COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

APPLICATION OF LOUISVILLE GAS AND)	
ELECTRIC COMPANY FOR AN ADJUSTMENT)	CASE NO.
OF ITS ELECTRIC AND GAS RATES AND FOR)	2016-00371
CERTIFICATES OF PUBLIC CONVENIENCE)	
AND NECESSITY)	

RESPONSE OF
LOUISVILLE GAS AND ELECTRIC COMPANY
TO
KENTUCKY CABLE TELECOMMUNICATIONS ASSOCIATION'S FIRST REQUESTS FOR INFORMATION

DATED JANUARY 11, 2017

FILED: JANUARY 25, 2017

VERIFICATION

COMMONWEALTH OF KENTUCKY)
) SS: COUNTY OF JEFFERSON

The undersigned, Robert M. Conroy, being duly sworn, deposes and says that he is Vice President - State Regulation and Rates for Louisville Gas and Electric Company and Kentucky Utilities Company, an employee of LG\&E and KU Services Company, and that he has personal knowledge of the matters set forth in the responses for which he is identified as the witness, and the answers contained therein are true and correct to the best of his information, knowledge and belief.

Subscribed and sworn to before me, a Notary Public in and before said County and State, this \qquad
 2017.

My Commission Expires:

SUSAN M. WATKINS
Notary Public, State at Largo, KY
My Commission Expirss Mer. 19, 2017
Notary ID \# 485723

VERIFICATION

COMMONWEALTH OF KENTUCKY)
) $\mathrm{SS}:$ COUNTY OF JEFFERSON

The undersigned, John K. Wolfe, being duly sworn, deposes and says that he is Vice President - Electric Distribution for Kentucky Utilities Company and Louisville Gas and Electric Company and an employee of LG\&E and KU Services Company, and that he has personal knowledge of the matters set forth in the responses for which he is identified as the witness, and the answers contained therein are true and correct to the best of his information, knowledge and belief.

Subscribed and sworn to before me, a Notary Public in and before said County and State, this 20th day of \qquad 2017.

My Commission Expires:
JUDY SCHOULER
Notary Public, State at Large, KY
My commission expires duly 11,2018
Notary ID 512743

VERIFICATION COMMONWEALTH OF KENTUCKY)) $\mathbf{S S}:$ COUNTY OF JEFFERSON

The undersigned, Christopher M. Garrett, being duly sworn, deposes and says that he is Director - Rates for Kentucky Utilities Company and Louisville Gas and Electric Company and an employee of LG\&E and KU Services Company, that he has personal knowledge of the matters set forth in the responses for which he is identified as the witness, and the answers contained therein are true and correct to the best of his information, knowledge and belief.

Christopher M. Garrett

Subscribed and sworn to before me, a Notary Public in and before said County and State, this \qquad day of
 2017.

My Commission Expires:

JUDY SCHOOLER

Notary Public, State at Large, KY
My commission expires duty 41,2018
Notary ID \# 512743

VERIFICATION

COMMONWEALTH OF KENTUCKY)
) SS: COUNTY OF JEFFERSON

The undersigned, William Steven Seelye, being duly sworn, deposes and states that he is a Principal of The Prime Group, LLC, that he has personal knowledge of the matters set forth in the responses for which he is identified as the witness, and the answers contained therein are true and correct to the best of his information, knowledge and belief.

Subscribed and sworn to before me, a Notary Public in and before said County and State, this 20th day of fenelary 2017.

My Commission Expires:
JUDY SCHOULER
Notary Public, State at Large, KY
情 commission expires July 11, 2018
Notary ID ${ }^{\text {W }} 512743$

VERIFICATION

COMMONWEALTH OF KENTUCKY)
) SS : COUNTY OF JEFFERSON

The undersigned, John P. Malloy, being duly sworn, deposes and says that he is Vice President - Gas Distribution for Louisville Gas and Electric Company and Kentucky Utilities Company, an employee of LG\&E and KU Services Company, and that he has personal knowledge of the matters set forth in the responses for which he is identified as the witness, and the answers contained therein are true and correct to the best of his information, knowledge and belief.

Subscribed and sworn to before me, a Notary Public in and before said County and State, this $25 \mathrm{H}_{4}$ day of \qquad 2017.

My Commission Expires:
JUDY SCHOOLER
Notary Public, State at Lange, KY
Ny commission expires duly 11,2048

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-1

Responding Witness: Robert M. Conroy / John K. Wolfe

Q-1-1. Provide the basis for Your proposed exclusion of (a) incumbent local exchange carriers with joint use agreements, (b) facilities subject to a fiber exchange agreement, and (c) Macro Cell Facilities from Your Proposed Tariff.
a. Please provide all data related to the basis for different charges to these users of Your Poles.
b. Please provide all agreements with such users related to the rates, terms, and conditions of Attachment to Your Poles.

A-1-1.
a. See the response to PSC 2-77.
b. See attached. The agreements are confidential and are being provided pursuant to a petition for confidential protection.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-2

Responding Witness: John K. Wolfe

Q-1-2. Provide a copy of any internal construction standards and/or specification to determining the "Communications Space" on poles set forth under the Proposed Tariff.

A-1-2. See the response to Question No. 1-16.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-3
Responding Witness: Robert M. Conroy
Q-1-3. Explain the basis for excluding street light poles from the definition of Structure.
A-1-3. The definition of Structure does not exclude all street light poles, only street light poles that are neither a wood pole or located in a public right-of-way. LG\&E does not permit any attachments to non-wood poles. Such poles are not built to support a wireline or wireless attachment. Wood light poles that are located in non-public easements are poles that are leased to a third party. Under the "leasing arrangement," the third party assumes the cost of construction of the pole. Reimbursement of the cost of the pole occurs over an extended period of time. LG\&E receives a limited easement to locate the pole on the customer's property and to locate a street light on the pole. It is not granted an easement to permit other attachments and does not possess the legal authority to place or otherwise allow attachments to the pole other than the street light or to derive revenue from permitting such attachments on the pole.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-4

Responding Witness: Robert M. Conroy

Q-1-4. Explain the basis for excluding poles leased to a third party from the definition of Structure.

A-1-4. See the response to Question No. 1-3.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-5
Responding Witness: Robert M. Conroy
Q-1-5. Explain the meaning of a "third party" to whom You may lease poles.
A-1-5. A third party is a LG\&E customer who requests lighting service at a location that is not on a public right-of-way and who grants an easement for the location of the utility pole and lighting equipment on its property.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-6

Responding Witness: Robert M. Conroy

Q-1-6. Explain the meaning of "wireless communications services," including whether the term is intended to apply to Wi-Fi.

A-1-6. Wireless communication services, as used in the proposed PSA Rate Schedule, refers to any communications service enabled by radio or antenna and would include Wi-Fi services, as well as service offered over small cell antennas or distributed antenna systems.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-7
Responding Witness: Robert M. Conroy
Q-1-7. Explain whether Wireless Facility in the Proposed Tariff includes only facilities attached directly to a Structure.

A-1-7. The definition of "wireless facility" set forth in the proposed PSA Rate Schedule does not require direct attachment to a Structure.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-8

Responding Witness: Robert M. Conroy

Q-1-8. Explain how Wireless Facilities attached to a Cable Television System Operator's messenger strand will be treated under the Proposed Tariff.

A-1-8. LG\&E assumes that the reference to "wireless facilities attached to a Cable Television System Operator's messenger strand" is to strand mounted Wi-Fi access points. Such access points would be considered as an attachment and would be subject to the PSA Rate Schedule's provisions regarding construction and operation of attachments, including compliance with National Electric Safety Code clearance standards and prohibitions against interfering with the attachments of other Attachment Customers and impeding accessibility to LG\&E’s electrical facilities. However, as the strand mounted Wi-Fi access point would be considered as part of the wireline attachment, it would not be assessed a separate charge unless the strand itself required additional clearance as a result of the strand mounted Wi-Fi access point.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-9

Responding Witness: William S. Seelye

Q-1-9. Explain the basis for the Proposed Tariff's rate for Wireless Attachments, including the methodology, and all cost data relevant to calculating the Wireless Attachment Charge of $\$ 84.00$ per year for each Wireless Facility. Please provide all source data for the charge and explain how You developed or obtained the source data.

A-1-9. The methodology used to develop the wireless facilities charge is the same as the wireline facilities except 11.585 feet of pole space is assumed. See response to Question No. 1-10.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-10

Responding Witness: William S. Seelye

Q-1-10. Please refer to Your Application, Tab 14, Testimony of William Steven Seelye, Managing Partner, The Prime Group, LLC, at p. 61. Explain and provide data related to Your conclusion that the Wireless Facilities on average use 11.585 feet of Pole space, including but not limited to how such average was determined, what Wireless Facilities were considered for determining such average, and identification of the "space" used by such attachments.

A-1-10. KPSC Administrative Case No. 251 sets forth the typical height, and usable and unusable space for a typical three-user pole. That is a height of 42.5 feet, less 6 feet buried, 20 feet to the lowest attachment, 3.33 feet required safety space, resulting in 13.17 feet of usable pole space. LG\&E assumes a pole top wireless antenna attachment, as that is the preferred attachment location for Wireless Facility owners. As LG\&E typically has electric facilities located at or near the top of the pole, a pole top antenna dictates a 5 foot taller pole in order to maintain a safe working distance of at least 48 inches (a long standing LG\&E construction standard) between the electric facilities and the pole top antenna. Thus, the Wireless Facility owner is be responsible for the top 5 feet of the pole.

The Wireless Facility owner will have conduit running through the initial presumed 13.17 feet of usable space on the pole, which it shares with LG\&E. Therefore, the Wireless Facility owner is responsible for half of the 13.17 feet of presumed usable space. 13.17 feet divided by 2 users (LG\&E and the Wireless Facility owner) equals 6.585 feet. 6.585 feet of shared usable space plus 5 feet of additional pole height needed by the new pole top antenna equals 11.585 feet.

The Wireless Facility owner is permitted to place up to two radio units, needed for their pole top antenna, in the unusable space of the pole. This use of the unusable space is not factored into the above calculation. Further, although LG\&E and the Commission assume a typical pole height of 42.5 feet, as shown by LG\&E's response to AT\&T 1-5, the average height of a LG\&E pole with a Wireless Facility attached is 51.05 feet.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-11

Responding Witness: Christopher M. Garrett

Q-1-11.

A-1-11. The Kentucky Cable Telecommunications Association’s Request for Information issued on January 11, 2017 did not include a Question No. 1-11.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-12

Responding Witness: William S. Seelye

Q-1-12. Provide the basis for, methodology to determine, and data used to develop Your Duct charge of $\$ 0.81$ per linear foot, including all rate calculations.

A-1-12. The methodology used to develop the underground duct charge was based on the Federal Communication Commission ("FCC") methodology established in CS Docket 97-98 on April 3, 2000.

For more information and a copy of the FCC Order in question, see the response to PSC 2-104.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-13

Responding Witness: Robert M. Conroy

Q-1-13. Explain what You mean by the word "utilize" in proposed Terms and Conditions of Attachment No. 4.

A-1-13. To affix or attach a third party's cable or other device to an approved wireline attachment.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-14

Responding Witness: John K. Wolfe

Q-1-14. Please provide any reports, analysis, or studies concerning the impact on pole loading of overlashing by Cable Television System Operators, including data related to instances of overlashing by Cable Television System Operators overloading any distribution poles.

A-1-14. LG\&E performs pole loading studies on individual poles as necessary but does not have any reports, analysis, or studies concerning the general impact on pole loading of overlashing readily available. Pole loading studies may be performed on an individual pole when new communications cables are overlashed to the existing communications facilities. Adding a new cable through overlashing adds additional weight and tension and increases the diameter of the existing cable. These factors increase loading on the pole and makes the performance of pole loading studies necessary to ensure the new overlashed cable does not "overload" the pole in excess of the applicable NESC loading case.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371

Question No. 1-15

Responding Witness: John K. Wolfe

Q-1-15. Please provide any reports, analysis, or studies concerning the impact of Cable Television System Operator drop or lift attachments on pole loading, including data related to instances of drop or lift attachments overloading any distribution or drop poles.

A-1-15. LG\&E does not have any reports, analysis, or studies concerning the impact on pole loading of drop of lift attachments readily available. New Service Drops do not require pole loading studies.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371

Question No. 1-16

Responding Witness: John K. Wolfe

Q-1-16. Please provide a copy of all of Your standards and specification related to the design, installation, and maintenance of Attachments with which You propose Attachment Customers must comply.

A-1-16. See attached.

LG\&E

THIRD PARTY POLE

ATTACHMENT

HANDBOOK

Table of Contents
I. Introduction: Page 3
II. Third Party Pole Attachment Guidelines: Page 5
III. LG\&E \& KU Conductor \& Equipment Data: Page 8
IV. Pole Loading Analysis: Page 26
V. Transmission Requirements: Page 30
VI. LG\&E \& KU Construction Standards: Page 34
VII. Appendix A: Page 73
VIII. Appendix B: Page 75

Introduction

a PPL company

LG\&E Third Party Pole Attachment Handbook

INTRODUCTION

The information contained in this document is intended to assist in facilitating attachment requests from companies which (a) have a valid Pole Attachment License Agreement with Louisville Gas and Electric Company (LG\&E), (b) are in full compliance with any applicable insurance and bonding requirements, and (c) have the necessary authorization to operate within the State of Kentucky and the relevant local municipality. Strict adherence to LG\&E's Third Party Pole Attachment Handbook will ensure a smooth application and approval process, and will allow completion of construction with minimal delay and conflict.

This Third Party Pole Attachment Handbook outlines the circumstances under which LG\&E will review any requests to attach individual communications cables and equipment to its poles, LG\&E's formal process for granting such access request, and the guidelines and requirements covering the physical design, installation, and maintenance of all such communications cables and equipment on LG\&E's poles.

In all situations, it is the ongoing responsibility of attaching companies to be familiar with and adhere to the NESC and this Third Party Pole Attachment Handbook during installation, maintenance and related activities involving their facilities attached to LG\&E's poles. Any attachment found to be in violation of the NESC, or any provision of this Handbook may be subject to removal by LG\&E.

[^0]
LG\&E Third Party Pole Attachment Guidelines

a PPL company

1. An executed pole attachment agreement / contract is required, including but not limited to the following:
a. Insurance certificates and any applicable bonding requirements.
b. Applicable franchise agreements / certificates / licenses / permits (e.g., local, state, etc.)
2. A complete and accurate pole attachment proposal is required before engineering review will begin. The attachment proposal shall include, but is not limited to the following:
a. Application for Third Party Attachment. Reference Appendix A (page 74) of this Third Party Pole Attachment Handbook.
b. Pole/structure number and location, including complete address, county, GPS coordinates, pole height and pole class
c. Applicant company name, key contacts, and approval signature
d. Pole profile sheet indicating height and owner of all attachments including ${ }^{1}$ all secondary/neutral, grounded equipment, streetlights, proposed attaching location, proposed make-ready construction (shall be identified in red), and lowest existing mid-span height.
e. Telephone Company (i.e., ILEC) pole number (if available).
f. Description of any other work such as anchor attachments, vertical runs, etc.
g. Route map, displaying street names along with LG\&E pole numbers and ILEC pole numbers (if available).
h. Pole photographs including street view and adjacent spans, preferably annotated with all attachment heights. Preferred file format is a digital file such as GE Mapsight TM "true size", Osmose Digital Measurement Technology ${ }^{\mathrm{TM}}$ (DMT" ${ }^{\text {TM }}$) or equivalent. See "Figure 1."
i. Pole Loading Analysis Report shall be performed on every pole unless identified by LG\&E staff. Reports should include a summary of the loading data per pole.
j. Wireless Attachment requests will include the additional requirements:
i. Exhibit D - Wireless Attachment and Associated Equipment Description and Approval
ii. MPE (Maximum Permissible Exposure) Report
iii. Manufacturer's equipment specifications for antenna and bracket
iv. Construction Plan \& Material List.
k. Attachment proposals shall be limited to ≤ 100 poles).
3. Submit complete attachment proposal / application to LGEPoleAttachment@1ge-ku.com
m . Incomplete and inaccurate proposals will be returned to the applicant for correction and completion. The application approval deadline will restart when LG\&E receives the corrected and completed proposal.
4. Transmission structure attachments (NOTE: only with distribution underbuild) will require additional approvals from the Transmission department. Reference Section V (page 30) of this Joint Use Handbook.
5. For Joint Use poles, attachment proposals shall be submitted to both LG\&E and the ILEC.
6. Actual and reasonable engineering expenses are billable (e.g., review proposed routes, field attachment proposals, and post inspections), whether or not make-ready estimate is accepted with additional fees associated with reviewing requests for transmission structure attachments. (NOTE: only with distribution underbuild).
7. Outage/emergency events, including storm restoration, may delay scheduled work.
8. It may be necessary to deny access for reasons of lack of capacity, safety, reliability or engineering standards.
9. Additional equipment is not permitted on the pole (e.g. equipment cabinets, meter bases and other equipment large enough to impede accessibility).
10. The National Electrical Safety Code (NESC), regulations (i.e., local, state, federal), and LG\&E policy and LG\&E Construction Standards shall be adhered to at all times.
11. The attaching party is responsible for obtaining their own right-of-way (ROW) where attaching installations involve city, county and/or state rights-of-way, or private property owned by others.
12. As-builts shall be provided to LG\&E Pole Attachment Group within seven (7) business days of the completion of construction. As-builts shall be in the form of the approved construction print with any changes made during construction redlined on the print. As-builts shall also include, where applicable, the asset number and serial number for any transformer removed or installed and the pole number on which the transformer was removed or installed. Further, any secondary removed or changed, including services rerouted due to the removal or installation of transformers, must be noted on the as-built. As required on the permit application, the company name of all existing attachers and the number of times each party is attached to a pole must be included on the as-built.
13. Temporary attachments are not permitted. No attachment is permitted until all necessary make- ready work is complete.
14. Communications cable service drops are not permitted to be attached to the LG\&E service riser.
15. If you remove any of your attachments you must notify LG\&E via the application for third party attachments. Pole attachment fees will continue until notification is received.
[^1]
Figure 1

LG\&E \& KU Conductor \& Equipment Data

Primary / Secondary

The following comments address the preliminary pole loading analysis required for approval of new attachments and apply to distribution structures only. Transmission pole loading analysis is handled under a separate process, reference Section V (page 29) of this Third Party Pole Attachment Handbook.

It is acceptable to generalize conductor sizes for the purpose of performing a preliminary pole loading analysis (PLA). This analysis is required as part of the engineering submittal for approval of new attachments. To simplify loading studies, data on a reduced selection of conductors is provided in the attached files. Conductors in each category can be selected to reflect differences between LG\&E and those of its sister utility, Kentucky Utilities Company. For builds that span both utilities a default (worst case) conductor can be used for either utility that span both utilities based on the larger of commonly used LG\&E and KU conductors. Diameters, default tensions and sag information are provided in the attached files. Where the size of wire cannot be accurately quantified between two size ranges, the large conductor will be used. Final determination of acceptable loading will be made by LG\&E and KU.

Generic conductor parameters required for PLA will be determined based on their type (bare, covered, spacer cable, etc.), application (primary, secondary, service, etc.) and the size of the conductor (very small - large). Parameters for requested attachments are to be provided by the engineering firm.

Conductor Category	Approximate Size		Application
Very small:	$.25 "$		Old, small bare \& covered copper
Small:	$.5 "$		Small aluminum conductor used as

	Utility Specific		Single Choice If Used For Both Utilities
	LG\&E	KU	
Duplex	\#4 AAC/ACSR KU LGE 086M 250B.txt	$\begin{gathered} \text { \#4 AAC/ACSR } \\ \text { KU LGE 086M 250B.txt } \end{gathered}$	\#4 AAC/ACSR KU LGE 086M 250B.txt
Small triplex service	$\begin{gathered} \text { \#2 AAC } \\ \text { KU LGE 093M 250B.txt } \end{gathered}$	\#2 AAC/ACSR KU LGE 096M 250B.txt	\#2 AAC/ACSR KU LGE 096M 250B.txt
Medium triplex service	$\begin{gathered} \text { 1/0 AAC } \\ \text { KU LGE 094M 250B.txt } \end{gathered}$	2/0 AAC/ACSR KU LGE 097M 250B.txt	2/0 AAC/ACSR KU LGE 097M 250B.txt
Large triplex commercial service	$\begin{gathered} \text { 4/0 AAC } \\ \text { KU LGE 095M 250B.txt } \end{gathered}$	397 AAC/ACSR KU LGE 098M 250B.txt	397 AAC/ACSR KU LGE 098M 250B.txt
Small quadruplex secondary/service	$\begin{gathered} \text { \#2 AAC } \\ \text { KU LGE 101M 250B.txt } \end{gathered}$	$\begin{gathered} \text { \#2 AAC } \\ \text { KU LGE 101M 250B.txt } \end{gathered}$	$\begin{gathered} \text { \#2 AAC } \\ \text { KU LGE 101M 250B.txt } \end{gathered}$
Medium quadruplex service	$\begin{gathered} 1 / 0 \mathrm{AAC} \\ \text { KU LGE 102M 250B.txt } \end{gathered}$	2/0 AAC/ACSR KU LGE 103M 250B.txt	2/0 AAC/ACSR KU LGE 103M 250B.txt
Large quadruplex service	4/0 AAC KU LGE 104M 250B.txt	397 AAC/ACSR KU LGE 106M 250B.txt	397 AAC/ACSR KU LGE 106M 250B.txt
Small triplex secondary	\#2 AAC KU LGE 079M 250B.txt	$\begin{gathered} \text { \#2 AAC/ACSR } \\ \text { KU LGE 082M 250B.txt } \end{gathered}$	$\begin{gathered} \text { \#2 AAC/ACSR } \\ \text { KU LGE 082M 250B.txt } \end{gathered}$
Medium triplex secondary	1/0 PAR AAC KU LGE 077M 250B.txt	2/0 AAC/ACSR KU LGE 083M 250B.txt	2/0 AAC/ACSR KU LGE 083M 250B.txt
Large triplex secondary	4/0 PAR AAC KU LGE 078M 250B.txt	397 AAC/ACSR KU LGE 084M 250B.txt	397 AAC/ACSR KU LGE 084M 250B.txt

Very small copper primary/secondary	$\begin{gathered} \text { \#4 HD } \\ \text { KU LGE 035M 250B.txt } \end{gathered}$	$\begin{gathered} \text { \#4 HD } \\ \text { KU LGE 035M 250B.txt } \end{gathered}$	$\begin{gathered} \text { \#4 HD } \\ \text { KU LGE 035M 250B.txt } \end{gathered}$
Small bare primary/secondary	1/0 AAAC KU LGE 007M 250B.txt	\#2 ACSR KU LGE 009M 250B.txt	1/0 AAAC KU LGE 007M 250B.txt
Medium bare primary/secondary	195 AAAC KU LGE 008M 250B.txt	195 AAAC KU LGE 008M 250B.txt	195 AAAC KU LGE 008M 250B.txt
Large bare primary/secondary	795 AAC (61) KU LGE 004M 250B.txt	$\begin{gathered} 795 \text { AAC (37) } \\ \text { KU LGE 003M 250B.txt } \end{gathered}$	$\begin{gathered} 795 \text { AAC (37) } \\ \text { KU LGE 003M 250B.txt } \\ \hline \end{gathered}$
Very small covered copper primary/secondary	\#4 HD Poly KU LGE 041M 250B.txt	$\begin{gathered} \text { \#4 HD } \\ \text { KU LGE 041M 250B.txt } \\ \hline \end{gathered}$	$\begin{gathered} \text { \#4 HD } \\ \text { KU LGE 041M 250B.txt } \\ \hline \end{gathered}$
Small covered primary/secondary	1/0 AAC Poly KU LGE 026M 250B.txt	1/0 AAC Poly KU LGE 026M 250B.txt	1/0 AAC Poly KU LGE 026M 250B.txt
Medium covered primary/secondary	3/0 AAC Poly KU LGE 027M 250B.txt	3/0 AAC Poly KU LGE 027M 250B.txt	3/0 AAC Poly KU LGE 027M 250B.txt
Large covered primary/secondary	795 AAC Poly KU LGE 029M 250B.txt	N/A	795 AAC Poly KU LGE 029M 250B.txt
Small aerial cable	1/0 AAC/12.5M AW Mess. KU LGE 064M 250B.txt	2/0 AAC/7-\#9 AW KU LGE 065M 250B.txt	2/0 AAC/7-\#9 AW KU LGE 065M 250B.txt
Medium aerial cable	336 AAC/20M AW Mess. KU LGE 070M 250B.txt	397 AAC/7-\#10 AW Mess. KU LGE 071M 250B.txt	397 AAC/7-\#10 AW Mess. KU LGE 071M 250B.txt
Large aerial cable	795 AAC/20M AW Mess. KU LGE 072M 250B.txt	795 AAC/7-\#10 AW Mess. KU LGE 072M 250B.txt	795 AAC/7-\#10 AW Mess. KU LGE 072M 250B.txt

Pre-existing communication cable will be modeled based on the following parameters.

	Nominal Dia. (")	Messenger Nominal (")	Overall Bare Dia. (")	Overall Bare Weight (\#/ft)	Final Design Tension (\#)
ADSS	0.5		0.52	0.091	1000
Mess. Supported	0.5	$1 / 4$	0.731	0.29	600
Mess. Supported	1	$1 / 4$	1.373	0.85	2000
Mess. Supported	2	$3 / 8$	0.273	2.461	3600
Mess. Supported	3	$1 / 2$	3.317	5.165	8000

Small residential telephone drops can be neglected in the PLA. Reduced tensions can be used for slack span telecommunication construction.
Primary and Neutral Conductors

		Conductor	$\begin{aligned} & \text { Conductor } \\ & \text { Codeword } \end{aligned}$	$\frac{\text { NESC Loading }}{\text { District }}$	$\frac{\text { Operating Temp }}{\text { (F) }}$	$\frac{\text { Operating Temp }}{\text { (F) }}$	$\frac{\text { Ruling Span }}{\text { (ft) }}$	FileName	Saq Tension Limits					NESC MEDIUM LOAD F NAL TENSION AT 200°
\#									$\begin{aligned} & \hline \text { Temp } \\ & \text { ('F) } \\ & \hline \text { ('F } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Ice } \\ \text { (in) } \end{array}$	$\begin{aligned} & \text { Wind } \\ & \text { (psf) } \end{aligned}$	Limit	Condition	
3	LARGE BAREPR MARY/SECONDARY KU	795 AAC (37)	Arbutus	Medium	212	120		KU LGE 003M 250B txt	15	025	4	4500 lbs	Initial	3901
							50-500 (50)		15 15	0	0	25\%	Final	
									15	0	0	33\%	Initial	
	LARGE BARE PRIMARY/SECONDARY LG\&E	795 AAC (61)	Lilac	Medium	212	120	50-500 (50)	KU LGE 004M 250B txt	15	025	4	4500 lbs	Initial	4112
									15	0	0	25\%	Final	
									15	0	0	33\%	Initial	
7	SMALL BAREPRIMARY/SECONDARY LG\&E	123.3 AAAC (7)	Azusa	Medium	212	120	50-500 (50)	KU LGE 007M 250B txt	15	025	4	50\%	Initial	1402
									15 15	0	0	25\%	Final	
									15	0	0	33\%	Initial	
8	MEDIUM BARE PRIMARY/SECONDARY LG\&E	195.7 AAAC (7)	Amherst	Medium	212	120	50-500 (50)	KU LGE 008M 250B txt	15	025	4	50\%	Initial	1989
									15	0	0	25\%	Final	
									15	0	0	33\%	Initial	
9	SMALL BAREPR MARY/SECONDARY KU	2 ACSR (6/1)	Sparrow	Medium	212	120	50-500 (50)	KU LGE 009M 250B txt	15	025	4	50\%	Initial	1052
									15	0	0	25\%	Final	
									15	0	0	33\%	Initial	
10	MEDIUM BARE PR MARY/SECONDARY KU	$2 / 0$ ACSR (6/1)	Quail	Medium	212	120	50-500 (50)	KU LGE 010M 250B txt	15	025	4	50\%	Initial	1690
									15	0	0	25\%	Final	
									15	0	0	33\%	Initial	
26	SMALL COVEREDPRIMARY/SECONDARY LG\&E ANDKU	1/0 AAC POLY (7)	Quince	Medium	212	120	50-500 (50)	KU LGE 026M 250B txt	15	025	4	50\%	Initial	884
									15	0	0	25\%	Final	
									15	0	0	33\%	Initial	
27	MEDIUM COVEREDPRIMARY/SECONDARY LG\&E ANDKU	$3 / 0 \mathrm{AAC} \mathrm{POLY}$ (7)	Fig	Medium	212	120	50-500 (50)	KU LGE 027M 250B txt	15	025	4	50\%	Initial	1246
									15 15	0	0	25\%	Final	
									15	0	0	33\%	Initial	
29	LARGE COVERED PRIMARY/SECONDARY LG\&E	795 KCM AAC POLY (61)	Persimmon	Medium	212	120	50-500 (50)	KU LGE 029M 250 Btxt	15	025	4	4500 lbs	Initial	4033
									15	-	0	25\%	Final	
									15	0	0	33\%	Initial	
35	VERY SMALL COPPER PRIMARY/SECONDARY LG\&E AND KU	4 CU HD (SOL D)		Medium	212	120	50-500 (50)	KU LGE 035M 250B txt	15	025	4	50\%	Initial	839
									15	0	0	25\%	Final	
									15	0	0	33\%	Initial	
41	VERY SMALL COVERED COPPER PRIMARY/SECONDARY LG\&E AND KU	$4 \mathrm{CU} \mathrm{SD} \mathrm{POLY} \mathrm{(SOLID)}$		Medium	212	120	50-500 (50)	KU LGE 041M 250B txt	15	025	4	50\%	Initial	860
									15 15		0	25\%	Final	
									15	0	0	33\%	Initial	
6	SMALL AERIAL CABLE KU	12.5M (30-2/0 AERIAL)		Medium	212	120	50-300 (50)	KU LGE 065M 250B txt	15	025	4	50\%	Initial	4100
									15	0	0	25\%	Final	
									15	0	0	33\%	Initial	
66	SMALL AERIAL CABLE LG\&E	12.5M (30-3/0 AERIAL)		Medium	212	120	50-300 (50)	KU LGE 066M 250B txt	15	025	4	50\%	Initial	4147
									15	0	0	25\%	Final	
									15	0	0	33\%	Initial	
	MEDIUM AERIAL CABLE LG\&E	20 M (30-336 AERIAL)		Medium	212	120	50-300 (50)	KU LGE 070M 250 Btxt	15	025	4	50\%	Initial	
70									15	0	0	25\%	Final	6163
									15	0	0	33\%	Initial	

Secondary Conductors

\#		Conductor	$\frac{\text { Conductor }}{\text { Codeword }}$	$\frac{\text { NESC Loading }}{\text { District }}$	Temp (F)	$\frac{\text { Ruling Span }}{\text { (It) }}$	FileName	Sag Tension Limits					NESC MEDIUMLOAD FINALTENSION AT 150'SPAN (LBS)
								$\begin{aligned} & \text { Temp } \\ & \text { (F) } \end{aligned}$	Ice (in)	$\begin{gathered} \text { Wind } \\ (\mathrm{pss}) \end{gathered}$	Limit	Condition	
77	$\underset{\text { LG\&E }}{\text { MEDIUM TRIPLEX SECONDARY }}$	$1 / 0$ AAC PAC (1/0 AAAC N)	Hot Springs	Medium	194	25-250 (25)	KU LGE 077M 250B.txt	15	0.25	4	50\%	Initial	1564
								15 15	0 0	0	25\% 33%	Final	
78	LARGE TRIPLEX SECONDARY LG\&E	$4 / 0$ AAC PAC (4/0 AAAC N)	Tumacacori	Medium	194	25-250 (25)	KU LGE 078M 250B.txt		${ }_{0}^{0.25}$		50\%		2672
								15 15	0	0	25\%	Final Intitial	
79	SMALL TRIPLEX SECONDARY LG\&E	2 AAC TPX (2 AAC N)	Clam	Medium	194	25-250 (25)	KU LGE 079M 250B.txt	15	025	4	50\%		672
								15	0	0	25\%	Final	
								15	0	0	33\%	Initial	
82	SMALL TRIPLEX SECONDARY KU	2 AAC TPX (4 ACSR N)	Cockle	Medium	194	25-250 (25)	KU LGE 082M 250B.txt	15	0.25	4	50\%	Initial	832
								15 15	0	0	25% 33%	Final	
								15	0	0	33\%	Initial	
83	MEDIUM TRIPLEX SECONDARY KU	$2 / 0$ AAC TPX (2 ACSR N)		Medium	194	25-250 (25)	KU LGE 083M 250B.txt	15	0.25		50\%	Initial	1166
								15 15	0	0	25\% 33\%	Final	
								15	0	0	33\%	Initial	
84	LARGE TRIPLEX SECONDARY KU	397 AAC TPX (266 ACSR N)		Medium	194	25-250 (25)	KU LGE 084M 250B.1xt	15	0.25	4	50\%	Initial	${ }^{2391}$
								15	0	0	25\%	Final	
								15	0	0	33\%	Initial	
86	DUPLEX LG\&EKU	4 AAC DPX (4 ACSR N)	Terrier	Medium	194	25-250 (25)	KU LGE 086M 250B.txt	15	0.25	4	50\%	Initial	783
								15	0	0	25\%	Final	
								15	0	0	33\%	Initial	

Service Conductors

\#		Conductor	$\frac{\text { Conductor }}{\text { Codeword }}$	$\frac{\text { NESC Loading }}{\text { District }}$	$\frac{\text { Max. }}{\text { Operating }}$Temp (F)	Ruling Span (tt)	FileName	Sag Tension Limits					NESC MEDIUM LOAD FINAL SPAN (LBS)
								$\begin{gathered} \text { Temp } \\ (F) \end{gathered}$	(in)	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Wind } \\ \text { (sst) } \end{array} \\ \hline \end{array}$	Limit	Condition	
								60	0	0	$3^{\text {S }}$ SAG	Initial	
${ }^{93}$	Small triplex Service LGre	2 AAC TPX (2 AAC N SRVC	Clam	Medium	194	20-140 (20)	KU LGE 093M 2508.txt	15	0.25	0	500 lbs	Initial	239
94	MEDIUM TRIPLEX SERVICE LGRE	110 AAC TPX (1/0 AAC N) SRVC	Murex	Medium	194	20-140 (20)	KU LGE 094M 2508.txt	$\begin{aligned} & 60 \\ & 15 \end{aligned}$	${ }_{0}^{0.25}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3^{3} \mathrm{SAGG}^{500 \mathrm{lbs}} \end{aligned}$	Initial Initial	300
95	LARGE TRIPLEX COMMERCIAL SERVICE LG\&	440 AAC TPX (4/0 ACC $)$ SRVC	Coquina	Medium	194	$20-140$ (20)	KU LGE 095M 2508. tx t	$\begin{aligned} & 60 \\ & 15 \end{aligned}$	$\stackrel{0}{0.25}$	0	3.5 SAG 500 los	$\begin{array}{\|l\|l\|l\|l\|l\|} \text { Inita } \end{array}$	425
96	SMALL TRIPLEX SERVICE KU	2 AAC TPX (4ACSR N) SRVC	Cockle	Medium	194	20-140 (20)	KU LGE 096M 2508. tx t	60 15	${ }_{0}^{0.25}$	0	3. SAG 500 lbs	Initial Initial	238
										0	$3^{\text {S SAG }}$	Initial	
97	MEDIUM TRIPLEX SERVICE KU	210 AAC TPX (2 ACSR N) SRVC		Medium	194	20-140 (20)	KU LGE 097M 2508. tx	60 15	0.25	0	35 AG 500 lbs	Initial	325
98	LARGE TRIPLEX COMMERCIAL SERVICE KU	397 AAC TPX (266 ACSR N) SRVC		Medium	194	$20-140$ (20)	KU LGE 098M 250B. tx	$\begin{aligned} & 60 \\ & 15 \end{aligned}$	0 0.25	0	3 S SAG 500 lbs	$\begin{aligned} & \hline \text { Initial } \\ & \hline \text { Initial } \end{aligned}$	496
								60	0	0	$3^{\text {S }}$ SAG	Initial	
101	SMALL QUADRUPLEX SECONDARY/SERVICE LG\&E AND KU	2 AAC QUAD (2 AAC N) SRVC	Mustang	Medium	194	20-140 (20)	KU LGE 101M 250B.xt	15	0.25	0	500 lbs	Initial	267
102	MEDIUM QUADRUPLEX SECONDARYISERVICE LG\&E	110 AAC QUAD (10 AAC N) SRVC	Libyan	Medium	194	20-140 (20)	KU LGE 102M 250B.xt	60 15	0 0.25	$\stackrel{0}{0}$	$\begin{aligned} & 33^{3} \mathrm{SAG} \\ & 500 \mathrm{lbs} \end{aligned}$	Initial Intial	345
103	medium quadruplex SECONDARY/SERVICE KU	210 AAC QUAD (2 ACSR N) SRVC		Medium	194	20-140 (20)	KU LGE 103M 250B.txt	$\begin{aligned} & 60 \\ & 15 \end{aligned}$	0 0.25	0	$3^{3} \mathrm{SAG}$ 500 lbS	Initial	381
104	LARGE QUADRUPLEX SERVICE LG\&E	410 AAC QUAD (4/0 AAC N) SRVC	Singlefoot	Medium	194	20-140 (20)	KU LGE 104M 2508.txt	$\begin{aligned} & 60 \\ & 15 \end{aligned}$	0 0.25	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$3^{\text {S SAG }}$ 500 lbs	$\begin{aligned} & \text { Initial } \\ & \text { Initial } \end{aligned}$	485
106	LARGE QUADRUPLEX SERVICE KU	397 AAC QuAd (266 ACSR N) SRVC		Medium	194	20-140 (20)	KU LGE 106M 250B.txt	$\begin{aligned} & 60 \\ & 15 \end{aligned}$	$\stackrel{0}{0.25}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3.5 A G \\ & 500 \mathrm{lbs} \end{aligned}$	$\begin{aligned} & \text { Initial } \\ & \text { Initial } \end{aligned}$	497

Typical Distribution Pole Weights and Dimensions

Wolfe
Attachment to Response to KCTA Question No. 1-16

Cooper Part \#

7004767 OCBB27E01010001
3000031 OCCB27E01010001
7004770 OCDB27E01010001 7004773 OCEB27E01010001 OCFB27E01010001

Part \#
Notes

400W Cobra

 1000 W FloodMSRL40S1A22RMS3 PF1K01M0A27X7DBLP
6^{\prime} Arm (12 LBS)

Common light type

 Max flood light size AR113FHHL

| Wood Arms | Length
 (in) | Width
 (in) | Height
 (in) | Manufacturer | Catalog \# |
| :--- | :---: | :---: | :---: | :---: | :---: | IIN

Steel Arms \& Brackets	Manufacturer	Catalog \#
ANGLE BRACKETS (C BRACKET)	Hendrix	
LONG E BRACKET	Hendrix	BV-35
SHORT E BRACKET	Fabricated Metals	B-2541
14" TANGENT BRACKET	Hendrix	BM-14
24" TANGENT BRACKET	Hendrix	BM-24
TRITAP DEADEND BRACKET	Hendrix	BD-35

Attachment to Response to KCTA Question No. 1-16
Anchor Holding Strengths

Anchor Type	Soil Type							
	Class 0	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Class 7
	Holding Strength (lbs)							
8" Single Helix Socket	-	50,000	30,000	21,000	16,000	12,000	8,000	6,000
12" Single Helix Socket	-	50,000	40,000	32,000	27,000	23,000	18,000	15,000
Expanding Rock Anchor-LGE	36,000	-	-	-	-	-	-	-
Expanding Rock Anchor-KU	23,000	-	-	-	-	-	-	-
Standard Expanding Anchor	-	-	-	26,500	22,000	18,000	15,000	10,000
Concrete Anchor	depends on rod strength							
Log Anchor		100,000	88,500	75,000	62,500	50,000	40,000	30,000
H-Beam 14-1/8"x10-1/8"	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000
H-Beam 14-3/8"x14-5/8"	15,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000
H-Beam 14-3/4"x15-1/2"	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000
H-Beam 15-3/4"x15-3/4" (25,000 bs)	25,000	25,000	25,000	25,000	25,000	25,000	25,000	25,000
H-Beam 15-3/4"x15-3/4" (30,000 bs)	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000

Note: The information contained above was taken from A.B. Chance's anchoring manual.

Guy Strands		IIN
Strand	Strength Rating	
8M AW	8,000	1197401
12.5M AW	12,500	1197435
20M AW	20,000	1197443
3/8" HS Galvanized	15,400	7000797
7/16" HS Galvanized	20,800	7000798

Pole Loading Analysis

Setup Parameters for Pole Loading Analysis

LG\&E uses the parameters listed below to perform pole loading analyses. The analyses are performed using the finite element program called "PoleForeman" (see Section 960 for information on this program).

1. Load District: 2012 NESC Section 250B - Medium Load District, appropriate grade of construction (Grade B, C or C @ crossing). For structures and/or conductors that exceed 60^{\prime} above ground at the pole or at any point in the span, NESC 250C and 250D also apply.
2. Load analysis performed per 2012 NESC Tables 253-1 and 261-1. Use Grade B construction per NESC Table 242-1 at railroad crossings, limited access highways, navigable waterways requiring waterway crossing permits and crossing other energized lines (not attached to the same pole).
3. Linear analysis is used on un-guyed single structures. Non-Linear analysis is used for guyed single structures. Questions and clarification may be directed to LG\&E Engineering as situations arise.
4. Type of Pole Species used; Distribution: Southern Pine

Transmission: Douglas Fir

Pole Attachment Cases

Case 1: (2) 3 - phase w/ streetlight, secondary, and 3 attachments (See results at the end of this Section).

- Pole: 50' class 3 Southern Pine
- Top of pole @ 43'-0"
- Primary conductor: 3 - phase \#795AAC on 10' crossarm @ 39'-0"
- Primary conductor: 3 - phase \#795AAC on 10^{\prime} crossarm @ $33^{\prime}-0^{\prime \prime}$
- Neural conductor: \#1/0AAC Poly @ 28'-1"
- Secondary conductor: \#1/0AAC Poly @ 27'-1"
- Secondary conductor: \#1/0AAC Poly @ 26'-1"
- Streetlight @ 23'-2"
- Above conductors calculated using a ruling span $=200^{\prime}$
- CATV (2.00") @ 22'-0"
- TELE (2.00") @ 21'-2"
- Proposal: Install fiber optic @ 20'-6"

Attachment to Response to KCTA Question No. 1-16
28 of 97
Wolfe
PoleForeman - Pole Loading Analysis Report
License: LGE-KU

POLE LOADING DATA
Pole: 50/3 Wood
Pole Loading
Horizontal: $\quad 69 \%$ (250B)
Vertical: $\quad 62 \% \quad$ (250B)
NESC Edition: 2012 Loading District: Medium Construction: Grade C (Elsewhere)

POLES

Pole \#	Length (ft)		Depth (ft)	Elevation (ft)
	50		7	0
1	50	7	0	
2	50		7	0

PoleForeman - Pole Loading Analysis Report
 License: LGE-KU

INSULATORS

Insulator
13KV SNG Xarm Pin \& Ins
13KV SNG Xarm Pin \& Ins
13KV SNG Xarm Pin \& Ins
12KV SNG Xarm Pin \& Ins
12KV SNG Xarm Pin \& Ins
12KV SNG Xarm Pin \& Ins
Spool Ins Tangent

Attach	Loading
$48^{\prime \prime}$	36%
$48^{\prime \prime}$	36%
$48^{\prime \prime}$	36%
$120 "$	36%
120 "	36%
$120 "$	36%
179 "	9%

Angle
0°
0°
0°
0°
0°
0°
0°

ARM / BRACKET DATA

Arm/Bracket
10' SNG Xarm (3-3/4×4-3/4)
10' SNG Xarm (3-3/4×4-3/4)
1 Wire Rack

Attach	Vert Loading	Horz Loading
$48 "$	42%	12%
$120 "$	41%	12%
$179 "$		

SPANS

Span: 2 Span Length (ft): 200 Direction: 180°
Circuit: 1
Primary
795 AAC (61)
795 AAC (61)
795 AAC (61)
Neutral
1/0 AAC POLY (7)
Secondary
1/0 AAC POLY (7)
1/0 AAC POLY (7)
Circuit: 2
Primary
795 AAC (61)
795 AAC (61)
795 AAC (61)
Joint Use Cable
2.00" CATV
2.00" TELCO

User Defined

Ruling Span (ft)	Offset (in)	Attach A (in)
200	56	38
200	20	38
200	-56	38
200	1	179
200	0	191
200	0	203

Attach B (in)	Tension
38	4500
38	4500
38	4500

Transmission Requirements

Third Party Transmission Pole Loading Analysis Criteria

1. The attachment method for communication cable facilities must first be reviewed by LG\&E and KU Transmission Department or their representative in accordance with LG\&E and KU's existing Encroachment Guideline. Only after this review has been completed and approval granted can the attachment request be permitted.
2. If there are no electric distribution line facilities attached to the transmission poles then the addition of communication cables will be prohibited.
3. Transmission lines are normally located within private R / W easements that do not permit LG\&E and KU to grant attachment rights to other companies. Encroachment rights on this private R/W easement must first be granted by the property owner and presented to LG\&E and KU before LG\&E and KU can grant the right to attach to its transmission poles or structures.
4. The attachment of communication cable facilities will not be permitted on poles supporting transmission circuits operating at voltages greater than 138 kV .
5. No longitudinal third party owned fiber optic cable attachments are permitted on the overhead transmission system (69 kV and above) unless it is in the communication space on an under built distribution circuit.
6. LG\&E and KU plans to eventually replace its 69 kV and 138 kV wood poles with steel poles. Attachers must be prepared to change their method of attachment in this event.
7. The location/elevation of distribution primary and neutral on any transmission pole, or distribution pole within the transmission right of way may not be altered in any way.
8. Analysis of LG\&E and KU transmission structures for the addition of new communication cables shall be done using a finite element computer program using non-linear analysis. The program will be capable of performing analysis on both guyed and unguyed Transmission pole structures. LG\&E and KU recommends the use of the software program PLS-POLE by Power Line Systems, Inc.
9. Approved Engineering Consultants to perform analysis of LG\&E and KU transmission structures are as follows:

- Black and Veatch - 11401 Lamar Ave. Overland Park KS.
- Burns and McDonnell - 9400 Ward Parkway Kansas City MO.
- Sargent and Lundy-55 East Monroe Street Chicago, IL.
- Power Engineers - P.O. Box 1066 Hailey, ID.

Other Engineering Consultants may be considered by LG\&E and KU upon written request.
a PPL company

10. Criteria

The analysis shall be done using the following codes and standards:
National Electrical Safety Code 2012 or latest edition.
ANSI O5.1-2008 Specifications and Dimensions for Wood Poles or latest edition.
LG\&E and KU Vertical Clearance Requirements between LG\&E and KU facilities and non-LG\&E and KU communication facilities Standards Codes and Standards revision D or latest edition.

The following load conditions shall be checked for all transmission poles:
NESC 250B-Heavy $1 / 2$ " radial ice, 4 PSF wind at 0 degrees F.
NESC 250C - 21 PSF Extreme wind at 60 degrees F.
NESC 250D- Concurrent Ice/Wind with $3 / 4$ " radial ice, 2.30psf wind at 15 degrees F.
Grade B construction standards shall be used for all transmission structures.
Pole strength reductions shall be applied as follows:
5-12 years: 0-0.5\%
$13-30$ years: $0.5 \%-2.0 \% \quad$ Note: Interpolation is allowed.
$31-80$ years: $2.0 \%-6.0 \%$
Pole defects can be, but not limited to, woodpecker holes, shell rot, insect damage, excessive checking, and external pockets or split pole top.

Conductor/cable diameter and weights should be provided by the appropriate utility. Submittals shall include information and description of each wire used to check the Transmission structure.

Conductor/cable tension should be provided by the appropriate utility. If unavailable then maximum tension under heavy loading is not to exceed 60% RBS of conductor or messenger, whichever is appropriate.

11. Procedure

All Pole Loading Analysis and Reporting shall be developed and performed under the direction of a professional engineer licensed by the state where such facility is located, all of which shall be subject to LG\&E and KU review and acceptance. The analysis shall be stamped by an engineer licensed in the appropriate state.

When a fix is required in the form of a new pole or other means, only LG\&E and KU will schedule and supervise the construction work with Company approved contractors.
12. Reports

All analyses files and the field survey reports shall be sent to LG\&E and KU or their representative for review.

The report shall include the following items:

- Structure type (tangent, angle, etc.) and number if available.
- County and or City pole is located.
- Pole length and class, (example 70 ft . class 2 wood pole)
- State Plan Coordinates at each structure considered.
- Digital photo of structure to be considered.
- Field survey used to determine locations of all existing and proposed cable attachments on pole.

The report shall include a description of all cables used in analysis of the transmission structure. The applicant shall also supply PLS-Cadd wire files for any proposed cables to be attached to the transmission structures.

For additional information reference Power Line Systems section 9.2 Creating or Editing cable files for more information.

LG\&E \& KU Construction Standards

Electric System Codes \& Standards

VERTICAL CLEARANCE REQUIREMENTS BETWEEN LG\&E/KU FACILITIES AND NON-LG\&E/KU COMMUNICATION FACILITIES

This standard details the clearance requirements at all locations between LG\&E/KU's conductors and equipment and any non-LG\&E/KU communication cables and equipment.

Two sections are shown below. Part I details the required clearances at the structure while Part II details the clearances at all other locations. Each part shows the typical clearances between facilities, the minimum clearances allowed by the NESC, and special clearance reductions which are allowed under certain circumstances.

All new facilities will be constructed using the "typical" clearances. New facilities placed on existing structures should also meet the "typical" clearance requirements wherever possible. However, clearances may be reduced to the minimum NESC clearances (including special clearance reductions) where necessary to prevent the need to replace the structure. Allowable special clearance reductions should only be used as the last option to replacing the structure.

PART I - (VERTICAL CLEARANCES AT THE STRUCTURE - NESC RULE 235/238)

TABLE A

LG\&E/KU FACILITIES	TYPICAL CLEARANCE	NESC MINIMUM	$\begin{aligned} & \text { SPECIAL } \\ & \text { CLEARANCE } \\ & \text { REDUCTION } \\ & \hline \end{aligned}$
SUPERVISORY CABLE	$18{ }^{\prime \prime}$	$12^{\prime \prime}$	
NE TRAL \& GROUNDED GUYS	$48^{\prime \prime}$	$40^{\prime \prime}$	$30^{\prime \prime}$ *
SECONDARY (750V) \& NSULATED GUYS	$48^{\prime \prime}$	$40^{\prime \prime}$	
$4.16 \mathrm{KV}, 12.47 \mathrm{KV}$	$48^{\prime \prime}$	$40^{\prime \prime}$	
13.8 KV	$48^{\prime \prime}$	$43^{\prime \prime}$	
34.5 KV	$60^{\prime \prime}$	$45^{\prime \prime}$	
69 KV	$120{ }^{\prime \prime}$	$54^{\prime \prime}$	
138 KV	$120^{\prime \prime}$	$70^{\prime \prime}$	
GROUNDED EQUPMENT	$48^{\prime \prime}$	$40^{\prime \prime}$	$30^{* * *}$
UNGROUNDED EQUPMENT	SANEAS PRMARY CLEARANCE		
STRETT UGHT	SEEPAGE2		

*NESC TABLE 235-5, NOTE 5 ** NESC TABLE 238-1, NOTE 1

CLEARANCE REQUIREMENTS AT THE POLE ARE MEASURED BETWEEN:
UPPER POSITION: Lowest supply conductor or metallic conductor support, including insulator pins, switch arms (in open position), aerial cable spacers and brackets, etc.

LOWER POSITION Upper most communication cable, messenger or the top of any communication equipment, including support brackets, equipment enclosures, splice packs, etc.

```
                                    SEE PAGE #2
TO DETERMINE HOW CLEARANCES AT THE
    STRUCTURE ARE MEASURED
```


PART II - (VERTICAL CLEARANCES AT ALL OTHER LOCATIONS - NESC RULE 235)

Clearances at all locations, other than at the structure, will be based on one of the following load cases (whichever results in the least amount of clearance). $A \|$ sags are final sags.
A) The upper supply conductor at its maximum operating temperature with the communication conductors at $120^{\circ} \mathrm{F}$ (maximum operating temperature is $120^{\circ} \mathrm{F}$ for voltages less than 69 kV , and $212^{\circ} \mathrm{F}$ for voltages 69 kV and above).
B) The upper supply conductor at $0^{\circ} \mathrm{F}$ with $1 / 2^{\prime \prime}$ ice and the communication conductor at $0^{\circ} \mathrm{F}$ with no ice.

TABLE B

LG\&E/KU FACILITIES	TYPICAL CLEARANCE	NESC MINIMUM	$\begin{array}{c\|} \text { SPECIAL } \\ \text { CLEARANCE } \\ \text { REDUCTION } \end{array}$
SECONDARY, NEUTRALS \& GUYS - ALL SPANS			
SUPERVISORY CABLE	18°	$12^{\prime \prime}$	
NEUTRAL \& GROUNDED GUYS	36°	$30^{\prime \prime}$	$12^{*} \cdots$
SECONDARY (750V) \& NSULATED GUYS	36^{*}	$30^{\prime \prime}$	
PPIMARY CONDUCTORS - MAXMUM OF $150{ }^{\prime}$ SPANS			
$4.16 \mathrm{KV}, 12.47 \mathrm{KV}$	36°	$30^{\prime \prime}$	
${ }^{13.8}$ KV	36^{*}	$32^{\prime \prime}$	
34.5 KV	48°	$34^{\prime \prime}$	
69 KV	96^{*}	$40^{\prime \prime}$	
138 KV	96^{*}	$55^{\prime \prime}$	

CLEARANCES OF PRIMARY CONDUCTORS ON SPANS GREATER THAN 150'

When primary conductors (above 750 V) are installed on spans longer than 150^{\prime}, a supplemental requirement must be met in addition to the NESC minimum clearances detailed in Table B. The clearances at the pole must be adjusted so that both the following conditions are met at any point in the span:
A) Clearances are not less than the values shown in Table B.
B) Clearance must be provided so that the supply conductor at $60^{\circ} \mathrm{F}$, final sag, will not sag below the line of sight of the attachment points of the communication conductors (NESC RULE 235C2b(3)).

VOLTAGES ARE PHASE TO GROUND FOR EFFECTNELY GROUNDED CIRCUITS AND THOSE OTHER CIRCUITS WHERE ALL GROUND FAULTS ARE CLEARED BY PROMPTLY DE-ENERGIIING THE FAULTED SECTION, BOTH INTILALLY AND FOLLOWING SUBSEQUENT BREA

2) For whes, conductors, or cables crosslng over mine, logging, and slmillar rallways that handle only cars lower than standard frelght cars, the dearance may be reduced
by an amount equal to the difference in height between the highest baded car handled and 20 ft , but the clearance shal not be reduced below that required for street crossings.

5) In communilles where 16 ft has been establlshed for trolley and electrtiled ralroad contact conductors 0 to 750 V to ground, or 18 ft for trolley and electrfiled ralroad contact conductors exceeding 750 V , or where local condlllons make VI Impracikal to obtaln the clearance given In the table, these reduced clearances may be used If carefully mahtalined.
7) Where the helght of a bulkling or other Installation does not permilt senvice drops to meet these values, the clearances over reskiental ditveways only may be reduced to the following
(a) Insulated supply service drops Imlted to 300 V to ground $\quad \begin{aligned} & \text { (feet) } \\ & 12.5\end{aligned}$
(b) Insulated drip boops of supply service drops Imtted to 300 V to ground 12.5
10.5
(c) Supply service drops I mited to 150 V to ground and meethg Rules 23001 or 2300312.0
(d) Drip bops only of service drops Imfled to 150 V to ground and meetting

Rules 23001 or 23003
10.0
11.5
(e) Insulated communlicaton servce drops
8) Where the helght of a bullding or other Instalation does not permil sentce drops to meet these values, the clearances may be reduced to the following:
(a) Insulated supply service drops Imited to 300 V to ground
(b) Insulated drip loops of supply service drops Impted to 300 V to ground 10.0

Supply servce drops Imited to 150 V to ground and meethg Rules 23001 or 23
Orp bops only of supply sendce drops Ilmited to 150 V to ground and meeting
Rules 23001 or 23003
10.0
9) Spaces and ways subject to pedestrians or restrcted traffic only are those areas where idders on horses or other large anlmals, vehicles, or other moblle unlts exceedling a total helght of 8 ft are prohlbled by regulatlon or permanent terraln conflguratlons, or are otherwise not normally encountered nor reasonably antclpated.
13) Where thls construction crosses over or runs along aleys, difleways, or parking lots not subject to truck traffic thls clearance may be reduced to 15 ft .
16) Adjacent to tunnels and overnead brages what restrct the helght of loaded rall cars to less than $20 \mathrm{ff}_{\text {, }}$ these clearances may be reduced by the difference between the highest loaded rall car handled and 20 ft II mutually agreed to by the partles at interest
17) For controlled Impou
design hlgh-water level.
18) For uncontrolled water flow areas, the surface area shal be that endosed by Its annual high-water mark. Clearances shal be based on the normal flood level; If avallable, the 10 -year flood level may be assumed as the normal flood level.
19) The clearance over ivers, streams, and canals shall be based upon the largest surface area of any
$1-\mathrm{ml}$ - segment that hdudes the crosshg. The clearance over a canal, iver, or stream normally used to provkde access for salboats to a larger body of water shall be the same as that required for the larger body of water.
20) Where an over water obstruction restrcts vessel helght to less than the appllcable reference helgh glven In Table 232-3, the required dearance may be reduced by the difference between the reference
helght and the over water obstructlon helght, except that the reduced dearance shall be not less than helght and the over water obstructlon helght, except that the reduced dearance
21) Where the US Army Corps of Englneers, or the state, or surrogate thereof has issued a crossing permit, clearances of that permilt shal govern
23) For the purpose of thls Rule, trucks are deflned as any vehlcle exceedlng 8 ft thelght. Areas not subject to truck trafflc are areas where truck traffic Is not normaly encountered nor reasonably anticipated.
25) The dearance vakes shown in this table are computed by adding the applicable Mechanical and Electrical (M \& E) value of Table A-1 to the applliable Reference Component of Table A-2a of Appendk A.
26) When deslgnhg a lhe to accommodate overstzed vehicles, these clearance values shall be Increased by the difference between the known helght of the overstzed vehlide and 14 ft

SEE RULES 232B1, 232C1A, AND 232D4.)
Rule 232B. Clearance of Wires, Conductors, Cables, Equlpment, and Support Arms Mounted on Supportlng Structures

1. Clearance to Wires, Conductors, and Cables - The vertcal clearance of wres, conductors, and cables
above ground \boldsymbol{h} generally accessible places, roadway, rall, or water surface, Shall be not less than that shown In Table 232-1
Rule 232C. Additional Clearances for Wires, Conductors, Cables, and Unguarded Rigid Live Parts of Equipment Greater dearances than spectied by Rule 232 B shal be provided where required by Rule 232 C 1 .
2. Vottages Exceedhg 22 kV
a. For voltages between 22 and 470 kV , the dearance spectlied In Rule 232B1 (Table 232-1) or Rule 23282 (Table 232-2) shal be Increased at the rate of $10 \mathrm{~mm}(0.4 \mathrm{In})$ per klovolt h excess of 22 KV . For volages exceedhg 470 KV , the dearance
shal be determined by the method glven In Rule 232D. Al dearances for Ines over 50 kV shal be based on the maxlmum operatng voltage. EXCEPTION: For voltages exceedling 98 kV ac to ground or 139 kV dc to ground, clearances less than those required above are permitted for systems with known maximum switchlng-surge factors (see Rule 232D).

Rule 232D. Alemate Clearances for Volages Exceedhg 98 kV AC to Ground or 139 kV DC to Ground.
4. Limit.
te dearance shall be not less than the dearance glven In Tables 232-1 or 232-2 computed for 98 kV ac to ground In accordance whth Rule 232C.

RULE 234C - Clearances Of Wres, Conductors. Cables, and RIgld Live Parts
Antennas, Tanks, And Oards, Chimneys, Radio And Television
General
Thls standard detalls the millmum Natlonal Electrccal Safety Code (N.E.S.C.) dearance requirements of wres, conductors, cables, and igld Ilve parts to bulldings, slgns, bllboards,
chlmneys, radlo and televislon antennas, tanks, and other Instalatithns. It does not cover dearances to the supportling structure, to other supporthg structures (poles), over pods, to idges, or lo grain bhis.
The clearance requirements detaled h thls standard must be evaluated \boldsymbol{h} addtibn to the minlmum limable conductor dearance above ground, N.E.S.C. Rule 232 as detaled on Standard 021006 for buildings are detatled on page 1 of thls standard.

Clearance Requirements
ther
Hortzontal 1) $120^{\circ} \mathrm{F}$, No Mnd, Flnal Sag
And 2) Maxdmum Operating Temperature (If greater than $120^{\circ} \mathrm{F}$). Final Sag. No Whind 3) $32^{\circ} \mathrm{F}$, No WMd, $1 / 12^{4} \mathrm{kee}$. Fhal S
4) $-20^{\circ} \mathrm{F}$, No Whnd, Inklal Sag
$\begin{array}{lll}\text { Hortzontal } & \text { 5) } 60^{\circ} F \text {, Flnal Sag, } 6 \mathrm{~b} / \mathrm{ft} \text { Mnd (Thls can be reduced it } 4 \mathrm{l}\end{array}$
Verikal dearances should be checked for Load Cases.
$1-4$, each with no wind displacement. Hotzontal Clearance Notes
H) Clearances must be consbered for all 5 load cases show above. The clearance requlements for some of the conductors a different when loaded with and without whdd. Al cases must be checked
for complance. When accesshg the dearances of the bad case with Mind, the movement of hsulators and other flexble supports must also be consldered. Defection of the structure must

[CE KU]

The requirements in this standard detall the absolute minlmum allowable clearances and should not be used as deslgn gubidelhes. Values used for deslgn purposes should generally exceed the values detaled IVe of the instalation.
Clearances General
Clearances must be evaluated In three distinct areas, as shown on the dlagrams on thls standarc. H) Horzontal and (V)-Vertical requrements are taken from the table. The (T)-Transslibn between (H) and (V) requrements $i s$ a means of connecthg the (H) and (V).
Trans H.
Clearance requkements are shown in the tables on thls standard. Each table detalks the requirements by the type/voltage of the conductor and the nature of the bulliking or slgn nearby

Clearance For Voltages Greater Than 22kv
Horizontal and verical clearances must be increased by the following amount for
oltage enther
Example: Adder For 69kv: Maxlmum Phase-Ground Vodtage: ($69 \mathrm{kv} X 1.05$) $/ \sqrt{3}=41.83 \mathrm{kv}$
Clearance Adder: $(41.83-22 \mathrm{kV}) \times .4^{4 /} / \mathrm{KV}=7.93^{\prime \prime}$ (ROUND TO $\left.8^{7}\right)$

SIGNS
NOT ACCESSIBLE \quad ACCESSIBLE

MINIMUM GROUND CLEARANCE RULE 232

Electric System Codes \& Standards

NESC MINIMUM REQUIRED CLEARANCES \& POINTS OF ATTACHMENTS FOR SERVICES AND METERS

NESC MINIMUM REQUIRED CLEARANCES FROM RULE 232 AND RULE 234

OVER GROUND (FOR OPEN WIRE SERVICES ADD ADDITIONAL 6" TO HEIGHTS SHOWN FOR GROUND CLEARANCES.)

A-12 FEET OVER AREAS AND WAYS ACCESSIBLE TO PEDESTRIANS ONLY. INCLUDING EQUIPMENT OR STRUCTURES. (SEE NOTE F)
EXCEPTION:
CLEARANCES AT THE SERVICE DROP AND/OR DRIP LOOP OF SERVICES MAY BE REDUCED TO 10 FEET WHEN VOLTAGE DOES NOT EXCEED 150 VOLTS TO GROUND AND THE HEIGHT OF THE BUILDING DOES NOT PERMIT THE FULL 12'-0" CLEARANCE.
B - 16 FEET OVER RESIDENTIAL DRIVEWAYS.
EXCEPTION:
CLEARANCES AT THE SERVICE DROP MAY BE REDUCED TO 12 FEET, AND CLEARANCES AT THE DRIP LOOP MAY BE REDUCED TO 10 FEET WHEN VOLTAGE
DOES NOT EXCEED 150 VOLTS TO GROUND AND THE HEIGHT OF THE BUILDING DOES NOT PERMIT THE FULL 16'-0" CLEARANCE. C - 16 FEET OVER COMMERCIAL AREAS, PARKING LOTS, AGRICULTURAL OR OTHER AREAS SUBJECT TO TRUCK TRAFFIC.
D-16 FEET OVER ANY PORTION OF PUBLIC STREETS, ALLEYS, ROADS OR DRIVEWAYS ON OTHER THAN RESIDENTIAL PROPERTY.

OVERROOFS

E-10 FEET - CONDUCTORS SHALL HAVE CLEARANCE OF NOT LESS THAN 10 FEET FROM THE HIGHEST POINT OF ROOFS OVER WHICH THEY PASS. EXCEPTIONS:
CLEARANCES FOR SERVICE CONDUCTORS AND DRIP LOOPS ON INACCESSIBLE ROOFS WHERE VOLTAGE DOES NOT EXCEED 750 V BETWEEN MULTIPLEXED CONDUCTORS OR 300 V FOR SINGLE CONDUCTORS (I.E. LESS THAN 480 V SERVICES FOR COVERED CONDUCTORS)

1. CLEARANCE MAY BE REDUCED TO 3 ' OVER THE ROOF TO WHICH A SERVICE IS ATTACHED. FOR DISTANCES GREATER THAN 6 ' ACROSS THE ROOF, UTILITY APPROVAL IS REQUIRED.
2. CLEARANCE WITHIN 6' OF A MAST THAT IS LOCATED NOT MORE THAN 4' FROM THE EDGE OF A ROOF MAY BE REDUCED TO 18". (SEE FIGURE 1)

NOTES:
F - ANY EQUIPMENT HOUSING INCLUDING AIR CONDITIONING, PLATFORM OR PROJECTION WHICH A PERSON MIGHT STAND ON. G-SERVICE MAST OR BRACKET ATTACHMENT OR UPRIGHT OF ADEQUATE SIZE \& HEIGHT TO SUPPORT SERVICES REQUIRED. H-NORMALLY TRIPLEX SERVICE DROP, BUT MAY ALSO BE SEPARATE CONDUCTORS AS SHOWN FOR COMMERCIAL.

Electric System Codes \& Standards

NESC MINIMUM REQUIRED CLEARANCES \& POINTS OF ATTACHMENTS FOR SERVICES AND METERS

ADDITIONAL CLEARANCE INFORMATION FOR SERVICES OVER BALCONIES, PORCHES AND DECKS.

ABOVE RAILING - 3 FT

THE RAILING IS CONSIDERED INACCESSIBLE BECAUSE IT WOULD BE EXPECTED TO BE SO THIN THAT IT WOULD REQUIRE EXTRAORDINARY EFFORT TO STAND ON. SEE RULE 234C3D1 EXCEPTION A.
ABOVE BUILT-IN BENCH SEAT - 10 FT
THE BENCH IS WIDE ENOUGH TO EASILY ACCOMMODATE SOMEONE STANDING ON
IT SO IT IS CONSIDERED ACCESSIBLE. SEE BASIC CLEARANCE REQUIREMENT UNDER RULE 234C3D1.
ABOVE DECK - 10 FT
BASIC CLEARANCE REQUIREMENT UNDER RULE 234C3D1 FOR ACCESSIBLE AREAS. DRIP LOOP ABOVE RAILING - 3 FT

ALL CLEARANCES ARE TO THE CLOSEST CONDUCTOR POSITION, IN THIS CASE THE DRIP LOOP. SAME AS ABOVE RAILING.
DRIP LOOP ABOVE DECK - 10 FT
ALL CLEARANCES ARE TO THE CLOSEST CONDUCTOR POSITION, IN THIS CASE THE DRIP LOOP. SAME AS ABOVE DECK.

ADDITIONAL CLEARANCE INFORMATION FOR SERVICE ATTACHMENTS BELOW ROOF

ATTACHMENT POINT FOR SERVICE CONDUCTOR AND DRIP LOOP FOR SERVICE WIRES SHALL BE IN THE SHADED SPACES OR HIGHER. THE MINIMUM HEIGHT OF ATTACHMENT SHALL BE ADJUSTED SO THAT THE LOWEST POINT OF THE SERVICE CONDUCTOR MEETS THE CLEARANCES SPECIFIED IN $234 C 3$ AND 232. SEE PAGE 1. A SERVICE MAST MAY BE USED IF NECESSARY TO OBTAIN MINIMUM CLEARANCES.

Replaces
LGE 810202
KU None

By: Hethcox/Stickler 10/22/10
Page 2 of 2

Electric System Codes \& Standards

NESC MINIMUM CLEARANCE REQUIREMENTS FROM STREETLIGHTS TO COMMUNICATION FACILITIES

NESC SECTION 238 REQUIREMENTS (NESC 2017)

NOTE:

1. ALL NEW STREET LIGHT FIXTURES MUST BE EFFECTIVELY GROUNDED. IF UNABLE TO VERIFY GROUND, EITHER USE UNGROUNDED CLEARANCES OR FIXTURE MUST BE GROUNDED.
2. $40^{\prime \prime}$ MIN. CLEARANCE MUST BE MET BETWEEN NEUTRAL AND SECONDARY CABLE HARDWARE AND COMMUNICATIONS EQUIPMENT.
3. THE 12" AND 3" CLEARANCE ONLY APPLIES TO THE DRIP LOOP FEEDING THE LUMINAIRE.
4. THE REDUCED 3" CLEARANCE MAY BE USED IF NON-METALLIC COVERING IS PROVIDED AND EXTENDS 2" INTO LUMINAIRE BRACKET.

CLEARANCE FROM LUMINAIRE BRACKET TO TOP OF COMMUNICATION SUPPORTING ARM

CLEARANCE FROM LUMINAIRE
 BRACKET TO TOP OF COMMUNICATION BRACKET OR CABLE/MESSENGER MOUNTED TO POLE (BOTH REQUIREMENTS APPLY)

APPLICATION:
These clearance requirements apply to all pools and also to supervised swimming areas Including beaches, waterways, etc. where swimming is allowed and rescue poles are used. For unsupervised swimming in other water areas, Rule 232 (standard 02 1006) applies. Contact the Standards Group for clearances to lines greater than 22 kV phase-to-ground. Exception: These clearances do not apply to pools that are enclosed by a solld or screened non-retractable permanent structure.

NOTES:

1. Clearance to each conductor in the pool area must be checked. The clearances listed in this standard are minimums. Additional clearance may be required for future changes in grade, leaning poles, etc. Vertical clearances to overhead lines apply under whichever condiltons of conductor temperature and,loadling produce the closest approach:
A) $120^{\circ} \mathrm{F}$, no wind, final sag; B) Maximum operating temperature, no wind, final sag; C) $32^{\circ} \mathrm{F}$, with $1 / 4^{\prime \prime}$ ice, no wind, final sag.
2. Installation of new conductors over existing pools should be avoided wherever possible, even when NESC clearance is obtalnable. Pools Installed under exlstling lines which result in a code vlolation must be brought In compllance by relocatlon of the pool or Ilne or, If necessary, ensuring adequate clearance over the pool. It is normally the customer's responslbillty to correct code violations caused by placing a pool under existing utility lines.
3. Multiplex service drops (triplex) less than 750 V are allowed lesser clearances under the NESC but must not be less than 10' horizontally from the edge of pools or dlving platforms (234-1 Exceptlon 2).
4. The swimming pool and auxllary equipment must have a 5 ' minimum separatlon from underground cables. Pool decklng and other structures must allow safe access to underground facilities for construction, inspection, and maintenance.

234E1. Clearance of wires, conductors, cables, or unguarded rigld Ilve parts Installed over or near swimmIng areas with no wind dlsplacement.

1. Swlmming Pools

Where wires, conductors, cables, or unguarded rigid live parts are over a swimming pool or the surrounding area, the clearances in any direction shall be not less than those shown in Table 234-3 and illustrated in Figure 234-3.
EXCEPTION 1: Thls rule does not apply to a pool fully enclosed by a solld or screened permanent structure.
EXCEPTION 2: Thls rule does not apply to communlcation conductors and cables, effectlvely grounded surge-protectlon wires, neutral conductors meeting Rule 230E1, guys and messengers, supply cables meeting Rule 230C1, and supply cables of 0 to 750 V meeting Rule 230 C 2 or 230 C 3 when these facliltles are 3 m (10ft) or more horizontally from the edge of the pool, dlving platform, dlving tower, water sllde, or other fixed, pool-related structures.
351C. Other conditions 1. Swimming pools (in-ground)
UNDERGROUND
Supply cable should not be installed within 1.5 m (5 ft) horizontally of a swimming pool or its auxiliary equipment. If $1.5 \mathrm{~m}(5 \mathrm{ft})$ is not attalnable, supplemental mechanlcal protection shall be provided.

2. Bulldings and other structures

Cable should not be Installed dlrectly under the foundatlons of bulldings or other structures. Where a cable must be Installed under such a structure, the foundation shall be suitably supported to limit the likelihood of transfer of a detrimental load onto the cable.

NESC Table 234-3-Clearance of wires, conductors, cables, or unguarded rigid Ilve parts over or near swimming pools (1) (Voltages are phase to ground for effectlvely grounded clrcults and those other clrcults where all ground faults are cleared by promptly de-energizing the faulted section, both initially and following subsequent breaker operations. See the definitions section for voltages of other systems. Clearances are with no wind displacement. See Rules 234E1, 234E2, and 234H4.)

Note: A, B, and V are shown in associated figures.	Insulated communication conductors and cables; messengers; surge protection wires; grounded guys; ungrounded guys exposed to 0 to $300 \mathrm{~V}(3)$; neutral conductors meeting Rule 230E1; supply cab es meeting Rule 230C1 (ft)	Unguarded rigid live parts, 0 to 750 V ; noninsu ated communication conductors; supply cables of 0 to 750 V meeting Rule 230C2 or 230C3; ungrounded guys exposed to open supply conductors of over 300 V to 750 V (2) (ft)	Supply cables over 750 V meeting Rule 230 C 2 or 230C3; open supply conductors, 0 to 750 V (4) (ft)	Unguarded rigid live parts over 750 V to 22 kV ; ungrounded guys exposed to over 750 V to 22 kV (2) (ft)	Open supply conductors, over 750 V to 22 kV (ft)
A. Clearance in any direction from the water level, edge of pool, base of diving platform or anchored raft	22.0	22.5	23.0	24.5	25.0
B. Clearance in any direction to the diving platform, tower, water slide, or other fixed, pool related structures	14.0	14.5	15.0	16.5	17.0
V. Vertical clearances over adjacent land	Clearance shall	as required by Rule 232.	e standard\# 021		

1. The clearance values shown In thls table are computed by addling the appllcable Mechanlcal and Electrical (M\&E) value of Table A-1 to the applicable Reference Component of Table A-2B of Appendix A.
2. Ungrounded guys and ungrounded portions of guys between insulators shall have clearances based on the highest voltage to which they may be exposed due to a slack conductor or guy.
3. Anchor guys Insulated In accordance with Rule 279 may have the same clearance as grounded guys.
4. Does not Include neutral conductors meeting Rule 230E1.

| Electric Design And | Replaces | By: Hethcox/Stickler |
| :--- | :--- | :--- | :--- |
| Construction Standards | LGE 02 10 20 A | $12 / 02 / 2008$ |
| Con NONE | Page 2 of 2 | |

General Notes

Clearances for conductors and equipment near grain bins are governed by NESC Rule 234F. The clear zone near grain bins is determined by a clearance envelope that is based on many factors including the shape and physical dimensions of the grain bin, location of filling and probing ports, slope of the ground, ground line clearance of the LG\&E/KU line and the method used for filling (fixed or portable loading system). On grain bins loaded by a portable loader the sides are classified as either a loading or non-loading side. All sides are considered to be loading sides unless there is a physical obstruction such as a ditch, structure, public road, etc. that would prohibit setting up a portable loader on one or more sides.

It is not necessary to use a clearance envelope to determine NESC compliance if there is sufficient Horizontal clearance to the nearest conductor, including neutrals and communication lines. The safe horizontal clearance is the distance where the clearance envelope intersects minimum ground clearance requirement for the line. At that point, as long as the line has adequate ground clearance, it will be compliant with the NESC. However for taller grain bins, these distances may be unrealistic and the use of the clearance envelope may be required.

Minimum Safe Horizontal Clearances (H) For Not Checking With A Clearance Envelope
Fixed Loading Grain Bins:

All Sides: $\quad \mathrm{H}=15$ ' (or 18^{\prime} to the nearest rooftop probe or fill port, whichever is greater)
Portable Loading Grain Bins:
Loading Side: $\quad H=2.5$ (Grain Bin Height $+18^{\prime}$) - 1.5(Ground Clearance of Line Std. 02-10-06)
Non-Loading Side: $\quad H=15^{\prime}$ (or 18^{\prime} to the nearest rooftop probe or fill port, whichever is greater)

If conductors or equipment on the line is less that the safe horizontal distances outlined above it will require checking against the conductor clearance envelope. A table of safe horizontal clearances is shown below.

Safe Horizontal Clearances From Conductors to Grain Bins					
Grain Bin Height	Fixed Loading Bin (FT)	Portable Loading Bin (FT)			
	All Conductors and Equipment	Non-Loading Side to All Conductors	Loading Side to Neutral or Triplex	Loading Side to Open Wire Secondary	Loading Side to Primary
	15^{1}	15^{1}	71.00	70.25	67.25
25	15^{1}	15^{1}	83.50	82.75	79.75
30	15^{1}	15^{1}	96.00	95.25	92.25
35	15^{1}	15^{1}	108.50	107.75	104.75
40	15^{1}	15^{1}	121.00	120.25	117.25
45	15^{1}	15^{1}	133.50	132.75	129.75
50	15^{1}	15^{1}	146.00	145.25	142.25

FIGURE 1

1. 15^{\prime} or 18^{\prime} to the edge of the nearest filling or probe port
2. All sides are considered Loading sides unless restricted by a physical
obstruction. Clearances based on ground clearances of 16^{\prime} neutral, 16.5^{\prime} open wire secondary and 18.5^{\prime} for primary per NESC Rule 232

Clearance Envelope for Fix Loading Grain Bins
Fixed loaded grain bins are treated as buildings when determining minimum vertical clearances. See Page 4 or Standard 02-10-08 for clearances to buildings (using clearance over buildings readily accessible to pedestrians). A minimum of 18' must be maintained above and in all directions from any fill or probe ports. The clearance envelope follows the outline of the grain bin and loading facilities (Figure 2). A minimum horizontal clearance of 15 ' is required to conductors (or 18 ' to the nearest probe or fill port if greater).

Electric Design And	Replaces	By: Hethcox/Leake	
Construction Standards	LGE None	KU None	Page 1 of 4

Electric System Codes \& Standards

NESC CLEARANCES OF WIRES, CONDUCTORS, CABLES, AND RIGID LIVE PARTS FROM GRAIN BINS

Clearance Envelope for Portable Loading Grain Bins

Vertical clearance is 18^{\prime} minimum above the grain bin. On loading sides, the vertical clearance remains parallel to the ground line for a distance equal to the height of the grain bin +18 ' and tappers down to the conductor's ground clearance requirement at the rate of 1^{\prime} drop for every 1.5 ' of horizontal distance (Figure 3). Non-loading sides require the same vertical clearance requirement over the bin but begin the same sloped reduction starting at the edge of the grain bin out to a distance of 15^{\prime} (or 18 ' to the nearest probe or fill port if greater). See page 4 or Standard 021006 for ground clearances.

NESC Rule 234F - Clearances of wires, conductors, cables, and rigid live parts from grain bins

1. Grain bins loaded by permanently installed augers, conveyers, or elevator systems

All portions of grain bins that are expected to be loaded by the use of permanently installed auger, conveyer, or elevator system shall be considered as a building or other installation under Rule 234C for the purpose of determining appropriate clearances of wires, conductors, cables, and rigid live parts. In addition, the following clearances shall also apply without wind displacement.
a. A clearance of not less than 5.5 m (18 ft) in all directions above the grain bin shall be maintained from each probe port in the grain bin roof for all wires, conductors, and cables.
b. A horizontal clearance of not less than $4.6 \mathrm{~m}(15 \mathrm{ft})$ shall be maintained between grain bins and open supply conductors, 0 to 22 kV . This clearance does not apply to a neutral conductor meeting Rule 230E1.

FIGURE 2 Note:
The clearances listed are minimum distances. A
buffer of a foot or more should be added to the
minimum clearance distances to compensate for
future changes in installation such as grade
changes or leaning poles.

LEGEND
$P=$ probe clearance 18 ft required by Rule 234F1a
$\mathrm{H}=$ horizontal clearance 15 ft required by Rule 234F1b
T = transition clearance
$\mathrm{V}_{1}=$ vertical clearance above a building required by Rule 234C (Table 234-1)
$\mathrm{V}_{2}=$ vertical clearance required by Rule 232B (Table 232-1 or 232-2)

Clearance envelope for grain bins filled by permanently installed augers, conveyors, or elevators

	Electric Design And Construction Standards	\quad Replaces LGE None KU None	By: Hethcox/Leake 10/07/14 Page 2 of 4

Electric System
Codes \& Standards

NESC CLEARANCES OF WIRES, CONDUCTORS, CABLES, AND RIGID LIVE PARTS FROM GRAIN BINS
2. Grain bins loaded by portable augers, conveyers, or elevators (with no wind displacement)
a. The clearance of wires, conductors, cables, and rigid live parts from grain bins that are expected to be loaded by the use of a portable auger, conveyer, or elevator shall be not less than the values illustrated in figure on page 2.

EXCEPTION: Clearances of the following items on the nonloading side of grain bins shall be not less than those required by Rule 234C for clearances from buildings:
(a) Support arms; effectively grounded equipment cases.
(b) Insulated communication conductors and cables, messengers, surge-protection wires, grounded guys, neutral conductors meeting Rule 230E1, and supply cables meeting Rule 230 C 1.
(c) Supply cables of 0 to 750 V meeting Rule 230 C 2 or 230 C 3 .
b. Any side of a grain bin is considered to be a nonloading side if it is so designated, or if it is so closely abutting another structure or obstruction, or so close to a public road or other right-of-way that a portable auger, conveyor, or elevator is not reasonably anticipated to be used over that side or portion to fill the grain bin.
c. Where an agreement excludes the use of portable augers, conveyors, or elevators from a designated portion of a grain bin, such portion is considered to be a nonloading side.

$$
\begin{aligned}
& \mathrm{V}=\text { GRAIN BIN HEIGHT } \\
& \mathrm{H}=\mathrm{CLEARANCE} \mathrm{OVER} \mathrm{GRAIN} \mathrm{BIN}=\mathrm{V}+18 \mathrm{ft} \\
& \mathrm{~A}=\mathrm{H}=\mathrm{V}+18 \mathrm{ft}
\end{aligned}
$$

SIDE VIEW

FIGURE 3

Key Parts of Table 234-1. See Standard 021008 for full table.

Clearance of	Insulated communication conductors and cables; messengers; overhead shield/surgeprotection wires; grounded guys; ungrounded portions of guys meeting rules 215C4, 215C5, and 279A1 exposed to 0 to 300 V (1) neutral conductors meeting Rule 230E1; supply cables meeting Rule 230C1 (ft)	Supply cables of 0 to 750 V meeting Rule 230C2 or 230 C 3 (ft)	Unguarded rigid live parts, 0 to 750 V ; noninsulated communication conductors: ungrounded equipment cases, 0 to 750 V ; and ungrounded portions of guys meeting Rules 215C4, 215C5, and 279A1 exposed to open supply conductors of over 300 V to 750 V (3) (ft)	Supply cables over 750 V meeting Rule 230C2 or 230C3; open supply conductors, O to 750 V (3) (ft)	Unguarded rigid live parts, over 750 V to 22 kV ; ungrounded portions of guys meeting Rules 215C4, 215C5, and 279A1 exposed to over 750 V to 22 kV (5) (ft)	Open supply conductors, over 750 V to 22 kV (ft)
Vertical (1)						
(2) Over or under balconies, porches, decks and roofs readily accessible to pedestrians (3)	10.5	11.0	11.0	11.5	13.0	13.5

(3) A roof, balcony, or area is considered readily accessible to pedestrians if it can be casually accessed through a doorway, ramp, window, stairway, or permanently mounted ladder by a person on foot who neither exerts extraordinary physical effort nor employs tools or devices to gain entry. A permanently mounted ladder is not considered a means of access if its bottom rung is 8 ft or more from the ground or other permanently installed accessible surface.
(5) The portion(s) of span guys between guy insulators and the portion(s) of anchor guys above the guy insulators that are not grounded shall have clearances based on the highest voltage to which they may be exposed due to a slack conductor or guy.
(11) The portion of anchor guys below the lowest insulator meeting Rules 279A1 and 215C5 may have the same clearance as grounded guys.
(12) For clearances above railings, walls, or parapets around balconies, decks, or roofs, use the clearances required for row 1 b (1). For such clearances where an outside stairway exists to provide access to such balconies, decks, or roofs, use the clearances required for row $2 \mathrm{~b}(2)$.
(13) Does not include neutral conductors meeting Rule 230E1.
(14) These clearance values also apply to guy insulators.

Key Parts of Table 232-1 For Conductors. See Standard 021006 for full table. See also Table 232-2 for Equipment.

Nature of surface underneath wires, conductors, or cables	Insulated communication conductors and cable; messengers; overhead shield/surge-protection wires; grounded guys; ungrounded portions of guys meeting Rules 215C4, 215C5, and 279 A1 exposed to 0 to 300 V () (1) (1) ; neutral conductors meeting Rule 230E1; supply cables meeting Rule 230C1 (ft)	Noninsulated communication conductors; supply cables of 0 to 750 V meeting Rule 230 C 2 or 230C3 (ft)	Supply cables over 750 V meeting Rule 230 C 2 or 230C3; open supply conductors, 0 to 750 V(O; ungrounded portions of guys meeting Rules 215C4, 215C5, and 279A1 exposed to over 300 V to 750 VOO © (ft)	Open supply conductors over 750 V to 22 kV ; ungrounded portions of guys meeting Rules 215C4, 215C5, and 279A1 exposed to 750 V to 22 kV (1) (ft)
(4) Other areas traversed by vehicles, such as cultivated, grazing, forest, and orchard lands, industrial sites, commercial sites, etc.()	15.5	16.0	16.5	18.5

3) Does not include neutral conductors meeting Rule 230E1.
4) These clearance values also apply to guy insulators.
(11) No clearance from ground is required for anchor guys not crossing tracks, rails, streets, driveways, roads, or pathways.
(14) The portion(s) of span guys between guy insulators and the portion(s) of anchor guys above guy insulators that are not grounded shall have clearances based on the highest voltage to which they may be exposed due to a slack conductor or guy.
(15) The portion of anchor guys below the lowest insulator meeting Rules 279A1 and 215C5 may have the same clearance as grounded guys.
(2) When designing a line to accommodate oversized vehicles, these clearance values shall be increased by the difference between the known height of the oversized vehicle and 14 ft .

Electric System Codes \& Standards

CLEARANCES FOR CONDUCTORS, WIRES AND CABLES

NESC Rule 234I - Clearance of wires, conductors, and cables to rall cars

General: The Informatlon on thls standard deflnes NESC mInImum clearance requirements for conductors running beside or over railroad tracks. No conductor may vlolate the clearance envelope under any of the following loading conditions:

1) 120° F, No WInd, FInal Sag
2) Maximum Operating Temperature (if greater than $120^{\circ} \mathrm{F}$), Final Sag, No WInd
3) 32° F, No WInd, $1 / 2^{\prime \prime}$ Ice, Flnal Sag
4) $-20^{\circ} \mathrm{F}$, No Wind, Initial Sag
5) $60^{\circ} \mathrm{F}$, FInal Sag, $6 \mathrm{lb} / \mathrm{sq}-\mathrm{ft}$ WInd

Actual clearance requirements may exceed NESC minimum
requlrements as determined by Indlvildual rallroad permits or agreements but shall in no case be less than NESC requirements.

Where overhead wires, conductors, or cables run along or over railroad tracks, the clearance in any direction shall not be less than that shown In the Illustration. The values of V and H are deflned as follows:
$\mathrm{V}=$ vertical clearance from the wire, conductor, or cable above the top of the rall as specffled In Table 232-1 minus 20'-0", the assumed height of the rail car.
$\mathrm{H}=$ horlzontal clearance from the wire, conductor, or cable to the nearest rail, which is equal to the required vertical clearance above the rall as specifled In Table 232-1 minus 15'0".

NOTE: For clearances Involving voltages of 22 kV phase-to-ground and above, contact the Standards Group.

NESC Table 232-1-Vertical clearance of wires, conductors, and cables above ground, roadway, rall, or water surfaces

Nature of surface underneath wires, conductors, or cables	Insulated communication conductors and cable; messengers; overhead shield/surge-protection wires; grounded guys; ungrounded guys exposed to 0 to 300 V(1) ; neutral conductors, messenger supported shielded primary supply cables up to 22 kV (ft)	Noninsulated communication conductors; multiplex secondary conductors (ft)	Open wire secondary, 0 to 750 V 3; ungrounded guys exposed to over 300 V to 750 V (1) (ft)	Open primary supply conductors, over 750 V to 22 kV ; ungrounded guys exposed to 750 V to 22 kV (4) (ft)
Where wires, conductors, or cables cross over or overhang				
1. Track rails of railroads (except electrified railroads using overhead trolley conductors) (2)(2)	23.5	24	24.5	26.5

*SEE PAGE 2 OF THIS STANDARD FOR FOOTNOTES.

LGE None

KU None

Electric System Codes \& Standards

NESC CLEARANCE OF CONDUCTORS AND SUPPORTING
STRUCTURES TO RAIL CARS
021024
Rev.

Note: These clearances are computed for rallioads handlling standard rall cars as common carrlers in Interchange service with other railroads. Where wires, conductors, or cables run along mine, logging, and similar railways that handle only cars smaller than standard frelght cars, the value of H may be reduced by one-half the difference between the width of a standard rall car ($10^{\prime}-8^{\prime \prime}$) and the width of the narrower car.

Appllcable Footnotes:

(2) or wires, conductors, or cables crossing over mine, logging, and similar railways that handle only cars lower than standard freight cars, the clearance may be reduced by an amount equal to the difference In helght between the highest loaded car handled and $20^{\prime}-0^{\prime \prime}$, but the clearance shall not be reduced below that required for street crossings.
(3Does not Include neutral conductors meeting Rule 230E1.
© C No clearance from ground is required for anchor guys not crossing tracks, rails, streets, driveways, roads, or pathways.
(1)Ungrounded guys and ungrounded portlons of span guys between guy Insulators shall have clearances based on the hlghest voltage to which they may be exposed due to a slack conductor or guy.
(ㅏ) Anchor guys Insulated In accordance wlth Rule 279 may have the same clearance as grounded guys.
(1) Adjacent to tunnels and overhead bridges that restrict the height of loaded rail cars to less than $20^{\circ}-0^{\prime \prime}$, these clearances may be reduced by the difference between the hlghest loaded rall car handled and $20^{\prime}-0^{\prime \prime}$, If mutually agreed to by the partles at interest.
(23ee Rule 2341 for the requlred horizontal and dlagonal clearances to rall cars.

CLEARANCES FOR STRUCTURES, EQUIPMENT AND SUPPORTS

Note:
No structure, equipment or support may be inside clearance envelope.

NESC Rule 231C - Clearances of supporting structures from rallroad tracks
Where rallroad tracks are parallel to or crossed by overhead Ilnes, all portlons of the supporting structures, support arms, anchor guys, and equipment attached thereto less than $22^{\prime}-0^{\prime \prime}$ above the nearest track rail shall have horizontal clearances not less than the values required by Rule 231C1 or 231C2 for the sltuatlon concerned.

NOTE: See Rule 234I

1. Not less than $12^{\prime}-0^{\prime \prime}$ In from the nearest track rall.

EXCEPTION 1: A clearance of not less than $7^{\prime}-0^{\prime \prime}$ may be allowed where the supporting structure is not the controlling obstruction, provided sufficient space for a driveway is left where cars are loaded or unloaded.
EXCEPTION 2: Supports for overhead trolley-contact conductors may be located as near their own track rail as conditions require. If very close, however, permanent screens on cars will be necessary to protect passengers.
EXCEPTION 3: Where necessary to provide safe operating conditions that require an uninterrupted view of signals, signs, etc., along tracks, the parties concerned shall cooperate in locating structures to provide the necessary clearance.
EXCEPTION 4: At industrial sidings, a clearance of not less than $7^{\prime}-0^{\prime \prime}$ shall be permitted, provided sufficient space is left where cars can be loaded or unloaded.
2. The clearances of Rule 231 C1 may be reduced by agreement with the railroad(s).

	Electric Design And Construction Standards	\quad Replaces LGE None KU None	By: Hethcox/StIckler 09/11/09 Page 2 of 2

Electric System Codes \& Standards cables of one line passing over, under or beside a lighting support, traffic signal support or a supporting structure of a second line (including other E.ON U.S. structures), without being attached thereto. Also shown are Table 233-1 values for vertical clearance of conductors and cables to effectively grounded support guys passing over/under lines used for supporting traffic lights or other communications cables. All values represent absolute minimum clearances and should not be used as design values.

Horizontal and Vertical clearances must be checked under at rest conditions at the sag that produces the minimum clearance. Horizontal clearances must also be checked under wind condiltions. The

Horizontal And Vertical (No Wind)	$120^{\circ} \mathrm{F}$, no wind, final sag Maximum operating temperature (if greater than 120°), no wind, final sag $32^{\circ} \mathrm{F}$, no wind, $1 / 2{ }^{2}$ ice, final sag $-20^{\circ} \mathrm{F}$, no wind, initial sag
Horizontal (with Wind)	$60^{\circ} \mathrm{F}, 6 \# / \mathrm{ft}^{2}$ wind (reduced to $4 \# / \mathrm{ft}^{2}$ in sheltered areas), final sag

Rule 234 B clearances are based on standard values for Horizontal (5 ft for voltages up to 50 kV , no wind) and Vertical (4.5 ft for voltages below 22 kV and 5.5 ft for voltages between 22 kV and 50 kV) as modifled by exceptlons. Other requirements apply to Horizontal clearances with wind. The table below shows minimum values with allowable exceptions ($\mathrm{H}-1$) and (V-1).

Clearance By Conductor Or Cable Type All Voltages Are Phase-Ground For Effectively Grounded Systems SEE PAGE 2 FOR EXAMPLES	Insulated Communications Cables Messengers Neutrals Grounded Guys Duplex, Triplex Quadruplex \& Paralay Secondary $0-300 \mathrm{~V}$ (ft)	480V 3-wire (Delta) Quadruplex (ft)	Open Wire Secondary 0-750V (ft)	Open Wire Primary \& Aerial Cable 750 V - $<22 \mathrm{KV}$ (ft)		Open Wire Primary \& Aerial Cable 22KV-50KV (ft)	
Rule 234 B - Horizontal And Vertical Clearance Of Wires, Conductors And Cables To Other Supporting Structures							
Horizontal Clearance At Rest All Sag Conditions (H) At $60^{\circ} F$ Final Sag With $6 \# / \mathrm{ft}^{2}$ Wind (HW)	$\underset{\text { At Rest }}{\mathrm{H}}$	$\underset{\text { At Rest }}{\mathrm{H}}$	H HW At Rest	$\underset{\text { At Rest }}{\mathrm{H}}$	HW With Wind	$\underset{\text { At Rest }}{\mathrm{H}}$	HW With Wind
	$\begin{array}{\|c\|} \hline 5 \\ 3 \text { 3' By Exception H-1 } \end{array}$	5'	5	5'	4.5'	5'	4.5'
Vertical Clearance (V) At Rest All Sag Conditions	$\underset{\text { All Sags }}{\mathbf{V}}$		$\underset{\text { All Sags }}{\mathbf{V}}$				
	$\begin{array}{\|c\|} \hline 4.5^{\prime} \\ \text { 2' By Exception } \mathrm{V}-1 \end{array}$	4.5'	4.5'	4.5'		5.5'	
Vertical Clearance To Traffic Signal Support Messengers And Other Support Guys (VG) - All Conditions (From Table 233-1)							
Vertical Clearance (VG) To Traffic Signal Messengers And Other Guys Crossing Over/Under Conductors At Rest All Sag Conditions	$\underset{\text { All Sags }}{\mathbf{V}}$	$\underset{\text { All Sags }}{\mathbf{V}}$	$\begin{gathered} \mathrm{V} \\ \text { All Sags } \end{gathered}$	$\underset{\text { All Sags }}{\mathbf{V}}$		$\begin{gathered} \hline \mathbf{V} \\ \text { All Sags } \end{gathered}$	
	$2 '$	$2 '$	4'	$5 '$		$\begin{gathered} 5^{\prime} \\ +.4^{4} / K V>22 \mathrm{KV} \end{gathered}$	

Horkzontal Exceptlon

(H-1) EXCEPTION: For effectively grounded guys and messengers, insulated communication conductors and cables, neutrals meeting Rule 230E1, and cables of 300 V or less to ground meeting the requirements of Rule $230 \mathrm{C} 1,230 \mathrm{C} 2$, or 230 C 3 , the horizontal clearance may be reduced to 900 mm (3 ft).

Vertical Exceptions

(V-1) EXCEPTION 1: For effectively grounded guys and messengers, insulated communication conductors and cables, and neutrals meeting Rule 230 E 1 and for cables of 300 V or less to ground meetling the requirements of Rule $230 \mathrm{C} 1,230 \mathrm{C} 2$, or 230 C 3 , the vertical clearance may be reduced to 600 mm (2 ft).
(V-2) EXCEPTION 2: The vertical clearances may be reduced by 600 mm (2 ft) If both of the following conditions are met:
a. The wires, conductors, or cables above and the supporting structure of another line below are operated and maintained by the same utility.
b. Employees do not work above the top of the supporting structure unless:

1. The upper clrcult is de-energized and grounded per Rule 444D or temporarly Insulated or repositioned, or 2.Other equivalent measures are taken

Thls standard covers minlmum clearance requlrements to other structures. It does not cover clearances to other conductors carrled on adjacent structures. Those clearances are specified under NESC Rule 233. When nearby structures also support conductors or cables, both clearance to the structure and conductor-to-conductor clearances to the lines on the other structure must be checked to determine minImum clearance requirements.

This standard also does not apply to clearances to signs or building under Rule 234 (See Standard 0210 08) or other objects not classifled as supportling structures.

FIGURE 2
FIGURE 1 - TYPICAL STRUCTURE CLEARANCE ENVELOPE

FIGURE 3
CLEARANCE TO COMMUNICATIONS GUYS AND MESSENGERS
(H) - ALL SAGS
(HW) -60° F FINAL SAG
6\# / ft ${ }^{2}$ WIND
(V) Or (VG) - MAX OR MIN
(V) Or (VG) - MAX

Attachment to Response to KCTA Question No. 1-16 54 of 97
Wolfe
Electric System CONDUCTOR BLOWOUT

021032 Codes \& Standards \qquad

Table 1 - HBOF and VBOF at 6\#/ft ${ }^{2}$ WInd By Conductor

Conductor Size/Strand	Conductor Dia. (in.)	Nominal Weight (\#./1000')	(HBOF) Horizontal Blow Out Factor @6lb/ft2 Wind)	(VBOF) Vertical Blow Out Factor @6lb/ft2 Wind)	Conductor Size/Strand	Conductor Dia. (in.)	Nominal Weight (\#./1000')	(HBOF) Horizontal Blow Out Factor @6lb/ft2 Wind)	(VBOF) Vertical Blow Out Factor @6lb/ft2 Wind)
					1/0-7st AAC	0.368	98.9	0.8808	0.5266
\#6 Solid Cu. Bare	0.162	79	0.7159	0.3018	336.4-19st AAC	0.666	315.5	0.7259	0.3122
\#4 Solid Cu. Bare	0.204	126	0.6298	0.2232	795-61st AAC	1.028	\| 745.7	0.5675	0.1766
\#2 Solid Cu. Bare	0.258	201	0.5395	0.158					
1/0 Solid Cu. Bare	0.325	320	0.4527	0.1083	1/0 AAAC or 123.3 ACAR	0.398	114.9	0.866	0.5
$2 / 0$ Solid Cu. Bare	0.365	403	0.4123	0.089	3/0 AAAC or 195.7 ACAR	0.502	182.5	0.8088	0.4119
3/0 Solid Cu. Bare	0.41	508	0.3739	0.0725					
4/0 Solid Cu. Bare	0.46	641	0.3377	0.0588	6 A CW-CU	0.23	101.52	0.7497	0.3382
					4 A CW-CU	0.29	161.55	0.668	0.2558
\#6 3-Strand Cu. Bare	0.201	80.3	0.7812	0.3758	$\begin{array}{\|l\|l} \hline 2 \mathrm{~A} \mathrm{CW}-\mathrm{CU} \\ \hline 1 / 0 \mathrm{~F} \text { CW-CU } \end{array}$	0.366	256.82	0.5803	0.1856
\#4 3-Strand Cu. Bare	0.254	127.6	0.7059	0.2916		0.388	354.17	0.4804	0.123
\#2 7-Strand Cu. Bare	0.292	204.9	0.5806	0.1858	1/0 F CW-CU				
1/0 7-Strand Cu. Bare	0.368	325.9	0.492	0.1294	392.5 ACAR	0.721	368	0.6998	0.2857
2/07-Strand Cu. Bare	0.414	411	0.4496	0.1067	840.2 ACAR	1.055	788.7	0.5559	0.1688

Maximum Blowout Is at mld span. If the sag at mid span Is known, then the NESC blow out Is:
Hmid span = SAG mid span *HBOF and Vrise mid span= SAGMID SPAN *VBOF
Where HBOF and VBOF are blowout factors taken from table one. Blowout at any other polnt of Interest In the span Is based on the sag at that locatlon.
SAGPOI $=\frac{(4)(\text { DIST })(\text { SagmID SPAN })(\text { Span }- \text { Dist })}{\text { Span }^{2}}$
HPOI $=$ Sagpol *HBOF and VPOI $=$ SAGpol $* V B O F$

Conductor Size/Strand	Conductor Dia. (in.)	Nominal Weight (\#./1000')	(HBOF) Horizontal Blow Out Factor @6lb/ft2 Wind)	(VBOF) Vertical Blow Out Factor @6lb/ft2 Wind)
\#6 Solid Cu. Bare	0.162	79	0.7159	0.3018
\#4 Solid Cu. Bare	0.204	126	0.6298	0.2232
\#2 Solid Cu. Bare	0.258	201	0.5395	0.158
1/0 Solid Cu. Bare	0.325	320	0.4527	0.1083
2/0 Solid Cu. Bare	0.365	403	0.4123	0.089
3/0 Solid Cu. Bare	0.41	508	0.3739	0.0725
4/0 Solid Cu. Bare	0.46	641	0.3377	0.0588
\#6 3-Strand Cu. Bare	0.201	80.3	0.7812	0.3758
\#4 3-Strand Cu. Bare	0.254	127.6	0.7059	0.2916
\#2 7-Strand Cu. Bare	0.292	204.9	0.5806	0.1858
1/0 7-Strand Cu. Bare	0.368	325.9	0.492	0.1294
2/0 7-Strand Cu. Bare	0.414	411	0.4496	0.1067
3/0 7-Strand Cu. Bare	0.464	517.9	0.4091	0.0875
4/0 7-Strand Cu. Bare	0.522	653.6	0.3707	0.0712
500 37-Strand Ou. Bare	0.813	1542.5	0.2549	0.033
\#6 7-Strand Cu. Poly	0.244	91.5	0.8	0.4
\#4 7-Strand Cu. Poly	0.292	128.9	0.7496	0.3382
\#2 7-Strand Cu. Poly	0.382	204.9	0.6819	0.2685
1/0 7-Strand Cu. Poly	0.488	357.5	0.5637	0.174
2/07-Strand Cu. Poly	0.534	446.1	0.5136	0.1419
3/0 7-Strand Cu. Poly	0.584	556.9	0.4644	0.1144
4/0 7-Strand Cu. Poly	0.642	696.4	0.4186	0.0918
250 19-Strand Cu. Poly	0.694	818.8	0.3902	0.0793
350 19-Strand Cu. Poly	0.799	1136.1	0.3317	0.0566
500 37-Strand Cu. Poly	0.974	1626.2	0.2869	0.042

Notes:

1. ROUTER MUST BE INSTALLED LEVEL WITH THE GROUND.
2. MAST ARM SHALL BE BONDED TO POLE GROUND.
3. ONLY ONE (1) ROUTER SHALL BE MOUNTED ON THE MAST ARM.
4. ROUTER SHALL BE INSTALLED ON STREET SIDE OF POLE WHERE POSSIBLE.
5. DRIVEN POLE GROUND REQUIRED AT EACH ROUTER POLE.
6. ON EXISTING LIGHT INSTALLATIONS, POWER SUPPLY IS TO BE RUN TO PEC POWER ADAPTER.
7. FOR INSTALLATION ON NEW MAST ARM WITHOUT STREET LIGHT, POWER SUPPLY IS TO BE RUN INSIDE THE MAST ARM.
8. SUPPLY WIRE SHALL BE MULTI-CONDUCTOR CABLE PROVIDED WITH ROUTER WHEN INSTALLING ON NEW MAST ARM.
TYPICAL INSTALLATION ON
EXISTING LIGHT

Electric Design And	Replaces	By: Hethcox/Pollock
LGE None	O7/17/15	
Construction Standards	KU None	Page 1 of 6

| Electric Design And | Replaces | By: Hethcox/Pollock |
| :--- | :--- | :--- | :--- |
| LGE None | 07/17/15 | |
| Construction Standards | KU None | Page 2 of 6 |

SECONDARY POLE WITH ANTENNA ABOVE SECONDARY

| Electric Design And | Replaces | By: Hethcox/Pollock |
| :--- | :--- | :--- | :--- |
| LGE None | O7/17/15 | |
| Construction Standards | KU None | Page 4 of 6 |

Electric Design And	Replaces	By: Hethcox/Pollock
LGE None	O7/17/15	
Construction Standards	KU None	Page 5 of 6

Wireless antenna aitachuents on wood poles

Rev.

GUIDELINES FOR DESIGN AND INSTALLATION

- All clearance dimensions are a minimum distance.
- Installations will be allowed on bucket truck accessible poles only, where bucket truck poses no risk of damage to public or private property.
- Consult Distribution Operations Design Group to ensure that $120 / 240$ volt service is available on the pole in question.
- All installations must conform to all applicable electrical codes and LG\&E/KU requirements for clearances, climbing space and working space.
- All communications equipment shall be furnished and installed by the facility owner. Refer to Standard 510403 for service related equipment.
- Only qualified personnel approved by LG\&E/KU shall be allowed to work above the communications space. They shall be trained in and knowledgeable of the clearance requirements and working rules of OSHA and the NESC.
- A driven ground is required at each equipment location.
- Grounding shall be in accordance with all applicable electrical codes. Bond the antenna bracket and radio/equipment box(s) to ground lead.
- Only one antenna unit shall be installed per pole.
- The height of all poles used to mount antennas must be increased by a minimum of five feet above the existing pole's height. The cost of the taller pole is the responsibility of the attacher. Pole height not to exceed 60' above ground.
- Minimum Class 3 pole is required unless approved by LG\&E/KU Distribution Operations staff.
- If a pole is topped for installation the untreated pole top must be treated and covered.
- Unit may not be mounted to any pole on which there are transformers, risers, vertical supply conductors to aerial services, switch handles, capacitor banks or similar fixtures.
- The service riser shall be installed by LG\&E/KU.
- All wireless attachment sites must be metered. No third party meters will be allowed on LG\&E/KU poles.
- The meter socket shall be a minimum of 100 amp , ringless style, with bypass horns. The service will be three wire $120 / 240$ volt. Two wire 120 volt service is not acceptable.
- The antenna power source must have an additional lockable disconnect installed to allow the antenna and radio/equipment boxes to be disconnected from the battery backup before work is performed within the area designated by the RF Warning signs. Each disconnect must provide a visible break, a test point, or similar means for utility workers to ensure circuit has been de-energized. Each attaching company shall provide and install a lockbox with a key to their disconnect switch inside. LG\&E/KU will padlock the lockbox to enable access to the attacher's key for the disconnect switch.
- All antennas are required to have two RF warning signs installed. A sign shall be installed near the pole top at the level where the safe approach distance ends for the FCC General Population/Uncontrolled Power Levels and read at minimum "Warning - Antenna Approach distance is \qquad Feet." The second sign shall be installed near the base of the pole at eye-level and shall read "Radio frequency fields at pole top may exceed FCC limits for utility work on structure within the safe antenna approach distance designated above. Disconnect RF power using disconnect located on ground mounted equipment cabinet before working within the safe antenna approach distance. Call \qquad (800-XXX-XXX) for disconnect instructions or more information." The sign shall include the antenna owners name and phone number or attachee number. When LGE/KU work is required within the antenna approach distance, workers will disconnect the RF source.
- All antennas and ancillary equipment shall be labeled with the owner's name and contact information, including an emergency contact number.
- It is the antenna owners responsibility to inform all pole attachee's on the pole of the RF exposure hazards and mitigation techniques.
- The antenna cables shall be run in non-metallic conduit. Schedule 80 will be used for the first 8 ' from the ground and Schedule 40 or 80 can be used for the rest of the riser. Conduit is to extend at least $48^{\prime \prime}$ above and below any supply conductors.
- All cabinets must be installed with thru-bolts on same side of pole to maintain ability to climb pole when required. Band-type attachments shall not be used.
- Maximum weight for radio/equipment boxes will be determined during permitting process.
- Atachee may have their equipment mounted to the pole contained within no more than two separate boxes unless approved from LG\&E/KU Distribution Operations staff.
- Antenna cable(s) shall be installed in maximum 2" non-metallic conduit strapped every 5' unless approved from LG\&E/KU Distribution Operations staff.
- Customer's equipment may not occupy more than two adjacent quadrants.
- The weatherhead and Wi-Fi unit must be mounted on the same quadrant of the pole unless approved by LG\&E/KU Distribution Operations staff.
- The unit cannot prevent other communication companies from accessing their facilities.
- LG\&E/KU is not responsible for any damages caused by weather events, other's actions, or when the pole and associated fixtures are maintained or replaced.
- LG\&E/KU must approve the final design prior to any installations.

Replaces	By: Hethcox/Pollock
LGE None	$07 / 17 / 15$
KU None	Page 6 of 6

Codes \& Standards
SINGLE PHASE TRANSFORMER INSTALLATION FROM POLE TOP AND CROSSARM CONSTRUCTION

200502
Rev. D

NOTES:

1. POLE GROUND MUST BE CONNECTED TO SYSTEM NEUTRAL, TRANSFORMER TANK, PRIMARY BUSHING, AND LIGHTNING ARRESTER GROUND, DIRECTLY OR INDIRECTLY. TYPICAL GROUNDING SHOWN. OTHER METHODS ALSO ACCEPTABLE.
2. CUTOUT TO BE MOUNTED ON SIDE OF EQUIPMENT BRACKET FARTHEST AWAY FROM TRANSFORMER. (SEE STANDARD 07 08 02)
3. TRANSFORMER SHOULD BE LOCATED IN MOST CONVENIENT QUADRANT. WHEN POSSIBLE, THE TRANSFORMER SHOULD BE PLACED IN LINE WITH THE CONDUCTORS AND ON THE SIDE OF THE POLE WHICH IS LEAST DESIRABLE FOR CLIMBING.
4. WILDLIFE PROTECTOR SHOULD ALWAYS BE INSTALLED AROUND "HOT" PRIMARY BUSHING. (SEE STANDARD 2025 02)
5. MIN. POLE HEIGHT OF 45^{\prime} TO BE USED WHEN COMMUNICATIONS CABLES ARE PRESENT.

MATERIAL LIST

ITEM	IIN	DESCRIPTION	QTY
1	VARIES	TRANSFORMER, $1 \varnothing$	1
2	VARIES	STIRRUP,BAIL,HOT LINE,COPPER	1
3	7000591	CLAMP,HOT LINE,8-2/0,CU	1
4	7001703	BRACKET,INSULATOR/ARRESTER,18",SINGLE	1
5	7001957	CUTOUT,FUSED,15KV,NON-LOADBREAK	1
6	VARIES	ARRESTER,SURGE,DIST. CLASS (INCL. W/TRANSF.)	1
7	7000339	WASHER,CURVED,SQUARE,3"X3"X1/4"	4
8	VARIES	$5 / 8^{\prime \prime}$ MACHINE BOLTS W/NUTS	4
9	7001924	GUARD,WILDLIFE,STINGER COVER (IF REQ.)	10
10	1199378	WIRE,\#4,7-STR,SOFT DRAWN COPPER POLY	10
11	VARIES	WIRE, XFMR SECONDARY LEGS, POLY	20
12	7005817	CONDUCTOR,OH WIRE,4,CU,BARE,SD,SOLID	6
13	VARIES	VARIOUS SMALL CONNECTORS	7

Electric System Codes \& Standards NOTES:

1. POLE GROUND MUST BE CONNECTED TO SYSTEM NEUTRAL, TRANSFORMER TANK, PRIMARY BUSHING, AND LIGHTNING ARRESTER GROUND, DIRECTLY OR INDIRECTLY, TYPICAL GROUNDING SHOWN. OTHER METHODS ALSO ACCEPTABLE.
2. CUTOUT TO BE MOUNTED ON SIDE OF EQUIPMENT BRACKET FARTHEST AWAY FROM TRANSFORMER. (SEE STANDARD 07 08 02)
3. TRANSFORMER SHOULD BE LOCATED IN MOST CONVENIENT QUADRANT. WHEN POSSIBLE, THE TRANSFORMER SHOULD BE PLACED IN LINE WITH THE CONDUCTORS AND ON THE SIDE OF THE POLE WHICH IS LEAST DESIRABLE FOR CLIMBING.
4. WILDLIFE PROTECTOR SHOULD ALWAYS BE INSTALLED AROUND "HOT" PRIMARY BUSHING. (SEE STANDARD 2025 02)
5. MIN. POLE HEIGHT OF 45^{\prime} TO BE USED WHEN COMMUNICATIONS CABLES ARE PRESENT.

RECOMMENDED JOINT GAS \& ELECTRIC TRENCH

Conduit Size	O.D.
$1^{\prime \prime}$	$1.315^{\prime \prime}$
$1-1 / 2^{\prime \prime}$	$1.900^{\prime \prime}$
$2^{\prime \prime}$	$2.375^{\prime \prime}$
$2-1 / 2^{\prime \prime}$	$2.875^{\prime \prime}$
$3^{\prime \prime}$	$3.500^{\prime \prime}$
$3-1 / 2^{\prime \prime}$	$4.000^{\prime \prime}$
4 "	$4.500^{\prime \prime}$
$5^{\prime \prime}$	$5.563^{\prime \prime}$
$6^{\prime \prime}$	$6.625^{\prime \prime}$
$8^{\prime \prime}$	$8.625^{\prime \prime}$

A. Trench Depth Depends on OD of Gas Pipe and Conduit. Actual Trench Depth To Be Specified on Construction Drawings.
B. Electric, Telephone And Cable Conduits (Conduit Sizes Vary) Electric Conduits To Be Placed On Property Side Of Trench

D. Trench Depths Less Than Values Shown In The Table Below May Be Allowed If Significant Rock Is Encountered. Reductions May Only Be Made With Approval Of Center Engineer or Construction Team Leader. Supplemental Protection, Such As Heavier Wall Conduit And/Or Concrete Encasement, Etc. May Be Required.

RECOMMENDED JOINT ELECTRIC TRENCH

DEVELOPER INSTALLED DUCT FOR JOINT GAS \& ELECTRIC TRENCH

NOTE:
END OF DUCTS TO BE CAPPED, TAPED OVER OR PLUGGED. ENDS OF DUCT MUST BE MARKED WITH UPRIGHT 2"X4" WOOD STUD STAKE, OR OTHER SUITABLE MARKER AND PLACE PAINT MARKER ON CURB (IF PRESENT) PRIOR TO START OF CONSTRUCTION. TRACER WIRE FOR GAS SERVICES MUST EXTEND THROUGH THE ENTIRE DUCT INCLUDING TO THE END OF THE STUB AND TAPED IN PLACE.

NOTE:
MEASUREMENT FROM CURB LINE OR EDGE OF ROAD IF NO CURB IS PRESENT.

LEGEND
(P) PRIMARY ELECTRIC
(GE SECONDARY ELECTRIC
T TELEPHONE
(C) CABLE TELEVISION
(G) GAS

NOTE:

ROAD MINIMUM. DEPTH OF DUCTS NO MORE
THEN 36" FROM FINAL GRADE

DEVELOPER INSTALLED DUCT FOR JOINT ELECTRIC TRENCH

NOTE:
 END OF DUCTS TO BE CAPPED, TAPED OVER OR PLUGGED. ENDS OF DUCT MUST BE MARKED WITH UPRIGHT 2"X4" WOOD STUD STAKE, OR OTHER SUITABLE MARKER AND PLACE PAINT MARKER ON CURB (IF PRESENT) PRIOR TO START OF CONSTRUCTION

NOTE:
MEASUREMENT FROM CURB LINE OR EDGE OF ROAD IF NO CURB IS PRESENT.

Informational Notes:
Schedule 80 PVC and elbow (size varies). Install ended pipe bell end down or use coupling.

Concrete to extend a minimum of $18^{\prime \prime}$ below grade, additional concrete may be required to strengthen riser for pulling cable. Utility may require height above ground to exceed 30 ". A minimum of $12^{\prime \prime}$ of conduit must extend above top of hub-band. Number and sizes of conduit specified by utility.
Surface of the hub band should be smoothly finished with all comers chamfered at 45 degrees.
6. Concrete to be a minimum of 3,500 PSI. Reinforcing may be required in high risk areas.

Elbow installed with bell end down. Elbow to be SCH .80 min . with a $36^{\prime \prime}$ long radius.

General Notes:

1. This standard covers guidelines for utility required protection of $3 \varnothing$ secondary, and $1 \varnothing$ and $3 \emptyset$ primary underground riser installations.
2. Hub bands are required in areas subjected to vehicular traffic and/or the use of large equipment including, but not limited to, farm equipment, large tractor mowing, construction equipment, etc. and at other locations where required by the utility.
3. Conduit and hub band location to be specified by the utility and located on the side of the pole opposite normal traffic flow whenever possible. When necessary, conduit can be located on the side of the pole opposite the driving surface (see Insert A)
4. Typical risers are shown in detail. Some installations may require specially designed hub bands or additional protection.
5. Customers are responsible for removing forming material and restoring grade for customer installed installations.

(TYPICAL DOUBLE CONDUIT)

Application:

Thls standard detalls 1 phase and 3 phase primary riser

ITEM	IIN	COMMON MATERIAL DESCRIPTION	QUAN
1	SEITABLE	Conduit,PVC,10',Sch. 80,Grey (See Table)	1
2		Conduit, PVC, 10',Sch. 40,Grey (See Table)	2
3		Ebow, PVC, 90 Deg.,36" R,Sch. 80 (See Table)	1
4		Bracket, Conduit Standoff, 1-Conduit (See Table)	6
5		Bell End, Conduit (See Table)	1
6	VARIES	Bolt,Machine,Galv.	6
7	7000339	Washer,Curved,5/8" Bolt, $3^{\prime \prime}$	6

Notes: \triangle

1. Riser elbow and first 10 ' of condult to be Schedule 80 grade. Conduit above this level can be either Schedule 40 or 80.
2. Soil to be well compacted by hand or mechanical tamped withln 5^{\prime} of pole. Optlonally, condult can be encased in concrete fill within 5 ' of pole.
3. Bracket Placement:

Bottom bracket +/-9" above ground.
Second bracket a minlmum of $8^{\prime}-0^{\prime \prime}$ above first bracket Top bracket to be within $12^{\prime \prime}$ of top of riser.
Other brackets equally spaced on $5^{\prime}-0^{\prime \prime}$ to $8^{\prime}-0^{\prime \prime}$ spacing.
4. Conduit bell end used at top of riser to minimize damage from sharp edge of condult.
5. Conduit to extend to a minImum of $40^{\prime \prime}$ or as high as practlcal above top communicatlon attachment.
6. Number, size and length of conduit vary.
7. RIser locatlons on pole to be specifled on construction drawings to maximize climbing space and minimize potential damage from vehlcles. HIgh rlsk areas near roadways, In parking lots, etc. require conduit hub band. See standard 420802.
8. Use cable support above condult as needed.

See Standard 420402 For Optional Brackets For Multt-Condult Applications

Electric System Codes \& Standards

TYPICAL UNDERGROUND SECONDARY RISER
420806
Rev. C

UNDERGROUND SECONDARY RISER MINIMUM RISER SIZE		
420806.01	1"	\#12-2C and \#6 Duplex
420806.02	2"	\#2 Triplex
420806.03	2-1/2"	2/0 and 4/0 Triplex
420806.04	3"	350 Tplx, 2/0, $4 / 0$ and 350 Quad
420806.05	4"	500 Quadruplex
420806.06	5"	As Required

ITEM	IIN	COMMON MATERIAL DESCRIPTION	QUAN
1	See Table	Conduit, PVC,10',Sch. 80,Grey (See Table)	1*
2		Conduit, PVC,10',Sch. 40,Grey (See Table)	2
3		Ebow ,PVC, 90 Deg.,24" R,Sch. 80 (See Table)	1
4		Bracket, Conduit Standoff, 1-Conduit (See Table)	6
5		Bell End, Conduit (See Table)	1
6	VARIES	Bolt,Machine, Galv.	6^{*}
7	7000339	Washer,Curved,5/8" Bolt,3"	6^{*}

Application: This standard details 1 phase and 3 phase secondary riser installations up to $5^{\prime \prime}$ (including street Ilghtling risers). Thls standard does not cover cable, terminators or supports above iser.

Item	Description	01	02	03	04	05	06
		1 "	2"	2-1/2"	3"	$4{ }^{\prime \prime}$	$5{ }^{\prime \prime}$
1	Sch. 40 Conduit 10'	7000674	7000671	7000670	7000669	7000668	7000667
2	Sch. 80 Conduit 10'	7000665	7000663	7000662	7000661	7000660	7000659
3	24"R Sch. 80 日bow *	7002422	7001222	7001223	7001224	7002447	7002456
4	Standoff Bracket*	7001246	7004572	7004573	7004574	7005755	0514643
5	Bell End*	N/A	7004406	7003558	7004407	7003419	1191894

*1" Elbow to be Sch. 40. Conduit strap to be used in place of standoff bracket and bell end not required. $5^{\prime \prime}$ conduit requires 36 " Sch. 80 elbow. Larger elbows may be used where necessary.

Notes: \triangle

1. Riser elbow and first 10 ' of conduit to be Schedule 80 grade. Condult above thls level can be elther Schedule 40 or 80 ($1^{\prime \prime}$ elbow to be schedule 40).
2. Soll to be well compacted by hand or mechanical tamped within 5 ' of pole.
3. Bracket Placement: Bottom bracket +/- 9" above ground. Second bracket a minImum of $8^{\prime}-0^{\prime \prime}$ above flrst bracket Top bracket to be within $12^{\prime \prime}$ of top of riser. Other brackets equally spaced on $5^{\prime}-0^{\prime \prime}$ to $8^{\prime}-0^{\prime \prime}$ spacing.
4. Conduit bell end used at top of riser to minimize damage from sharp edge of condult.
5. Conduit to extend to a minimum of $40^{\prime \prime}$ or as high as practical above top communication attachment. Minimum of $40^{\prime \prime}$ must be kept between top of communlcation cable (or bracket whichever is highest) and lowest point of secondary (Including drlp loop) and/or top of condult per NESC.
6. Number, size and length of conduit vary.
7. Riser locatlons to be specifled on constructlon drawings to maximize climbing space and minimize potential damage from vehicles. HIgh risk areas near roadways, In parklng lots, etc. require conduit hub band. See standard 420802.
8. $1^{\prime \prime}$ condult to be strapped dlrectly on pole without brackets.
9. Use cable support above condult as needed.

See Standard 420402 For Optlonal Brackets For Mult-Condult Appllcatlons

1" CONDUIT TO BE PLACED DIRECTLY ON POLE.
CONDUIT STRAPS TO BE USED IN LIEU OF STANDOFF BRACKETS

CONSTRUCTION NOTES:

A) Connections between underground secondary and transformers or overhead secondary must be made in a manner that prohibits water from entering the underground secondary conductors.

- Vertical connections directly to transformers, etc. must be made with pin connectors that are sealed with silicon rubber tape or a heat shrink tube. Use of an unblocked compression splice to transition from aluminum to copper above the riser is not a water tight connection and is subject to damage from freezing.
- Horizontal connections to conductors can be made with pin connectors or conventional connectors with a reverse drip loop (loops up) in the underground cable to eliminate the possibility of water entering the cable.
B) Conduit location can be in any quadrant if climbing space can be preserved and conflicts with other equipment (including telecommunications) are avoided. When necessary, top of conduct can be above the bottom of transformers or secondary when placed in an open quadrant.

Underground Secondary to $\mathbf{3 \varnothing}$ Transformer Bank Or Secondary

Underground Secondary to $1 \varnothing$ Transformer Or Secondary

Attachment to Response to KCTA Question No. 1-16

Electric System Codes \& Standards
$1 \varnothing$ OVERHEAD TO UNDERGROUND SERVICE 400A MAX
Rev. F

Location/Address		Contact Phone \#		Overhead Job Necessary Yes No
Service Size \qquad A	Classification $\square<400$ Amp $\square 400$ Amp \square Special	$\begin{aligned} & \text { Pole-Splice Box Duct } \\ & \hline 1-2-1 / 2^{\prime \prime} \text { Duct } \\ & 1-5^{\prime \prime} \text { Duct } \end{aligned}$	$\begin{aligned} & \frac{\text { Box Size }}{12^{\prime \prime} \times 20^{\prime \prime} \times 12^{\prime \prime}} \\ & 13^{\prime \prime} \times 24^{\prime \prime} \times 15^{\prime \prime} \end{aligned}$	Secondary Voltage $\square 120 / 240 \mathrm{~V}-1 \varnothing-3 \mathrm{~W}$ $\square 240 / 480 \mathrm{~V}-1 \varnothing-3 \mathrm{~W}$

Approved Splice Box Vendor/Catalog Number Information
General: Splice boxes to be high density polyethylene supplied with non-metallic cover, captive stainless steel Penta-Head bolts and electric logo.

12" X 20" X 12" Splice Box (IIN 1243827)

Newbasis	SGA142012TGRN-ELEC
Highline	$1320-1$ G2G-HDE1NH
Old Castle	12201010

13" X 24" X 15" Splice Box (IIN 7003714)

Newbasis	SGA132415TGRN-ELEC
Highline	1324-15P2P-HDE1
Old Castle	13241011
Pencell Plastics	DT-1324X-EWB

Notice: It is the responsibility of the contractor to ensure the installation is built according to the latest revision of this document. The contractor should request a current version of this document from LG\&E's representative before beginning construction.
Notes: Customer is responsible for the installation of the splice box and conduit system from the pole designated by LG\&E to the service entrance. The customer is also responsible for the service cable from the splice box to the service entrance. LG\&E will take ownership of the splice box and conduit between the pole and the splice box. All other facilities will remain the responsibility of the customer. The splice box and conduit to the designated pole must be installed to the specifications, dimensions, location and orientation specified by LG\&E and this standard. For any questions concerning this information, contact your service representative. All material as well as installation of material must be approved by LG\&E prior to LG\&E energizing service. If splice box must be installed in a sidewalk or in or near a driving area, customer must provide a suitable traffic rated box. Consult your service representative.

*For special designs above 400A, 1ø, contact your Design Technician.

Ducts to be centered on pole with $6^{\prime \prime}$ between face of pole and edge of conduit and
$3^{\prime \prime}$ face to face between multiple conduits.

1 Duct
*Always Call Before You Dig (BUD) 1-800-752-6007 to locate underground utilities (Kentucky Underground)
$\quad \frac{\text { Replaces }}{}$
LGE 510403 E
KU None KU None

By: Hethcox/Leake
11/18/15
Page 1 of 1

Electric System Codes \& Standards
$3 \varnothing$ OVERHEAD TO UNDERGROUND SERVICE 800A MAX

510405
Rev. D

Location/Address			Contact Phone \#		Overhead Job Necessary
Service Size A	Classification $\square \leq 400$ Amp $\square 401 / 800$ Amp \square Special	$\begin{aligned} & \frac{\text { Pole-SP }}{1-5^{\prime \prime} \mathrm{D}} \\ & 2-5^{n} \mathrm{D} \\ & 3 \text { to } 4- \end{aligned}$		$\begin{aligned} & \hline \frac{\text { Box Size }}{24^{\prime \prime} \times 36^{\prime \prime} \times 24^{\prime \prime}} \\ & 24^{\prime \prime} \times 36^{\prime \prime} \times 24^{\prime \prime} \\ & 36^{\prime \prime} \times 60^{\prime \prime} \times 24^{\prime \prime} \end{aligned}$	Secondary Voltage 120/208V-3Ø-4W 240V-3ø-3W $480 \mathrm{~V}-3 \varnothing-3 W$
Approved Splice Box Vendor/Catalog Number Information General: Splice boxes to be high density polyethylene supplied with non-metallic cover, captive stainless steel Penta-Head bolts and electric logo. *Use $24^{\prime \prime} \times 36^{\prime \prime} \times 24^{\prime \prime}$ for 2 conduits max. Use $36^{\prime \prime} \times 60^{\prime \prime} \times 24^{\prime \prime}$ for 3 or 4 conduits. 24" X 36" X 24" Splice Box (1191901) 36" X 60" X 24" Splice Box (0939227)					
Pencell Plastics Carson Industries		$\begin{aligned} & \text { PEM-2436X-EWB } \\ & 2431268 \\ & \hline \end{aligned}$	Pencell Plastics Carson Industries		$\begin{aligned} & \text { PEM-3660X-EWB } \\ & 36601002 \end{aligned}$

Notice: It is the responsibility of the contractor to ensure the installation is built according to the latest revision of this document. The contractor should request a current version of this document from LG\&E's representative before beginning construction.
Notes: Customer is responsible for the installation of the splice box and conduit system from the pole designated by LG\&E to the service entrance. The customer is also responsible for the service cable from the splice box to the service entrance. LG\&E will take ownership of the splice box and conduit between the pole and the splice box. All other facilities will remain the responsibility of the customer. The splice box and conduit to the designated pole must be installed to the specifications, dimensions, location and orientation specified by LG\&E and this standard. For any questions concerning this information, contact your service representative. All material as well as installation of material must be approved by LG\&E prior to LG\&E energizing service. If splice box must be installed in a sidewalk or in or near a driving area, customer must provide a suitable traffic rated box. Consult your service representative.

Ducts to be centered on pole with $6^{\prime \prime}$ between face of pole and edge of conduit and $3^{\prime \prime}$ face to face between multiple conduits.
*Services above 800A may be permitted where space is not available to install a padmount transformer.
*Always Call Before You Dig (BUD) 1-800-752-6007 to locate underground utilities (Kentucky Underground)

Electric Design And
 Construction Standards

Replaces
 LGE 510405C
 KU None

 By: Hethcox/Leake 1/26/16Page 1 of 1

Appendix A

Louisville Gas \& Electric Company

Upon Completion of Application, EMAIL to LGEPoleAttachment@lge-ku.com

Appendix B

DIMENSIONS AND WEIGHTS

Figure 11.
Dimensions of Type D (left) and Type DV (right) reclosers.

TABLE 9
Weights and Oil Capacities

Type	Weight with Oil (lb)	Oil Capacity (gal)
D	430	20
DV	556	30

Figure 8.
Dimensions of Types 6H and V6H reclosers.

TABLE 17
Weights and Oil Capacity

	Recloser Type							
	H	$\underset{4}{4 \mathrm{H},}$	$6 \mathrm{H},$ $\mathrm{V} 6 \mathrm{H}$	L	V4L	E	4E	V4E
Weight; dry (lb)	55	76	236	106	142	107	142	147
Weight, with oil (lb)..	85	114	394	159	205	169	205	210
Oil capacity (gal).....	4	5	21	7	91/2	$81 / 4$	91/2	91/2

RECLOSER DIMENSIONS

Note: All dimensions are mm (inches). Dimensions shown are approximate.

Terminal Options	A
Eyebolt, $1 / 0-500 \mathrm{mcm}$ Cable Range (630 A maximum)	$80(3.25)$
Eyebolt, 4/0-1000 mcm Cable Range (800 A maximum)	$108(4.25)$
Flat Pad, 2-hole (630 A maximum)	114 (4.5)
Flat Pad, 4-hole (800 A maximum)	$121(4.75)$
Stud Type, 1.125 - 12 threads (800 A maximum)	$82(3.25)$

	B	C
NOVA STS 15 110 kV BIL	1008 (39.75)	733
NOVA STS 15 125 kV BIL	1064	789
(42)	(31)	
NOVA STS 27	1064	789
125 kV BIL	(42)	(31)
NOVA STS 27	1163	888
150 kV BIL	(45.75)	(35)
NOVA STS 38 170 kV BIL	1163	888

Creepage Distances

Description	$\mathbf{1 5} \mathbf{~ k V}$ $\mathbf{1 1 0} \mathbf{~ K V ~ B I L}$	$\mathbf{1 5} \mathbf{~ k V}$ $\mathbf{1 2 5} \mathbf{~ k V ~ B I L}$	$\mathbf{2 7} \mathbf{~ k V}$ $\mathbf{1 2 5} \mathbf{~ K ~ V I L ~}$	$\mathbf{2 7} \mathbf{~ k V}$ $\mathbf{1 5 0} \mathbf{~ k V ~ B I L}$	$\mathbf{3 8} \mathbf{~ k V}$ $\mathbf{1 7 0} \mathbf{~ k V ~ B I L ~}$
Terminal to terminal	1052	1052	1052	1052	1052
	(41.5)	(41.5)	(41.5)	(41.5)	(41.5)
Lower terminal to ground/earth	673	772	772	950	950
	(26.5)	(30.5)	(30.5)	(37.5)	(37.5)

Figure 2.
Type NOVA STS recloser dimensions, NOVA STS 15 shown.

Site-Ready Pole-Mounting Hanger

A pre-assembled site-ready pole-mounting hanger, which bolts directly to the recloser frame, is available for polemounting installation. Refer to Figure 13.

	Dimension B
NOVA STS 15	791
110 kV BIL	(31.25)
NOVA STS 15	847
125 kV BIL	(33.25)
NOVA STS 27	847
125 kV BIL	(33.25)
NOVA STS 27	946
150 kV BIL	(37.25)
NOVA STS 38	946
170 kV BIL	(37.25)

Note: All dimensions are mm (inches). Dimensions shown are approximate.

Terminal Options	A
Eyebolt, $1 / 0-500 \mathrm{mcm}$ Cable Range $(630 \mathrm{~A}$ maximum)	$80(3.25)$
Eyebolt, $4 / 0-1000 \mathrm{mcm}$ Cable Range $(800 \mathrm{~A}$ maximum)	$108(4.25)$
Flat Pad, 2-hole (630 A maximum)	$114(4.5)$
Flat Pad, 4-hole (800 A maximum)	$121(4.75)$
Stud Type, $1.125-12$ threads (800 A maximum)	$82(3.25)$

Figure 13.
Dimensions of NOVA STS recloser with site-ready pole mounting hanger accessory.

Arrester-Mounting Brackets

The arrester-mounting bracket accessory can be bolted to the recloser frame and pole-mounting hanger for the addition of inboard and outboard arresters. The arresters are not included with the brackets. Refer to Figure 14.

$\begin{array}{ll}\text { Note: } & \begin{array}{l}\text { All dimensions are } \mathrm{mm} \\ \text { (inches). } \\ \text { Dimensions shown are approximate. }\end{array}\end{array}$

Figure 14.
Dimensions of NOVA STS recloser with site-ready pole-mounting hanger and arrester-mounting bracket accessories.

RATINGS AND SPECIFICATIONS

TABLE 1
Voltage Ratings (kV)

Description	$\mathbf{1 5 ~ k V}$	$\mathbf{1 5} \mathbf{~ k V}$	$\mathbf{2 7} \mathbf{~ k V}$	$\mathbf{2 7} \mathbf{~ k V}$	$\mathbf{3 8} \mathbf{~ k V}$
Maximum Voltage	15.5 kV	15.5 kV	29.2 kV	29.2 kV	38.0 kV
Rated Basic Impulse Level	110.0 kV	125.0 kV	125.0 kV	150.0 kV	170.0 kV
Radio Noise Limit ($\mu \mathrm{VV}$	$100 @ 9.4 \mathrm{kV}$	$100 @ 9.4 \mathrm{kV}$	$100 @ 16.4 \mathrm{kV}$	$100 @ 16.4 \mathrm{kV}$	$100 @ 23.0 \mathrm{kV}$
Power Frequency Withstand, Dry	50 kV	50 kV	60 kV	60 kV	70 kV
Power Frequency Withstand, Wet	45 kV	45 kV	50 kV	50 kV	60 kV

TABLE 2
Current Ratings (Amperes)

Description	$\mathbf{1 5} \mathbf{k V}$	$\mathbf{1 5} \mathbf{~ k V}$	$\mathbf{2 7} \mathbf{~ k V}$	$\mathbf{2 7} \mathbf{~ k V}$	$\mathbf{3 8} \mathbf{~ k V}$
Rated Continuous Current	$630 \mathrm{~A}^{*}$	$630 \mathrm{~A}^{\star}$	$630 \mathrm{~A}^{*}$	$630 \mathrm{~A}^{*}$	$630 \mathrm{~A}^{*}$
Short Circuit Current, Symmetrical	$12.5 \mathrm{kA} \mathrm{A}^{\star *}$	$12.5 \mathrm{kA*}$	$12.5 \mathrm{kA}^{\star *}$	$12.5 \mathrm{kA}^{\star *}$	12.5 kA
Making Current, Asymmetrical Peak	31.0 kA				
Cable Charging Current	10 A	10 A	25 A	25 A	40 A

*800 amp accessory is also available.
**16.0 kA option is also available. (Making Current is 40.0 kA Asymmetrical Peak.)

TABLE 3
Mechanical Ratings

Description	$\mathbf{1 5} \mathbf{k V}$	$\mathbf{1 5} \mathbf{~ k V}$	$\mathbf{2 7} \mathbf{~ k V}$	$\mathbf{2 7} \mathbf{~ k V}$	$\mathbf{3 8} \mathbf{~ k V}$
Min. Mechanical/Electrical Operations	10,000	10,000	10,000	10,000	10,000
Without Maintenance (C-O)	$86(190)$	$91(200)$	$91(200)$	$101(223)$	$101(223)$
Mass (Weight) - kg (lbs)					

TABLE 4
Duty Cycle

Type	Percentage of Interrupting Rating	Number of Unit Operations	Minimum Circuit X/R Value
NOVA	$15-20$	88	4
	$45-55$	112	8
	$90-100$	$\frac{32}{\text { Total 232 }}$	15

TABLE 5
Auxiliary Switch Interrupting Ratings

Auxiliary Switch Interrupting Ratings				
Volts	Inductive AC (amps)	Non- Inductive AC (amps)	Inductive DC (amps)	Non- Inductive DC (amps)
24	-	-	15.0	20.0
48	-	-	7.5	10.0
120	60	80	-	-
125	-	-	1.5	2.0
240	30	60	-	-
250	-	-	0.45	0.5

DIMENSIONS

Note: All dimensions are mm (inches). Dimensions shown are approximate.

Terminal Options	A
Eyebolt, $1 / 0-500 \mathrm{mcm}$ Cable Range (630 A maximum)	$80(3.25)$
Eyebolt, 4/0-1000 mcm Cable Range (800 A maximum)	$108(4.25)$
Flat Pad, 2-hole (630 A maximum)	$114(4.5)$
Flat Pad, 4-hole (800 A maximum)	$121(4.75)$
Stud Type, 1.125-12 threads (800 A maximum)	$82(3.25)$

	B	C
NOVA15	791 110 kV BIL	508 (31.25)
NOVA15	847	
125 kV BIL	(33.25)	564
(22.25)		
NOVA27	847	564
125 kV BIL	(33.25)	(22.25)
NOVA27	946	663
150 kV BIL	(37.25)	(26.0)
NOVA38	946	663
170 kV BIL	(37.25)	(26.0)

Creepage Distances

Description	$\mathbf{1 5} \mathbf{~ k V}$ $\mathbf{1 1 0} \mathbf{~ k V ~ B I L ~}$	$\mathbf{1 5} \mathbf{~ k V}$ $\mathbf{1 2 5} \mathbf{~ k V ~ B I L}$	$\mathbf{2 7} \mathbf{~ k V}$ $\mathbf{1 2 5} \mathbf{~ k V ~ B I L}$	$\mathbf{2 7} \mathbf{~ k V}$ $\mathbf{1 5 0} \mathbf{~ k V ~ B I L}$	$\mathbf{3 8} \mathbf{~ k V}$ $\mathbf{1 7 0} \mathbf{~ k V ~ B I L ~}$
Terminal to terminal	1052	1052	1052	1052	1052
	(41.5)	(41.5)	(41.5)	(41.5)	(41.5)
Lower terminal to ground/earth	673	772	772	950	950
	(26.5)	(30.5)	(30.5)	(37.5)	(37.5)

Figure 7.
Type NOVA recloser dimensions, NOVA27 shown.

Terminal Options	A
Eyebolt, $1 / 0-500 \mathrm{mcm}$ Cable Range (630 A maximum)	$80(3.25)$
Eyebolt, $4 / 0-1000 \mathrm{mcm}$ Cable Range (800 A maximum)	$108(4.25)$
Flat Pad, 2-hole (630 A maximum)	$114(4.5)$
Flat Pad, 4-hole (800 A maximum)	$121(4.75)$
Stud Type, 1.125 - 12 threads (800 A maximum)	$82(3.25)$

	Dimension B
NOVA15 110 kV BIL	791 (31.25)
NOVA15	847 125 kV BIL (33.25)
NOVA27 125 kV BIL	847 (33.25)
NOVA27	946
150 kV BIL	(37.25)
NOVA38	946
170 kV BIL	(37.25)

Figure 8.
Dimensions of Type NOVA recloser with pole-mounting hanger and arrester-mounting bracket accessories.

Terminal Options	A
Eyebolt, $1 / 0-500 \mathrm{mcm}$ Cable Range (630 A maximum)	$80(3.25)$
Eyebolt, 4/0-1000 mcm Cable Range (800 A maximum)	$108(4.25)$
Flat Pad, 2-hole (630 A maximum)	$114(4.5)$
Flat Pad, 4-hole (800 A maximum)	$121(4.75)$
Stud Type, 1.125 - 12 threads (800 A maximum)	$82(3.25)$

	B	C
NOVA15	791	508
110 kV BIL	(31.25)	(20)
NOVA15	847	564
125 kV BIL	(33.25)	(22.25)
NOVA27	847	564
125 kV BIL	(33.25)	(22.25)
NOVA27	946	663
150 kV BIL	(37.25)	(26.0)
NOVA38	946	663
170 kV BIL	(37.25)	(26.0)

Figure 9.
Dimensions of Type NOVA recloser with substation-mounting frame accessory.

RATINGS AND SPECIFICATIONS

Check Recloser Ratings Prior to Installation

The recloser must be applied within its specified ratings. Check data plate ratings and compare with the system characteristics at the point of application prior to installation. Tables 1-5 list the ratings and specifications for the Type NOVA-TS triple-single recloser.

TABLE 1
Voltage and Current Ratings

Rating	15-8-400	15-12-630	15-12-800	27-8-400	27-12-630	27-12-800	38-8-400	38-12-630	38-12-800
Maximum Design Voltage (kV)	15.5	15.5	15.5	29.2	29.2	29.2	38.0	38.0	38.0
Nominal Operating Voltage (kV)	14.4	14.4	14.4	24.9	24.9	24.9	34.5	34.5	34.5
Basic Insulation Level (BLL) (kV)	110	110	110	125	125	125	150	150	150
60 Hertz Withstand Voltage (kV) Dry, one minute	50	50	50	60	60	60	70	70	70
Wet, ten seconds	45	45	45	50	50	50	60	60	60
Max RIV at 1.0 MHz									
$9.4 \mathrm{kV}(\mu \mathrm{V})$	100	100	100						
$16.4 \mathrm{kV}(\mu \mathrm{V})$				100	100	100			
$23.0 \mathrm{kV}(\mu \mathrm{V})$							100	100	100
Continuous Current Ratings (A)	400	630	800	400	630	800	400	630	800
Sym. Interupting Current (A)	8,000	12,500	12,500	8,000	12,500	12,500	8,000	12,500	12,500
Overload Capability									
125\%-8 Hours (A)	500	788	None	500	788	None	500	788	None
150\%-4 Hours (A)	600	945	-	600	945	-	600	945	-
Cable Charging Current (A)	10	10	10	25	25	25	40	40	40
Line Charging Current (A)	2	2	2	5	5	5	5	5	5
Three-Second Current, Sym. (A)	8,000	12,500	12,500	8,000	12,500	12,500	8,000	12,500	12,500

TABLE 2
Mechanical Life

```
Minimum Operations 2,500
```

TABLE 3
Duty Cycle

Percent of Maximum Circuit Interrupting Rating	Minimum X/R Ratio	Number of Unit Operations
$15-20$	4	
$45-55$	8	88
$90-100$	16	112
		Total $\frac{32}{\mathbf{2 3 2}}$

TABLE 4
Mass (Weight) per Mounted Triple-Single Cluster with PoleMounting Hanger

Recloser	NOVA-TS-15	NOVA-TS-27	NOVA-TS-38
kg (Ibs)	$188(413)$	$194(428)$	$208(458)$

TABLE 5
Mass (Weight) per Single-Phase Recloser

Recloser	NOVA-TS-15	NOVA-TS-27	NOVA-TS-38
$\mathrm{kg}(\mathrm{lbs})$	$48(105)$	$50(110)$	$55(120)$

RECLOSER DIMENSIONS

Figure 2.
Kyle Type NOVA-TS triple-single recloser dimensions.

DIMENSIONS WITH POLE-MOUNTING ACCESSORY

Note: See the Installation Procedure and Figure 5 for information on module rotation, allowing for various line configurations.

NOVA-TS Dimensions with Pole-Mounting Accessory			Terminal Option Type	Dimension A
	Dimension B	Dimension C	Eyebolt - (630 A) 1/0 to 500 MCM Cable Range	$80 \mathrm{~mm} / 3.25$ in
NOVA-TS-15	1079 mm (42.5 in)	1361 mm (53.5 in)	Eyebolt - $(800 \mathrm{~A})$ 4/0 to 1000 MCM Cable Range	$108 \mathrm{~mm} / 4.25 \mathrm{in}$
NOVA-TS-27	1140 mm (45.0 in)	1422 mm (56.0 in)	Flat Pad - 2 Hole (630 A max)	$114 \mathrm{~mm} / 4.5 \mathrm{in}$
NOVA-TS-38	1235 mm (48.5 in)	1514 mm (59.5 in)	Flat Pad - 4 Hole (800 A max)	$121 \mathrm{~mm} / 4.75 \mathrm{in}$
			Stud Type - (800 A max) 1.125-12 threads	$82 \mathrm{~mm} / 3.25 \mathrm{in}$

Figure 3.
Kyie Type NOVA-TS triple-single recloser dimensions with pole-mounting accessory.

Attachment to Response to KCTA Question No. 1-16
 88 of 97

Wolfe

Product Review

OVR-3 and OVR-3SP Technical Data

Nom. operating voltage:	2.414 .4	24.9	34.5	kV
Rated Max. voltage:	15.5	27	38	kV
Rated power frequency	50/60	50/60	50/60	Hz
Rated continuous current:	630/800/1000/1200*	630/800/1000/1200*	630/800/1200	A
Rated symmetrical interrupting current:	8/10/12.5/16*	10/12.5/16*	12.5/16	kA
Rated lightning impulse withstand (BIL):	110/125	125/150*	150/170	kV
Dry withstand 60 Hz 1 Min .:	50	60	70	kV
Wet withstand 60 Hz 10 Sec.:	45	50	60	kV
Phase spacing:	15.50 (394)	15.50 (394)	15.50 (394)	inches (mm)
External creep distance, H 2 ground:	38.00 (960)	38.00 (960)	50.70 (1288)	inches (mm)
External creep distance, H1 H2:	45.00 (1160)	45.00 (1160)	49.80 (1260)	inches (mm)
Min. external strike distance:	9.50 (240)	9.50 (240)	14.40 (367)	inches (mm)
Max. interrupting time:	0.030	0.030	0.030	sec max
Max. closing time:	0.055	0.055	0.044	sec max
Materials: Vacuum interrupter encapsulated in hydrophobic cycloaliphatic epoxy with cast aluminum/stainless steel construction				
Current sensors:	One per phase encap	sulated into the pole		
Operating temperature:	$40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{F}$ to $\left.+158^{\circ} \mathrm{F}\right)$		
Control voltage:	$90265 \mathrm{VAC} / 125 \mathrm{~V}$			
OVR 3 high voltage unit weight:	333 (150)	333 (150)	430 (195)	lbs (kg)
OVR 3SP high voltage unit weight (each):	100 (45)	100 (45)	130 (60)	lbs (kg)
Standard control cabinet weight:	165 (75)	165 (75)	175 (80)	lbs (kg)
Battery (contact factory for other options)				
- $48 \mathrm{VDC}, 12 \mathrm{AH}$ battery bank (Std. Cabinet) or $48 \mathrm{VDC}, 7.2 \mathrm{AH}$ battery bank (LPCC)				
- Sealed lead acid rechargeable battery pack				
- Monitor locally and remotely				
- Easily accessible in low voltage control cabinet				
- Allows up to 48 hours (1527 kV) / 24 hours (38 kV or with LPCC) carryover and multiple operations upon loss of power				
- Includes capacitor backup in case of discharged or disconnected battery				
Summary Specifications				
Accuracy: Voltage: $\pm 1 \%$ Current: $\pm 1 \%$	voltage sensing), con acy (with PT voltage acy	act factory for accur nput)	down to $\pm 1 \%$	
Load profile data (requires voltage input): kWh and kVARh ($\pm 2 \%$ accuracy) (with PT voltage input); Power Factor; Demand Watts and VARs; Frequency				
OVR Testing				
ANSI: Meets all applicable recloser standards (ANSI 37.60 2003, IEEE, and IEC)				
Life test: 10,000 mechanical operations without degradation				
PCD Testing				

- Surge Withstand Capability: SWC and fast transient tests per ANSI C37.90.1 and IEC 255221 class III and 255224 class IV for all connections except comm ports
- Isolated comm ports per ANSI 37.90.1 using oscillatory SWC Test Wave only, \& per IEC 255221 class III
- EMI test per ANSI C37.90.2
* Refer to 38 kV specifications for OVRs with 1200 A continuous current rating, 16 kA interrupting rating or BILs of 150 kV or greater

Product Review

OVR-3 Dimensional Drawings
Pole Mount

Product Review

OVR-3 Dimensional Drawings

Substation Mount

AVAILABLE WITH OPTIONAL ARRESTER
MOUNTING BRACKETS
DIMENSIONS ARE IN
INCHES [mm]

FRAME WEIGHT - $225 \mathrm{lbs}(100 \mathrm{~kg})$

Product Review

OVR-3SP Dimensional Drawings

Product Review

OVR-3SP Dimensional Drawings

Wrap Around Mount (15 38 kV)

SHOWN WITH OPTIONAL ARRESTER MOUNTING BRACKETS
SURGE ARRESTERS SUPPLIED BY CUSTOMERS DIMENSIONS ARE IN INCHES [mm]
FRAME WEIGHT (WITH JUNCTION BOX) - $30 \mathrm{lbs}(14 \mathrm{~kg})$

DIMENSIONS AND WEIGHTS

TABLE 19
Dimensions of Recloser Without BCT Accessory*

Type	Bushing Type	A (In.)	B (In.)	C (In.)	D (In.)
WE	13 in. standard creepage or 17 in. extra creepage	$41^{5 / 8}$	$111 / 8$	$265 / 8$	15
VWE	$11^{1 / 8}$	$287 / 8$	15		
WVE27	$261 / 2$ in. creepage	$473 / 4$	$11^{3 / 4}$	$265 / 8$	$211 / 8$
VWVE27	$261 / 2$ in. creepage	50	$11^{3 / 4}$	$287 / 8$	$211 / 8$

*Dimensions configured to the nearest $1 / 8$ in.

TABLE 20
Dimensions of Recloser With BCT Accessory*

Type	Bushing Type	A (In.)	B (In.)	C (In.)	D (In.)
WE	13 in. standard creepage or 17 in. extra creepage	$463 / 8$	$117 / 8$	$265 / 8$	$193 / 4$
VWE	$117 / 8$	$287 / 8$	$193 / 4$		
WVE27	$261 / 2$ in. creepage	$521 / 2$	$125 / 8$	$265 / 8$	$257 / 8$
VWVE27	$261 / 2$ in. creepage	$543 / 4$	$125 / 8$	$287 / 8$	$257 / 8$

${ }^{*}$ Dimensions configured to the nearest $1 / 8$ in.

VWE, WE: 3 1⁄8" VWVE27, WVE27: $41 / 8{ }^{18}$
 8 SOL-2/0 STR

Figure 11.
Dimensions of W-group $\mathbf{1 5} \mathbf{~ k V}$ and $\mathbf{2 7} \mathbf{~ k V}$ three-phase electronically controlled reclosers.

Figure 12.
Dimensions of W-group 38 kV three-phase electronically controlled reclosers.

TABLE 21
Weights and Oil Capacity

Recloser Type	Weight with Oil*(lb)	Oil Capacity (gal)
WE	790	38
WVE27	840	38
WVE38X	990	52
VWE	790	45
VWVE27	830	45
VWVE38X	990	61

TABLE 22
Dimensions of W-group 38 kV Recloser With and
Without BCT Accessory*

Type	Bushing Type	$\begin{gathered} \text { A } \\ \text { (In.) } \end{gathered}$	$\begin{gathered} B \\ \text { (In.) } \end{gathered}$	$\underset{\text { (ln.) }}{\mathrm{C}}$	$\begin{gathered} \mathrm{D} \\ \text { (In.) } \end{gathered}$	$\begin{gathered} E \\ \text { (In.) } \end{gathered}$	$\begin{gathered} F \\ (\ln .) \end{gathered}$
WVE38X	$261 / 2 \mathrm{in}$. creepage	$47^{1 / 8}$	15	26 5/8	$201 / 2$	10	$15^{1 / 8}$
VWVE38X	$261 / 2 \mathrm{in}$. creepage	$493 / 8$	15	$287 / 8$	$201 / 2$	10	$151 / 8$
WVE38X	$261 / 2 \mathrm{in}$. w/ BCT	$513 / 4$	$15^{7 / 8}$	26 5/8	$25^{1 / 8}$	9 1/2	15 5/8
VWVE38X	$261 / 2 \mathrm{in}$. w/ BCT	54	$15^{7 / 8}$	$287 / 8$	$25^{1 / 8}$	$91 / 2$	$15^{5 / 8}$

*Dimensions configured to the nearest $1 / 8$ in.

Recloser Dimensions

Control Mounting Dimensions

Table 5
Weights and Oil Capacity of VXE15 and VXE27

ORDERING INFORMATION

Constructing a Catalog Number

To order a Type VXE recloser:

1. Use the chart below and Table 10 to construct a catalog number that describes the required recloser.
2. Specify the control plug-ins and control cable from Tables 6 and 7.
3. Specify, by catalog number and description, the required recloser and control accessories from Tables 8 and 9.

KVXE Basic letters for VXE-group reclosers.
15 Recloser maximum operating voltage. 15 for 15 kV or 27 for 27 kV

23 Closing coil code number selected from Table 10 for the system on which the recloser is to be used.

KVXE 1523
KVXE1523 is the catalog number that represents a Type
VXE15 recloser rated for use on a 12.47 kV system, with a $7.2-7.62 \mathrm{kV}$ closing coil.

Table 6
Basic VXE Electronic Recloser Control and Plug-In TCC Cards

Description	Catalog Number
VXE Electronic Control	KVXE2
Phase trip Timing Characteristics Select phase trip curve A, B, C, D, E, F, N or R.	
Phase Trip timing plug-in card __ for TCC 1	KSEC101_-1
Phase Trip timing plug-in card __ for TCC 2.	KSEC101_-2

DIMENSIONS AND WEIGHTS

Note: For dimensions of reclosers with mountings, see Service Information S 280-85-2 Recloser Mountings.

Figure 25.
Dimensions of W-group reclosers.

TABLE 15
Overall Dimensions mm (in)

Recloser Type	Without bushing current transformer accessory	$\operatorname{Dim} A$	$\operatorname{Dim} B$	Dim C	Dim D	$\operatorname{Dim} E$	Dim F	DIm G	Dim H	Dim l ${ }^{*}$	Dim J	Dim K
W	Standard 13 in. creepage or 17-in. extra-creepage bushings	$\begin{aligned} & 1057 \\ & 415 \\ & \hline \end{aligned}$	$\begin{aligned} & 283 \\ & 11 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 79 \\ & 31 / 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 333 \\ & 131 / 2 \\ & \hline \end{aligned}$	$\begin{array}{r} 933 \\ 36^{7 / 4} \\ \hline \end{array}$	$\begin{aligned} & 1076 \\ & 42^{3 / 1} \end{aligned}$	$\begin{array}{r} 435 \\ 171 / 8 \\ \hline \end{array}$	$\begin{aligned} & 1172 \\ & 46^{1 / 6} \end{aligned}$	$\begin{aligned} & \hline 289 \\ & 11^{3 / 8} \\ & \hline \end{aligned}$	$\begin{aligned} & 343 \\ & 131 / 2 \\ & \hline \end{aligned}$	$\begin{array}{r} 676 \\ 26^{5 / 1} \\ \hline \end{array}$
VW		$\begin{aligned} & 1114 \\ & 43^{7 / 8} \end{aligned}$	$\begin{aligned} & 283 \\ & 11 / 9 \\ & \hline \end{aligned}$	$\begin{gathered} 79 \\ 31 / 8 \\ \hline \end{gathered}$	$\begin{aligned} & 333 \\ & 131 / \\ & \hline \end{aligned}$	$\begin{aligned} & 933 \\ & 36 / 4 \end{aligned}$	$\begin{aligned} & 1076 \\ & 42^{3 / 8} \end{aligned}$	$\begin{aligned} & 435 \\ & 171 / 8 \end{aligned}$	$\begin{aligned} & 1172 \\ & 461 / 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 289 \\ & 11 \% \end{aligned}$	$\begin{aligned} & 343 \\ & 131 / 2 \\ & \hline \end{aligned}$	733 2878
WV27	Standard $26 / 1 / 2$-in. creepage bushings	$\begin{aligned} & 1213 \\ & 473 / 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 302 \\ & 11^{7 / 8} \\ & \hline \end{aligned}$	$\begin{array}{r} 105 \\ 41 / 8 \\ \hline \end{array}$	$\begin{array}{r} 333 \\ 131 / 8 \\ \hline \end{array}$	$\begin{aligned} & 933 \\ & 36^{3} / 4 \\ & \hline \end{aligned}$	$\begin{array}{r} 1076 \\ 42^{3 / 8} \\ \hline \end{array}$	$\begin{aligned} & 435 \\ & 17 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 1172 \\ & 46^{1 / 2} \\ & \hline \end{aligned}$	$\begin{aligned} & 289 \\ & 113 / 2 \\ & \hline \end{aligned}$	343 $131 / 2$	676 268 26
WWV27		$\begin{array}{\|c} 1270 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & 302 \\ & 11 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 105 \\ & 41 / 8 \end{aligned}$	$\begin{aligned} & 333 \\ & 131 / 6 \end{aligned}$	$\begin{gathered} 933 \\ 36^{3 / 4} \end{gathered}$	$\begin{aligned} & \hline 1076 \\ & 42^{3 / 18} \end{aligned}$	$\begin{aligned} & 435 \\ & 171 / 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1172 \\ & 461 / 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 289 \\ & 11^{3 /} \\ & \hline \end{aligned}$	$\begin{array}{r} 343 \\ 131 / 2 \\ \hline \end{array}$	$\begin{array}{r} 733 \\ 28 \% \\ \hline \end{array}$
WV38X WWV38X		$\begin{aligned} & \hline 1197 \\ & 471 / 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 381 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 105 \\ & 41 / 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 438 \\ & 171 / 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 940 \\ & 37 \\ & \hline \end{aligned}$	$\begin{aligned} & 1083 \\ & 42^{5 / 8} \\ & \hline \end{aligned}$	$\begin{array}{r} 540 \\ 211 / 4 \\ \hline \end{array}$	$\begin{aligned} & 1178 \\ & 46^{3 / 8} \end{aligned}$	$\begin{aligned} & 384 \\ & 151 / 8 \end{aligned}$	$\begin{gathered} 254 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 676 \\ & 26^{5} / 8 \\ & \hline \end{aligned}$
		$\begin{aligned} & 1254 \\ & 49^{9 / 8} \end{aligned}$	$\begin{gathered} 381 \\ 15 \end{gathered}$	$\begin{aligned} & 105 \\ & 41 / 8 \end{aligned}$	$\begin{aligned} & 438 \\ & 17 / 4 \end{aligned}$	$\begin{aligned} & 940 \\ & 37 \end{aligned}$	$\begin{aligned} & 1083 \\ & 42^{5 / 8} \end{aligned}$	$\begin{aligned} & 540 \\ & 211 / 4 \end{aligned}$	$\begin{aligned} & 1178 \\ & 46^{3 / 8} \end{aligned}$	$\begin{aligned} & 384 \\ & 151 / 8 \end{aligned}$	$\begin{gathered} 254 \\ 10 \end{gathered}$	$\begin{aligned} & 733 \\ & 287 \end{aligned}$
Recloser Type	With bushing current transformer accessory	$\operatorname{Dim} \mathrm{A}$	Dim B	Dim C	Dim D	Dim E	$\operatorname{Dim} F$	Dim G	$\operatorname{Dim} \mathrm{H}$	Dim ${ }^{\text {* }}$	Dim J	Dim K
W	Standard 13 in. creepage or 17-in. extra-creepage bushings	$\begin{aligned} & 1178 \\ & 46^{3} / 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 302 \\ & 1178 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 79 \\ & 31 / 9 \\ & \hline \end{aligned}$	333 $131 / 6$	$\begin{array}{r} 933 \\ 36^{3} / 4 \\ \hline \end{array}$	$\begin{aligned} & 1076 \\ & 42^{3 / 8} \end{aligned}$	$\begin{aligned} & 435 \\ & 171 / \\ & \hline \end{aligned}$	$\begin{aligned} & 1172 \\ & 46^{1 / 8} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 289 \\ & 11^{3 / 3} \\ & \hline \end{aligned}$	$\begin{aligned} & 343 \\ & 131 / 2 \end{aligned}$	$\begin{array}{r} 676 \\ 26^{5} / 8 \\ \hline \end{array}$
VW		$\begin{array}{r} 1235 \\ 48^{3} / \mathrm{B} \\ \hline \end{array}$	$\begin{aligned} & 302 \\ & 11^{7 / 1} \\ & \hline \end{aligned}$	$\begin{array}{r} 79 \\ 3 \% \\ \hline \end{array}$	$\begin{array}{r} 333 \\ 13^{1 / 2} \\ \hline \end{array}$	$\begin{array}{r} 933 \\ 36^{3} / 4 \\ \hline \end{array}$	$\begin{array}{r} 1076 \\ 42^{3 / 2} \\ \hline \end{array}$	$\begin{aligned} & 435 \\ & 17 / 8 \\ & \hline \end{aligned}$	$\begin{array}{r} 1172 \\ 461 / 8 \\ \hline \end{array}$	$\begin{aligned} & 289 \\ & 113 / 3 \\ & \hline \end{aligned}$	$\begin{array}{r} 343 \\ 131 / 2 \\ \hline \end{array}$	$\begin{array}{r} 733 \\ 28^{7} / 8 \\ \hline \end{array}$
WV27	Standard $261 / 2$-in. creepage bushings	$\begin{aligned} & 1334 \\ & 52^{1 / 2} \\ & \hline \end{aligned}$	$\begin{aligned} & 321 \\ & 12^{5} / 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 105 \\ & 41 / 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 333 \\ & 13^{1 / 8} \\ & \hline \end{aligned}$	$\begin{array}{r} 933 \\ 36^{3 / 4} \\ \hline \end{array}$	$\begin{aligned} & 1076 \\ & 42^{3 / 8} \end{aligned}$	$\begin{aligned} & 435 \\ & 171 / 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1172 \\ & 46 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 289 \\ & 111_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 343 \\ & 131 / 2 \end{aligned}$	$\begin{array}{r} 676 \\ 26^{4} / 8 \\ \hline \end{array}$
WWV27		$\begin{aligned} & 1391 \\ & 54^{3 / 4} \end{aligned}$	$\begin{aligned} & 321 \\ & 125 / 8 \end{aligned}$	$\begin{aligned} & 105 \\ & 41 / 3 \end{aligned}$	$\begin{aligned} & 333 \\ & 131 / 8 \end{aligned}$	$\begin{gathered} 933 \\ 36^{3 / 4} \end{gathered}$	$\begin{array}{r} 1076 \\ 423 / 8 \\ \hline \end{array}$	$\begin{aligned} & 435 \\ & 171 / 8 \end{aligned}$	$\begin{aligned} & 1172 \\ & 461 / 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 289 \\ & 113 / 8 \end{aligned}$	$\begin{aligned} & 343 \\ & 131 / 2 \end{aligned}$	$\begin{array}{r} 733 \\ 28 \% \\ \hline \end{array}$
WV38X		$\begin{aligned} & 1314 \\ & 51^{3 / 4} \\ & \hline \end{aligned}$	$\begin{array}{r} 403 \\ 15 \% \\ \hline \end{array}$	$\begin{aligned} & 105 \\ & 41 / 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 438 \\ & 171 / 4 \\ & \hline \end{aligned}$	$\begin{array}{r} 940 \\ 37 \\ \hline \end{array}$	$\begin{array}{r} 1083 \\ 42^{5 / 8} \\ \hline \end{array}$	$\begin{array}{r} 540 \\ 21^{1 / 4} \\ \hline \end{array}$	$\begin{aligned} & 1178 \\ & 46^{3 / 8} \end{aligned}$	$\begin{array}{r} 397 \\ 15 \% \\ \hline \end{array}$	$\begin{aligned} & 241 \\ & 91 / 2 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 676 \\ 26^{5} / \mathrm{s} \\ \hline \end{array}$
WWV38X		$\begin{aligned} & 1375 \\ & 541 / 8 \end{aligned}$	$\begin{aligned} & 403 \\ & 15 \% \end{aligned}$	$\begin{aligned} & 105 \\ & 41 / \mathrm{s} \end{aligned}$	$\begin{aligned} & 438 \\ & 171 / 4 \end{aligned}$	$\begin{aligned} & 940 \\ & 37 \end{aligned}$	$\begin{aligned} & 1083 \\ & 42^{5 / 8} \end{aligned}$	$\begin{aligned} & 540 \\ & 211 / 4 \end{aligned}$	$\begin{aligned} & 1178 \\ & 46^{3} / 8 \end{aligned}$	$\begin{aligned} & 397 \\ & 15 \% \end{aligned}$	$\begin{aligned} & 241 \\ & 91 / 2 \end{aligned}$	$\begin{array}{r} 733 \\ 28^{7} / \mathrm{s} \end{array}$

* Dim. I is the distance between bushings (centerline-to-centerline.)

TABLE 16
Welghts and Oil Capacity

Recloser Type	Weight With Oil $^{*} \mathbf{k g}($ (b)	Oil Capacity L (gal)
W	356	144
	(785)	(38)
WV27	359	156
	(790)	(41)
WV38X	459	201
	(1012)	(53)
VW	384	156
	(845)	(41)
WWV27	384	171
	(845)	(45)
WV38X	422	224
	(930)	(59)

* Add $11 \mathrm{~kg}(25 \mathrm{lb})$ for each bushing current transformer.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-17
Responding Witness: Robert M. Conroy
Q-1-17. Explain the basis for and data related to the proposed requirement of Terms and Conditions of Attachment No. 8(j) to impose a 50 percent surcharge on Attachment Customers that do not adequately make adjustments upon 30 days’ notice.

A-1-17. The proposed surcharge is intended to serve as an incentive for Attachment Customers to promptly correct deficient construction and maintenance practices. The Commission has previously authorized the use of such surcharges for such purposes. See, e.g., The CATV Pole Attachment Tariff of Blue Grass Rural Electric Cooperative, Administrative Case No. 251-29 (Ky. PSC May 12, 1983); The CATV Pole Attachment Tariff of Grayson Rural Electric Cooperative, Administrative Case No. 251-35 (Ky. PSC May 23, 1983); The CATV Pole Attachment Tariff of Farmers Rural Electric Cooperative, Administrative Case No. 251-32 (Ky. PSC May 27, 1983); The CATV Pole Attachment Tariff of Fox Creek Rural Electric Cooperative, Administrative Case No. 251-34 (Ky. PSC May 27, 1983); 251-35

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371

Question No. 1-18

Responding Witness: John K. Wolfe

Q-1-18. Explain the basis for and provide any data related to the proposal to require an on- off switch for each and every Wireless Facility installation.
a. Do You intend to apply Your proposal to require an on-off switch to Wi- Fi access points?

A-1-18. LG\&E personnel are required to ensure that the antenna is not energized while work on the pole is in progress. A disconnect switch at the pole allows the worker to ensure the antenna has been powered-down prior to commencing work on the pole, without having to rely on the efficacy of remote disconnection.
a. No, LG\&E does not intend to require an on-off switch to strand mounted Wi-Fi access points.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-19

Responding Witness: John K. Wolfe

Q-1-19. Explain the basis for and provide all data related to Your proposed requirement that no bundle of cables shall exceed two inches in diameter, including any safety or engineering reports or analyses on which this proposal is based.

A-1-19. The requirement that no bundle of cables shall exceed two inches in diameter is a long-standing LG\&E construction standard that has been present in the Cable Television Attachment Charges schedule for many years. As cables grow in diameter, they put additional strain on the utility poles to which they are attached. This is particularly problematic when considering ice and wind loading, as larger cables gather significantly more ice and are more heavily affected by wind than smaller cables.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-20

Responding Witness: John K. Wolfe

Q-1-20. Explain the procedures and processes You will use to "verify the number, location, and type of Attachment Customer's Attachments" under proposed Terms and Conditions of Attachment No. 13.

A-1-20. From time to time LG\&E may engage internal or contractor resources to visually inspect Attachment Customer's Attachments to verify the number, location and type of attachments.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-21

Responding Witness: Robert M. Conroy

Q-1-21. Explain the basis for and provide data related to how You will determine whether an Attachment is "unauthorized."

A-1-21. LG\&E intends to rely upon voluntary reporting of Attachment Customers, as well as spot inspections, and periodic inspections to detect any unauthorized attachments.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-22

Responding Witness: Robert M. Conroy

Q-1-22. Explain the basis for and provide data related to the penalty You propose for Unauthorized Attachments, including data related to the cost basis of such proposed penalty.

A-1-22. Longstanding Commission precedent has permitted a pole owner to assess double the established attachment charge for an Attachment Customer's unauthorized placement of attachments on a utility's structures. Approving such charges, the Commission has stated:

Similarly, since some CATV operators have made attachments to utility poles without prior authorization, and the utility must rely, between inspections, on voluntary reporting by such operators, it is reasonable for the utility to charge a penalty for unauthorized attachments. We will allow tariff provisions which provide for a charge of not greater than twice the amount equal to the rate that would have been due had the installation been made the day after the last previous required inspection.

The Adoption of A Standard Methodology for Establishing Rates For CATV Pole Attachments, Administrative Case No. 251 (Ky. PSC Sept. 17, 1982) at 5 (emphasis added).

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-23
Responding Witness: John P. Malloy / John K. Wolfe
Q-1-23. Please provide data identifying the design and purpose of the Your proposed Advanced Metering System ("AMS") and Distribution Automation Project ("DA"), including the nature of any wireline facilities necessary to provide AMS and DA.

A-1-23. See the Testimony of John P. Malloy, Exhibit JPM-1, Sections 4 and 5 for an overview of the design and purpose of the proposed AMS project and Appendix A-3 for data sheets related to the various system components. Some AMS field devices will utilize private fiber optic cable for communications. AMS and DA field devices on the public cellular networks will utilize leased wireline services (MPLS) that connect LG\&E/KU data centers to the cellular carriers.

See the Testimony of Paul W. Thompson, Exhibit PWT-5 for an overview of the design and purpose of the proposed DA project and Exhibit PWT-4 for relevant equipment schematics and diagrams.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-24

Responding Witness: John P. Malloy / John K. Wolfe

Q-1-24. Please explain how the AMS and DA systems will make use of distribution poles, including the extent and nature of and attachment of wires and facilities to Poles, the Pole space to be used, and the location on the Poles to be used by any such wires and facilities.
a. Provide data related to any proposed installation of meters and/or equipment necessary to support the meters on Your Poles. Please include data showing where the equipment will be located and changes to existing pole facilities and Attachments that may be required to accommodate proposed AMS and DA systems as well as the basis for any such changes.

A-1-24. The AMS system will require the installation of radio-frequency (RF) communications infrastructure on distribution poles. This infrastructure facilitates the transmission of the meter data from the advanced meters to Company back-office systems.

The DA program will require the installation of electronic sectionalizing devices on distribution poles. The current company standard provides adequate clearance for the electronic sectionalizing devices between primary and neutral conductors. Poles with legacy construction standards may require the installation of a taller pole or the lowering of the system neutral. A control box will be mounted at the base of the pole 5 feet from ground level. All cabling required from the control box to the electronic sectionalizing device will be protected by armoring the cable and installing the unarmored sections of cable in conduit or other acceptable means of protection. See the attached for an illustration of the Company's standard installation of a SCADA capable recloser.
a. See attached for data illustrating the Company's standard related to the installation of AMS router infrastructure.

Electric System Codes \& Standards

12KV ELECTRONIC 3 PHASE RECLOSER INSTALLATION
CROSSARM CONSTRUCTION D.A.

Notes:

1. BOTH THE TANK AND HEAD OF THE RECLOSER IS TO BE GROUNDED.
2. 12KV RECLOSERS SHOULD BE SET TO SINGLE PHASE TRIP SINGLE PHASE LOCKOUT.
3. 12KV TRANSFORMERS ARE TO BE CONNECTED TO A AND C PHASES. CONNECT ONE TRANSFORMER TO THE SOURCE SIDE AND THE OTHER TRANSFORMER TO THE LOAD SIDE.
4. ENSURE THAT THE BACKUP BATTERY IS CONNECTED.
5. CONTROL SHALL BE MOUNTED TYPICALLY AT 60" AT CENTER OF CONTROL ABOVE GROUND LINE TO ALLOW EASE OF ACCESS.
6. THE FIRST 10' OF CONTROL AND POWER CABLE IS ARMORED. U-GUARD MUST BE INSTALLED TO COVER THE NON-ARMORED SECTION OF CABLE AND SHALL EXTEND A MINIMUM OF 40" PAST THE HIGHEST COMMUNICATION ATTACHMENT.
MATERIAL LIST

ITEM	IIN	DESCRIPTION	QTY
1	7001280	INSULATOR,SUSPENSION,15 KV,POLYMER	6
2	VARIES	DEADEND-VARIOUS SIZES	6
3	7001269	INSULATOR,PIN TYPE,15KV,POLYMER	3
4	7004088	PIN,INSULATOR,STRAIGHT,5/8"X6"	3
5	3015303	CROSSARM,FG,TANGENT,3-5/8"X4-5/8"X8'	1
6	VARIES	5/8" BOLT-VARIOUS SIZES	8
7	VARIES	FARGO CONNECTOR-VARIOUS SIZES	6
8	VARIES	FARGO COVER-VARIOUS SIZES	6
9	7000879	BRACKET,CUTOUT/ARRESTER,X-ARM	2
10	7001957	CUTOUT,FUSED,15KV,NON-LOADBREAK,W100A TUBE	2
11	1157894	CONNECTOR,PARALLEL,AL,336.4-795 MCM TO 8 SLD-2/0 STR COPPER	8
12	1159527	STIRRUP,BAIL,HOT LINE,COPPER,TIN PLATED	8
13	7000591	CLAMP,HOT LINE,8-2/0,CU	8
14	VARIES	POLY WIRE FOR JUMPERS-SIZED TO PRIMARY	20
15	3014901	SWITCH,RECLOSER BYPASS,14.4KV,900A,110KVBIL,3 PULL	1
16	3016577	LUG.TERMINAL.ALUMINUM.BOLTED.TEE CONNECTOR 336/795	6
17	3015376	$500 M C M ~ B R O N Z E ~ B O L T E D ~ C O N N E C T O R-S I Z E S ~ V A R Y ~$	6
18	3021740	RECLOSER,THREE SINGLE PHASE MODULES WITH SINGLE CONTROL	1
19	VARIES	$3 / 4 " ~ S P A C E R ~ B O L T-S I Z E S ~ V A R Y ~$	2
20	1160519	GUARD,CABLE,10'-2",U-SHAPED,PVC	3
21	1181001	LOCK,PAD,WITH 1-1/2" SHANK,BRASS	1
22	7000337	WASHER,FLAT,SQUARE,2-1/4" X2-1/4" X3/16",FOR 5/8" BOLT	8
23	1243701	WASHER,CURVED,SQUARE,4" X4" X3/4",GALV,FOR 3/4" BOLT	2
24	7000602	CLAMP,GROUND,TRANSFORMER TANK,BRZ,\#8SLD TO 2/0 STR	1
25	7000303	BOLT,MACHINE,1/2",2",SS,SILICON BRONZE NUT,2 FLAT \& 1 BELLVL W/	6
26	1159243	SCREW,LAG,1/2"X4",GIMLET POINT,GALV STD PKG=250	8
27	7000302	BOLT,MACHINE,1/2",1-1/2",SS,SILICON BRONZE NUT,2 FLAT \& 1 BELLVL	12
28	3000347	SLIDE,ANIMAL,25" X48",POLYETHYLENE,POLE PROTECTION	1
29	7000401	CONDUCTOR,OH WIRE,500,CU-SD,XLPE,80 MIL,90-DEG C RATED,37 STH	20

CONTROL INSTALLATION DETAIL

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-25

Responding Witness: John P. Malloy / John K. Wolfe

Q-1-25. Please identify all communications services that the proposed AMS and DA could be used to provide.

A-1-25. There will be no communications services provided by the AMS and DA systems.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-26

Responding Witness: John P. Malloy

Q-1-26. Please provide data related to the radiofrequencies that the meters will use, the meters' abilities to communicate with other equipment and facilities, and any analysis of interference with other Attachments on the Poles.

A-1-26. The information is contained on pages 103-128 of 169 in the Testimony of John P. Malloy, Exhibit JPM-1, Appendix 3. The advanced meters utilize the 902 to 928 MHz FHSS unlicensed frequency for communication transmissions. Communications by the meters are encrypted so communication with other equipment requires a number of safeguards including, but not limited to, proper configuration by Company to enable communications. The Company has not performed any analysis of interference with other Attachments on Poles.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-27

Responding Witness: John K. Wolfe

Q-1-27. Please explain the impact of the proposed AMS and DA on existing wireline and wireless attachments of Attachment Customers, including whether rearrangement of the existing Attachment Customers’ facilities or other make ready will be required to accommodate deployment of AMS and DA. If rearrangement of the existing Attachment Customers' facilities or other make ready work is required, please explain the allocation of costs of such work and whether Term and Condition No. 15 of the Proposed Tariff will apply.

A-1-27. The installation of DA equipment will be in the power space on poles and clearance will be governed by the National Electrical Safety Code and Company standards. No equipment installation is anticipated in the communications space. It is anticipated that AMS equipment will be installed in both the power space and the communications space. Where adequate pole height or adequate pole capacity is not available on an existing pole for new facilities or equipment, the pole will be replaced to provide the necessary space and/or capacity. Third party attachments will be transferred to the new pole at the attachment owner's expense. In limited cases, and where possible, attaching parties will occasionally be required to rearrange attached facilities on an existing pole to create additional space. Third party attachments will be rearranged on an existing pole when requested at the attachment owner's expense. Provisions in the proposed tariff in section 15(b) are consistent with a long-standing provision present in the Cable Television Attachment Charges schedule.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-28

Responding Witness: John K. Wolfe

Q-1-28. Please provide a copy of the "strategic network design study" referenced at Your Response to Commission Staff's First Requests for Information (filed Dec. 8, 2016) Response to Request No. 12 at p. 3.

A-1-28. See attached. The study contains confidential information and is being provided pursuant to a petition for confidential protection.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-29

Responding Witness: Robert M. Conroy

Q-1-29. Explain the authority you are seeking through your application for a Public Convenience and Necessity ("CPCN"), including whether such authority will authorize You to provide communications services to any third party.

A-1-29. The CPCN authority requested is to deploy AMS and DA across LG\&E's electric distribution system as described in the testimony of Mr. Thompson concerning DA and the testimony of Mr. Malloy concerning AMS. The CPCN authority requested will not authorize LG\&E to provide communications services to any third party.

LOUISVILLE GAS AND ELECTRIC COMPANY

Response to Kentucky Cable Telecommunications Association's
 First Request for Information
 Dated January 11, 2017

Case No. 2016-00371
Question No. 1-30

Responding Witness: Robert M. Conroy

Q-1-30. Please explain whether You intend to increase the electric rate(s) charged to Cable Television System Operators and Telecommunications Carriers and, if so, the percentage increase(s) of the rate(s).

A-1-30. The current rate is $\$ 7.25$ per year for each attachment to pole. The proposed rates are as follows:
\$ 7.25 per year for each wireline pole attachment.
\$ 0.81 per year for each linear foot of duct.
\$ 84.00 per year for each Wireless Facility.
See also Schedule M-2.1-E at Tab 66 of the filing requirements for proposed increases in electric rates generally, including those charged to Cable Television System Operators and Telecommunications Carriers who take electric service from LG\&E.

[^0]: All required work above the Communication Space (as defined in the NESC) will be performed by LG\&E or an LG\&E qualified approved overhead electrical line contractor after the LG\&E Design Team has completed a route and engineering analysis.

 LG\&E reserves the right to modify the requirements found in this handbook or any of its service policies, procedures and/or standards at any time. It is the responsibility of the Third Party Attacher or contractor to ensure that any referenced document is the version currently approved for use by LG\&E. It is also the responsibility of the Third Party Attacher to notify LG\&E of any changes to existing wiring, equipment, building structure, electrical loading and/or other service requirements that may affect safety or electric system performance.

[^1]: ${ }^{1}$ Any breach of OSHA's minimum approach distance (including measurement) of electric facilities must be conducted by a qualified electrical worker and in accordance with good safety practices and OSHA guidelines.

