

Delivery Rates Regulated Utility Tariff Rates **Agency FERC Transmission Distribution** State/Local **Discovery** Regulatory Agency Utility Tariff Book

LDC Rate Case

- Utility files proposed rates and supporting evidence
- Other parties challenge and offer alternatives
- Commission makes decision

Main LDC Rate Case Issues

- Class Cost of Service
 - -Volumetric vs. demand allocation
- Spread among classes

Purpose of a Cost-of-Service Study

To measure the responsibility of each class for the service provided by the utility

Typical Rate Classes in a Cost-of-Service Study

- Residential
- General Service
- Large Volume Service
- Interruptible
- Transportation

Cost Study Should Reflect:

- Many different types of cost
- Some customers do not use all of the services provided by an LDC
- Usage patterns affect cost incurrence

Procedure

- 1) Identify different types of cost
- Determine causative basis for each type
- 3) Allocate each item among classes

Classification Determine the primary causative factor for each type of cost

Classification Categories

- Direct assignment
- Number of customers
- Commodity (Mcf or therm usage)
- Demand requirements
 (Maximum rate of usage Mcf per day
- Revenue related

Production
Storage
Distribution
General

Customer	Demand	Commodity
	\checkmark	\checkmark
	\checkmark	\checkmark
√	✓	
\checkmark	\checkmark	\checkmark

Classification of Expense

Production
Storage
Distribution
Customer Acct.
Admin. & Gen.

Customer	Demand	Commodity
	\checkmark	\checkmark
	\checkmark	\checkmark
\checkmark	\checkmark	
\checkmark		
\checkmark	\checkmark	\checkmark

Methods of Allocation

- Cost causation
- "Benefits"
- Social / Political Policy
- End results

Allocation Factors

- Externally supplied
- Internally generated derived from prior allocations

Demand Allocation Methods General Criteria

- Cost causation
- Recognize utility's load characteristics

Demand Allocation Methods

- Coincident Peak
- Non-Coincident Peak
- Average and Excess
- Average and Peak
- Average Demand

Coincident Peak Allocation Method

	Mcf	Percent
Residential	54,125	54.00%
General Serv.	32,000	31.93%
Interruptible	7,100	7.09%
Transportation	7,000	6.98%
TOTAL	100,225	100.00%

Average & Excess Method

$\forall \cup$						
		Average <u>Demand %</u>	<u>LF</u>	Excess Demand %	<u>1 - LF</u>	AED %
	Res	32.5%	37%	64.9%	63%	52.9%
	GS	29.5%	37%	33.2%	63%	31.8%
	IS	20.9%	37%	0.1%	63%	7.8%
Tra	ansp.	17.1%	37%	1.8%	63%/	7.5%

Average & Peak Method

Y.						
		Average <u>Demand %</u>	<u>LF</u>	Peak <u>Demand %</u>	<u>1 - LF</u>	AEP %
	Res	32.5%	37%	58.9%	63%	49.2%
	GS	29.5%	37%	33.7%	63%	32.1%
	IS	20.9%	37%	0.0%	63%	7.7%
	Transp.	17.1%	37%	7.4%	63%	11.0%

Average Demand or Commodity Allocation Factors

	Annual Mcf Throughput	Percent
Residential	4,015,479	32.5%
General Serv.	3,635,714	29.5%
Interruptible	2,577,034	20.9%
Transportation	2,114,666	17.1%
TOTAL	12,342,893	100.0%

Coincident Demand vs. Average and Peak

Distribution Mains Acct. 376 Net Plant - \$1,000,000,000

Average	&	Peak	Allocation	
----------------	---	------	------------	--

		Peak Day	Annual Volume	Load Factor		et Plant \$/CCF		
Rate Schedule		Amount	CCF	CCF	%	Pe	eak Day	Index
Residential	\$	502,789,056	10,000,000	1,100,000,000	30.1%	\$	50.28	0.96
Commercial	\$	370,697,833	7,000,000	900,000,000	35.2%		52.96	1.01
Transportation	\$	126,513,110	2,000,000	400,000,000	54.8%		63.26	1.20
Total	\$	1,000,000,000	19,000,000	2,400,000,000	34.6%	\$	52.63	1.00

Coincident Demand Allocation

Rate Schedule	Amount	Peak Day CCF	Annual Volume CCF	Load Factor %	et Plant \$/CCF eak Day	Index
Residential	\$ 526,315,789	10,000,000	1,100,000,000	30.1%	\$ 52.63	1.00
Commercial	\$ 368,421,053	7,000,000	900,000,000	35.2%	52.63	1.00
Transportation	\$ 105,263,158	2,000,000	400,000,000	54.8%	52.63	1.00
Total	\$ 1,000,000,000	19,000,000	2,400,000,000	34.6%	\$ 52.63	1.00

Allocation of System Peak Day Capacity

Peak Day Capacity (CCF) = 18,744,947

eak & Average Alle	Coincident Peak Day Demand	Average & Peak Allocated Peak Day Capacity	Surplus/(Shortfall) in Allocated Peak Day Capacity	Surplus/(Shortfall) in Allocated Peak Day Capacity
Rate Schedule	CCF	CCF	CCF	%
Non-Heating Residential	78,779	87,429	8,650	11.0%
Residential	8,823,800	8,664,723	(159,077)	-1.8%
Commercial	8,229,751	8,202,764	(26,987)	-0.3%
Transportation	1,612,617	1,790,031	177,414	11.0%
Total	18,744,947	18,744,947		0.0%

Minimum Distribution Method for Deriving Customer Related Component of Distribution Main

1) Diameter of smallest main 1.5"

2) Cost/foot of 1.5" main \$0.61 / ft.

3) Total length of mains 6,385,860 ft.

4) Cost if all mains were1.5" diameter

\$3,988,733

5) Actual cost of mains

\$19,326,453

6) Customer portion (4) / (5)

20%

Potential Advantages of Bypass

- Lower price
- Deal directly with pipeline
- Decrease state regulation
- Choice of service
- Sometimes alternate pipeline supplier

Potential Disadvantages of Bypass

- Only one pipeline supplier
- No LDC backup or storage service
- LDC may have excess capacity
- LDC services eliminated

Bypass can often be prevented by cost-based rates

