Making Superhero Financial Decisions to Control Energy Costs

KSBA Annual Conference

February 25, 2017

Outline

- 1. Why & How to BE a Hero
- 2. Utility Rate Overview
- 3. Managing Usage and Demand
- 4. Eliminate Waste Through Technology Upgrades
- 5. Paying for Upgrades
- 6. Financing Options

Why & How to Be a HERO

The Problem is Cost

Kentucky Energy Costs

Wasted Energy = Money on the floor waiting to be picked up

How Utility Rates Influence Your Cost

Electric & Gas Rates

- Utility Rates = Pricing Signals
- Charges
 - 1. Basic Customer Charges
 - 2. Energy Charges Daily Use
 - 3. Demand Charges Maximum Use
 - 4. Adders
 - 1. Fuel
 - 2. Environmental
 - 3. Taxes

Typical Charges

Rate	Customer Charge		Energy Charge, \$/kwh	Season	Demand Charge, \$/KW		Time of Day
Residential Service	\$	10.75	\$ 0.08870	All			
General Service	\$	40.00	\$ 0.10426	All			
Commerical Power	\$	90.00	\$ 0.03572	Summer	\$	19.05	
		30.00		Winter	\$	16.95	
Commerical Time of Day	\$ 200.00			Summer	\$	6.13	All Hours
					\$	4.53	10AM - 10PM
		\$ 0.03527		\$	5.20	1PM-7PM	
				\$	6.13	All Hours	
				Winter	\$	4.53	6AM-10PM
					\$	5.20	6AM - Noon

But...It's just math...

yet you have to know your **history** to get the right answer

Rate	Customer Charge	Energy Charge, \$/kwh		Season	Demand Charge, \$/KW		Time of Day	Annual cost	
Residential Service	\$ 10.75	\$	0.08870	All					
General Service	\$ 40.00	\$	0.10426	All				\$ 156,870)
Commercial Power	\$ 90.00	\$	0.035/2	Summer	\$	19.05		\$ 144,675	
				Winter	\$	16.95		ې 1 44 ,07.	
Commercial Time of Day	\$ 200.00		0.03527	Summer	\$	6.13	All Hours		
		\$			\$	4.53	10AM - 10PM		
					\$	5.20	1PM-7PM	\$ 136,193	\
				Winter	\$	6.13	All Hours	Ş 150,19.	-
					\$	4.53	6AM-10PM		
					\$	5.20	6AM - Noon		
Demand, KW	425								
Usage, KWH	1,500,000								

\$90,000

Demand

\$81,000

Demand

Manage Your Usage and Demand

Where do those BTUs Go?

- Note HVAC
- Note Lighting
- Other = Things Plugged In
 - √ Space heaters
 - ✓ Coffee Makers
 - ✓ Microwaves
 - ✓ Mini Fridge

·Commercial Building Energy Consumption Survey

CBECS High School Energy Use Profile (2003)

Utility Load & Cost Curve

Enabling Energy Efficiency and DEMAND Response

- Real Time Metering (Smart)
- Equipment
 - Technical Upgrades -- Lighting
 - Technical Upgrades Apps
 - Equipment Upgrades
 - Demand Response Chillers, etc.
 - Energy Storage
- Off Hours Energy Usage (take advantage of TOD)
 - Heating and Cooling
 - Cafeteria Cleanup

Managing Demand

End User

- Manage Startups
- Technology upgrades
- Lights
- Equipment
- Demand Limiting
- Demand Shedding
- Energy Management
- Reduce Baseline Load

Utility Company

- Demand Side
 Management Programs
 (DSM)
 - Rebates
 - Lights
 - Refrigerators
 - Equipment
 - Demand Limiting /Shedding Incentives
 - ENERNOC
 - Energy Manager Funding
 - Rates

Eliminate Waste Through Technology Upgrades

High Leverage Technology Changes

Why Have Setbacks in a School?

Paying for Upgrades

Terminology

- First Cost = ?
- Simple Payback = ?
- Cash Flow = ?
- Life Cycle = ?
- Present Value = ?
- Annuity = ?

Cash Flow Example

- Heat Pump costs \$10,000
- Maintenance Cost is \$500 / year
- Energy Savings are \$2,500 / year for 20 Years
- Salvage Value at 20 years is \$500

Cash Flow Example

Cash Flow Example

Simple Payback = Cost/Net Savings = 5 years

Enter Time Value of Money

- Interest (Opportunity Cost)
- Inflation (Decreased Purchasing Power)
- Avoided Costs

Energy Management Expenditures are typically justified in terms of avoided costs. Expenses come at project start, savings & benefits occur later. We need to normalize all costs to today's standards to be able to compare.

And then comes Life Cycle Cost

- In 2010 KRS 157.455 -- "to calculate and compare different building designs to identify the best investment over the long term. Life-cycle costs include design and construction, operating costs, maintenance costs, and repair and replacement costs, adjusted by the time value of money.
- All federal facilities have mandated energy conservation goals and the criterion for assessing the effectiveness of those goals is minimization of Life Cycle Costs.

Operational Savings for Equipment Retrofits

Example:

- Your energy manager has identified an air infiltration problem in one of your buildings and estimates the savings will be \$15,000 per year but will cost \$45,000 to repair.
- You say, "No way, I've got to find \$130,000 to repair a roof in another building."
- >>>>>

Operational Savings for Equipment Retrofits

Example:

- Assume the repaired building will last 20 years
- Assume 5% discount rate
- By understanding the Life Cycle Cost and the Time Value of Money, you can determine the Present Value of the \$15,000 per year annuity over the next 20 years

Operational Savings for Equipment Retrofits

Example:

- \$15,000 X 12.4622* = \$186,933 (Present Value)
- \$186,933 \$45,000 = \$141,933 (Net Present Value)

The Net Present Value of the Energy Savings will fund the Roof Repair!!

Envelope Improvement

Example of Life Cycle Costs

- You've been presented 2 options for a piece of energy equipment you are buying.
 - The first piece of high-efficiency equipment will cost \$30,000 and will require \$500 worth of maintenance each year for its life of 10 years. Energy costs will be \$5000 per year.
 - The second option is for standard equipment and will cost \$25,000.
 It's maintenance cost is \$300 each year for 10 years. Energy costs for this option are \$8,000 per year.

• At a borrowing rate of 5% per year which is the best option?

Example of Life Cycle Costs (cont)

- LCC (option 1) = \$30,000 + (\$5,000 + \$500) X Interest Factor
- LCC (option 1) = \$30,000 + (\$5,500)(8.1109)
- LCC (option 1) = \$74,610

- LCC (option 2) = \$25,000 + (\$8000 + \$300)X Interest Factor
- LCC (option 2) = \$25,000+(\$8,300)(*8.1109)
- LCC (option 2) = \$92,320
- There are software programs that consider many of the complex variables for life cycle costing.

Using Avoided Costs as an Annuity

Anyone feel the need to simplify?

- Here's what you need to know...
- Your Energy Savings (avoided costs) Produce an Annuity (\$)
- You can use that Annuity to Secure Financing for work you do yourself OR for work that you contract through others.

Financing Options

- Self Finance Cash
- Use Bonding Capacity
- KISTA Small Project Loan
- Performance Contract

QUESTIONS?????

