14	-0.36	-0.05	0.12	Pass
7.90	-0.09	-0.24	-0.01	0.12	Pass
10.00	-0.05	-0.17	0.03	0.12	Pass
12.60	-0.03	-0.13	0.04	0.12	Pass
15.80	-0.01	-0.09	0.04	0.12	Pass
20.00	0.00	-0.08	0.05	0.12	Pass
25.10	0.00	-0.07	0.05	0.12	Pass
31.60	0.00	-0.07	0.05	0.12	Pass
39.80	0.01	-0.06	0.05	0.12	Pass
50.10	0.01	-0.06	0.05	0.12	Pass
63.10	0.01	-0.05	0.05	0.12	Pass
79.40	0.01	-0.05	0.05	0.12	Pass
100.00	0.01	-0.05	0.05	0.12	Pass
125.90	0.00	-0.05	0.05	0.12	Pass
158.50	0.00	-0.05	0.05	0.12	Pass
199.50	0.00	-0.05	0.05	0.12	Pass
251.20	0.00	-0.05	0.05	0.12	Pass
316.20	0.00	-0.05	0.05	0.12	Pass
398.10	0.00	-0.05	0.05	0.12	Pass
501.20	0.00	-0.05	0.05	0.12	Pass
631.00	0.00	-0.05	0.05	0.12	Pass
794.30	0.00	-0.05	0.05	0.12	Pass
1,000.00	0.00	-0.05	0.05	0.12	Pass
1,258.90	0.00	-0.05	0.05	0.12	Pass
1,584.90	0.00	-0.05	0.05	0.12	Pass
1,995.30	0.01	-0.05	0.05	0.12	Pass
2,511.90	0.01	-0.05	0.05	0.12	Pass
3,162.30	0.01	-0.05	0.05	0.12	Pass

LARSON DAVIS - A PCB PIEZOTRONICS DIV.

1681 West 820 North

Provo,UT 84601,United States

716-684-0001

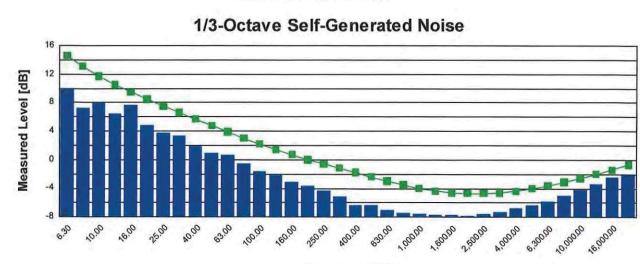
	Certificate N	umber 2019001804			
Frequency [Hz]	Test Result [dB re 1 kHz]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
3,981.10	0.01	-0.05	0.05	0.12	Pass
5,011.90	0.01	-0.05	0.05	0.12	Pass
6,309.60	0.01	-0.05	0.05	0.12	Pass
7,943.30	0.01	-0.05	0.05	0.12	Pass
10,000.00	0.01	-0.05	0.05	0.12	Pass
12,589.30	0.00	-0.05	0.05	0.12	Pass
15,848.90	0.00	-0.05	0.05	0.12	Pass
19,952.60	0.00	-0.05	0.05	0.12	Pass
25,118.90	0.01	-0.05	0.05	0.12	Pass
31,622.80	0.00	-0.05	0.05	0.12	Pass
39,810.70	0.01	-0.05	0.05	0.12	Pass
50,118.70	0.00	-0.06	0.06	0.12	Pass
63,095.70	0.01	-0.07	0.07	0.12	Pass
79,432.80	0.01	-0.08	0.08	0.12	Pass
100,000.00	0.02	-0.09	0.09	0.12	Pass
125,892.50	0.03	-0.10	0.10	0.26	Pass

Gain Measurement

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
Output Gain @ 1 kHz	-0.14	-0.45	-0.03	0.12	Pass

-- End of measurement results--

DC Bias Measurement


Measurement	Test Result [V]	Lower limit [V]	Upper limit [V]	Expanded Uncertainty [V]	Result
DC Voltage	18.67	15.50	19.50	0.04 ‡	Pass

-- End of measurement results--

Certificate Number 2019001804

Frequency [Hz]

Frequency [Hz]	Test Result	Upper limit	Result
6.20	[dB re 1 µV]	[dB re 1 µV]	
6.30	9.80	14.60	Pass
8.00	7.20	13.10	Pass
10.00	7.90	11.70	Pass
12.50	6.50	10.50	Pass
16.00	7.70	9.50	Pass
20.00	4.80	8.50	Pass
25.00	3.70	7.50	Pass
31.50	3.30	6.60	Pass
40.00	1.80	5.70	Pass
50.00	0.90	4.80	Pass
63.00	0.70	3.90	Pass
80.00	-0.60	3.00	Pass
100.00	-1.60	2.20	Pass
125.00	-2.20	1.40	Pass
160.00	-3.10	0.70	Pass
200.00	-3.70	0.00	Pass
250.00	-4.30	-0.60	Pass
315.00	-5.20	-1.20	Pass
400.00	-6.30	-1.80	Pass
500.00	-6.40	-2.40	Pass
630.00	-7.00	-3.00	Pass
800.00	-7.40	-3.50	Pass
1,000.00	-7.60	-4.00	Pass
1,250.00	-7.70	-4.40	Pass
1,600.00	-7.70	-4.60	Pass
2,000.00	-7.80	-4.70	Pass
2,500.00	-7.60	-4.70	Pass
3,150.00	-7.30	-4.60	Pass
4,000.00	-6.70	-4.40	Pass
5,000.00	-6.30	-4.00	Pass
6,300.00	-5.80	-3.60	Pass
8,000.00	-5.00	-3.10	Pass
10,000.00	-4.20	-2.60	Pass
12,500.00	-3.40	-2.00	Pass
16,000,00	2.50	1.40	1 435

-- End of measurement results--

-1.40

-0.70

-2.50

-2.00

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo,UT 84601,United States 716-684-0001

16,000.00

20,000.00

Pass

Pass

Certificate Number 2019001804

Self-generated Noise

Bandwidth	Test Result [µV]	Test Result [dB re 1 μV]	Upper limit [dB re 1 µV]	Result
A-weighted (1 Hz - 20 kHz)	1.88	5.50	8.00	Pass
Broadband (1 Hz - 20 kHz)	4.12	12.30	15.50	Pass

Signatory: Malinda Madsen

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo,UT 84601,United States 716-684-0001

Calibration Certificate

Certificate Number 2019003678 Customer: SWCA Suite 1700 20 East Thomas Road Phoenix,AZ 85012,United States

Model Number	CAL200	0	Procedure Number	D0001.8386		
Serial Number	16651		Technician	Technician Scott Mor		mery
Test Results	Pass		Calibration Date	25 Ma	r 2019	
Initial Condition As		nufactured	Calibration Due			
	AS Wall	lulaciuleu	Temperature	24	°C	± 0.3 °C
Description	Larson	Davis CAL200 Acoustic Calibrator	Humidity	33	%RH	± 3 %RH
			Static Pressure	101.1	kPa	±1kPa
Evaluation Metho	od	The data is aquired by the insert volt circuit sensitivity. Data reported in dB	한 국가에 가장 방법을 통하는 것이 가장에서 이렇게 가장하는 독일이다.	ne refere	nce mic	crophone's open
Compliance Stan	dards	Compliant to Manufacturer Specifica	the second state of the se	following	g standa	ards:
		IEC 60942:2017	ANSI S1.40-2006			

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

	Standards Used	1		
Description	Cal Date	Cal Due	Cal Standard	
Agilent 34401A DMM	09/06/2018	09/06/2019	001021	
Larson Davis Model 2900 Real Time Analyzer	04/10/2018	04/10/2019	001051	
Microphone Calibration System	03/04/2019	03/04/2020	005446	
1/2" Preamplifier	09/20/2018	09/20/2019	006506	
Larson Davis 1/2" Preamplifier 7-pin LEMO	08/07/2018	08/07/2019	006507	
1/2 inch Microphone - RI - 200V	05/10/2018	05/10/2019	006510	
Pressure Transducer	07/18/2018	07/18/2019	007368	

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo,UT 84601,United States 716-684-0001

Page 1 of 3

3/28/2019 4:07:34PM

D0001.8410 Rev B

Certificate Number 2019003678 Output Level

Nominal Level [dB]	Pressure [kPa]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
114	101.3	114.01	113.80	114.20	0.14	Pass
94	101.1	94.03	93.80	94.20	0.15	Pass

-- End of measurement results--

Frequency

Nominal Level [dB]	Pressure [kPa]	Test Result [Hz]	Lower limit [Hz]	Upper limit [Hz]	Expanded Uncertainty [Hz]	Result
114	101.3	1,000.19	990.00	1,010.00	0.20	Pass
94	101.1	1,000.20	990.00	1,010.00	0.20	Pass

-- End of measurement results--

Total Harmonic Distortion + Noise (THD+N)

Nominal Level	Pressure	Test Result	Lower limit	Upper limit	Expanded Uncertainty	
[dB]	[kPa]	[%]	[%]	[%]	[%]	Result
114	101.3	0.37	0.00	2.00	0.25 ±	Pass
94	101.1	0.43	0.00	2.00	0.25 ±	Pass

-- End of measurement results--

Level Change Over Pressure

Tested at: 114 dB, 24 °C, 29 %RH

Nominal Pressure [kPa]	Pressure [kPa]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
108.0	108.0	-0.01	-0.30	0.30	0.04 ‡	Pass
101.3	101.6	0.00	-0.30	0.30	0.04 ‡	Pass
92.0	91.9	0.02	-0.30	0.30	0.04 ‡	Pass
83.0	82.9	0.02	-0.30	0.30	0.04 ‡	Pass
74.0	73.9	-0.01	-0.30	0.30	0.04 ‡	Pass
65.0	65.0	-0.08	-0.30	0.30	0.04 ±	Pass

-- End of measurement results--

Frequency Change Over Pressure

Nominal Pressure	Pressure	Test Result	Lower limit	Upper limit	Expanded Uncertainty	Result
[kPa]	[kPa]	[Hz]	[Hz]	[Hz]	[Hz]	
108.0	108.0	0.00	-10.00	10.00	0.20 ‡	Pass
101.3	101.6	0.00	-10.00	10.00	0.20 ‡	Pass
92.0	91.9	0.00	-10.00	10.00	0.20 ‡	Pass
83.0	82.9	0.00	-10.00	10.00	0.20 ‡	Pass
74.0	73.9	-0.01	-10.00	10.00	0.20 ‡	Pass
65.0	65.0	-0.01	-10.00	10.00	0.20 ±	Pass

-- End of measurement results--

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo,UT 84601,United States 716-684-0001

3/28/2019 4:07:34PM

Certificate Number 2019003678 Total Harmonic Distortion + Noise (THD+N) Over Pressure

Tested at: 114 dB, 24 °C, 29 %RH

Nominal Pressure [kPa]	Pressure [kPa]	Test Result	Lower limit	Upper limit	Expanded Uncertainty	Result
108.0	108.0	[%]	[%]	[%]	[%]	anterior
		0.37	0.00	2.00	0.25 ‡	Pass
101.3	101.6	0.36	0.00	2.00	0.25 ‡	Pass
92.0	91.9	0.35	0.00	2.00	0.25 ‡	Pass
83.0	82.9	0.35	0.00	2.00	0.25 ‡	Pass
74.0	73.9	0.35	0.00	2.00	0.25 ±	Pass
65.0	65.0	0.36	0.00	2.00	0.25 ‡	Pass
			End of measurement	nt results	2011-07-07	

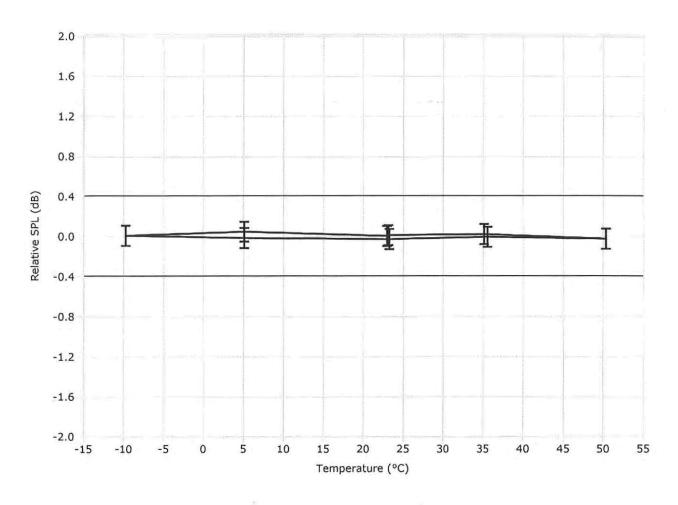
Signatory: Scott Montgomery

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo,UT 84601,United States 716-684-0001

3/28/2019 4:07:34PM

Page 3 of 3

D0001.8410 Rev B



Model CAL200 Relative SPL vs. Temperature

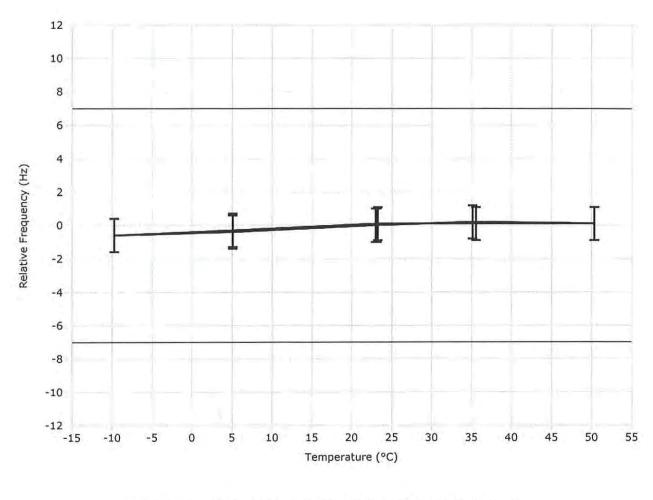
Larson Davis Model CAL200 Serial Number: 16651

Model CAL200 Relative SPL vs. Temperature at 50% RH.

A 2559 Mic (SN: 2989) with a PRM901 Preamp (SN: 0167), station 14 was used to check the levels.

Test Date: 12 Feb 2019 4:21:02 PM

0.1dB expanded uncertainty at ~95% confidence level (k=2)


Sequence File: CAL200.SEQ

Test Location: Larson Davis, a division of PCB Piezotronics, Inc. 1681 West 820 North, Provo, Utah 84601 Tel: 716 684-0001 www.LarsonDavis.com

Page 1 of 2

Model CAL200 Relative Frequency vs. Temperature at 50% RH. A 2559 Mic (SN: 2989) with a PRM901 Preamp (SN: 0167), station 14 was used to check the levels.

Test Date: 12 Feb 2019 4:21:02 PM

1.0 Hz expanded uncertainty at ~95% confidence level (k=2)

Sequence File: CAL200.SEQ

Test Location: Larson Davis, a division of PCB Piezotronics, Inc. 1681 West 820 North, Provo, Utah 84601 Tel: 716 684-0001 www.LarsonDavis.com

Page 2 of 2

Calibration Certificate

Certificate Number 2019001803 Customer: SWCA Suite 1700 20 East Thomas Road Phoenix,AZ 85012,United States

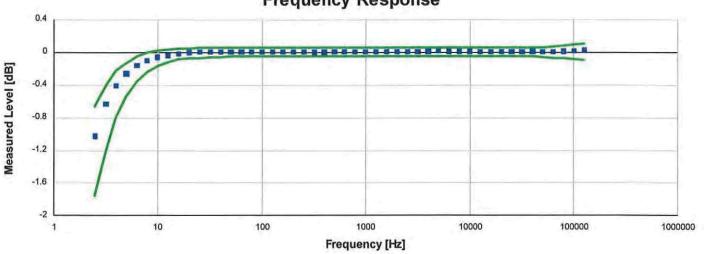
PRM831	Procedure Number	D0001.8383		
058503	Technician	Malinda Madsen		sen
Pass	Calibration Date	12 Feb 2019		
As Manufasturad	Calibration Due			
As Manufactured	Temperature	23.29	°C	± 0.01 °C
Larson Davis 1/2" Preamplifier for Model 831	Humidity	50.7	%RH	± 0.5 %RH
Type 1	Static Pressure	86.17	kPa	± 0.03 kPa
	058503 Pass As Manufactured Larson Davis 1/2" Preamplifier for Model 831 Type 1 od Tested electrically using a 12.0 pF cap	058503 Technician Pass Calibration Date As Manufactured Calibration Due Larson Davis 1/2" Preamplifier for Model 831 Humidity Type 1 Static Pressure M Tested electrically using a 12.0 pF capacitor to simulate microphere	058503 Technician Malind Pass Calibration Date 12 Feb As Manufactured Calibration Due 12 Feb Larson Davis 1/2" Preamplifier for Model 831 Humidity 50.7 Type 1 Static Pressure 86.17 Md Tested electrically using a 12.0 pF capacitor to simulate microphone capacitor 12 Feb	058503TechnicianMalinda MadsPassCalibration Date12 Feb 2019As ManufacturedCalibration DueCalibration DueLarson Davis 1/2" Preamplifier for Model 831Humidity50.7 %RHType 1Static Pressure86.17 kPa

Compliance Standards Compliant to Manufacturer Specifications

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.


The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Standards Used										
Description	Cal Date	Cal Due	Cal Standard							
Larson Davis Model 2900 Real Time Analyzer	02/16/2018	02/16/2019	001447							
Hart Scientific 2626-H Temperature Probe	08/19/2018	08/19/2019	006798							
Agilent 34401A DMM	07/11/2018	07/11/2019	007116							
SRS DS360 Ultra Low Distortion Generator	03/16/2018	03/16/2019	007174							

Frequency Response

Frequency response electrically tested at 120.0 dB re 1 μV

Frequency [Hz]	Test Result [dB re 1 kHz]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
2.50	-1.03	-1.76	-0.66	0.12	Pass
3.20	-0.64	-1.20	-0.40	0.12	Pass
4.00	-0.41	-0.81	-0.23	0.12	Pass
5.00	-0.26	-0.53	-0.13	0.12	Pass
6.30	-0.16	-0.36	-0.05	0.12	Pass
7.90	-0.10	-0.24	-0.01	0.12	Pass
10.00	-0.06	-0.17	0.03	0.12	Pass
12.60	-0.04	-0.13	0.04	0.12	Pass
15.80	-0.02	-0.09	0.04	0.12	Pass
20.00	0.00	-0.08	0.05	0.12	Pass
25.10	0.00	-0.07	0.05	0.12	Pass
31.60	0.00	-0.07	0.05	0.12	Pass
39.80	0.00	-0.06	0.05	0.12	Pass
50.10	0.01	-0.06	0.05	0.12	Pass
63.10	0.01	-0.05	0.05	0.12	Pass
79.40	0.01	-0.05	0.05	0.12	Pass
100.00	0.01	-0.05	0.05	0.12	Pass
125.90	0.00	-0.05	0.05	0.12	Pass
158.50	0.00	-0.05	0.05	0.12	Pass
199.50	0.00	-0.05	0.05	0.12	Pass
251.20	0.00	-0.05	0.05	0.12	Pass
316.20	0.00	-0.05	0.05	0.12	Pass
398.10	0.00	-0.05	0.05	0.12	Pass
501.20	0.00	-0.05	0.05	0.12	Pass
631.00	0.00	-0.05	0.05	0.12	Pass
794.30	0.00	-0.05	0.05	0.12	Pass
1,000.00	0.00	-0.05	0.05	0.12	Pass
1,258.90	0.00	-0.05	0.05	0.12	Pass
1,584.90	0.01	-0.05	0.05	0.12	Pass
1,995.30	0.01	-0.05	0.05	0.12	Pass
2,511.90	0.01	-0.05	0.05	0.12	Pass
3,162.30	0.01	-0.05	0.05	0.12	Pass

LARSON DAVIS - A PCB PIEZOTRONICS DIV.

1681 West 820 North

Provo,UT 84601,United States

716-684-0001

	Certificate No	umber 2019001803			
requency [Hz]	Test Result [dB re 1 kHz]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
3,981.10	0.01	-0.05	0.05	0.12	Pass
5,011.90	0.01	-0.05	0.05	0.12	Pass
6,309.60	0.01	-0.05	0.05	0.12	Pass
7,943.30	0.01	-0.05	0.05	0.12	Pass
10,000.00	0.01	-0.05	0.05	0.12	Pass
12,589.30	0.00	-0.05	0.05	0.12	Pass
15,848.90	0.00	-0.05	0.05	0.12	Pass
19,952.60	0.00	-0.05	0.05	0.12	Pass
25,118.90	0.01	-0.05	0.05	0.12	Pass
31,622.80	0.01	-0.05	0.05	0.12	Pass
39,810.70	0.01	-0.05	0.05	0.12	Pass
50,118.70	0.00	-0.06	0.06	0.12	Pass
63,095.70	0.01	-0.07	0.07	0.12	Pass
79,432.80	0.01	-0.08	0.08	0.12	Pass
100,000.00	0.02	-0.09	0.09	0.12	Pass
125,892.50	0.03	-0.10	0.10	0.26	Pass

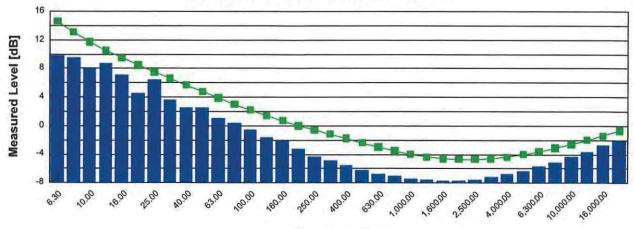
Gain Measurement

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
Output Gain @ 1 kHz	-0.14	-0.45	-0.03	0.12	Pass

-- End of measurement results--

DC Bias Measurement

Measurement	Test Result [V]	Lower limit [V]	Upper limit [V]	Expanded Uncertainty [V]	Result
DC Voltage	18.61	15.50	19.50	0.04 ‡	Pass


-- End of measurement results--

Certificate Number 2019001803

Frequency [Hz]

		10 A	
Frequency [Hz]	Test Result	Upper limit	
	[dB re 1 µV]	[dB re 1 µV]	Result
6.30	9.80	14.60	Pass
8.00	9.50	13.10	Pass
10.00	8.10	11.70	Pass
12.50	8.70	10.50	Pass
16.00	7.10	9.50	Pass
20.00	4.60	8.50	Pass
25.00	6.50	7.50	Pass
31.50	3.60	6.60	Pass
40.00	2.50	5.70	Pass
50.00	2.50	4.80	Pass
63.00	1.00	3.90	Pass
80.00	0.40	3.00	Pass
100.00	-0.60	2.20	Pass
125.00	-1.70	1.40	Pass
160.00	-2.10	0.70	Pass
200.00	-3.20	0.00	Pass
250.00	-4.40	-0.60	Pass
315.00	-4.90	-1.20	Pass
400.00	-5.60	-1.80	Pass
500.00	-6.20	-2.40	Pass
630.00	-6.70	-3.00	Pass
800.00	-7.00	-3.50	Pass
1,000.00	-7.40	-4.00	Pass
1,250.00	-7.60	-4.40	Pass
1,600.00	-7.70	-4.60	Pass
2,000.00	-7.70	-4.70	Pass
2,500.00	-7.60	-4.70	Pass
3,150.00	-7.20	-4.60	Pass
4,000.00	-6.80	-4.40	Pass
5,000.00	-6.30	-4.00	Pass
6,300.00	-5.70	-3.60	Pass
8,000.00	-5.10	-3.10	Pass
10,000.00	-4.40	-2.60	Pass
12,500.00	-3.60	-2.00	Pass
16,000.00	-2.70	-1.40	Pass
20,000.00	-2.10	-0.70	Pass
		and the second	

-- End of measurement results--

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo,UT 84601,United States 716-684-0001

Certificate Number 2019001803

Self-generated Noise

Test Result [µV]	Test Result [dB re 1 μV]	Upper limit [dB re 1 µV]	Result
1.91	5.60	8.00	Pass
4.57	13.20	15.50	Pass
	1.91	Test Result [μV] [dB re 1 μV] 1.91 5.60	Test Result [μV] [dB re 1 μV] [dB re 1 μV] 1.91 5.60 8.00

Signatory: Malinda Madsen

LARSON DAVIS - A PCB PIEZOTRONICS DIV	1.
1681 West 820 North	
Provo,UT 84601,United States	
716-684-0001	

3/29/2019 7:51:27AM

Calibration Certificate

Certificate Numb	er 20190	03911					
Customer:							
SWCA							
Suite 1700							
20 East Thomas R							
Phoenix, AZ 85012	, United	States					
Model Number	831C		Procedure Number	D0001	.8384		
Serial Number	10737		Technician	Ron H	arris		
Test Results	Pass		Calibration Date	29 Mar 2019			
Initial Condition	As Ma	nufactured	Calibration Due				
Description La	AS IVIAI	lulaciuleu	Temperature	23.58	°C	± 0.25 °C	
	Larson Davis Model 831C		Humidity	49.7	%RH	± 2.0 %RH	
	Class '	Sound Level Meter	Static Pressure	86.15	kPa	± 0.13 kPa	
	Firmw	are Revision: 03.3.0R3					
Evaluation Metho	bd	Tested with:	Data reported in dB re 20 μPa.				
		Larson Davis PRM831, S/N 058503					
		PCB 377B02. S/N 311601					
		Larson Davis CAL200. S/N 9079					
		Larson Davis CAL291. S/N 0108					
Compliance Star	dards	Compliant to Manufacturer Specificati	ons and the following standa	ards whe	n combi	ined with	
		Calibration Certificate from procedure	D0001.8378:				
		IEC 60651:2001 Type 1	ANSI S1.4-2014 Class 1				
		IEC 60804:2000 Type 1	ANSI S1.4 (R2006) Type	9 1			
		IEC 61260:2014 Class 1	ANSI S1.11-2014 Class	1			
		1EC 01200.2014 Class 1	ANOI 01.11-2014 Class				

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005.

Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis SoundAdvisor Model 831C Reference Manual, I831C.01 Rev B, 2017-03-31

For 1/4" microphones, the Larson Davis ADP024 1/4" to 1/2" adaptor is used with the calibrators and the Larson Davis ADP043 1/4" to

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Certificate Number 2019003911

1/2" adaptor is used with the preamplifier.

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa; Reference Range: 0 dB gain

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.

No Pattern approval for IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 available.

The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3, for the environmental conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 because (a) evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 or correction data for acoustical test of frequency weighting were not provided in the Instruction Manual and (b) because the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3 cover only a limited subset of the specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1.

3	Standards Used	1	
Description	Cal Date	Cal Due	Cal Standard
Larson Davis CAL291 Residual Intensity Calibrator	2018-09-19	2019-09-19	001250
SRS DS360 Ultra Low Distortion Generator	2018-06-21	2019-06-21	006311
Hart Scientific 2626-H Temperature Probe	2018-08-19	2019-08-19	006798
Larson Davis CAL200 Acoustic Calibrator	2018-07-24	2019-07-24	007027
Larson Davis Model 831	2019-02-22	2020-02-22	007182
PCB 377A13 1/2 inch Prepolarized Pressure Microphone	2019-03-06	2020-03-06	007185

Acoustic Calibration

Measured according to IEC 61672-3:2013 10 and ANSI S1.4-2014 Part 3: 10

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result	
1000 Hz	114.01	113.80	114.20	0.14	Pass	

Acoustic Signal Tests, C-weighting

Measured according to IEC 61672-3:2013 12 and ANSI S1.4-2014 Part 3: 12 using a comparison coupler with Unit Under Test (UUT) and reference SLM using slow time-weighted sound level for compliance to IEC 61672-1:2013 5.5; ANSI S1.4-2014 Part 1:5.5

Frequency [Hz]	Test Result [dB]	Expected [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
125	-0.21	-0.20	-1.20	0.80	0.23	Pass
1000	0.14	0.00	-0.70	0.70	0.23	Pass
8000	-2.64	-3.00	-5.50	-1.50	0.32	Pass

-- End of measurement results--

Self-generated Noise

Measured according to IEC 61672-3:2013 11.1 and ANS	SI S1.4-2014 Part 3: 11.1	
Measurement	Test Result [dB]	
A-weighted, 20 dB gain	45.90	
	End of measurement results	
LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo. UT 84601, United States		©LARSON DAVIS

2019-3-29T09:09:22

716-684-0001

ACCREDITED

Page 2 of 3

Certificate Number 2019003911

-- End of Report--

Signatory: Ron Harris

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2019-3-29T09:09:22

Page 3 of 3

D0001.8406 Rev C

~ Certificate of Calibration and Compliance ~

Microphone Model: 377B02

Serial Number: 311602

Manufacturer: PCB

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Manufacturer	Model #	Serial #	PCB Control #	Cal Date	Due Date
National Instruments	PCIe-6351	1896F08	CA1918	10/19/18	10/18/19
Larson Davis	PRM915	132 CA1552		11/29/18	11/29/19
Larson Davis	PRM902	4407	CA1248	5/23/18	5/23/19
Larson Davis	PRM916	125 TA469 6/26/18		6/26/19	
Larson Davis	CAL250	5026	5026 CA1278 9/19/18		9/19/19
Larson Davis	2201	115	TA472	4/12/18	4/12/19
Bruel & Kjaer	4192	2764626	CA1636	8/15/18	8/15/19
Larson Davis	GPRM902	4163	CA1089	6/12/18	6/12/19
Newport	iTHX-SD/N	1080002	CA1511	2/8/19	2/7/20
Larson Davis	PRA951-4	234	CA1154	10/24/18	10/24/19
Larson Davis	PRM915	147	CA2179	6/8/18	6/7/19
PCB	68510-02	N/A	CA2672	12/21/18	12/20/19
0	0	0	0	not required	not required
0	0	0	0	not required	not required
0 0		0	0	not required	not required

Reference Equipment

Frequency sweep performed with B&K UA0033 electrostatic actuator.

Condition of Unit

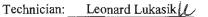
As Found: n/a

As Left: New Unit, In Tolerance

Notes

1. Calibration of reference equipment is traceable to one or more of the following National Labs; NIST, PTB or DFM.

2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc.


3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540.3 and ISO 17025.

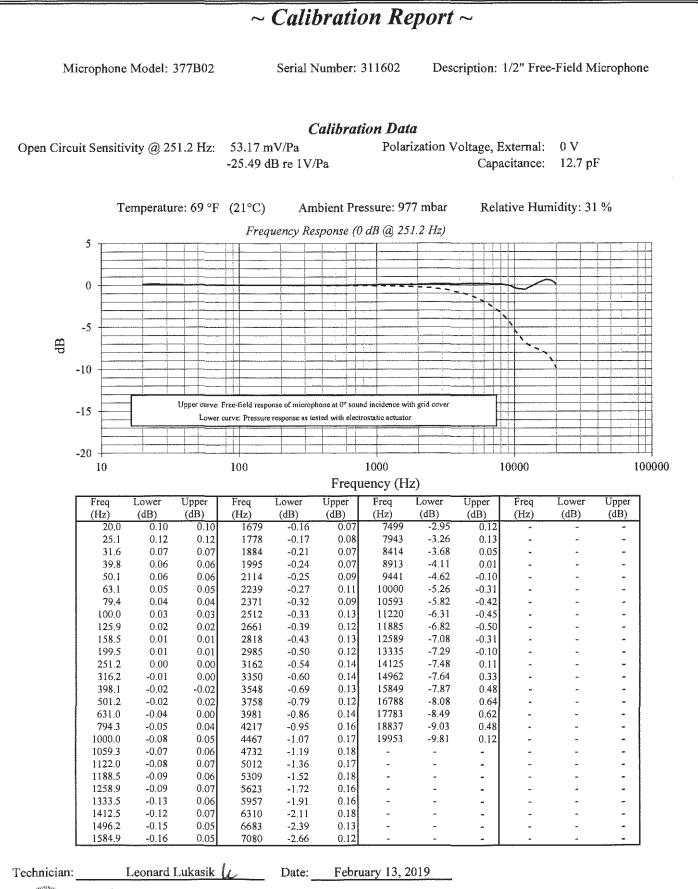
4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications.

5. Open Circuit Sensitivity is measured using the insertion voltage method following procedure AT603-5.

6. Measurement uncertainty (95% confidence level with coverage factor of 2) for sensitivity is +/-0.20 dB.

7. Unit calibrated per ACS-20.

Date: February 13, 2019



3425 Walden Avenue, Depew, New York, 14043 TEL: 888-684-0013

FAX: 716-685-3886 www.pcb.com

Page 1 of 2

3425 Walden Avenue, Depew, New York, 14043 TEL: 888-684-0013 FAX: 716-685-3886 www.pcb.com

ID:CAI.112-3832926196,083+0

Page 2 of 2

~ Certificate of Calibration and Compliance ~

Microphone Model: 377B02

Serial Number: 311601

Manufacturer: PCB

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Manufacturer	Model #	Serial #	PCB Control #	Cal Date	Due Date
National Instruments	PCIe-6351	1896F08	CA1918	10/19/18	10/18/19
Larson Davis	PRM915	132	CA1552	11/29/18	11/29/19
Larson Davis	PRM902	4407	CA1248	5/23/18	5/23/19
Larson Davis	PRM916	125	TA469	6/26/18	6/26/19
Larson Davis	CAL250	5026	CA1278	9/19/18	9/19/19
Larson Davis	2201	115	TA472	4/12/18	4/12/19
Bruel & Kjaer	4192	2764626	2764626 CA1636 8/15/1		8/15/19
Larson Davis	GPRM902	4163	CA1089	6/12/18	6/12/19
Newport	iTHX-SD/N	1080002	CA1511	2/8/19	2/7/20
Larson Davis	PRA951-4	234	CA1154	10/24/18	10/24/19
Larson Davis	PRM915	147	CA2179	6/8/18	6/7/19
PCB	68510-02	N/A	CA2672	12/21/18	12/20/19
0	0	0	0	0 not required	
0	0	0	0	not required	not required
0	0	0 0 not required		not required	not required

Reference Equipment

Frequency sweep performed with B&K UA0033 electrostatic actuator.

Condition of Unit

As Found: n/a

As Left: New Unit, In Tolerance

Notes

1. Calibration of reference equipment is traceable to one or more of the following National Labs; NIST, PTB or DFM.

2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc.

3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540.3 and ISO 17025.

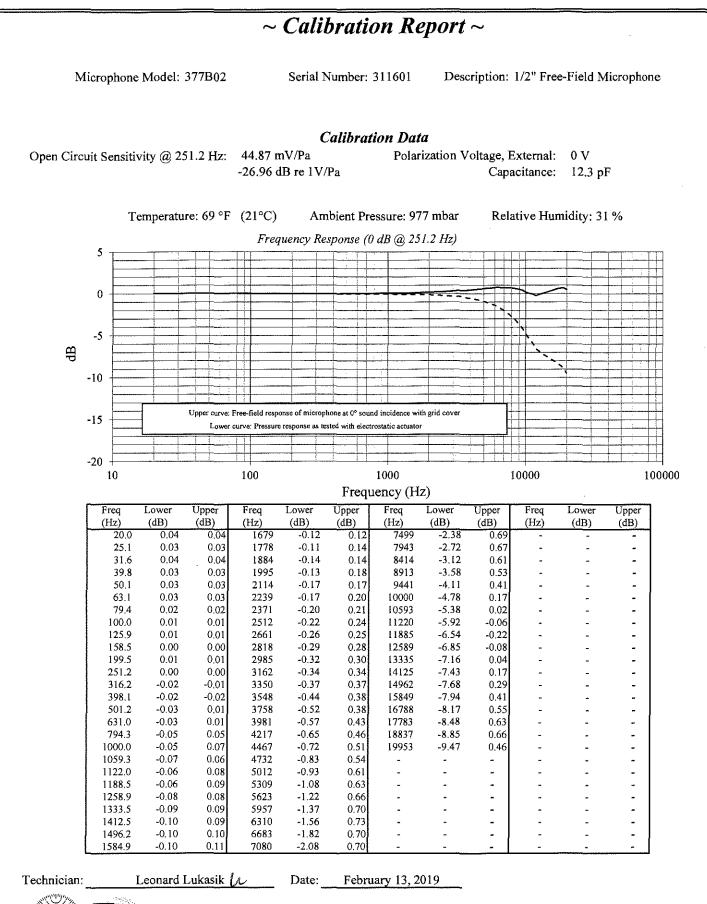
4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications.

5. Open Circuit Sensitivity is measured using the insertion voltage method following procedure AT603-5,

6. Measurement uncertainty (95% confidence level with coverage factor of 2) for sensitivity is +/-0.20 dB.

7. Unit calibrated per ACS-20.

Technician: Leonard Lukasik


Date: February 13, 2019

3425 Walden Avenue, Depew, New York, 14043 TEL: 888-684-0013 FAX: 716-685-3886 www.pcb.com

ID:CAL112-3632925915,644+0

3425 Walden Avenue, Depew, New York, 14043 TEL: 888-684-0013 FAX: 716-685-3886 www.pcb.com

ID:CAL112-3632925915.644+0

APPENDIX C Weather Data

Fleming Solar Project Baseline Noise Survey Weather Data

Station: BLUE GRASS AIRPORT STATION - FLEMINGSBURG ID: KKYFLEMI5

Start date:	4/19/2021		End date:	4/2	1/2021				
Day	Time	Ten	nperature	Hourly Wind	Max Gust	Precipitation	Humidity	Daily max	Daily min
Day	Time	F	С	mph	mph	in	%	F	F
	0:00	47.00	8.33	0.00	1.00	0.00	81		
	1:00	46.00	7.78	1.00	1.00	0.00	84		
	2:00	44.00	6.67	0.00	0.00	0.00	86		
	3:00	43.00	6.11	0.00	0.00	0.00	89		
	4:00	42.00	5.56	0.00	0.00	0.00	91		
	5:00	40.00	4.44	0.00	0.00	0.00	93		
I F	6:00	41.00	5.00	0.00	0.00	0.00	92		
I E	7:00	43.00	6.11	1.00	2.00	0.00	89		40.00
	8:00	46.00	7.78	1.00	2.00	0.00	88		
	9:00	50.00	10.00	2.00	2.00	0.00	82		
	10:00	56.00	13.33	3.00	3.00	0.00	72		
4/19/2021	11:00	59.00	15.00	2.00	3.00	0.00	65	65.00	
4/19/2021	12:00	61.00	16.11	2.00	3.00	0.00	59	05.00	40.00
	13:00	62.00	16.67	3.00	4.00	0.00	54		
	14:00	64.00	17.78	3.00	5.00	0.00	51		
	15:00	64.00	17.78	3.00	4.00	0.00	50		
	16:00	65.00	18.33	4.00	6.00	0.00	46		
	17:00	65.00	18.33	5.00	6.00	0.00	44		
	18:00	64.00	17.78	4.00	6.00	0.00	43		
	19:00	61.00	16.11	3.00	4.00	0.00	49		
	20:00	57.00	13.89	1.00	1.00	0.00	58		
	21:00	53.00	11.67	1.00	1.00	0.00	64		
	22:00	52.00	11.11	1.00	1.00	0.00	67		
	23:00	51.00	10.56	1.00	1.00	0.00	68		

Fleming Solar Project Baseline Noise Survey Weather Data

Station: BLUE GRASS AIRPORT STATION - FLEMINGSBURG ID: KKYFLEMI5

Start date:	4/19/2021		End date:	4/2	1/2021				
Day	Time	Ten	nperature	Hourly Wind	Max Gust	Precipitation	Humidity	Daily max	Daily min
Day	Time	F	С	mph	mph	in	%	F	F
	0:00	48.00	8.89	1.00	1.00	0.00	73		
	1:00	47.00	8.33	0.00	1.00	0.00	76		
	2:00	45.00	7.22	0.00	0.00	0.00	80		
	3:00	44.00	6.67	1.00	1.00	0.00	83		
	4:00	43.00	6.11	0.00	0.00	0.00	85		
	5:00	40.00	4.44	0.00	0.00	0.00	92		
	6:00	39.00	3.89	0.00	0.00	0.00	95		
	7:00	40.00	4.44	0.00	0.00	0.00	97		
	8:00	45.00	7.22	1.00	1.00	0.00	90		
	9:00	50.00	10.00	1.00	2.00	0.00	79		
	10:00	56.00	13.33	2.00	2.00	0.00	69		
4/20/2021	11:00	60.00	15.56	2.00	2.00	0.00	66	68.00	39.00
4/20/2021	12:00	63.00	17.22	3.00	5.00	0.00	57	00.00	39.00
Ι Γ	13:00	66.00	18.89	4.50	6.00	0.00	53		
	14:00	68.00	20.00	6.00	7.00	0.00	46		
	15:00	68.00	20.00	5.00	8.00	0.00	45		
	16:00	68.00	20.00	5.00	6.00	0.00	45		
	17:00	67.00	19.44	4.00	5.00	0.00	45		
	18:00	66.00	18.89	4.00	5.00	0.00	45		
	19:00	64.00	17.78	2.00	2.00	0.00	48		
[20:00	58.00	14.44	0.00	1.00	0.00	56		
	21:00	53.00	11.67	1.00	1.00	0.00	66		
	22:00	49.00	9.44	6.00	8.00	0.00	73		
	23:00	45.00	7.22	5.00	7.00	0.00	73		

Fleming Solar Project Baseline Noise Survey Weather Data

Station: BLUE GRASS AIRPORT STATION - FLEMINGSBURG ID: KKYFLEMI5

Start date:	4/19/2021		End date:	4/2	1/2021				
Day	Time	Ten	nperature	Hourly Wind	Max Gust	Precipitation	Humidity	Daily max	Daily min
Day	Time	F	С	mph	mph	in	%	F	F
	0:00	41.00	5.00	5.00	7.00	0.00	78		
	1:00	39.00	3.89	7.00	9.00	0.00	84		
	2:00	35.00	1.67	5.00	7.00	0.00	91		
I F	3:00	32.00	0.00	3.00	4.00	0.00	97		
	4:00	32.00	0.00	3.00	4.00	0.00	98		
I F	5:00	32.00	0.00	3.00	3.00	0.00	98		
	6:00	32.00	0.00	3.00	4.00	0.00	99		
	7:00	32.00	0.00	3.00	3.00	0.00	99		
Ι Γ	8:00	32.00	0.00	2.00	3.00	0.00	98		
Ι Γ	9:00	33.00	0.56	3.00	5.00	0.00	97		
	10:00	33.00	0.56	5.00	7.00	0.00	95		
4/21/2021	11:00	36.00	2.22	5.00	7.00	0.00	86	43.00	32.00
4/21/2021	12:00	38.00	3.33	5.00	6.00	0.00	80	43.00	32.00
I F	13:00	40.00	4.44	4.00	6.00	0.00	73		
I F	14:00	40.00	4.44	5.00	7.00	0.00	64		
Ι Γ	15:00	41.00	5.00	4.00	6.00	0.00	61		
Ι Γ	16:00	43.00	6.11	4.00	5.00	0.00	60		
Ι Γ	17:00	43.00	6.11	3.00	4.00	0.00	61		
Ι Γ	18:00	41.00	5.00	3.00	4.00	0.00	60		
	19:00	40.00	4.44	2.00	3.00	0.00	68		
[20:00	36.00	2.22	0.00	0.00	0.00	74		
	21:00	34.00	1.11	0.00	1.00	0.00	79]	
	22:00	34.00	1.11	1.00	1.00	0.00	83]	
	23:00	33.00	0.56	0.00	0.00	0.00	89		

APPENDIX D Field Logs

Location:

Coordinates	Lat: Lon: Elevation (ft):	38.44288 -83.838902 890	Calibrator	Model : S/N:	<u>CAL200</u> 16651
Sound Meter	Model : S/N:	LD 831C 0010737	Preamplifier	Model : S/N:	PRM831 058503
Microphone	Model : S/N:	<u>377B02</u> 311601			
Monitoring	Start Time: End Time:	4/19/2021 3:23PM 4/21/2021 4:47PM	Calibrations	Pre-Test: Post-Test:	0.13

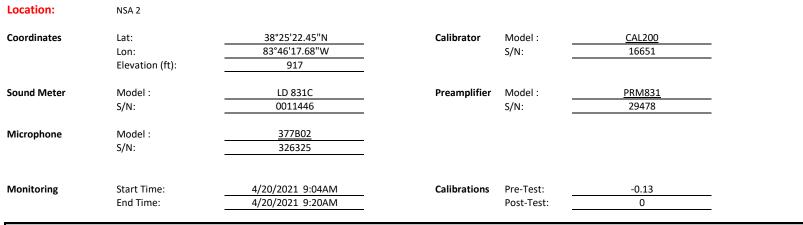
Location Description

This monitor location is next to Nepten Road with little traffic. The area is a rural grassland with scattered trees. Birds are located in the area.

Parameter	19-Apr	21-Apr				
Parameter	15:23	16:47				
Duration hh:mm	0:00	49:23:26				
Memory						
Battery						
Exceedance Events						
Overall Peak						
Overall Laeq		51.00				
LDN		60.50				
Day		44.50				
Night		54.70				

Event	Day	Time	Comment (Dominant Background Noise Source)

Location:

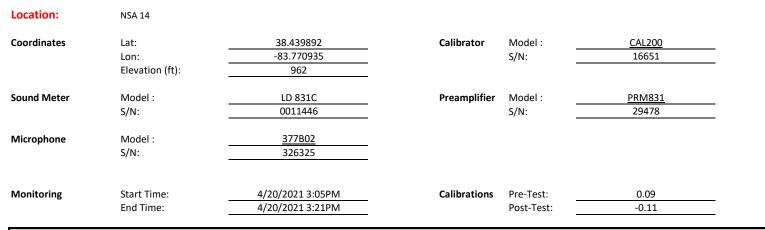

Coordinates	Lat: Lon: Elevation (ft):	38.439939 -83.792827	Calibrator	Model : S/N:	<u>CAL200</u> 16651
Sound Meter	Model : S/N:	LD 831C 0010739	Preamplifier	Model : S/N:	<u>PRM831</u> 058504
Microphone	Model : S/N:	<u>377B02</u> 311602			
Monitoring	Start Time: End Time:	4/19/2021 2:35PM 4/21/2021 4:08PM	Calibrations	Pre-Test: Post-Test:	0.16

Location Description

This monitor location is 415 feet from Kentucky 559 with light traffic. Birds and bees can be heard in the area. This region has a hilly and grassy landscape with scattered patches of trees. Cows are located on the adjacent property to the west.

Parameter	19-Apr	21-Apr		
Parameter	14:35	16:08		
Duration hh:mm	0:00	49:32:53		
Memory				
Battery				
Exceedance Events				
Overall Peak				
Overall Laeq		44.00		
LDN		47.20		
Day		45.30		
Night		39.30		

Event	Day	Time	Comment (Dominant Background Noise Source)

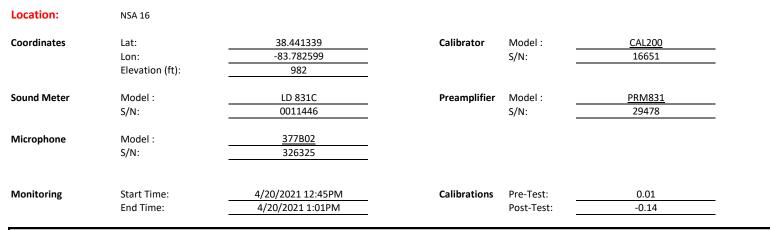


Location Description

Small neigborhood off of highway 57. The area is hilly with patches of scattered trees. Birds were very active in this area.

Parameter	20-Ap	20-Apr							
Parameter	9:04	9:20							
Duration hh:mm	0:00	16:29							
Memory									
Battery									
Exceedance Events									
Overall Peak									
Overall Laeq		47.50							
LDN		47.50							
Day		47.50							
Night									

Event	Day	Time	Comment (Dominant Background Noise Source)
1	20-Apr	9:13	Car drove past the meter.

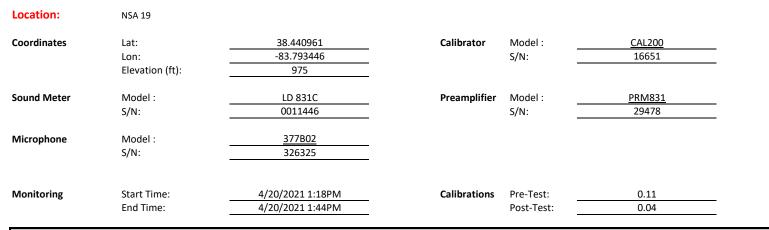


Location Description

The area is hilly with patches of scattered trees. Birds in area. Can hear trees on the other side of the road. Light wind. Light traffic.

Daramotor	20-Ap	r						
Parameter	15:05	15:21						
Duration hh:mm	0:00	16:46						
Memory								
Battery								
Exceedance Events								
Overall Peak								
Overall Laeq		57.80						
LDN		57.80						
Day		57.80						
Night								

Event	Day	Time	Comment (Dominant Background Noise Source)
1	20-Apr	3:12PM	Three Cars
2	20-Apr	3:14PM	Car drove past.
3	20-Apr	3:19PM	Car drove past.

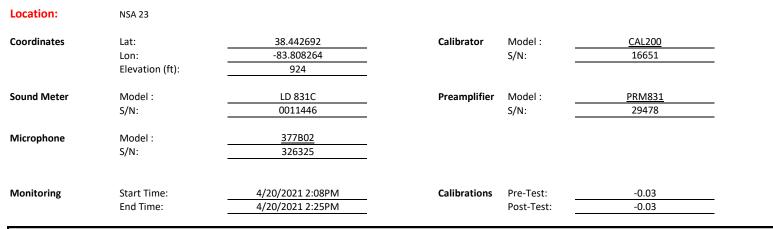


Location Description

The area is hilly with patches of scattered trees. Birds active in the area. Cows in the distance. Light traffic on Kentucky 559.

Deservator	20-Ap	r						
Parameter	12:45	13:01						
Duration hh:mm	0:00	15:55						
Memory								
Battery								
Exceedance Events								
Overall Peak								
Overall Laeq		59.60						
LDN		59.60						
Day		59.60						
Night								

Event	Day	Time	Comment (Dominant Background Noise Source)
1	20-Apr	12:47PM	Car drove past.
2	20-Apr	12:53PM	Car drove past.
3	20-Apr	12:57PM	Car drove past.
4	20-Apr	1:00PM	Car drove past.

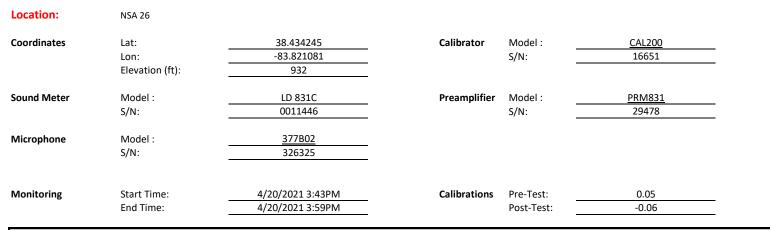


Location Description

The area is hilly with patches of scattered trees. Birds active in the area. Cows in the distance. Light traffic on Kentucky 559. Can hear roosters and bees.

Parameter	20-Apı	ſ					
Parameter	13:18	13:44					
Duration hh:mm	0:00	26:04					
Memory							
Battery							
Exceedance Events							
Overall Peak							
Overall Laeq		51.30					
LDN		51.30					
Day		51.30					
Night							

Event	Day	Time	Comment (Dominant Background Noise Source)
1	20-Apr	1:43PM	Car drove past.

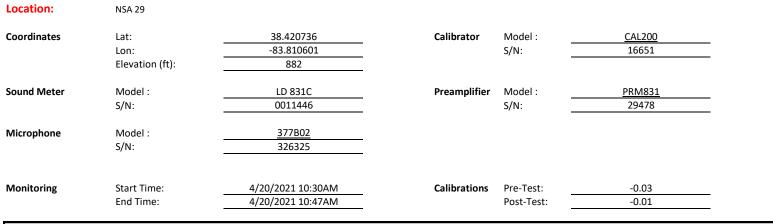


Location Description

The area is hilly with patches of scattered trees. Can hear trees on the other side of the road. Light traffic on road. Light wind.

Parameter	20-Ap	r						
Parameter	14:08	14:25						
Duration hh:mm	0:00	17:34						
Memory								
Battery								
Exceedance Events								
Overall Peak								
Overall Laeq		52.20						
LDN		52.20						
Day		52.20						
Night								

Event	Day	Time	Comment (Dominant Background Noise Source)

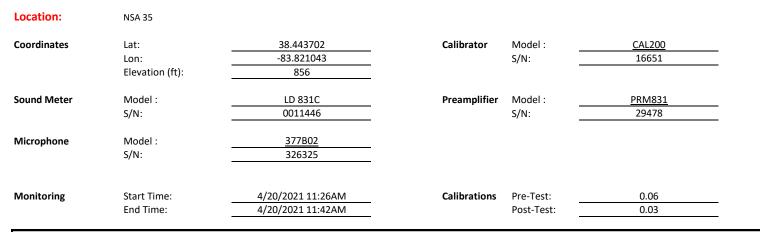


Location Description

The area is hilly with patches of scattered trees. Birds in area. Cows on the other side of the road. Roosters in the distance. Light traffic.

Parameter	20-Apr									
Parameter	15:43	15:59								
Duration hh:mm	0:00	16:01								
Memory										
Battery										
Exceedance Events										
Overall Peak										
Overall Laeq		57.40								
LDN		57.40								
Day		57.40								
Night										

Event	Day	Time	Comment (Dominant Background Noise Source)
1	20-Apr	3:45PM	Car drove past.
2	20-Apr	3:51PM	Two Cars
3	20-Apr	3:53PM	Car drove past.
4	20-Apr	3:54PM	Car drove past.

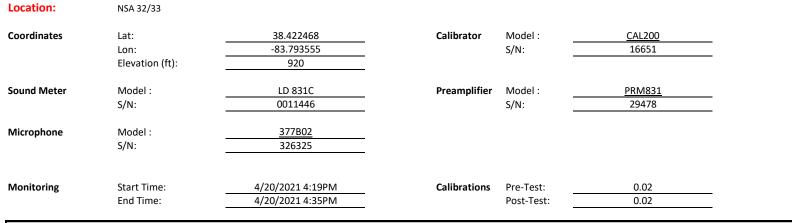


Location Description

The area is hilly with patches of scattered trees. Brids and cows in the area. Right off highway 57.

Parameter	20-Ap	r						
Parameter	10:30	10:47						
Duration hh:mm	0:00	17:22						
Memory								
Battery								
Exceedance Events								
Overall Peak								
Overall Laeq		66.40						
LDN		66.40						
Day		66.40						
Night								

Event	Day	Time	Comment (Dominant Background Noise Source)
1	20-Apr	10:37AM	Geese flew past meter.



Location Description

The area is hilly with patches of scattered trees. Small road off Kentucky 170. Birds and creek nearby. A railroad track runs through thesouthern border of the NSA. Can hear dogs in the distance.

Parameter	20-Apr									
	11:26	11:42								
Duration hh:mm	0:00	15:18								
Memory										
Battery										
Exceedance Events										
Overall Peak										
Overall Laeq		43.30								
LDN		43.30								
Day		43.30								
Night										

Event	Day	Time	Comment (Dominant Background Noise Source)
1	20-Apr	9:13	Car drove past the meter.

Location Description

The area is hilly with patches of scattered trees. Heavy traffic on Highway 32.

Parameter	20-Apr											
Parameter	16:19	16:35										
Duration hh:mm	0:00	16:05										
Memory												
Battery												
Exceedance Events												
Overall Peak												
Overall Laeq		69.30										
LDN		69.30										
Day		69.30										
Night												

	Davi	Times	Comment (Deminant Declaration Course)
Event	Day	Time	Comment (Dominant Background Noise Source)

CASE NO. 2020-00206 AEUG FLEMING SOLAR, LLC Supplemental Responses to Siting Board's Post-Hearing Request for Information

9. State when a glare study can be completed and provide a copy of such study.

Original Response: AEUG Fleming anticipates that a glare study will be complete and able to be filed by May 17, 2021.

Supplemental Response: Due to delays with AEUG Fleming's contractor that will be performing the work, the glare study will not be available for filing until June 15, 2021. AEUG Fleming will file the glare study at that time.

Witness: Mark Randall