Why Districts Cannot Ignore Energy Efficiency

KSBA Annual Conference

Jon Nipple Manager KSBA-SEMP February 27, 2016 Louisville, Kentucky

Ron Willhite Director KSBA-SEMP

Overview

- Kentucky's Changing Electricity Profile
- School's Response to Change
- What you Use How you Pay
- Diversified Portfolio of Energy Options
- Enabling Energy Efficiency and DEMAND Response
- KRS157.455 Efficiency & Life-cycle Costing

Kentucky's Changing Electricity Profile

- Forty percent of coal-fired generation units retired by 2016
- Greenhouse Gas regulations limiting replacement options
- Low gas prices driving switch to natural gas without Greenhouse Gas regulations
- Competitive advantage of low prices declining

Electric Generating Plants

Impact of EPA's - Clean Power Plan

- By 2030 Reduce Nationwide CO2 Emissions by 32 %
- Final Ruling Increased KY Reduction from 18% to 40%
- 2020 KY Current Plans Fall Short by 17 %
- Per KY Energy and Environment Cabinet
 - \$2 Billion GDP Decrease
 - 30,000 Less Jobs

Natural Gas Price Outlook

Source: World Bank Commodity Forecast Price Data, January 2016

Levelized Production Cost of Energy

	2020 Projections: US DOE and National Renewable Energy Laboratory						
		Capacity	Levelize	d			
	Source	Factor	Cost/KW	/h	Comments		
Disp	atchable						
	Conventional Coal	85	\$0.09	92			
	Advanced Coal w/ CCS	85	\$0.12	28	Technology not scaled		
	Conventional NG Combined Cycle	87	\$0.08	83			
	Advanced CC w/ CCS	87	\$0.10) 6	Technology not scaled		
	Advanced Nuclear	90	\$0.08	89	Safety Concerns		
	Geothermal	94	\$0.06	61			
	Biomass	83	\$0.09	94			
Non	Dispatchable						
	Wind	35	\$ 0.0 7	75	Transmission Investment		
	Wind Offshore	38	\$ 0.17	76	Transmission Investment		
	Solar PV	25	\$ 0.1 1	17	Transmission Investment		
	Solar Thermal	20	\$ 0.2 1	14	Transmission Investment		
	Hydroelectric	52	\$ 0.09	90			

Data Source: EIA Form 861 & 826

Best Fuel Source - Energy Efficiency

Doesn't require new technology

- Can do it today
- Reduces Greenhouse Gas
 - Lowers Cost

School's Response to Change

Statutory & Policy Drivers

- HB2 (2008) to KRS160.325 to Board Policy 05.23
 - Develop/Implement/Monitor Energy Management Plan
 - Track & Monitor Progress Managing & Reducing Costs
 - District/Superintendent Annual Reporting
 - KSBA collects, verifies and reports to DEDI & LRC

What have schools done to date

- Employed Energy Managers
- Facility & Operation Audits
- Staff/Student Involvement
- Implemented Efficiency Measures
 - Adjusted HVAC temperature set points
 - Incorporated HVAC temperature set backs
 - Lighting Retrofits
 - Performance Contracts
 - ENERNOC Programs

Energy Efficiency

	2010	2015
National	73	73
Kentucky	65	57
ENERGY STAR	50	50
KY's Best District	43	32
Net-Zero Ready	20	20

Your Future is Now...

Table 3. Annual Energy Savings Potential							
Level EUI Incremental Savings Annual Savings							
Current	57.5		\$16.4M				
ENERGY STAR	50	\$21.1M	\$37.5M				
Best Performer	40	\$21.5M	\$59.0M				

What you Use - How you Pay

Demand vs. Energy

Ten 100 watt bulbs = 1000 watts = 1KW (Power or Demand) Left on for 1 hour = 1KWh (Energy)

> Schools don't have incandescent lights, yet one 3-lamp, 2 X 4 foot fluorescent fixture ≈ 100 watts (slightly less)

An Elementary School may have 500, 2 X 4 foot fixtures.

DEMAND:	100 watts/fixture X 500 fixtures = 50,000 watts (50KW)
ENERGY :	= 50 KWh (on for one hour)
	= 10000 KWh (on for 200 hours, 1 mo.)

What If

DEMAND is measured at the highest 15 minute interval during the entire month. One 15 minute interval sets the demand for the entire month.

Why is that?

DEMAND is the Power the Utility Company has to reserve for each and every customer on their grid in case all customers "called for power" at the same time.

Generation Plants are limited in the amount of electrical power they can generate and transmit.

Does everyone really call for power at the same time? The answer is yes. See the next slide.

Annual Generation of a Power Plant

Chronological Hour

Understanding Rates and Why DEMAND is so Important

Rate	Customer Charge	Energy Charge <i>,</i> \$/kwh	Demand Charge, \$/KW
Residential Service	YES	YES	
General Service	YES	YES	
Commercial Power	YES	YES	YES
Commerical Time of			
Day	YES	YES	YES

Everyone Doesn't Pay the Same Way

Rate	Customer Charge		Energy Charge, \$/kwh		Season	De Cł \$	mand harge, KW	Time of Day
Residential Service	\$	10.75	\$	0.08870	All			
General Service	\$	40.00	\$	0.10426	All			
Commonical Rowor	\$ 90.0	00.00	¢	0 02572	Summer	\$	19.05	
Commerical Power		90.00	Ş	0.05572	Winter	\$	16.95	
						\$	6.13	All Hours
	\$ 200.00			Summer	\$	4.53	10AM - 10PM	
Commerical Time of			۲			\$	5.20	1PM-7PM
Day		200.00	Ş	0.03527	Winter	\$	6.13	All Hours
						\$	4.53	6AM-10PM
						\$	5.20	6AM - Noon

It's just math...

but you have to know your history to get the right answer

Rate	Customer Charge	Ener Char \$/kw	gy ge, /h	Season	De Ch \$/	emand harge, KW	Time of Day	Annual cost		
Residential Service	\$ 10.75	\$	0.08870	All				-		\$90,000
General Service	\$ 40.00	\$	0.10426	All				\$	156,870	in Demand
Commercial Power	\$ 90.00	4	0 03572	Summer	\$	19.05		<u>د</u>	144 675	
Commercial Tower	Ş 90.00	Ŷ	0.03372	Winter	\$	16.95		Υ	144,073	
			\$ 0.03527	Summer	\$	6.13	All Hours	- \$ 136,191		\$81,000
					\$	4.53	10AM - 10PM			in
Commercial Time of	\$ 200.00				\$	5.20	1PM-7PM		126 101	Demand
Day	\$ 200.00	Ş		Winter	\$	6.13	All Hours		136,191	
,					\$	4.53	6AM-10PM			
					\$	5.20	6AM - Noon			
Demand, KW	425									
Usage, KWH	1,500,000									

Trend Toward Diversified Portfolio of Energy Options

Where do those BTUS Go?

•Note HV	IAC					
 Note Lighting 						
•Other =	Things Plugged In					
\checkmark	Space heaters					
\checkmark	Coffee Makers					
\checkmark	Microwaves					
\checkmark	Mini Fridge					

Office Equipment 0.0% Refrigeration_ Other 12.0% Computers 5.0% Heating 26.0% Cooking 1.0% _ Lighting 25.0% Cooling 14.0% Water Heating 5.0% Ventilation 11.0%

CBECS High School Energy Use Profile (2003)

• Commercial Building Energy Consumption Survey

1.0%

Managing Demand

End User

- Manage Startups
- Technology upgrades
 - Lights
 - Equipment
- Demand Limiting
- Demand Shedding
- Energy Management
- Reduce Baseline Load

KENTUCKY SCHOOL BOARDS 38000/III/W "A brighter luture through better public schools"

Utility Company

- Demand Side Management Programs (DSM)
 - Rebates
 - Lights
 - Refrigerators
 - Equipment
 - Demand Limiting /Shedding Incentives
 - ENERNOC
 - Energy Manager Funding
 Rates

Enabling Energy Efficiency and DEMAND Response

- Real Time Metering (Smart)
- Equipment
 - Technical Upgrades -- Lighting
 - Technical Upgrades Apps
 - Equipment Upgrades
 - Demand Response Chillers, etc.
 - Energy Storage
- Off Hours Energy Usage (take advantage of TOD)
 - Heating and Cooling
 - Cafeteria Cleanup

What If?...

- From Previous Example...
- If I had the ability to control those 500 light fixtures and could turn off 20 prior to the demand peak. I could save 2KW (\$30/month or \$360/year).
- That would be equivalent energy dollar savings of turning off all 500 fixtures for 6 hours/month.
- This is an example of Demand Shedding.

LED Outdoor Lighting

Envelope Improvement

Geothermal Picture

Control Systems

Construction and Renovation

Net Zero Buildings

- New Construction "Ready"
 - Building EUI below 20KBtu/sf
 - Affordable w/o Solar Panels
- Major Renovations
 - Building EUI below 30KBtu/sf
- Energy Standards or Goals as Part of the Building Contract

Second Important Energy Statute for Schools

KRS157.455 - Highly Efficient Buildings

- Create Healthy Environment while Saving Energy

- Use Life-Cycle Analysis in Proposal Evaluation

- Consider Net-Zero Construction

- KRS157.455
 - Life-Cycle Costing
- Financing of Capital Improvements using Energy Savings
 Example

- Your energy manager has identified an air infiltration problem in one of your buildings and estimates the savings will be \$15,000 per year but will cost \$45,000 to repair.
- You say, "No way, I've got to find \$130,000 to repair a roof in another building."
- ?????

- Assume the repaired building will last 20 years
- Assume 5% discount rate
- By understanding the Life Cycle Cost and the Time Value of Money, you can determine the Present Value of the \$15,000 per year annuity over the next 20 years

- \$15,000 X 12.4622* = \$186,933 (Present Value)
- \$186,933 \$45,000 = \$141,933 (Net Present Value)

The Net Present Value of the Energy Savings will fund the Roof Repair!!

SPECIAL ENERGY PROJECT FUNDING

- Settlement part of last summer's rate interventions for KU and LGE
- \$1M for Energy & Demand Reduction Projects
 - Help initiate projects
 - Limited to LGE-KU Accounts and Districts who participated in Rate Case
- KSBA to Administer by issuing RFPs
- Funding Potential allocated thru minimum participation amount and number of KU/LGE schools within a district
- Maximum Funding obtained thru district's willingness to match dollar for dollar

Funding the Future with Today's Savings

Savings Calculation								
	Old	New	Savir	ngs				
Light Type	400 w MH	LED						
# fixtures	50	50						
Annual kwh	56,500	25,000	31,500	\$1,125				
Summer KW	22.6	10.0	12.6	\$1,200				
Winter KW	22.6	10.0	12.6	\$1,495				
	\$3,820							

	Additi Supp	onal Investored by (stment Grant	Addit Suppo	ional Fix orted by	xtures Grant
		Term				
Rate	<u>5</u>	<u>10</u>	<u>15</u>	<u>5</u>	<u>10</u>	<u>15</u>
3.50%	\$17,551	\$32,289	\$44,663	43.9	80.7	111.7

Average K-12 Price by Supplier

Provider	Rate
Kentucky Utilities	\$0.093
Duke	\$0.095
Eastern Kentucky COOP	\$0.099
Louisville Gas & Electric	\$0.108
Kentucky Power	\$0.112
TVA COOP	\$0.114
Princeton Municipal	\$0.161

Savings Potential

	Energy Intensity, Kbtu/sf/yr	Cost/sf	Annual Operating Cost, \$	Annual Savings, \$
National Average School	73	\$1.83	\$183,000	
Average Kentucky School	57	\$1.43	\$143,000	\$40,000
ENERGY STAR School	50	\$1.25	\$125,000	\$58 <i>,</i> 000
Net Zero Ready School	20	\$0.50	\$50,000	\$133,000

For a 100,000 Square Foot Middle School

The End

