COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

APPLICATION OF LOUISVILLE GAS AND)	
ELECTRIC COMPANY FOR AN ADJUSTMENT)	CASE NO.
OF ITS ELECTRIC AND GAS RATES AND FOR)	2016-00371
CERTIFICATES OF PUBLIC CONVENIENCE)	
AND NECESSITY)	

RESPONSE OF LOUISVILLE GAS AND ELECTRIC COMPANY TO KENTUCKY CABLE TELECOMMUNICATIONS ASSOCIATION'S FIRST REQUESTS FOR INFORMATION DATED JANUARY 11, 2017

FILED: JANUARY 25, 2017

COMMONWEALTH OF KENTUCKY)) SS: COUNTY OF JEFFERSON)

The undersigned, **Robert M. Conroy**, being duly sworn, deposes and says that he is Vice President – State Regulation and Rates for Louisville Gas and Electric Company and Kentucky Utilities Company, an employee of LG&E and KU Services Company, and that he has personal knowledge of the matters set forth in the responses for which he is identified as the witness, and the answers contained therein are true and correct to the best of his information, knowledge and belief.

Robert M. Conroy

Subscribed and sworn to before me, a Notary Public in and before said County

and State, this <u>23</u>^{-d} day of _____ 2017. Januari

(SEAL) Notary Public

My Commission Expires:

SUSAN M. WATKINS Notary Public, State at Large, KY My Commission Expires Mer. 19, 2017 Notary ID # 485723

COMMONWEALTH OF KENTUCKY)) SS: COUNTY OF JEFFERSON)

The undersigned, John K. Wolfe, being duly sworn, deposes and says that he is Vice President - Electric Distribution for Kentucky Utilities Company and Louisville Gas and Electric Company and an employee of LG&E and KU Services Company, and that he has personal knowledge of the matters set forth in the responses for which he is identified as the witness, and the answers contained therein are true and correct to the best of his information, knowledge and belief.

hull John K. Wolfe

Subscribed and sworn to before me, a Notary Public in and before said County

and State, this <u>20th</u> day of 2017.

dy Schoole (SEAL)

My Commission Expires:

COMMONWEALTH OF KENTUCKY)) SS: COUNTY OF JEFFERSON)

The undersigned, **Christopher M. Garrett**, being duly sworn, deposes and says that he is Director – Rates for Kentucky Utilities Company and Louisville Gas and Electric Company and an employee of LG&E and KU Services Company, that he has personal knowledge of the matters set forth in the responses for which he is identified as the witness, and the answers contained therein are true and correct to the best of his information, knowledge and belief.

Auto

Christopher M. Garrett

Subscribed and sworn to before me, a Notary Public in and before said County

and State, this 25th day of January _____ 2017.

eldy Schooler (SEAL)

My Commission Expires:

COMMONWEALTH OF KENTUCKY)) SS: COUNTY OF JEFFERSON)

The undersigned, **William Steven Seelye**, being duly sworn, deposes and states that he is a Principal of The Prime Group, LLC, that he has personal knowledge of the matters set forth in the responses for which he is identified as the witness, and the answers contained therein are true and correct to the best of his information, knowledge and belief.

William Steven Seelye

Judy Schoole (SEAL)

My Commission Expires:

COMMONWEALTH OF KENTUCKY)) SS: COUNTY OF JEFFERSON)

The undersigned, John P. Malloy, being duly sworn, deposes and says that he is Vice President – Gas Distribution for Louisville Gas and Electric Company and Kentucky Utilities Company, an employee of LG&E and KU Services Company, and that he has personal knowledge of the matters set forth in the responses for which he is identified as the witness, and the answers contained therein are true and correct to the best of his information, knowledge and belief.

John P. Malloy

Subscribed and sworn to before me, a Notary Public in and before said County

and State, this 2544 day of Annuary 2017.

udy Schooler (SEAL)

Notary Public

My Commission Expires:

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-1

Responding Witness: Robert M. Conroy / John K. Wolfe

- Q-1-1. Provide the basis for Your proposed exclusion of (a) incumbent local exchange carriers with joint use agreements, (b) facilities subject to a fiber exchange agreement, and (c) Macro Cell Facilities from Your Proposed Tariff.
 - a. Please provide all data related to the basis for different charges to these users of Your Poles.
 - b. Please provide all agreements with such users related to the rates, terms, and conditions of Attachment to Your Poles.

A-1-1.

- a. See the response to PSC 2-77.
- b. See attached. The agreements are confidential and are being provided pursuant to a petition for confidential protection.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-2

Responding Witness: John K. Wolfe

- Q-1-2. Provide a copy of any internal construction standards and/or specification to determining the "Communications Space" on poles set forth under the Proposed Tariff.
- A-1-2. See the response to Question No. 1-16.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-3

- Q-1-3. Explain the basis for excluding street light poles from the definition of Structure.
- A-1-3. The definition of Structure does not exclude all street light poles, only street light poles that are neither a wood pole or located in a public right-of-way. LG&E does not permit any attachments to non-wood poles. Such poles are not built to support a wireline or wireless attachment. Wood light poles that are located in non-public easements are poles that are leased to a third party. Under the "leasing arrangement," the third party assumes the cost of construction of the pole. Reimbursement of the cost of the pole occurs over an extended period of time. LG&E receives a limited easement to locate the pole on the customer's property and to locate a street light on the pole. It is not granted an easement to permit other attachments and does not possess the legal authority to place or otherwise allow attachments to the pole other than the street light or to derive revenue from permitting such attachments on the pole.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-4

- Q-1-4. Explain the basis for excluding poles leased to a third party from the definition of Structure.
- A-1-4. See the response to Question No. 1-3.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-5

- Q-1-5. Explain the meaning of a "third party" to whom You may lease poles.
- A-1-5. A third party is a LG&E customer who requests lighting service at a location that is not on a public right-of-way and who grants an easement for the location of the utility pole and lighting equipment on its property.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-6

- Q-1-6. Explain the meaning of "wireless communications services," including whether the term is intended to apply to Wi-Fi.
- A-1-6. Wireless communication services, as used in the proposed PSA Rate Schedule, refers to any communications service enabled by radio or antenna and would include Wi-Fi services, as well as service offered over small cell antennas or distributed antenna systems.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-7

- Q-1-7. Explain whether Wireless Facility in the Proposed Tariff includes only facilities attached directly to a Structure.
- A-1-7. The definition of "wireless facility" set forth in the proposed PSA Rate Schedule does not require direct attachment to a Structure.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-8

- Q-1-8. Explain how Wireless Facilities attached to a Cable Television System Operator's messenger strand will be treated under the Proposed Tariff.
- A-1-8. LG&E assumes that the reference to "wireless facilities attached to a Cable Television System Operator's messenger strand" is to strand mounted Wi-Fi access points. Such access points would be considered as an attachment and would be subject to the PSA Rate Schedule's provisions regarding construction and operation of attachments, including compliance with National Electric Safety Code clearance standards and prohibitions against interfering with the attachments of other Attachment Customers and impeding accessibility to LG&E's electrical facilities. However, as the strand mounted Wi-Fi access point would be considered as part of the wireline attachment, it would not be assessed a separate charge unless the strand itself required additional clearance as a result of the strand mounted Wi-Fi access point.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-9

Responding Witness: William S. Seelye

- Q-1-9. Explain the basis for the Proposed Tariff's rate for Wireless Attachments, including the methodology, and all cost data relevant to calculating the Wireless Attachment Charge of \$84.00 per year for each Wireless Facility. Please provide all source data for the charge and explain how You developed or obtained the source data.
- A-1-9. The methodology used to develop the wireless facilities charge is the same as the wireline facilities except 11.585 feet of pole space is assumed. See response to Question No. 1-10.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-10

Responding Witness: William S. Seelye

- Q-1-10. Please refer to Your Application, Tab 14, Testimony of William Steven Seelye, Managing Partner, The Prime Group, LLC, at p. 61. Explain and provide data related to Your conclusion that the Wireless Facilities on average use 11.585 feet of Pole space, including but not limited to how such average was determined, what Wireless Facilities were considered for determining such average, and identification of the "space" used by such attachments.
- A-1-10. KPSC Administrative Case No. 251 sets forth the typical height, and usable and unusable space for a typical three-user pole. That is a height of 42.5 feet, less 6 feet buried, 20 feet to the lowest attachment, 3.33 feet required safety space, resulting in 13.17 feet of usable pole space. LG&E assumes a pole top wireless antenna attachment, as that is the preferred attachment location for Wireless Facility owners. As LG&E typically has electric facilities located at or near the top of the pole, a pole top antenna dictates a 5 foot taller pole in order to maintain a safe working distance of at least 48 inches (a long standing LG&E construction standard) between the electric facilities and the pole top antenna. Thus, the Wireless Facility owner is be responsible for the top 5 feet of the pole.

The Wireless Facility owner will have conduit running through the initial presumed 13.17 feet of usable space on the pole, which it shares with LG&E. Therefore, the Wireless Facility owner is responsible for half of the 13.17 feet of presumed usable space. 13.17 feet divided by 2 users (LG&E and the Wireless Facility owner) equals 6.585 feet. 6.585 feet of shared usable space plus 5 feet of additional pole height needed by the new pole top antenna equals 11.585 feet.

The Wireless Facility owner is permitted to place up to two radio units, needed for their pole top antenna, in the unusable space of the pole. This use of the unusable space is not factored into the above calculation. Further, although LG&E and the Commission assume a typical pole height of 42.5 feet, as shown by LG&E's response to AT&T 1-5, the average height of a LG&E pole with a Wireless Facility attached is 51.05 feet.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-11

Responding Witness: Christopher M. Garrett

Q-1-11.

A-1-11. The Kentucky Cable Telecommunications Association's Request for Information issued on January 11, 2017 did not include a Question No. 1-11.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-12

Responding Witness: William S. Seelye

- Q-1-12. Provide the basis for, methodology to determine, and data used to develop Your Duct charge of \$0.81 per linear foot, including all rate calculations.
- A-1-12. The methodology used to develop the underground duct charge was based on the Federal Communication Commission ("FCC") methodology established in CS Docket 97-98 on April 3, 2000.

For more information and a copy of the FCC Order in question, see the response to PSC 2-104.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-13

- Q-1-13. Explain what You mean by the word "utilize" in proposed Terms and Conditions of Attachment No. 4.
- A-1-13. To affix or attach a third party's cable or other device to an approved wireline attachment.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-14

Responding Witness: John K. Wolfe

- Q-1-14. Please provide any reports, analysis, or studies concerning the impact on pole loading of overlashing by Cable Television System Operators, including data related to instances of overlashing by Cable Television System Operators overloading any distribution poles.
- A-1-14. LG&E performs pole loading studies on individual poles as necessary but does not have any reports, analysis, or studies concerning the general impact on pole loading of overlashing readily available. Pole loading studies may be performed on an individual pole when new communications cables are overlashed to the existing communications facilities. Adding a new cable through overlashing adds additional weight and tension and increases the diameter of the existing cable. These factors increase loading on the pole and makes the performance of pole loading studies necessary to ensure the new overlashed cable does not "overload" the pole in excess of the applicable NESC loading case.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-15

Responding Witness: John K. Wolfe

- Q-1-15. Please provide any reports, analysis, or studies concerning the impact of Cable Television System Operator drop or lift attachments on pole loading, including data related to instances of drop or lift attachments overloading any distribution or drop poles.
- A-1-15. LG&E does not have any reports, analysis, or studies concerning the impact on pole loading of drop of lift attachments readily available. New Service Drops do not require pole loading studies.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-16

Responding Witness: John K. Wolfe

Q-1-16. Please provide a copy of all of Your standards and specification related to the design, installation, and maintenance of Attachments with which You propose Attachment Customers must comply.

A-1-16. See attached.

LG&E

THIRD PARTY POLE

ATTACHMENT

HANDBOOK

LG&E THIRD PARTY POLE ATTACHMENT HANDBOOK Last updated March 23, 2016

Table of Contents

- I. Introduction: Page 3
- II. Third Party Pole Attachment Guidelines: Page 5
- III. LG&E & KU Conductor & Equipment Data: Page 8
- IV. Pole Loading Analysis: Page 26
- V. Transmission Requirements: Page 30
- VI. LG&E & KU Construction Standards: Page 34
- VII. Appendix A: Page 73
- VIII. Appendix B: Page 75

Introduction

LG&E Third Party Pole Attachment Handbook

INTRODUCTION

The information contained in this document is intended to assist in facilitating attachment requests from companies which (a) have a valid Pole Attachment License Agreement with Louisville Gas and Electric Company (LG&E), (b) are in full compliance with any applicable insurance and bonding requirements, and (c) have the necessary authorization to operate within the State of Kentucky and the relevant local municipality. Strict adherence to LG&E's Third Party Pole Attachment Handbook will ensure a smooth application and approval process, and will allow completion of construction with minimal delay and conflict.

This Third Party Pole Attachment Handbook outlines the circumstances under which LG&E will review any requests to attach individual communications cables and equipment to its poles, LG&E's formal process for granting such access request, and the guidelines and requirements covering the physical design, installation, and maintenance of all such communications cables and equipment on LG&E's poles.

In all situations, it is the ongoing responsibility of attaching companies to be familiar with and adhere to the NESC and this Third Party Pole Attachment Handbook during installation, maintenance and related activities involving their facilities attached to LG&E's poles. Any attachment found to be in violation of the NESC, or any provision of this Handbook may be subject to removal by LG&E.

All required work above the Communication Space (as defined in the NESC) will be performed by LG&E or an LG&E qualified approved overhead electrical line contractor after the LG&E Design Team has completed a route and engineering analysis.

LG&E reserves the right to modify the requirements found in this handbook or any of its service policies, procedures and/or standards at any time. It is the responsibility of the Third Party Attacher or contractor to ensure that any referenced document is the version currently approved for use by LG&E. It is also the responsibility of the Third Party Attacher to notify LG&E of any changes to existing wiring, equipment, building structure, electrical loading and/or other service requirements that may affect safety or electric system performance.

LG&E Third Party Pole Attachment Guidelines

a PPL company

- 1. An executed pole attachment agreement / contract is required, including but not limited to the following:
 - a. Insurance certificates and any applicable bonding requirements.
 - b. Applicable franchise agreements / certificates / licenses / permits (e.g., local, state, etc.)
- 2. A complete and accurate pole attachment proposal is required before engineering review will begin. The attachment proposal shall include, but is not limited to the following:
 - a. Application for Third Party Attachment. Reference Appendix A (page 74) of this Third Party Pole Attachment Handbook.
 - b. Pole/structure number and location, including complete address, county, GPS coordinates, pole height and pole class
 - c. Applicant company name, key contacts, and approval signature
 - d. Pole profile sheet indicating height and owner of all attachments including¹ all secondary/neutral, grounded equipment, streetlights, proposed attaching location, proposed make-ready construction (shall be identified in red), and lowest existing mid-span height.
 - e. Telephone Company (i.e., ILEC) pole number (if available).
 - f. Description of any other work such as anchor attachments, vertical runs, etc.
 - g. Route map, displaying street names along with LG&E pole numbers and ILEC pole numbers (if available).
 - h. Pole photographs including street view and adjacent spans, preferably annotated with all attachment heights. Preferred file format is a digital file such as GE Mapsight TM "true size", Osmose Digital Measurement Technology™ (DMT™) or equivalent. See "Figure 1."
 - i. Pole Loading Analysis Report shall be performed on every pole unless identified by LG&E staff. Reports should include a summary of the loading data per pole.
 - j. Wireless Attachment requests will include the additional requirements:
 - i. Exhibit D Wireless Attachment and Associated Equipment Description and Approval
 - ii. MPE (Maximum Permissible Exposure) Report
 - iii. Manufacturer's equipment specifications for antenna and bracket
 - iv. Construction Plan & Material List.
 - k. Attachment proposals shall be limited to ≤ 100 poles).
 - 1. Submit complete attachment proposal / application to LGEPoleAttachment@lge-ku.com
 - m. Incomplete and inaccurate proposals will be returned to the applicant for correction and completion. The application approval deadline will restart when LG&E receives the corrected and completed proposal.
- 3. Transmission structure attachments (NOTE: only with distribution underbuild) will require additional approvals from the Transmission department. Reference Section V (page 30) of this Joint Use Handbook.
- 4. For Joint Use poles, attachment proposals shall be submitted to both LG&E and the ILEC.
- Actual and reasonable engineering expenses are billable (e.g., review proposed routes, field attachment proposals, and post inspections), whether
 or not make-ready estimate is accepted with additional fees associated with reviewing requests for transmission structure attachments. (NOTE:
 only with distribution underbuild).
- 6. Outage/emergency events, including storm restoration, may delay scheduled work.
- 7. It may be necessary to deny access for reasons of lack of capacity, safety, reliability or engineering standards.
- 8. Additional equipment is not permitted on the pole (e.g. equipment cabinets, meter bases and other equipment large enough to impede accessibility).
- 9. The National Electrical Safety Code (NESC), regulations (i.e., local, state, federal), and LG&E policy and LG&E Construction Standards shall be adhered to at all times.
- 10. The attaching party is responsible for obtaining their own right-of-way (ROW) where attaching installations involve city, county and/or state rights-of-way, or private property owned by others.
- 11. As-builts shall be provided to LG&E Pole Attachment Group within seven (7) business days of the completion of construction. As-builts shall be in the form of the approved construction print with any changes made during construction redlined on the print. As-builts shall also include, where applicable, the asset number and serial number for any transformer removed or installed and the pole number on which the transformer was removed or installed. Further, any secondary removed or changed, including services rerouted due to the removal or installation of transformers, must be noted on the as-built. As required on the permit application, the company name of all existing attachers and the number of times each party is attached to a pole must be included on the as-built.
- 12. Temporary attachments are not permitted. No attachment is permitted until all necessary make- ready work is complete.
- 13. Communications cable service drops are not permitted to be attached to the LG&E service riser.
- 14. If you remove any of your attachments you must notify LG&E via the application for third party attachments. Pole attachment fees will continue until notification is received.

¹Any breach of OSHA's minimum approach distance (including measurement) of electric facilities must be conducted by a qualified electrical worker and in accordance with good safety practices and OSHA guidelines.

Attachment to Response to KCTA Question No. 1-16 7 of 97 Wolfe

Figure 1

LG&E & KU Conductor & Equipment Data

Primary / Secondary

The following comments address the preliminary pole loading analysis required for approval of new attachments and apply to distribution structures only. Transmission pole loading analysis is handled under a separate process, reference Section V (page 29) of this Third Party Pole Attachment Handbook.

It is acceptable to generalize conductor sizes for the purpose of performing a preliminary pole loading analysis (PLA). This analysis is required as part of the engineering submittal for approval of new attachments. To simplify loading studies, data on a reduced selection of conductors is provided in the attached files. Conductors in each category can be selected to reflect differences between LG&E and those of its sister utility, Kentucky Utilities Company. For builds that span both utilities a default (worst case) conductor can be used for either utility that span both utilities based on the larger of commonly used LG&E and KU conductors. Diameters, default tensions and sag information are provided in the attached files. Where the size of wire cannot be accurately quantified between two size ranges, the large conductor will be used. Final determination of acceptable loading will be made by LG&E and KU.

Generic conductor parameters required for PLA will be determined based on their type (bare, covered, spacer cable, etc.), application (primary, secondary, service, etc.) and the size of the conductor (very small — large). Parameters for requested attachments are to be provided by the engineering firm.

Conductor Category	Approximate Size	Application
Very small:	.25"	Old, small bare & covered copper
Small:	.5"	Small aluminum conductor used as
		neutrals and 1-phase primary
Medium:	.75"	Medium 3-phase primary and secondary
Large:	1"	Large 3-phase primary

	Utility S	pecific	
	LG&E	KU	Single Choice If Used For Both Utilities
	#4 AAC/ACSR	#4 AAC/ACSR	#4 AAC/ACSR
Duplex	KU LGE 086M 250B.txt	KU LGE 086M 250B.txt	KU LGE 086M 250B.txt
	#2 AAC	#2 AAC/ACSR	#2 AAC/ACSR
Small triplex service	KU LGE 093M 250B.txt	KU LGE 096M 250B.txt	KU LGE 096M 250B.txt
Madium tripleu ann inn	1/0 AAC	2/0 AAC/ACSR	2/0 AAC/ACSR
Medium triplex service	KU LGE 094M 250B.txt	KU LGE 097M 250B.txt	KU LGE 097M 250B.txt
to a state of the second state of the	4/0 AAC	397 AAC/ACSR	397 AAC/ACSR
Large triplex commercial service	KU LGE 095M 250B.txt	KU LGE 098M 250B.txt	KU LGE 098M 250B.txt
Small guadruplex secondary/service	#2 AAC	#2 AAC	#2 AAC
Sinali quadi uplex secondal y/service	KU LGE 101M 250B.txt	KU LGE 101M 250B.txt	KU LGE 101M 250B.txt
Medium guadruplex service	1/0 AAC	2/0 AAC/ACSR	2/0 AAC/ACSR
inedium quadruplex service	KU LGE 102M 250B.txt	KU LGE 103M 250B.txt	KU LGE 103M 250B.txt
Laura avada udav samias	4/0 AAC	397 AAC/ACSR	397 AAC/ACSR
Large quadruplex service	KU LGE 104M 250B.txt	KU LGE 106M 250B.txt	KU LGE 106M 250B.txt
	#2 AAC	#2 AAC/ACSR	#2 AAC/ACSR
Small triplex secondary	KU LGE 079M 250B.txt	KU LGE 082M 250B.txt	KU LGE 082M 250B.txt
	1/0 PAR AAC	2/0 AAC/ACSR	2/0 AAC/ACSR
Medium triplex secondary	KU LGE 077M 250B.txt	KU LGE 083M 250B.txt	KU LGE 083M 250B.txt
Leves triales secondary.	4/0 PAR AAC	397 AAC/ACSR	397 AAC/ACSR
Large triplex secondary	KU LGE 078M 250B.txt	KU LGE 084M 250B.txt	KU LGE 084M 250B.txt

LG&E THIRD PARTY POLE ATTACHMENT HANDBOOK Last updated March 23, 2016

M	#4 HD	#4 HD	#4 HD
Very small copper primary/secondary	KU LGE 035M 250B.txt	KU LGE 035M 250B.txt	KU LGE 035M 250B.txt
Carall have a sime and a second second	1/0 AAAC	#2 ACSR	1/0 AAAC
Small bare primary/secondary	KU LGE 007M 250B.txt	KU LGE 009M 250B.txt	KU LGE 007M 250B.txt
Madium hara priman/cacandary	195 AAAC	195 AAAC	195 AAAC
Medium bare primary/secondary	KU LGE 008M 250B.txt	KU LGE 008M 250B.txt	KU LGE 008M 250B.txt
Large bare primary/secondary	795 AAC (61)	795 AAC (37)	795 AAC (37)
Large bare primary/secondary	KU LGE 004M 250B.txt	KU LGE 003M 250B.txt	KU LGE 003M 250B.txt
Very small covered copper	#4 HD Poly	#4 HD	#4 HD
primary/secondary	KU LGE 041M 250B.txt	KU LGE 041M 250B.txt	KU LGE 041M 250B.txt
Small covered primary/secondary	1/0 AAC Poly	1/0 AAC Poly	1/0 AAC Poly
sinali covered primary/secondary	KU LGE 026M 250B.txt	KU LGE 026M 250B.txt	KU LGE 026M 250B.txt
Medium covered primary/secondary	3/0 AAC Poly	3/0 AAC Poly	3/0 AAC Poly
Medium covered primary/secondary	KU LGE 027M 250B.txt	KU LGE 027M 250B.txt	KU LGE 027M 250B.txt
Large covered primary/secondary	795 AAC Poly	N/A	795 AAC Poly
Large covered primary/secondary	KU LGE 029M 250B.txt		KU LGE 029M 250B.txt
Small aerial cable	1/0 AAC/12.5M AW Mess.	2/0 AAC/7-#9 AW	2/0 AAC/7-#9 AW
	KU LGE 064M 250B.txt	KU LGE 065M 250B.txt	KU LGE 065M 250B.txt
Medium aerial cable	336 AAC/20M AW Mess.	397 AAC/7-#10 AW Mess.	397 AAC/7-#10 AW Mess.
	KU LGE 070M 250B.txt	KU LGE 071M 250B.txt	KU LGE 071M 250B.txt
Laura a stiel ashla	795 AAC/20M AW Mess.	795 AAC/7-#10 AW Mess.	795 AAC/7-#10 AW Mess.
Large aerial cable	KU LGE 072M 250B.txt	KU LGE 072M 250B.txt	KU LGE 072M 250B.txt

Pre-existing communication cable will be modeled based on the following parameters.

	Nominal	Messenger	Overall Bare	Overall Bare	Final Design
	Dia. (")	Nominal (")	Dia. (")	Weight (#/ft)	Tension (#)
ADSS	0.5		0.52	0.091	1000
Mess. Supported	0.5	1/4	0.731	0.29	600
Mess. Supported	1	1/4	1.373	0.85	2000
Mess. Supported	2	3/8	0.273	2.461	3600
Mess. Supported	3	1/2	3.317	5.165	8000

Small residential telephone drops can be neglected in the PLA. Reduced tensions can be used for slack span telecommunication construction.

MU	AL - 200' S)														
NESC MEDIUM	LOAD F NAL TENSION AT 200' SPAN (LBS)	3901	4112	1402	1989	1052	1690	884	1246	4033	839	860	4100	4147	6163
	Condition	Initial Final Initial	Initial Final Initial	Initial Final Initial	Initial Final Initial	Initial Final Initial	Initial Final Initial	Initial Final Initial	Initial Final Initial	Initial Final Initial	Initial Final Initial	Initial Final Initial	Initial Final Initial	Initial Final Initial	Initial Final Initial
ion Limits	Limit	4500 lbs 25% 33%	4500 lbs 25% 33%	50% 25% 33%	50% 25% 33%	50% 25% 33%	50% 25% 33%	50% 25% 33%	50% 25% 33%	4500 lbs 25% 33%	50% 25% 33%	50% 25% 33%	50% 25% 33%	50% 25% 33%	50% 25% 33%
Sag Tension Limits		6 0 0	5 4 0 0	6 0 0	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 0 4	6 0 0	0 0 4	5 0 0	5 0 4 4	5 0 0	.5 0 0	5 0 4 4	5 0 4 4	5 4 0 0
	Temp Ice (°F) (in)	15 025 15 0 15 0	15 0.25 15 0 15 0	15 025 15 0 15 0	15 025 15 0 15 0	15 025 15 0 15 0	15 025 15 0 15 0	15 025 15 0 15 0	15 025 15 0 15 0	15 025 15 0 15 0	15 025 15 0 15 0	15 025 15 0 15 0	15 025 15 0 15 0	15 025 15 0 15 0	15 0.25 15 0 15 0 15 0
	FileName	KU LGE 003M 250B txt	KU LGE 004M 250B txt	KU LGE 007M 250B txt	KU LGE 008M 250B txt	KU LGE 009M 250B txt	KU LGE 010M 250B txt	KU LGE 026M 250B txt	KU LGE 027M 250B txt	KU LGE 029M 250B txt	KU LGE 035M 250B txt	KU LGE 041M 250B txt	KU LGE 065M 250B txt	KU LGE 066M 250B txt	KU LGE 070M 250B txt
	Ruling Span (ft)	50-500 (50)	50-500 (50)	50-500 (50)	50-500 (50)	50-500 (50)	50-500 (50)	50-500 (50)	50-500 (50)	50-500 (50)	50-500 (50)	50-500 (50)	50-300 (50)	50-300 (50)	50-300 (50)
Max. Neutral	Operating Temp (F)	120	120	120	120	120	120	120	120	120	120	120	120	120	120
Max Primary	Operating Temp	212	212	212	212	212	212	212	212	212	212	212	212	212	212
	<u>NESC Loading</u> District	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium
	<u>Conductor</u> Codeword	Arbutus	Lilac	Azusa	Amherst	Sparrow	Quail	Quince	Fig	Persimmon					
	Conductor	795 AAC (37)	795 AAC (61)	123.3 AAAC (7)	195.7 AAAC (7)	2 ACSR (6/1)	2/0 ACSR (6/1)	1/0 AAC POLY (7)	3/0 AAC POLY (7)	795 KCM AAC POLY (61)	4 CU HD (SOL D)	4 CU SD POLY (SOLID)	12.5M (39-2/0 AERIAL)	12.5M (39-3/0 AERIAL)	20M (39-336 AERIAL)
		LARGE BARE PR MARY/SECONDARY KU	LARGE BARE PRIMARY/SECONDARY LG&E	SMALL BARE PRIMARY/SECONDARY LG&E	MEDIUM BARE PRIMARY/SECONDARY LG&E	SMALL BARE PR MARY/SECONDARY KU	MEDIUM BARE PR MARY/SECONDARY KU	SMALL COVERED PRIMARY/SECONDARY LG&E AND KU	MEDIUM COVERED PRIMARY/SECONDARY LG&E AND 3/0 AAC POLY (7) KU	LARGE COVERED PRIMARY/SECONDARY LG&E	VERY SMALL COPPER PRIMARY/SECONDARY LG&E AND . KU	VERY SMALL COVERED COPPER PRIMARY/SECONDARY LG&E AND . KU	SMALL AERIAL CABLE KU	SMALL AERIAL CABLE LG&E	MEDIUM AERIAL CABLE LG&E
	#	e	4	2	œ	თ	10	26 F	27 F	29	35 F	41 F	65	99	20

Primary and Neutral Conductors

			6004	1 770		CAAE	0440	
		Initial	Final	Initial	Initial	Final	Initial	
		20%	25%	33%	50%	25%	33%	
		4	0	0	4	0	0	
		15 0 25	0	0	15 0 25	0	0	
		15	15	15	15	15	15	
			E0 300 (E0) KILL CE 071M 3E0B 104			E0 300 (E0) KILL CE 073M 260B 114		
			EO 200 (EO)			200 /201	(ne) nne-ne	
onductors			120	120		001	120	
Neutral C			010	717		010	717	
Primary and Neutral Conductors			Modium	Inequality		Modium	Inequality	
ш								
			2004 (30-307 AEDIAL)			20M (20 706 AEDIAL)		
	_		MEDINA AERIAL CARLE VII 2004 (28-207 AERIAL)			LARGE AERIAL CABLE LG&E AND 2000 (38 705 AEPIAL)	KU	
			74			4	7.	

Contract Contract Contract Mach Math East Transie Lines Teacement Lines </th <th>Conductor CodewordNESC. Loading DistrictMax. Loading DistrictMax. Loading DistrictMax. Loading DistrictHelhane TempTempTem pMind TempIndetection DistrictDistrict DistrictDistrict DistrictMax. DistrictFileNameTempTem pWind DistrictIndetection DistrictDistrict DistrictDistrict DistrictTem pTem pWind DistrictInternationalIndetection DistrictMedium19425-250 (25)KU LGE 077M 250B.tktInte Tem pCAS0% S0%Indetection DistrictMedium19425-250 (25)KU LGE 079M 250B.tktInte Tem pAS0% S0%Indetection DistrictMedium19425-250 (25)KU LGE 079M 250B.tktInte Tem pCAS0% S0%Indetection DistrictMedium19425-250 (25)KU LGE 079M 250B.tktInte Tem pAS0% S0%Indetection DistrictMedium19425-250 (25)KU LGE 079M 250B.tktInte Tem pAS0% S0%Indetection DistrictMedium19425-250 (25)KU LGE 083M 250B.tktInte Tem pAS0% S0%Indetection DistrictMedium19425-250 (25)KU LGE 083M 250B.tktInte Tem pAS0% S0%Indetection DistrictMedium19425-250 (25)KU LGE 083M 250B.tktInte Tem pAS0% S0%In</th> <th></th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Conductor CodewordNESC. Loading DistrictMax. Loading DistrictMax. Loading DistrictMax. Loading DistrictHelhane TempTempTem pMind TempIndetection DistrictDistrict DistrictDistrict DistrictMax. DistrictFileNameTempTem pWind DistrictIndetection DistrictDistrict DistrictDistrict DistrictTem pTem pWind DistrictInternationalIndetection DistrictMedium19425-250 (25)KU LGE 077M 250B.tktInte Tem pCAS0% S0%Indetection DistrictMedium19425-250 (25)KU LGE 079M 250B.tktInte Tem pAS0% S0%Indetection DistrictMedium19425-250 (25)KU LGE 079M 250B.tktInte Tem pCAS0% S0%Indetection DistrictMedium19425-250 (25)KU LGE 079M 250B.tktInte Tem pAS0% S0%Indetection DistrictMedium19425-250 (25)KU LGE 079M 250B.tktInte Tem pAS0% S0%Indetection DistrictMedium19425-250 (25)KU LGE 083M 250B.tktInte Tem pAS0% S0%Indetection DistrictMedium19425-250 (25)KU LGE 083M 250B.tktInte Tem pAS0% S0%Indetection DistrictMedium19425-250 (25)KU LGE 083M 250B.tktInte Tem pAS0% S0%In					•									
Codeword District Turbuild Tending	Codeword District Upto-family Temp. (f) (p)			Conditioned	Conductor	NESC Loading	Max.	Ruling Span	Tick losses			Sag Tensi	on Limits		NESC MEDIUM LOAD FINAL
Hot Springs Medium 194 25-250 (25) KULGE 077M 250B.txt 15 0 O NIME Hot Springs Medium 194 25-250 (25) KULGE 077M 250B.txt 15 0.25 4 50% Initial Tumacacori Medium 194 25-250 (25) KULGE 078M 250B.txt 15 0.0 0 25% Final Clam Medium 194 25-250 (25) KULGE 078M 250B.txt 15 0.0 0 33% Initial Clam Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0.0 0 33% Initial Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0.0 0 25% Final Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 25% Final Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0	Hot Springs Medium 194 25-250 (25) KULGE 077M 250B.txt 15 0.25 4 50% Tumacacori Medium 194 25-250 (25) KULGE 073M 250B.txt 15 0.25 4 50% Tumacacori Medium 194 25-250 (25) KULGE 073M 250B.txt 15 0.25 4 50% Clam Medium 194 25-250 (25) KULGE 073M 250B.txt 15 0 0 0 33% Clam Medium 194 25-250 (25) KULGE 073M 250B.txt 15 0 0 0 33% Cockle Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt<			CONTRACTO	Codeword	District	Temp (F)	(11)	LIENALIE	Temp (F)	lce (in)	Wind (psf)	Limit	Condition	TENSION AT 150' SPAN (LBS)
	Hot Springs Medium 194 25-250 (25) KULGE 077M 250B.txt 15 0 0 0 25% N Tumacacori Medium 194 25-250 (25) KULGE 073M 250B.txt 15 0 0 0 35% N Tumacacori Medium 194 25-250 (25) KULGE 073M 250B.txt 15 0 0 0 33% N Clam Medium 194 25-250 (25) KULGE 073M 250B.txt 15 0 0 0 33% N Clam Medium 194 25-250 (25) KULGE 073M 250B.txt 15 0 0 0 33% N Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 0 0 33% N Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 16 0														
	Hot Springs Medium 194 $2s - 250$ (2s) KULGE 077M 250B.txt 15 0 0 25% Tumacacoin Medium 194 $2s - 250$ (2s) KULGE 078M 250B.txt 15 0 0 0 33% Tumacacoin Medium 194 $2s - 250$ (2s) KULGE 078M 250B.txt 15 0 0 0 33% 25% Clam Medium 194 $2s - 250$ (2s) KULGE 079M 250B.txt 15 0 0 0 33% 23% Cookle Medium 194 $2s - 250$ (2s) KULGE 079M 250B.txt 15 0 0 0 33% 25% Medium 194 $2s - 250$ (2s) KULGE 083M 250B.txt 15 0	_								15	0.25	4	20%	Initial	
OV) Tota plings meduut 13 $25-250$ (25) KU LGE 078M 250Btxt 15 0 0 33% Initial CN) Tumacacori Medium 194 $25-250$ (25) KU LGE 078M 250Btxt 15 0 0 33% Initial CN) Tumacacori Medium 194 $25-250$ (25) KU LGE 078M 250Btxt 15 0 0 33% Initial I) Clam Medium 194 $25-250$ (25) KU LGE 079M 250Btxt 15 0 0 33% Initial I) Cockle Medium 194 $25-250$ (25) KU LGE 082M 250Btxt 15 0 0 33% Initial N) Medium 194 $25-250$ (25) KU LGE 083M 250Btxt 15 0 0 0 33% Initial N) Medium 194 $25-250$ (25) KU LGE 084M 250Btxt 15 0 0 0 0 0 0 0	Tot opinity Medium 194 25-250 (25) KULGE 078M 250B.txt 15 0.25 4 50% 1 Tumacatori Medium 194 25-250 (25) KULGE 078M 250B.txt 15 0.2 0 0 0 33% Claim Medium 194 25-250 (25) KULGE 078M 250B.txt 15 0 0 0 33% Claim Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0 0 0 33% Cookle Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Medium 194 25-			1/0 A AC BAC (1/0 A A AC N)	Lot Coringo	Modium	101	75 750 (75)	NTTL GE 077M 360B tot	15	0	0	25%	Final	1664
Tumacacori Medium 194 25-250 (25) KULGE 078M 250B.txt 15 0.25 4 50% Initial Tumacacori Medium 194 25-250 (25) KULGE 078M 250B.txt 15 0.2 25% Final Clam Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0.2 25% Final Clam Medium 194 25-250 (25) KULGE 039M 250B.txt 15 0.2 25% Final Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0.2 25% Final Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0.2 25% Final Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0.2 25% Final Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0.2 25% Final Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 25%	Tumacacori Medium 194 25-250 (2s) KULGE 078M 250B.txt 15 0 0 0 25% Clam Medium 194 25-250 (2s) KULGE 078M 250B.txt 15 0 0 0 33% Clam Medium 194 25-250 (2s) KULGE 079M 250B.txt 15 0 0 0 33% Clam Medium 194 25-250 (2s) KULGE 029M 250B.txt 15 0 0 0 33% Medium 194 25-250 (2s) KULGE 082M 250B.txt 15 0 0 0 33% Medium 194 25-250 (2s) KULGE 083M 250B.txt 15 0 0 0 33% Medium 194 25-250 (2s) KULGE 083M 250B.txt 15 0 0 0 0 33% Medium 194 25-250 (2s) KULGE 083M 250B.txt 15 0 0 0 33% Terrier Medium 194 25-250 (2s)						+0-	(07) 007-07		15	0	0	33%	Initial	100
Tumacacori Medium 194 25-250 (25) KULGE 078M 250B.txt 15 0.25 4 50% Initial Clam Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0 0 33% Initial Clam Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0 0 33% Initial Clam Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0 0 25% Initial Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 33% Initial Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 33% Initial Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Initial Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Initial Medium	Tumacacori Medium 194 25-250 (25) KULGE 078M 250B.txt 15 0.25 4 50% Clam Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0.25 4 50% Clam Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0.25 4 50% Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0.25 4 50% Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 25% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 25% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 25% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 25% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 25% Medium 194 25-250 (25) </td <td></td>														
Tumacacori Medium 194 25-250 (25) KULGE 078M 250Btxt 15 0 25% Final Imacacori Medium 194 25-250 (25) KULGE 078M 250Btxt 15 0 0 25% Initial Imacacori Medium 194 25-250 (25) KULGE 079M 250Btxt 15 0 0 25% Initial Imacacori Medium 194 25-250 (25) KULGE 082M 250Btxt 15 0 0 25% Initial Imacacori Medium 194 25-250 (25) KULGE 082M 250Btxt 15 0 0 25% Initial Imacacori Medium 194 25-250 (25) KULGE 083M 250Btxt 15 0 0 25% Initial Imacacori Imacacori 15 0 0 0 25% Initial Imacacori Imacacori 15 0 0 0 0 25% Initial Imacacori Imacacori 15 <	Tumacacori Medium 194 25-250 (25) KULGE 078M 250B.txt 15 0 0 0 255% Clam Medium 194 25-250 (25) KULGE 078M 250B.txt 15 0 0 0 33% Clam Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0 0 0 33% Cockle Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 25% Medium 194 25-250 (25) KULGE 083M 250B.txt	_								15	0.25	4	20%	Initial	
Titute Terrier Terrier <thterrier< th=""> <thterrier< th=""> <thte< td=""><td>Territer Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0.25 4 50% Clam Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0 0 25% Cockle Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 25% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 25% Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0</td><td>_</td><td>APGE TRIPLEY SECONDARY LG&E</td><td>A/D AAC DAC (A/D AAAC N)</td><td>Tumacacori</td><td>Madium</td><td>101</td><td>25-250 (25)</td><td>KULLGE 078M 250B tvt</td><td>15</td><td>0</td><td>0</td><td>25%</td><td>Final</td><td>2672</td></thte<></thterrier<></thterrier<>	Territer Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0.25 4 50% Clam Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0 0 25% Cockle Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 25% Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 25% Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0	_	APGE TRIPLEY SECONDARY LG&E	A/D AAC DAC (A/D AAAC N)	Tumacacori	Madium	101	25-250 (25)	KULLGE 078M 250B tvt	15	0	0	25%	Final	2672
Clam Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0.25 4 50% Initial Image:	Clam Medium 194 25-250 (25) KULGE 079M 250B.txt 15 0.25 4 50% I Cockle Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 0 33% I Cockle Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 0 33% I Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% I Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% SR N) Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 0 33% I Terrier Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 0 25% I Terrier Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 25% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(07) 00707</td> <td></td> <td>15</td> <td>0</td> <td>0</td> <td>33%</td> <td>Initial</td> <td>1 02</td>							(07) 00707		15	0	0	33%	Initial	1 02
Claim Medium 194 25-250 (25) KULGE 079M 250Btxt 15 0 0 25% Final Cockle Medium 194 25-250 (25) KULGE 079M 250Btxt 15 0 0 25% Final Cockle Medium 194 25-250 (25) KULGE 082M 250Btxt 15 0 0 25% Initial N Medium 194 25-250 (25) KULGE 083M 250Btxt 15 0 0 25% Initial N Medium 194 25-250 (25) KULGE 083M 250Btxt 15 0 0 25% Initial N Medium 194 25-250 (25) KULGE 083M 250Btxt 15 0 0 25% Initial N Medium 194 25-250 (25) KULGE 084M 250Btxt 15 0 0 0 33% Initial ITerrier Medium 194 25-250 (25) KULGE 084M 250Btxt 15 0 0 25% Initial	Claim Medium 194 25-250 (25) KU LGE 079M 250B txt 15 0 0 25% 1) Cockle Medium 194 25-250 (25) KU LGE 082M 250B txt 15 0 0 0 33% N) Cockle Medium 194 25-250 (25) KU LGE 082M 250B txt 15 0 0 0 33% 1 N) Medium 194 25-250 (25) KU LGE 083M 250B txt 15 0 0 0 33% 1									15	0.25	4	50%	Initial	
Volution Medium 134 25-20 (25) NULGE 082M 250B.txt 15 0 0 33% Initial N) Cockle Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 25% Final N) Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 25% Final N) Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Initial SR N) Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Initial SR N) Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 33% Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial <td>Utalin medium 134 25-250 (25) NULGE 082M 250B.txt 15 0.25 4 50% 7 N) Cookle Medium 134 25-250 (25) KULGE 082M 250B.txt 15 0.2 0 0 33% N) Medium 134 25-250 (25) KULGE 082M 250B.txt 15 0 0 0 33% N) Medium 134 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% SN) Medium 134 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% SN) Medium 134 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Intrine Medium 134 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 25% Intrine 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 25% Intrine</td> <td>_</td> <td></td> <td></td> <td></td> <td>Me direct</td> <td>101</td> <td></td> <td></td> <td>15</td> <td>0</td> <td>0</td> <td>25%</td> <td>Final</td> <td>020</td>	Utalin medium 134 25-250 (25) NULGE 082M 250B.txt 15 0.25 4 50% 7 N) Cookle Medium 134 25-250 (25) KULGE 082M 250B.txt 15 0.2 0 0 33% N) Medium 134 25-250 (25) KULGE 082M 250B.txt 15 0 0 0 33% N) Medium 134 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% SN) Medium 134 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% SN) Medium 134 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% Intrine Medium 134 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 25% Intrine 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 25% Intrine	_				Me direct	101			15	0	0	25%	Final	020
No Medium 194 25-250 (25) KULGE 082M 250Btxt 15 0.25 4 50% Initial No Medium 194 25-250 (25) KULGE 082M 250Btxt 15 0 0 25% Final N Medium 194 25-250 (25) KULGE 083M 250Btxt 15 0 0 25% Final N Medium 194 25-250 (25) KULGE 083M 250Btxt 15 0 0 33% Initial N Medium 194 25-250 (25) KULGE 083M 250Btxt 15 0 0 33% Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial <td< td=""><td>Medium 194 25-250 (25) KULOE 082M 250B1xt 15 0.25 4 50% Cockle Medium 194 25-250 (25) KULOE 082M 250B1xt 15 0 0 25% N Medium 194 25-250 (25) KULGE 083M 250B1xt 15 0 0 25% N Medium 194 25-250 (25) KULGE 083M 250B1xt 15 0 0 25% N Medium 194 25-250 (25) KULGE 084M 250B1xt 15 0 0 25% Terrier Medium 194 25-250 (25) KULGE 084M 250B1xt 15 0 0 25% N Terrier Medium 194 25-250 (25) KULGE 086M 250B1xt 15 0 0 25%</td><td></td><td>SWALL I RIFLEA SECONDART LG&E</td><td>Z AAU IFA (Z AAU N)</td><td>Clarin</td><td>Medium</td><td>134</td><td>(cz) ncz-cz</td><td>NU LGE U/ SIM 2000.1XI</td><td>15</td><td>0</td><td>0</td><td>33%</td><td>Initial</td><td>2/0</td></td<>	Medium 194 25-250 (25) KULOE 082M 250B1xt 15 0.25 4 50% Cockle Medium 194 25-250 (25) KULOE 082M 250B1xt 15 0 0 25% N Medium 194 25-250 (25) KULGE 083M 250B1xt 15 0 0 25% N Medium 194 25-250 (25) KULGE 083M 250B1xt 15 0 0 25% N Medium 194 25-250 (25) KULGE 084M 250B1xt 15 0 0 25% Terrier Medium 194 25-250 (25) KULGE 084M 250B1xt 15 0 0 25% N Terrier Medium 194 25-250 (25) KULGE 086M 250B1xt 15 0 0 25%		SWALL I RIFLEA SECONDART LG&E	Z AAU IFA (Z AAU N)	Clarin	Medium	134	(cz) ncz-cz	NU LGE U/ SIM 2000.1XI	15	0	0	33%	Initial	2/0
Cockle Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0.25 4 50% Initial N Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0.2 0 0 25% Final N Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 25% Final N Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 25% Final N Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 25% Final Initial Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 33% Initial Terrier Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 33% Initial	Cookle Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0.25 4 50% N Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 33% N Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 25% N Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 23% N Terrier Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 23% Terrier Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 23%													-	
Cockle Medium 194 25-250 (25) KULGE 082M 250B.txt 15 0 0 25% Final N Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 25% Final N Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 25% Final N Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 33% Initial N Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 33% Initial Terrier Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 33% Initial Terrier Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 0 33% Initial	Cockle Medium 194 25-250 (25) KULGE 082M 250Btxt 15 0 0 25% N Medium 194 25-250 (25) KULGE 083M 250Btxt 15 0.25 4 50% 7 N Medium 194 25-250 (25) KULGE 083M 250Btxt 15 0.25 4 50% 7 N Medium 194 25-250 (25) KULGE 083M 250Btxt 15 0 0 25% 7 N Medium 194 25-250 (25) KULGE 084M 250Btxt 15 0 0 0 25% I Terrier Medium 194 25-250 (25) KULGE 086M 250Btxt 15 0 0 0 33%									15	0.25	4	50%	Initial	
Nime Medium 194 25-250 (25) KU LGE 083M 250Btxt 15 0 0 33% Initial N Medium 194 25-250 (25) KU LGE 083M 250Btxt 15 0 0 25% Final N Medium 194 25-250 (25) KU LGE 083M 250Btxt 15 0 0 33% Initial N Medium 194 25-250 (25) KU LGE 083M 250Btxt 15 0 0 33% Initial Titrite Medium 194 25-250 (25) KU LGE 084M 250Btxt 15 0 0 33% Initial Totriter Medium 194 25-250 (25) KU LGE 086M 250Btxt 15 0 0 33% Initial	Terrier Medium 194 25-250 (25) KU LGE 083M 250Btxt 15 0 0 33% N) Medium 194 25-250 (25) KU LGE 083M 250Btxt 15 0 0 33% N) Medium 194 25-250 (25) KU LGE 083M 250Btxt 15 0 0 33% Terrier Medium 194 25-250 (25) KU LGE 084M 250Btxt 15 0 0 25% Terrier Medium 194 25-250 (25) KU LGE 084M 250Btxt 15 0 0 25%	_	SMALL TRIPLEX SECONDARY KU	2 AAC TPX (4 ACSR N)	Cockle	Medium	194	25-250 (25)	KULGE 082M 250B.txt	15	0	0	25%	Final	832
N Medium 194 25-250 (25) KULGE 083M 250Btxt 15 0.25 4 50% Initial N Medium 194 25-250 (25) KULGE 083M 250Btxt 15 0 0 33% Initial N Medium 194 25-250 (25) KULGE 084M 250Btxt 15 0 0 33% Initial Image: State Sta	Terrier Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0.25 4 50% 25% N) Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 0 33% N) Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 33% Terrier Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 33% Terrier Medium 194 25-250 (25) KULGE 086M 250B.txt 15 0 0 0 33%					5				15	0	0	33%	Initial	
Ni Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0.0 0 2.5% Final N) Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 2.5% Final N) Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 2.5% Final Total 15 0 0 0 3.3% Initial Image: Total 15 0 0 3.3% Initial	Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 25% N) Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 25% N) Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 25% Terrier Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 25% Terrier Medium 194 25-250 (25) KULGE 086M 250B.txt 15 0 0 25%	_								4	30.0	ľ	200/	Initial	
Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 33% Initial N) Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0.2 4 50% Initial N) Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 33% Initial Terrier Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 33% Initial Terrier Medium 194 25-250 (25) KULGE 086M 250B.txt 15 0 0 33% Initial	Medium 194 25-250 (25) KULGE 083M 250B.txt 15 0 0 33% N) Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 25% 7 N) Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 25% 7 Terrier Medium 194 25-250 (25) KULGE 086M 250B.txt 15 0 0 23% 7 Terrier Medium 194 25-250 (25) KULGE 086M 250B.txt 15 0 0 23% 7									24	0.20	t c	20.00		
N Medium 194 25-250 (25) KU LGE 084M 250B.txt 15 0	N) Medium 194 25-250 (25) KULGE 084M 250Btxt 15 0	_	MEDIUM TRIPLEX SECONDARY KU	2/0 AAC TPX (2 ACSR N)		Medium	194	25-250 (25)	KU LGE 083M 250B.txt	2			0/ CZ		1166
Terrier Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0.2 4 50% Initial 15 0 0 0 33% Initial 16 15 0 0 0 33% Initial 16 15 0 0 0 33% Initial 17 16 0 0 25% Final 17 15 0 0 25% Final 17 15 0 0 33% Initial	Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 25% Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 33% Terrier Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 33% Terrier Medium 194 25-250 (25) KULGE 086M 250B.txt 15 0 0 25%									0	5	5	23%	Imuai	
Medium 194 25-250 (25) KULGE 084M 250B.txt 15 0 0 25% Final Terrier Medium 194 25-250 (25) KULGE 086M 250B.txt 15 0 0 33% Initial Terrier Medium 194 25-250 (25) KULGE 086M 250B.txt 15 0 0 33% Initial	Medium 194 25-250 (25) KU LGE 084M 250B.txt 15 0 0 25% Terrier Medium 194 25-250 (25) KU LGE 084M 250B.txt 15 0 0 33% Terrier Medium 194 25-250 (25) KU LGE 086M 250B.txt 15 0 0 25%	_								15	0.25	4	20%	Initial	
Terrier Medium 194 25-250 (25) NU LGE 004M 250B.txt 15 0 0 33% Initial Terrier Medium 194 25-250 (25) KU LGE 086M 250B.txt 15 0 0 25% Final	Medium 194 Z5-250 (Z5) NU LGE 094M Z90.XX 15 0 0 33% Terrier Medium 194 25-250 (Z5) KU LGE 086M Z50B.txt 15 0 0 25%						101			15	0	0	25%	Final	1000
4 AC DPX (4 ACSR N) Terrier Medium 194 25-250 (25) KU LGE 086M 250B.txt 15 0 0 25% Initial	AAC DPX (4 ACSR N) Terrier Medium 194 25-250 (25) KU LGE 086M 250B.txt 15 0 0 25% 4 AAC DPX (4 ACSR N) Terrier Medium 194 25-250 (25) KU LGE 086M 250B.txt 15 0 0 33%			391 AAU 1 PA (200 AUSK N)		Medium	181	(67) 067-67	NU LGE U84MI 250B.tXt	15	0	0	33%	Initial	2391
4 AC DPX (4 ACSR N) Terrier Medium 194 25-250 (25) KU LGE 086M 250B.txt 15 0 0 25% Final 33% Initial	4 AAC DPX (4 ACSR N) Terrier Medium 194 25-250 (25) KU LGE 086M 250B.txt 15 0 0 25% 15.25\% 15.25\% 15														
4 AAC DPX (4 ACSR N) Terrier Medium 194 25-250 (25) KU LGE 086M 250B.txt 15 0 0 25% Final 15 0 0 33% Initial	4 AAC DPX (4 ACSR N) Terrier Medium 194 25-250 (25) KU LGE 086M 250B.txt 15 0 0 25% 15 0 0 33%	_								15	0.25	4	20%	Initial	
				A AAC DPX (A ACSP N)	Tarriar	Madium	104	25-250 (25)	KILLGE OREM 250B 1vt	15	0	0	25%	Final	783
							+0-	(07) 007-07		15	0	0	33%	Initial	201

Secondary Conductors

))))))								
			Conductor	NESC Loading	Max.				S	Sag Tension Limits	on Limits		NESC MEDIUM LOAD FINAL
#		Conductor	Codeword	District	Operating Temp (F)	Ruling Span (ft)	FileName	Temp (F)	lce (in)	Wind (psf)	Limit	Condition	TENSION AT 80' SPAN (LBS)
								09	0	0	3' SAG	Initial	
93	SMALL TRIPLEX SERVICE LG&E	2 AAC TPX (2 AAC N) SRVC	Clam	Medium	194	20-140 (20)	KU LGE 093M 250B.txt	15	0.25	0	500 lbs	Initial	239
								09	0	0	3' SAG	Initial	
94	MEDIUM TRIPLEX SERVICE LG&E	1/0 AAC TPX (1/0 AAC N) SRVC	Murex	Medium	194	20-140 (20)	KU LGE 094M 250B.txt	15	0.25	0	500 lbs	Initial	300
								09	0	0	3' SAG	Initial	
95	LARGE TRIPLEX COMMERCIAL SERVICE LG&E 40 AAC TPX (40 AAC N) SRVC	4/0 AAC TPX (4/0 AAC N) SRVC	Coquina	Medium	194	20-140 (20)	KU LGE 095M 250B.txt	15	0.25	0	500 lbs	Initial	425
								60	0	0	3' SAG	Initial	
96	SMALL TRIPLEX SERVICE KU	2 AAC TPX (4 ACSR N) SRVC	Cockle	Medium	194	20-140 (20)	KU LGE 096M 250B.txt	15	0.25	0	500 lbs	Initial	238
L								60	0	0	3' SAG	Initial	
97	MEDIUM TRIPLEX SERVICE KU	2/0 AAC TPX (2 ACSR N) SRVC		Medium	194	20-140 (20)	KU LGE 097M 250B.txt	15	0.25	0	500 lbs	Initial	325
L								09	0	0	3' SAG	Initial	
98	LARGE TRIPLEX COMMERCIAL SERVICE KU 397 AAC TPX (266 ACSR N) SRVC	397 AAC TPX (266 ACSR N) SRVC		Medium	194	20-140 (20)	KU LGE 098M 250B.txt	15	0.25	0	500 lbs	Initial	496
								09	0	0	3' SAG	Initial	
101	LG&E AND KU LG&E AND KU	2 AAC QUAD (2 AAC N) SRVC	Mustang	Medium	194	20-140 (20)	KU LGE 101M 250B.txt	15	0.25	0	500 lbs	Initial	267
								09	0	0	3' SAG	Initial	
102	SE	1/0 AAC QUAD (1/0 AAC N) SRVC	Libyan	Medium	194	20-140 (20)	KU LGE 102M 250B.txt	15	0.25	0	500 lbs	Initial	345
								09	0	0	3' SAG	Initial	
103	S	2/0 AAC QUAD (2 ACSR N) SRVC		Medium	194	20-140 (20)	KU LGE 103M 250B.txt	15	0.25	0	500 lbs	Initial	381
								09	0	0	3' SAG	Initial	
104	1 LARGE QUADRUPLEX SERVICE LG&E	4/0 AAC QUAD (4/0 AAC N) SRVC	Singlefoot	Medium	194	20-140 (20)	KU LGE 104M 250B.txt	15	0.25	0	500 lbs	Initial	485
								09	0	0	3' SAG	Initial	
106	3 LARGE QUADRUPLEX SERVICE KU	397 AAC QUAD (266 ACSR N) SRVC		Medium	194	20-140 (20)	KU LGE 106M 250B.txt	15	0.25	0	500 lbs	Initial	497

Service Conductors

	# NI	* NII		1196401			7002369			7002373			7002376			7002378			7002381			7002384			1196843			1247686			7002390		7002302 CI -1					1 -11 0000001
		4	10.07"	0.113"/ft	749#	10.72"	0.115"/ft	947#	11.37"	0.117"/ft	1170#																											
		3										12.65"	0.118"/ft	1613#																								
	Pole Class	2																																				
aigi ito ai		1													14.47"	0.131"/ft	2528#	15.56"	0.127"/ft	2896#	16.02"	0.124"/ft	3289#	16.48"	0.121"/ft	3708#	16.95"	0.119"/ft	3708#	17.42"	0.118"/ft	4154#	17.89"	0.116"/ft	5128#	18.18"	0.113"/ft	5581#
		H1																															18.40"	0.120'/ft	5763#	19.33"	0.119"/ft	6344#
ו אטוושמוושמו שאונים ו			Bottom Dia. (")	Dia. Taper ("/ft.)	Weight (Ibs.)	Bottom Dia. (")	Dia. Taper ("/ft.)	Weight (Ibs.)	Bottom Dia. (")	Dia. Taper ("/ft.)	Weight (Ibs.)	Bottom Dia. (")	Dia. Taper ("/ft.)	Weight (Ibs.)	Bottom Dia. (")	Dia. Taper ("/ft.)	Weight (Ibs.)	Bottom Dia. (")	Dia. Taper ("/ft.)	Weight (Ibs.)	Bottom Dia. (")	Dia. Taper ("/ft.)	Weight (Ibs.)	Bottom Dia. (")	Dia. Taper ("/ft.)	Weight (Ibs.)	Bottom Dia. (")	Dia. Taper ("/ft.)	Weight (Ibs.)	Bottom Dia. (")	Dia. Taper ("/ft.)	Weight (Ibs.)	Bottom Dia. (")	Dia. Taper ("/ft.)	Weight (Ibs.)	Bottom Dia. (")	Dia. Taper ("/ft.)	Weight (Ibs.)
	Dolo Loicht (4)			30'			35'			40'			45'			50'			55'			60'			65'			,02			75'			80			85'	

Typical Distribution Pole Weights and Dimensions

		Trans	sformers			
Description	Weight (Ibs)	Height (in)	Diameter (in)	A (in)	B (in)	EPA (sq ft)
10 KVA	210	29	16	5.80	4.25	3.22
15 KVA	270	34	18	6.80	4.25	4.25
25 KVA	345	34	20	6.80	4.25	4.72
37.5 KVA	495	35	19	7.00	4.25	4.62
50 KVA	670	37	23	7.40	4.25	5.90
75 KVA	1015	44	26	8.80	4.25	7.94
100 KVA	1178	45	26	9.00	4.25	8.12
167 KVA	1441	49	26	9.80	4.25	8.84
250 KVA	1909	56	26	11.20	4.25	10.11
333 KVA	2586	62	29	12.40	4.25	12.48
500 KVA	3100	66	29	13.20	4.25	13.29

	5	(Gallons) Weight Weight (Ibs.) (Ibs.)	51 615 1200	106 745 1810	108 803 1938	132 110 2560	179 2435 4345	183 2450 4755	n/order	50 505 1030	55 635 1185	56 665 1265	71 785 1585	81 995 1975	100 1285 2530	153 1725 3525	210 2075 4485	224 2222 4934	247 3060 5995	448 5620 10620	171 2155 4110	263 2610 5520	311 4115 8645
		ш	20	25	25	24	26	26	Dimensions available at time of quotation/order	20	20	20	22	22	25	26	27	30	31	35	28	33	38
	(in.)	D	39	47	52	49	61	61	ailable at tim	34	39	41	49	49	56	61	61	67	68	73	62	68	75
ators	Dimensions (in.)	c	30	36	37	40	28	37	iensions ava	24	30	31	35	36	44	38	44	40	48	63	46	46	46
Regulators	D	B	64	74	74	68	110	103	Dim	64	68	68	68	72	78	91	96	63	26	119	87	26	109
		A	11	80	80	95	110	103		11	75	75	75	78	84	26	102	100	100	123	96	104	118
		Figure	£	£	1	1	£	£		۱,	۲.	۲.	1	2	2	£	£	£	£	£	£	£	6
		kva	50	75	100	167	250	333	416	38	57	76	114	167	250	333	416	500	667	833	400	500	1000
	I oad Current	(Amperes)	200	300	400	668	1000	1332	1665	50	75	100	150	219	328	438	548	656	875	1093	200.8	250	502
	Voltade	(kV)			2.5	60kV	ВL							7.62	95kV	ВL					19.92	150kV	ВL

Attachment to Response to KCTA Question No. 1-16 17 of 97 Wolfe

	С	apacito	rs		
Description	Length (L) (in)	Width (W) (in)	Height (H) (in)	Weight (lbs)	EPA (Sq ft)
300 KVAR	55	37.00	40.00	282	
450 KVAR	55	37.00	40.00	290	
600 KVAR	55	37.00	40.00	315	
900 KVAR	55	37.00	40.00	363	
1200 KVAR	55	37.00	40.00	400	

IIN	Cooper Part #
7004767	OCBB27E01010001
3000031	OCCB27E01010001
7004770	OCDB27E01010001
7004773	OCEB27E01010001
7004779	OCFB27E01010001

Capacitor weights and sizes with switches attached

P	ole Moun	ted Equ	ipment			
Description	Length (L) (in)	Width (W) (in)	Height (H) (in)	Weight (lbs)	EPA (sq ft)	
STREET LIGHTS	31.81"	15.12"	14.41"	39	1.4	400W Cobra
FLOOD LIGHTS RISERS	25.13"	12.09"	29.50"	65	3.0	1000 W Floor
Hubbell Hookstick Operated Gang-Op Switch	107"	60"	23"	300		
RECLOSERS	See Apper	ndix B				

Part # Notes
MSRL40S1A22RMS3 6' Arm (12 LBS) Common light type
PF1K01M0A27X7DBLP Max flood light size
AR113FHHL

Insulators	Manufacturer	Catalog #	≧
12KV PORCELAIN PIN-TYPE INSULATOR	Victor	5R	7001271
13.8KV PORCELAIN PIN-TYPE INSULATOR	Victor	9R	1163827
34.5KV PORCELAIN PIN-TYPE INSULATOR	Victor	145R	7001272
15KV POLY PIN-TYPE INSULATOR	Hendrix	HPI-15F	7001269
34KV POLY PIN-TYPE INSULATOR	Hendrix	HPI-35L	1164101
15KV POLYMER SUSPENSION INSULATOR	Hubbell	401015-0215	7001280
34.5KV POLYMER SUSPENSION INSULATOR	Hubbell	405004-1400	3000799
69KV VERTICAL POST INSULATOR	Hubbell	402069-0209	7005086
69KV HORIZONTAL POST INSULATOR	Hubbell	P250024S1020	7001248
POLE TOP PIN	Maclean	J1220Z	7006359
15KV CROSSARM PINS	Maclean	J203Z	7004088
34.5 KV CROSSARM PINS	Maclean	J608Z	1159043
SPOOL INSULATOR	Porcelain Products	5101-1	7001268
NEUTRAL DEADEND	Josyln	J9414	7000240

Wood Arms	Length (in)	Width (in)	Height (in)	Manufacturer	Catalog #	N
8FT WOOD CROSSARM	96	3 3/4	4 3/4	Brooks	LOKU-070602-08	7000101
10FT WOOD CROSSARM	120	3 3/4	4 3/4	Brooks	LOKU-070602-10	7000102
11FT WOOD CROSSARM	132	3 1/2	5 1/2	Brooks	LOGE-1233763	1233760
8FT WOOD ALLEY ARM	96	3 3/4	4 3/4	Brooks	LOKU-070602-08	7000101

Steel Arms & Brackets	Manufacturer	Catalog #	Z
ANGLE BRACKETS (C BRACKET)	Hendrix	BA3-15	7002177
LONG E BRACKET	Hendrix	BV-35	7002182
SHORT E BRACKET	Fabricated Metals	B-2541	1156751
14" TANGENT BRACKET	Hendrix	BM-14	7002178
24" TANGENT BRACKET	Hendrix	BM-24	7002179
TRITAP DEADEND BRACKET	Hendrix	BD-35	

Composite Arms & Brackets	Manufacturer	Catalog #	Z
3-EYE BRACKET (1Ø)	Maclean	GIMDA318ATB	7001703
3-EYE BRACKET (3Ø)	Maclean	G3MA023618DDB	7010214
SPACER CABLE BRACKET	Hendrix	RTL-15	7001274
8FT FIBERGLASS DEAD END ARM (5000 LBS)	Pupi	DE2000-96E3-KU2	0943086
8FT FIBERGLASS DEAD END ARM (10000 LBS)	Pupi	DE3000-96E3-SP2	7010711
10FT FIBERGLASS DEAD END ARM (10000 LBS)	Pupi	DA-3000-120E4-B92	3009123

Anchor Holding Strengths

Anches Tune			ŭ	Soil Type					
	Class 0	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Class 7	
			Holding	Holding Strength (Ibs)	bs)				NII
8" Single Helix Socket		50,000	30,000	21,000	16,000	12,000	8,000	6,000	7010142
12" Single Helix Socket		50,000	40,000	32,000	27,000	23,000	18,000	15,000	7010141
Expanding Rock Anchor-LGE	36,000								3010452 one pie
Expanding Rock Anchor-KU	23,000				,				7000792 one pie
Standard Expanding Anchor				26,500	22,000	18,000	15,000	10,000	7000791
Concrete Anchor depen	depends on rod strength								
Log Anchor		100,000	88,500	75,000	62,500	50,000	40,000	30,000	7002481
H-Beam 14-1/8"x10-1/8"	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	1191760 no rod
H-Beam 14-3/8"x14-5/8"	15,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000	1191778 no rod
H-Beam 14-3/4"x15-1/2"	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	1191786 no rod
H-Beam 15-3/4"x15-3/4" (25,000 bs)	25,000	25,000	25,000	25,000	25,000	25,000	25,000	25,000	1191794 no rod
H-Beam 15-3/4"x15-3/4" (30,000 bs)	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	1191794 no rod

Strength (Ibs)	16,000	23,000	36,000	58,000
Anchor Rods	5/8"	3/4"	1"	1-1/4"

Soil Class	Class Description
Class 0	Sound hard rock, unweathered
Class 1	Very dense and/or cemented sands; coarse gravel and cobbles
Class 2	Dense fine sands; very hard silts and clays (may be preloaded)
Class 3	Dense sands and gravel; hard silts and clays
Class 4	Medium dense sand and gravel; very stiff to hard silts and clays
Class 5	Medium dense coarse sands and sandy gravels; stiff to very stiff silts and clays
Class 6	Loose to medium dense fine coarse sands to stiff clays and silts
Class 7	Loose fine sands; Alluvium; loess; medium - stiff and varied clays; fill

Note: The information contained above was taken from A.B. Chance's anchoring manual.

oiece rod and anc oiece rod and anc

סססס σ

Guy S		
Strand	Strength Rating	IIN
8M AW 12.5M AW 20M AW 3/8" HS Galvanized 7/16" HS Galvanized	8,000 12,500 20,000 15,400 20,800	1197401 1197435 1197443 7000797 7000798

Pole Loading Analysis

Setup Parameters for Pole Loading Analysis

LG&E uses the parameters listed below to perform pole loading analyses. The analyses are performed using the finite element program called "*PoleForeman*" (see Section 960 for information on this program).

1. Load District: 2012 NESC Section 250B - Medium Load District, appropriate grade of construction (Grade B, C or C @ crossing). For structures and/or conductors that exceed 60' above ground at the pole or at any point in the span, NESC 250C and 250D also apply.

2. Load analysis performed per 2012 NESC Tables 253-1 and 261-1. Use Grade B construction per NESC Table 242-1 at railroad crossings, limited access highways, navigable waterways requiring waterway crossing permits and crossing other energized lines (not attached to the same pole).

3. Linear analysis is used on un-guyed single structures. Non-Linear analysis is used for guyed single structures. Questions and clarification may be directed to LG&E Engineering as situations arise.

4. Type of Pole Species used; Distribution: Southern Pine Transmission: Douglas Fir

Pole Attachment Cases

Case 1: (2) 3 - phase w/ streetlight, secondary, and 3 attachments (See results at the end of this Section).

- Pole: 50' class 3 Southern Pine
- Top of pole @ 43'-0"
- Primary conductor: 3 phase #795AAC on 10' crossarm @ 39'-0"
- Primary conductor: 3 phase #795AAC on 10' crossarm @ 33'-0"
- Neural conductor: #1/0AAC Poly @ 28'-1"
- Secondary conductor: #1/0AAC Poly @ 27'-1"
- Secondary conductor: #1/0AAC Poly @ 26'-1"
- Streetlight @ 23'-2"
- Above conductors calculated using a ruling span = 200'
- CATV (2.00") @ 22'-0"
- TELE (2.00") @ 21'-2"
- Proposal: Install fiber optic @ 20'-6"

PoleForeman - Pole Loading Analysis Report License: LGE-KU POLE LOADING DATA Pole: 50/3 Wood Pole Loading NESC Edition: 2012 Rule 250B Loading: Wind (psf): 4 Ice (in): 0.25 Loading District: Medium Horizontal: 69% (250B) Vertical: 62% (250B) Construction: Grade C (Elsewhere) POLES Length (ft) 50 50 50 Elevation (ft) 0 Depth (ft) Pole # 0 7 7 Õ 1 7 0 2 0° POLE LINE TOPOLOGY 1 0 270° -90° Ο 2 18⁰°

PoleForeman - Pole Loading Analysis Report

INSULATORS			
Insulator	Attach	Loading	Angle
13KV SNG Xarm Pin & Ins	48"	36%	0°
13KV SNG Xarm Pin & Ins	48"	36%	0°
13KV SNG Xarm Pin & Ins	48"	36%	0°
12KV SNG Xarm Pin & Ins	120"	36%	0°
12KV SNG Xarm Pin & Ins	120"	36%	0°
12KV SNG Xarm Pin & Ins	120"	36%	0°
Spool Ins Tangent	179"	9%	0°

ARM / BRACKET DATA

Arm/Bracket	Attach	Vert Loading	Horz Loading
10' SNG Xarm (3-3/4x4-3/4)	48"	42%	12%
10' SNG Xarm (3-3/4x4-3/4)	120"	41%	12%
1 Wire Rack	179"		

SPANS

Span: 1 Span Length	(ft): 200 Direction	ו: 0°					
Primary	Ruling Span (ft)						
795 AAC (61) 795 AAC (61)	200 200	56 20	38 38	38 38	4500 4500		
795 AAC (61)	200	-56	38	38	4500		
Neutral							
1/0 AAC POLY (7)	200	1	179	179	895		
Secondary 1/0 AAC POLY (7)	200	0	191	191	895		
1/0 AAC POLY (7)	200	0	203	203	895		
Circuit: 2							
Primary	Ruling Span (ft)		Attach A (in)				
795 AAC (61) 795 AAC (61)	200 200	56 20	111 111	111 111	4500 4500		
795 AAC (61)	200	-56	111	111	4500		
Joint Use Cable	Ruling Span(ft) 200		Weight (lbs/ft)		ach B (in) Tension 252 3050	Sag 21	Description
2.00" CATV 2.00" TELCO	200	2 2	0.759 2.06		252 3050 261.96 5630	21	
User Defined	0	0.5	0.207		270 1052	23	
pan: 2 Span Length	(ft): 200 Directior	• 180°					
Circuit: 1	()						
Primary 795 AAC (61)	Ruling Span (ft) 200) Offset (in) 56	Attach A (in) 38	Attach B (in) 38	Tension 4500		
795 AAC (61)	200	20	38	38	4500		
795 AAC (61)	200	-56	38	38	4500		
Neutral 1/0 AAC POLY (7)	200	1	179	179	895		
		·					
Secondary 1/0 AAC POLY (7)	200	0	191	191	895		
1/0 AAC POLY (7)	200	0	203	203	895		
Circuit: 2	Duling One (11)	Offered (12)	Attack A ('-)	Attack D (1-)	Tanaina		
Primary 795 AAC (61)	Ruling Span (ft) 200) Offset (in) 56	Attach A (in) 111	Attach B (in) 111	Tension 4500		
795 AAC (61)	200	20	111	111	4500		
795 AAC (61)	200	-56	111	111	4500		
Joint Use Cable	Ruling Span(ft)		Weight (lbs/ft)		ach B (in) Tension	Sag	Description
2.00" CATV 2.00" TELCO	200 200	2 2	0.759 2.06		252 3050 261.96 5630	21 26	
User Defined	0	0.5	0.207		270 1052	23	
LIGHTS	Desident	504	Malaka Arr	al Discuti			
Light 150-400W Cobra	Bracket 8 FT Bracket	EPA 0.87	Weight Atta 76 23				
	o i i bidokot	0.07	,0 20	00			
e: H:\Kentucky Wired Fib	er\PoleForman\Case	1.pff					

Transmission Requirements

LG&E THIRD PARTY POLE ATTACHMENT HANDBOOK Last updated March 23, 2016

Third Party Transmission Pole Loading Analysis Criteria

- 1. The attachment method for communication cable facilities must first be reviewed by LG&E and KU Transmission Department or their representative in accordance with LG&E and KU's existing Encroachment Guideline. Only after this review has been completed and approval granted can the attachment request be permitted.
- **2.** If there are no electric distribution line facilities attached to the transmission poles then the addition of communication cables will be prohibited.
- **3.** Transmission lines are normally located within private R/W easements that do not permit LG&E and KU to grant attachment rights to other companies. Encroachment rights on this private R/W easement must first be granted by the property owner and presented to LG&E and KU before LG&E and KU can grant the right to attach to its transmission poles or structures.
- **4.** The attachment of communication cable facilities will not be permitted on poles supporting transmission circuits operating at voltages greater than 138 kV.
- 5. No longitudinal third party owned fiber optic cable attachments are permitted on the overhead transmission system (69kV and above) unless it is in the communication space on an under built distribution circuit.
- **6.** LG&E and KU plans to eventually replace its 69kV and 138kV wood poles with steel poles. Attachers must be prepared to change their method of attachment in this event.
- 7. The location/elevation of distribution primary and neutral on any transmission pole, or distribution pole within the transmission right of way may not be altered in any way.
- 8. Analysis of LG&E and KU transmission structures for the addition of new communication cables shall be done using a finite element computer program using non-linear analysis. The program will be capable of performing analysis on both guyed and unguyed Transmission pole structures. LG&E and KU recommends the use of the software program PLS-POLE by Power Line Systems, Inc.
- **9.** Approved Engineering Consultants to perform analysis of LG&E and KU transmission structures are as follows:
 - Black and Veatch 11401 Lamar Ave. Overland Park KS.
 - Burns and McDonnell 9400 Ward Parkway Kansas City MO.
 - Sargent and Lundy-55 East Monroe Street Chicago, IL.
 - Power Engineers P.O. Box 1066 Hailey, ID.

Other Engineering Consultants may be considered by LG&E and KU upon written request.

LG&E THIRD PARTY POLE ATTACHMENT HANDBOOK Last updated March 23, 2016

10. <u>Criteria</u>

The analysis shall be done using the following codes and standards:

National Electrical Safety Code 2012 or latest edition. ANSI O5.1-2008 Specifications and Dimensions for Wood Poles or latest edition. LG&E and KU Vertical Clearance Requirements between LG&E and KU facilities and non-LG&E and KU communication facilities Standards Codes and Standards revision D or latest edition.

The following load conditions shall be checked for all transmission poles:

NESC 250B-Heavy ¹/₂" radial ice, 4 PSF wind at 0 degrees F. NESC 250C – 21 PSF Extreme wind at 60 degrees F. NESC 250D- Concurrent Ice/Wind with ³/₄" radial ice, 2.30psf wind at 15 degrees F.

Grade B construction standards shall be used for all transmission structures.

Pole strength reductions shall be applied as follows:

5 - 12 years: 0 - 0.5% 13 - 30 years: 0.5% - 2.0% 31 - 80 years: 2.0% - 6.0%

Note: Interpolation is allowed.

Pole defects can be, but not limited to, woodpecker holes, shell rot, insect damage, excessive checking, and external pockets or split pole top.

Conductor/cable diameter and weights should be provided by the appropriate utility. Submittals shall include information and description of each wire used to check the Transmission structure.

Conductor/cable tension should be provided by the appropriate utility. If unavailable then maximum tension under heavy loading is not to exceed 60% RBS of conductor or messenger, whichever is appropriate.

11. Procedure

All Pole Loading Analysis and Reporting <u>shall be developed and performed under the direction of a</u> <u>professional engineer</u> licensed by the state where such facility is located, all of which shall be subject to LG&E and KU review and acceptance. The analysis shall be stamped by an engineer licensed in the appropriate state.

When a fix is required in the form of a new pole or other means, only LG&E and KU will schedule and supervise the construction work with Company approved contractors.

12. Reports

All analyses files and the field survey reports shall be sent to LG&E and KU or their representative for review.

The report shall include the following items:

- Structure type (tangent, angle, etc.) and number if available.
- County and or City pole is located.
- Pole length and class, (example 70 ft. class 2 wood pole)
- State Plan Coordinates at each structure considered.
- Digital photo of structure to be considered.
- Field survey used to determine locations of all existing and proposed cable attachments on pole.

The report shall include a description of all cables used in analysis of the transmission structure. The applicant shall also supply PLS-Cadd wire files for any proposed cables to be attached to the transmission structures.

For additional information reference Power Line Systems section 9.2 Creating or Editing cable files for more information.

LG&E & KU Construction Standards

Electric System VERTICAL CLEARANCE REQUIREMENTS BETWEEN LG&E/KU 02 10 02 Codes & Standards FACILITIES AND NON-LG&E/KU COMMUNICATION FACILITIES Rev. E

This standard details the clearance requirements at all locations between LG&E/KU's conductors and equipment and any non-LG&E/KU communication cables and equipment.

Two sections are shown below. Part I details the required clearances at the structure while Part II details the clearances at all other locations. Each part shows the typical clearances between facilities, the minimum clearances allowed by the NESC, and special clearance reductions which are allowed under certain circumstances.

All new facilities will be constructed using the "typical" clearances. New facilities placed on existing structures should also meet the "typical" clearance requirements wherever possible. However, clearances may be reduced to the minimum NESC clearances (including special clearance reductions) where necessary to prevent the need to replace the structure. Allowable special clearance reductions should only be used as the last option to replacing the structure.

PART I - (VERTICAL CLEARANCES AT THE STRUCTURE - NESC RULE 235/238)

TABLE A

LG&E/KU FACILITIES	TYPICAL CLEARANCE	NESC MINIMUM	SPECIAL CLEARANCE REDUCTION	
SUPERVISORY CABLE	18"	12"		
NEUTRAL & GROUNDED GUYS	48"	40"	30" *	
SECONDARY (750V) & INSULATED GUYS	48"	40"		
4.16 KV, 12.47 KV	48"	40"		
13.8 KV	48"	43"	-	
34.5 KV	60"	45"		
69 KV	120"	54"		
138 KV	120"	70"		
GROUNDED EQUIPMENT	48"	40"	30" **	
UNGROUNDED EQUIPMENT	SAME AS PRIMARY CLEARANCE			
STREET LIGHT	SEE PAGE 2			

* NESC TABLE 235-5, NOTE 5 ** NESC TABLE 238-1, NOTE 1

CLEARANCE REQUIREMENTS AT THE POLE ARE MEASURED BETWEEN:

<u>UPPER POSITION:</u> Lowest supply conductor or metallic conductor support, including insulator pins, switch arms (in open position), aerial cable spacers and brackets, etc.

LOWER POSITION Upper most communication cable, messenger or the top of any communication equipment, including support brackets, equipment enclosures, splice packs, etc,

SEE PAGE #2 TO DETERMINE HOW CLEARANCES AT THE STRUCTURE ARE MEASURED

PART II - (VERTICAL CLEARANCES AT ALL OTHER LOCATIONS - NESC RULE 235)

Clearances at all locations, other than at the structure, will be based on one of the following load cases (whichever results in the least amount of clearance). All sags are final sags.

A) The upper supply conductor at its maximum operating temperature with the communication conductors at 120° F (maximum operating temperature is 120° F for voltages less than 69kV, and 212° F for voltages 69kV and above).

B) The upper supply conductor at 0° F with 1/2" ice and the communication conductor at 0° F with no ice.

TABLE B

LG&E/KU FACILITIES	TYPICAL CLEARANCE	NESC MINIMUM	SPECIAL CLEARANCE REDUCTION	AT MAX MALEKUI
SECONDARY, NEU	TRALS & GUYS - AL	L SPANS		AT MAXIMUM TEN
SUPERVISORY CABLE	18"	12"	1	
NEUTRAL & GROUNDED GUYS	36*	30"	12" ***	
SECONDARY (750V) & INSULATED GUYS	36"	30"	1	NON-LG&E/K
PRIMARY CONDUCTO	ORS - MAXIMUM OF 1	50' SPANS		(CATV, TELE
4.16 KV, 12.47 KV	36"	30"		2.05 March 19
13.8 KV	36"	32"	3	SECONDARY, N
34.5 KV	48"	34"	î.	PRIMAR
69 KV	96"	40"		× 2
138 KV	96"	55"		

*** NESC RULE 235C2b(1)(a) EXCEPTION 1

CLEARANCES OF PRIMARY CONDUCTORS ON SPANS GREATER THAN 150'

When primary conductors (above 750V) are installed on spans longer than 150', a supplemental requirement must be met in addition to the NESC minimum clearances detailed in Table B. The clearances at the pole must be adjusted so that both the following conditions are met at any point in the span:

- A) Clearances are not less than the values shown in Table B.
- B) Clearance must be provided so that the supply conductor at 60° F, final sag, will not sag below the line of sight of the attachment points of the communication conductors (NESC RULE 235C2b(3)).

Replaces LGE 021002D KU None By: Hethcox/Helton 02/29/16 Page 1 of 2

2007 NESC MINIMUM CLEARANCE OF CONDUCTORS VERTICAL CLEARANCE OF WIRES, CONDUCTORS, AND CABLES ABOVE GROUND, ROADWAYS, RAILS, OR WATER SURFACES (VOLTAGES ARE PHASE TO GROUND FOR EFFECTIVELY GROUNDED CIRCUITS AND THOSE OTHER CIRCUITS WHERE ALL

GROUND FAULTS ARE CLEARED BY PROMPTLY DE-ENERGIZING THE FAULTED SECTION, BOTH INITIALLY AND FOLLOWING 🚳 SUBSEQUENT BREAKER OPERATIONS.)

2) For whes, conductors, or cables crossing over mine, logging, and similar railways that handle only cars lower than standard freight cars, the clearance may be reduced by an amount equal to the difference in height between the highest loaded car handled and 20 ft, but the clearance shall not be reduced below that required for street crossings.

4) In communities where 21 ft has been established, this clearance may be continued if carefully maintained. The elevation of the contact conductor should be the same in the crossing and next adjacent spans. (See Rule 225D2 for conditions that must be met where uniform height above ral is impractical.)

5) In communities where 16 ft has been established for trolley and electrified railroad contact conductors 0 to 750 V to ground, or 18 ft for trolley and electrified railroad contact conductors exceeding 750 V, or where local conditions make it impractical to obtain the clearance given in the table, these reduced clearances may be used if carefully maintained,

	Where the height of a building or other installation does not permit service drops to me	eet these values,	21) Where the US Army Corps of Englneers, or the state, or surrogate thereof has issued a crossing permit,
the	clearances over residential driveways only may be reduced to the following:		clearances of that permit shall govern.
3322	Y VANNA Y Y H PRIMIPALY H	(feet)	
	Insulated supply service drops inited to 300 V to ground	12.5	23) For the purpose of this Rule, trucks are defined as any vehicle exceeding 8 ft in height. Areas not subject
(b)		10.5	to truck traffic are areas where truck traffic is not normally encountered nor reasonably anticipated.
(c)		3 12.0	
(d)			25) The clearance values shown in this table are computed by adding the applicable Mechanical and Electrical
	Rules 23001 or 23003	10.0	(M & E) value of Table A-1 to the applicable Reference Component of Table A-2a of Appendix A.
(e)	Insulated communication service drops	11.5	
			26) When designing a line to accommodate oversized vehicles, these clearance values shall be increased by
	Where the height of a building or other installation does not permit service drops to me clearances may be reduced to the following:	et these values,	the difference between the known height of the oversized vehicle and 14 ft.
1011		(feet)	
(a)	Insulated supply service drops imited to 300 V to ground	10.5	SEE RULES 232B1, 232C1A, AND 232D4.)
(b)		10.5	
(c)	Supply service drops initiated to 150 V to ground and meeting Rules 23001 or 23003		Rule 232B, Clearance of Wires, Conductors, Cables, Equipment, and Support Arms Mounted on Supporting Structures
	Drip loops only of supply service drops limited to 150 V to ground and meeting		
(4)	Rules 23001 or 23003	10.0	1. Clearance to Wires, Conductors, and Cables - The vertical clearance of wires, conductors, and cables
	Rules 23001 01 23003	10.0	above ground in generally accessible places, roadway, rail, or water surface. Shall be not less than that shown in Table 232-1,
0)	Spaces and ways subject to pedestrians or restricted traffic only are those areas wher	a ddam an hamas	above ground in generaty accessive proces, roadway, rail, or water surrace, sing be not less than that shown in hade 252-1,
	other large animals, vehicles, or other mobile units exceeding a total height of 8 ft are		Rule 232C. Additional Clearances for Wires, Conductors, Cables, and Unguarded Rigid Live Parts of Equipment Greater dearances
	ulation or permanent terrain configurations, or are otherwise not normally encountered		than specified by Rule 328 shall be provided where required by Rule 232C1.
	anticloated.		than specified by Kule 2325 shall be provided where required by Kule 23251.
ant	icipated.		1 Volume Encoder 2014
1.2			1. Voltages Exceeding 22 kV
	Where this construction crosses over or runs along alleys, driveways, or parking lots	not subject to truck	
trat	fic this clearance may be reduced to 15 ft.		a, For voltages between 22 and 470 kV, the clearance specified in Rule 232B1 1(Table 232-1) or Rule 232B2 (Table 232-2)
1000		12.11100100.00020	shall be increased at the rate of 10 mm (0.4 in) per kilovolt in excess of 22 kV. For voltages exceeding 470 kV, the clearance
	Adjacent to tunnels and overhead bridges that restrict the height of loaded rail cars to se clearances may be reduced by the difference between the highest loaded rail car h		shall be determined by the method given in Rule 232D. All clearances for lines over 50 kV shall be based on the maximum operating voltage.
If mutually agreed to by the parties at interest.			EXCEPTION: For voltages exceeding 98 kV ac to ground or 139 kV dc to ground, clearances less than those required above are
			permitted for systems with known maximum switching-surge factors (see Rule 232D).
17)	For controlled impoundments, the surface area and corresponding clearances shall be	e based upon the	
	sign high-water level.		Rule 232D. Alternate Clearances for Voltages Exceeding 98 kV AC to Ground or 139 kV DC to Ground.
18)	For uncontrolled water flow areas, the surface area shall be that enclosed by its annu	al high-water mark	4. Limit.
	arances shall be based on the normal flood level; if available, the 10-year flood level		The attemate clearance shall be not less than the clearance given in Tables 232-1 or 232-2 computed for 98 kV ac to ground in accordance
	normal flood level.	inay we accounted as	with Rule 232C.
une			
19)	The clearance over rivers, streams, and canals shall be based upon the largest surfa	ce area of any	
1-n	I segment that includes the crossing. The clearance over a canal, river, or stream no	rmally used to	
pro	vide access for saliboats to a larger body of water shall be the same as that required	for the larger	
bod	dy of water.	CONSCRETE MADE	
0.01	All has no we are represented as the second or an experimental second as the second second second second back to second	And a second	

20) Where an over water obstruction restricts vessel height to less than the applicable reference height given in Table 232-3, the required clearance may be reduced by the difference between the reference height and the over water obstruction height, except that the reduced clearance shall be not less than that required for the surface area on the line-crossing side of the obstruction,

IGE KU

Replaces: LGE - 02 10 06 By: Leake/Clark Page 2 of 2

KU - NEW

DATE: 7/17/06

02 10 06 Rev. D

Electric System Codes & Standards

2007 NESC TABLE 234-1 MINIMUM CLEARANCE OF CONDUCTORS TO BUILDINGS, SIGNS & OTHER INSTALLATIONS

02 10 08 Rev. A

8

SIG

GROUND RULE 232

(T)

H

Т

H

Column

4.5

Column 2

5.0

Column

5.0'

Column 4

5.5'/ 3.5

Column

Column

T

7.0'

7.5'/4.5

v

NEW SLOPED SURFAC

CLEARANCE

V

Column 10.5'

Column 2

11.0'

Column 3

11.0'

Column 4

11.5

Column 5

Column 6

13.0

13.5

ACCESSIBLE

TO PEDESTRIANS

RULE 234C - Clearances Of Wires, Conductors, Cables, and Rigid Live Parts To Buildings, Signs, Billboards, Chimneys, Radio And Television Antennas, Tanks, And Other Installations Except Bridges

General

This standard details the minimum National Electrical Safety Code (N.E.S.C.) clearance requirements of wires, conductors, cables, and rigid live parts to buildings, signs, billboards, chimneys, radio and television antennas, tanks, and other installations. It does not cover clearances to the supporting structure, to other supporting structures (poles), over pools, to bridges, or to grain bins,

The clearance requirements detailed in this standard must be evaluated in addition to the minimum allowable conductor clearance above ground, N.E.S.C. Rule 232 as detailed on Standard 02 10 06. Clearance requirements for bibboards and signs are detailed on this page. Clearance requirements for buildings are detailed on page 1 of this standard.

Clearance Requirements

Clearances to buildings and signs must be checked under all of the following conductor load cases.

Honzonta 1) 120° F, No Wind, Final Sag

2) Maximum Operating Temperature (If greater than 120° F), Final Sag, No Wind And Vertical 3) 32° F, No Wind, 1/2" Ice, Final Sag

- 4) -20° F, No Wind, Initial Sag
- Horizontal 5) 60° F, Final Sag, 6 lb/ft Wind (This can be reduced to 4 lbs/ft In sheltered areas

Vertical Clearance Notes

(V) Vertical clearances should be checked for Load Cases. 1 - 4, each with no wind displacement.

Horizontal Clearance Notes

(H) Clearances must be considered for all 5 load cases shown above. The clearance requirements for some of the conductors are different when loaded with and without wind. All cases must be checked for compliance. When accessing the clearances of the load case with wind, the movement of insulators and other flexible supports must also be considered. Deflection of the structure must also be considered if the structure height is greater than 60'.

T	L'
	BUILDING
ransitional	H_>V.

ige Ku

NOTE.

The requirements in this standard detail the absolute minimum allowable clearances and should not be used as design guidelines. Values used for design purposes should generally exceed the values detailed In this standard to allow for unknown or unexpected changes in the field during construction and over the Ife of the Installation.

Clearances General

Clearances must be evaluated in three distinct areas, as shown on the diagrams on this standard. (H)-Horizontal and (V)-Vertical requirements are taken from the table. The (T)-Transition between (H) and (V) requirements is a means of connecting the (H) and (V) requirements together. This Transitional radius = (V) when V>H, and based on (H) when H>V.

Clearance requirements are shown in the tables on this standard. Each table details the

Construction Standards KU - NEW

Page 2 of 2

SIGN

(H)

MINIMUM GROUND

Attachment to Response to KCTA Question No. 40 of 97 Wolfe 1-16 NESC MINIMUM REQUIRED CLEARANCES & POINTS OF ATTACHMENTS FOR SERVICES AND METERS Rev.

NESC MINIMUM REQUIRED CLEARANCES FROM RULE 232 AND RULE 234 OVER GROUND (FOR OPEN WIRE SERVICES ADD ADDITIONAL 6" TO HEIGHTS SHOWN FOR GROUND CLEARANCES.) A - 12 FEET OVER AREAS AND WAYS ACCESSIBLE TO PEDESTRIANS ONLY. INCLUDING EQUIPMENT OR STRUCTURES. (SEE NOTE F) EXCEPTION: CLEARANCES FOR SERVICE CONDUCTORS AND DRIP LOOPS ON INACCESSIBLE ROOFS WHERE VOLTAGE DOES NOT EXCEED 750V BETWEEN MULTIPLEXED 1. CLEARANCE MAY BE REDUCED TO 3' OVER THE ROOF TO WHICH A SERVICE IS ATTACHED. FOR DISTANCES GREATER THAN 6' ACROSS THE ROOF, UTILITY APPROVAL IS REQUIRED. 2. CLEARANCE WITHIN 6' OF A MAST THAT IS LOCATED NOT MORE THAN 4' FROM THE EDGE OF A ROOF MAY BE REDUCED TO 18". (SEE FIGURE 1) F - ANY EQUIPMENT HOUSING INCLUDING AIR CONDITIONING, PLATFORM OR PROJECTION WHICH A PERSON MIGHT STAND ON. G - SERVICE MAST OR BRACKET ATTACHMENT OR UPRIGHT OF ADEQUATE SIZE & HEIGHT TO SUPPORT SERVICES REQUIRED. H - NORMALLY TRIPLEX SERVICE DROP, BUT MAY ALSO BE SEPARATE CONDUCTORS AS SHOWN FOR COMMERCIAL. ENERGIZED SERVICE DROP CONDUCTORS, INCLUDING SPLICES AND TAPS, SHALL BE INSULATED OR COVERED. FOR SERVICES UP TO 750V, 18" MIN. VERTICAL CLEARANCE SERVICE CAN CONSIST OF COVERED OR INSULATED SINGLE FROM CONDUCTOR TO ROOF WITHIN 6' OF MAST, MINIMUM 36" CONDUCTORS OR MULTIPLEX SERVICE CABLES. VERTICAL CLEARANCE FOR REMAINDER OF SPAN OVER ROOF. 6' MAX.

> GROUND CLEARANCE SHOULD EXCEED NESC MINIMUMS TO THE EXTENT PRACTICAL TO ENSURE COMPLIANCE UNDER ALL LOADING CONDITIONS THROUGHOUT THE LIFE OF THE INSTALLATION. SERVICE LINES NOT ENGINEERED AND SAGGED DURING INSTALLATION SHOULD NOT EXCEED 100' IN LENGTH AND MEASURED GROUND CLEARANCE SHOULD EXCEED NESC REQUIREMENTS AT ALL LOCATIONS IN THE SPAN BY A MINIMUM OF 12 INCHES.

> > KU None

Page 1 of 2

CLEARANCES AT THE SERVICE DROP AND/OR DRIP LOOP OF SERVICES MAY BE REDUCED TO 10 FEET WHEN VOLTAGE DOES NOT EXCEED 150 VOLTS TO GROUND AND THE HEIGHT OF THE BUILDING DOES NOT PERMIT THE FULL 12'-0" CLEARANCE.

B - 16 FEET OVER RESIDENTIAL DRIVEWAYS.

EXCEPTION:

CLEARANCES AT THE SERVICE DROP MAY BE REDUCED TO 12 FEET, AND CLEARANCES AT THE DRIP LOOP MAY BE REDUCED TO 10 FEET WHEN VOLTAGE DOES NOT EXCEED 150 VOLTS TO GROUND AND THE HEIGHT OF THE BUILDING DOES NOT PERMIT THE FULL 16'-0" CLEARANCE.

C - 16 FEET OVER COMMERCIAL AREAS, PARKING LOTS, AGRICULTURAL OR OTHER AREAS SUBJECT TO TRUCK TRAFFIC.

MIN.

18" MIN.

D - 16 FEET OVER ANY PORTION OF PUBLIC STREETS, ALLEYS, ROADS OR DRIVEWAYS ON OTHER THAN RESIDENTIAL PROPERTY.

OVER ROOFS

NOTES

MAST SHALL BE

WITHIN 4' OF FAVE

E - 10 FEET - CONDUCTORS SHALL HAVE CLEARANCE OF NOT LESS THAN 10 FEET FROM THE HIGHEST POINT OF ROOFS OVER WHICH THEY PASS.

EXCEPTIONS:

CONDUCTORS OR 300V FOR SINGLE CONDUCTORS (I.E. LESS THAN 480V SERVICES FOR COVERED CONDUCTORS)

ADDITIONAL CLEARANCE INFORMATION FOR SERVICES OVER BALCONIES, PORCHES AND DECKS.

ABOVE RAILING - 3 FT

Electric System Codes & Standards

> THE RAILING IS CONSIDERED INACCESSIBLE BECAUSE IT WOULD BE EXPECTED TO BE SO THIN THAT IT WOULD REQUIRE EXTRAORDINARY EFFORT TO STAND ON, SEE RULE 234C3D1 EXCEPTION A.

ABOVE BUILT IN BENCH SEAT - 10 FT

THE BENCH IS WIDE ENOUGH TO EASILY ACCOMMODATE SOMEONE STANDING ON IT SO IT IS CONSIDERED ACCESSIBLE, SEE BASIC CLEARANCE REQUIREMENT UNDER RULE 234C3D1.

ABOVE DECK - 10 FT

BASIC CLEARANCE REQUIREMENT UNDER RULE 234C3D1 FOR ACCESSIBLE AREAS. DRIP LOOP ABOVE RAILING - 3 FT

ALL CLEARANCES ARE TO THE CLOSEST CONDUCTOR POSITION, IN THIS CASE THE DRIP LOOP. SAME AS ABOVE RAILING.

DRIP LOOP ABOVE DECK - 10 FT

ALL CLEARANCES ARE TO THE CLOSEST CONDUCTOR POSITION, IN THIS CASE THE DRIP LOOP. SAME AS ABOVE DECK.

ADDITIONAL CLEARANCE INFORMATION FOR SERVICE ATTACHMENTS BELOW ROOF

Electric Design And Construction Standards Replaces LGE 81 02 02 KU None By: Hethcox/Stickler 10/22/10 Page 2 of 2

Attachment to Response to KCTA Question No. 1-16 43 of 97 Wolfe 02 10 12 NESC MINIMUM CLEARANCE REQUIREMENTS FROM Electric System Codes & Standards Rev. A STREETLIGHTS TO COMMUNICATION FACILITIES NESC SECTION 238 REQUIREMENTS (NESC 2017) NOTE:

- ALL NEW STREET LIGHT FIXTURES MUST BE EFFECTIVELY GROUNDED. IF UNABLE TO VERIFY GROUND, 1.
- EITHER USE UNGROUNDED CLEARANCES OR FIXTURE MUST BE GROUNDED.
- 40" MIN. CLEARANCE MUST BE MET BETWEEN NEUTRAL AND SECONDARY CABLE HARDWARE AND 2. COMMUNICATIONS EQUIPMENT.
- THE 12" AND 3" CLEARANCE ONLY APPLIES TO THE DRIP LOOP FEEDING THE LUMINAIRE. 3
- THE REDUCED 3" CLEARANCE MAY BE USED IF NON-METALLIC COVERING IS PROVIDED AND EXTENDS 2" 4 INTO LUMINAIRE BRACKET.

11/08/16 Page 1 of 1

KU A-9-8.5

APPLICATION:

These clearance requirements apply to all pools and also to supervised swimming areas including beaches, waterways, etc. where swimming is allowed and rescue poles are used. For unsupervised swimming in other water areas, Rule 232 (standard 02 10 06) applies. Contact the Standards Group for clearances to lines greater than 22kV phase-to-ground. Exception: These clearances do not apply to pools that are enclosed by a solid or screened non-retractable permanent structure.

NOTES:

- Clearance to each conductor in the pool area must be checked. The clearances listed in this standard are <u>minimums</u>. Additional clearance may be required for future changes in grade, leaning poles, etc. Vertical clearances to overhead lines apply under whichever conditions of conductor temperature and loading produce the closest approach:

 A) 120°F, no wind, final sag;
 B) Maximum operating temperature, no wind, final sag;
 C) 32°F, with 1/4" ice, no wind, final sag;
- Installation of new conductors over existing pools should be avoided wherever possible, even when NESC clearance is obtainable. Pools installed under existing lines which result in a code violation must be brought in compliance by relocation of the pool or line or, if necessary, ensuring adequate clearance over the pool. It is normally the customer's responsibility to correct code violations caused by placing a pool under existing utility lines.
- Multiplex service drops (triplex) less than 750 V are allowed lesser clearances under the NESC but must not be less than 10' horizontally from the edge of pools or diving platforms (234-1 Exception 2).
- 4. The swimming pool and auxiliary equipment must have a 5' minimum separation from underground cables. Pool decking and other structures must allow safe access to underground facilities for construction, inspection, and maintenance.

Replaces	By: Hethcox/Stickler
LGE 02 10 20 A	12/02/2008
KU NONE	Page 1 of 2

234E1. Clearance of wires, conductors, cables, or unguarded rigid live parts installed over or near swimming areas with no wind displacement.

1. Swimming Pools ŝ

Electric System

Codes & Standards

UNDERGROUND

- Where wires, conductors, cables, or unguarded rigid live parts are over a swimming pool or the surrounding area, the clearances in
- any direction shall be not less than those shown in Table 234-3 and illustrated in Figure 234-3.
- EXCEPTION 1: This rule does not apply to a pool fully enclosed by a solid or screened permanent structure.
- OVERHEAD **EXCEPTION 2**: This rule does not apply to communication conductors and cables, effectively grounded surge-protection wires,
- REQUIREMENT neutral conductors meeting Rule 230E1, guys and messengers, supply cables meeting Rule 230C1, and supply cables of 0 to 750 V meeting Rule 230C2 or 230C3 when these facilities are 3m (10ft) or more horizontally from the edge of the pool, diving platform, diving tower, water slide, or other fixed, pool-related structures.

351C. Other conditions 1. Swimming pools (in-ground)

- Supply cable should not be installed within 1.5m (5ft) horizontally of a swimming pool or its auxiliary equipment. If 1.5m (5ft) is
- REQUIREMENTS not attainable, supplemental mechanical protection shall be provided.

2. Buildings and other structures

Cable should not be installed directly under the foundations of buildings or other structures. Where a cable must be installed under such a structure, the foundation shall be suitably supported to limit the likelihood of transfer of a detrimental load onto the cable.

NESC Table 234-3-Clearance of wires, conductors, cables, or unguarded rigid live parts over or near swimming pools (1) (Voltages are phase to ground for effectively grounded circuits and those other circuits where all ground faults are cleared by promptly de-energizing the faulted section, both initially and following subsequent breaker operations. See the definitions section for voltages of other systems. Clearances are with no wind displacement. See Rules 234E1, 234E2, and 234H4.)

Note: A, B, and V are shown in associated figures.	Insulated communication conductors and cables; messengers; surge protection wires; grounded guys; ungrounded guys exposed to 0 to 300 V (3); neutral conductors meeting Rule 230E1; supply cab es meeting Rule 230C1	supply cables of 0 to 750 V meeting Rule 230C2 or 230C3; ungrounded guys exposed to open supply conductors of over 300 V to 750 V (2)	Supply cables over 750 V meeting Rule 230C2 or 230C3; open supply conductors, 0 to 750 V (4)	Unguarded rigid live parts over 750 V to 22 kV; ungrounded guys exposed to over 750V to 22 kV (2)	Open supply conductors, over 750 V to 22 kV
	(ft)	(ft)	(ft)	(ft)	(ft)
A. Clearance in any direction from the water level, edge of pool, base of diving platform or anchored raft	22.0	22.5	<mark>2</mark> 3.0	24.5	25.0
B. Clearance in any direction to the diving platform, tower, water slide, or other fixed, pool- related structures	14.0	14.5	15.0	16.5	17.0
V. Vertical clearances over adjacent land	Clearance shall	be as required by Rule 232. Se	ee standard# 02 10	06	

1. The clearance values shown in this table are computed by adding the applicable Mechanical and Electrical (M&E) value of Table A-1 to the applicable Reference Component of Table A-2B of Appendix A.

2. Ungrounded guys and ungrounded portions of guys between insulators shall have clearances based on the highest voltage to which they may be exposed due to a slack conductor or guy.

3. Anchor guys Insulated In accordance with Rule 279 may have the same clearance as grounded guys.

4. Does not include neutral conductors meeting Rule 230E1.

Replaces	By: Hethcox/Stickler
LGE 02 10 20 A	12/02/2008
KU NONE	Page 2 of 2

General Notes

Electric System Codes & Standards

Clearances for conductors and equipment near grain bins are governed by NESC Rule 234F. The clear zone near grain bins is determined by a clearance envelope that is based on many factors including the shape and physical dimensions of the grain bin, location of filling and probing ports, slope of the ground, ground line clearance of the LG&E/KU line and the method used for filling (fixed or portable loading system). On grain bins loaded by a portable loader the sides are classified as either a loading or non-loading side. All sides are considered to be loading sides unless there is a physical obstruction such as a ditch, structure, public road, etc. that would prohibit setting up a portable loader on one or more sides.

It is not necessary to use a clearance envelope to determine NESC compliance if there is sufficient Horizontal clearance to the nearest conductor, including neutrals and communication lines. The safe horizontal clearance is the distance where the clearance envelope intersects minimum ground clearance requirement for the line. At that point, as long as the line has adequate ground clearance, it will be compliant with the NESC. However for taller grain bins, these distances may be unrealistic and the use of the clearance envelope may be required.

Minimum Safe Horizontal Clearances (H) For Not Checking With A Clearance Envelope

Fixed Loading Grain Bins:

All Sides: H = 15' (or 18' to the nearest rooftop probe or fill port, whichever is greater)

Portable Loading Grain Bins:

H =2.5 (Grain Bin Height +18') - 1.5(Ground Clearance of Line Std. 02-10-06) Loading Side:

Non-Loading Side: H = 15' (or 18' to the nearest rooftop probe or fill port, whichever is greater)

If conductors or equipment on the line is less that the safe horizontal distances outlined above it will require checking against the conductor clearance envelope. A table of safe horizontal clearances is shown below.

Grain Bin Height	Fixed Loading Bin (FT)	Portable Loading Bin (FT) ²			SAFE HORIZONTAL CLEARANCES			
	All Conductors and Equipment	Non-Loading Side to All Conductors	Loading Side to Neutral or Triplex	Loading Side to Open Wire Secondary	Loading Side to Primary	FOR PORTABLE LOADING BINS TYPICAL CLEARANCE ENVELOPE	ADING BINS	
20	15 ¹	15 ¹	71.00	70.25	67.25	1 7		18t 1
25	15 ¹	15 ¹	83.50	82.75	79.75] — T		
30	15 ¹	15 ¹	96.00	95.25	92.25	NESC		← 15 ft→
35	15 ¹	15 ¹	108.50	107.75	104.75	GROUND	LOADING SIDE	NON-LOADING
40	15 ¹	15 ¹	121.00	120.25	117.25			SIDE
45	15 ¹	15 ¹	133.50	132.75	129.75]		
50	15 ¹	15 ¹	146.00	145.25	142.25]		

2. All sides are considered Loading sides unless restricted by a physical obstruction. Clearances based on ground clearances of 16' neutral, 16.5' open wire secondary and 18.5' for primary per NESC Rule 232

Clearance Envelope for Fix Loading Grain Bins

Fixed loaded grain bins are treated as buildings when determining minimum vertical clearances. See Page 4 or Standard 02-10-08 for clearances to buildings (using clearance over buildings readily accessible to pedestrians). A minimum of 18' must be maintained above and in all directions from any fill or probe ports. The clearance envelope follows the outline of the grain bin and loading facilities (Figure 2). A minimum horizontal clearance of 15' is required to conductors (or 18' to the nearest probe or fill port if greater).

Electric Design And Construction Standards

Replaces LGE None KU None

By: Hethcox/Leake 10/07/14 Page 1 of 4

Attachment to Response to KCTA Question No. 1-16 47 of 97 Wolfe NESC CLEARANCES OF WIRES, CONDUCTORS, CABLES, AND RIGID LIVE PARTS FROM GRAIN BINS Rev.

Clearance Envelope for Portable Loading Grain Bins

Electric System Codes & Standards

Vertical clearance is 18' minimum above the grain bin. On loading sides, the vertical clearance remains parallel to the ground line for a distance equal to the height of the grain bin + 18' and tappers down to the conductor's ground clearance requirement at the rate of 1' drop for every 1.5' of horizontal distance (Figure 3). Non-loading sides require the same vertical clearance requirement over the bin but begin the same sloped reduction starting at the edge of the grain bin out to a distance of 15' (or 18' to the nearest probe or fill port if greater). See page 4 or Standard 021006 for ground clearances.

NESC Rule 234F - Clearances of wires, conductors, cables, and rigid live parts from grain bins

1. Grain bins loaded by permanently installed augers, conveyers, or elevator systems

All portions of grain bins that are expected to be loaded by the use of permanently installed auger, conveyer, or elevator system shall be considered as a building or other installation under Rule 234C for the purpose of determining appropriate clearances of wires, conductors, cables, and rigid live parts. In addition, the following clearances shall also apply without wind displacement.

- a. A clearance of not less than 5.5 m (18 ft) in all directions above the grain bin shall be maintained from each probe port in the grain bin roof for all wires, conductors, and cables.
- b. A horizontal clearance of not less than 4.6 m (15 ft) shall be maintained between grain bins and open supply conductors, 0 to 22 kV. This clearance does not apply to a neutral conductor meeting Rule 230E1.

Clearance envelope for grain bins filled by permanently installed augers, conveyors, or elevators

Electric Design And Construction Standards Replaces LGE None KU None By: Hethcox/Leake 10/07/14 Page 2 of 4 Electric SystemNESC CLEARANCES OF WIRES, CONDUCTORS, CABLES,
AND RIGID LIVE PARTS FROM GRAIN BINS02 10 22Rev.

- 2. Grain bins loaded by portable augers, conveyers, or elevators (with no wind displacement)
 - a. The clearance of wires, conductors, cables, and rigid live parts from grain bins that are expected to be loaded by the use of a portable auger, conveyer, or elevator shall be not less than the values illustrated in figure on page 2.
 - EXCEPTION: Clearances of the following items on the nonloading side of grain bins shall be not less than those required by Rule 234C for clearances from buildings:
 - (a) Support arms; effectively grounded equipment cases.
 - (b) Insulated communication conductors and cables, messengers, surge-protection wires, grounded guys, neutral conductors meeting Rule 230E1, and supply cables meeting Rule 230C1.
 - (c) Supply cables of 0 to 750 V meeting Rule 230C2 or 230C3.
 - b. Any side of a grain bin is considered to be a nonloading side if it is so designated, or if it is so closely abutting another structure or obstruction, or so close to a public road or other right-of-way that a portable auger, conveyor, or elevator is not reasonably anticipated to be used over that side or portion to fill the grain bin.
 - c. Where an agreement excludes the use of portable augers, conveyors, or elevators from a designated portion of a grain bin, such portion is considered to be a nonloading side.

NESC CLEARANCES OF WIRES, CONDUCTORS, CABLES, AND RIGID LIVE PARTS FROM GRAIN BINS

Rev.

Key Parts of Table 234-1. See Standard 021008 for full table.

Clearance of	Insulated communication conductors and cables; messengers; overhead shield/surge- protection wires; grounded guys; ungrounded portions of guys meeting rules 215C4, 215C5, and 279A1 exposed to 0 to 300 V OO neutral conductors meeting Rule 230E1; supply cables meeting Rule 230C1 (ft)	Supply cables of 0 to 750 V meeting Rule 230C2 or 230C3 (ft)	Unguarded rigid live parts, 0 to 750 V; noninsulated communication conductors; ungrounded equipment cases, 0 to 750 V; and ungrounded portions of guys meeting Rules 215C4, 215C5, and 279A1 exposed to open supply conductors of over 300 V to 750 V 👁 (ft)	Supply cables over 750 V meeting Rule 230C2 or 230C3; open supply conductors, 0 to 750 V ④ (ft)	Unguarded rigid live parts, over 750 V to 22 kV; ungrounded portions of guys meeting Rules 215C4, 215C5, and 279A1 exposed to over 750 V to 22 kV (O) (ft)	Open supply conductors, over 750 V to 22 kV (ft)
Vertical 🞯						
(2) Over or under balconies, porches, decks and roofs readily accessible to pedestrians ③	10.5	11.0	11.0	11.5	13.0	13.5

③ A roof, balcony, or area is considered readily accessible to pedestrians if it can be casually accessed through a doorway, ramp, window, stairway, or permanently mounted ladder by a person on foot who neither exerts extraordinary physical effort nor employs tools or devices to gain entry. A permanently mounted ladder is not considered a means of access if its bottom rung is 8 ft or more from the ground or other permanently installed accessible surface.

(3) The portion(s) of span guys between guy insulators and the portion(s) of anchor guys above the guy insulators that are not grounded shall have clearances based on the highest voltage to which they may be exposed due to a slack conductor or guy.

For clearances above railings, walls, or parapets around balconies, decks, or roofs, use the clearances required for row 1b(1). For such clearances where an outside stairway exists to provide access to such balconies, decks, or roofs, use the clearances required for row 2b(2).

Does not include neutral conductors meeting Rule 230E1.
 These clearance values also apply to guy insulators.

Key Parts of Table 232-1 For Conductors. See Standard 021006 for full table. See also Table 232-2 for Equipment.

Nature of surface underneath wires, conductors, or cables	Insulated communication conductors and cable; messengers; overhead shield/surge-protection wires; grounded guys; ungrounded portions of guys meeting Rules 215C4, 215C5, and 279 A1 exposed to 0 to 300 V ④ ④ ④ ; neutral conductors meeting Rule 230E1; supply cables meeting Rule 230C1 (ft)	Noninsulated communication conductors; supply cables of 0 to 750 V meeting Rule 230C2 or 230C3 (ft)	open supply conductors. Oto	Open supply conductors over 750 V to 22 kV; ungrounded portions of guys meeting Rules 215C4, 215C5, and 279A1 exposed to 750 V to 22 kV @@ (ft)
(4) Other areas traversed by vehicles, such as cultivated, grazing, forest, and orchard lands, industrial sites, commercial sites, etc. @	15.5	15.0	16.5	18.5

The portion(s) of span guys between guy insulators and the portion(s) of anchor guys above guy insulators that are not grounded shall have clearances based on the highest voltage to which they may be exposed due to a slack conductor or guy.

The portion of anchor guys below the lowest insulator meeting Rules 279A1 and 215C5 may have the same clearance as grounded guys.

(a) When designing a line to accommodate oversized vehicles, these clearance values shall be increased by the difference between the known height of the oversized vehicle and 14 ft.

Electric Des	sign And	
Construction	Standards	5

	Replaces
LGE	None
KU	None

By: Hethcox/Leake 10/07/14 Page 4 of 4

Electric System Codes & Standards

NESC CLEARANCE OF CONDUCTORS AND SUPPORTING 02 10 24 STRUCTURES TO RAIL CARS Rev.

CLEARANCES FOR CONDUCTORS, WIRES AND CABLES

NESC Rule 234I - Clearance of wires, conductors, and cables to rall cars

General: The Information on this standard defines NESC minimum clearance requirements for conductors running beside or over railroad tracks. No conductor may violate the clearance envelope under any of the following loading conditions:

- 1) 120° F, No Wind, Final Sag
- 2) Maximum Operating Temperature (if greater than 120° F), Final Sag, No WInd
- 3) 32° F, No Wind, 1/2" Ice, Final Sag
- 4)-20° F, No Wind, Initial Sag
- 5) 60° F, Flnal Sag, 6 lb/sq-ft WInd

Actual clearance requirements may exceed NESC minimum requirements as determined by individual railroad permits or agreements but shall in no case be less than NESC requirements.

Where overhead wires, conductors, or cables run along or over railroad tracks, the clearance in any direction shall not be less than that shown in the illustration. The values of V and H are defined as follows:

- V = vertical clearance from the wire, conductor, or cable above the top of the rall as specified in Table 232-1 minus 20'-0", the assumed height of the rail car.
- H = horizontal clearance from the wire, conductor, or cable to the nearest rail, which is equal to the required vertical clearance above the rall as specified in Table 232-1 minus 15'-0".

NOTE: For clearances Involving voltages of 22kV phase-to-ground and above, contact the Standards Group.

NESC Table 232-1- Vertical clearance of wires, conductors, and cables above	
ground, roadway, rall, or water surfaces	

	3	oudway, ruin, or water su		
Nature of surface underneath wires, conductors, or cables	Insulated communication conductors and cable; messengers; overhead shield/surge-protection wires; grounded guys; ungrounded guys exposed to 0 to 300 V @@; neutral conductors, messenger supported shielded primary supply cables up to 22kV (ft)	Noninsulated communication conductors; multiplex secondary conductors (ft)	Open wire secondary, 0 to 750 V③; ungrounded guys exposed to over 300 V to 750 V ⑲ (ft)	Open primary supply conductors, over 750 V to 22 kV; ungrounded guys exposed to 750 V to 22 kV@ (ft)
	Where wires, condu	ctors, or cables cross ov	er or overhang	
1. Track rails of railroads (except electrified railroads using overhead trolley conductors) @@@	23.5	24	24.5	26.5

*SEE PAGE 2 OF THIS STANDARD FOR FOOTNOTES.

Attachment to Response to KCTA Question No. 1-16 51 of 97 Wolfe NESC CLEARANCE OF CONDUCTORS AND SUPPORTING STRUCTURES TO RAIL CARS 02 10 24 Rev.

Note: These clearances are computed for railroads handling standard rail cars as common carriers in interchange service with other railroads. Where wires, conductors, or cables run along mine, logging, and similar railways that handle only cars smaller than standard freight cars, the value of H may be reduced by one-half the difference between the width of a standard rail car (10'-8") and the width of the narrower car.

Applicable Footnotes:

Electric System

Codes & Standards

③For wires, conductors, or cables crossing over mine, logging, and similar railways that handle only cars lower than standard freight cars, the clearance may be reduced by an amount equal to the difference in height between the highest loaded car handled and 20'-0", but the clearance shall not be reduced below that required for street crossings.

③Does not include neutral conductors meeting Rule 230E1.

¹ To clearance from ground is required for anchor guys not crossing tracks, rails, streets, driveways, roads, or pathways.

Oungrounded guys and ungrounded portions of span guys between guy insulators shall have clearances based on the highest voltage to which they may be exposed due to a slack conductor or guy.

^(B)Anchor guys Insulated In accordance with Rule 279 may have the same clearance as grounded guys.

Image Adjacent to tunnels and overhead bridges that restrict the height of loaded rail cars to less than 20'-0", these clearances may be reduced by the difference between the highest loaded rail car handled and 20'-0", if mutually agreed to by the parties at interest.

@See Rule 234I for the required horizontal and diagonal clearances to rall cars.

NESC Rule 231C - Clearances of supporting structures from railroad tracks

Where railroad tracks are parallel to or crossed by overhead lines, all portions of the supporting structures, support arms, anchor guys, and equipment attached thereto less than 22'-0" above the nearest track rail shall have horizontal clearances not less than the values required by Rule 231C1 or 231C2 for the situation concerned.

NOTE: See Rule 234I

1. Not less than 12'-0" In from the nearest track rall.

EXCEPTION 1: A clearance of not less than 7'-0" may be allowed where the supporting structure is not the controlling obstruction, provided sufficient space for a driveway is left where cars are loaded or unloaded. EXCEPTION 2: Supports for overhead trolley-contact conductors may be located as near their own track rail as conditions require. If very close, however, permanent screens on cars will be necessary to protect passengers.

EXCEPTION 3: Where necessary to provide safe operating conditions that require an uninterrupted view of signals, signs, etc., along tracks, the parties concerned shall cooperate in locating structures to provide the necessary clearance.

EXCEPTION 4: At industrial sidings, a clearance of not less than 7'-0" shall be permitted, provided sufficient space is left where cars can be loaded or unloaded.

2. The clearances of Rule 231C1 may be reduced by agreement with the railroad(s).

	Replaces
LGE	None
KU	None

By: Hethcox/Stlckler 09/11/09 Page 2 of 2

Attachment to Response to KCTA Question No. 1-16 52 of 97 Wolfe rances To Other Supporting Structures 02 10 3

Electric System	Conductor Clearances To Other Supporting Structures	02 10 30
Codes & Standards	conductor chourdiness to callor supporting structures	Rev.

NESC Rule 234 B - Clearances of Wires, Conductors, and Cables From Other Supporting Structures This standard details the minimum National Electrical Safety Code (NESC) Rule 234B clearances for wires, conductors, or cables of one line passing over, under or beside a lighting support, traffic signal support or a supporting structure of a second line (including other E.ON U.S. structures), without being attached thereto. Also shown are Table 233-1 values for vertical clearance of conductors and cables to effectively grounded support guys passing over/under lines used for supporting traffic lights or other communications cables. All values represent absolute minimum clearances and should not be used as design values.

Horizontal and Vertical clearances must be checked under at rest conditions at the sag that produces the minimum clearance. Horizontal clearances must also be checked under wind conditions. The following conditions apply.

Horizontal	120° F, no wind, final sag
And	Maximum operating temperature (if greater than 120°), no wind, final sag
Vertical	32° F, no wind, 1/2" ice, final sag
(No Wind)	-20° F, no wind, initial sag
Horizontal (with Wind)	$60^{\rm o}$ F, $6\#/{\rm ft}^2$ wind (reduced to $4\#/{\rm ft}^2$ in sheltered areas), final sag

Rule 234 B clearances are based on standard values for Horizontal (5 ft for voltages up to 50 kV, no wind) and Vertical (4.5 ft for voltages below 22 kV and 5.5 ft for voltages between 22 kV and 50 kV) as modified by exceptions. Other requirements apply to Horizontal clearances with wind. The table below shows minimum values with allowable exceptions (H-1) and (V-1).

Clearance By Conductor Or Cable Type	Insulated Communications Cables Messengers Neutrals	480V 3-wire	One	n Wire	Open W	ire Priman/	Opon Wi	ro Drimany
All Voltages Are Phase-Ground For Effectively Grounded Systems	Grounded Guys Duplex, Triplex Quadruplex & Paralay	(Delta) Secondary Quadruplex 0-750∨ (ft) (ft)		Open Wire Primary & Aerial Cable 750V-<22K∨ (ft)		Open Wire Primary & Aerial Cable 22KV-50KV (ft)		
SEE PAGE 2 FOR EXAMPLES	Secondary 0-300∨ (ft)							
Rule 234 B - Horizontal And V	/ertical Clearance	of Wires, Con	ductors A	nd Cables	To Other	r Supportir	ng Structu	ures
Horizontal Clearance	H At Rest	H At Rest	H At Rest	HW With Wind	H At Rest	HW With Wind	H At Rest	HW With Wind
At Rest All Sag Conditions (H) At 60°F Final Sag With 6#/ft ² Wind (HW)	5' 3' By Exception H-1	5'	5'	3.5	5'	4.5'	5'	4.5'
Vertical Clearance (V)	V All Sags	V All Sags	V V All Sags All Sags		V All Sags			
At Rest All Sag Conditions	4.5' 2' By Exception V-1	4.5'	4.5'		4.5'		5.5'	
Vertical Clearance To Traffic Sign	al Support Mess	engers And Oth	ner Suppo	ort Guys (V	G) - All Co	onditions (From Tab	le 233-1)
Vertical Clearance (VG) To Traffic Signal Messengers And Other	V All Sags	V All Sags		V Sags			V All Sags	
Guys Crossing Over/Under Conductors At Rest All Sag Conditions	2'	2'		4'		5'		5' V>22KV

Horizontal Exception

(H-1) EXCEPTION: For effectively grounded guys and messengers, insulated communication conductors and cables, neutrals meeting Rule 230E1, and cables of 300 V or less to ground meeting the requirements of Rule 230C1, 230C2, or 230C3, the horizontal clearance may be reduced to 900 mm (3 ft).

Vertical Exceptions

(V-1) EXCEPTION 1: For effectively grounded guys and messengers, insulated communication conductors and cables, and neutrals meeting Rule 230E1 and for cables of 300 V or less to ground meeting the requirements of Rule 230C1, 230C2, or 230C3, the vertical clearance may be reduced to 600 mm (2 ft).

(V-2) EXCEPTION 2: The vertical clearances may be reduced by 600 mm (2 ft) If both of the following conditions are met:

a. The wires, conductors, or cables above and the supporting structure of another line below are operated and maintained by the same utility.

b. Employees do not work above the top of the supporting structure unless

1. The upper circuit is de-energized and grounded per Rule 444D or temporarily insulated or repositioned, or

2.Other equivalent measures are taken

	Replaces
LGE	NONE
KU	NONE

By: Clark/Leake 03/28/07 Page 1 of 2

		53 of 97 Wolfe
Electric System Codes & Standards	Conductor Clearances To Other Supporting Structures	02 10 30 _{Rev.}

Attachment to Response to KCTA Question No. 1-16

This standard covers minimum clearance requirements to other structures. It does not cover clearances to other conductors carried on adjacent structures. Those clearances are specified under NESC Rule 233. When nearby structures also support conductors or cables, both clearance to the structure and conductor-to-conductor clearances to the lines on the other structure must be checked to determine minimum clearance requirements.

=

This standard also does not apply to clearances to signs or building under Rule 234 (See Standard 02 10 08) or other objects not classified as supporting structures.

Attachment to Response to KCTA Question No. 1-16 54 of 97 Wolfe

CONDUCTOR BLOWOUT

02 10 32 Rev.

Table 1 - HBOF and VBOF at 6#/ft² WInd By Conductor

Conductor Size/Strand	Conductor Dia. (in.)	Nominal Weight (#./1000')	(HBOF) Horizontal Blow Out Factor @6lb/ft2 Wind)	(VBOF) Vertical Blow Out Factor @6lb/ft2 Wind)	Conductor Size/Strand	Conductor Dia. (in.)	Nom inal Weight (#./1000')	(HBOF) Horizontal Blow Out Factor @6lb/ft2 Wind)	(VBOF) Vertical Blow Out Factor @6lb/ft2 Wind)
					1/0-7st AAC	0.368	98.9	0.8808	0.5266
#6 Solid Cu. Bare	0.162	79	0.7159	0.3018	336.4-19st AAC	0.666	315.5	0.7259	0.3122
#4 Solid Cu. Bare	0.204	126	0.6298	0.2232	795-61st AAC	1.028	745.7	0.5675	0.1766
#2 Solid Cu. Bare	0.258	201	0.5395	0.158					
1/0 Solid Cu. Bare	0.325	320	0.4527	0.1083	1/0 AAAC or 123.3 ACAR	0.398	114.9	0.866	0.5
2/0 Solid Cu. Bare	0.365	403	0.4123	0.089	3/0 AAAC or 195.7 ACAR	0.502	182.5	0.8088	0.4119
3/0 Solid Cu. Bare	0.41	508	0.3739	0.0725					
4/0 Solid Cu. Bare	0.46	641	0.3377	0.0588	6 A CW-CU	0.23	101.52	0.7497	0.3382
					4 A CW-CU	0.29	161.55	0.668	0.2558
#6 3-Strand Cu. Bare	0.201	80.3	0.7812	0.3758	2 A CW-CU	0.366	256.82	0.5803	0.1856
#4 3-Strand Cu. Bare	0.254	127.6	0.7059	0.2916	1/0 F CW-CU	0.388	354.17	0.4804	0.123
#2 7-Strand Cu. Bare	0.292	204.9	0.5806	0.1858					
1/0 7-Strand Cu. Bare	0.368	325.9	0.492	0.1294	392.5 ACAR	0.721	368	0.6998	0.2857
2/0 7-Strand Cu. Bare	0.414	411	0.4496	0.1067	840.2 ACAR	1.055	788.7	0.5559	0.1688
3/0 7-Strand Cu. Bare	0.464	517.9	0.4091	0.0875					
4/0 7-Strand Cu. Bare	0.522	653.6	0.3707	0.0712					
500 37-Strand Cu. Bare	0.813	1542.5	0.2549	0.033	MaxImum Blowout Is a	t mld enon d	f the cas at r	nid enan le kr	nown than
					the NESC blow out is:	t miu span. I	i ule say at i	niu spaniis ki	iown, uien
#6 7-Strand Cu. Poly	0.244	91.5	0.8	0.4	HMID SPAN= SAG MID	SPAN *HBOF	and VRISE	MID SPAN=	
#4 7-Strand Cu. Poly	0.292	128.9	0.7496	0.3382	SAGMID SPAN *VBOF	2427 575	NA 8 1999	6 11 50	
#2 7-Strand Cu. Poly	0.382	204.9	0.6819	0.2685	Where HBOF and VBC				
1/0 7-Strand Cu. Poly	0.488	357.5	0.5637	0.174	Blowout at any other p at that location.	oint of Interes	a in the span	is based on	the sag
2/0 7-Strand Cu. Poly	0.534	446.1	0.5136	0.1419	50810.02130-54130.02		VSpan - Die	(+)	
3/0 7-Strand Cu. Poly	0.584	556.9	0.4644	0.1144	SAGPOI= (4)(DIST)(Span ²	Nopan - Dis		
4/0 7-Strand Cu. Poly	0.642	696.4	0.4186	0.0918		-			
250 19-Strand Qu. Poly	0.694	818.8	0.3902	0.0793	HPOI = SagPOI *HBOI	and VPOI	= SAGPOI *\	BOF	
350 19-Strand Cu. Poly	0.799	1136.1	0.3317	0.0566					
500 37-Strand Qu. Poly	0.974	1626.2	0.2869	0.042					

Replaces

By: Clark/Leake 04/12/07 Page 1 of 1

Electric Design And Construction Standards

lge Ku

Electric Design And Construction Standards Replaces LGE None KU None

Attachment to Response to KCTA Question No. 1-16

By: Hethcox/Leake 07/07/15 Page 1 of 1 3Ø POLE WITH ANTENNA ABOVE PRIMARY

Electric Design And Construction Standards Replaces LGE None KU None By: Hethcox/Pollock 07/17/15 Page 1 of 6 3Ø POLE WITH ANTENNA BELOW SECONDARY

Electric Design And Construction Standards Replaces LGE None KU None By: Hethcox/Pollock 07/17/15 Page 2 of 6

IGE KU

Electric Design And Construction Standards Replaces LGE None KU None By: Hethcox/Pollock 07/17/15 Page 3 of 6 1Ø POLE WITH ANTENNA ABOVE PRIMARY

Electric Design And Construction Standards Replaces LGE None KU None By: Hethcox/Pollock 07/17/15 Page 4 of 6

Electric Design And Construction Standards Replaces LGE None KU None By: Hethcox/Pollock 07/17/15 Page 5 of 6

07 14 02

Rev.

WIRELESS ANTENNA ATTACHMENTS ON WOOD POLES

GUIDELINES FOR DESIGN AND INSTALLATION

- All clearance dimensions are a minimum distance.
- Installations will be allowed on bucket truck accessible poles only, where bucket truck poses no risk of damage to public or private property.
- Consult Distribution Operations Design Group to ensure that 120/240 volt service is available on the pole in question.
- All installations must conform to all applicable electrical codes and LG&E/KU requirements for clearances, climbing space and working space.
- All communications equipment shall be furnished and installed by the facility owner. Refer to Standard 510403 for service related equipment.
- Only qualified personnel approved by LG&E/KU shall be allowed to work above the communications space. They shall be trained in and knowledgeable of the clearance requirements and working rules of OSHA and the NESC.
- A driven ground is required at each equipment location.
- · Grounding shall be in accordance with all applicable electrical codes. Bond the antenna bracket and radio/equipment box(s) to ground lead.
- Only one antenna unit shall be installed per pole.
- The height of all poles used to mount antennas must be increased by a minimum of five feet above the existing pole's height. The cost of the taller pole is the responsibility of the attacher. Pole height not to exceed 60' above ground.
- Minimum Class 3 pole is required unless approved by LG&E/KU Distribution Operations staff.
- If a pole is topped for installation the untreated pole top must be treated and covered.
- Unit may not be mounted to any pole on which there are transformers, risers, vertical supply conductors to aerial services, switch handles, capacitor banks or similar fixtures.
- The service riser shall be installed by LG&E/KU.
- All wireless attachment sites must be metered. No third party meters will be allowed on LG&E/KU poles.
- The meter socket shall be a minimum of 100 amp, ringless style, with bypass horns. The service will be three wire 120/240 volt. Two wire 120 volt service is not acceptable.
- The antenna power source must have an additional lockable disconnect installed to allow the antenna and radio/equipment boxes to be disconnected from the
 battery backup before work is performed within the area designated by the RF Warning signs. Each disconnect must provide a visible break, a test point, or similar
 means for utility workers to ensure circuit has been de-energized. Each attaching company shall provide and install a lockbox with a key to their disconnect switch
 inside. LG&E/KU will padlock the lockbox to enable access to the attacher's key for the disconnect switch.
- All antennas are required to have two RF warning signs installed. A sign shall be installed near the pole top at the level where the safe approach distance ends for the FCC General Population/Uncontrolled Power Levels and read at minimum "Warning - Antenna Approach distance is _____ Feet." The second sign shall be installed near the base of the pole at eye-level and shall read "Radio frequency fields at pole top may exceed FCC limits for utility work on structure within the safe antenna approach distance designated above. Disconnect RF power using disconnect located on ground mounted equipment cabinet before working within the safe antenna approach distance. Call ______ (800-XXX-XXX) for disconnect instructions or more information." The sign shall include the antenna owners name and phone number or attachee number. When LGE/KU work is required within the antenna approach distance, workers will disconnect the RF source.
- All antennas and ancillary equipment shall be labeled with the owner's name and contact information, including an emergency contact number.
- It is the antenna owners responsibility to inform all pole attachee's on the pole of the RF exposure hazards and mitigation techniques.
- The antenna cables shall be run in non-metallic conduit. Schedule 80 will be used for the first 8' from the ground and Schedule 40 or 80 can be used for the rest of the riser. Conduit is to extend at least 48" above and below any supply conductors.
- All cabinets must be installed with thru-bolts on same side of pole to maintain ability to climb pole when required. Band-type attachments shall not be used.
- Maximum weight for radio/equipment boxes will be determined during permitting process.
- Atachee may have their equipment mounted to the pole contained within no more than two separate boxes unless approved from LG&E/KU Distribution Operations staff.
- Antenna cable(s) shall be installed in maximum 2" non-metallic conduit strapped every 5' unless approved from LG&E/KU Distribution Operations staff.
- Customer's equipment may not occupy more than two adjacent quadrants.
- The weatherhead and Wi-Fi unit must be mounted on the same quadrant of the pole unless approved by LG&E/KU Distribution Operations staff.
- The unit cannot prevent other communication companies from accessing their facilities.
- LG&E/KU is not responsible for any damages caused by weather events, other's actions, or when the pole and associated fixtures are maintained or replaced.
- LG&E/KU must approve the final design prior to any installations.

Replaces LGE None KU None By: Hethcox/Pollock 07/17/15 Page 6 of 6

Electric Design And Construction Standards <u>Replaces</u> LGE 200502C/200504D KU A-4-8.2/A-4-8.3 By: Hethcox/Stickler 05/07/2010 Page 2 of 2

RECOMMENDED JOINT GAS AND ELECTRIC TRENCH

40 02 11 Rev. B

Conduit Size	O.D.		
1"	1.315"		
1-1/2"	1.900"		
2"	2.375"		
2-1/2"	2.875"		
3"	3.500" 4.000"		
3-1/2"			
4"	4.500"		
5"	5.563"		
6"	6.625"		
8"	8.625"		

- A. Trench Depth Depends on OD of Gas Pipe and Conduit. Actual Trench Depth To Be Specified on Construction Drawings.
- B. Electric, Telephone And Cable Conduits (Conduit Sizes Vary) Electric Conduits To Be Placed On Property Side Of Trench
- C. If Trench Line Is Well Defined And Known To Be At Final Grade, The 3" Grade Change Buffer May Be Omitted. If Existing Grade Is Not Believed To Be Within 3" Of Final Grade, Additional Depth Will Be Required.

KU None

Page 1 of 1

D. Trench Depths Less Than Values Shown In The Table Below May Be Allowed If Significant Rock Is Encountered. Reductions May Only Be Made With Approval Of Center Engineer or Construction Team Leader. Supplemental Protection, Such As Heavier Wall Conduit And/Or Concrete Encasement, Etc. May Be Required.

RECOMMENDED JOINT ELECTRIC TRENCH

RECOMMENDED JOINT GAS & ELECTRIC TRENCH

DUCT REQUIREMENTS FOR DEVELOPER PROVIDED JOINT 40 02 12 TRENCH ROAD CROSSING Rev. D

DEVELOPER INSTALLED DUCT FOR JOINT GAS & ELECTRIC TRENCH

NOTE:

END OF DUCTS TO BE CAPPED, TAPED OVER OR PLUGGED. ENDS OF DUCT MUST BE MARKED WITH UPRIGHT 2"X4" WOOD STUD STAKE, OR OTHER SUITABLE MARKER AND PLACE PAINT MARKER ON CURB (IF PRESENT) PRIOR TO START OF CONSTRUCTION. <u>TRACER WIRE FOR GAS SERVICES MUST EXTEND THROUGH THE</u> ENTIRE DUCT INCLUDING TO THE END OF THE STUB AND TAPED IN PLACE.

DUCT REQUIREMENTS FOR DEVELOPER PROVIDED JOINT 40 02 12 TRENCH ROAD CROSSING Rev. D

DEVELOPER INSTALLED DUCT FOR JOINT ELECTRIC TRENCH

NOTE:

END OF DUCTS TO BE CAPPED, TAPED OVER OR PLUGGED. ENDS OF DUCT MUST BE MARKED WITH UPRIGHT 2"X4" WOOD STUD STAKE, OR OTHER SUITABLE MARKER AND PLACE PAINT MARKER ON CURB (IF PRESENT) PRIOR TO START OF CONSTRUCTION

Attachment to Response to KCTA Question No. 1-16 68 of 97 Wolfe

Electric System Codes & Standards

TYPICAL UNDERGROUND PRIMARY RISER

42 08 04 Rev.C

UNDERGROUND PRIMARY RISER MINIMUM RISER SIZE-42 08 04 . 01 2" (#2, 1/0,& 2/0 15KV 1Ø) 42 08 04 . 02 4" (#2, 1/0, 2/0 & 4/0 15KV 3Ø) 42 08 04 . 03 5" (350KCM & 500KCM 15KV 3Ø) 42 08 04 . 04 6" (750KCM & 1000KCM 15KV 3Ø)

Application:

This standard details 1 phase and 3 phase primary riser installations up to 6" conduit. This standard does not cover cable, terminators or supports above riser.

ITEM	IIN	COMMON MATERIAL DESCRIPTION				QUAN
1	Conduit, PVC, 10', Sch. 80, Grey (See Table)					
2		Conduit, PVC, 10', Sch. 40, Grey (See Table)				2
3	SEE TABLE	TABLE Elbow, PVC, 90 Deg., 36" R, Sch. 80 (See Table)		1		
4		Bracket, Conduit Standoff, 1-Conduit (See Table)				6
5		Bell End,	Bell End, Conduit (See Table)			
6	VARIES	Bolt,Mach	Bolt, Machine, Galv.			
7	7000339	Washer,Curved,5/8" Bolt,3"			6	
			01	02	03	04

Item Description		01	02	03	04
item	Description	2"	4"	5"	6"
1	Sch. 40 Conduit 10'	7000671	7000668	7000667	7000666
2	Sch. 80 Conduit 10'	7000663	7000660	7000659	7000658
3	36"R Sch. 80 Ebow	7002452	7002455	7002456	70002457
4	Standoff Bracket	7004572	7005755	0514643	7005920
5	Bell End	7004406	7003419	1191894	7003467

- 1. Riser elbow and first 10' of conduit to be Schedule 80 grade. Conduit above this level can be either Schedule 40 or 80.
- 2. Soil to be well compacted by hand or mechanical tamped within 5' of pole. Optionally, condult can be encased in concrete fill within 5' of pole.
- 3. Bracket Placement: Bottom bracket +/- 9" above ground. Second bracket a minimum of 8'-0" above first bracket Top bracket to be within 12" of top of riser. Other brackets equally spaced on 5'-0" to 8'-0" spacing.
- 4. Conduit bell end used at top of riser to minimize damage from sharp edge of condult.
- 5. Conduit to extend to a minimum of 40" or as high as practical above top communication attachment.
- 6. Number, size and length of conduit vary.
- 7. Riser locations on pole to be specified on construction drawings to maximize climbing space and minimize potential damage from vehicles. High risk areas near roadways, in parking lots, etc. require conduit hub band. See standard 42 08 02.
- 8. Use cable support above condult as needed.

See Standard 42 04 02 For Optional Brackets For Mult-Condult Applications

Replaces LGE 42 08 04 B - 42 08 05 B LGE 42 08 07 B - 40 02 15 A

By: Hethcox/Leake 10/21/11 Page 1 of 1

Attachment to Response to KCTA Question No. 1-16 69 of 97 Wolfe

Electric System Codes & Standards

TYPICAL UNDERGROUND SECONDARY RISER

42 08 06 Rev. C

Electric Design And Construction Standards <u>Replaces</u> LGE 42 08 06-B - 42 08 08 B - 42 08 09 B KU NONE

By: Hethcox/Leake 10/21/11 Page 1 of 2

	Attachment to Response to KCTA Ques	tion No. 1-16
		70 of 97 Wolfe
Electric System Codes & Standards	TYPICAL UNDERGROUND SECONDARY RISER	42 08 06 Rev. C

CONSTRUCTION NOTES:

- A) Connections between underground secondary and transformers or overhead secondary must be made in a manner that prohibits water from entering the underground secondary conductors.
- Vertical connections directly to transformers, etc. must be made with pin connectors that are sealed with silicon rubber tape or a heat shrink tube. Use of an unblocked compression splice to transition from aluminum to copper above the riser is not a water tight connection and is subject to damage from freezing.
- Horizontal connections to conductors can be made with pin connectors or conventional connectors with a reverse drip loop (loops up) in the underground cable to eliminate the possibility of water entering the cable.
- B) Conduit location can be in any quadrant if climbing space can be preserved and conflicts with other equipment (including telecommunications) are avoided. When necessary, top of conduct can be above the bottom of transformers or secondary when placed in an open quadrant.

Underground Secondary to 3Ø Transformer Bank Or Secondary

Underground Secondary to 1Ø Transformer Or Secondary

Construction Standards

Replaces LGE 42 08 06-B - 42 08 08 B - 42 08 09 B KU NONE By: Hethcox/Leake 10/21/11 Page 2 of 2 Attachment to Response to KCTA Question No. 1-16 71 of 97 Wolfe

Electric System Codes & Standards

1Ø OVERHEAD TO UNDERGROUND SERVICE 400A MAX

51 04 03 Rev. F

Location/Addr	ess	Contact Phone #		Overhead Job Necessary
Service Size	Classification	Pole-Splice Box	Duct Box Size	Secondary Voltage
	<a>400 Amp	1 - 2-1/2" Duct	12" X 20" X 1	2" 120/240V - 1Ø - 3W
A	A 400 Amp 1 - 5" Duct		13" X 24" X 1	5" 240/480V - 1Ø - 3W
	Special	94		
bolts and electri	boxes to be high den ic logo. 20" X 12" Splice Bo	isity polyethylene supplie ox (IIN 1243827)	<u>13" X 24" X 1</u>	aptive stainless steel Penta-Head
Newbasis	State of the second sec	142012TGRN-ELEC	Newbasis	SGA132415TGRN-ELEC
Highline	1320	D-1G2G-HDE1NH	Highline	1324-15P2P-HDE1
Old Castle	1220	01010	Old Castle	13241011
			Pencell Plastics	DT-1324X-EWB

Notice: It is the responsibility of the contractor to ensure the installation is built according to the latest revision of this document. The contractor should request a current version of this document from LG&E's representative before beginning construction. Notes: Customer is responsible for the installation of the splice box and conduit system from the pole designated by LG&E to the service entrance. The customer is also responsible for the service cable from the splice box to the service entrance. LG&E will take ownership of the splice box and conduit between the pole and the splice box. All other facilities will remain the responsibility of the customer. The splice box and conduit to the designated pole must be installed to the specifications, dimensions, location and orientation specified by LG&E and this standard. For any questions concerning this information, contact your service representative. All material as well as installation of material must be approved by LG&E prior to LG&E energizing service. If splice box must be installed in a sidewalk or in or near a driving area, customer must provide a suitable traffic rated box. Consult your service representative.

*For special designs above 400A, 1Ø, contact your Design Technician

3" face to face between multiple conduits.

2 Duct Special

Application

*Always Call Before You Dig (BUD) 1-800-752-6007 to locate underground utilities (Kentucky Underground)

Electric Design And Construction Standards

Replaces LGE 510403E KU None

1 Duct

By: Hethcox/Leake 11/18/15 Page 1 of 1

Attachment to Response to KCTA Question No. 1-16 72 of 97

Wolfe

Electric System Codes & Standards

3Ø OVERHEAD TO UNDERGROUND SERVICE 800A MAX

51 04 05 Rev. D

Location/Address		Contact Phone #		Overhead Job Necessary
Service Size	Classification	Pole-Splice Box Duo	t Box Size	Secondary Voltage
	☐ ≤ 400 Amp	1 - 5" Duct	24" X 36" X 24"	120/208V - 3Ø - 4W
А	401/800 Amp	2 - 5" Ducts	24" X 36" X 24"	□ 240V - 3Ø - 3W
2 <u></u> 2.	Special	3 to 4 - 5" Ducts	36" X 60" X 24"	□ 480V - 3Ø - 3W
bolts	ce boxes to be high de	nsity polyethylene supplied e 24" X 36" X 24" for 2 co	nduits max, Use 36" X 60" >	aptive stainless steel Penta-Head
Pencell Plastic Carson Indust	-		Pencell Plastics Carson Industries	PEM-3660X-EWB 36601002

Notice: It is the responsibility of the contractor to ensure the installation is built according to the latest revision of this document. The contractor should request a current version of this document from LG&E's representative before beginning construction.

Notes: Customer is responsible for the installation of the splice box and conduit system from the pole designated by LG&E to the service entrance. The customer is also responsible for the service cable from the splice box to the service entrance. LG&E will take ownership of the splice box and conduit between the pole and the splice box. All other facilities will remain the responsibility of the customer. The splice box and conduit to the designated pole must be installed to the specifications, dimensions, location and orientation specified by LG&E and this standard. For any questions concerning this information, contact your service representative. All material as well as installation of material must be approved by LG&E prior to LG&E energizing service. If splice box must be installed in a sidewalk or in or near a driving area, customer must provide a suitable traffic rated box. Consult your service representative.

*Services above 800A may be permitted where space is not available to instal a padmount transformer.

*Always Call Before You Dig (BUD) 1-800-752-6007 to locate underground utilities (Kentucky Underground)

Electric Design And Construction Standards Replaces LGE 510405C KU None

2 Ducts

1 Duct

3 Duct Special Application 6" 3" 3"

> By: Hethcox/Leake 1/26/16 Page 1 of 1

Appendix A

LG&E THIRD PARTY POLE ATTACHMENT HANDBOOK Last updated March 23, 2016

Louisville Gas & Electric Company

	Upon Completion of A	pplication, EMAII	to LGEPole	(Date)
	Applica	tion for Third	l Party At	achment
Type of Attachment:	CATV TELECOM	THER Applicar	nt	
		THER PProve		(Company Name)
Location			(City, County	and State)
Application will not be accep Make-Ready Work Required				
Pole Number	Number of Attachr Cables Services	nents Miscellaneous		Pole Locations & Remarks
Make-Ready Work Request Applicant's Co	ed Completion Date:	racts		Applicant's Engineering Representative
By			By Title	(Company Name)
-	nsible for notifying LG&E R	epresentative upor	n completion	eader, Third Party Pole Attachment) at 502-333-1873. of work such that a job audit may be performed.
	ТО	BE COMPLETED) BY LG&E (DNLY
Application granted for	attachment(s), subject to app	olicant approval of c	hanges and rea	arrangements at an estimated cost to the applicant
of <u>\$</u> ("Make	-Ready Costs")	LG&E Represe	entative	
		By		
Tetel Attest		Title		
Total Attachments Requested	on this Application (No of Att)	Date		

Appendix B

Type Type D and DV Single-Phase Reclosers

DIMENSIONS AND WEIGHTS

Figure 11. Dimensions of Type D (left) and Type DV (right) reclosers.

TABLE 9 Weights and Oil Capacities

Туре	Weight with Oil (lb)	Oil Capacity (gal)
D	430	20
DV	556	30

Kyle[®] is a registered trademark of Cooper Industries, Inc.

Attachment to Response to KCTA Question No. 1-16 77 of 97 Wolfe

280-10

Figure 8. Dimensions of Types 6H and V6H reclosers.

TABLE 17 Weights and Oil Capacity

	Recloser Type							
	н	4H, V4H	6H, V6H	L	V4L	E	4E	V4E
Weight; dry (lb)	55	76	236	106	142	107	142	147
Weight, with oil (lb)	85	114	394	159	205	169	205	210
Oil capacity (gal)	4	5	21	7	9 ¹ / ₂	81/4	9½	91/2

S280-44-1

RECLOSER DIMENSIONS

Note: All dimensions are mm (inches). Dimensions shown are approximate.

Terminal Options	Α
Eyebolt , 1/0 - 500 mcm Cable Range (630 A maximum)	80 (3.25)
Eyebolt , 4/0 - 1000 mcm Cable Range (800 A maximum)	108 (4.25)
Flat Pad, 2-hole (630 A maximum)	114 (4.5)
Flat Pad, 4-hole (800 A maximum)	121 (4.75)
Stud Type , 1.125 - 12 threads (800 A maximum)	82 (3.25)

	В	С
NOVA STS 15	1008	733
110 kV BIL	(39.75)	(29)
NOVA STS 15	1064	789
125 kV BIL	(42)	(31)
NOVA STS 27	1064	789
125 kV BIL	(42)	(31)
NOVA STS 27	1163	888
150 kV BIL	(45.75)	(35)
NOVA STS 38	1163	888
170 kV BIL	(45.75)	(35)

Creepage Distances

Description	15 kV	15 kV	27 kV	27 kV	38 kV
	110 kV BIL	125 kV BIL	125 kV BIL	150 kV BIL	170 kV BIL
Terminal to terminal	1052	1052	1052	1052	1052
	(41.5)	(41.5)	(41.5)	(41.5)	(41.5)
Lower terminal to ground/earth	673	772	772	950	950
	(26.5)	(30.5)	(30.5)	(37.5)	(37.5)

Figure 2.

Type NOVA STS recloser dimensions, NOVA STS 15 shown.

S280-44-1

Site-Ready Pole-Mounting Hanger

A pre-assembled site-ready pole-mounting hanger, which bolts directly to the recloser frame, is available for pole-mounting installation. Refer to Figure 13.

Terminal Options	Α
Eyebolt , 1/0 - 500 mcm Cable Range (630 A maximum)	80 (3.25)
Eyebolt , 4/0 - 1000 mcm Cable Range (800 A maximum)	108 (4.25)
Flat Pad, 2-hole (630 A maximum)	114 (4.5)
Flat Pad, 4-hole (800 A maximum)	121 (4.75)
Stud Type, 1.125 - 12 threads (800 A maximum)	82 (3.25)

	Dimension B
NOVA STS 15	791
110 kV BIL	(31.25)
NOVA STS 15	847
125 kV BIL	(33.25)
NOVA STS 27	847
125 kV BIL	(33.25)
NOVA STS 27	946
150 kV BIL	(37.25)
NOVA STS 38	946
170 kV BIL	(37.25)

NOVA STS Single-Tank, Triple-Single, Electronically Controlled Recloser Installation and Operation Instructions

Arrester-Mounting Brackets

The arrester-mounting bracket accessory can be bolted to the recloser frame and pole-mounting hanger for the addition of inboard and outboard arresters. The arresters are not included with the brackets. Refer to Figure 14.

Figure 14. Dimensions of NOVA STS recloser with site-ready pole-mounting hanger and arrester-mounting bracket accessories.

Types NOVA15, NOVA27, and NOVA38 Three-Phase, Microprocessor-Controlled Reclosers

RATINGS AND SPECIFICATIONS

TABLE 1

Voltage Ratings (kV)

Description	15 kV	15 kV	27 kV	27 kV	38 kV
Maximum Voltage	15.5 kV	15.5 kV	29.2 kV	29.2 kV	38.0 kV
Rated Basic Impulse Level	110.0 kV	125.0 kV	125.0 kV	150.0 kV	170.0 kV
Radio Noise Limit (µV)	100 @ 9.4 kV	100 @ 9.4 kV	100 @ 16.4 kV	100 @ 16.4 kV	100 @ 23.0 kV
Power Frequency Withstand, Dry	50 kV	50 kV	60 kV	60 kV	70 kV
Power Frequency Withstand, Wet	45 kV	45 kV	50 kV	50 kV	60 kV

TABLE 2 **Current Ratings (Amperes)**

Description	15 kV	15 kV	27 kV	27 kV	38 kV
Rated Continuous Current	630 A*	630 A*	630 A*	630 A*	630 A*
Short Circuit Current, Symmetrical	12.5 kA**	12.5 kA**	12.5 kA**	12.5 kA**	12.5 kA
Making Current, Asymmetrical Peak	31.0 kA	31.0 kA	31.0 kA	31.0 kA	31.0 kA
Cable Charging Current	10 A	10 A	25 A	25 A	40A

*800 amp accessory is also available. **16.0 kA option is also available. (Making Current is 40.0 kA Asymmetrical Peak.)

TABLE 3 Mechanical Ratings

Description	15 kV	15 kV	27 kV	27 kV	38 kV
Min. Mechanical/Electrical Operations Without Maintenance (C-O) Mass (Weight) - kg (lbs)	10,000 86 (190)	10,000 91 (200)	10,000 91 (200)	10,000 101 (223)	10,000 101 (223)

TABLE 4 **Duty Cycle**

Туре	Percentage of Interrupting Rating	Number of Unit Operations	Minimum Circuit X/R Value
NOVA	15-20	88	4
	45-55	112	8
	90-100	32	15
		Total 232	

TABLE 5

Auxiliary Switch Interrupting Ratings

Volts	Inductive AC (amps)	Non- Inductive AC (amps)	Inductive DC (amps)	Non- Inductive DC (amps)
24	_	_	15.0	20.0
48	-	-	7.5	10.0
120	60	80	-	-
125	-	_	1.5	2.0
240	30	60	-	-
250	-	-	0.45	0.5

DIMENSIONS

Terminal Options	A	
Eyebolt, 1/0 - 500 mcm Cable Range (630 A maximum)	80 (3.25)	ĺ
Eyebolt, 4/0 - 1000 mcm Cable Range (800 A maximum)	108 (4.25)	
Flat Pad, 2-hole (630 A maximum)	114 (4.5)	
Flat Pad, 4-hole (800 A maximum)	121 (4.75)	
Stud Type, 1.125 - 12 threads (800 A maximum)	82 (3.25)	

	В	С
NOVA15	791	508
110 kV BIL	(31.25)	(20)
NOVA15	847	564
125 KV BIL	(33.25)	(22.25)
NOVA27	847	564
125 KV BIL	(33.25)	(22.25)
NOVA27	946	663
150 kV BIL	(37.25)	(26.0)
NOVA38	946	663
170 kV BIL	(37.25)	(26.0)

Creepage Distances

Description	15 kV	15 kV	27 kV	27 kV	38 kV
	110 kV BIL	125 kV BIL	125 kV BIL	150 kV BIL	170 kV BIL
Terminal to terminal	1052	1052	1052	1052	1052
	(41.5)	(41.5)	(41.5)	(41.5)	(41.5)
Lower terminal to ground/earth	673	772	772	950	950
	(26.5)	(30.5)	(30.5)	(37.5)	(37.5)

Figure 7. Type NOVA recloser dimensions, NOVA27 shown.

Types NOVA15, NOVA27, and NOVA38 Three-Phase, Microprocessor-Controlled Reclosers

Figure 8.

Dimensions of Type NOVA recloser with pole-mounting hanger and arrester-mounting bracket accessories.

Cable Range (630 A maximum)	States and American and American	
Eyebolt, 4/0 - 1000 mcm Cable Range (800 A maximum)	108 (4.25)	
Flat Pad, 2-hole (630 A maximum)	114 (4.5)	
Flat Pad, 4-hole (800 A maximum)	121 (4.75)	
Stud Type, 1.125 - 12 threads (800 A maximum)	82 (3.25)	

	В	С
NOVA15	791	508
110 kV BIL	(31.25)	(20)
NOVA15	847	564
125 kV BIL	(33.25)	(22.25)
NOVA27	847	564
125 kV BIL	(33.25)	(22.25)
NOVA27	946	663
150 kV BIL	(37.25)	(26.0)
NOVA38	946	663
170 kV BIL	(37.25)	(26.0)

Figure 9. Dimensions of Type NOVA recloser with substation-mounting frame accessory.

NOVA-TS Triple-Single, Electronically Controlled Recloser Installation and Operation Instructions

RATINGS AND SPECIFICATIONS

Check Recloser Ratings Prior to Installation

The recloser must be applied within its specified ratings. Check data plate ratings and compare with the system characteristics at the point of application prior to installation. Tables 1–5 list the ratings and specifications for the Type NOVA-TS triple-single recloser.

TABLE 1

Voltage and	Current	Ratings
-------------	---------	---------

Rating	15-8-400	15-12-630	15-12-800	27-8-400	27-12-630	27-12-800	38-8-400	38-12-630	38-12-800
Maximum Design Voltage (kV)	15.5	15.5	15.5	29.2	29.2	29.2	38.0	38.0	38.0
Nominal Operating Voltage (kV)	14.4	14.4	14.4	24.9	24.9	24.9	34.5	34.5	34.5
Basic Insulation Level (BIL) (kV)	110	110	110	125	125	125	150	150	150
60 Hertz Withstand Voltage (kV)									
Dry, one minute	50	50	50	60	60	60	70	70	70
Wet, ten seconds	45	45	45	50	50	50	60	60	60
Max RIV at 1.0 MHz			. :						
9.4 kV (μV)	100	100	100						
16.4 kV (μV)				100	100	100			
23.0 kV (µV)							100	100	100
Continuous Current Ratings (A)	400	630	800	400	630	800	400	630	800
Sym. Interrupting Current (A)	8,000	12,500	12,500	8,000	12,500	12,500	8,000	12,500	12,500
Overload Capability									
125% - 8 Hours (A)	500	788	None	500	788	None	500	788	None
150% - 4 Hours (A)	600	945	-	600	945	-	600	945	-
Cable Charging Ourrent (A)	10	10	10	25	25	25	40	40	40
Line Charging Current (A)	2	2	2	5	5	5	5	5	5
Three-Second Current, Sym. (A)	8,000	12,500	12,500	8,000	12,500	12,500	8,000	12,500	12,500

TABLE 2 Mechanical Life

Minimum Operations 2,500

TABLE 3 Duty Cycle

Percent of Maximum Circuit Interrupting Rating	Minimum X/R Ratio	Number of Unit Operations
15-20	4	88
45-55	8	112
90-100	16	32
		Total 232

TABLE 4 Mass (Weight) per Mounted Triple-Single Cluster with Pole-Mounting Hanger

Recloser	NOVA-TS-15	NOVA-TS-27	NOVA-TS-38
kg (lbs)	188 (413)	194 (428)	208 (458)

TABLE 5 Mass (Weight) per Single-Phase Recloser

Recloser	NOVA-TS-15	NOVA-TS-27	NOVA-TS-38
kg (lbs)	48 (105)	50 (110)	55 (120)

RECLOSER DIMENSIONS

Figure 2. Kyle Type NOVA-TS triple-single recloser dimensions. NOVA-TS Triple-Single, Electronically Controlled Recloser Installation and Operation Instructions

DIMENSIONS WITH POLE-MOUNTING ACCESSORY

NOVA-TS Dimensions with Pole-Mounting Accessory						
	Dimension B	Dimension C				
NOVA-TS-15	1079 mm (42.5 in)	1361 mm (53.5 in)				
NOVA-TS-27	1140 mm (45.0 in)	1422 mm (56.0 in)				
NOVA-TS-38	1235 mm (48.5 in)	1514 mm (59.5 in)				

Terminal Option Type	Dimension A
Eyebolt - (630 A) 1/0 to 500 MCM Cable Range	80 mm/3.25 in
Eyebolt - (800 A) 4/0 to 1000 MCM Cable Range	108 mm/4.25 in
Flat Pad - 2 Hole (630 A max)	114 mm/4.5 in
Flat Pad - 4 Hole (800 A max)	121 mm/4.75 in
Stud Type - (800 A max) 1.125 - 12 threads	82 mm/3.25 in

Figure 3.

Kyle Type NOVA-TS triple-single recloser dimensions with pole-mounting accessory.

OVR-3 and OVR-3SP Technical Data

Nom. operating voltage:	2.4 14.4	24.9	34.5	kV
Rated Max. voltage:	15.5	27	38	kV
Rated power frequency	50/60	50/60	50/60	Hz
Rated continuous current:	630/800/1000/1200*	630/800/1000/1200*	630/800/1200	А
Rated symmetrical interrupting current:	8/10/12.5/16*	10/12.5/16*	12.5/16	kA
Rated lightning impulse withstand (BIL):	110/125	125/150*	150/170	kV
Dry withstand 60 Hz 1 Min.:	50	60	70	kV
Wet withstand 60 Hz 10 Sec.:	45	50	60	kV
Phase spacing:	15.50 (394)	15.50 (394)	15.50 (394)	inches (mm
External creep distance, H2 ground:	38.00 (960)	38.00 (960)	50.70 (1288)	inches (mm
External creep distance, H1 H2:	45.00 (1160)	45.00 (1160)	49.80 (1260)	inches (mm
Min. external strike distance:	9.50 (240)	9.50 (240)	14.40 (367)	inches (mm
Max. interrupting time:	0.030	0.030	0.030	sec max
Max. closing time:	0.055	0.055	0.044	sec max
Materials: Vacuum interrupter encapsulated in	hydrophobic cycloaliph:	atic epoxy with cast alun	ninum/stainless ste	el construction
Current sensors:	One per phase encap			
Operating temperature:	40° C to +70° C ((40° F to +158° F)		
Control voltage:	90 265 VAC / 125 V			
OVR 3 high voltage unit weight:	333 (150)	333 (150)	430 (195)	lbs (kg)
OVR 3SP high voltage unit weight (each):	100 (45)	100 (45)	130 (60)	lbs (kg)
Standard control cabinet weight:	165 (75)	165 (75)	175 (80)	lbs (kg)
Battery (contact factory for other options				
• 48 VDC, 12 AH battery bank (Std. Cabi		H battery bank (LPCC)		
· Sealed lead acid rechargeable battery pac		· · · · · · · · · · · · · · · · · · ·		
Monitor locally and remotely				
• Easily accessible in low voltage control of	abinet			
 Allows up to 48 hours (15 27 kV) / 24 h power 		PCC) carryover and mu	ltiple operations u	pon loss of
 Includes capacitor backup in case of dis 	charged or disconnecte	d battery		
Summary Specifications		-		
	h voltage sensing), con	tact factory for accurac	y down to $\pm 1\%$	
	racy (with PT voltage i		-	
Current: ±1% accu		1 /		
Load profile data (requires voltage input): kV Demand Watts and VARs; Frequency		ccuracy) (with PT volta	ge input); Power l	Factor;
OVR Testing				
ANSI: Meets all applicable recloser standard	s (ANSI 37.60 2003, IE	EE, and IEC)		
Life test: 10,000 mechanical operations with				
PCD Testing				
 Surge Withstand Capability: SWC and fa class IV for all connections except comr 		NSI C37.90.1 and IEC	255 22 1 class III :	and 255 22 4
 Isolated comm ports per ANSI 37.90.1 EMI test per ANSI C37.90.2 		Test Wave only, & per I	EC 255 22 1 class	Ш

OVR-3 Dimensional Drawings

Pole Mount

14

OVR-3 Dimensional Drawings

Substation Mount

OVR-3SP Dimensional Drawings

Cross Arm Mount (15 38 kV)

OVR-3SP Dimensional Drawings

Wrap Around Mount (15 38 kV)

DIMENSIONS AND WEIGHTS

TABLE 19

Dimensions of Recloser Without BCT Accessory*

Туре	Bushing Type	A (In.)	B (In.)	C (In.)	D (in.)
WE VWE	13 in. standard creepage or 17 in. extra creepage	41 ⁵ /8 43 ⁷ /8	11 ¹ /8 11 ¹ /8	26 ⁵ /8 28 ⁷ /8	15 15
WVE27 VWVE27	26 ¹ /2 in. creepage 26 ¹ /2 in. creepage	47 ³ /4 50	11 ³ /4 11 ³ /4	26 ⁵ /8 28 ⁷ /8	21 ¹ /8 21 ¹ /8

*Dimensions configured to the nearest 1/8 in.

TABLE 20

Dimensions of Recloser With BCT Accessory*

Туре	Bushing Type	A (In.)	B (In.)	C (In.)	D (In.)	
WE 13 in. standard VWE creepage or 17 in. extra creepage		46 ³ /8 48 ⁵ /8	11 7/8 11 7/8	26 ⁵ /8 28 ⁷ /8	19 ³ /4 19 ³ /4	
WVE27 VWVE27	26 ¹ / ₂ in. creepage 26 ¹ / ₂ in. creepage	52 ¹ /2 54 ³ /4	12 ⁵ /8 12 ⁵ /8	26 ⁵ /8 28 ⁷ /8	25 7/8 25 7/8	

*Dimensions configured to the nearest 1/8 in.

Figure 11. Dimensions of W-group 15 kV and 27 kV three-phase electronically controlled reclosers.

Types VWE, VWVE27, VWVE38X, WE, WVE27, and WVE38X; Three-Phase Reclosers

Figure 12. Dimensions of W-group 38 kV three-phase electronically controlled reclosers.

TABLE 21 Weights and Oil Capacity

Recloser Type	Weight with Oil*(lb)	Oil Capacity (gal)
WE	790	38
WVE27	840	38
WVE38X	990	52
VWE	790	45
VWVE27	830	45
VWVE38X	990	61

Add 25 lbs. for each bushing current transformer.

TABLE 22 Dimensions of W-group 38 kV Recloser With and Without BCT Accessory*

Туре	Bushing Type	A (In.)	B (In.)	C (In.)	D (ln.)	E (In.)	F (In.)
WVE38X	26 ¹ /2 in. creepage	47 ¹ /8	15	26 ⁵ /8	20 ¹ /2		15 ¹ /8
VWVE38X	26 ¹ /2 in. creepage	49 ³ /8	15	28 ⁷ /8	20 ¹ /2		15 ¹ /8
WVE38X	26 ¹ / ₂ in. w/ BCT	51 ³ /4	15 7/ ₈	26 5/8	25 ¹ /8		15 ⁵ /8
VWVE38X	26 ¹ / ₂ in. w/ BCT	54	15 7/ ₈	28 7/8	25 ¹ /8		15 ⁵ /8

*Dimensions configured to the nearest 1/8 in.

Recloser Dimensions

Туре	Bushing Type	(In.)	(In.)	(In.)
VXE15 VXE15 VXE27 VXE27	11% std. 17 in. extra creepage 17 in. std. 26½ in. extra creepage	45½ 48 ¹ ½6 48 ¹ ½6 48 ¹ ½6	19 22¾ 22¾ 6 22¾ 6	10% 11% 11% 11%

Control Mounting Dimensions

Table 5

Weights and Oil Capacity of VXE15 and VXE27

Weight, without oil (lb)	149
Weight, without oil (lb) Weight, with oil (lb)	198
Oil capacity (gal).	. 9½

ORDERING INFORMATION

Constructing a Catalog Number

To order a Type VXE recloser:

- 1. Use the chart below and Table 10 to construct a catalog number that describes the required recloser.
- 2. Specify the control plug-ins and control cable from Tables 6 and 7.
- 3. Specify, by catalog number and description, the required recloser and control accessories from Tables 8 and 9.

KVXE Basic letters for VXE-group reclosers.

- Recloser maximum operating voltage.
 15 for 15 kV or
 27 for 27 kV
 - 23 Closing coil code number selected from Table 10 for the system on which the recloser is to be used.

KVXE 15 23

KVXE1523 is the catalog number that represents a Type VXE15 recloser rated for use on a 12.47 kV system, with a 7.2 - 7.62 kV closing coil.

Table 6

Basic VXE Electronic Recloser Control and Plug-In TCC Cards

Description	Catalog Number
VXE Electronic Control	KVXE2
Phase trip Timing Characteristics	
Select phase trip curve A, B, C, D, E, F,	
N or R.	
Phase Trip timing plug-in card for	
TCC 1	KSEC101 -1
Phase Trip timing plug-in card for	
TCC 2	KSEC101 -2

Types W, WV27, WV38X, VW, VWV27, VWV38X; Three Phase; Hydraulically Controlled

DIMENSIONS AND WEIGHTS

Note: For dimensions of reclosers with mountings, see Service Information S 280-85-2 Recloser Mountings.

Figure 25. Dimensions of W-group reclosers.

280-30

TABLE 15 Overall Dimensions mm (in)

Recloser Type	Without bushing current transformer accessory	Dim A	Dim B	Dim C	Dim D	Dim E	Dim F	Dim G	Dim H	Dim I*	Dim J	Dim K
W	Standard 13 in. creepage or	1057 41⁵/₀	283 11½	79 3%	333 13¼	933 36³/4	1076 42³/₀	435 17⅓	1172 46⅓	289 11³/₅	343 13½	676 265/#
VW	17-in. extra-creepage bushings	1114 43′/₅	283 11%	79 3¹/₅	333 13¼	933 36³/4	1076 42³/₃	435 17¼	1172 46⅓	289 11³/₃	343 13½	733 28 ⁷ /8
WV27		1213 47³/₄	302 11′/₅	105 4'/₃	333 13¼	933 36³/4	1076 42³/₅	435 17'/₀	1172 46⅓	289 11³/₃	343 13½	676 26⁵/s
VWV27	Standard 261/2-in. creepage bushings	1270 50	302 11 ⁷ /8	105 4¼	333 13⅓	933 36³/4	1076 42³/s	435 17⅓	1172 46⅓	289 11¾	343 13¹/₂	733 281/8
WV38X		1197 47'/₀	381 15	105 4¼₃	438 17¼	940 37	1083 42⁵/₅	540 21¼	1178 46³/s	384 15⅓	254 10	676 26⁵/₅
VWV38X		1254 49³/₃	381 15	105 4¹/₃	438 17¼	940 37	1083 42⁵/≀	540 21¼	1178 46∛₄	384 15¹/₅	254 10	733 28'/₅
			1	*		•		•	L			1
Recloser Type	With bushing current transformer accessory	Dim A	Dim B	Dim C	Dim D	Dim E	Dim F	Dim G	Dim H	Dim I*	Dim J	Dim K
W	Standard 13 in. creepage or	1178 46³/₅	302 117/₀	79 31/a	333 13¼	933 36³/4	1076 42³/₅	435 17%	1172 46½	289 11³/₃	343 13½	676 26⁵/₃
W	17-in. extra-creepage bushings	1235 48⁵/₅	302 117/₀	79 3¹/₃	333 13¼	933 36³/4	1076 42³∕₁	435 17'/₅	1172 46⅓	289 11³/₃	343 131∕₂	733 28 ⁷ /8
WV27		1334 52'/2	321 12⁵/₅	105 4'/₅	333 13¹/₃	933 36³/₄	1076 42³/₅	435 17⅓	1172 46%	289 11³/₃	343 131/2	676 26⁵/₃
VWV27	Standard 261/2-in. creepage bushings	1391 54³/4	321 125/8	105 4¹/₃	333 13¼	933 36³/4	1076 42³/₀	435 17⅓	1172 46%	289 11³/₃	343 13½	733 287/8
WV38X		1314 51³/4	403 157/s	105 4¼	438 17¼	940 37	1083 42⁵/₅	540 21 ¹ / ₄	1178 46³/8	397 15⁵∕₃	241 9½	676 26%
VWV38X		1375 54¼	403 157/₀	105 4¹/₅	438 17¼	940 37	1083 42%	540 21¼	1178 46³∕₃	397 15⁵/₃	241 9½	733 287/s

* Dim. I is the distance between bushings (centerline-to-centerline.)

TABLE 16 Welghts and Oil Capacity

Recloser Type	Weight With Oil* kg (ib)	Oil Capacity L (gal)
W	356	144
	(785)	(38)
WV27	359	156
	(790)	(41)
WV38X	459	201
	(1012)	(53)
VW	384	156
	(845)	(41)
VWV27	384	171
	(845)	(45)
VWV38X	422	224
	(930)	(59)

* Add 11 kg (25 lb) for each bushing current transformer.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-17

Responding Witness: Robert M. Conroy

- Q-1-17. Explain the basis for and data related to the proposed requirement of Terms and Conditions of Attachment No. 8(j) to impose a 50 percent surcharge on Attachment Customers that do not adequately make adjustments upon 30 days' notice.
- A-1-17. The proposed surcharge is intended to serve as an incentive for Attachment Customers to promptly correct deficient construction and maintenance practices. The Commission has previously authorized the use of such surcharges for such purposes. See, e.g., The CATV Pole Attachment Tariff of Blue Grass Rural Electric Cooperative, Administrative Case No. 251-29 (Ky. PSC May 12, 1983); The CATV Pole Attachment Tariff of Grayson Rural Electric Cooperative, Administrative Case No. 251-35 (Ky. PSC May 23, 1983); The CATV Pole Attachment Tariff of Farmers Rural Electric Cooperative, Administrative Case No. 251-32 (Ky. PSC May 27, 1983); The CATV Pole Attachment Tariff of Fox Creek Rural Electric Cooperative, Administrative Case No. 251-32 (Ky. PSC May 27, 1983); The CATV Pole Attachment Tariff of Fox Creek Rural Electric Cooperative, Administrative Case No. 251-35

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-18

- Q-1-18. Explain the basis for and provide any data related to the proposal to require an on- off switch for each and every Wireless Facility installation.
 - a. Do You intend to apply Your proposal to require an on-off switch to Wi- Fi access points?
- A-1-18. LG&E personnel are required to ensure that the antenna is not energized while work on the pole is in progress. A disconnect switch at the pole allows the worker to ensure the antenna has been powered-down prior to commencing work on the pole, without having to rely on the efficacy of remote disconnection.
 - a. No, LG&E does not intend to require an on-off switch to strand mounted Wi-Fi access points.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-19

- Q-1-19. Explain the basis for and provide all data related to Your proposed requirement that no bundle of cables shall exceed two inches in diameter, including any safety or engineering reports or analyses on which this proposal is based.
- A-1-19. The requirement that no bundle of cables shall exceed two inches in diameter is a long-standing LG&E construction standard that has been present in the Cable Television Attachment Charges schedule for many years. As cables grow in diameter, they put additional strain on the utility poles to which they are attached. This is particularly problematic when considering ice and wind loading, as larger cables gather significantly more ice and are more heavily affected by wind than smaller cables.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-20

- Q-1-20. Explain the procedures and processes You will use to "verify the number, location, and type of Attachment Customer's Attachments" under proposed Terms and Conditions of Attachment No. 13.
- A-1-20. From time to time LG&E may engage internal or contractor resources to visually inspect Attachment Customer's Attachments to verify the number, location and type of attachments.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-21

Responding Witness: Robert M. Conroy

- Q-1-21. Explain the basis for and provide data related to how You will determine whether an Attachment is "unauthorized."
- A-1-21. LG&E intends to rely upon voluntary reporting of Attachment Customers, as well as spot inspections, and periodic inspections to detect any unauthorized attachments.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-22

Responding Witness: Robert M. Conroy

- Q-1-22. Explain the basis for and provide data related to the penalty You propose for Unauthorized Attachments, including data related to the cost basis of such proposed penalty.
- A-1-22. Longstanding Commission precedent has permitted a pole owner to assess double the established attachment charge for an Attachment Customer's unauthorized placement of attachments on a utility's structures. Approving such charges, the Commission has stated:

Similarly, since some CATV operators have made attachments to utility poles without prior authorization, and the utility must rely, between inspections, on voluntary reporting by such operators, it is reasonable for the utility to charge a penalty for unauthorized attachments. We will allow tariff provisions which provide for a charge of not greater than twice the amount equal to the rate that would have been due had the installation been made the day after the last previous required inspection.

The Adoption of A Standard Methodology for Establishing Rates For CATV Pole Attachments, Administrative Case No. 251 (Ky. PSC Sept. 17, 1982) at 5 (emphasis added).

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-23

Responding Witness: John P. Malloy / John K. Wolfe

- Q-1-23. Please provide data identifying the design and purpose of the Your proposed Advanced Metering System ("AMS") and Distribution Automation Project ("DA"), including the nature of any wireline facilities necessary to provide AMS and DA.
- A-1-23. See the Testimony of John P. Malloy, Exhibit JPM-1, Sections 4 and 5 for an overview of the design and purpose of the proposed AMS project and Appendix A-3 for data sheets related to the various system components. Some AMS field devices will utilize private fiber optic cable for communications. AMS and DA field devices on the public cellular networks will utilize leased wireline services (MPLS) that connect LG&E/KU data centers to the cellular carriers.

See the Testimony of Paul W. Thompson, Exhibit PWT-5 for an overview of the design and purpose of the proposed DA project and Exhibit PWT-4 for relevant equipment schematics and diagrams.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-24

Responding Witness: John P. Malloy / John K. Wolfe

- Q-1-24. Please explain how the AMS and DA systems will make use of distribution poles, including the extent and nature of and attachment of wires and facilities to Poles, the Pole space to be used, and the location on the Poles to be used by any such wires and facilities.
 - a. Provide data related to any proposed installation of meters and/or equipment necessary to support the meters on Your Poles. Please include data showing where the equipment will be located and changes to existing pole facilities and Attachments that may be required to accommodate proposed AMS and DA systems as well as the basis for any such changes.
- A-1-24. The AMS system will require the installation of radio-frequency (RF) communications infrastructure on distribution poles. This infrastructure facilitates the transmission of the meter data from the advanced meters to Company back-office systems.

The DA program will require the installation of electronic sectionalizing devices on distribution poles. The current company standard provides adequate clearance for the electronic sectionalizing devices between primary and neutral conductors. Poles with legacy construction standards may require the installation of a taller pole or the lowering of the system neutral. A control box will be mounted at the base of the pole 5 feet from ground level. All cabling required from the control box to the electronic sectionalizing device will be protected by armoring the cable and installing the unarmored sections of cable in conduit or other acceptable means of protection. See the attached for an illustration of the Company's standard installation of a SCADA capable recloser.

a. See attached for data illustrating the Company's standard related to the installation of AMS router infrastructure.

Electric Design And Construction Standards Replaces LGE None KU None By: Hethcox/Mills 10/14/16 Page 1 of 3

By: Hethcox/Mills 10/14/16 Page 2 of 3

Electric Design And Construction Standards

IGE KU

<u>Replaces</u> LGE None KU None

Electric System Codes & Standards

12KV ELECTRONIC 3 PHASE RECLOSER INSTALLATION CROSSARM CONSTRUCTION D.A.

21 12 12 Rev.

Notes:

1. BOTH THE TANK AND HEAD OF THE RECLOSER IS TO BE GROUNDED.

2. 12KV RECLOSERS SHOULD BE SET TO SINGLE PHASE TRIP SINGLE PHASE LOCKOUT.

3. 12KV TRANSFORMERS ARE TO BE CONNECTED TO A AND C PHASES. CONNECT ONE TRANSFORMER TO THE SOURCE SIDE AND THE OTHER TRANSFORMER TO THE LOAD SIDE.

4. ENSURE THAT THE BACKUP BATTERY IS CONNECTED.

5. CONTROL SHALL BE MOUNTED TYPICALLY AT 60" AT CENTER OF CONTROL ABOVE GROUND LINE TO ALLOW EASE OF ACCESS.

6. THE FIRST 10' OF CONTROL AND POWER CABLE IS ARMORED. U-GUARD MUST BE INSTALLED TO COVER THE NON-ARMORED SECTION OF CABLE AND SHALL EXTEND A MINIMUM OF 40" PAST THE HIGHEST COMMUNICATION ATTACHMENT.

ITEM	IIN	DESCRIPTION	QTY
1	7001280	INSULATOR, SUSPENSION, 15 KV, POLYMER	6
2	VARIES	DEADEND-VARIOUS SIZES	6
3	7001269	INSULATOR, PIN TYPE, 15KV, POLYMER	3
4	7004088	PIN,INSULATOR,STRAIGHT,5/8"X6"	3
5	3015303	CROSSARM,FG,TANGENT,3-5/8"X4-5/8"X8'	1
6	VARIES	5/8" BOLT-VARIOUS SIZES	8
7	VARIES	FARGO CONNECTOR-VARIOUS SIZES	6
8	VARIES	FARGO COVER-VARIOUS SIZES	6
9	7000879	BRACKET,CUTOUT/ARRESTER,X-ARM	2
10	7001957	CUTOUT, FUSED, 15KV, NON-LOADBREAK, W100A TUBE	2
11	1157894	CONNECTOR, PARALLEL, AL, 336.4-795 MCM TO 8 SLD-2/0 STR COPPER	8
12	1159527	STIRRUP, BAIL, HOT LINE, COPPER, TIN PLATED	8
13	7000591	CLAMP,HOT LINE,8-2/0,CU	8
14	VARIES	POLY WIRE FOR JUMPERS-SIZED TO PRIMARY	20
15	3014901	SWITCH, RECLOSER BYPASS, 14.4KV, 900A, 110KVBIL, 3 PULL	1
16	3016577	LUG. TERMINAL. ALUMINUM. BOLTED. TEE CONNECTOR 336/795	6
17	3015376	500MCM BRONZE BOLTED CONNECTOR-SIZES VARY	6
18	3021740	RECLOSER, THREE SINGLE PHASE MODULES WITH SINGLE CONTROL	1
19	VARIES	3/4" SPACER BOLT-SIZES VARY	2
20	1160519	GUARD,CABLE,10'-2",U-SHAPED,PVC	3
21	1181001	LOCK,PAD,WITH 1-1/2" SHANK,BRASS	1
22	7000337	WASHER,FLAT,SQUARE,2-1/4" X 2-1/4" X 3/16",FOR 5/8" BOLT	8
23	1243701	WASHER,CURVED,SQUARE,4" X 4" X 3/4",GALV,FOR 3/4" BOLT	2
24	7000602	CLAMP, GROUND, TRANSFORMER TANK, BRZ, #8SLD TO 2/0 STR	1
25	7000303	BOLT, MACHINE, 1/2", 2", SS, SILICON BRONZE NUT, 2 FLAT & 1 BELLVL W/	6
26	1159243	SCREW,LAG,1/2"X 4",GIMLET POINT,GALV STD PKG=250	8
27	7000302	BOLT, MACHINE, 1/2", 1-1/2", SS, SILICON BRONZE NUT, 2 FLAT & 1 BELLVL	12
28	3000347	SLIDE, ANIMAL, 25" X 48", POLYETHYLENE, POLE PROTECTION	1
29	7000401	CONDUCTOR, OH WIRE, 500, CU-SD, XLPE, 80 MIL, 90-DEG C RATED, 37 STF	20

CONTROL INSTALLATION DETAIL

Electric Design And Construction Standards Replaces LGE None KU None By: Hethcox/Mills 10/14/16 Page 3 of 3

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-25

Responding Witness: John P. Malloy / John K. Wolfe

- Q-1-25. Please identify all communications services that the proposed AMS and DA could be used to provide.
- A-1-25. There will be no communications services provided by the AMS and DA systems.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-26

Responding Witness: John P. Malloy

- Q-1-26. Please provide data related to the radiofrequencies that the meters will use, the meters' abilities to communicate with other equipment and facilities, and any analysis of interference with other Attachments on the Poles.
- A-1-26. The information is contained on pages 103-128 of 169 in the Testimony of John P. Malloy, Exhibit JPM-1, Appendix 3. The advanced meters utilize the 902 to 928 MHz FHSS unlicensed frequency for communication transmissions. Communications by the meters are encrypted so communication with other equipment requires a number of safeguards including, but not limited to, proper configuration by Company to enable communications. The Company has not performed any analysis of interference with other Attachments on Poles.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-27

- Q-1-27. Please explain the impact of the proposed AMS and DA on existing wireline and wireless attachments of Attachment Customers, including whether rearrangement of the existing Attachment Customers' facilities or other make ready will be required to accommodate deployment of AMS and DA. If rearrangement of the existing Attachment Customers' facilities or other make ready work is required, please explain the allocation of costs of such work and whether Term and Condition No. 15 of the Proposed Tariff will apply.
- A-1-27. The installation of DA equipment will be in the power space on poles and clearance will be governed by the National Electrical Safety Code and Company standards. No equipment installation is anticipated in the communications space. It is anticipated that AMS equipment will be installed in both the power space and the communications space. Where adequate pole height or adequate pole capacity is not available on an existing pole for new facilities or equipment, the pole will be replaced to provide the necessary space and/or capacity. Third party attachments will be transferred to the new pole at the attachment owner's expense. In limited cases, and where possible, attaching parties will occasionally be required to rearrange attached facilities on an existing pole to create additional space. Third party attachments will be rearranged on an existing pole when requested at the attachment owner's expense. Provisions in the proposed tariff in section 15(b) are consistent with a long-standing provision present in the Cable Television Attachment Charges schedule.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-28

- Q-1-28. Please provide a copy of the "strategic network design study" referenced at Your Response to Commission Staff's First Requests for Information (filed Dec. 8, 2016) Response to Request No. 12 at p. 3.
- A-1-28. See attached. The study contains confidential information and is being provided pursuant to a petition for confidential protection.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-29

Responding Witness: Robert M. Conroy

- Q-1-29. Explain the authority you are seeking through your application for a Public Convenience and Necessity ("CPCN"), including whether such authority will authorize You to provide communications services to any third party.
- A-1-29. The CPCN authority requested is to deploy AMS and DA across LG&E's electric distribution system as described in the testimony of Mr. Thompson concerning DA and the testimony of Mr. Malloy concerning AMS. The CPCN authority requested will not authorize LG&E to provide communications services to any third party.

Response to Kentucky Cable Telecommunications Association's First Request for Information Dated January 11, 2017

Case No. 2016-00371

Question No. 1-30

Responding Witness: Robert M. Conroy

- Q-1-30. Please explain whether You intend to increase the electric rate(s) charged to Cable Television System Operators and Telecommunications Carriers and, if so, the percentage increase(s) of the rate(s).
- A-1-30. The current rate is \$7.25 per year for each attachment to pole. The proposed rates are as follows:
 - \$ 7.25 per year for each wireline pole attachment.
 - \$ 0.81 per year for each linear foot of duct.
 - \$ 84.00 per year for each Wireless Facility.

See also Schedule M-2.1-E at Tab 66 of the filing requirements for proposed increases in electric rates generally, including those charged to Cable Television System Operators and Telecommunications Carriers who take electric service from LG&E.