In the Matter of:
PROPOSED ADJUSTMENT OF THE WHOLESALE) WATER SERVICE RATES OF THE CITY OF PIKEVILLE) Case No. 2019-00080 MOUNTAIN WATER DISTRICT

RESPONSE OF MOUNTAIN WATER DISTRICT TO COMMISSION'S SECOND DATA REQUEST

Mountain Water District, (MWD) by counsel, submits its responses to the Commission's Second Data Request.

SUBMITTED BY:

John N. Hughes 124 W. Todd St. Frankfort, KY 40601
Telephone: (502) 227-7270
inhughes(©)johnnhughespsc.com
and

Daniel P. Stratton
Stratton Law Firm PSC
Post Office Box 1530
Pikeville, Kentucky 41502
Telephone: (606) 437-7800
Facsimile: (606) 437-7569
dan@strattonlaw.net
Attorneys for Mountain Water District

CASE : City of Pikeville
CASE NO : 2019-00080
RE : Public Service Commission Second Data Request to MWD

Q 1. Provide the following information concerning the costs for the preparation of this case:
a. A detailed schedule of expenses incurred to date for the following categories:
(1) Accounting;
(2) Engineering;
(3) Legal;
(4) Consultants; and
(5) Other Expenses (Identify separately).
(6) For each category, the schedule should include the date of each transaction, check number or other document references, the vendor, the hours worked, the rates per hour, amount, a description of the services performed, and the account number in which the expenditure was recorded. Provide copies of contracts or other documentation that support charges incurred in the preparation of this case. Identify any costs incurred for this case that occurred during the base period.
b. An itemized estimate of the total cost to be incurred for this case. Expenses should be broken down into the same categories as identified in "a." above, with an estimate of the hours to be worked and the rates per hour. Include a detailed explanation of how the estimate was determined, along with all supporting work-papers and calculations.
c. Provide monthly updates of the actual costs incurred in conjunction with this rate case, reported in the manner requested in (a) above.

WITNESS : ROY SAWYERS

RESPONSE G1:

a. To date, the following expenses have been incurred.

1) N / A
2) N / A
3) Stratton Law Firm P.S.C. (See attached itemized statements) John N, Hughes, Attorney (See attached itemized statement)
4) Salt River Engineering (See attached itemized statement up to and including July 18, 2019. Costs incurred after July 18, 2019, will be itemized in future costs, as they have not yet been billed.)
5) N / A
6) See attached exhibits referenced above.
b. Estimated future cost and expenses are as follows:
(1) N/A
(2) N / A
(3) Future legal cost estimated to be incurred by Stratton Law Firm, P.S.C., in this matter, at a rate of $\$ 165$ per hour, is as follows: See attached.

Future legal cost estimated to be incurred by John N. Hughes, Attorney, in this matter, at a rate of $\$ 350$ per hour, is as follows: See attached.
(4) Consultants; and

Future cost estimated to be incurred by Salt River Engineering, in this matter, is as follows: See attached.
(5) Other Expenses (Identify separately).

Future expenses estimated for Roy Sawyers, Mountain Water District Administrator, are as follows: Travel expenses 328 miles at .584 per mile $\$ 190.24$; hotel room at $\$ 125$; and meals at $\$ 25.00$; for a total of $\$ 340.24$.
(6) See attached exhibits referenced above.
c. Will provide when available.

RESPONSE TO QUESTION

1(a)

EXHIBIT "3"

DANIEL P. STRATTON, ESG. STRATTON LAW FIRM, P.S.C.

Mountain Water District
P.O. Box 3157

Pikeville, KY 41502

ATTN: ROY SAWYERS

Account No. HEM3005-193

Statement Date:	$06 / 30 / 2019$
Statement No.	19
Page No.	1

Fees

06/10/2019 DPS Receipt and review of scheduling Order 0.25
06/11/2019 DPS Call to Jack H.; Email to Jack re: discovery process 0.25
DPS Receipt and review email from Jack \& Connie 0.25
06/20/2019 DPS Receipt and review of email from Jack Hughes; Call to Roy and Mike B.; Emails to Jack Hughes 0.50
06/24/2019 DPS Call from Jack; Receipt and review email with downloaded discovery documents; Downloaded documents to file 0.25
DPS Initial review of city's Answers to PSC 1.75
DPS Two emails from and to Jack 0.25
DPS Review discovery information 1.00
DPS Review all correspondence with Rusty; Send Jack and Connie letters; Email from May 0.50
06/25/2019 DPS Exchange various emails with Jack \& Connie 0.25
DPS Review file for questions; email to Connie and Jack 1.75
DPS Receipt and review of email from Connie; Call to Tammy; Email to Connie re: rate study 0.25
06/26/2019 DPS E-mail received from Connie re: meter issue 0.25
06/27/2019 DPS Receipt and review various emails to and from Connie and Jack 0.25
DPS Review Connie's questions; Review Jack's comments 0.75
DPS Conference call with Jack \& Connie and Roy to review questions to the City 2.50

DPS Receipt and review of various emails for Jack and Connie; Reply email
DPS Receipt and review multiple emails with Connie Allen and Jack Hughes re: questions for City, et al
For Current Services Rendered
Previous Balance
Total Current Work

Payments

Total Payments	-330.00
Balance Due	$\$ 1,938,75$

Mountain Water District
P.O. Box 3157

Pikeville, KY 41502

ATTN: ROY SAWYERS

Account No. HEM3005-193

Statement Date:	$05 / 31 / 2019$
Statement No.	18
Page No.	1

Fees

05/02/2019 DPS Various emails to/from John Hughes and Connie Allen in regard to the City of Pikeville matter before the PSC 0.25
05/03/2019
DPS E-mail received from John Hughes and Connie Allen 0.25
05/08/2019 DPS Receipt and review email from Rusty Davis; Email to Roy and Mike 0.25
DPS Receipt and review email from Mike Blackburn; Call to Roy 0.2505/09/2019 DPS Revise letter to Karen Kelly; Call to Roy; Set up conference call with HildaLegg; Email to Roy
For Current Services Rendered 2.000.75
Previous Balance
DPS E-mail sent to Roy, Mike and Mike S. 0.25
Total Current Work$\$ 1,320.00$330,00
Payments
Total Payments $-1,320.00$
Balance Due $\$ 330.00$
Hours
MAKE CHECK PAYABLE TO STRATTON LAW FIRM, PSC
PAYMENT DUE UPON RECEIPT
NOW ACCEPTING MASTERCARD, VISA AND DISCOVER

Mountain Water District
P.O. Box 3157

Pikeville, KY 41502

ATTN: ROY SAWYERS

Account No. HEM3005-193

Statement Date:	$04 / 30 / 2019$
Statement No.	17
Page No.	1

Fees

04/16/2019 DPS Review City's rate study and Connie's questionsDPS Draft questions to City of Pikeville1.25
04/17/2019 DPS Second draft of discovery request 0.50
DPS Letter to to Jack Hughes re: discovery requests 0.25
04/18/2019 DPS E-mail sent to Jack H . re: additional discovery questions 0.25
04/22/2019 DPS Receipt and review email from Connie Allen; Reply email x2 0.25
DPS E-mail received from Connie Allen; Reply email re: contract issue 0.25
DPS E-mail received from Jack Hughes; Email to Roy and Mike Blackburn 0.25
DPS Call from Roy; Call to Mike Blackburn 0.25
DPS Receipt and review email from Connie Allen re: new discovery question; Reply email 0.25
DPS Receipt and review of letter from Rusty Davis; Email to Roy and Mike 0.25
DPS E-mail sent to Connie Allen \& John Hughes attaching copies of correspondence to/from Rusty Davis, Esq. regarding our request for a contract extension 0.25
04/23/2019 DPS E-mail sent to Connie \& Jack 0.25
DPS Text to Roy; Reply text; Prepare outline of issue for conference call with Mike and Roy 0.25
DPS Received two emails from Connie Allen; Call to Connie 0.50
DPS Call to Mike Spears; Discuss different loan options 0.25Hours

Hours
$\begin{array}{ll}\text { DPS } & \text { Receipt and review of emails from Jack and Connie; Reply email; Emails to } \\ & \text { Roy, Mike Blackburn and Mike Spears }\end{array}$
DPS Conference call to Mike Blackburn, Roy and Mike Spears 0.50
DPS Second draft of letter to Rusty Davis 0.25
$\begin{array}{ll}\text { DPS Revise letter to Rusty Davis } & 0.50\end{array}$
DPS Send Rusty Davis letter to Mike and Roy for approval 0.25
DPS E-mail received from and to Roy
For Current Services Rendered
0.25

Previous Balance
Total Current Work
Payments
Total Payments
-288.75
Balance Due

Mountain Water District
P.O. Box 3157

Pikeville, KY 41502

ATTN: ROY SAWYERS

Account No. HEM3005-193

Statement Date:	$03 / 31 / 2019$
Statement No.	16
Page No.	1

Fees

03/01/2019	DPS	E-mail received from Jack re: protest form; Email to Jack	$\begin{array}{r} \text { Hours } \\ 0.25 \end{array}$	
03/04/2019	DPS	E-mail received from Connie Allen; Reply email to Roy, Carrie and Connie	0.25	
	DPS	Receipt and review of protest letter filed with PSC; Letter to Rusty Davis	0.25	
	DPS	E-mail sent to Jack re: rate case discovery	0.25	
03/19/2019	DPS	E-mail sent to Connie re: update on case	0.25	
03/28/2019	DPS	Receipt and review PSC Order	0.25	
	DPS	Receipt and review of PSC Order from Roy	0.25	
		For Current Services Rendered	1.75	288.75
		Previous Balance		\$3,258.75
		Total Current Work		288.75
		Payments		
		Total Payments		-3,258.75
		Balance Due		\$288.75

Mountain Water District
P.O. Box 3157

Pikeville, KY 41502

ATTN: ROY SAWYERS

Account No. HEM3005-193
RE: City of Pikeville - City Water Rates

Statement Date:	02/28/2019
Statement No.	15
Page No.	1

Fees

02/03/2019 DPS Letter to P.A. rate study RFP 0.25
02/05/201902/06/2019
02/07/2019
02/08/2019Hours
DPS Call from Rusty Davis; Call to Roy; Call to Mike Spears 0.50
DPS Call to Mike Spears 0.25
DPS Receipt and review email with new rate study; Email to Roy and Mike 0.25
DPS Receipt and review of various emails re: RFP; Email from Roy 0.25
DPS Receipt and review from Todd Osterloh, City of Pikeville's cost-of-service analysis. 0.25
DPS Call to Roy and Mike Spears; Set up conference call 0.25
DPS Call to Roy and Mike re: schedule meeting 0.25
DPS Draft letter to City's attorney re: rate study Response 0.25
DPS Call from Roy; Call to to Mike to reschedule call 0.25
DPS Receipt and review from Sturgill, Turner, Barker \& Moloney, PLLC, Cost of Service Analysis. 0.25
DPS E-mail received from Roy; Reply email 0.25
DPS Letter to Mike Blackburn and Kevin V. re: new rate study 0.25
DPS Prepared for meeting with Roy and Mike 0.75
DPS Meet with Roy and Mike 1.00
02/12/2019 DPS E-mail sent to committee to set up meeting 0.25
DPS Call from Mike Blackburn; Email to committee 0.25 Account No. HEM300

02/13/2019

02/14/2019

02/15/2019
02/19/2019

02/20/2019

02/21/2019

02/22/2019

DPS E-mail sent to Tammy Olson requesting copies of previous water purchase
contracts with the City of Pikeville. R/R several prior contacts via email.
Hours
DPS Meet with Roy, Mike Blackburn and Mike Spears re: City Rate and Radio Road issue 1.50
DPS E-mail sent to Connie Allen re: RFP 0.25
DPS Prepared exhibits to send Connie Allen; Letter to Connie 0.50
DPS E-mail received from and to Connie Allen setting up conference; Email from Todd Ostrish 0.25
DPS Conference call to Connie Allen 0.75
DPS Letter to Todd; Email to rate study committee; Letter to Connie Allen 0.50
DPS Receipt and review of various emails from Mike B., Kevin Varney and Mike Spears 0.25
DPS Letter to Roy and rate committee 0.25
DPS Multiple email to Connie Allen to set up conference call; Email from Connie; Email to Roy 0.50
DPS Draft letter to rate committee 0.25
DPS E-mail and phone call received from Connie Allen 0.75
DPS Call to David Taylor; Call to Connie re: Marvin Branch tract 0.50
DPS E-mail sent to Connie re: rate study 0.25
DPS E-mail received from Tammy, Email to Connie Allen 0.25
DPS Receipt and review of Notice of Rate case 0.25
DPS Text to Roy; Call to Mike Blackburn; Call to Jack Hughes 0.50
DPS Complete information to send Jack Hughes 0.25
DPS Call to Tammy; Call to Carrie re: information requested by Connie Allen 0.25
DPS Call from Connie Allen, legal question 0.25
DPS Receipt and review of first draft report from Connie 0.25
DPS E-mail sent to Connie - comments on 1st draft of report 0.50
DPS Receipt and review from Carrie Hatfield at MWD, the 2016/2017 Water Purchase Analysis as requested by Connie Allen. Email to Connie Allen and John Hughes, copy of the analysis. 0.25
DPS Receipt and review of email from Connie Allen 0.25
DPS Receipt and review of various emails re: rate study; Email from Todd 0.25
DPS Receipt and review (2) emails from John Hughes 0.25
DPS Review draft letter to PSC 0.25
DPS Receipt and review of revised PSC letter from Jack 0.25
DPS Prepared for meeting with Roy 0.50
DPS Conference call with Jack, Connie and Roy 0.50
DPS Letter to Connie and Jack; Letter to Todd 0.50
DPS Call from Jack Hughes re: electronic filingFor Current Services Rendered0.25
18.25
Previous Balance \$247.50
Total Current Work 3,011.25
Balance Due

PRIVILEGED \& CONFIDENTIAL

Mountain Water District
P.O. Box 3157

Pikeville, KY 41502

ATTN: ROY SAWYERS
Account No. HEM3005-193

Statement Date:	$01 / 31 / 2019$
Statement No.	14
Page No.	1

Fees

01/02/2019

01/04/2019
01/16/2019
01/17/2019
01/23/2019
01/24/2019

City of Pikeville - City Water Rates

DPS Call from Brandy Tippy declining to bid; Receipt and review of emails
confirming receipt of additional information from other bidders 0.25
DPS Meet with Rusty Davis re: rate study issue; Email to Roy 0.25
DPS Call from Roy; Call to Jack H.; Call to Roy 0.25
DPS E-mail received from Roy; Email from Jack Hopkins 0.25
DPS Receipt and review of email on rate study bid 0.25
DPS Review Garnett Fleming bid for rate study 0.25
For Current Services Rendered 1.50
Previous Balance247.50
Total Current Work\$1,856.25247.50
Payments
Total Payments $-1,856.25$
Balance Due $\$ 247.50$
MAKE CHECK PAYABLE TO STRATTON LAW FIRM, PSC

PAYMENT DUE UPON RECEIPT
NOW ACCEPTING MASTERCARD, VISA AND DISCOVER

Mountain Water District

P.O. Box 3157

Pikeville, KY 41502

ATTN: ROY SAWYERS

Account No. HEM3005-193
RE: City of Pikeville - City Water Rates

Statement Date:	$12 / 31 / 2018$
Statement No.	13
Page No.	1

Fees

12/06/2018
12/07/201812/10/2018
DPSPrepared for and attend meeting with City of Pikeville re: rate study12/11/2018DPS Draft memo of meeting with City0.50
DPS Research KAR; Email to Roy 0.25
DPS Call from Rusty; Email to Rusty 0.50
12/12/2018 DPS Receipt and review of email from Jack H.; Email to Roy 0.25
DPS Call from Roy 0.25
DPS Call to Roy; Call t Greg Heitzman 0.50
DPS Call to prospective bidders on RFP for rate study 0.25
DPS Call from Jack H.; Call to Roy; Memo to Roy 0.50
DPS Drafts of RFP for review of rate study 0.75
DPS Review 2002 PSC Order; Letter to Roy and Mike 0.50
DPS Call to Carrie for information on payout's to City 0.25
12/14/2018 DPS Receipt and review four of the five RFPs sent via email yesterday evening. T/C to Connie Allen, PE, CCM to make her aware that she was sent the RFP via email. Got voice mail. Left detailed message with return number. 0.25
DPS Call from Roy 0.25
DPS Call from Mike Spears; Email to Mike Blackburn re: 2002 PSC Order 0.25Hours

Statement No. Account No. HEM300

[^0]Mountain Water District
P.O. Box 3157

Pikeville, KY 41502

ATTN: ROY SAWYERS
Account No. HEM3005-193

Statement Date:	$11 / 30 / 2018$
Statement No.	12
Page No.	1

Fees

11/01/2018	DPS	E-mail received from Phillip Elswick, received our letter and wil with dates
	DPS	Letter to Phillip Elswick
11/02/2018	DPS	Receipt and review email from Gerald W.; Call to Gerald
	DPS	Call from Roy
11/05/2018	DPS	Receipt and review of email report from John Hughes
11/06/2018	DPS	E-mail received from Phillip Elswick with available dates for metin For Current Services Rendered
		Previous Balance
		Total Current Work
		Payments
		Total Payments
		Balance Due
		MAKE CHECK PAYABLE TO STRATTON LAW FIRM, PSC PAYMENT DUE UPON RECEIPT NOW ACCEPTING MASTERCARD, VISA AND DISCOVER THANK YOU

Mountain Water District
P.O. Box 3157

Pikeville, KY 41502

ATTN: ROY SAWYERS
Account No. HEM3005-193

Statement Date:	10/31/2018
Statement No.	11
Page No.	1

Fees

10/16/2018	DPS	Receipt and review of City's rate study; Call to Roy; Email to Mike Spears and Mike B.	0.50	
10/17/2018	DPS	Review Pikeville rate study	0.50	
		For Current Services Rendered	1.00	145.00
		Previous Balance		\$72.50
		Total Current Work		145.00
		Payments		
		Total Payments		-72.50
		Balance Due		\$145.00

MAKE CHECK PAYABLE TO STRATTON LAW FIRM, PSC
 PAYMENT DUE UPON RECEIPT
 NOW ACCEPTING MASTERCARD, VISA AND DISCOVER
 THANK YOU

Mountain Water District
P.O. Box 3157

Pikeville, KY 41502

ATTN: ROY SAWYERS
Account No. HEM3005-193

Statement Date:	09/30/2018
Statement No.	10
Page No.	1

Fees

09/12/2018 DPS Call to Rusty Davis; Call to Roy; Call to Jack Hughes For Current Services Rendered
Previous Balance $\$ 217.50$
Total Current Work 72.50
Hours
Payments
Total Payments -217.50
Balance Due $\$ 72.50$
RE: City of Pikeville - City Water RatesPage No.
MAKE CHECK PAYABLE TO STRATTON LAW FIRM, PSC

Mountain Water District
P.O. Box 3157

Pikeville, KY 41502

ATTN: ROY SAWYERS
Account No. HEM3005-193

Statement Date:	08/31/2018
Statement No.	9
Page No.	1

Fees

08/01/2018 DPS Receipt and review signed green card from correspondence sent to Phillip Elswick, City Manager, regarding City of Pikeville Wholesale Water Rate
08/30/2018 DPS Call from Roy; Call to Phillip Elswick 0.25
DPS Call from Roy; Call to Phillip Elswick; Email to Mike and Roy 0.50
DPS Letter to Phillip Elswick; Letter to Mike and Roy 0.25
$\begin{array}{ll}\text { DPS } & \text { Call to Mike Spears } \\ & \text { For Current Services Rendered }\end{array}$ $\frac{0.25}{1.50}$
Total Current Work 217.50
Hours
Payments
Total Payments -36.25
Balance Due \$217.50
RE: City of Pikeville - City Water RatesPage No.1
MAKE CHECK PAYABLE TO STRATTON LAW FIRM, PSC

111 Pike St., P.O. Box 1530
Pikeville, KY 41502

la
(10) $6477.75(5)$

PRIVILEGED \& CONFIDENTIAL
Mountain Water District
P.O. Box 3157

Pikeville, KY 41502

ATTN: ROY SAWYERS
Account No. HEM3005-193
RE: City of Pikeville - City Water Rates

Statement Date:	$07 / 31 / 2018$
Statement No.	8
Page No.	1

Fees

| $07 / 21 / 2018$ | DPS | E-mail sent to Carrie | Hours |
| :--- | :--- | :--- | :--- | :--- |
| | For Current Services Rendered | $\frac{0.25}{0.25}$ | $\overline{36.25}$ |
| | Total Current Work | | 36.25 |
| | Balance Due | $\$ 36.25$ | |

MAKE CHECK PAYABLE TO STRATTON LAW FIRM, PSC PAYMENT DUE UPON RECEIPT
 NOW ACCEPTING MASTERCARD, VISA AND DISCOVER
 THANK YOU

[^1]
RESPONSE TO GUESTION

1(a)

EXHIBIT "3"

JOHN N. HUGHES, ESG. JOHN N. HUGHES, P.S.C.

STATEMENT OF ACCOUNT

John N. Hughes, PSC
Attorney at Law
124 West Todd St.
Frankfort, KY 40601
Invoice to:
Mountain Water District
\% Roy Sawyers
6332 Zebulon Hwy ~ PO Box 3157
Pikeville, KY 41501
Date of Invoice: August 1, 2019

Date	Reference	Time (Hrs)
$5 / 2 / 19$	Response CA re; case status	.25
$5 / 17$	Response DS re: PSC rate issues	.25
$5 / 16$	Response DS re: Pikeville COSS issues	.5
$5 / 17$	Response DS re: Pikeville COSS issues	.5
$6 / 11$	Review PSC order, Initial DR to Pikeville	.75
$6 / 20$	Message DS re: rate issues	.25
$6 / 21$	Message DS re: PSWC filing	.25
$6 / 22$	Review Pikeville DR responses	1.75
$6 / 24$	Several message DS, CA re: Pikeville DR's, motions; Review Pikeville motions; review info from CA re: COSS issues;	4.5
$6 / 25$	Message CA re: Pikeville responses; Review Pikeville DR's; revised COSS; Prepare issues tist for Pikeville DR's, CA testimony	5.5
$6 / 26$	Conference CA re: Pikeville DR responses, testimony; revise draft DR's; several messages CA, DS.	4.75
$6 / 27$	Mileage Harrodsburg 50 miles @ \$0.50	
Review draft DR's; tele. conference DS, CA, re: DR's, response to Pikeville's motions	3.5	
$6 / 28$	Revisions to Pikeville's DR's	$\$ 25.00$
$7 / 1$	Review PSC DR 2; several messages DS, CA re: testimony	.5
$7 / 2$	Messages DS, CA; Draft CA testimony issues; research case issues, prior PSC orders, case files	5
$7 / 3$	Review draft responses to DR's; message DS; tele DS,CA	.75
$7 / 8$	Several messages DS, CA re: CA testimony	.5
$7 / 9$	Review of CA testimony; research testimony issues	4.75

7/12	Response DS re: CA testimony	. 25
7/15	Responses to PSC DR's; several calls DS, CA; response to DS re: electronic filing issues; Review Pikeville responses; message TO; review Pikeville confidentiality agreement.	5
7/16	Review Pikeville's responses to MWD, PSC; draft motion to compel; tele. CA re: testimony	6.5
7/17	Conference CA re: testimony; tele. DS re: testimony; revisions to testimony	5
	Mileage Harrodsburg 50 miles @ \$0.50	\$25.00
7/18	Tele. CA re: motion to compel; several calls DS re: motion; CA testimony revisions	4.25
7/23	Review PSC hearing order; several message DS, CA re: rescheduling hearing; outline potential hearing issues	2.25
7/24	Motion to reschedule hearing; verify available hearing dates	. 75
7/26	Review Pikeville's responses to compel; message DS re: discovery options	. 5
7/29	Review PSC DR 3 to Pikeville and DR 2 to MWD; several calls CA; DS	. 75
Sub total		$\begin{aligned} & 60.25 \mathrm{hr} . \\ & @ \$ 350.00 \\ & =\$ 21,087.50 \end{aligned}$
Expenses		\$50.00
Previous balance		\$0
Total Due		\$21,137.50

STATEMENT OF ACCOUNT

John N. Hughes, PSC
Attorney at Law
124 West Todd St.
Frankfort, KY 40601
Invoice to:
Mountain Water District
\% Roy Sawyers
6332 Zebulon Hwy ~ PO Box 3157
Pikeville, KY 41501
Date of Invoice: May 1,2019

Date	Reference	Time (Hrs)
$11 / 5 / 18$	Review information from DS re: Pikeville COS; Prepare issues list, questions re: COS	2.5
$11 / 6$	Message DS re: Pikeville COS issues	.25
$12 / 13$	Response DS re: Pikeville issues; COS issues; tele. DS; tele. Pikeville atty re: COSW issues	.75
$1 / 11 / 19$	Tele. DS; message re: Pikeville rate issues	.5
$1 / 22$	Tele. DS re: Pikeville issues	.5
$2 / 21$	Tele. DS; review Pikeville rate issues	2.75
$2 / 22$	Review Pikeville COS information; tele. CA re: COS issues	1.75
$2 / 23$	Draft PSC protest/intervention letter for Pikeville rate increase; review Pikeville COS/rate issues	4.5
$2 / 25$	Tele. CA re: COS issues; message DS re: tariff protest/COS issues	.75
$2 / 26$	Tele. DS, RS, CA re: Pikeville rate issues	.75
$3 / 4$	Revise and file protest letter w/PSC	2.25
$3 / 28$	Review PSC order; tele DS	.5
$4 / 17$	Review draft discovery issues from DS	.75
$4 / 22$	Response CA re: COS issues	.25
$4 / 23$	Several messages DS, CA re: Pikeville Cos issues	.75
Sub total		19.5 hr.
		$\$ \$ 350.00$
Expenses		$\$ 6,825.00$
Previous balance		$\$ 0$
Total Due		$\$ 6,825.00$

RESPONSE TO QUESTION

1(a)

EXHIBIT "4"

Invoice

Mountain Water District
29 Jul 2019
6332 Zebulon Highway
PO Box 3157
Invoice 16-2019-5
Pikeville KY 41502-3157

PSC Case	date	hours	cost
Review Dan Stratton's discovery questions; talk with Steve Seelye regarding same	19 Apr 2019	03:15	\$487.50
adding two questions re: hydraulics and Marion's Branch	22 Apr 2019	03:45	\$562.50
review PSC rate cases	23 Apr 2019	00:45	\$112.50
review Pikeville's 1st response	24 Jun 2019	06:00	\$900.00
review Pikeville response/MWD questions	25 Jun 2019	05:45	\$862.50
MWD request questions	26 Jun 2019	09:30	\$1,425.00
MWD request questions	27 Jun 2019	10:00	\$1,500.00
MWD request questions	28 Jun 2019	04:30	\$675.00
MWD request questions	01 Jul 2019	01:00	\$150.00
review notes for testimony	08 Jul 2019	04:00	\$600.00
CLA testimony	15 Jul 2019	10:30	\$1,575.00
CLA testimony	16 Jul 2019	09:00	\$1,350.00
CLA testimony	177 J 2019	09:30	\$1,425.00
CLA testimony	18 Jul 2019	04:15	\$637.50
Total		81:45	\$12,262.50

1 of 1

EXHIBIT 1(b)

DANIEL P. STRATTON, ESQ. STRATTON LAW FIRM, P.S.C.

(3) Future legal cost estimated to be incurred by Stratton Law Firm, P.S.C., in this matter, at a rate of $\$ 165$ per hour, is as follows:
a) Assist in the preparation and review of responses to current discovery requests from the Public Service Commission. Two (2) hours.
b) Assist in the preparation and review of current discovery requests from the City of Pikeville. Two \{2\} hours.
c) Assist in witness preparation for the PSC hearing. Four-Six (4-6) hours.
d) Assist in the preparation and review of cross-examination of witnesses for the PSC hearing. Three (3) hours.
e) Review record in preparation for hearing. Three (3) hours.
f) Travel to and from Frankfort to attend hearing. Six (6) hours.
g) Attend hearing. Eight (8) hours.
h) Travel expenses to attend PSC hearing in Frankfort. 328 miles at $.58 \$$ per mile. ($\$ 190.24$)
i) Meals for Dan Stratton on date of PSC hearing. (\$15.00)
j) Attorney/client communications (phone calls, emails, etc.). Four (4) hours.
k) Review and assist with post hearing DR's. Two-Four (2-4) hours.

1) Review and assist with Brief. Ten (10) hours.

EXHIBIT 1(b)

JOHN N. HUGHES, ESQ. JOHN N. HUGHES, P.S.C.

(3) Future legal cost estimated to be incurred by John N. Hughes, Esq., in this matter, at a rate of $\$ 350$ per hour, is as follows:
a) Responses to PSC and Pikeville DR's. Two (2) hours.
b) Hearing preparation. Eight-Twelve (8-12) hours.
c) Witness preparation. Six-Eight (6-8) hours.
d) PSC Hearing. Eight-Ten (8-10) hours.
e) Post hearing DR's, Two-Four (2-4) hours.
f) Brief. Twenty-five-Thirty (25-30) hours.

EXHIBIT 1(b)

CONNIE LEA ALLEN, P.E. SALT RIVER ENGINEERING, P.L.L.C.

(4) Future engineer/analyst cost estimated to be incurred by Salt River Engineering, P.L.L.C., in this matter, at a rate of $\$ 150$ per hour, is as follows:
a) Preparation and review of responses to current discovery requests from the Public Service Commission and the City of Pikeville. Thirteen (13) hours.
b) Preparation for the PSC hearing. Eight (8) hours.
c) Travel to and from Frankfort to attend hearing. Two (2) hours.
d) Attend hearing. Eight (8) hours.
e) Review and assist with post hearing DR's. Ten (10) hours.

CASE : City of Pikeville
CASE NO : 2019-00080
RE : Public Service Commission Second Data Request to MWD

Q 2. Refer to the Testimony of Connie Lea Allen, P.E. (Allen Testimony), pages 10-11, Item 20.
a. Confirm that in the cost-of-service study (COSS), the analysis used a volume for Mountain Water District (Mountain District) of $456,591,000$ gallons instead of the $463,000,000$ as reported by the city of Pikeville (Pikeville).
b. Also, confirm that the analysis was limited to the use of the $456,591,000$ gallons for Mountain District, no matter the response from Pikeville.

WITNESS : CONNIE ALLEN, P.E.

RESPONSE G2:

a. I cannot confirm that the COSS used a volume of $456,591,000$ gallons purchased by MWD. Mr. Petty did not use $456,591,000$ gallons despite the fact that the meter readings supplied by Pikeville in response to PSC's initial data request totaled 456,592,000 gallons for Fiscal Year 2017, the test year. I asked MWD for their record of gallons purchased in June when preparing MWD's data request for Pikeville. The total of their meter readings was $456,591,000$. The total of the readings supplied by Pikeville in response to PSC's initial data request was $456,592,000$ gallons. I intended to use the latter volume, but inadvertently used 456,591,000 gallons, which has no material impact on the results.

Figure 7 of the COSS included " 463 " in the "million gallons" column associated with purchases by MWD. Figure 10 is the other place in the COSS where the volume purchased by MWD is used. No reference to gallons purchased by MWD exists in the rate determination table. However, using Mr. Petty's revenue and rate numbers, the gallons
purchased can be back-calculated. The illustration below includes a reprint of Mr. Petty's Figure 10 at the top, with my calculations to solve for gallons purchased below Mr. Petty's numbers.

Rate Determination for Variable Costs									
	revenue paid	$\begin{gathered} \text { current rate } \\ \text { per } 1,000 \\ \text { gal } \\ \hline \end{gathered}$		ravenue required	required rate per 1,000 gal		revenue defieit	increase needed per 1,000 gal	
MWD	729,785	\$	1.58	1,067.733	\$	2.30	337,947	\$	0.72
salving for volume	461,889	1,000 gal		464,232	1,000 gal		$\begin{array}{r} 469,371 \\ 469,370,833 \end{array}$	$1.000 \mathrm{gal}$ gallons	
	461,889,24	gallons		464,231,739	gallons				
rate if you use 463,000	0 (1,000 gal)	\$	1.58		\$	2.31		\$	0.73
rate if you use 456,591	1 (1,000 gal)	\$	1.60		\$	2.34		\$	0.74

Noting the results of the calculations, I cannot confirm the precise number Mr. Petty used for MWD purchase volume in his rate determination. I can only confirm the number he included in Figure 7, and it was 463 million gallons.
b. No, I cannot confirm the analysis was limited to the use of $456,591,000$, for reasons stated in response to Item 2(a) above.

CASE	$:$	City of Pikeville
CASE NO	$:$	$2019-00080$
RE	$:$	Public Service Commission
		Second Data Request to MWD

Q 3. Refer to the Allen Testimony, pages 16-17, Item 29.
a. Confirm that the miles of line are from the Kentucky Water Resource Inventory System (WRIS) and Pikeville.
b. Provide all workpapers, assumptions, and analyses on the inch mile information for the stated calculation of 40 percent using the footage from the WRIS and the American Water Works Association system theory. Provide this calculation and supporting information in Excel spreadsheet format with all rows and columns unprotected and accessible.

WITNESS : CONNIE ALLEN, P.E.

RESPONSE G3:

a. In Question 29 of MWD's initial data request of Pikeville, I included a table (Table 1) showing inch-mile totals, calculated on three sources of data. The table is reprinted, here, for convenience:

Table 1

	PSC 2002-00022		KIA WRIS (est. 2018)		PSC 2019-00080	
line diameter (inches)	miles	inch-miles	miles	inch-miles	miles	inch-miles
unknown			1.04	2.09		
2	2.73	5.46	8.00	16.01	1.7	3
3	2.42	7.26	1.02	3.06		
4	3.18	12.72	1.27	5.10	2.4	10
6	23.03	138.18	37.67	226.00	19.4	116
8	24.02	192.16	26.31	210.48	16.8	134
10	6.29	62.90	8.94	89.42	11.6	116
12	4.39	52.68	14.84	178.12	17.9	215
16	2.06	32.96	2.47	39.51	1.6	26
		504.32		769.79		620

The first two columns after the line diameters (columns 2 and 3) were obtained from PSC's order on Case 2002-00022. The next two were obtained by reference to the files associated with the "Pikeville Water Department" on WRIS. On the WRIS page for Pikeville, the tab labeled "Asset Management" lists physical attributes of the water system. Lines submitted by Pikeville are included in five sections, Cedar Creek, Huffman, Mossy Bottom, Thompson Road and Yorktown.

The numbers in columns 4 and 5, above, were obtained by adding the line totals of the 5 sections. Finally, the numbers in the last two columns (columns 6 and 7) were obtained from Pikeville's response to Question 13 of PSC's initial data request.

Since MWD submitted the questions for the initial data request of Pikeville to PSC and since the Allen Testimony, the WRIS numbers have changed slightly. The WRIS website indicates the "Date Last Modified" as 07.27.2019. Though the 40 percent capacity allocation factor did not change as a result of the adjusted numbers, the adjusted footage totals and corresponding minimum system theory calculations are included on the third and fourth tabs of the Excel spreadsheet (attached in response to Question 3(b), respectively.

In reviewing a prior rate study performed in 2008 for Pikeville by KRWA (Carryn Lee), the "Mountain Jointly Used Inch Mile Ratio" was determined to be 0.1881 . (Copy attached) The raw data used by Ms. Lee in the original KRWA rate study compares exactly with the inch-mile data in the PSC 2002-00022 case with the exception of 1 mile of 6 -inch line. Pikeville revised Ms. Lee's report later in 2008 but did not revise the inch-mile data. (Copy attached) Because the raw data was the same in the PSC 200200022 case and the 2008 KRWA rate study, the difference in inch-mile ratios is attributed to a different calculation of jointly-used lines (the numerator). The PSC 2002-00022 case found 172.15 inch-miles as being jointly-used. The 2008 KRWA used 94.86 inch-miles as jointly-used.

In reviewing the WRIS listing of project profiles (unsure as to when the listing began), KIA show three projects as constructed in the past few years. The 3 projects replaced 30,392 linear feet of 8 -inch PVC pipe with 8 -inch ductile iron (DI) pipe; 7,500 linear feet of 6 -inch PVC pipe with 6inch DI pipe; and added 8,600 linear feet of 8 -inch pipe, 14,900 linear feet of 10 -inch pipe, a $1,000,000$ gallon tank and accompanying booster station. Presumably, there have been other additions to the distribution
system since 2008. The three projects described are only the ones listed on WRIS by KIA. The WRIS totals certainly seem to indicate additional projects have been constructed since the total miles listed in 2002 and 2008, but there is no data in the record to confirm any additional facilities
b. The minimum system theory calculation for the line allocation (also referred to as the Distribution Line Allocation) is presented in AWWA's "Financial Management: Cost of Service Rate Making" seminar. The participant's manual briefly describes the theory as well. (The manual is attached; the relevant slides are Slides S6-8 through S6-12. When viewing the pdf, the slides are on pages 66-68.)

The calculations, using the WRIS data (both original and adjusted), are the basis of the Excel worksheet that is attached. Enable the viewing of comments on the Excel worksheet for additional explanation. Some further information is provided for the reader:

- The linear feet for 2-inch line contains all line noted in WRIS as "unknown" and "up to 2 ";
- The linear feet for 9-inch line is included in the total for 10 -inch line;
- "Installed Cost" is an estimate of the installed price, per foot, for the respective diameter line;
- The "Customer Component" in this case 26% (or, 25% with the adjusted WRIS numbers), signifies the 2-inch diameter costs of all line.
- The "Capacity Component" in this case 40%, is the cost of 2 -inch through 6-inch diameters of all the lines, less the 2-inch cost;
- The "Fire Protection Component" in this case 34%, is the cost of 8inch through 16-inch, less the Customer and Capacity Components.

I did not calculate a distribution allocation factor based on the inch-mile method because of the inconsistency of the numbers provided by Pikeville.

RESPONSE TO QUESTION

> 3(a)
City of Pikeville Water Lines
(from WRIS and from 2002 and 2019 PSC submittals by Pikeville)

								$\begin{gathered} 0 \\ \vdots \\ \vdots \\ \vdots \\ \hline 0 \\ \hline \end{gathered}$	Noio
		导							
		$\begin{array}{l\|l} N \\ N \\ N & \underset{N}{N} \end{array}$				O	¢	-	
		$\stackrel{\rightharpoonup}{\mathrm{m}}$		\bigcirc	$\stackrel{\square}{\square}$	$\stackrel{+}{\square}$	$\stackrel{\circ}{\circ} \stackrel{\infty}{\infty}$	\cdots	N
		$\stackrel{-}{-}$		$\stackrel{\square}{*}$	7	$\stackrel{\infty}{\circ} \stackrel{0}{\square}$	$\stackrel{\circ}{\stackrel{\circ}{\circ}}$	$\stackrel{\sim}{2}$	
		\sim		- 0	$\bigcirc \infty$	∞ -	\bigcirc	\bigcirc	\bigcirc

CITY OF PIKEVILLE

Rate Analysis for Water and Wastewater Divisions

Retail and Wholesale Customers

Prepared 2008

by

Kentucky Rural Water Association Helping Water and Wastewater Systems Help Themselves

RATE STUDY FOR THE CITY OF PIKEVILLE
 January 2008

Expenses and Revenue 1
Current and Recommended - Sewer 2
Current and Recommended - Water 3
Dollar Increase for Water 4
Comparison of Rates 6
Produced and Sold 9
Jointly Used Lines 10
Allocation Factors 11
Wholesale Customer's Usage 14
Allocation of Expenses 15
Recommended Water - Inside 16
Recommended Water - Outside 17
Sewar Recommended Rates 18
Sewer Expenses 19
Sewer Recommended 20
Appendix A
Utility Regulations Ordinance

Executive Summary

The Kentucky Rural Water Association ("KRWA") has prepared the following rate study for the City of Pikeville, Water and Wastewater Divisions ("Pikeville"). The city provides water, and wastewater service to customers located both inside and outside the city limits.

A customer breakdown for the water division is shown below.

Inside City Customers	2,914
	546
Outside City Customers	
	3

The following table shows the customer breakdown for the wastewater division.

Inside City Customers	2,684
	416

The increase for both the water and wastewater divisions are shown below.

	Water	Wastewater
Operating Expenses	$\$ 2,901,889$	$\$ 1,653,489$
Operating Income	$2,411,146$	$1,066,131$
Increase Needed	$\$ 490,743$	$\$ 587,358$

Inside and outside wastewater rates are shown below.

\left.| INSIDE WASTEWATER RATES - CURRENT AND | | |
| :--- | ---: | ---: |
| PROPOSED | | |$\right]$

OUTSIDE WASTEWATER RATES - CURRENT AND				
PROPOSED		$	$	
:---				
First 2,000				

It should be noted that the outside city rates are higher than the inside city rates due to debt incurred to provide service to the outside city customers.

The following table shows inside and outside city water rates.

WATER RATES - CURRENT AND PROPOSED					
	Curtent Inside City	Proposed Inside City	Current Outside City	Proposed Outside City	
2,000	7.00	11.20	15.72	27.00	
3,000	3.50	6.20	3.70	6.95	
5,000	3.45	6.20	3.70	6.95	
10,000	3.40	3.98	3.60	6.50	
30,000	3.35	3.95	3.55	6.00	
50,000	3.25	3.85	3.45	6.00	
100,000	1.52	1.90	3.15	3.50	

The following table shows the inside city rates along with the dollar increase.

	Current Inside City	Proposed Inside City	Dollar Increase
2,000	7.00	11.20	4.20
3,000	3.50	6.20	2.70
5,000	3.45	6.20	2.75
10,000	3.40	3.98	.58
30,000	3.35	3.95	.60
50,000	3.25	3.85	.60
100,000	1.52	1.90	.38

The outside city rates are shown below with the increase in dollar amount per rate increment.

	Current Outside City	Proposed Outside City	Dollar Increase
2,000	15.72	27.00	11.28
3,000	3.70	6.95	3.25
5,000	3.65	6.95	3.30
10,000	3.60	6.50	2.90
30,000	3.55	6.00	2.45
50,000	3.45	6.00	2.55
100,000	3.15	3.50	

The last four rate steps for the inside city customers were increased at a lower percentage than the first three rate increments which contain the first 2,000 gallons, next 3,000 gallons, and next 5,000 gallon usage levels. Pikeville noted that the in city customers were charged an occupational tax of $1 / 2$ percent to pay for some of the costs of the utllities. Thus, the smaller consumption users are now paying their share of expenses.

The outside city customers were not assessed the occupational taxes, and their increase is a higher percentage amount than inside customers. This is also due to the outside city customers causing most of the capital improvements that will be made.

The tables below show a comparison of both water and wastewater bills based on usage of 5,000 . The rates were obtained for the utilities by reviewing Kentucky Public Service Commission tariffs and a report issued by Allen and Hoshall dated September 2006. Every effort has been made to ensure that the bills for 5,000 gallons are correct and up to date. However, some utilities may have increased their rates since the information on hand was reviewed, and the current bill for usage of 5,000 gallons may not be reflected correctiy in the following tables.

COMPARISON OF WATER COSTS WITH OTHER UTILITIES	
Hazard	14.35
Benham	23.70
Pikeville Utillities - In City	29.80
Campton	30.50
Big Sandy	32.95
Paintsville	32.95
Southem	33.30
Mountain	36.15
Vicco	42.20
Pikeville Utilities - Outside	47.86

COMPARISON OF WASTEWATER COSTS WITH OTHER UTILITIES	
Hazard	15.30
Pikeville - In City	22.30
Campton	32.50
Vicco	29.54
Booneville	29.48
Benham	32.75
Paintsville	35.64
Pikeville - Outside City	45.05

Allocation of Test Year Expenses

Most municipal utilities that offer more than one utility service do not maintain separate accounts for each utility service. In the past, separate accounts were not required and there were few complaints regarding utility rates. Today, federal and state lending agencies are starting to require that separate accounts be maintained for each division of the utility. One reason for this requirement is that state and federal funding is scarce and lending agencies want to ensure that each utility service is "paying its own way". There has been concern that some cities were using money collected from utility services to fund other city needs and then obtaining grants and low interest loans to pay for utility system improvements. Additionally, there have been few customer complaints regarding rates in the past; however, with the increasing cost of compliance with the Safe Drinking Water Act requirements and aging infrastructure improvements, utility rates are increasing. Customers are becoming more concerned and want to know that their utility payments are paying for the service they are receiving. Pikeville is to be commended for maintaining separate accounts for each utility service.

Allocation of Water Expenses

The first step in designing rates is to allocate expenses between the various utility services. The next step is to allocate a portion of costs to the wholesale customers. Pikeville provides water service to three wholesale customers. The current rate to Southern Water District is $\$ 1.70$ and the
recommended rate is $\$ 1.89$. The current rate for Mountain is $\$ 1.44$ and it is recommended that this rate increase to $\$ 1.70$. The rate for UMG is currently $\$ 2.45$. No change is recommended to this rate. The rate is higher than the other wholesale rates due to the small amount of gallons purchased by UMG. The other wholesale customers purchase an average 314,028 and UMG purchased 62,150 . This is a much lower gallon amount to be divided into expenses.

In reviewing the expenses for both the water and wastewater it was determined that capital expenses should be amortized based on the life span of each item. Adjustments for both the water and wastewater capital projects have been adjusted. Additionally, several items in the budget for Pikeville were deleted in order to maintain rates as low as possible for both the wholesale and retall customers. These items other expenses of $\$ 77,514$ and project support of $\$ 54,063$. The deletion of both these fitems has certainly decreased the rate to wholesale customers.

In order to determine the wholesale rate, cartain allocation factors must be determined. Since the wholesale customers use only a small part of Pikeville's system it would not be equitable to allocate a portion of all expenses to the wholesale customers. Page 9, shows total water produced, sales to retall, sales to wholesale, plant use and unaccounted for water. Page 10 shows the jointly used line ratio between Pikeville and the wholesale customers. Once allocation factors are determined they are used to allocate costs. Page 11 shows the allocation factors for production and transmission and distribution.

CITY OF PIKEVILLE		
WATER PRODUCED AND SOLD		
Plkeville Retall	412,832,000	
Mountain	387,812,000	
UMG	62,150,000	
Southem	314,245,000	
Total Sales	1,157,039,000	
Treatment Plant Use	57,851,950	0.0500
Unaccounted For Water	71,738,418	0.0820
Total Produced	1,288,627,368	

CITY OF PIKEVILLE			
JOINTLY USED MILES OF LINE			
Pikeville Miles of Line			
Size	Feet	Miles	Inch-Miles
2	14,400	2.73	5.46
3	12,800	2.42	7.26
4	16,800	3.18	12.72
6	121,800	22.03	138.18
8.	128,800	24.02	182.16
10	33,200	6.29	62.90
12	23,200	4.39	52.88
18	10,900	2.08	32.90
			504.32
Mountain Jointy Used Inch Mile Retto			0.1881
Southern Jointly Used Inch Mile Ratio			0.1315
UMG			0.1594

CITY OF PIKEVILLE		
WHOLESALE ALLOCATION FACTORS		
Line Loss Percentage	0.0620	
Plant Use	0.0500	
Total Plant Use \& Line Use	0.1120	
Pikeville Production Multiplier		1.1261
Wholeasale Inch Mile Ratio		
Southern		0.1315
Mountain		0.1881
UMG		0.1594
Wholesale Share of Plant Use \& Line Loss		
Southern		0.0582
Mountain		0.0617
UMG		0.0599
Production Multipler		
Southem		1.0540
Mountain		1.5821
UMG		1.0837
Production Allication Factor		
Southem		0.2544
Mountain		0.2570
UMG		0,0507
Trans and Dist Factor		
Southern		0.0357
Mountain		0.0598
UMG		0.0088

Page 14 reflects the current usage and rates for each wholesale customer. Corresponding revenue for each wholesale customer is also shown.

Page 15 shows the total revenue received and the allocation of budgeted expenses. Revenue is shown as $\$ 2,411,146$. Total expense shown at the boltom of $15-\mathrm{B}$, is $\$ 2,901,889$.

These sheets reflect the allocation of costs to each wholesale customer and the amount to be allocated to Pikeville. The amount to retail shown in the last column is simply the total costs, less the amount allocated to the wholesale customers.

Allocation of Retail Rates

Once expenses associated with serving the wholesale customers have been determined, costs can then be allocated to the retall customers. Pages 15 and 15-B shows the allocation of costs to the retail customers to be $\$ 1,546,531$.

Pikeville requested that the first 3 increments of the inside city customers be increased by a larger amount than the customer who use in excess of 10,000

Pikeville has inside and outside city rates. The current and recommended rates for the inside city customers are shown on Page 16. The current and recommended rates for the outside city customers are shown on Page 17.

There are expenses associated with serving outside city customers, especially with the city of Pikeville and the extensive repairs needed to the outside city service area. It is recommended that in the future the outside city rates expenses be reviewed to ensure that the differences in expenses justify the
difference in outside and inside city rates. In other words, the expenses should not be based on historical differences in providing services.

CITY OF PIKEVILLE				
BILLING ANALYSIS				
WHOLESALE CUSTOMERS				
CURRENT RATES	Gallions	Rate		Revenue
WA 08 (Southem)	114.457.0	\$ 1.70	\$	194,577
WA 09 (Mountain)	367,812.0	1.44		529,849
WA 10 (LMMG)	62,150.0	2.45		152,268
WA 11 (Southern)	199,788.0	1.70		339,840
Total	744,207		5	1,216,134

CITY OF PIKEVILLE					
ALLOCATION OF EXPENSES					
Income	TY Actual				
Retall Sales					
Wholesale	1,210,134				
Sarvica Charges	19,284				
Penalties and Servica Charges	7,151				
Mlscallaneous	4,802				
Connection Feas	39,524				
Total Income	52,413,144				
Expenses	Total	Southern	Mountain	LMMG	Pikeville Expenses
Utillties	\$ 96,614	\$ 26,295	\$ 43,508	\$ 4,008	\$ 22,103
General Malntenance	183,241	5,828	9,762	1,404	146,247
Vehicles	37,870	1,352	2,285	328	33,927
Bad Debt Expenge	30,540				30,540
Banking Expense	143				143
Outsida Services	10,134	362	806	87	9,079
Office Expenses	6,494				6,484
Food and Travel	3,324				3,324
Chemlcals	88,101	18,496	30,605	3,453	15,547
Retrement	12,000	428	718	103	10,751
Payroll	17,110				17,110
Personnel Costs	8,212				8,212
Pension	18,424				16,424
Heath and Dental	82,345				82,345
Long Term Disability	1,919				1,819
Workmans Comp	18,486				18,488
Life Insurance	2,423	87	14	21	2,301
Payroll Taxes	38,783	1,385	2,318	334	34,745
Contractual Servicas	1,440,42e	368,445	370,190	73,030	830,784

Sewer Rates and Expenses

During the test year, Plikeville collected $\$ 1,066,131$ in sewer revenue and incurred expenses of $\$ 1,653,489$. The income statement showing total expenses and the amount allocated to the sewer division is shown on Page 19.

A billing analysis showing present rate and recommended rates is shown on Page 20. The billing analysis verifies test year usage and revenue and allows the utility to analyze customer usage patterns.

It is recommended that the rates for inside city customers be increased as follows:

	Current Rates	Recommended Rates
First 2,000	$\$ 6.98$	$\$ 8.50$
Over 2,000	3.46	4.60

The following table shows the recommended rates for outside city customers. The rates for outside city customers are higher than inside city customers due to the extensive repairs that must be made to serve the outside city customers.

	Current Rates	Recommended Rates
First 2,000	$\$ 14.00$	$\$ 17.05$
Over 2,000	7.00	9.34

CITY OF PIKEVILLE				
SEWER DIVISION				
EXPENSES				
Revenue				
Sewer Rates	5995202			
Penatiles	200,202			
County Sewer	2,000			
Service Charges	1,000			
interest	60,409			
Total Incorne	\$ 1,088,131			
Expense	Current	Adjustments	Recommended	
Postage	\$ 5,500		\$	5.500
Insurance	18,200			19,200
Auto Maintenance	5,200			5,200
Office Expense	1,000			1,000
Publle Works	488,891			488,891
Easements	8,300			488,897
Repair and Maintenance	93,000			63,000
Lulitios	19,400			93,000
Equipment Purchase				18,400
Electric.	22,800	(8,667)		4,333
Legal. Support, Bad Debt, Rate Study	21,100			22,800
Station Pumps and Storm Drain	138,000			21,100
Total Operation and Maintenance	¢ 1383,000			138,000
Debt	\$ 833,391	\$ (8,667)	\$	824,724
Thompsan Road				
95 Project	122,710			38,780
1892 Traatment Plant				122.710
Mossy Blottorn	105,000			207,119
South Mayo	58,445			105,000
1.2 Coverage				108,211
Capital Projects to serve Mossy Bottom and Cow Lick	191,600			
				191,500
Total Expenses	5 1,364,445	\$. (8,867)		1,653,489

CITY OF PIKEVIUE								
SEWER DIVISION								
INSIDE CITY CUSTOMERS AND RECOMMENDED RATES								
	Customers	Gallons	Current Rates	Revenue	Revised	Revenue	5 incrasse	$\%$
First 2,000	32,213		\$8.98	\$ 224,847	8.50	273,811	\$1.52	0.22
Over 2,000		189,788	3.46	- 656,597	4.60	872,033	\$1.14	0.33
Total	32,213	189,788		\$ 881,444		\$ 1,335,204		
OUTSIDE CUSTOMERS, MOSSY BOTTOM AND COW LCK								
RECOMMENDED RATES								
	Bills	Gallons	Current Rates	Revenue	$\begin{array}{\|c\|} \hline \text { Revised } \\ \text { Rates } \\ \hline \end{array}$	Revenue	\$ increase	\%
First 2,000	4,875	6,998	\$ 14.00	\$ 69,850	17.05	84,824	\$ 3.05	0.22
Over 2,000		18,973	7.00	118,811	9,34	158,528.	2.34	0.33
Total	4,975	16,873		\$ 188,481		\$ 243,362		
Other Income								
County Sewer				\$ 2,000		\$ 2,000		
Peraltes				7,500		7,500		
Tap Foes				5,200		5,200		
Service Charges				1,000		1,000		
Interest				60,409		60,409		
Total				\$ 76,109		\$ 76,109		
Total Revenue				\$ 1,146,014		\$ 1,654,665		

CITY OF PIKEVILLE

Rate Analysis for Water
And Wastewater Divisions

Retail and
Wholesale Customers

REVISED

November 2008

REVISED RATE STUDY

For the CITY OF PIKEVILLE

NOVEMBER 2008

Table of Contents

Summary of Revised Rate Study 1
Current and Revised Rates 2
Regional Comparison of Rates 3
Water Produced and Sold 5
Jointly Used Miles of Line 6
Wholesale Allocation Factors 7
Allocation of Expenses (Water) 8
Former SVWD Customer Expenses 10
Summary of All Expenses 11
Allocation of Debt (Water Only) 12
Capital Expenses - Overall Water 13
Capital Expenses - Outside Water Only 15
Recommended Water Rates - Inside 16
Recommended Water Rates - Out of City 17
Sewer Overview 18
Allocation of Wastewater Expenses 19
Recommended Sewer Rates 20
Summary of All Sewer Expenses 22
Capital Expenses - Overall Sewer 23
Capital Expenses - Out of City Sewer 24

SUMMARY OF REVISED RATE STUDY

The Kentucky Rural Water Association (KRWA) prepared a rate study for the City of Pikeville, Water and Wastewater divisions in January 2008. The following is a revision to the original study reflecting updated information obtained from the City of Pikeville and revisions to expense allocations and revenue projections made in coordination with Carryn Lee, author of the original study and now an independent consultant, and Bob Meyer, an employee of Utility Management Group. At the request of the City, this revised report has also been reviewed by Don Wallen, an independent certified public accountant.

Pikeville provides water and wastewater service to customers located both inside and outside the city limits. In 2006, the city's "outside" water customer base increased significantly as a result of the dissolution of Sandy Valley Water District, with those retail customers of Sandy Valley located in Pike County being transferred to the City of Pikeville. Also, in 2006, the city's "outside" sewer customers increased as a result of the transfer of the Mossy Bottom sewer plant - and sewer customers previously served by that plant - from Mountain Water District to Pikeville. This revised study reflects those changes to Pikeville's customer base, as well as revenue and expense projections associated with those changes.

A customer breakdown for the city's water division is shown below:

Number of Inside Water Customers	2,916
Number of Outside Water Customers	1,577
Number of Wholesale Water Customers	3

The following table shows the customer breakdown for the wastewater division.

Number of Inside Sewer Customers	2,695
Number of Outside Sewer Customers	623

Finally, the city's current wholesale customers are identified below:

Mountain Water District
Mountain Water District (Cowpen Area)
Southern Water \& Sewer District

Inside and outside customer WATER rates are shown below (rates in effect prior to the original rate study in January 2008, rates as recommended and adopted pursuant to the original study, and rates based on this revised study):

INSIDE CITY WATER RATES

	Prior to Jan 2008	Revised Jan 2008	Current Revision
2,000 Gal (Min)	7.00	11.20	11.20
Next 3,000 Gal	3.50	6.20	6.20
Next 5,000 Gal	3.45	6.20	6.20
Next 10,000 Gal	3.40	3.98	3.98
Next $30,000 \mathrm{Gaj}$	3.35	3.95	3.95
Next $50,000 \mathrm{Gal}$	3.25	3.85	3.85
Over 100 M Gal	1.52	1.90	1.90

OUTSIDE CITY WATER RATES

	Prior to Jan 2008	Revised Jan 2008	Curtent Revision
$2,000 \mathrm{Gal}$ (Min)	15.72	27.00	22.50
Next 3,000 Gal	3.70	6.95	6.30
Next 5,000 Gal	3.65	6.95	6.30
Next $10,000 \mathrm{Gal}$	3.60	6.50	5.40
Next $30,000 \mathrm{Gal}$	3.55	6.00	5.40
Next $50,000 \mathrm{Gal}$	3.45	6.00	5.00
Over 100 M Gal	3.15	3.50	3.50

Inside and outside customer WASTEWATER rates are shown below (rates in effect prior to the original rate study in January 2008, rates as recommended and adopted pursuant to the original study, and rates based on this revised study):

INSIDE SEWER RATES	Prior to Jan 2008	Revised Jan 2008	Current Revision
First 2,000 Gallons	6.98	8.50	8.00
Over 2,000 Gallons	3.46	4.60	4.00

OUTSLDE SEWER RATES	Prior to Jan 2008	Revised Jan 2008	Current Revision
First 2,000 Gallons	14.00	17.05	
Over 2,000 Gallons	7.00	9.34	18.80

It should be noted that outside city rates - both water and wastewater - are higher then inside city rates, based on a range of factors, including additional debt assumed by the City for outside city customers (from assumption of loans from Sandy Valley Water District (water customers) and sewer customers (assumption of loans associated with the Mossy Bottom Sewer Plant), and larger amounts of proposed capital expenditures required to upgrade outside city water \& sewer lines, pump stations, etc. An additional factor in evaluating the difference between in-city and out-of-city rates is the fact that incity customers are charged an occupational tax fee which out-of-city customers do not pay.

Current and recommended rates for Pikeville's wholesale water customers are shown in the chart below (rates are per 1,000 galions):

Wholesale Customer	Prior to Jan 2008	Revised Jan 2008	Current Revision
Mountain Water Dist	1.44	1.70	1.78
MWD (Cowpen)	2.45	2.45	1.75
Southern W\&S Dist	1.69	1.89	1.72

The tables below are a comparison of the City's currently proposed water and wastewater rates with other public utilities throughout the region, based on an assumed usage of 5,000 galions of water. The rates were obtained for the utilities by reviewing Kentucky Public Service Commission tariffs and a report issued by Allen and Hoshall dated September 2006. Although the comparative rate information shown below was accurate at the time of this report preparation, some utilities may have made adjustments to their rates since that time.

REGIONAL UTILITY NAME	WATER RATES (5,000 GALLONS)
City of Hazard	14.35
City of Benham	23.70
City of Pikeville (Inside Customers)	29.80
City of Campton	30.50
Big Sandy Water District	32.95
City of Paintsville	32.95
Southern Water \& Sewer District	33.30
Mountain Water District	36.15
City of Vjcco	42.20
City of Pikeville (Outside Customers)	41.40

REGIONAL, UTILITY NAME	SEWER RATES (5,000 GALLLONS)
City of Hazard	15.30
City of Pikeville (Inside Customers)	20.00
City of Campton	32.50
City of Vicco	29.54
City of Booneville	29.48
City of Benham	32.75
City of Paintsville	35.64
City of Pikeville (Outside Customers)	51.05

In today's utility regulatory environment, federal and state lending agencies are beginning to require that separate accounts be maintained for each division of utilities. One reason for this requirement is that state and federal funding is scarce and lending agencies want to ensure that each utility service is "paying its own way". There has been concern that some cities were using money collected from utility services to fund other city needs - and then obtaining grants and low interest loans to pay for utility system improvements. Although there have been relatively few customer complaints regarding rates in the past, with the increasing cost of compliance with the Safe Drinking Water Act requirements and more and more need for capital expenditures for repair / replacement of aging infrastructure, utility rates are increasing and customers want to understand what they are paying for. Pikeville is to be recommended for taking a proactive position and maintaining separate accounts for water and sewer services.

CALCULATION OF WATER RATES

Formulating a new rate structure is a complex process. The first step is to allocate expenses to the various utility services (ie: water and wastewater, in Pikeville's case). As Pikeville already maintains separate accounting for its water and wastewater utilities, this step has already been dealt with internally. Given the changes in its customer base and consequent changes in future expenses and revenues, expenses utilized in the preparation of this revised report are based on Pikeville's current year budget appropriations. All projected expenses are accounted for including routine operational expenses, annual debt service on existing loans for utility system improvements and expansions, and projected amortization of future capital expenditures.

With regard to water rates, the next step is to allocate a portion of projected expenditures to wholesale customers. In that context, certain allocation factors must be determined. Since the City's wholesale customers use only a portion of Pikeville's distribution system, it would not be equitable to allocate a percentage al all expenses to wholesale customers. Page 5 shows total water produced, sales to retail customers, sales to wholesale customers, plant usage and unaccounted water loss. Page 6 illustrates the "jointly uised line ratio" (the proportionate amount of various sized water used to distribute water to wholesale customers as well as retail customers). Based on data from these two sources, additional expense allocation formulae are calculated (Page 7) which formulae are used to allocate expenses between the City's wholesale users and its retail users. The allocation of production and distribution expenses between wholesale users and retail users is shown on Page 8.

CITY OF PIKEVILLE		
WATER PRODUCED AND SOLD 2007		
Pikeville Inside	$274,620,800$	28.4%
Pikevilla Outside	$106,315,100$	11.0%
Mountain Water District	$377,972,000$	39.1%
Mountaln Water District - Cowpen	$28,183,000$	2.9%
Southern Water \& Sewer District	$178,586,000$	$18,5 \%$
Total Sales	$\mathbf{9 6 5 , 6 7 6 , 9 0 0}$	100.0%
Treatment Plant Use	$5,106,480$	0.5%
Unaccounted For Water	$342,679,820$	35.5%
Total Produced	$1,313,463,200$	

CITY OF PIKEVILLE			
JOINTLY USED MILES OF LINE			
Pikeville Miles of Line			
Size	Feet	Miles	Inch-Milles
2	14,400	2.73	5.46
3	12,800	2.42	7.26
4	16,800	3.18	12.72
6	121,600	22.03	138.18
B	126,800	24.02	192.16
10	33,200	6.29	62,90
12	23,200	4.39	52.68
16	10,900	2.06	32.96
			504.32
Mounlain Joinlly Used Inch Mile Ratio			0.1881
Southern Jointly Used Inch Mile Ralio			0.1315
Mounlain (Cowpen) Jointly Used Inch Mile Ratlo			0.1594

Pikeville presently provides water service to two wholesale customers, Southem Water \& Sewer District and Mountain Water District. It should be noted that Mountain Water District has two wholesale rates, one for the bulk of its customers and one for those customers located in the Cowpen area. The wholesale rate for customers in the Cowpen area was higher because previousty, water was sold by Pikeville to Sandy Valley Water District and then resold to Mountain Water District. Also, prior to June 2006, there was a third wholesale customer - Sandy Valley Water District. However, as mentioned earlier, Sandy Valley Water District was dissolved in 2006 and all its customers were transferred to the City of Pikeville and Southern Water and Sewer District. Consequently, it is no longer a wholesale customer for Pikeville.

Once expenses associated with wholesale customers have been atlocated, the remaining costs can be allocated to retail customers. The allocation of expenses to retail customers is identified on two separate schedules. The first schedule (Page 8) illustrates expenses allocated to Pikeville retail customers, excluding those new customers transferred to the City from the former Sandy Valley Water District. A second schedule (Page 10) identifies specific expenses associated with former Sandy Valley Water District customers. All expenses on this schedule are allocated 100\% to out-of-city customers. Page 11 is a summary of all expenses for both inside and out-of-city customers.

In addition to operational expenses addressed in the previous paragraphs, expenditures associated with existing debt and projected capital expenditures must also be factored into new rates. Separate schedules address these costs. The Allocation of Debt Schedule on Page 12 identifies all of the city's existing debt, annual debt service amounts and allocation of that debt to retail and wholesale customers. On pages 13 through 15, schedules of planned capital expenditures are shown for the system, amortization of those capital expenditures over the lives of the various assets, and the allocation of those amortized costs to retail and wholesale customers. Note that all capital expenditures shown on page 15 are specifically reiated to out of city customers only.

Finally, pages 16 and 17 identify the proposed new water rates for inside-city and out-of-city customers.

CITY OF PIKEVILLE

SANDY VALLEY EXPENSES

Dues	\$ 2.500
Freight and Poslage	2.500
Insurance-Vehicle	3,000
Insurance - General Liab	18,698
Office Supplles	4,000
Professional Training	1,000
Englneering	15,000
Legal	3,500
Professional Services	2,500
Bllling Prof Services	5,500
Bllling Service Bank	2.500
Rent and Easements	1.000
Contract Management (UMG)	252,000
Repair \& Maintenance	30,000
Travel	1,000
Cily Ulitilites	2.500
Depreclation	5.000
Workers Comp.	1,000
Salarles and Wages	20,000
Payroll Tax	1.500
Employee Benefits	7,700
Travel	1,000
Uniforms	500
Total Operation and Maintenance	\$ 383,898
Capital Expense	263,251
Debt (Sandy Valley Only)	48,066
Total	\$ 695,215

CITY OF PIKEVILLE
SUMMMARY OF EXPENSES

INSIDE CITY	
Operation and Maintenance	$\begin{aligned} & \hline \$ \\ & 880,721 \\ & \hline \end{aligned}$
Capila Improvments	210,493
Debt	140,968
Penalties (Revenue)	$(8,600)$
Special Revenue	(1,000)
Water SC	(22,000)
Publlc Works Reimbursement	(6,500)
Interest	(2,000)
Water Unearned Revenue	(1.000)
TOTAL INSIDE	$\begin{aligned} & \$ \\ & 1,191,082 \end{aligned}$
OUTSIDE CITY	
Oper \& Main! (Sandy Valliey)	$\begin{array}{\|l\|} \hline \$ \\ 383,898 \\ \hline \end{array}$
Oper \& Maint (Other Outside Cust)	$\begin{array}{\|l\|} \hline \$ \\ 103,325 \\ \hline \end{array}$
Capital Improvements	263,251
Debl	102,665
Penallies (Revenue)	$(3,100)$
Waler Special Revenue	(2,500)
Water SC	(7.500)
Interast	(400)
Bank Charges - Revenue	(500)
TOTAL OUTSIDE	$\begin{aligned} & \$ \\ & 839,140 \end{aligned}$

CAPITAL EXPENSES AND AMORTIZATION

OVERALL WATER SYSTEM					
	Total	Tatal lo be Amortized	Amartzalion	\|nslde \mid Whalesale	Oulslde Relail
TREATMENT PLANT					
Chain and Sprockets - Flocculators (2)	\$10,500	\$10,500	5	\$1,812	\$288
CL17 Chlorine Analyzer (2)	15,000	\$15,000	6	2,167	343
Upgrade Security Lights/Cameras (1)	5,000	\$5,000	5	646	354
Gate Valve Oper - Floc \& Settiling Basfins (2)	50,000	\$50,000	7	6,164	978
Replace Raw Waler Pump (2)	50,000	\$50,000	10	4,315	686
Replace High Service Pumps (2)	521,600	\$521,600	10	46,009	7,151
Control Valve Repalr Kits/Cylinder Cans (2)	37,500	\$37.500	3	10,786	1.714
Replace Subsurface Wash on Filter (2)	30,000	\$30,000	3	8,629	1,371
Coating Lamella Filters (2)	25,000	\$25,000	5	4,315	686
Sludge Dewatering Facility (2)	300,000	\$300,000	10	25,887	4,113
New Storage Tank (WTP Expansion)	1,067,976	\$1,067,976	35	26,330	4,183
SUBTOTAL WATER TREATMENT PLANT	2,112,576	2,112,576		136,050	21,868

WATER DISTRIBUTION PLANT

Main Line Insertions (2)	52,000	$\$ 52,000$	40	1,122	178
Waler Meter Replacements (1)	80,000	$\$ 80,000$	10	5,170	2,830
Replace 2" Galvanized Water Lines (2)	48,000	$\$ 48,000$	40	1,035	165
Replace PRV Station (2)	13,000	$\$ 13,000$	10	1,122	178
Inslall 2 Master Meter Sltes Inc Telemetry (2)	38,000	$\$ 38,000$	10	3,279	524
Inspect/Repair ExIsting Tanks (2)	350,000	$\$ 350,000$	5	60,403	9,597
Replace Qual Rldge Tank (100,000 gal) (2)	110,000	$\$ 110,000$	35	2,712	431
New 500,000 Tank @ Yorklown (2)	$\$ 350,000$	$\$ 350,000$	35	$\$ 8,629$	$\$ 1,371$
Upgrade Town Mountain Pump Slation (2)	350,000	$\$ 350,000$	35	8,629	1,371
Install Telemetry at Various Sites (2)	200,000	$\$ 200,000$	10	17,258	2,742
New DIstibutlon Mains from WTP	$3,664,145$	$\$ 3,664,145$	40	79,045	12,559
SUBTOTAL DISTRIBUTION SYSTEM	$5,255,145$	$5,255,145$		188,404	31,943

VEHICLES AND EQUIPMENT REPLACEMENTS

Replace Backhoe	45,000	$\$ 45,000$	5	7,766	1,234
Replace Dump Truck	75,000	$\$ 75,000$	5	12,944	2,057
Replace Utilky Field Trucks	105,000	$\$ 105,000$	3	22,617	12,383

New Air Compressor	25,000	$\$ 25,000$	10	2,157	343
SUBTOTAL VEHICLES	$\$ 250,000$	$\$ 250,000$		$\$ 45,484$	$\$ 16,017$
TOTAL ALL CAPITAL EXPENSES	$\$ 7,617,721$	$\$ 7,617,721$		$\$ 369,938$	$\$ 69,828$

PIKEVILLE WATER

CAPITAL EXPENSES AND AMORTIZATION

	Total	Total to be Amortized	Amorization	Outiside
WATER DISTRIBUTION SYSTEM				
Main Line Insertions (2 per year)	\$49,998	\$49,998	40	\$1,250
Water Meler Replacements	80,000	\$80,000	10	8,000
Replace 2 Eores under Railroad	50,000	\$50,000	40	1,250
Replace Commerclal Meters	75,000	\$75,000	10	7,500
Install 2 Master Meter Sites Inc. Telemetry	38,000	\$38,000	25	1,520
Inspec/Clean Tanks	70.000	\$70,000	5	14,000
Now Storage Tank at Coal Run	500,000	\$500,000	35	14,286
Aquavar (ix pressure at Rallifis Br.)	10,000	\$10,000	10	1,000
Relocate line on Riverbank (uncovered)	350,000	\$350,000	40	8,750
Replace 12"Main Line Along US 23	1,100,000	\$1,100,000	40	27,500
install Telemetry (Varlous Siles)	36,000	\$36,000	10	3,600
Replace Fire Hydrants (3 per year)	36,000	\$36,000	10	3,600
Encase Maln Line at Wallers Toyola	200,000	\$200,000	40	5,000
WATER LINE REPLACEMENTS/EXTENSIONS				
Back up Water Main for Sandy Valley Customers	450,000	\$450,000	40	11,250
VEHICLE \& EQUIPMENT REPLACEMENTS				
Replace Service / Uetlity Trucks	120,000	\$120,000	3	40,000
Replace Backhoes 5 year life	37,500	\$37,500	5	7.500
Replace Dump Truck 5 year Iffe	37,500	\$37,500	5	7.500
Replace Field Utility Trucks 3 year	70,000	\$70,000	3	23,333
Now Alr Compressor (10 year	12,500	\$12,500	10	1,250
Lowboy Traller	10,000	\$10,000	15	667
Exavalor	20,000	\$20,000	10	2,000
Meler Reader Truck	8,000	\$8,000.	3	2,667
Total	\$3,360,498	\$3,360,498		\$193,423

CITY OF PIKEVILLE									
OUTSIDE CITY CUSTOMERS									11/20/2008
CURRENT AND REVISED RATES									
	Bills	Gallons	Current Rates	Revenue	Revised Rales	Revenue	Percentage Increase	Dollar Increase	Originally Proposed Rates
First 2,000	18,924	37,848,000	\$ 15.72	\$ 297,485	\$ 22.50	\$ 425,790	43\%	\$ 6.78	\$27.00
Next 3,000		51,094,800	3.70	189,051	6.30	321,897	70\%	2.60	$\$ 6.95$
Next 5,000		8,689,300	3.65	31,716	6.30	54,743	73\%	265	\$6.95
Next 10,000		2,618,300	3.60	9,426	5.40	14,139	50\%	1.80	\$6.50
Next 30,000		2,754,000	3.55	9,777	5.40	14,872	52\%	1.85	\$6.00
Next 50,000		1,474,800	3.45	5,088	5.00	7,374	45\%	1.55	\$6.00
Over 100,000		1,188,100	3.15	3,743	3.50	4,158	11\%	0.35	\$3.50
TOTAL REVENUE	18,924	105,667,300		\$ 546,286		\$ 842,973			
TOTAL PROJECTED EXPENSES						839,140			
REVENUE OVER (UNDER) EXPENSES						\$ 3,833			
		-	-						
Inciudes 1,239 "oulside cily customers" transferred to the city from the Sandy Valley Water District									
Gailions based on statewide average of 5,000 gallons									

SEWER RATES AND EXPENSES

Expenses used in determining revised wastewater rates are also based on Pikeville's current year budget appropriations. As with water rates, all projected expenses are accounted for, including routine operational expenses, annual debt service on existing loans, and projected amortization of future capital expenditures. A schedule of expenses and allocation of those expenses to in-city and out-of-city customers is shown on Page 19.

A billing analysis showing rates previous to January 2008, those rates adopted in January 2008, and revised rates pursuant to this study is shown on page 20. The billing analysis verifies test year usage and also incorporates a larger out-of-city customer base in determining revenue projections.

Inside and outside customer WASTEWATER rates are shown below (rates in effect prior to the original rate study in January 2008, rates as recommended and adopted pursuant to the original study, and rates based on this revised study):

INSIDE SEWER RATES	Prior to Jan 2008	Revised Jan 2008	Current Revision
First 2,000 Gallons	6.98	8.50	8.00
Over 2,000 Gallons	3.46	4.60	4.00

OUTSIDE SEWER RATES	Prior to Jan 2008	Revised Jan 2008	Curtent Revision
First 2,000 Gallons	14.00		17.05
Over 2,000 Gallons	7.00	9.34	18.80

As stated earlier in this report, out-of-city wastewater rates are higher than inside city rates, based on a range of factors, including additional debt assumed by the City for outside city customers (from assumption of loans associated with the transfer of the Mossy Bottom plant from Mountain Water to the City) and larger amounts of proposed capital expenditures required to upgrade outside city sewer lines, lift stations, etc.

CITY OF PIKEVILLE

ALLOCATION OF WASTEWATER EXPENSES

Aulo Maintenance	TOTAL		IN-CITY		OUT-OF-CITY	
		5,000	\$	2,500	5	2,500
Service Charge		200		200		
Freight/Postage		5,500		3,000		
Repairs and Maint (In addition to UMG R\&M)		48,000				2.500
Insurance Vehicle		8,500		48,000		
Insurance/General Liability		2, 1 , 200		6,500		3,000
Office Supplies		21,200		15,000		6,200
Publlc Warks		7,000		4,000		3,000
Treatment Plant (2)						
Sewer Callection (2)		351,753		285,709		66,044
Mossy Bottom		301,337		244,759		56,578
Prof Service Other		137,000				137,000
Prof Service Bank Deposits		6,500		1,000		5,500
Rent-Easements		6,700		2,500		4,200
Repalrs and Maint (In addition to UMG R\&M)		- 48.000		300		
Disposal Sewage Fr. Tanks		48,000				48,000
Electric (2)		5,000,		5,000		
City Utillites (2)		14,000		4,061		939
InsuranceNVorkers Comp.		14,000		11,371		2,629
Salarles and Wages		22,000		1,000		
Payroll Tax		22,000 1,500		22,000		
Employer Benefits		$\begin{array}{r}1,500 \\ \hline 5,000\end{array}$		1,500		
Depreciation				5,000		
Pension Malching				25,000		5,000
Sublotal	$\$$	1,033,990	,			
Debl		1,033,950		690,901		343,089
Sewer Plant	5	206,883	+	156,266	5	51,617
Sewer Harold Br.		122,751		122,751		51,617
Thompson Road		36,744		36,744		
Mossy Bollom		105,450				105,450
Total Debt		471,828		314,761		157,067
Total Operation and Maintenance	5	1,505,818		1,005,661	\$	500,157

CITY OF PIKEVILLE									
SEWER DIVISION									
INSIDE CITY CUSTOMERS									
	Customers	Gallons	Current Rates	Revenve (1) Current Rates	Revised	Revenue (a) New Rates	\$ Increase	\%	Original Proposal
First 2.000	32,340		\$8.98	\$ 225,733	\$8.00	258,720	\$1.02	16\%	\$8.60
Over 2,000		189,768	\$3.46	656,597	\$4.00	759,072	\$0.54	16\%	\$4.60
Total	32,340	189,768		\$ 882,330		\$1,017,792			
Plus Other Income						\$ 18,100			
TOTAL INCOME (INSIDE CITY CUSTOMERS)						\$1,035,892			
TOTAL EXPENSES (Inct, dabt \& capital amorization)						\$1,023,094			
REVENUES GENERATED IN EXCESS OF EXPENSES						\% 12,798			
OUTSIDE CUSTOMERS (INCLUDING MOSSY BOTTOM \& COWPEN)									
	Bills		Current Rates	Revenue (A3 Guates Rater	Revised Rales	Revenue (4) New Rates	\$ Increase	\%	
First 2,000	7.476	22,644	\$ 14.00	\$ 104,664	\$18.80	140,549	\$ 4.80	34\%	\$17.06
Over 2,000		40,445	\$7.00	283,115	\$10.75	434,784	3.75	54\%	\$8.34
Plus Other Income						\$ 16,300			
Total	7,478	63,089		\$ 387,779		\$ 590,633			
TOTAL INCOME (OUTSIDE CITY CUSTOMERS)						\$ 605,933			
TOTAL EXPENSES (incl. debt \& capital amortzation)						\$ 600,896			
REVENUES GENERATED IN EXCESS OF EXPENSES						\$ 5,237			
TOTAL REVENUE - INSIDE \& OUTSIDE				\$1,270,109					
TOTAL EXPENSES (INSIDE ROUTSIDE)REVENUES INEXCESSOFEXPENSESS				-1,270,100		\$1,941,025			
						5 9, 98,035			

Additional schedules supporting the wastewater rate calculations are as follows:
A Summary of all wastewater related expenses, including debt service and capital expenditure amortization (Page 22)

A schedule of capital expenditures planned for the treatment plant and collection system as a whole (Page 23)

A scheđule of capital expenditures specifically related to out-of-city customers (Page 24)

CITY OF PIKEVILLE

SUMMARY OF ALL EXPENSES (SEWER)

INSIDE CITY CUSTOMERS			
Operation and Maintenance		\$ 680,901	
Debt (Total Allocatlon)		314,761	
Less Debt Paid w/Occup Tax	(A)	$(155,266)$	
Caplal Improvements		172,698	
Total		\$ 1,023,094	
(A) Per Clity Ordinance, that amount of debt associated with KIA Loan A90-06 for			
sewer plant improvements is lo be pald with occupalional lax revenues (for in-city			
custorners, who actually pay occupational taxes).			

| OUTSIDE- (INCLUDING MOSSY BOTTOML | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Operation and Maintenance | | 543,089 | | |
| Debt | | 157,067 | | |
| Capital Improvemenils | | 100,539 | | |
| Tolal | | $\$$ | 600,696 | |

PIKEVILLE SEWER

CAPITAL EXPENSES AND AMORTIZATION

PIKEVILLE AND MOSSY BOTTOM

PIKEVILLE AND MOSSY BOTTOM						
	Total		Amt to Amorilze	Amoritzation	Inside	Oulside
TREATMENT PLANT						
Air Line Replacement (2)	\$ 125,000	\$	125,000	10		S 3119
Replace Blower Molors (2)	100,000	\$	100.000	10	7.505	2.495
Corrosion Resistant Coatling (2)	150,000	\$	180,000	10	11.258	3743
Back Up Generalors (2)	165,000	\$	165,000	10	12383	17
WASTEWATER COLLECTION SYSTEM						
Correct ill Problems/Separate Storm Waler (2)	350,000	\$	350,000	40	6,567	2183
Rehab Center Creek LS / Upgrade 700^{\prime} Old Line (2)	77.000	\$	77,000	10	5,779	2,183 1,921
Rehab Lift Station \#7 and River Crossing (2)	261,800	\$	264,800	10.	19,648	
Rehab Coal Run Fire Depl. Lift Station (2)	30,000	\$	30,000	10	19,648 2,262	6,532 749
COLLECTION SYSTEM EXPANSION						
Cedar Gap Exlensions ${ }^{5}, 000$ LF) (1)	327,600	5	327,600	40	6,652	
Yorkwood Forrest Dr Extension (1).	260,600	\$	260,600	40	6,052 5,291	1,538
Foxcrofl Subdivison Extensions (1)	295,500	\$	200,600	40	5,291	1.224
			295,50	40	6,000	1,387
Johnson Hollow Extension (1)	260,600	\$	260,600	40	5,291	1.224
VEHICLE AND EQUIPMENT REPLACEMENTS						
New Roll-Off Truck (1)	60,000	\$	60,000	5	9746	2254
Replace Service/Utility Trucks (1)	120,000	$\$$	120,000	5	19,493	4,507
New VAC Truck Jeller (2)	400,000	\$	400,000	10	30,020	9,980
Replace Minf-Excavator (1)	40,000	5	40,000	10	3,249	751
Replace Dump Truck (1)	75,000	\$	75,000	5	12,183	2,817
TOTAL	\$ 3,098,100	$\$$	3,098,100		172.698	50.539

Factors

(1) Number of Cuslomers
(2) Gallons Sold

PIKEVILLE WASTEWATER CAPITAL ITEMS
SPECIFICALLY ASSOCIATED WITH MOSSY BOTTOM

	Tolal		Aml to Amortize		Amortizalion	Tolal Amount
Corrision Resistant Coaling		150,000		150,000	10	15,000
Replace Coal Run Lift Slation		75,000		75,000	15	5,000
Odor Control		200,000		200,000	10	20,000
Repair Lift (coating - hydrogen sulfide corrosion)		50,000		50,000	б	10,000
Total	\$	475,000		475,000		$\begin{gathered} \$ \\ 50,000 \\ \hline \end{gathered}$

RESPONSE TO QUESTION

3(b)

City of Pikeville Water Lines
(from WRIS and from 2002 and 2019 PSC submittals by Pikeville)

						$\stackrel{?}{9}$			
		$\begin{aligned} & 9 \\ & \substack{9 \\ \sim} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \mathrm{~N} \\ \mathrm{~N} \end{gathered}$	$\stackrel{N}{N} \underset{\sim}{\infty}$		$$	$\begin{array}{\|c} o \\ \dot{\varphi} \mid \\ 0 \\ 0 \\ \dot{\sim} \end{array}$		
		$\begin{array}{\|l\|l\|} \hline N \\ \text { No } \\ \text { N } \end{array}$							\%
		$\underset{\substack{0}}{\substack{0}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\rightharpoonup}{\circ} \mathrm{O}$			$\stackrel{\varrho}{F} \stackrel{\infty}{\infty} \begin{aligned} & \infty \\ & \frac{j}{N} \end{aligned}$		
		$\stackrel{+}{7}$	~	$\stackrel{\text { jo }}{\sim}$	-	$\stackrel{\square}{-1}$	$\stackrel{\square}{2}$	$\stackrel{\square}{9}$	$\stackrel{\bigcirc}{\square}$
		\sim	-	$\pm \infty$	$\bigcirc \infty$	- 으	우	N 0	$0 \cdot \frac{0}{\square}$

Distribution Line Allocation
(calculated on City of Pikeville waterlines - WRIS data)
from "Financial Management: Cost of Service Rate Making"

Distribution Main Analysis				
Pipe Size (in)	Linear Feet	Installed Cost (\$/LF)	Replacement Cost (\$)	
2	47,771	30.00	$\$$	$1,433,130$
3	5,391	35.00	$\$$	188,685
4	6,731	60.00	$\$$	403,860
6	198,876	90.00	$\$$	$17,898,840$
8	138,915	130.00	$\$$	$18,058,950$
10	47,421	150.00	$\$$	$7,113,150$
12	78,371	170.00	$\$$	$13,323,070$
16	13,039	180.00	$\$$	$2,347,020$
20	-	220.00	$\$$	-
24	-	250.00	$\$$	-
Totals	536,515		$\$$	$60,766,705$

Connie L Allen:

this is total cost of 2-inch through 6-inch line, D3+D4+D5+D6

| Connie L | Connie L | Connie L | |
| :--- | :--- | :--- | :--- | :--- |
| Allen:
 ft of 8-inch | Allen:
 ft of 10-inch | Allen:
 ft of 12-inch | Connie L
 Allen:
 ft of 16-inch |

Connie L Allen:

cost of 6-inch part of pipe

Connie L Allen:
 subtract the 2 -inch part of the cost

Connie L Allen:

this is the total feet of 8-inch through 16 -inch multiplied by cost of 6 -inch, to get the cost of 6 -inch pipe within the 8 to 16 -inch lines
City of Pikeville Waterlines
(from WRIS after 27 July 2019 adjustment)

Distribution Main Analysis				
Pipe Size (in)	Linear Feet	Installed Cost (\$/LF)	Replacement Cost (\$)	
2	20,184	30.00	$\$$	605,520
3	5,391	35.00	$\$$	188,685
4	6,728	60.00	$\$$	403,680
6	198,850	90.00	$\$$	$17,896,500$
8	138,893	130.00	$\$$	$18,056,090$
10	47,414	150.00	$\$$	$7,112,100$
12	91,126	170.00	$\$$	$15,491,420$
16	17,157	180.00	$\$$	$3,088,260$
20	-	220.00	$\$$	-
24	-	250.00	$\$$	-
Totals	525,743		$\$$	$62,842,255$

Fire Protection Component

American Water Works Association

Financial Management: Cost of Service Rate-Making An AWWA Seminar

April 7-9, 2014
Charleston, South Carolina

The materials developed and produced by AWWA may not be reproduced or transmitted in any form or by any means, electronic or mechanical, other than for the purpose of delivering this training to AWWA customers, unless copyright permission has been granted by AWWA Education Services.

TABLE OF CONTENTS

Learning Outcomes
A Note About Continuing Education Units (CEUs)
About AWWA
Agenda

SECTIONS

1 Financial Management, Policies, and Rates
2 Capital Budgeting and Financing
3 Overview of Rate Setting Environment, Objectives, \& Process
4 Considerations in Setting Revenue Requirements
5 Cost of Service Studies
6 Classification Procedures
7 Allocation Procedures
Rate Design
9 How to Effectively Present Your Rate Study
10 Optional Session: Fundamentals of System Development Charges
11 Technical Appendix A
12 Technical Appendix B

LEARNING OUTCOMES

$>$ Evaluate financial policies and rate impacts.
$>$ Develop defendable policies that are fair, equitable, and objective.
$>$ Recover the full cost of service with your rate, while still promoting community objectives, and getting the rate your utility needs to be successful.
\Rightarrow Avoid rate shock by using proven techniques on the use of capital budgeting and analysis.
Establish cost of service rates by applying fundamental methodologies.
$>$ Set fair revenue requirements.
$>$ Classify and allocate costs equitably.
\% Establish system development charges by evaluating the costs of growth and the methods to recover those costs.
$>$ Present information in a clear and concise manner to best communicate your results to the public.

IMPORTANT NOTE ABOUT CONTINUING EDUCATION CREDITS

Abstract

AWWA follows the ANSI/IACET Standard for Continuing Education and Training. Continuing education credit approval processes required by licensing agencies mandate that AWWA document attendance. We ask that you sign-in daily both in the morning and afternoon to document your attendance for all days of the seminar. To obtain full CEU credit for the seminar, a participant's signature must be on all morning and afternoon signin sheets. Instructions on how to print off your certificate of completion can be found in Section 9, page 21 of the PowerPoint presentation.

AWWA will maintain the participant's CEU record for seven years.
It is the participant's responsibility to apply to his/her licensing agency for continuing education credit approval. While AWWA coursework may be approved by a given agency, this doesn't necessarily mean that the agency will deem all AWWA coursework relevant to a given type of license. Therefore, AWWA recommends that the participant confirms that the coursework attended meets the relevancy criteria and guidelines established by your agency.

Questions? Please contact AWWA's Continuing Education and Training Coordinator, Leah Bang at LBang@awwa.org.

ABOUT AWWA

The American Water Works Association (AWWA) is an international nonprofit scientific and educational society dedicated to the improvement of water quality and supply. Founded in 1881, AWWA is the largest organization of water supply professionals in the world. Its more than 57,000 members represent the full spectrum of the water community: treatment plant operators and managers, scientists, environmentalists, manufacturers, academicians, regulators, and others who hold genuine interest in water supply and public health. Membership includes more than 4,000 utilities that supply water to roughly 180 million people in North America. AWWA offers a variety of educational programs for its members, these include:

CONFERENCES - Provide a venue for participants from around the world to attend AWWA's leading-edge technical sessions and exhibits, workshops, and symposiums to meet, learn, and network.

SEMINARS - Provide a venue for participants to learn about important topics instructed by top experts in their field.

ELEARNING - Provides education and training 24 hours a day, 7 days a week. Without leaving your desk, water professionals can take courses on a schedule that meets their needs. Receive education and training through self-paced or facilitated courses on basic operator training, occupational safety, and human resources topics.

ABOUT AWWA (CONTINUED)

WEBINARS - Cover a diverse range of topics that are typically "hot off the press." Purchase a single license, or purchase a site license and gather a group together to view a webinar. Webinars are delivered over the Internet; via PowerPoint presentations and audio to the viewer.

AGENDA

DAY ONE	
TIME	6.5 CONTACT HOURS OF INSTRUCTION TOTAL FOR DAY 1
8am. 8 : $30 \mathrm{am} . \mathrm{m}$.	Registration
8.30 am- 12 Noon	- Financial Management, Policies, and Rates - Capital Budgeting and Financing, Kay Issues
12 Noon-1 p.m.	Lunch (Included)
$1 \mathrm{pm}$. - 4 -30 p.m.	- Overview of Rate Satting Objectives, Policies and Process - Consideration in Setting Utility Revenue Requirements

DAY TWO

DAY TWO	
TIME	7 CONTACT HOURS ÖF INSTRUCTION TOTAL FOR DAY 2
8 a.m. - 12 Noon	- Cost of Service Studies
12 Noon - 1 p.m.	Lunch (Not Included)
1 p.m. -4.30 p.m.	- Classification Procedures
NOTE	(2) fifteen minute break tumes a.m./p.m. $=30$ minutes total are subtracted fromt the contact hour day 2 total
	DAY TWO EVENING OPTIONAL SESSION
4.30 p.m. -6 p.m.	- Optional Session: Fundamentals of System Development Charges

DAY THREE

DAY THREE	
TIME	6 CONTACT HOURS OF INSTRUCTION TOTAL FOR DAY 3
8 a.m. -2 p.m.	-Allocation Procedures - Rate DDesign
LUNCH	Work Througgh Lunch

Section 1

Financial Management, Policies \& Rates

. . . Looking for a better way

Overview of the Rate Setting Process

Revenue Requirement	Compares the revenues of the utillity to Its expenses to determine the overall level of rate adjustment
Cost of Service	Equitably allocates the revenue requirements between the various customer classes of service
Rate Design	Design rates for each class of serive to meet the revenue needs of the utility, along with any other rate design goals and objectives

Class Exercise/Discussion

- Discuss in small groups the challenges/problems that you have faced in establishing cost-based rates at your utility (e.g. technical, managerial, public process, political etc).
- Be specific and discuss how your utility has dealt with those challenges in the past (successfully or unsuccessfully).
* Order these challenges from -rast challenging" to -dast challenging".

The Rate Setting Decision Pyramid

\qquad
\qquad
\qquad

$313 \quad d$.

Water (\& Sewer) Utility Best Management

Practices ${ }^{(1)}$ A Utility Should Have...
4. Long-temm limancial forecest
2. Dept policies
3. Polieied for financial margirns. debt service coverage.
4. Regular financial reporting and momitering.
5. Proritized capilal improvernenl programs.
6. Use of professtonal experts.
7. Limited clepondency on grewth sensitive revernue
B. Collection policies with entorcement for late or non-payers
9. Coordination with regional growth planners
10. Raie affordability index
11. Defined financial relationship to the general puppose govemunent so that the utility ravenue can be relued on for utility pupposes.
12. Strategies to track changing regulatory mancates
13. Strong accounting practices and internal controls.
14. Professiortal recognition of budgel and accourting process.

Role of Key Groups/Positions in the Financial Planning Process

Typical Issues in the Financial Planning Process

- Policy Governance Board - Micro-managing.
- Financial Planning Models
- Too simple or too complex.
- Lack of focus on the important issues.
- Financial Policies
- Little or no written policies for establishing rates.

\qquad
\qquad

Foundation of Governance

Policy Governance: What it is
Policy governance is a form of leadership; governing body provides -imionary" leadership; should not be involved in day-to-day operations/decisions.

The Problem

- A governing board that doesn't understand their role - they bring to the table what they know.
A management team that doesn't work with their governing board in an effective way,
- Properly laying out the discussian.
- Focusing on the key policy decisions.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Models of Governance Structures [1]

- Based upon a simple principle:
- Governing body establishes the \rightarrow mds".
- Management team determines the -reans".
- An effective governing body's role is to:
- To see to it.
- Achieve what the organization should.
- Avoid what is unacceptable.

"To See To It"

- Commitment to assure that things are done right.
- Governing body must describe what is -ight" or the criteria for success (e.g. financial performance target levels).
- Governing body must hold parties accountable.
- Governing body must monitor performance regularly.

81.10 41.
"Achieve What the Organization Should"
- Implies an understanding of providing services (benefits) to the right customers, at an appropriate costs.
- Another way of describing -eds".
- Mistakenly, most governing boards focus on activities, as opposed to -ads".

\qquad
\qquad
2-2
\qquad
\qquad
\qquad
\qquad ${ }_{51.11}$ U.

What are the "Ends" and the "Means"?

- "Ends"
- Defined as the results or the priorities of the organization.
- Example - targeted conservation savings (e.g. 5\%).
- "Means"
- Defined as the methods, programs, practices \& conduct of the organization to achieve the ends."
- Example: Management determines that conservation savings will be achieved via a specific program or programs.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

"Avoid What is Unacceptable"

- If the governing body focuses on the -eds" then the -mans" are delegated to management.
- Micro-management of the -mans" is a major problem of governing boards.
- Governing body should specify any 一means" that are unacceptable (e.g. achieving conservation by pricing water at marginal cost).
- Management is left with a broad array of choices (means) to meet the desired -eds".

Issue 2 -
Financial Planning Models

Simple or Complex??

\qquad
\qquad
\qquad
\qquad 30.16 dil

Typical Issues Associated With Financial Planning Models

- Length of Planning Horizon
- Building the Financial Model
- Accuracy
- Size and complexity
- Inputs/outputs

- Uses of the Results
- What do you need to know and understand?
- What results do you want to communicate and to whom?

Issue 3 - Financial Policies
The problem

created by
a
lack of
written
policy
direction
 …

Financial Policies and Procedures

- The difference between a policy versus a procedure.
- Policy - -eds"
- Procedure - -neans" - step by step
- The need to find the proper balance between policy direction and policy (management) flexibility.
- Written policies are found in numerous areas of the utility; written financial/rate policies rarely found.

Class Exercise: Financial Policies and Procedures (Written vs. Understood)

Discuss as small work groups the type of policies that your utility has in place; written and unwritten.

Discuss the advantages of each type of policy and why certain policies may be in one form instead of the other.

- Written Policies
- Unwritten Policies

Example of Written Financial Policies

- Copy Attached as Appendix A
- Provided for example purposes only
- Items to Note
- Objectives of each of the global policy statements
- General layout or approach
\qquad
\%

Debt Service Coverage ${ }^{[1]}$

[1] - Ybu should check with your utility-spearic band issues for the caledextion of debt service coverage ratios. May vary from utitivy to utlity.

What Useful Information is Contained in a Capital Improvement Plan?

- Capital Projects Needed to be Built
-
-
-
-
-

Types of Capital Projects

- Types of Capital Projects
- Renewal and Replacement
- Growth related
- Legally mandated
- Why Does It Matter?
- Methods of financing different types of capital projects
- Presentations/Explanation

Example of a Capital Improvement Plan

- See Technical Appendix B.
- Items to Note:
-Length of planning horizon
- Summary page
- Detail to help explain/justify
- Priority of projects - Ability to slide projects out?

Capital Planning Issues

- Define Service Levels and Customer Needs
- Service area boundaries/annexation
- Customer growth - Extension policies to new customers (outlying area)
- Minimum service levels/regulatory requirements
- Physical Facilities (what is needed to meet service levels)
- Supply issues (short and long-term)
- Age/condition of plant (replacement/upgrade)
- Changes in technology (e.g., meter reading)
- Financial Resources (What we care about!)
- Customers' ability and willingness to pay for new facilities
- Return on investment (risk)
- Financing alternatives (impacts to rates and financial performance)
"Cost" vs. "Value" of Water

\$50 Can Get You...

Methods of Financing Capital Projects

- Rates (cash flow)
- Revenue Bonds
-
-
-

.

Can You Develop an "Optimum" Financing Plan?

- How do you define - dimum?"
- Desired Rate Impacts—Short and Long Term
- Net Present Value (Lowest)
- Risk (Avoidance of or least risk)
- Covenants (Bond and Rate)

Example Cover - Official Statement (OS)

Sources and Uses of Funds

sotrces and chis or fans
 socrent 1 Frode

Siet Pratize
Duts semeer Rewate Frad
Touldyers -
Cirt of Frader

Depout it Conthatace Fras
Drpout io Bood Rewity Fund

Tolld Appluctam
ETVANCTD CAPITAL MIPROMTMENTS

$\$$	\$925.00000
	45969 10
	1046974
\ddagger	7, +136115
5	
	47901368
	2000,000.20
	: 50.40745
	16.4173
	76, 积里

\qquad
\qquad
\qquad

Rate Covenant and Security

SECTRITY FOA THE BONDS

Pate Contrux

Establishment of the Bond Reserve

Favaliotiefted

 Le, B

32.15 Al

Other Legal Provisions

 be deemed i broad of thry cowrunat

System's Largest Users

-

Cuplorax		\%orftingrame
Anbetuer Pruch ter	L6E 157.000	7 5\%\%
Stakry Pmortourd	625 660000	548
Cruable Sted	24.341.600	\% - ¢ ¢
Bramel Meyerr Scult	180,311,000	157
	128000000	11%
Qumbler Frama	73780000	0644
Frater \& Jerra Co	43200000	0 35\%
Concmaur Cerani Hoqpial	\$1.890.000	0.17%
	31.4600000	077%
Lacklyrad Mana	30,500,000	027
Croun Hima	10,540000	0174
Cun Stret (Co-Ceverstor)	13.870 .000	0.1\%\%
Stunte Inc REM	12752.000	011%
	12480000	011%
Amerpade	11.650 .000	010%.

Fitch's "10-Cs" of Water and Wastewater Revenue Bond Analysis What the Rating Agencies Examine

1. Community

Characteristics
2. Customer Growth
3. Capacity Available
4. Compliance with

Environmental Laws
5. Capital Demands and Debt Policies
6. Covenants
7. Charges and Rate Affordability
8. Coverage and Financial Performance
9. Cash Considerations
10. Crew / Management

Team

\qquad
\qquad

A Few Aspects of a Water Utility

- Natural monopoly
- Single producer can supply entire market more efficiently rather than two or more
- Provide services essential to societal growth
- Capital intensive
- Requires \$5-\$6 of assets to produce $\$ 1$ of revenue
- Regulated
- Private utility: Utility Commissions, Shareholders
- Municipal utility: Council, boards

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

State of the United States Water Industry

Utilities, Population, and Source Water

\qquad
\qquad
\qquad

Utilities, Population, and Source Water
Utilities and Population by Water Source Type

[^2]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Water Utility Financial Challenges

- For many utilities, water revenues are flat or declining while costs continue to increase
- Customer bills continue to increase - leads to affordability issues
- Increased political pressure to "keep rates low"
- Balancing conservation and revenue stability to achieve goals
- How are rates affected by these challenges?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What is the Role of Rates?

- Utility Financial Viability
- Pays the bills
- Revenue stability: matching inflows and outfows
- Funding the future
- Water Bill (Rates)
- Primary communication with customers
- Primary determinant of utility performance
- Influence consumption
- Customers Care
(how and when)
About:
- Social goals
- Faimess
- Is the water on?
- Is it clear and does it taste good?
- Amount of their bill

Typical Rate Setting Objectives ${ }^{1}$

- Revenue stability and - Ability to pay / affordability
sufficiency
- Continuity in rate Philosophy
- Fairness and equity
- Cost-based
- Conservation / efficient and effective usage
- Simplicity (Administration and Customer Understanding)
- Feasibility
- Defensible

\qquad

Why is a Rate Study Important?

- identifies cost inequities
- Equity betwoen customer classes
- Equity within customer classes
- Properly designed rates send pricing signal (Price $=$ Costs)
- Proactive financial planning decisions for short and long-term avoids customer "rate shock"
- Helps manage revenue stability
- Revenue fluctuation due to seasonality, weather, etc.
- Provides documentation and support for ratemaking decision process
- Provides framework for rate reasonableness
- Fosters collaboration between various utility departments

Review of the Global Rate Setting Principles

- Rates should be:
- Cost-based (average cost pricing)
- Equitable
- Set at such a level that they meet the utility's full revenue requirements, bond covenants, and utility financial objectives
- Predictable from year to year
- Easy to understand and administer
- Cost allocations used for rate determination should follow the principles of cost-causation, or those that cause costs, pay costs

Setting Rates -Top to Bottom

Forecast Projections	Projacted number of customers, consumption, and revenues
O8M \& Capital Budget	Forecast of expenditures
	Determination of revenue needs to meet
Revenue Requirement	O\&M, capital, debt and financial
Cost of Service	Equitable allocation of the revenue requirements to customer classes
Ratas	Design rates to recover revenue requirements

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

There Are Other Ways of Allocating Costs

- Water Sales
- Politics
- "Across the Board" Increases
(Absent Cost of Service Information)
- Pros and Cons
- Simplicity
- Appearance of Equity
- Defendable??

\qquad

What Are Revenue Requirements?

- The level of revenue required to properly and prudently operate, maintain, and develop utility infrastructure.
- For most utilities revenue requirements are properly set when they cover costs.

Revenue or Costs?....Revenue Requirements = Costs

- Revenue requirements from rates:

Total Costs (Reveruse Requirements)
Less, Non-rate revernues

* Revenue Requirements from Rales

Overview of Developing Revenue Requirements

- Revenue requirements are established to offset utility costs
- Determining them requires familiarity with data and estimating
- Establishing a Test Period-the method of determining the basis and timeframe for the estimate
- Historical - a recent typical" year
- Projected - budgeted or forecasted
- Pro forma - historical base year with adjustments for known and measurable changes
- —Esh Basis" versus -tility/Accrual Basis"

Comparison of Utility Basis and Cash Basis

	Cash Basis
O\&M	$\$ 3,000,000$
Taxes Π Transfers	50,000
Debt Service (P\&I)	500,000
Capital Projects Funded from Rates	$1,000,000$
Revenue Requirements	$\$ 4,550,000$

	Utility Basis
O\&M	$\$ 3,000,000$
Taxes	50,000
Depreciation Expense	900,000
Retum on Rate Base (1)	$\mathbf{6 0 0 , 0 0 0}$
Revenue Requirements	$\$ 4,550,000$

(i)See following page for calculation of retum on rate base

Example of Return on Rate Base Calculation

Return on Rate Base Components

- Rate base
- Original cost of assets
- Accumulated depreciation
- Working capital
- Construction work in progress (CWIP)
- Rate of return (WACC)
- Outstanding long-term debt / cost of debt
- Net equity in system / cost of equity

Weighted Average Cost of Capital

- Cost of debt
- Total interest payments divided by book value of outstanding debt
- Should account for issuance costs, premiums or discounts at time of issue, and sinking fund or call provisions
- Premium or discounts may affect the yield to the investor

Weighted Average Cost of Capital

- Cost of equity
- Estimate of future returns to stockholders
- Difficult to estimate what future returns will be
- Represents the minimum acceptable return
- Cost of equity is different than return on equity

The cost of equity, which is the minimum acceptable retum, is a starting point. Under nomal economic conditions, the fair retum bies above that minimum rate"

Source. Wisconsin Public Servica Commission. Final Decision. Dockel 3270-UR-115. December 2007

Weighted Average Cost of Capital

- Cost of equity calculation methodologies
- Discount cash flow (DCF)
- Cost of equity $(K)=0, / P_{0}+G$
- Capital Asset Pricing Model (CAPM)
- Cost of equity $(K)=R_{f}+\beta\left(R_{m}-R_{l}\right)$
- Bond yield plus risk premium
- Cost of equity $(K)=i+\left(R_{m}-R_{i}\right)$
- Calculation is just and estimate

- Each method has strengths and weaknesses

Example Cost of Equity Calculation

- Discount cash flow
$K=D_{\gamma} / P_{0}+G$ where:
2010 dividend $=\$ 2.00$
Current stock price $=\$ 60$
Constant growth $=5 \%$
Growth can be estimated from:
- Earnings per share (EPS)
- Cash flow per share (CFPS)
- Book value per share (BVPS)
- Dividends per share (DPC)
$D_{1}=\$ 2.00 * 1.05=\$ 2.10$
$D_{1} / P_{0}=\$ 2.10 / \$ 60=3.5 \%$
$K=3.5 \%+5.0 \%=8.5 \%$

Alternative Method For Determining Return Component

- Step 1 - Determine revenue requirement on -eash basis"
- Step 2 - Determine first three components of the utility basis
- Step 3 - Determine return component for the utility basis, return is what it takes to balance to the fash basis*

Cash Basis		Utility Basis	
O\&M	$\$ 3,000,000$	$08 M$	$\$ 3,000,000$
Taxes/Transfers	50,000	Taxes	50,000
Debt Service	500,000	Deprec. Exp.	900,000
CIP from Rates	$1,000,000$	Relum	$\boxed{000,000}$
Total	$\$ 4,550,000$	Total	$\$ 4,550,000$

Many Utilities Use Both Methods

- The allocation of rate base (assets) and depreciation is ofter considered simpler and less volatile from year to year than the allocation of debt service and cash financed capital.
- Utilities serving suburban or neighboring communities often assess the suburban rates using the utility basis and thus treat the owning city as the investor (inside City/outside City).

Utility Basis vs. Cash Basis

Pros and Cons

- Cash Basis

- Simple to understand and develop
- Conforms with budget process
- Potential problem of tumpy" funding of capital improvements
- Utility Basis
- Generally stable over time
- Common for investor-owned utilities (IOU's)
- Requires return calculation -
- However, return can look like profit from the customer's perspective

Other Considerations in Developing

 Revenue Requirements- Financial planning considerations
=Debt service coverage (DSC) ratios and capital financing
ンReserve levels

\qquad
\qquad
\qquad

Other Financial Planning Considerations Reserve Levels
Types of reserves

1. Operating reserve

- 45-90 days of O8M is typical

2. Capital Reserve

- Typical year of capital projects (rate funded)
- One year depreciation expense

3. Emergency reserve

- Funds required until emergency funding can be arranged, or largest capital item to replace
- Rate stabilization reserve

4. Bond reserve

- Established based on bond documents
- A portion of annual debt service payments

Reserve Levels (Continued)

Another Method: Cash Flow Approach

1. During the first half of the year, sources of funds are below uses, and cash reserves drop
2. During the second half of the year, sources are higher than uses and reserves replenish
3. A cash flow analysis should allow you to determine the beginning of the year needs that allow you to make payments at the lowest reserve balance

Catim Reporvil

Funding of Renewal and Replacement Capital Projects

- Renewal and replacement projects are of an on-going nature.
- A utility should fund from rates an amount for renewal and replacement capital projects;
- A simple financial rule is to fund, at a minimum, an amount at least equal to annual depreciation expense.
- Issue of depreciation expense vs. replacement cost.
- If possible, targeting an amount greater than annual depreciation expense (e.g. 1.5 times annual depreciation expense).

Framework for Evaluating Capital Improvement Projects

	Year 1	Year?	Year 3	Yotr 4	Year 5
Source of Supply Improvements	\$0	\$6,000	\$2.000	50	50
Washtngtor Reservior	0	0	2.500	0	0
Transmission Improvements	400	0	0	600	1,000
Capital Hill Reservoir	0	0	0	1,500	0
Pumping Plank Replacements	200	0	0	0	200
Replacement Mains	1.000	1,100	1.200	1.300	1,400
Total Capital Projects	\$1,600	\$7,100	\$5,700	\$3,400	\$2,600
Less. Outside Funding Sources					
Grants	\$0	\$2,000	\$0	50	\$0
Capital Reserves	100	0	700	650	100
System Development Charges	0	1,350	0	500	0
Low-Interest State Leans	0	2,000	0	0	0
Ravenue Bonds	0	0	3,000	0	0
Total Oulside Funding	\$100	\$5.350	\$3,700	\$1,150	\$100
Bulance Funded From Ratel	\$1.500	\$1.750	\$2,000	\$2,250	\$2.500

Case Study

Clear Water Utility is a small municipal utility with approximately 5,000 customers. It is currently facing a number of problems. As with most small utilities, planning from both an engineering and financial perspective is an exercise which never seems to come to the forefront. Among the utility's problems are the following:

- To improve water quality, a $\$ 4.0$ million (current year $\$$) treatment plant must be built within any one of the next three years (year 1 . year 2 , or year 3). It is assumed that this is a one-year project. Delay of the project adds 10% to the cost for each year delayed.
- Much of the distribution system needs replacements. In the past, water rate levels have not supported the ability to make adequate renewals and replacements. Current depreciation expense is approximately $\$ 500,000$ per year.

Case Study Considerations

- Water rates were last adjusted 3 years ago. The present residential rate is as follows:

- Meter Charge:	$\$ 7.00 / \mathrm{month}$
- Commodity Charge:	$\$ 1.50 / \mathrm{CCF}$

- Average residential use is 10 CCF/Month, and the average bill is $\$ 22.00 /$ month.
- The utility has no existing (outstanding) debt and has the capability to debt finance 100% of the major capital improvements.
- Grant funding for the treatment plant will be available in year 2 at a level of 25% of the project cost. The assumed probability of funds being available and of receiving these funds is about 50%.

Developing the Analysis

- Clear Water Utility retains you to provide an analysis of funding/finaneing alternatives and a recommendation on the suggested approach
- Based upon your analysis, the following scenarios were developed

	Option 1	Option 2	Option 3	Option 4
Treatment Plant -				
- Year Buill	Year 1	Year 1	Year 2	Year 3
- Method of Funding	100\% Rales	Bonds	Bonds	Bonds
- Grant Funding?	No	No	Yes	No
Renewals 8 Replacements				
Approach	Full Funding	Full Funding	Phase-hn	Phase-h
Funding in Year 1	\$500,000	5500,000	\$200,000	\$150,000
Funding by Year 4	\$500,000	\$500,000	\$500,000	\$500,000
				$_{203}$

Option 1 - Capital Financing Plan

Option 1 -Revenue Requirements

	Cuttint Y \#etr	Yemp 1	Year 2	Year 3	Year 4
Soureat of Funtit					
Reverutil it Pretert Raves	\$1,325.000	\$1,330 300	38.351 .700	\$1.385.200	51.378.900
Mitealamaut Revatios	28000	28860	29200	29800	30400
Total Revenuer	\$1.383.000	\$1,388,200	\$1.300,900	51,395,0080	31,404,300
Applucqilion of Fumdz =					
Total Oppr 4 Ment Exp.	\$1.250.000	\$1.142500	\$1.374.100	\$1 447,000	\$1.514.400
Tanevitransiep Pepmenta	\$3.000	[08 298	01.102	01.912	82.734
Dobt Sarne:					
- Exitung Deda Sorwer	0	D	0	0	0
- +jew Dabl Servic	0	-	0	0	0
Cepp. Mmprov. Funded From Futes	$50 \mathrm{g00}$	45000000	500000	300000	500000
Tatal Revenue Requirumwnta	81.383 .000		81, 850,202	\$2.0210.012	52,102,13
fadanced; (bofletency) of Funta		(4,525.897)	[5578,302]	(3833.942)	[8802.834]
	0.00	0.00	0.000	0.00	0.00
DSE - Antor Rald Adjustment	0.00	0.00	0.00	0.00	0.00
Curremt Ave, Realdertial Bila (fimin)	822.00				
Required Reto Adjusimant	0.0\%	1312\%	42.9\%	40,4\%	50,2\%
	\$22.00	\$0140	\$31.4	832.22	333.05
		-			A

Residential Rate Impacts

Option 2 - Capital Financing Plan

Debt issued at $\mathbf{5 \%}$ for $\mathbf{2 0}$ years, $\mathrm{DS} \mathbf{=} \mathbf{\$ 3 2 0 , 9 7 0}$

Residential Rate Impacts

Option 3 - Capital Financing Plan

	Curent Year	Yepr 1	Yagr^{2}	Yaga 3	Yan 4
Cuptal Inprovement Projects					
Treamem Flart Expansisn	5	50	\$4.406:000	50	50
Tenemads $\frac{1}{\text { Replacmens (Mains) }}$	50,000	200000	300:000	400000	500.000.
Total Capital Improve. Prol.	\$50,000	\$200000	\$4.700:000	\$409:006	\$500, 000
Less. Funding Sources					
Bnat Fuxd	50		\$3,300:000	50	\$0
Gramb	0	0	1,100700\%	0	0
Total Outside Funding Sourtes	\$0	50	\$4000.000	50	\$0
Net Captal Improv. Funded from Retes	550,000	5200,000	\$300,000	400,000	\$500,000
Debt issued at 5\% for 20 years, DS $=\mathbf{\$ 2 6 4 , 8 0 1}$					

Option 3 - Revenue Requirements

	Curten Year	Year 1	Yurn 2	Yext 3	Year 4
Seumets of funds					
Fownum at Prusamt Ratis	\$1,378.000	\$1,313,300	11,359700	\$1.305,700	\$1.370.800
Mnctilurwous Revenues	20.000	28000	29200	2\%800	30400
Total Rovenues	\$1,363.006	\$1550,000	81, 180.400	\$1,513,000	8t,404,360
Applleatien of Funds -					
Teral Opar I Moirt Erp.	31.80000	\$1.312500	51.374.100	31447000	\$1.510,400
TaxesThater Papmert	51.000	80.208	at 102	01.912	82.34
Debt Strica					
- Exitang Dobt Smica	0	0	0	0	5
- Now Detr Sirmer	0	0	2m貯1	2metit	234.801
Cap. inprov. Fundod From Rates	50800	260000	300000	400000	500000
Totul hryprue Mopuitimamb	\$1.394.006	\$1,192.794	520,	82.173.797	72, 210.97
Butanempuncimecyl of furdi	30	[3783,48)	(1964.103)	(1788,713)	[5187 7,615)
	0.0\%	-15.3\%	47.5\%	4. 5.5	- 4.414
	4.94	0.09	10.90]	(0.8)	(0.72)
Ose. Ator Ralm Adjurtmont	0.00	0.00	2.11	2.1	218
Current Ave. Residemtal Bill (tiluth	122.00				
haquirad hate Adjuctiment	0.64	1t.0\%	47.6\%	51.5\%	c1.430
Propostat Ave, Mesidental Bux (famin)	322.80	\$26.74	83247	\$90.87	\$37.78

Residential Rate Impacts

 Option 3: Debt 8 grant, Phase in R\&R

Option 4 - Capital Financing Plan

	currom Yall	Year 1	Year?	Yerr 3	Year 4
Capital Improvermant Projects					
Therntur Plart Epanion	30	50	30	\$4.000.000	30
Renewns 8 Repazemens (wems)	50000	150.000	250.000	400.000	500.000
Totas Captal Improve, Prop.	350.000	\$150.000	\$250000	\$5,240.000	\$500.000
Lust Funamo Saurien					
Band funco	30	50	30	(4M000	50
Grems	0	0	0	-7	0
Total Outrido Funding Scurces	30	50	50	3,400.000	50
	850,008	8150,000	\$250,000	8400,000	\$500,000

Debt issued at 5% for 20 years. DS $=\$ 388,374$

Option 4 - Revenue Requirements

	Cument Year	Yesp 9	Yas?	Yeir 1	Year 4
Sourbel 1 of fund					
Revorue st Prosmat Rabs	\$1,378.000	81.330.300	\$1.351,700	\$1.305.200	\$1,378.900
Macotermas Ravmuen	28.000	26.600	29.800	29.40	50,000
Tesal huvemues	51,183,000	81,58,580	81,20,900	\$1,835,600	\$1,40,500
${ }^{\text {Applicasen of fundt - }}$					
	\$1.350.000	81.312.500	81,374,100	51,47,000	\$1,164800
Taserfinmar Paymma	53.00	80.254	81, 108	4,982	
Dest Sericer					
- Extury Dwer Surica	0	0	0	0	0
- Now Deti Sarrica	0	0	0	308.374	330.374
Capa miprove Funded Fram fites	50.000	150000	250000	400.000	5500000
Taba Revenus Ruguiremmil	\$1,363.808	84,1897919		\$2.817, 204	\$2,40,6019
Buteneen Mostiditery of Funds	so		[7324.302]	(17422.88]	(51,011,294)
	0.08	-13.14	243\%	(-530)	740\%
	0.00	0.00	0.00	(0.24)	(0.50)
DSS - Ahmur haw Adyussment	0.09	0.50	0.60	203	
	82200				
Roquited Rata Adursmemt	4.5\%	97.1\%	24\%	47.0\%	7\%
Proposel Ave. Residimulil aly (gMith)	12200	32.19	527.24	8314t	831,25
	(104,	mant			$\$$

Case Study:

 Issues to be
Resolved/Reviewed/Discussed

- What would you recommend for the timing and funding of the treatment plant?
- Are there other alternatives you would consider?
- How should renewals and replacements be funded, and at what level?
- What should be the timing of these renewals and replacements?

Evaluation Sheet

\qquad

What is Cost of Service?

- Cost of service is:
- A method to equitably allocate
 utility beiween the various customer classes of service (e.g. residential, commercial, etc.)
- The cost of service provides two key pieces of information
- Allocated total costs to each class of service
- Average unit costs
\qquad
\qquad
\qquad
\qquad
- \$/Customer/Month
- $\$ / 1,000$ gallons or $\$ / C C F$

Why Cost of Service?

- The fundamental question: Do cost differences exist to serve the various customer classes of service?
* Costs of operating the utility are not accounted for on a customer class-by-class basis.
- e.g. - the utility repairs a main, not a residential main.
- Many costs are incurred for the joint benefit of all customers, while other costs may benefit only certain specific customers.
- Not all customers consume water in the same manner (pattern) or require the same facilities to be served.

Benefits of Cost of Service？

－Generally Accepted as
＂Fair and Equitable＂
－Avoids Interclass Subsidies
－Rates Equal Cost of Service Provided
－Can Provide an Accurate ＂Price Signal＂
－Legally Defendable

Background－Basic Steps to Cost－Based Rate Making

```
1. Revenue Fegulrematas-How
    mueh monvy ehould be targeted
    Claselty to system corte
    Allocsta to Customer Clase⿱⿻土㇒日\zh20女⿱⿱亠䒑日心
    Design Ratos
```


Cost of Service Terminology

- Types of Costs (Cost of Service Studies)
- Average embedded costs. Average embedded costs are those predicted on a system's historical and embedded accounting costs.
- Marginal costs. Marginal costs are the additional (incremental) costs incurfed by increasing water consumption by one unit, or the cost savings by reducing consumption by one unit.
- Analytical Steps of a Cost of Service Study [FAD]

Functionalizatlon. The preliminary arrangement of costs according to functions performed by the water system. Major functions usually defined as source of supply, pumping, purification, transmission, distribution and general
Why - Allocation. The process of allocating the functionalized costs to commodity capacity public fire protection and customerrelated cost components,
Who - Distribution. The distribution of allocated costs to customer classes of service using prescribed distribution technques.

Cost of Service Terminology - Cont'd

- Defining Customer Base

- Class of service or customer class. A group of customers having homogeneous (similar) usage characteristics or facility requirements \{e.g., residential, commercial, etc.)
- Service levels (line sizes). The levels at which water may be delivered and received by customers of the water system.

Cost of Service Terminology - Cont'd

- Types of Costs
- Common costs. Costs which are incurred in the production of more than one utility service. Common costs are often found in municipal operations where the same department has responsibility for the sale of two services e.g. water, electricity or wastewater.
- Joint costs. Costs that are incurred in which more than one customer or customer class of service receives benefits or use of facilities.
- Direct assignment. Cost incurred to serve a specific individual customer or class. These costs can be directly assigned to that customer or class without classification to a cost component.

Cost of Service Terminology - Cont'd

* System Cost Components (Classification/Allocation Methods) Commodity-Demand
- Commodity Costs. These costs are associated with the total consumption (llow) of water over a specified period of time (e.g. anлual).
- Demand (Capaclty) Costs. Costs associated with the maximum rate (demand) required at one pont in time or the maximum size of facilities required to meet this demand. Often measured as peak-hour or peak-day requirements.
Base-Extra Capacity
- Base Costs. Costs associated with total annual consumption plus the average day component of peak period use.
- Extra-Capacity Costs. Costs associated with meeting demands over and above base use costs (ie. - difference between total peak demand and base (average) use.

Classification / Allocation Methods Compared

- Commodity/Demand

Criteria.

- Was the facility designed •
(cost incurred) to meet the annual demand (commodity) or a peak rate of flow (demand).

Base Extra-Capacity

- Engineering Design and Operational Criteria.
Was the facility designed (cost incurred) to meet the annual demand (base) or was it designed to meet a peak rate of flow (capacity). If capacity then what portion is operated to meet average demands (base) and what proportion is extra-capacity.

Cost of Service Terminology - Cont'd

- System Component Costs (continued)
- Customer Related Costs. Costs associated with having a customer on the water system. These costs vary with the addition or deletion of customers on the system.
- Revenue Related Costs - Costs that vary based upon the amount of revenue received by the utility.
- Fire Protectlon Related Costs. Costs related to the public fire protection function. May also be related to the private fire protection function.

The Ten-Step Approach to Conducting the Study

- Step 1-Put the Team Together
- Step 2-Identify Management and Policy Objectives
- Step 3-Establish a Test Period, Method of Setting Revenue Requirements (cash or utility), and Allocation Method (commodity-demand or base extra-capacity)
- Step 4-Calculate a Revenue Requirement
- Step 5-Functionalize Revenue Requirement and Capital Investment
\checkmark Source ol Supply \checkmark Distribution
\checkmark Treatment \quad Admind/General
\checkmark Transmission

The Ten-Step Approach to Conducting the Study - Cont'd

- Step 6-Allocate Revenue Requirement and investment by lis Cost-Causal Nature

\checkmark Commodity	\checkmark Fire Protection
\checkmark Capacity	\checkmark Revenue Related
\checkmark Customer	\checkmark Direct Assignment

- Step 7-Calculate Distribution Factors
- Step 8-Distribute Costs to Customer Classes
- Step 9-Summarize Results (Revenue from Existing

Rates vs. Cost of Service)

- Step 10-Design New Rates to Meet Class Revenue Responsibility

Step 1

Putting the Team Together

- Not a One-Person Job
- Need a Leader
- Need Emphasis of Importance from Top Management
- Areas Involved
- Accounting/Finance
- Customer Service/Billing
- Engineering/Operations
- Meter Readers

Step 2 - Identify Management and Policy Objectives

- Revenue Stability - Ability to Pay
and Sufficiency - Conservation-Efficient
- Continuity in Usage Rate Philosopiy
- Fairness and
- Simplicity (Administration \& Customer Understanding)
- Feasibility
- Cost-Based • Legally Defendable

Step 3

Selection of the Test Period

- Types
- Historical (recent periods)
- Pro forma (historical based; adjusted for any known changes)
- Projected (budgeted or future)
- Considerations
- Data availability
- Timing of adjustment
- Past rate methodologies
- Regulatory requirements

Step 4 - Calculate a Revenue Requirement

- Determine the Total Cost to be Recovered from Rates and Allocated Within the Cost of Service Analysis
- Available Methods:

Cash Basis

Uitility Basis

+ O8M
+ O8M
+ Taxes/Transfers
+ Taxes/Transfers
+ Debt Service $(P+1)$ + Depreciation Exp.
+ CIP From Rates
+ Return on Rate Base
= Total Revenue Requirement
$=$ Total Revenue Requirement

Step 5 - Functionalize Revenue

Requirement and Capital Investment

Cash Basis:

- Operation and maintenance expenses by account number
- Taxes or transfer payments
- Debl service
- Capital improvements financed with operating revenues
- List ol dedicated facilites/direct assignments
- Original cost of plant in service by account detal
- Accumulated depreciation by account

Utility Basis:

- Operation and maintenance expenses by account number
- Taxes or transier payments
- Depreciation expense by plant account
- Weighted average cost of capital (rate of return)
- List of dedicated facilities/direct assignments
- Original cost of plant in service by account detail
- Accumulated depreciation by account
- Working capital
- Contributions in aid of construction

Step 5 - Functionalization of the Data - Cont'd

- Functionalization of Expenses and Investment (Consistent with the National Association of Regulatory Utility Commissioners (NARUC) Uniform System of Accounts)

Ateet Acepuant Mumber	Itern	Expmise Acceunt Numbar
310	Soutce \& Supply	6000-617
3205	Pumping-Eactre \& Hyatrathe	620-603
330\%	Purbesioniteatmant	64,-652
3495	Trganmestion-Retaivois Mlins. 	650-678
350's	Disulbution-Resorvart, Mains. Servicot, Meteri, Fiydurds, and Fountintis	660-578
3990	Custornors Servica/hocxuming Actrantitution and General	$\begin{aligned} & 901-910 \\ & 920-912 \end{aligned}$

Step 6
Allocation Considerations
- Allocation
- The process of segregating capital investment and
expenses to capacity, commodity and customer
related cost components.
Cost Causation
- Why did you build the plant? Why did you incur the
expense?
- What determines the need for additions?
- How did you determine the size?
How is the Asset Designed and / or Used?
Methodologies
- Base-extra capacity method.
- Commodity demand method.
- Combined method.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Step 6 Allocation of Expenses

Expente Componerit	Commodity	Capacity	Customer	Public Fire Protaction
Sourte of Supply Exp.	x	x		
Treatment Expenses	x	7		
Chemicals	x			
Elactricity	x	7		
All Other Trast. Exp.	x	x		
Pumping Expenses	x	x		
Electrisity	x	7		
All Other Pumping Exp.	x	x		
Transmistion Expenses	?	x		7
Distribution O*M Expenses				
Reservirs	$?$	x		x
Mains	7	x	x	x
Meters	7	7	x	
Sordices	7	7	x	
Custorner Service/Accting			x	
Admin. 4 Gerwfil Exp.	\times	X	x	x

 Levi -2 A

Step 7
 Calculate Distribution Factors

Objective:

Distribute costs on a "fair and equitable" basis to each class of service

Measurements Needed to Determine Distribution Factors

- Capacity
- Poak hour contribution by
class
- Peak day contribution by class

5 Commodity

- Sales with line loss responsibility by class
- Customar
- Actual number of customers by cless of service
- Customers per class, weighted for customer aceounting meler reading
- Number of maters by size by class of serviea

P Publie Fire Protection

- Insurance services organization (ISO) firsurance sevices requirements

Step 7 Example of a Commodity Distribution Factor - Cont'd

Customer Class	\qquad	$\begin{aligned} & \text { Plut: } \\ & \text { \% Losses } \\ & \hline \end{aligned}$	Total CCF at the Source	\% of Total
Residential	2.525,000	6.0\%	2.676,500	51.45\%
Commercial	1,107,800	6.0\%	1,174,268	22.57\%
Municipal	398,700	6.0\%	422,622	8.12\%
Industrial	876.300	5.0\%	928.878	17.85\%
total	4,907,800		5,202,258	100.0\%
ALLOCATION FACTOR				(COMM-1)

Step 8 - Distribute Costs to Classes of Service

- Distribute previously allocated plant investment and revenue requirements.
- Utilize distribution factors developed in Step 7.
- Distribute Classified Cost Components.
- Capacity-related, commodity-related, customerrelated, fire protection-related and direct assignment.
- Same analytical process for cash basis vs. utility basis.
- End result: Determines the cost of providing service to each customer class.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Step 9 Summarize Results

- Surnmary Table
- Cash vs. utility basis
- Table Compares Present Rate

Levels to Proposed Rate Levels, By Class of Service

- Shows Required Change in

Revenue by Class in Order to Equitably Recover Costs
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example of the Summary Table for the Cost of Service Study (Cash Basis)

Exhibit 10
 Summary of Average Embedded Water Cost ot Service Study (Cash Basis)

Deseription	Total	Rexidential	Commential	Munielpal	Induatrial	Source
Fevenues at Present fates	\$6.546,550	\$5.203.000	\$1,955.850	\$480,760	\$905,000	Exibit
Less						
Alocsted Revenue Requiement	\$9.511.000	56.833,835	52142567	\$506.933	5807.624	Entitat 9
	(\$804,450)		(\$146,737)	(526.203)	\$ 597.376	
* Comage Over Presera Rates	40,0\%	150\%	7.44	5.5\%	-10.8\%	

Example of the Summary Table for the Cost of Service Study (Utility Basis)

Exhiblt 15
Summary of Average Embedded Water Cost of Service Study
(Utility Basis)

Detuctiption	Total	Roceldentiel	Commureid	Munkipal	Induatrial	Source
Revenuey af Prepent Rxicy	\$8.646.590	\$5.265000	\$1.995, E50	Hesa 780	\$905 000	Erabr 7
Lene: Alocited Reverue Requitument	\$3.431.630	\$3.372.303	\$1.922. 37		\$772074	Extiont 14
Ner freome	5207.720	(577.205)	57847	\$15.659	5172020	
	\$10,557.438	\$8.131411	\$2300.800	8710,703	\$1,745.748	Extitat 13
Prebert Fiesum on Rata Brat	20\%	-0.8\%	3.2\%	23\%	15.1\%	
Fropowed Retum Component Proposed Rata of Rumen	$\begin{array}{r} \$ 1, \text { पiz.iv7 } \\ 10.2 \% \end{array}$	$\begin{gathered} \$ 5 \times 1.975 \\ 10.2 \% \end{gathered}$	$\begin{array}{r} \$ 241,764 \\ 10.2 \pi \end{array}$	$\begin{gathered} \$ 7.178 \\ 10.2 \% \end{gathered}$	$\begin{array}{r} \$ 115.258 \\ 10.2 \% \end{array}$	
Prapoued Rate Revefluen	\$8.511,000	\$5.964 380	52.168, 177	\$535,177	\$804. 317	
Buancmi(bticiancy) of Furcis	(5050.450)	(5699.350)	(5166.267)	(355,477)	558573	
* Change Diver Preweri Rates	10.0\%	13.3\%	8.3\%	11.5\%	-5\%	
	C-W010	an moen wn	-10			

Step 10-Design New Rates Start with Calculation of Average Unit Costs

- Final analytical step of the cost of service is to calculate average unit costs.
- Classified costs are divided
by appropriate billing units to produce an average unit cost.
- Average unit costs are used as a starting point for rate design.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Step 10 - Design New Rates to Meet Class Revenue Responsibility

- Cost of Service is the Basis for:
- Revenue Levels Collected from Each Class of Service.
- Fixed Meter or Customer Charges.
- Variable Charges.
- Fire Protection Rates (Public and Private).
- SubsidiesEconomic/Development
 Welfare.

Case Example

- Developed on a "Cash" and "Utility" Basis.
- Intended to Demonstrate Basic Mechanics of the Study.
- Numbers and Assumptions are for Example Only.
- Typical Approach Used-Specifics of Allocation and Distribution Techniques will be Discussed after Case Example; e.g., Allocation Split of Reservoirs ($60 \% / 40 \%$) (Sections 6 and 7).

Functionalization and Classification of the Net Revenue Requirements (Cash Basis) - Cont'd

Es- 8 d.
Commodity Distribution Factor
Exhiblt 3
Development of Commodity Distribution Factor

Cuttonn Clatis	$\begin{aligned} & \text { Mater ed } \\ & \text { Wintes Soles } \\ & \text { (CCF) } \end{aligned}$	$\begin{aligned} & \text { Plus: } \\ & \text { \% Lokt祀 } \end{aligned}$	$\begin{aligned} & \text { Totel CCF } \\ & \text { w the } \\ & \text { Sourc } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { \% of } \\ & \text { Tot } \end{aligned}$
Residentiol	2，525，000	60\％	2.678 .500	51．45\％
Conthercial	1.107800	8．0\％	1，774，288	2257\％
MLerucipal	306.700	6．0\％	42 z .622	自．t2\％
Industried	870，300	0．0\％		17．85\％
TOTAL	4，907．800		5．702，258	100，0\％
DASTRIPUTTON FACTOR				（COMm－1）

Capacity Distribution Factor
Exhlblt 4
Development of Capacity Distribution Factor

Customer Cime	$\begin{gathered} \text { Total cecF } \\ \text { solthe } \\ \text { source } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Average } \\ & \text { Dry Uspio in } \end{aligned}$	$\begin{aligned} & \text { Fopling } \\ & \text { Fintior } \end{aligned}$	Path Der Up （140）	$\begin{aligned} & \% \text { of } \\ & \text { Totel } \end{aligned}$
Rentiditum	2．676．500	5.465	3.00	16.455	68．77\％
Commercial	1，174，288	2.408	1.90	4.572	18．55\％
Mrieipal	122.622	0．86⿳	1.55	1．429	5．60\％
Incuation	926.878	1．904	1.15	2139	6．E5\％
Total	5，702．788			24，543	100．0\％
Actual Peek Day（maesurd）				24．700	
DISTRESUTTON FACTOR				（CAPS）	
	en＊Armual	FF＇74ET1．000	001865		

Customer Distribution Factors

Distribution of the Net Revenue Requirements（Cash Basis）

Exhibit 9
Distribution of Net Revenue Requirements（Cash Basis）

Com Componen	Totel	finemderatiol	Cormmerial	Muncicipel	Inctubirel	$\begin{gathered} \text { Bowle of } \\ \text { Ditatheullon } \end{gathered}$
Cormixdiry Reland	起 365.42	\＄1．21隹97\％		\＄102． 168	322358	commb 1
Capactit Ratitad	\＄4．124．012	－ 7.756	\＄765 825	2030． 350	2396．608	Cans 1
Curtonear Ratay						
－Aetual Cumprot	2600， 960	Etas． 670	St00．342	5119	548	CLST－9
－Wergiterd tor Curbimir Derourting	98.810	714．283	21238	352	208	Custe\％
Mutis a Sormed	600．506	399.780	202．205	32	1156	Custo
	\＄2．142050	\＄1．623．734	\＄514．900	8713	53.87	
Firs Protection Rebutad	8574270	\＄375．6b1	22970 Ota	5180	514.1	Frp－1
Finwrum Rumut	5133.500	881.200	830.815	57482	\＄13，973	R8－1
Durect Ascuprmert	$587{ }^{1} 187$	$5{ }_{5}$	如	4078	50	Dr Aumin
	\＄0．519．000			\＄006．953	\＄007． 584	

Summary of the＂Cash Basis＂ Cost of Service Study

Exhiblt 10

Summary of Average Embedded Water Cost of Service Study （Cash Basis）

Demeripitan	Tatal	Repridmotial	Commurcial	Munlictal	Industial	Soute
	\＄8，546．550	\＄5．285，000	51，955．050	340， 700	\＄905 0 dot	Extibs 7
tess：						
Allocatec Revenua Requrement	\＄9．511，000	36053 ${ }^{\text {che }}$	\＄2．142．587	\＄506．953	5807．524	Extisat 9
Elance（Defilimicy）of Funcs	（5854，450）	（578．838）	（384E．757）	（38525］）	357.378	
\％Charge Owi Presom Retes	\＄0．0\％	15．0\％	7．4\％	5．5\％	－10．4\％	

Average Unit Costs（Cash Basis）

Exhibit 11
Development of Average Unit Costs（Cash Basis）

Com Componem	Total	Plowitersiad	Cammeter	Buratipal	motatrel	Course
Dismbund Commbaty Eomes．	起35420	51．215．670	\＄5537． 238	5152182	50235	Etatio
Commady Come－\＃CEF	如纮	50，40	50.44	50.48	50.48	
Dismbud Cepmaty Cose－	4．123．032	2375．151	\＄78．83	\＄239．350	5300.000	Eraten 9
Capmaty Come－\＃CCF	\＄54	\＄1．08	50．85	50.0	50.42	
 Puate Fire Presea en－IVCCF	$\begin{array}{r} 3674.272 \\ \$ 0.14 \end{array}$	4775．特 15	$\begin{array}{r} 527.051 \\ \$ 0.27 \end{array}$	$\begin{aligned} & 8160 \\ & 50.100 \end{aligned}$	$\begin{array}{r} 818: 1 \\ 50.00 \end{array}$	Eramis
Drevibud Roverumpretioner－ 			$\begin{gathered} 500.855 \\ 50.04 \\ \hline 10 \end{gathered}$	514549 50 胡	$\begin{gathered} 513.973 \\ \operatorname{sen} 02 \end{gathered}$	Erame
Toxal Con－Vecr	\＄1， 0_{0}	\＄1．78	81.47	\＄1．27	tase	
Dintima Cummo Cove． Cumanm Cont ，WCumblen	$\begin{array}{r} s, 10.859 \\ \$ 7.60 \end{array}$	$\begin{array}{r} \$ 1.62 .734 \\ 88.28 \end{array}$	$\$ 514000$ ＊1at	$\begin{array}{r} 87+3 \\ 311.00 \end{array}$	$\begin{gathered} 512220 \\ 8194 \end{gathered}$	Efitur 9
Pape Disis						
Annual Witur Flow－CCF	4．907， 000	2535，009	1．907． 800	30．700	576．300	Extat 3
Munter af Cutbrime	88.587	21，300	4.290	5	2	Etrats
Cary					$88-50$	

What To Do????

- What if the numbers look funky?
- Have you done the "dumb test?"
- Do you show them to anyone, let alone the City Council?
- Must the city follow the cost of service results in establishing rates?
- What are the possible ramifications?

Legal Considerations

- Basic tenet of municipal rate setting
- Rates established in a lawful manner by a municipality or municipal authority are presumed to be reasonable, fair and lawful.
- Those challenging rates bear a heavy burden to prove that the rates are unjustly discriminatory or unreasonable. However, ...
- The three big legal words -
- Arbitrary
- Lack of process or analysis
- Capricious
- Unpredictable
- Discriminatory
- Unjust and unreasonable

Defining Discriminatory Rates

- Discrimination must be unjust and unreasonable
- "I must admit that I possess no instinct by which to know the 'reasonable' from the 'unreasonable' in prices and must seek some conscious design for decision." - Supreme Court Justice Jackson, 1944
- Economic discrimination - early
 railroads
- A lack of uniformity in rates is not sufficient to show discrimination

Defining Discriminatory Rates - Cont'd

- Discrimination must "draw an unfair line or strike an unfair balance between those in like circumstances having equal rights and privileges."
- Courts have not developed a clear, definitive definition.
- Liberty Rice Mill, Inc. v. City of Kaplan.
- Chapter 34 of the M1 manual.

Fictionalization and Allocation of the Net Revenue Requirements (Utility Basis)

tuevi

Distribution of Rate Base (Plant)
Exhlblt 13
Distribution of Rate Base
(Ulillty Basts)

Comatemenere	Tostal [1]	furumetiol	Commerex		Watay	Bmel 안 Dintricuator
Commothy fumat	4 628.578	82.072451	4000 30	5187.374	5719392	comen
Cexpory Rind	H.750 34	\$3978.40	5092501	875	547508	CAP1
Cumom Rutud						
- Anut Cumpror	235439	5293	$512+44$	850	50	CUST-1
- Wegredifo	57.27	44,689	13.088	16	124	Cus72
Mmers $\frac{1}{4}$ Smem		Stacor	$1{ }^{197} 78$	123	1, 122	custa
Total Cumomer Relued	\$001 408	\$8077,280	2832.517	\$399	\$1.75	
Prathe Fire Prowcat	\$76. 017	428, 181	8738.197	\$120	\$1. 597	Prpel 1
Fommue Aumar	30	\$0	so	50	50	䛲1
	51088.880	50	so	\$108 9a8	50	Ditamen
	\$10.55] 405	36.321 111	22300.604	35t0.703	\$1.14.744	

Distribution of the Net Revenue Requirements（Utility Basis）

Summary of the＂Utility Basis＂ Cost of Service Study

Exhlbit 15

Summary of Average Embedded Water Cost of Service Study （Lutility Basis）

Deeorimion	Telat	Atandumitid	Commaredm	smunelpar	Induapien	Source
Fevenum at Presum Rater	56．640．550	85.285000	81095.050	54.80 .700	8905．000	Ernuen 7
Less：						
Allocriod Revenue Requrement	\＄ 0.434 .830	\＄3．329．303	\＄1．970．373	\＄464．00t	8732.671	Extubat 14
Net incorme	5207720	（\＄57．3as）	\＄75．477	318.899	\＄172．929	
Rate Eate	\＄10．557．46	58.221411	52.380 .804	5710.703	51 144，746	Exalod 13
Prestra Fotum on Ratip Rewif	2．0\％	0．0\％	3．2\％	23\％	15．14	
Propased Rimum Componemt Preposed Rate ol Return	$\begin{array}{r} \$ 1.672 .17 \pi \\ 10.2 \% \end{array}$	$\begin{aligned} & \text { +541.1.955 } \\ & 10.2 \% \end{aligned}$	$\begin{array}{r} \$ 41.764 \\ 10.2 \% \end{array}$	$\begin{array}{r} 572.17 \% \\ 10.2 \% \end{array}$	$\begin{array}{r} \$ 116.256 \\ 10.2 \% \end{array}$	
Proposed Ratit firvenuta	\＄0519．000	\＄5．980．380	\＄2，162．137	3536.17	S848．327	
Buamewf（pencuency）of Fundi	（88064．450）	（5800 360）	（\＄100．707）	（355 477）	558，873	
W Change Ower Prwsent Reter	10．0\％	17．3\％	0．3\％	19．5\％	4．3\％	
revenibe pequremertis						

Average Unit Costs（Utility Basis）

Exhlbit 16
Development of Average Unit Costs
（Utillty Basis）

Cont Comporum	Totes	Revideratel	Commeretel	Mrexifal	Inderariel	Eourcin
Cemmady Cons－LCEF	$\begin{array}{r} 52.274004 \\ 50.40 \end{array}$	$\begin{array}{r} \$ 1.770 .255 \\ 10.44 \end{array}$	$\begin{array}{r} \$ 513,429 \\ \$ 404 \end{array}$		5408.136倝的	Exotri 14
Ditmbind Catwaty Cots． Cataty Con－Incta	$\begin{array}{r} 53,255817 \\ 80.68 \end{array}$	$\begin{array}{r} 52,473.813 \\ 5.86 \end{array}$	$\begin{array}{r} 5004.024 \\ 80.55 \end{array}$	3180.780 50.47	$\begin{array}{r} 5789195 \\ 30.33 \end{array}$	Etant 14
Divilutad Putic Fire Prot Corm－ Putic Fire Pratiction－STCCF	$\begin{array}{r} 5838.835 \\ \$ 0.11 \end{array}$	58.002	$\$ 23.308$	$\begin{aligned} & \$ 1.23 \\ & \$ 0.00 \end{aligned}$	$\begin{aligned} & 81.706 \\ & +000 \end{aligned}$	Eximer 14
Anmuntirectroner－ITCEF	$\begin{array}{r} 5381480 \\ 50.08 \end{array}$	Stuat 15a 80.07	$\begin{aligned} & 571.388 \\ & \sin 08 \end{aligned}$	$\begin{aligned} & 569.500 \\ & \text { sanz } \end{aligned}$	$\begin{gathered} 52242 \\ \operatorname{sich} \\ \hline \end{gathered}$	Extur 14
Diteluted Return Componamt－ Retum Controneri－SCCF	$\begin{array}{r} 51.072 .170 \\ \quad 50.22 \\ \hline \end{array}$	$\begin{array}{r} 5811.975 \\ \quad 6.25 \\ \hline \end{array}$	$\begin{array}{r} 5241.784 \\ 50.22 \\ \hline \end{array}$	$\begin{array}{r} 572 \text { 176 } \\ 3 \mathrm{ya} \text { 地 } \\ \hline \end{array}$	$\begin{array}{r} 519.254 \\ 30.13 \\ \hline \end{array}$	Emast 15
Tetel Con－\＃ccor	\＄．54	41，77	\＄1．50	＊ ch $^{\text {a }}$	地的	
Drembend Cumprem Carb－ Cumpror Coung－PCindith	$\begin{array}{r} 51,907, .354 \\ 548 \end{array}$			$\begin{array}{r} 7700 \\ 811.5 \end{array}$		Emint 14
Bawe Deta Annum Whan Fow－CCF 	$\begin{array}{r} 4.907 .800 \\ 2.317 \end{array}$	$\begin{array}{r} 2525,000 \\ 21.300 \end{array}$	$\begin{array}{r} 1.107 .800 \\ 4.210 \end{array}$	$\begin{array}{r} 300700 \\ 5 \end{array}$	$\begin{array}{r} 67.300 \\ 2 \end{array}$	Exibl Exinal 5
	trown	M－3m	0 mm		85	615

Comparison of the Cost Allocation Methods

		Restiontal	Compretid	thaicipal	Enduatis	Soura
Cutn Buth. Allocisod Revenue Requienents. Wharge Over Preseric Rote Lents	$\begin{array}{r} 29.511 .000 \\ 1000 \% \end{array}$		$\begin{array}{r} 52.122587 \\ 7.4 \% \end{array}$	8505.5 55\%	$\begin{array}{r} 5807.624 \\ -10.8 \% \end{array}$	Eribe 10
Averpe Unt CosssIClusumandantil ICCF	$\begin{array}{r} \$ 7.00 \\ \\ \$ 1.50 \end{array}$	$\begin{aligned} & 86.35 \\ & 8175 \end{aligned}$	$\begin{gathered} \$ 10.19 \\ \$ 1.47 \end{gathered}$	$\begin{gathered} 819.88 \\ 3121 \end{gathered}$	$\begin{array}{r} 593420 \\ 80.92 \\ \hline \end{array}$	Eram 11
untity Buis - Allcaled Revenu Fitquitment * Crange Owe Present Rate Lenels	$\begin{array}{r} 89.511,000 \\ 100 \% \end{array}$	$\begin{array}{r} \$ 5.954308 \\ 13.38 \end{array}$	$\begin{gathered} 52162137 \\ 8.3 \% \\ \hline \end{gathered}$	$\begin{gathered} 853.177 \\ 11.5 \% \end{gathered}$	$\begin{array}{r} 3848.357 \\ 6.3 \% \end{array}$	Erixit 15
Averge Unt Coss. ICCF	$\begin{aligned} & \$ 6.52 \\ & \$ 1.53 \end{aligned}$	$\begin{aligned} & 85.55 \\ & 3: 77 \end{aligned}$	$\begin{aligned} & \$ 9.85 \\ & \$ 1.50 \end{aligned}$	$\begin{gathered} \$ 11.61 \\ \$ 1.34 \end{gathered}$	$\begin{array}{r} 5137.09 \\ 50.50 \\ \hline \end{array}$	Entan 16
	Comen	-mom	+mas			

Allocation Procedures

- Divide Costs Between Commodity, Capacity, Customer or Public Fire Protection Related.
- Why the Cost Was Incurred-How it Was Sized-How it is Used.
- Many Classifications are Judgmental in Nature, but Still Must be Defendable and Reasonable.
- Problem of Data Constraints-Taking the Leap of Faith and Making Assumptions Where Necessary.
- Consider Time Required to Gather Data vs. Sensitivity of Data (Assumption) With the Analysis - Refine Data Over Time.

Methods of Allocation

- Base-Extra Capacity Method
- Details of the methodology and a case example can be found in the AWWA M-1 Manual
- Commodity Demand Method
- Details of the methodology and a case example can be found in the AWWA M-1 Manual
- Combined Method
- Utilizes concepts and techniques of the two methods

Base-Extra Capacity Allocation Guidelines						
					成	, minem
	\times					
	${ }_{x}^{x}$	$\stackrel{x}{x}$				
4: Memmamm	${ }_{x}^{x}$	\times				
	${ }_{x}^{x}$	\times	$\stackrel{x}{x}$			
\%.	\times	\times	x	\times		${ }_{x}^{x}$
	\times	*		\times	${ }^{x}$	\times
	${ }^{\text {x }}$		$\frac{x}{x}$	$\stackrel{x}{\times}$	${ }^{\times}$	\times
	\times		\times	\times	\times	\times

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Combined Method Allocation

	Mum Dasmiplion	Commotaly	Capacilly	Cuttomer Petutat		$\begin{array}{\|c\|} \hline \text { Publice } \\ \text { Fine } \\ \text { Protaction } \end{array}$	$\begin{aligned} & \text { Provet } \\ & \text { nasion. } \end{aligned}$
				Athund	Weughted		
1	souret ef Rupply	x	x				
	Prumping						
2	Pustratiod Pexotr	x					
1.	Otw	x	x				
	Water Trastmant						
5.	Chumbert Down	$\frac{x}{x}$	x				
	Triminitiden and chimicuabn						
4.	Mans		${ }^{x}$	x		${ }_{x}$	
$?$	Strage (lumpruen)		*			x	
8.	Nolerse and Service: Mrymin				x		
to.	Own	λ	x	x	x	x	
	cutiomet Ancountray						
112	Mowr Romatip i Caleman Uncolisctiblat Accocunts				x		*
	Admmatuatyo 4 Gomeral						
13.	Salorew	x	x	\times	x	x	*
14.	Enplay	x	λ	x	x	x	x
ts.	Snurance	${ }^{x}$	${ }^{x}$	x	x	\times	x
${ }^{\text {H }}$	Other	\times	x	${ }^{2}$	\pm	\times	K

Allocation Procedures

- Source of Supply
- Generally provides two cost components-capacity and commodity
- Classification must consider how or why the cost was incurred or sized
- Example of methods to classify
- Method I Average day to peak day use

Average day $=7.5$ MGD Peak day $=127 \mathrm{MGD}$
Therefore: $59 \%=$ commodity (751127)
$4 i \%=$ capacity (peak day)

- Method2. Specific use of the facilities
* Individual wells used only for paak use $=100 \%$ capacily related
* Supply providing year-round base loas use $=1.00 \%$ commodity related

Allocation Procedures - Cont'd

- Transmission
- Generally sized to meet peak requirements
- Purification (Treatment)
- Chemicals

- Plant and other expenses may be split
- Between commodity and capacitysame
as source of supply plant (?)
- Pumping
- Generally sized to meet peak flow requirements
- Electricity is considered 100\% commodity related

Allocation Procedures - Cont'd

- Distribution Storage (Reservoirs)
- Provides two components to the system - capacity and storage for fire flow
- Consider fire flow requirements to total storage capacity
- Example
- Assume fire flow requirements equal to $4,000 \mathrm{gpm}$ flow and 180 minutes duration, System has 12 MG total storage
$-4,000 \mathrm{gpm} \times 180$ minutes $=720,000$ gallons
-. 72 MG / 12 MG Total Slorage Capacity
$==5.0 \%$ public fire protection and 94.0% peak day capacity

Allocation Procedures - Cont'd

- Distribution Mains
- Consider three cast components
- customer
- capacity
- fire protection
- Minimum system theory (see next slide)
- Data requirements

Meters and Services

- Generally considered customer related
- Weighted approach to classify and allocate equitably
- May use a minimum size approach to classify between eustomer and capacity
 $\Leftrightarrow \Delta$
\qquad

Theory of the Minimum System Analysis Distribution Mains

"We have to have a distribution system in place. maty to deliver water, regardess of wheher the customer consumes waler"

88-10

Example of the Distribution
Main Analysis

Plpe Siza	Linamr Fopt	Installod Cost \$/LF	Replacement Cost
2^{11}	2,700	\$ 8.00	\$ 21,600
3'	11,400	12.00	136800
$4^{\prime \prime}$	323,600	16.00	5,177,600
6	566,139	20.00	11,322,780
$8^{\prime \prime}$	154,800	28.00	4,334,400
$10^{\prime \prime}$	95,900	32.00	3,068 800
12"	33,400	40.00	1.336.000
Total	1,187,939		\$25,397,980

Assume:

12 main is smabest instriled (minimums size)
2 E main is required tor paak tomestic fows
3 Larger mains are required to meet five fow requirements

Customer \% =

$\$$ tor 2 Equvalent $=1,187,939 \times 5900 . \mathrm{LF}=59,503,512$

di.

Section 7 Distribution Procedures

Overview of Distribution

 Procedures and Methodologies- Distribution methods should equitably distribute the allocated costs for:
- Commodity
- Capacity
- Customer
- Fire protection
- Need to develop a distribution factor for each cost allocator used in your study, except direct assignment.
- There are allernative techniques and approaches to distributing costs.

Overview of Distribution Procedures and

 Methodologies - Cont'd- Allocation/Distribution Methods.
- Commodity/demand-assignment to either commodity or demand.
- Base/extra capacity.
- BaseMaximum = \% to Base (Commodity)
- Extra/Maximum = \% to Extra (Capacity)
- Others (combined approach).
- See AWWA M-1 Manual for case examples of commodity/demand and base/extra capacity methods.
- Which Method to Use?
- Nature of system costs-planning considerations.
- System constraints.
- Data availability.

Developing Commodity or
 Base Distribution Factors

- Commodity or base costs are related to total flow.
- Method Should Equitably Distribute Allocated Costs.
- Sales at the meter + adjustment for losses = sales at the source.
- Considerations.
- Normalcy of data.
- Weather
- Industrial customers
- Biliing errors/adjustments
- Test period - Historical vs. Projected Data.
- Be consistent in units of measurement.
- Label the units of measurement on reports and studies.
- Different level of losses for different classes of service.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Developing Demand Distribution Factors

- Demand or Extra-Capacity is related to peak period use (contribution).
- Need to define the peak period cost.
- e.g. peak day, peak hour, peak season,
- Defining peak distribution under the methodology selected.
- Commodity-demand method.
- Base-extra capacity method.
- Combined method.

\qquad
\qquad
\qquad
\qquad
\qquad

Developing Demand Distribution Factors
－Considerations
－Availability of data
－Sample metering
－Demand meters
－Borrowed data
－Literature review
－Billing recorts
－Use at the time of the peak vs． potential to peak
－Contract maximums for industrial customers \qquad
－Techniques
－Average to peak（day）［peaking factors］
－Meter size

Alternative Method of Developing the Capacity Distribution Factor

	$\begin{aligned} & 4 x \\ & 3 x^{\prime \prime} \end{aligned}$	san＇	＊＊	1－12＇	を	\％＊	$4 *$	E	F＇		$\begin{gathered} \text { foll } \\ \text { whond } \\ \text { miver } \end{gathered}$	$\begin{aligned} & \text { + but } \\ & \text { Tytert } \end{aligned}$
［GPU Flomit	20	30	5	100	180	300	500	1000	1.000			
	180	1.0	2.50	350	100	15.50	789	SqM	0			
Hexteravaly												
－Amallimer	4.18	¢	淔	10	0	0	0	0	0	5.700		
－Mempled Moms	5，104	83	180	50	0	0	0	0	0		6．5\％	
Comameal												
＋Amalliver	2．231	新	（2）	130	溸	0	4	0	，	3345		
－Moy	257	45	304	55	440）	0	104	0	0		4．44	4210＊
traumpl												
－Mayilimm	0	0	0	0	0	2	4	2	0	：		
－Whatmed licme	0	0	－	0	0	30	10	100	0		208	2 mex
Uunctaply												
－Realliminn	10	\leqslant	13	3	0	2	0	0	0	3		
	14	4	\＄	15	0	3	0	0	0		101	dicm
Tom										8．838	11858	1801005

Developing Customer Distribution Factors

- Customer Distribution Factors
- Actual vs. weighted
- Types of weighted costs
- Customer accounting/billing/meter reading
- Meters and services (capital costs)
- Weighting factors
- Level of effort
- Actual costs (e.g., meters)
- "Hassle factor"

Distribution of Fire Protection Costs

- Public Fire Protection
- Consideration of fire flow requirements by class of service
- Stated in gallons/minute (gpm)
- Duration (minutes)
- Insurance services organization (ISO) flow requirements
- Weighted approach (see case example)

\qquad
\qquad
\qquad
- Private fire protection as a class of service
- See M1 Manual (Fire Protection Chapter)
- October 1996 - AWWA Journal

Private Fire Protection

- Private Fire Protection typically charges for "stand-by" capacity.
- Typically charged on line size or number of sprinkler heads.
- Maine PUC - establishes a curve of the relationship of number of customers and PFP revenue (see P. 219 of M1).
- In 1987, stated PFP revenues should fall between 6% and 30%.

Private Fire Protection - Cont'd

- Key Issues (Possible Arguments)
- Is there really a cost associated with "stand-by" capacity?
- Has the customer already paid for that capacity via another charge?
- For the customer, insurance savings off-setting PFP cost.
- PFP is required by code.
- PFP quickly suppresses the fire, thereby saving significant amounts of water that would have been used without PFP.
- Decreases fire fighting hazards
- Cost-based vs. market (value)-based rates.

Costs Prorated Between Public \& Private Fire Protection Using the Equivalent - Connection Method

	Teral	Publie	Privala	
Conts to Dan merated	\$176.000	\$716.746	350.254 Alloc	Wace Factar FP, 1
Dileat Cowt + Myprunt	43000	43.000	- Owher	
Biret Cratra - Proneta Fitahne\%	28.500	-	28.009 Druct	
	\$247.000	4+58.745	547.234	
	Number	$\begin{aligned} & \text { Cuza } \\ & \text { Fectior } \end{aligned}$	$\begin{gathered} \text { Equiv, } \mathrm{B}^{\circ} \\ \text { Connectione } \end{gathered}$	Altocution
Puble Fira My-trans "E- Mmina)				
Atoen ${ }^{\text {a }}$	576	1.00	976	60.3*
Arme ${ }^{\text {a }}$	3155	1.00	355	
nutc	78	4.00	788	
	4.748		1710	
Priveno fire serviedt				
- Surnee	257	0.44	113	
8is Strue	553	1,00	553	
e- Survies	120	172	20as	
	930		872	31.7\%
Total Equvilert E' Camertiont			2.591	100.0\%
ALIOCATIONFACTOA				(FP-1)
		\% wernmuay		E7-13

Development of the Fire Protection Rates

- Public Charge Per Connection Cost per Hydrant = \$92.93 Per Year (\$159,746/1,719 hydrants)
- Private Charge Per Connection

-4^{n} Service	$\$ 44.00$ Per Year
-6^{n} Service	$\$ 100.01$ Per Year
Costs/Total	(Total Private
-8^{n} Service	$\$ 172.01$ Per Year

Rate Differentials for

Inside vs. Outside City Customers

- Most municipal utilities have a rate differential for inside vs. outside City customers
- Typical range of differentials - 0% to 100%
- Basis for the differential
- Ownership
- Risk
- Fair return on investment
- Other??
- Cost Allocation Issues -
- Can you demonstrate a 50% or 100% cost differential between inside and outside customers?

One Approach - Ignore the Issue

- Some utilities simply maintain the current rate differential and do not allocate costs to inside vs. outside City within the cost of service study.
- Rate differential is addressed (maintained) in the rate design process.
- Warning - you may be challenged - then you will need to prove cost-basis for the differential.

Using the Rate of Return Approach

- Technically correct approach.
- Differential is not necessarily a fixed percentage.
- Inside City customers earn a "fair" return on their investment from Outside customers.
- Use a weighted cost of capital approach for outside City customers.
- Inside City customers pay the difference between the total revenue requirements and the amount paid by the outside City customers.
- This approach may also be used for wholesale rate setting.

Calculation of Inside vs. Outside

 City Rate of Return
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Goals of Rate Design

- From the customer's perspective, easy to understand.
- From the utility's perspective, easy to administer.
- Continuity in philosophy.
- Equitable and non-discriminating (cost-based).
- Effective in yielding total revenue requirements.
- Provide revenue stability and predictability, with a minimum of unexpected changes.
- Promote Efficient Allocation of Resources Discourage wasteful use.
- Freedom from controversy over interpretation.

Basic Formulas

- Remember that a rate is a cost divided by a demand (volume)
- Consumption Charge:
- Four types: (a) decreasing block, (b) uniform block, (c) increasing block. (d) seasonal
- Generally recovers consumption related costs
- Formula: Consumption related costs / annual water consumption
- Fixed Charge:
- Four types: (a) service or customer charge, (b) meter charge, (c) minimum charge, (d) readiness to serve
- Generally recovers customer/billing related costs
- Formula: Customer related costs / No. of customer bills per year

Types of Consumption Rate Structures

- Declining Block 0-10 CCF @ \quad 1.90/CCF 11-100 CCF @ 1.80/CCF $101-1,000$ CCF @ 1.70/CCF 1,001-CCF@ 1.60/CCF

- Inverted (Increasing) Block $0-10$ CCF @ $\quad \$ 1.50 / C C F$
$11-50$ CCF ©
$1.75 / C C F$ $\begin{array}{ll}11-50 \text { CCF © } & 1.75 / C C F \\ 51-\text { CCF © } & 2.05 / C C F\end{array}$

Types of Consumption Rate Structures (comtinumed)

- Uniform Block All Usage: \$1.75/CCF

\qquad
\qquad
Seasonal Rate Summer: \$2.10/CCF Winter: \$1.40/CCF

Types of Consumption Rate Structures

- Individualized
- Customized based on each individual's use or other specific characteristics
- Examples
- Individualized AWC. Increasing block structure with first block threshold based on average winter consumption
- Water budgets. Volumetric allotments for indoor and outdoor use based on customer's specific characteristics

Types of Consumption Rate Structures

- Individualized
- Blk 1: 0-AWC
- Blk 2: AWC + 20 ccf
- Blk 3: Over AWC + 20 ccf

- Water budget
- Blk 1: 0-50\% of budget
- Blk 2: 51-100\% of budget
- Blk 3: 101-150\% of budget
- Blk 4: Over 150% of budget

Calculation of Consumption Charge

 Example 1: Uniform Block Rate| Example: Residential Consumption ChargeUniform Block | |
| :---: | :---: |
| Cost Data from Exhiblt 11 | |
| Commodity | \$1,216,979 |
| Capacity | 2,756,151 |
| Public Fire | 375,681 |
| Revenue/Direc/VOther | 81,290 |
| Total | \$4,430,102 |
| Annual Water Sales-CCF | 2,525,000 |
| Rate S/CCF | 51.75 |

Bill Distribution Calculation Example

Monthly Billing Detail，ef Cust Clas5										Apr	May	Jun	Jul	Aug	Sep	Totai
John Doe	SFR	8	12	15	25	55	40	155								

Blll Distribution Analysis

Block	Threshold	Apf	May	Jun	Jul	Aug	Sep	Total $\%$ Dist	
1	First 10 ecf	8	10	10	10	10	10	58	$\mathbf{3 7 . 4 \%}$
2	Next 30 ccf	0	2	5	15	30	30	$\mathbf{B 2}$	52.9%
3	Over 40 ccf	0	0	0	0	15	0	15	$\mathbf{9 . 7 \%}$
	Total Use	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{1 5}$	$\mathbf{2 5}$	$\mathbf{5 5}$	$\mathbf{4 0}$	$\mathbf{1 5 5}$	$\mathbf{1 0 0 . 0 \%}$

Bill Distribution Calculation Example

（1）	（2）	［3］	（4）	（5）	（6）	（7）	（1）	（b）
TOTAL USE CUMULATMEPLOCX LSE．								
$\begin{aligned} & \text { USAME } \\ & \text { BLOEX } \end{aligned}$gatlons!	NO．of EHLSIN 日Lock （1）	OF Bl山s STOPPING IN BLOCK gathons	BILLs THROLEH日LOCK ［if	FOR BILLS PABSING THRU patlons	cumulative use EMIED		CUMULATIVE ACCOUNTS	
					USAEE	\％ OF	NO．OF	\％ 0
					gallont	Usapt	Bille	B1LL5
0	579	0	21，801	－	－	0．046	579	2．6\％
1	970	970	20，821	21801	21，801	18．7\％	1．549	6．9\％
2	1，950	3，800	18，881	20， 831	42，632	36．6\％	3.498	15．6\％
3	2.950	8.874	15，923	10，881	61，5t3	52．7\％	6，457	28.9%
4	3.459	13，836	12.464	15.823	77.435	66．4\％	0.816	44．3\％
5	3.465	17.330	8.989	12.464	69，900	77．1\％	13，302	50．0\％
6	2.604	96， 2.24	6．194	9，988	的，的白	84．6\％	16，486	72．3\％
7	2.076	14，532	4，148	6.194	105．092	90．1\％	48.262	81，6\％
8	1，356	10，848	2.762	4，118	109.210	93．6\％	19.818	87．7\％
9	974	8.766	1780	2.762	111972	66．0\％	20.592	920\％
10	635	6.350	1．153	1.788	113，760	97．5\％	21.227	54．8\％
11	418	4，598	735	1.153	114，913	80．5\％	21，645	96．756
12	298	3.588	435	735	115．6＊	99．2\％	21，944	98．1\％
13	176	2.280	280	436	118．084	99．5\％	22.120	88．8\％
14	153	2，142	107	260	116．364	68．B\％	22.273	99．5\％
15	105	1，575	2	107	118，451	99．9\％	22.378	100．0\％
100	2	200	－	170	118.621	100．08	22.380	900．0\％
iTotal	22.350	115，521	cemproman					

Water Budget Rate Structure

- Indoor budget allotment examples
- Indoor use requirements
- Outdoor use requirements

Water Budget $=$ Indoor allotment + outdoor allotment

- Budget allotment can vary by month (billing cycle) or be based on an annual allotment

Water Budget Rate Structure

- Indoor component examples
- Size of household, gallons per capita per day, billing cycle
- Average winter consumption
- Outdoor components
- Landscaped area (ft^{2})
- Evapotranspiration index (ET inches)
- Crop coefficient ($\mathrm{K}_{\mathrm{c}} \%$)
- Irrigation efficiency (\%)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Comparison of Residential Consumption Charge Alternatives and Bill Impacts

Graphical Comparison of Residential Consumption Charge Alternatives \& Bill Impacts

Comparison of the Different Types of Rate Designs There is NO PERFECT Design		
Type	Pros	Cons
Dedining block		
Uniform rates		
Increasing block		
Seasonal		
Seasonal intereasing/decreasing block		
Lifeline (special considerations)		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Residential Consumption Charges by Region 2012 Survey of 290 Water Utilities-Representing 50 States

| | Dec.
 Block | Uniform | Inc.
 Block | Flat | Seasonal | Other |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | NUR \mid (

\qquad
\qquad
\qquad
\qquad

Non-residential Consumption Charges by Region 2012 Survey of 206 Water Utilities-Representing 50 States

	Dec. Block	Unlform	Inc. Block	Flat	Seasonal	Other	N/R
Northeast	(32\%)	32\%	23\%	0\%	9\%	0\%	5\%
South	19\%	35\%	(26\%)	2\%	8\%	5\%	6\%
Midwest	38\%)	31\%	14\%	3\%	5\%	0\%	9\%
West	1\%	36\%	0\%	5\%	22\%	7\%	8\%

Types of Fixed Charges

- Customer (Service) Charge
- A fixed charge per bill that is the same for all customers
- Meter Charge
- Fixed charge per bill that varies by meter size
- Readiness to Serve
- A uniform or by meter size fixed charge that may recover additional costs above customer, billing, and meter charge costs
- Minimum Charge
- Fixed charge or a meter charge that includes a volume allowance

\qquad
\qquad
\qquad

Fixed Charges 2012 Survey of 290 Water Utilities Representing 50 States

Modiwn wow Undiver

Issues to Consider During a Rate Study

- Customer related
- One rate schedule or different rates for different classes of service
- Impacts on different income levels and customer groups
- Lifeline rates, senior discounts
- Frequency of billing
- New rate structure transition - mitigate bill impacts
- The need for Citizens' Rate Advisory Committees ("CRAC's")

Issues to Consider During a Rate Study

- Consumption/conservation/efficient use
- Indoor vs. outdoor use, conservation and seasonal rates
- Price elasticity - short-term vs. long-term impacts
- Conservation vs. marketing of water
- Financial impacts from conservation - the need to raise rates?
- Politics
- How often to raise rates
- Regional political pressures
- Timing of rate adjustments

Summary of Water Utillities w/Payment Plan Asst. Programs 2012 Survey of 290 Water Utilities-Representing 50 States \qquad
\qquad
\qquad
\qquad
\qquad

Technical Considerations

- Accuracy of water revenue projections by class
- Elasticity Impacts
- Price elasticity is a measure of the price sensitivity of consumption by consumer
- Elasticily $=$ \% change in consumplion
\% change in real price
- Elasticity is usually expressed as a decimal percentage number. For example, given an elasticity of -.1 , and a 60% upward price change, the resulting consumption change is a downward 6% or (-1×60).
- Problem of determining or estimating elasticity
- Bill frequency distribution
- Needed for designing blocked or tiered rates, See AWWA M1 Manual

\qquad
\qquad

Graph Research Findings on the Price
Elasticity of Water Demand ($\mathrm{N}=112$)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Examples of Elasticity Studies From California

Comparison of Average Monthly Water Charges

 (T)

What Makes Topics Difficult to Communicate?

- Reasons often cited for difficult communication
- Opposition
- Lack of Understanding (i.e. by target audiences)
- Complexity (i.e. topic was difficult for people to understand)
- Internal Logistics
- Note: first 3 reasons are external/educational issues
- Conclusion: Devote more time to educating customers and communicating on an on-going basis to build rapport

Principles of Authentic Communication©

- Truthtul - Accurate and factually correct.
- Fundamental - Deals with the core issues and central facts of the situation.
- Comprehensive - Tells the whole story, including meanings and implications of the issue.
- Relevant - Takes into account and makes connections with the interested parties.
- Clear - Uses language that is appropriate for the audiences and avoids jargon and keeps technical terms to a minimum, or clearly explains them when needed.
Φ Bejural Butrop. 2009

Principles of Authentic Communication© - Cont'd

- Timely - Communicated when known and provided early enough to allow feedback before action or major decisions.
- Consistent - Doesn't oppose or contradict earlier communication.
- Accessible - Information easily available to parties. Major parties available to discuss information. Meetings well promoted so all parties are aware.
- Compassionate - Show respect and care for the circumstances, attitudes, beliefs and feelings of others.

Principles of Authentic Communication(c) - Cont'd

- Allow for Feedback Communication solicits response, either via email, face-to-face meetings, telephone conversations, response cards or other feedback mechanisms
© Bapinkal Buxtrap, 2001

How Well Do Utilities Communicate?

- Respondents to Utility Communication
- Only 42\% thought their communication was clear
- Only 33\% thought their information was accessible
- Only 26% thought their communication was timely
- When asked "What would you do differently?"
- Most frequent response was communicate earlier (timeliness)

Tom and Todd's

Guide to Effective Rate Presentations

- Educating the Policymaker
- Begin educating at the start of the study and continue throughout the study
- Simple and Logical Handouts
- Organized to follow the thought process of how you reached your recommendation
- Clearly Stated Objectives of the Meeting
- State the policy decision needed or the policy direction required
- Consider the Meeting Format; Workshops vs. City Council Meetings - Public and Press
- Isolate the Key Issues

Develop Presentation Materials For Your Target Audience

- Typical Target Audiences
- City Councils-Board of Directors/Trustees
- Advisory Committee Members
- Utility Customers
- Public Utility Commission
- Management/Staff Meetings
- Think about the level of detail to present and handouts

Tips for Working With Advisory Committees

- Standing committee or review a specific issue(s)?
- Group size = 样 of members
- Plan for a high drop-out rate
- Selecting the members
- Issue of fair representation
- Avoid "ding-a-lings"
- Setting a specific meeting time
- Limiting the number of meetings?
- Meeting facilitator?
- Setting a clear objective for the group
- At the end, we need your recommendation on issue X
- Setting clear limitations
- e.g. - advisory committee is not reviewing the budget, the board has reviewed and adopted it.
- Educate
- Expect lots of work to make it happen!

Working With The Press and Media

- Rule No. 1 - Be truthful
- Rule No. 2 - The newspaper article will never say what you want it to say unless you write it yourself

- Press releases

- Rule No. 3 - You are never off the record
- Rule No. 4 - Be friendly. Don't be rude, confrontational or lose your temper
- Rule No. 5 - Never say "No comment"
- Rule No. 6 - If you foresee or have a problem, own up to it and then immediately discuss corrective actions
san All

Presentation Tips

- Consider the style/formality of the meeting
- When in Rome . .
- Remind policymakers of any discussions, direction or decisions made at previous meetings on the topic
- Try to be brief sometimes, less can be more
- Handouts
- Technic
- Informational
- Use of visual/graphs

Farmill
010

Example of the Summary of the Water Revenue Requirement ($\$ 000$)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example of a Summary of Water Capital and Reserve Funding

Example of the Comparison of Average Unit Costs by Class of Service

Example of a Simple Bill Comparison

Example of the Presentation of "Affordability" and Projected Rates

Median Household Income $\quad \mathbf{\$ 3 6 , 5 0 0}$		Range of Afford ability		
		1.50\%	2.00\%	2.50\%
Annual Bill at Affordability Limit		\$54750	\$730.00	\$912.50
Monthly Blll at Affordability Limit		\$45 63	\$60.83	\$76.04
Average Rate-4 Year Period				
2009-2012	\$40.47	Pass	Pass	Pass
2013-2016	\$51.08	Fail	Fril	Phas
2017-2020	572.90	Fail	Fail	Pass

Final Caveats/Tips

- Talk to your audience.
- Listen to questions carefully - Respond as appropriate.
- Catchy phrases or analogies help.
- Never take a calculator or your work papers to a public hearing/meeting.
- Be candid/honest-but don't say "quite honestly".
- Tolerate disagreement.
- Be as emotionally detached as possible from the final decision.
- Stay cool under all circumstances!
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Thank you for attending
AWWA's Financial Management: Cost of Service Rate-Making Seminar!

Session Overview

"Growth Paying Its Own Way"
"Growth Paying for Growth"

- Defining System Development Charges (SDC's)
- Comparison Between SDC's and Rates
- SDC Approaches
- SDC Examples
- Legal Considerations

A System Development Charge

 By Any Other Name.....- SDCs
- Plant investment fees
- Tap fees
- Hook-up fees
- Capacity fees
- Expansion charges
- Impact fees
- General facility charges
- Connection charges
- Dedicated capacity charges

System Development Charge: A Working Definition

- One-time charge
- Fee for new customer demand only
- Fee required of all new customers desiring water service or existing customers requesting increased water service capacity
- Charge based on the value of the utility's capacity and the amount of capacity needed by the new customer
- Should not be used to fund operations

Typical SDC Objectives

- Equity between existing and new customers Development pay its own way
- Funding for system expansion
- Minimize debt
- Diversify revenue sources
- Lowering water rates through additional capital funding
- Recoup previous expansion costs funded by existing ratepayers

SDCs Recover the Cost of Capacity over Time

- SDCs components
- Require valuation of capacity
- Require estimation of new customer capacity needs
- New customer pays for its capacity needs
- Payback ends when capacity is depleted
- Cash flow analysis
- Project future cost
- Project future demand
- Develop unit cost (costs divided by demand)
- Payback is based on time period for projections

Basic Steps to Calculate SDC

- Determine cost or value of facilities and associated capacity
- Estimate new customer demand requirements
- Apply credits - outstanding principal, grants, contributions
- Calculate unit cost - (\$/mgd; \$/ERU)
- Apply unit cost to assessment schedule

\qquad

\qquad

\qquad

When is the Cost of Capacity an Issue? Case 1 - Existing Capacity Will Meet Future Needs

When is the Cost of Capacity an Issue? Case 2 - No Existing Capacity for Future Needs

When is the Cost of Capacity an Issue?
Case 3-Some Capacity is Avallable But More is Needed

Buy-In Approach

- Applies to utilities with available capacity for growth
- The new customer (development) "buys into" the system - but doesn't 'own' anything
- Methods to value existing assets:
- Original Cost (OC)
- Original Cost Less Depreciation (OCLD)
- Replacement Cost New (RCN)
- Replacement Cost New Less Depreciation (RCNLD)
- Asset valuation should be reduced by outstanding liabilities used to finance existing facilities.
- Other credits include contributed facilities and grants

Incremental (Marginal) Approach

- Applies to utilities with little to no available capacity to serve growth
- New customer pays for next increment of future capacity required to serve them
- Capital plan planning horizon: important for determining future capacity units
- Determine which projects and/or portion of project costs are growth-related

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hybrid (Combined) Approach

- Used by utilities with available capacity and planned future capacity
- Combines the buy-in and incremental cost approach
- Weighted average of the buy-in and incremental costs - not a simple sum of the unit costs!

SDC by Meter Size

$\begin{aligned} & \text { Meter } \\ & \text { Size } \\ & \hline \end{aligned}$	Max Sale Operating Capaclty ${ }^{(1,3)}$	Capacity Ratio	SDC
Inches	gpm		
5/8"	20	1.0	\$2,454
3/4"	30	1,5	\$3,681
$1{ }^{17}$	50	2.5	\$6,135
$11 / 2{ }^{\prime \prime}$	100	5.0	\$12,271
2	160	8.0	\$19,633
3	320	16.0	\$39,267
$4{ }^{4}$	500	25.0	\$61,355

(1) Maximum safe operaling capacity varies by type of meter (e.g. Displacement. Single Jet, Turbine)
(2) See Table VI.2-5, Page 274, M-1 Manual

Other SDC Structures

- Lot size
- Number of units (multifamily)
- Units + retail floor area (mixed use)
- Gross floor area (commercial)
- Demands - annual, peak
- Plumbing fixtures
- Irrigable area (irrigation)
- Other fixtures - barstools, restaurant seats, number of laundry machines, employees

Legal Considerations

- State Laws and Regulations
- Rational Nexus-relationship between the price \& cost Incurred
- Connection be established between new development and the new or expanded facility to accommodate such development
- Identification of the cost of those new or expanded facilities needed to accommodate development
- Appropriate apportionment of cost to new development in relationship to benefits reasonably received
- Reasonable relationship to the burden Imposed to provide capacity
- Reasonable relationship does not mean mathematically exact

Taxation Issues

Is the SDC a Fee" or a Fax"?

- Utility likely has legislative authority to impose, collect and spend SDC's. However, how it is assessed, collected and spent must clearly qualify the payment as a "fee" and not a "tax."
- Important to characterize the SDC as a regulation and not as a revenue raising device.
- "The regulatory defense is met when demonstrating that new development creates the need for new facilities, but without payment of fees in exchange for benefits provided by such facilities, the revenues are unavailable to provide facilities and therefore the community is unable to accommodate new development." [1]

Concluding Comments

- SDC's are an effective method to finance the cost of growth
- Creates equity between existing customers and new customers
- Helps shelter existing customers from the cost of growth
- Must be established and applied in a legal manner
- SDCs revenue can be volatile and should not be considered a reliable source of revenue

Developing Financial Policies To Aid in Strategic Planning and Setting Rates
 By: Tom Gould, Vice President
 HDR Engineering, Inc.
 Bellevue, Washington

Introduction

The water utility industry is constantly changing, but there is always one constant - the need for strong financial performance to support the strategic objectives of the utility. Weak financial performance makes it difficult, if not impossible, to attain or even maintain service at an adequate level. The development of financial policies provides an important and valuable management tool for utilities to meet their strategic plans.

Developing Strategic Plans

Water utilities traditionally have not thought about strategic plans and as a result, have not developed such plans. Utilities have traditionally operated from year-to-year, and simply met challenges as they were incurred along the way. As the industry has evolved in recent years, utility management is now faced with increasingly complex regulatory issues, new competitive challenges from outside forces, and increased price sensitivity by customers. Successfully meeting these new challenges requires the ability to address each issue in an organized manner, and prioritize them into a strategic plan.

At its most basic definition, and as used within this paper, a strategic plan is an organized management plan that contains the utility's vision of a desired level of service or management objectives. It provides the utility with a roadmap focusing on specific goals and objectives.

Developing a strategic plan may sound like an extensive and complicated process. In some cases, it does not necessarily have to be extensive or complicated. Rather, a strategic plan may be as simple as a statement of key initiatives, with short statements (goals) to measure the utility's effectiveness against that initiative.

A simple example of a strategic initiative may be the following:
"The utility will protect, sustain and enhance the environmental quality of our resources. To achieve this initiative, the utility will development and implement a cost-effective conservation program"

In the example noted above, the utility will need to take a number of steps or actions to achieve it. However, a key component of achieving any initiative of the utility is the financial position of the utility. That is, the utility will need to have sufficient financial resources available to supply the people and programs necessary to achieve the initiative. One method to help assure that the utility has the necessary financial resources available to support their strategic initiatives is to develop written financial policies. Written financial policies can aid in establishing cost-based rates, while at the same time creating an environment for long-term financial stability and adequacy of funds.

Why Establishing Written Financial Policies Is Important

One of the challenges of managing a public utility is working with a Board or City Council and determining the financial and management parameters around which the utility should be operated. On the other side, as a Board or City Council member it can sometimes be challenging to understand all the financial complexities of operating and managing a contemporary water utility. Establishing written financial policies, particularly as they relate to establishing the rates for the utility, is one way to bridge the communication gap between management and policymakers concerning this complex issue.

While written financial policies help bridge the communication gap between management and policy makers, they also provide other significant benefits. Among these are the following:

- Provides Management With Clear Dlrection - By developing written financial policies, the policy maker has provided to management clear direction and boundaries for the financial management of the utility. This eliminates the need for management to "guess" the policy maker's intentions or to constantly return to the policy maker to obtain direction on specific financial issues.
- Provides Consistent Financlal Decisions - A set of financial policies provides uniform guidance that should result in consistent and uniform management decisions around each specific financial issue over the long-term.
- Provides Pollcy Makers With the Basis or Reasoning BehInd Past Decisions - One of the challenges for the management of any public utility is working with an elected Board or City Council. As these elected individuals come and go, it is important that any new Board or City Council member understand the past and current financial philosophy of the remaining members. To that end, written financial policies provide the clear and written link between past and present decisions.
■ Provides a Strong Message to the Outside Financlal Community - Establishment of written financial policies for water utilities is not a common practice. Therefore, by establishing a comprehensive set of written financial policies, the utility is making a strong statement to the financial community that it is well-managed. When going before rating agencies, presenting a set of written financial policies will provide a very positive message on the utility's behalf.

In summary, the overall objective in establishing written financial policies is to establish clear policy direction for management. In doing so, it will create greater consistency in the overall financial performance of the utility.

Establishing Written Financial Policies

There is no specific approach or framework that must be used to establish written financial policies. However, in establishing the policies care should be taken to ensure that they are comprehensive and organized in a logical manner. At the same time, financial policies should
be flexible. Flexibility refers to the fact that most financial policies are guidelines. As an example, the utility may establish a financial policy on the types of reserves to be maintained and the recommended minimum level of the reserves. Therefore, when a reserve falls below the established minimum level, it should trigger some management action, but not necessarily a specific action stated within the policy. Management should be provided with the flexibility to determine the most appropriate course of action (e.g. wait and watch, reduce spending, increase rates, etc.). In essence, the policymaker establishes the "ends" or desired results and management is left with selecting the appropriate "means" to get there.

One way in which financial policies can be organized is in the following manner:

1. Global Poucy Statement

1.1 General Policy Statement

1.1.1 Specific Policy Statement

Utilizing the above framework, the following example demonstrates the general approach.

1. Facilities shall be maintained at such a level that it provides for the public welbeing AND THE SAFETY OF THE RESIDENTS

The utility's operation and maintenance (O\&M) program will be maintained at a level that assures system reliabillty and efficiency. A well-thought out maintenance program will extend the IIfe of the system, that will in turn reduce infrastructure costs in the long-run.
1.1 Sufficient funding shall be made available for adequate maintenance and/or replacement of capital plant and equipment
1.1.1 The utility will adequately fund costs for meeting current industry standards and regulation (e.g. Safe Drinking Water Act) in the annual financial review and budgeting process.
1.1.2 The utility will develop a 5 -year capital improvement plan and update it annually.
1.1.3 The capital plan will consider all mandated capital, growth related capital and renewal/replacement capital needs.
1.1.4 The utility will make all capital improvements according to the adopted Capital Improvement Plan.

As can be seen, the basic framework for developing the financial policies should help to organize the planning process, particularly as it relates to meeting any strategic objectives the utility may have.

Types of Financial Policies To Consider

In establishing financial policies, there are a variety of areas or topics that policies can be developed around. At the very minimum, the utility must take into account, and be in compliance with any legal covenants (e.g. debt service coverage) or regulatory mandates. Therefore, in establishing a set of financial policies the starting point of the process should be
the review of any bond covenants and/or Federal/State requirements. As an example, revenue bond covenants often require the establishment and funding of certain reserves and the maintenance of rates at a sufficient level to assure meeting or exceeding debt service coverage ratios. At the same time, the utility may have certain Federal or State requirements that may appropriately be included within the financial policies. As an example, a utility may be legally required to establish "conservation-based" rates for the utility.

Most, if not all utilities, have adopted financial policies that cover policy issues such as investment policies, etc. The focus of this paper is on establishing financial policies to aid in setting rates to meet strategic plans. Therefore, the discussion below will focus only on those policies that have a direct impact on the rate setting process and meeting strategic plans.

There are a number of very basic and fundamental questions that a utility must answer in order to address their strategic plan. Among these basic questions are the following:
\checkmark Does the utility and its customers desire to have "cost-based" rates?
\checkmark Should the utility be financially operated as a "business?" If so, what are the appropriate financial and operating goals to be established for the utility (i.e. target debt service coverage ratios, reserves, service levels, etc.)?
\checkmark How should the cost of growth be paid for? Growth pays for growth? Some level of subsidy to encourage growth and economic development? The entire cost of growth should be absorbed into the existing customer base?
\checkmark What level of financial risk is the utility willing to incur? Should the utility build infrastructure in advance of growth (i.e. build it and they will come)?
\checkmark Should capital be paid for on a "pay-as-you-go" basis, or should long-term debt be used, and if so, how much and under what conditions?
\checkmark Is the utility in the business to sell as much water as possible or conserve water? Should the utility attempt to control or change a customer's consumption patterns?

Many of the questions raised above are rarely discussed from a policy perspective, let alone answered via written financial policies for the utility. Provided below are some examples of global policy statements that begin to formally address these kinds of strategic issues.

Example of
 Financial Policies/Guidelines to Aid in Setting Rates

These recommended financial policies and guidelines have been developed to assist the [name of utility] in achieving financial and rate stability from year-to-year.

In addition, these proposed policies should provide consistency in decision-making to both the [goveming body, e.g. City Council] and utility management.

These proposed policies and guidelines should be used as a starting point in the utility's overall utility financial planning and rate setting process.

The proposed policies and guidelines listed below should be reviewed over time to determine if they are still relevant and appropriate.

1. Rates Should Be Established Utilizing a "Generally Accepted" Rate Setting Methodology.

When reviewing rates, it is important to use a methodology that is "generally accepted" in the financial and rate setting community as well as the water, sewer and storm water utility industry. This will assure a legally defendable approach as well as consistency of the analysis over time.
1.1 It is recommended the City use the following "generally accepted" approaches to establish rates for each utility.

- Revenue requirement analysis
- Cost of service analysis
- Rate design analysis

REVENUE REQUIREMENTS:

1.1.1 Revenue requirements will be established on a "cash basis" approach that will include operation \& maintenance expenses, taxes/transfers, debt service (P\&I) and capital improvements funded from rates.
1.1.2 Revenues and costs will be annually projected for a projected five-year time period.
1.1.3 Projections of O\&M costs should include any estimated incremental O\&M costs associated with future capital improvements.
1.1.4 The administrative transfer fee from utility enterprise funds to the General Fund is a payment for various services provided by the General Fund. The amount of each year's transfer fee shall be based on the reasonable estimated general fund costs incurred by the utility enterprise funds, of the General Fund costs.
1.1.5 Costs associated with mandated program requirements will be identified and included within the "cash basis" approach.
1.1.6 Any wholesale cost increases imposed upon the City by a water or sewer supplier/partner should be equitably passed through to the City's ratepayers at the same time such rates become effective upon the City.

COST OF SERVICE:

1.2.1 A cost of service study will be utilized to equitably allocate the water and sewer costs to the customer classifications of service.
1.2.2 The cost allocation methodology will utilize techniques that are "generally accepted" by the industry (e.g. American Water Works Association, Water Environment Federation).
1.2.3 The water cost of service will, at a minimum, consider the following cost components:
\checkmark Commodity/base cosis - those costs that vary with the total amount, or flow of water consumed by a customer over an extended period of time (e.g. electricity and chemicals)
\checkmark Capacity costs - those costs that vary with maximum demand, or the maximum rates of flow to customers (e.g. sizing facilities to meet peak demands)
\checkmark Public fire protection costs - those costs related to the public fire protection function (e.g. hydrants and over-sizing of mains)
\checkmark Customer related costs - those costs that vary with the number of customers on the system (e.g. postage, meter maintenance expense)
\checkmark Revenue related costs - those costs associated with the amount of revenue received by the utility (e.g. a gross proceeds tax, delinquent fees)
1.2.4 The sewer cost of service will, at a minimum, consider the following cost components:
\checkmark Volume costs - those costs that vary with the total flow of wastewater contributed by a customer over an extended period of time.
\checkmark Strength costs - those treatment related costs associated with the strength of wastewater (biochemical oxygen demand and suspended solids).
\checkmark Customer related costs - those costs that vary with the number of customers on the system (e.g. postage, meter maintenance expense)
\checkmark Revenue related costs - those costs associated with the amount of revenue received by the utility (e.g. a gross proceeds tax, delinquent fees)
1.2.5 The water and sewer cost of service will consider the specific circumstances and unique characteristics of the City's systems in the cost allocation methodology.

RATE DESIGN:

1.3.1 User charges (rates) will be established so that operating revenues are at least equal to the direct and indirect operating costs, to include costs of administration for each individual utility.
1.3.2 Rate designs will be reflective of utility needs, and also reflect the greater public purpose and policy goals of the City Council (e.g. conservation, economic development, ability to pay, etc.).
1.3.3 Rates will recognize and attempt to incorporate a fixed charge for the up-front fixed costs associated with serving customers and a usage or volumetric charge that attempts to recover the variable costs of operating the utility.
1.3.4 Rates will be set at a level that recovers necessary costs, by classification, yet flexible enough to accomplish the City's objectives (e.g. public purpose programs).
1.3.5 Rates should be designed to be equitable and detailed to a level to reflect the service provided (e.g., private fire protection, multi-family services, etc.).

2. The City's Utilities Should Continue to be Managed to Attempt to Maintain Financial Stability Over Time.

The City's utilities, like any other business, should strive to maintain financial stability over time, as it has done in the past. Financial stability is not only a prudent financial management goal; it can also minimize financial costs in the long-term (e.g. unnecessary borrowing). Above all, financial stability will provide the community with the confidence of knowing a strong, consistent management team is managing the utility.

2.1 Financial Policies and Measures Will be Developed to Measure, Manage and Achieve Financial Stability.

RESERVES:

2.1.1 The City will maintain utility reserves required by law, ordinance and bond covenant, so as to provide cash working capital for normal and ordinary operations, and also provide some insurance against economic downturns and emergencies.
2.1.2 Minimum reserve funds, excluding bond reserve funds, will be as follows:

Operating Reserves - Operating reserves are composed of Active Working Capital Cash and Operating Reserves. These reserves reflect the timing difference between billing for revenues and payment of expenses. The Operating Reserve can also be used to cover unanticipated cash operating expenses or lower than expected revenue collections. The basis for establishing a minimum total operating reserve level for each utility will be \#\# days of the O\&M expenses for that utility. Based upon 2005 O\&M levels, the minimum operating reserve for each utility is as follows:

- Water utility
- Sewer utility
- Storm water utility

Catastrophe/Emergency Reserves - The catastrophe/emergency reserve is essentially to protect the City's utilities against the financial impacts from unanticipated emergencies. It provides funding for emergency repairs or falure of essential equipment that needs to be immediately replaced. At a minimum, the contingency reserve will be set equal to $\$ \# \#, \# \# \#(\$ \# \#, \# \# \#$ water/\$\#\#\#, $\# \# \#$ sewer). This level of contingency/emergency reserves will be deemed sufficient to finance the required cash flow until such time that adequate emergency financing can be secured from conventional outside resources.

Capital Reserves - Capital reserves are used to fund the cash flow requirements of capital infrastructure construction. These reserves can increase and decrease significantly depending on funding sources available and the capital projects that are planned during the year. The City should, however, set a minimum funding level for each utility as follows:

Funding should be based upon the five (5) year average of the annual capital expenditures contained within the City's capital improvement plan for each utility. Based upon the 2005-2009 capital improvement plan, the following minimum reserves are recommended:

- Water utility \$\#, \#\#, \#\#\#
- Sewer utility $\$ \#, \# \# \#, \# \#$
- Storm water utility \$ \$\#\#, \#\#

Bond Reserves - Bond reserves may be legally required for specific debt issues. Bond reserves will be established in accordance with the legal covenants of the debt issue.
2.1.3 The City Council may establish other reserves for specific needs that are over and above the reserves noted above.
2.1.4 Maintenance of minimum reserves should not, on its own, trigger the need for a rate adjustment, (e.g. rates will be reviewed after two consecutive years of loss of revenue or diminishing reserves as a result of covering costs).

LIQUIDITY:

2.2.1 The City's utilities will maintain sufficient reserves, and of such a nature, that it maintains liquidity equal to \# months of operating expenses.

CASH FLOW:

2.3.1 Each utility should have annual net income (total revenue less O\&M, taxes, debt service and capital projects funded from rates) greater than or equal to zero (\$).

TARGET DEBT SERVICE COVERAGE:

2.4.1 The City should have an annual debt service coverage ratio greater than or equal to 1.\#\# (e.g. 1.50) on all outstanding debt that carries a legal bond covenant. The City will maintain a debt service coverage ratio of 1.30 on all outstanding debt service. (Industry norm for revenue bond coverage ratio covenants is 1.25.)

CAPITAL IMPROVEMENT FUNDING FROM RATES:

2.5.1 On an annual basis, each utility should adequately fund through its rates an amount for capital improvement funding.
2.5.2 To achieve policy 2.5.1, the following minimum funding for each utility should be included within the rates, and escalated (increased) over time to reflect the impacts of inflation and replacement cost of infrastructure. [Note: generally targets an amount \geq annual depreciation expense].

- Water utility \$\#,\#\#\#,\#\#\#
- Sewer utility \$\#,\#\#\#,\#\#\#
- Storm water utility \$\#\#\#,\#\#\#
2.5.3 As new large capital facilities are added to the City, consideration may be given to phasing-in the rate impact of policy 2.5.1.

3. Rates Should be Stable Over Time.

Financial stability of a utility also provides rate stability. Rate stability reinforces that costs are being managed and controlled, thereby gaining customers' confidence of the management team's credibility.
3.1 Rates Should be Stable in Their Ability to Generate Sufficient Revenues, but also in the Customer's Perception of the Rate Changes from Year to Year.
3.1.1 Rates should be reviewed by the City, on an annual basis, to assure that they provide sufficient revenues.
3.1.2 Annual rate reviews will consider a five-year projected period to attempt to stabilize and minimize rates over time.
3.1.3 Needed rate adjustments will attempt to minimize impacts to cusiomers by phasing-in large rate adjustments over time.
3.14 Rates should reflect pass-through components for costs that fluctuate and are not controllable by the City, such as wastewater treatment costs and energy costs.
3.1.5 A comprehensive rate study will be conducted by an outside party at least every 5 years in order to assess the fairness of the rates to the City's ratepayers and to ensure that the necessary revenue is available for the City's operating and capital needs.
4. The City will maintain utility facilities at a level that will provide for the public well-being and safety of the residents.
The City's operating and maintenance (O\&M) program will be maintained at a level that assures system reliability and efficiency. A well thought out maintenance program will extend the life of the system that will in tumn reduce infrastructure costs in the long-term.
4.1 Sufficient funding should be made to provide for adequate maintenance and/or replacement of capital plant and equipment. This is to protect the City's capital investment and to minimize future maintenance and replacement costs.
4.1.1 The City will adequately fund costs for meeting current indusiry standards and regulations (e.g. Safe Drinking Water Act) in the annual financial review.
4.1.2 The City will develop a 5 -year capital improvement plan and update it annually. The capital improvement plan will be coordinated with the operating budget and impacts to ratepayers.
4.1.3 The City will make all capital improvements according to an adopted Capital Improvement Program.
4.1.4 The City's capital improvement program for each utility will consider mandated capital, growth related capital and replacement, reproduction and refurbishment capital.
5. The City will consider the impacts of rates on their customers and financial and operating needs will be balanced against the rates and financial impacts.
Utility rates are the primary communication the City has with its utility customers. Whenever possible, the City's rates should be easy to understand, stable from year-to-year and minimize the overall impacts to customers.
5.1 Rates will be easy to understand and the City will attempt to keep rate increases to a minimum.
5.1.1 Rates for each utility will be structured to promote understanding by the City's customers (e.g. bills that are easy to hand calculate and understand).
5.1.2 Rate adjustments will be phased-in, over time, when large financial impacts to customers are anticipated (e.g. eliminate rate shock).
5.2 Rates will be reviewed for their overall competitiveness.
5.2.1 Any rate adjustment to a utility should consider the City's "competitiveness" with neighboring utilities.
5.2.2 The "competitiveness" of the City's rates should not necessarily take precedence over prudent financial and business practices.

 Remaining
5，985．000

앙
号
0
0
0
， $000^{\circ} 009^{\circ}$ ab
$000^{\circ} \angle S 1^{\prime} \mathrm{E}$

000 ＇009

亳
品

600,000
000＇0S9＇I
750,000

$60,800.000$

$1,000,000$
$1,000,000$

$\begin{array}{r}8,000,000 \\ 55,000,000 \\ 10,000,000 \\ 3,424,000 \\ 4,450,000 \\ 17,000,000 \\ 30,440,000 \\ \hline \$ 171,992,000 \\ \hline 178,872,000\end{array}$ | 1994.95 |
| ---: |
| $\$ 45.642 .000$ |
| 11.044 .000 |
| 509.000 |
| $11,729.000$ |
| $30.535,000$ | PLANT REPLACEHEHT B REHOYATIOH

Category
Hetro Area Construction
Urban System Improvements
Maintenance a Repair
Hechanical Haintenance
Computer Systems

Hortheast
Southwest
Lake Huron
Pumping Stations
tora
（inflated 4x annually）

$$
\begin{array}{ll}
& \\
\text { Facilities Rehabilitation - } & \\
\text { Stage } 4
\end{array}
$$

8" Transmission Main Extension

SE 18th Street to 129th Place SE, Tifinany Park.

CIP Project No:	25
Cost:	$\$ 240,000$
Completion:	2015

7. ROLIING EILLS 490 ZONE

490 Zone Reservoir

Construct a second reservoir on the existing Rolling Fills Reservoir site with a capacity of 5.0 million gallons and an overflow elevation of 490 . This reservoir will provide all of the storage deficit necessary in the 490 Zone for saturation. This reservoir also contains the standby storage necessary in the Rolling Hills 590 Zone, since constructing a ground level reservoir is less expensive than an elevated tank in the 590 Zone. (It should be noted that this reservoir is smaller than the reservoir recommended in the Rolling Hills Reservoir pre-design report. In the pre-design report, it was assumed that the reservoir construction would precede the construction of the Maplewood Facilities and the additional reservoir capacity was necessary to provide service when one reservoir was out of service for cleaning. We recommend that an amendment be prepared for the Roling Hills Reservoir pre-design report which determines if this 5.0 million gallons should be constructed in one or more phases.) This project also includes installing a fourth pump in the No. Talbot Hill pump Station to raise pumping capacity into the zone by $2,300 \mathrm{gpm}$ to meet saturation demand conditions. The remaining $5,000 \mathrm{gpm}$ deficit will be provided by either the Maplewood Pump Station or the Scenic Hill Pump Station.

CIP Project No:
Cost: Completion: 26 \$3,200,000 1995

Scenic Fill Pump Station (located near City Hall)

Construct a booster pump station in the Scenic Fill area to pump from the Downtown 196 Zone to the Rolling Fills 490 Zone with a capacity of $5,000 \mathrm{gpm}$. The station will provide $5,000 \mathrm{gpm}$ of the deficit supply requirement of $7,300 \mathrm{gpm}$ for the 490 Zone. The remaining 2,300 gpme will be provided with the pump addition at the North Talbot Hill Pump Station. This Pump Station is necessary as a bachup supply to the zone in the event that the Maplewrood Booster is out of service. This project also includes water transmission lines from the Pump Station to the 490 Zone.

CIP Project:	23
Cost:	$\$ 2,991,000$
Completion:	2010

12" Pipeline Extension

From Scenic Fill 490 Pump Station to Mill Avenue South, and from Pump station along railroad right-of-way.
wells is incorrect, additional wells will need to be constructed to match the system growth shown in TABLE 8-6.

CIP Project No:	20
Cost:	$\$ 3,527,000$ (11 \& 17 only)
Completion:	1992 (11 \& I7 only)
Cost:	$4,198,000(10,11 \& 12)$
Completion:	2000

Springbrook Springs Reclamation

Engineering investigation of reclamation alternatives and construction of facilities to restore the output from Springbrook Springs.

CIP Project No:	33
Cost:	$\$ 825,000$
Completion:	2000

Repaint Mount Olivet Reservoir

Sand-blast and recoat interior and exterior of the existing Mount Olivet Reservoir.

CIP Project No:	15
Cost:	$\$ 200,000$
Completion:	1990

Well 8 Electrical Upgrade

Rebuild the electrical and motor control system on existing Well No. 8.

CIP Project No:	67
Cost:	$\$ 120,000$
Completion:	1990

16" Main Replacement

Parls Avenue North from Bronson Way North to North 5th Street and 12" main replacement Wells Avenue North from the Wells Avenue Bridge to North 3rd Street.

CIP Project No:	$8 \cdot$
Cost:	$\$ 701,000$
Completion:	2005

12" Main Extension

Between South 192nd Street and SW 43rd Street, and the West Valley Highway and Talbot Road South. Construct new pressure zone as area develops.

Membership

Membership Renewal
My Member Info
Meetings
Marketplace
Marketplace Search
Checkout
Shopplng Cart

Product	Qty
(empty cart)	

Financing \& Charges for Wastewater Systems - MOP 27

Order No: WPM402
Medium: Book
Publisher: WEFPress
Year: 2004

Focusing on issues of increasing urgency, this comprehensive manual of practice teaches the reader expert methods for handling all financial aspects of wastewater collection and treatment. Created and peer-reviewed by international authorities at the Water Environment Federation, Financing and Charging for Wastewater Systems delivers up-to-date options, tools, and techniques for managing assets, financing capital improvements, and developing rates and charges that accurately and falily reflect costs of service.

Featuring numerous case studies of real-world applications, the guidebook explains and illustrates choices in methods of analysis, structuring, and equitable allocation of the costs of wastewater collection and treament. Financing and Charges for Wastowaler Systems untangies the complextties involved in integrating the multiple considerations entailed in developing fair cost allocations and rates for service, and provides tested methods for confronting complicaled decisions. Of interest to utility managers, municipal officials, engineers, accountants, rate analysts, attorneys, and all others involved in this arena, this authoritative professional resource conveys sound financial strategies for managing functlons of increasing consequence and cost. There is no better guide to the financial side of wastewater management. Published by WEFPress. Hard cover. 300 pages. 2004.

Contents:

- Institutional Issues
- Financial Management and Accounting for Wastewater Systems
- Financing Capital Improvements
- Determination of Revenue Requirements
- Allocating Costs of Services to Cost-Causative Components
- Distribution of Costs of Services to Customer Classes
- Development and Design of a Schedule of Rates and Charges
- Rates for Reuse or Reclalmed Water
- System Development Charges
- Implementing Rate Studies
- Affordability Utility Approach to Cost Allocation
- Municipal Utility Case Law

CASE	$:$	City of Pikeville
CASE NO	$:$	$2019-00080$
RE	$:$	Public Service Commission
		Second Data Request to MWD

Q 4. Refer to the Mountain District's First Request, Item 29, and the Commission's Order in Case No. 2002-00022.1 Listed in Table II of the Order are miles of main that are jointly used by Mountain District and Pikeville.
a. Provide this information for the instant case.
b. If these miles of main are no longer in use by both Mountain District and Pikeville as jointly used lines, explain why.

WITNESS : CONNIE ALLEN, P.E.

RESPONSE G4:

a. MWD cannot provide the information requested because it does not have the same hydraulic study information that was available in 2002. As discussed above, the City of Pikeville Rate Study of 2008 provided the same inch-mile data as the 2002 case. Pikeville made corrections to that study, but not to the inch-mile data. Without any additional current information from Pikeville, MWD can only assume that the 2002/2008 inch-mile data is the most accurate available. Because Pikeville prepared a hydraulic study for the 2002 case but chose not to provide the same detail in this case, MWD and the Commission can only rely on the verified data previously provided.

In Response to MWD's DR 1-29, Pikeville said it "...does not know why the number of miles for certain sized lines decreased between the information provided in 2002 and the current case. Pikeville believes it is using the most current and accurate data in this case." Given the lack of current, verifiable data about Pikeville's system, no conclusive determination can be made about the Pikeville transmission/distribution system.
b. See (a).

AFFIDAVIT

COMMONWEALTH OF KENTUCKY

COUNTY OF MERCER

Affiant, Connie Lea Allen, P.E., after being first sworn, deposes and says that she is authorized to submit this testimony on behalf of Mountain Water District and that the information contained in the testimony is true and accurate to the best of her knowledge, information and belief.

Connie Lea Allen, P.E.

This instrument was produced, signed, acknowledged and declared by Connie Lea Allen, P. E. to be her act and deed the $8^{\text {th }}$ day of August, 2019.

My Commission expires: \quad _2/23/2020

AFFIDAVIT

COMMONWEALTH OF KENTUCKY)

COUNTY OF MERCER , SS

Affiant, Roy Sawyers, appearing personally before me a notary public for and of the Commonwealth of Kentucky and after being first sworn, deposes, states, acknowledges, affirms and declares that he is the District Administrator, that he is authorized to submit this Response on behalf of Mountain Water District, and that the information contained in the Response is true and accurate to the best of his knowledge, information and belief, after a reasonable inquiry, and as to those matters that are based on information provided to him, he believes to be true and correct.

This instrument was produced, signed, acknowledged and decleked by Roy Sawyers to be his act and deed the $12^{\text {th }}$ day of August. 2019.

My Commission expires tulef 29,202

[^0]: MAKE CHECK PAYABLE TO STRATTON LAW FIRM, PSC PAYMENT DUE UPON RECEIPT NOW ACCEPTING MASTERCARD, VISA AND DISCOVER THANK YOU

[^1]: To ensure proper credit, please include aceount number and statement date on remittance checks. 'Thank you.

[^2]:

